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ABSTRACT 

In the last few years, several countries have accomplished their determined renewable 

energy targets to achieve their future energy requirements with the foremost aim to encourage 

sustainable growth with reduced emissions, mainly through the implementation of wind and 

solar energy. Wind and solar energy is critically important for the social and economic growth 

of any country. Moreover, reliable and precise wind and solar power prediction is crucial for 

the dispatch, unit commitment, and stable functioning of power systems. This makes it easier 

for grid operators of the power system to support uniform power distribution, reduce energy 

loses, and optimize power output. Consequently, the integration of wind and solar power 

globally relies on correct wind and solar power forecasting. Current studies typically adopt 

machine learning algorithms (ML). The foremost contribution of this research is short-term 

wind power forecasting on the basis of the historical values of wind speed, wind direction, and 

wind power by using ML algorithms. In this study, regression algorithms such as random 

forest, k-nearest neighbor (k-NN), gradient boosting machine (GBM), decision tree, and extra 

tree regression are employed to enhance the forecasting accuracy for wind power production 

for a Turkish wind farm situated in the west of Turkey. Polar curves have been plotted and the 

impacts of input variables such as the wind speed and direction on wind energy generation is 

examined. Scatter curves depicting the relationships between the wind speed and the produced 

turbine power are plotted for all of the methods here and the predicted average wind power is 

compared with the real average power from a turbine with the help of the plotted error curves.  

The second contribution of this research is short-term solar power forecasting on the basis 

of the historical values of ambient temperature, irradiation, module temperature and solar 

power by using ML algorithms. In this study, regression algorithms such as random forest (RF) 

and k-nearest neighbor (k-NN) regression algorithms are employed to enhance the forecasting 
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accuracy for solar power production for a Qassim University, KSA. The performance of all 

algorithms were estimated based on the various statistical indicators. 

As renewable energy sources (RES) provide intermittent power and are not available 24 

hours a day, it is vital to build hybrid models based on RES to provide an uninterrupted, 

sustainable, eco-friendly, and cost-efficient power supply. The current research is also devoted 

to the development and design of an optimal hybrid model using locally accessible RES for 

selected locations. The evaluation of the potential of locally available RES for selected sites in 

Uttar Pradesh, India, is carried out to develop the hybrid model. To fulfil the energy demand 

of the selected site, a hybrid model was constructed using the Hybrid Optimization Model for 

Electrical Renewable (HOMER) software based on the feasibility analysis of RES at the 

selected site. To create a hybrid model, the electrical load demand for the specified location is 

evaluated while taking seasonal fluctuations, current and future power requirements, everyday 

hourly consumption patterns, living standards, and so on into account. The primary goal of this 

study is to develop an economic and optimal hybrid PV/Biogas configuration for power 

production for rural common facilities including one Primary school, Junior school and 

Panchayat Ghar buildings of Sarai Jairam village in Uttar Pradesh, India. The PV/biogas hybrid 

configuration was designed utilizing the Hybrid Optimization Model for Electric Renewable 

(HOMER) and techno-economic analysis is carried out to fulfill the load requirements. The 

HOMER analysis produced a solution that included total net present cost (NPC) and cost of 

electricity (COE), and these results were then further improved using sensitivity analysis. 

Based on the NPC and COE, this analysis evaluates the system performance and demonstrates 

that it is techno-economically feasible. 

 In addition, for maximizing the solar power generated from solar photovoltaic system 

(SPV), the optimization of space and orientation of solar PV system are also done.  
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CHAPTER 1 

INTRODUCTION 

1.1   OVERVIEW 

Power is amongst the most crucial elements of infrastructure, essential for the welfare and 

economic development of any country. Rapid exhaustion of fossil fuels and tremendous growth 

in power demand has forced engineers worldwide to consider the utilization of renewable 

energy sources (RES) [1–2]. The serious consequences of environmental deterioration have 

also focused universal attention on RES. However, the cost of installation of such RES is 

higher, but their minimum operational costs and non-polluting nature is intensifying their use 

worldwide [3]. Wind and solar power generation is a low-cost and profusely available resource. 

Therefore, various nations are beginning to recognize that wind energy offers a substantial 

opportunity for future electricity production [4-5]. Consequently, installed wind and solar 

capacity increases by more than 30% every year. The stimulating and dominating 

characteristics of wind and solar energy over other resources of energy are the reduction of 

greenhouse gases emissions, reduction of dependency on fossil fuels, no global warming, low 

installation cost, less setup time, no fuel cost and low operation and maintenance charges [6-

8]. The reliability and stability of power systems depend heavily on the intermittent and 

unpredictable behaviour of wind and solar energy, which also makes forecasting challenging. 

Therefore, a precise and efficient short-term forecast technique is essential for the long-term 

integration of wind power into the power system [9].  

The machine learning models produce good forecasting accuracy. There are two 

significant challenges to using machine learning approaches. To begin, prediction error and 
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reliability must be increased to meet the needs of the energy markets. Second, the required 

computation times must be decreased to an adequate level [10]. To enhance the economic 

growth of the nation and the living standard of human’s electricity is very essential.  

The majority of the world's population resides in developing nations, with rural areas 

constituting roughly one-third of these nations. A substantial part of this rural population is 

completely reliant on bioenergy or fossil fuels to prepare food or meet other electricity needs, 

yet burning fossil fuels causes environmental pollution and releases greenhouse gases (GHG), 

which cause global warming, acid rain, and other health hazards [11-12].  

In India, around 70% of the population lives in rural areas, and approximately 23% of 

households do not have access to electricity. Furthermore, the everyday accessibility of power 

in most rural regions is restricted to a limited number of hours because of a variety of factors 

such as weak distribution network, electricity stealing, local people’s reluctance to pay 

electricity bills and so on. In such cases, people utilize diesel generators and kerosene oil, which 

emit GHGs and cause health problems, among other things [13]. 

India's installed power generation capacity has grown dramatically during the last four 

decades. It was 30 GW in 1981 and over 412 GW on February 28, 2023. Despite this expansion, 

there is a significant gap between load demand and generation demand.  

Exploration and utilisation of locally available renewable energy sources (RES) for power 

generation would be the most viable solution for rural areas in order to address the 

aforementioned issues and to fulfil Indian Government missions such as "Power to All," "Green 

and Clean Energy," "Digital India," and so on. The use of renewable energy sources for power 

production can enhance rural people's living conditions and health, as well as provide them 

with education and career possibilities, reducing their migration to cities. The chaotic nature of 



3 

 

these RES during the year, on the other hand, leads to research toward hybrid systems, which 

combine two or more sources [14].  

Recent research has showed that hybrid systems with multiple sources are more reliable 

and cost-effective. Because the geographic location and environmental elements influence the 

performance of a hybrid model, a site-based study is required to determine the size and related 

capital and operating and maintaining (O&M) costs of components. Furthermore, the initial 

cost of a renewable energy sources-based system is more costly than that of a conventional 

energy-based system. As a result, size is one of the requirements for producing power at a low 

cost.  

A lot of research is being done these days in the domain of RE-based hybrid systems. This 

work is concerned with the design optimization and sizing of components, as well as their 

economical operations and control. There is still a lot of study to be done in this field. In 

considering the above discussions, an attempt has been taken to build some hybrid models 

for the selected site, with the best ones chosen based on reliability, cost and size [15]. Before 

designing and developing any hybrid system, it is crucial to investigate and utilize the potential 

of various RES or their ability to generate power.  

As a result, one of the objectives has been chosen to be the feasibility analysis of various 

RES for specified locations. Following the feasibility analysis, the load demand for a specific 

area must be estimated [16]. Furthermore, it is required to identify and build various feasible 

configurations that could be used in specific scenarios. An optimal configuration is chosen 

from among the investigated configurations to achieve cost-effectiveness and reliability. 

Furthermore, the optimal size is required to use the RES in a cost-effective and efficient 

manner. As a result, optimization of renewable power based hybrid systems considers the 

process of selecting the most appropriate components, their suitable size, and operational 
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planning in order to deliver cost-effective, reliable and efficient sustainable power [17-18]. 

Various researchers use a prominent commercial software called Hybrid optimization model 

for electric renewable (HOMER) developed by National Renewable Energy Laboratory 

(NREL) for modelling, sensitivity analysis and optimization  to obtain the most optimal and 

cost efficient hybrid system. 

1.2   SCENARIO OF INDIAN ELECTRICITY 

 Electricity an essential necessity for any country's socioeconomic progress. Furthermore, 

electrification is one of the most critical demands of remote regions in developing countries 

such as India in order to achieve economic progress, poverty reduction, creation of jobs, and 

long-term human growth [19]. With 1.42 billion people, India is the world's first most populous 

country. Approximately 70% of them live in rural regions. According to published data, around 

18452 communities are still without electricity [20, 21].  

Furthermore, it has been discovered that electric supply is not always available in the 

residences in electrified communities. The share of hydroelectric power has been expanded to 

90 times in the existing energy system scenario, but the largest portion of the country's 

generation capacity is still that of thermal power, which is more than 60% and has been grown 

by around 260 times since Independence of India [20].  

In 1974, nuclear power contributed 640 MW to the Indian electricity sector, which has 

since been grown tenfold to 2023. The share of renewable energy in total installed capacity in 

India has increased from 0.03% in 1990 to 41.4% (including hydro) as of 31.03.2023.  

According to the latest data, India has 4,16,058 MW of installed capacity [21]. Renewable 

energy contributes 30.1% of total installed capacity, second only to thermal energy. Fig. 1.1 

depicts the significant share of several conventional and renewable energy-based power 
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production in the nation. Because thermal plants account for 57.02% of total capacity, they 

contribute to global warming, Greenhouse gases and health issues, among other things. The 

chart also illustrates that RES account for just 30.1% of total electricity generation, which can 

be enhanced by harnessing increasing the number of RES [22,23]. Fig. 1.2 shows the renewable 

energy status of wind, solar, small hydro and biomass as on 31.03.2023. [22] 

                                                

Fig. 1.1: Total installed capacity as on March 31, 2023 (Ref: Ministry of Power) [22] 

 

                                      

                 Fig. 1.2: RES status as on March 31, 2023 (Ref: Ministry of Power) [22]    
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Fig. 1.3: Power generation in India by region as of March 31, 2023 [23] 

As shown in Fig. 1.3 electricity production is maximum in the western region, followed by the 

southern, northern, eastern, north-eastern, and island regions.   

Furthermore, Fig. 1.4 presents the sectoral contribution to total installed capacity in the Indian 

power sector. The private sector contributes approximately 50% of total installed capacity, 

while the central and state governments contribute 24% and 26%, respectively [23]. 

 

Fig. 1.4. Total installed generation capacity (sector wise) as on February 28, 2023 [23] 
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1.3   STATUS OF INDIAN RENEWABLE ENERGY 

 Renewable energy is the foundation for achieving sustainable energy. In the early 1970s, 

their significance was recognised. India has made significant initiatives to promote renewable 

power.  

A significant amount of research has been conducted in order to reduce the relative cost of 

renewable energy. India has also enacted a number of price-cutting policies. To meet the energy 

needs of its emerging economy, India established a separate Ministry of New and Renewable 

Energy (MNRE) in the early 1980s. Ever since, renewable energy generation in India has been 

steadily increasing [24-26].  

With a population of 1.3 billion, India has a huge demand for power to support its quickly 

expanding economy. India has been working for more than seven decades to achieve energy 

independence, despite having a power deficit when it attained independence. With a total 

installed capacity of over 4 lakh MW, our country now has a surplus of power [27]. 

India's power generation mix is rapidly changing towards a higher proportion of renewable 

energy in order to achieve sustainable development [28]. India is now the world's third largest 

producer of renewable energy, with non-fossil fuels accounting for 40% of installed capacity 

[29].  

Fig. 1.5 depicts the exponential rise in the electricity generation in India from 2005 to 2022 

[24]. According to Fig. 1.5, renewable power capacity has grown approximately 9 times over 

the past 18 years. In addition, the involvement of multiple RES including solar, wind, small 

hydro, and bio power is displayed in Fig.1.5. 
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Fig 1.5: Total electricity generation in the country [24] 

Total electricity generation, including renewable sources, is expected to be around 1234.298 

BU in 2021-22 (up to January 2022), up from 1137.851 BU in the same period last year, 

representing an 8.5% increase. The country's electricity generation from fossil fuel sources 

during 2021-22 (up to January 2022) is 913.193 BU, a 9.5% increase over the previous year's 

generation of 834.109 BU. Coal-based power generation in 2021-22 (up to January 2022) is 

850.845 BU, an increase of 11.2% over the previous year's same period. Electricity generation 

from Renewable Sources (Non Hydro) during 2021-22 (up to January 2022) is 141.280 BU, 

up 14.5% from the previous year's generation of 123.428 BU. Wind generation is 61.400 BU, 

up 14.2%, and solar generation is 57.394 BU, up 19.0%. The share of RE Generation (Including 

Hydro) in Total Generation has been increased to around 22.9% during 2021-22 (up to January 

2022), and the share of Non-Fossil Generation in Total Generation has been around 26.0%.[24, 

30]. Total electricity generation in the country increased from 624.2 billion units (BU) in 2005-

06 to 1234.3 BU in 2021-22. (Upto January 2022). The Pradhan Mantri Sahaj Bijli Har Ghar 

Yojana - Saubhagya initiative was introduced by the Indian government in October 2017 with 

the goal of achieving universal household electrification by providing electricity connections 
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to all rural and urban poor families that are not already electrified. Since the beginning of 

Saubhagya, up until March 14, 2023, 2.86 crore (28.6 million) houses, including 91,80,571 

dwellings in Uttar Pradesh, have been electrified. After that, some States stated that 11,83,870 

more formerly hesitant homes—including 3,34,652 households in Uttar Pradesh—were now 

open to electrification. These also received approval. In contrast to this, 4,40,893 families had 

electricity as of March 15, 2022, according to the ministry's response. 

1.4 INDIAN GOVERNMENT INITIATIVES FOR RENEWABLE 

ENERGY  

Energy is the foundation for achieving sustainable energy. In the early 1970s, their 

significance was recognised. India has made significant initiatives to promote renewable 

power. A significant amount of research has been conducted in order to reduce the relative cost 

of renewable energy. India has also enacted a number of price-cutting policies [30, 31]. To 

meet the energy needs of its emerging economy, India established a separate Ministry of New 

and Renewable Energy (MNRE) in the early 1980s. Ever since, renewable energy generation 

in India has been steadily increasing [32-33].  

The Government of India started several incentives to tremendously drive the addition of 

wind capacity, through tax rebates, financial help and subsidies, etc. for supporting market 

players. In lowering the prices of wind power equipment via large scale manufacturing of 

equipment, the government has announced new policies through the Make in India scheme 

[34].  

The Indian government made a number of initiatives in recent years, including National 

Electricity Policy 2005, National Rural Electrification Policy 2006, National Tarrif Policy, and 

Electricity Act 2003, etc. These initiatives in the wind power field show improved financial 
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incentives, a steady market growth, opportunities in offshore wind power and lowering 

renewable energy prices [30, 35]. 

The particulars of the regulatory acts enacted by the state and central governments to 

enhance clean power are listed as follows.  

1.4.1  Electricity Act 2003 

The Electricity Act, 2003 was enacted with effect from 10 June 2003. This act covers 

crucial matters involving transmission and distribution, sales and utility to promote electricity 

through renewable energies. The following are some of the points included in the 2003 

Electricity Act: 

1. To deliver improved methods to uplift power via generation and co-generation via RES 

by giving improved techniques for the integration of grid and trading power to 

customers, and to mention the terms of service for determining the tariff; 

2. To encourage the utilization of RES through distinct sections of ‘Electricity Act 2003, 

the State Commission will have to produce power, grid integration and construct a 

competitive electricity market in which the sale and purchase of electric power can be 

accomplished by the RES and also encourage co-generation; 

3. To encourage the generation and co-generation of electrical power from RES [30, 36]. 

1.4.2  National Electricity Policy 2005 

National Electricity Policy was set up in discussion with, and taking into consideration, 

the opinions of the CEA, CERC, state governments and other stakeholders. 

 The main aim of this policy is to set regulations for faster growth of the power field, 

delivering power supply to all regions and protection of the interest of stakeholders and 
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consumers by considering the availability of power resources, energy security issues, 

economics of generation using distinct resources, and the technology available to exploit these 

resources [30, 37].  

1.4.3  National Rural Electrification Polices (NREP), 2006 

In 2006 ‘NREP’ Policy was announced by the Ministry of Power, Government of India, 

for allowing standalone power systems utilizing renewable power. The major objective of 

NREP is to deliver reliable and sustainable quality of electricity at an appropriate price to all 

local users. In addition, where grid supply is not possible, off-grid solutions such as a 

standalone power system can be used to bring electricity to isolated rural locations [30, 38].  

1.4.4  National Tariff Policy 2006 

The ‘National Tariff Policy was declared in 2006, to expand the utilization of RES under 

section ’86-1-e’ of the ‘Electricity Act 20030. According to the policy, a suitable commission 

will set a definite percentage of tariffs having a minimal rate of power purchase from RES, 

taking into account the accessibility of the RES in the particular area and impacts on production 

prices [38].  

1.4.5  State Level Initiatives 

There are several independent state level polices apart from the national policies, whereby 

wind energy can be promoted as RES. As per the regulations (as of 31 August 2016) of CERC 

and SERC, they have concluded the electric power cost for their individual states [98]. 

Therefore, based upon the tariff orders issued by SERC for the financial year 2020–2021, 

CERC has determined the APPC at the national level to be at Rs 3.85 per unit for the year 

2021–2022 [30, 39]. 
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1.4.6  Mechanism of Renewable Energy Certificates (REC) 

To encourage renewable power in the electricity market, the REC mechanism is very 

effective and profitable. In India, the REC mechanism was constituted in 2010 by CERC, under 

the Electricity ACT (2003). REC acts as a tracking or accounting mechanism for wind, solar 

and other green energies as they flow into the power grid. Since electric power produced from 

RES is indistinguishable from that generated by any other RES, some form of tracking is 

needed.  

This accounting and returning power to the grid is essential since electricity is tough and 

costly to store in batteries [100–102]. Thus, additionally produced renewable power, which is 

unused by producer, is fed back into the electric grid for utilization by other customers. Hence, 

the provider of renewable power will then obtain a REC [40].  

In order to promote renewable energy in the nation, including wind energy, the 

government has taken a number of actions. These consist of: 

 Allowing 100% of FDI (foreign direct investment) via the automatic route. 

 Interstate sales of wind and solar energy without paying ISTS fees are permitted for 

projects that will be operational by June 30th, 2025. 

 Up until 2022, a trajectory for the Renewable Purchase Obligation (RPO) has been 

declared. 

 A trajectory for the Renewable Purchase Obligation (RPO) has been established 

through 2022. 

 Standard Bidding Guidelines for tariff based competitive bidding process for 

procurement of Power from Grid Connected Solar PV and Wind Projects. 
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 To ensure prompt payment by distribution licensees to RE generators, the government 

has issued orders requiring power to be dispatched against a Letter of Credit (LC) or 

advance payment. 

 To develop a pool of skilled workers for the operation, implementation, and upkeep of 

RE projects through skill development programs. 

Along with the aforementioned, the subsequent actions have been specially taken to 

promote wind power: 

 The generation-based incentive (GBI) is given to wind projects that were put into 

operation on or before March 31, 2017. 

 Wind projects that went into operation on or before March 31, 2017, are eligible for the 

generation-based incentive (GBI) [30, 40]. 

1.5   THE NEED FOR WIND AND SOLAR POWER FORECASTING 

Wind energy is extremely crucial to any country's social and economic development. 

Given this, accurate and reliable wind power prediction is critical for dispatch, unit 

commitment, and the stable operation of power systems [41]. This makes it simpler for power 

system grid operators to support uniform power distribution, reduce energy losses, and 

optimise power output [42]. Furthermore, without forecasting functionality, wind energy 

systems that are extremely disorganised can cause irregularities and pose significant challenges 

to a power system. As a result, the global integration of wind power is dependent on accurate 

wind power prediction. It is necessary to create dedicated software in this regard, where 

weather forecast data and wind speed data are model inputs that predict the power that a wind 

farm or a specific wind turbine could produce on a given day. Forecasted outputs could also be 

compared to a town's actual per-day power demands [43-44]. When the predicted power is 
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insufficient to meet the town's daily needs, appropriate decisions can be made to arrange for 

leftover power to be gathered from other sources. If the predicted power exceeds the demand, 

a sufficient number of wind turbines could be turned off to prevent surplus generation. This 

method has the potential to reduce frequent power outages and protecting generated power 

from being wasted. Abundance availability of solar and wind energy. It enables power system 

entities to maintain lesser operating reserves. To increase grid stability and reliability. A 

reduction in supply-side uncertainty and an increase in overall preparedness to deal with 

unforeseen events are two benefits of improved forecasting. Prediction can effectively contain 

extreme changes in wind and solar generation as well as abrupt changes in the output of power 

systems.  Solar and Wind power forecasts can help system operators make informed choices 

on power purchasing needs [45]. 

1.6   THE NEED FOR A HYBRID SYSTEM 

Electrical energy demand is rising exponentially as a result of urbanization, fast 

industrialization, technology advancements, and increased household consumption, among 

other factors. Moreover, electricity produced from conventional energy sources has become 

more expensive because of increasing fossil fuel prices and their exhaustion [46]. Furthermore, 

the non - availability of grid electricity to remote areas, the substantial quantity of Carbon 

dioxide emission from thermal power plants and the lack of rural electrification,  are motivating 

factors to produce electricity from Renewable sources. Renewable sources would play a crucial 

role and become good replacement for conventional sources of electricity in the coming years 

because of their numerous advantages such as environmental friendliness, natural resource, 

reliable power source, job growth, particularly in rural areas, stabilized fuel costs, managed to 

improve health concerns, and so on [47]. In light of the aforementioned, renewable energy 

sources (RES) can play a significant role in achieving a sustainable future.  Biomass, small 
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hydro, wind and solar are the most common types of RES; and all have immense capacity to 

meet future needs for energy. Nevertheless, there are some limitations to Renewable sources, 

such as their stochastic nature and relying on weather factors, which makes the system layout 

unreliable and insufficient to meet demand over a long period of time [48]. Energy storage is 

needed to improve system reliability, which increases system cost that is unwanted. Taking 

into account the above mentioned, a combination of various Renewable sources like small 

hydro, biomass, wind energy, solar photovoltaic (SPV), and so on might be possible solutions. 

"Hybrid Renewable Energy Systems (HRES) are made up of two or more sources of energy, 

one of which is renewable and is connected with power control equipment and an optional 

storage system." A hybrid system is a combination of various kinds of systems, and the need 

for power storage in such systems could be lowered, making the system more economical [49]. 

A hybrid system based on renewable energy is also a viable solution for electrifying 

remote regions where the extension of grid is not viable or cost-effective. It may also 

address, emissions, efficiency, economics, fuel flexibility and reliability issues. The hybrid 

system can operate either off or on the grid. The system is connected to the power grid when it 

is in grid connected mode, but not when it is in off grid mode [50]. There are several hybrid 

system configurations described in the literature, such as , MHP/Biogas/Biomass/SPV/Battery/ 

Fossil fuel generator, SPV/Wind/Fuel cell (FC)/Electrolyzer,  Wind/Biomass,  Wind/Biomass 

, SPV/Wind/DG/Battery, Wind/DG/Battery,  SPV/Wind/Battery, Wind/Battery, SPV/Wind, 

SPV/Battery, SPV/Diesel generator (DG) etc.   

1.7   RESEARCH MOTIVATION 

To achieve the United Nations Sustainable Development Goals of Sustainable Energy for 

All and reducing GHG emissions to mitigate climate change, the more utilization of renewables 

is critical [51]. Small hydro, solar energy, wind energy, and biomass are examples of renewable 
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energy sources. The RES listed above is abundant in India. However, small hydro and wind 

energy are primarily site dependent, whereas biomass and solar energy are widely available in 

most areas. India is the 7th, biggest country in terms of its overall land mass area, which 

provides numerous opportunities for utilizing the commonly accessible potential of renewable 

energy sources. Approximately 20% of the total population still lacks access to electricity [52].  

As of February 28, 2023, India had 412 GW of installed capacity, with fossil fuels 

accounting for 236.4 GW and renewable energy accounting for about 175.7 GW. As a result, 

there is an imperative necessity to tap commonly accessible RES for use in electricity 

production and achieve the goal of "electricity for all." [53].  

India has consistently shown that it is willing to lead the fight against climate change [54]. 

In addition to achieving short-term objectives like increasing renewables capacity to 500 GW 

by 2030, going to meet 50% of its power needs from energy from renewable sources, 

decreasing overall emission rates by one billion tonnes by 2030, and reducing India's GDP's 

emissions intensity by 45% by 2030, the nation's long-term goal is to achieve Net Zero 

Emissions by 2070. According to demand and commonly accessible RES, an HRES composed 

of two or more RES may be a more efficient solution for rural electrification because of its 

versatility in choosing power sources, reliability, sizing, prolonged life cycle, and economic 

feasibility when compared to utilizing a single energy source [55].  

According to the literature, HOMER software is commonly used for hybrid system 

feasibility analysis. Furthermore, the majority of the work has been done to optimize off-grid 

hybrid systems. Moreover, size optimization of biogas and biomass generators in hybrid 

systems was rarely done because most researchers used fixed size bio generators. Additionally, 

during hybrid system size optimization, only a very limited amount of the seasonal variations 

in electricity demand for load is taken into account. 
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1.8 RESEARCH OBJECTIVES 

Based on a review of the literature and the growing importance of designing hybrid 

systems that use commonly accessible RES for electricity production, the primary goal of this 

work is to design, optimize, and analyze an effective renewable energy-based hybrid system 

that ensures reliable and economical power supply while emitting less GHG. The following 

objectives have been set for the research work:  

 Artificial Intelligence based approach for short term solar PV and wind power 

forecasting for smart energy management. 

 Feasibility analysis of renewable energy resources based hybrid energy system for 

remote areas. 

 Design and optimization of hybrid energy system for remote areas and applications. 

 Optimization of space and orientation of solar PV system for maximizing power 

generation 

 

The current chapter begins with an overview and background wind and solar power 

generation, need of forecasting, scenario of Indian electricity, Installed power production 

capacity from various sources, status of Indian renewable energy,  

Indian government initiatives for renewable energy, followed by the need for a hybrid 

system. This thesis is divided into seven chapters, including an introduction and conclusion. 

The remaining chapters of the thesis are organized as follows: 

Chapter 2 contains a detailed literature review on wind power forecasting, solar power 

forecasting, and feasibility and techno-economic analysis of hybrid renewable energy systems 

(HRES) has been presented and discussed in depth. 
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Chapter 3 presents the comparative study of machine learning models for wind power 

forecasting with introduction to dataset, data analysis and performance metrics. 

Chapter 4 presents the status of global wind power, emission of carbon dioxide renewable 

power contribution by technology, investment flow of RES, renewable energy jobs, global 

wind power installed capacity and various achievements and significant information related to 

worldwide wind energy. 

Chapter 5 presents a detailed comparative study of machine learning models for solar power 

forecasting with introduction to dataset, data analysis and performance metrics. 

Chapter 6 introduced the development of off-grid hybrid models utilizing HOMER software 

to fulfil the electricity requirement of remote applications such as panchayat ghar and primary 

schools located in remote areas without the availability of grid power. This chapter also 

discusses the components of HRES, including technical specifications, operating costs, 

maintenance and operation costs. Furthermore, different models in off-grid modes were chosen 

based on RES availability and simulated in the HOMER tool for a one-year period utilising 

economic and technical data as input. Finally, they are compared in terms of various technical 

and economic parameters to determine the best optimal solution. 

Chapter 7 suggests the development of a real-time grid-connected solar photovoltaic (PV) 

system utilising PVsyst software, with an optimum area solution and a proposed method to 

enhance power. This chapter also looked at the economic aspects of designing a solar 

PV system. This chapter thus tends to focus on two primary objectives; one is to use the space 

in an optimal way in order to get the most benefits in the least amount of space, and the second 

is to place modules in such a way that the power can be extracted more efficiently without 
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changing the number of solar modules. The results of the simulation were validated and 

correlated with those of the hardware. 

Chapter 8 summarizes the conclusions and key contributions of the thesis work. Finally, the 

scope of future study has been highlighted.  
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CHAPTER 2 

LITERATURE SURVEY 

2.1   INTRODUCTION 

This chapter demonstrates general articles about wind and solar power forecasting. 

Significant time series and machine learning findings for wind and solar power forecasting are 

also presented. Since the year 2000, a great deal of work has been done in wind speed, wind 

power and solar power forecasting. Most recent work has focused on artificial intelligence 

approaches and machine learning models [56]. Wind and solar power forecasts, can be 

classified into four time scales: very short-term (few seconds - 30 min), short-term (30 min - 6 

h), medium-term (6 h - 1 day), and long-term (more than 1 day) [57]. This chapter will review 

related work using machine learning algorithms for each group, with a focus on short-term 

forecasts. This chapter also provides a literature review on numerous aspects of renewable 

energy power systems, such as feasibility analysis, hybrid model design and development, and 

sizing of renewable power hybrid systems, and so on. Over a hundred research articles on 

renewable energy-based power systems have been analysed and evaluated. This literature 

review has been divided into sections, which are discussed in the following sections. 

2.2   REVIEW ON WIND POWER FORECAST 

With the advent of new technologies and accelerated growth in the world’s economy, the 

power demand increases substantially. Over the recent times, power industries have switched 

their focus on to the sources of green power in order to minimize the carbon emission during 

power production [58, 59]. In addition, fossil fuels has a severe influence on the environment 

such as floods, melting of glaciers, heat waves, droughts and frequent wildfires threatening our 
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earth’s ecosystem. Thus, the growth in renewable energy sources (RES) like solar power, 

geothermal energy, tidal energy and wind energy have become the long-term goal for the 

governments throughout the world [60]. Among all power sources, the wind is the source of 

green power which can replace the utilization of fossil fuels, thereby reducing emission of 

carbon and efficiently lessening the power crisis [61-63]. Wind has broadly been adopted as 

power-system alternative because of its easy accessibility, cost-effectiveness and renewable 

nature. Because of the intermittent nature of power production from wind energy systems, the 

operators have to operate and control the power plant competently [64, 65]. Therefore, for long-

term and short-term planning of power transmission, it is necessary to forecast wind power 

production. Recently numerous researches have been done on predicting the power production 

and feasibility analysis by wind system. Few researches have concentrated on direct-power 

forecasting of RES and some have utilized the methodology to predict the input-variables (wind 

and solar-irradiance) and estimated the energy produced from hybrid plant utilizing various 

models [66]. Mostly wind-farms have installed SCADA system to manage the wind turbines 

for logging on the operational data on and monitoring distinct components. The logged on 

dataset contains information about speed of wind, direction of wind and produced power etc. 

It offers the chance to process the time-series data collected for a variety of applications, from 

operational and maintenance needs to forecasting the amount of power generated by wind 

turbines [67]. The wind speed, wind direction and time of day are the significant parameters 

which influence the wind turbine-power production. In the past few years, numerous research 

papers and review articles have been published that analyzed, in detail, the various wind power 

forecasting approaches and methods. Hanifi et al. (2020) presented a critical review on various 

approaches such as statistical, physical and hybrid to forecast the wind power. In this area of 

research, authors also provide the past and present trends and highlight the future research 

directions that incorporate a requirement to evolve more cost-effective and advanced 
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forecasting approaches; improvement in data-processing, error post processing and developing 

specific models for an off-shore wind energy forecasting, as such wind turbines work in distinct 

weather circumstances. Moreover, their findings show that, among 42 analysed researches 60% 

utilized wind speed, 25% utilized air temperature and few researches utilized number of 

generation hours [68]. Delgado and Fahim (2021) evolved long-short term memory (LSTM) 

based forecasting model for short-term wind energy production [69]. In another research, Extra 

Trees, ADa- Boost and K-Neighbors Regressors are used to predict power and energy of wind 

turbine. While manipulations of data are accomplished by recursive-feature-elimination 

utilizing cross-validation (RFECV) (Qadir et al. 2021) [70]. In another research, a new forecast 

model using light gradient boosting machine (GBM) and convolutional neural network (CNN) 

is developed. By examining the characteristics of raw-dataset on the time-series from the 

surrounding wind field, new feature sets are built, and CNN are utilized to recover the details 

from the input dataset, and network parameters are updated by comparing the outputs Ju et al 

(2019) [71]. Chandran et al. (2021) evolved a model that could effectively predict wind energy 

by using machine algorithms such as recurrent neural network (RNN), long short-term Memory 

(LSTM) and gated reference unit (GRU) [72]. In other work, to predict the next hour wind 

power a sparse machine learning technique is utilized (Lv et al. 2021) [73]. Kisvari et al. (2021) 

evolved a novel data-driven methodology to predict wind energy by incorporating dataset pre-

processing, detection of anomalies and treatment, hyper-parameter tuning and feature 

engineering using gated-recurrent deep-learning models with the help of six features such as 

gearbox temperature, generator temperature, nacelle orientation, wind speed at hub height, 

blade pitch angle and rotor speed [74]. In another work, comparison of five optimized robust 

regression models is done to predict wind turbine output on the basis of wind velocity vector 

components (Pathak et al. 2021) [75]. González-Sopena et al. (2021) presented a widespread 

survey of the performance assessment approaches utilized for evaluating the prediction 
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accuracy of short-term wind energy [76]. In another research work, to improve the forecasting 

accuracy, a hybrid optimization approach is developed that combines varying mode 

decomposition (VMD) algorithm, long short-term memory neural-network (LSTM) and firefly 

algorithm (Qin et al. 2021) [77]. Wang et al. (2019) proposed an approach which is the 

combination of ensemble technique, echo-state-network and wavelet transform, where wavelet 

transform is utilized to decompose raw wind energy time-series dataset into distinct frequencies 

with better behaviors and outliers. To automatically learn the input–output non-linear 

relationship in each frequency and to deal with data noise and model misspecification issues 

that are common in wind power forecasting problems [78]. Puri and Kumar (2021) used 

artificial algorithm for wind energy forecasting by utilizing 30 days data of wind speed, air 

density and temperature in the Himalayan region as input parameters [79].  

Noman et al. investigated a support vector machine (SVM)-based regression algorithm for 

predicting wind power in Estonia one day in advance [80]. Wu et al. suggested a new 

spatiotemporal correlation model (STCM) for ultra short-term wind power prediction based on 

convolutional neural networks and long short-term memory (CNN-LSTM). The STCM based 

on CNN-LSTM has been used for the collection of metrological factors at various places. The 

outcomes have shown that the proposed STCM based on CNN-LSTM has a superior spatial 

and temporal characteristic extraction ability than traditional models [81]. Yang et al. 

developed a fuzzy C-means (FCM) clustering algorithm for the forecasting of wind energy one 

day in advance to reduce wind energy output differences [82]. Li et al. proposed the 

combination of a support vector machine (SVM) with an enhanced dragonfly algorithm to 

predict short-term wind energy. The improved dragonfly algorithm selected the optimal 

parameters of SVM. The dataset was collected from the La Haute Borne wind farm in France. 

The developed model showed improved forecasting performance as compared with Gaussian 

process and back propagation neural networks [83]. Lin et al. constructed a deep learning 
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neural network to forecast wind power based on SCADA data with a sampling rate of 1 s. 

Initially, eleven input parameters were used, including four wind speeds at varying heights, the 

ambient temperature, yaw error, nacelle orientation, average blade pitch angle, and three 

measured pitch angles of each blade. A comparison between various input parameters showed 

that the ambient temperature, yaw error, and nacelle positioning could be areas for optimization 

in deep learning models. The simulation outcome showed that the suggested technique could 

minimize the time and computational costs and provide high accuracy for wind energy 

prediction [84]. Wang et al. proposed an approach for wind power forecasting using a hybrid 

Laguerre neural network and singular spectrum analysis [85]. Wang et al. presented a deep 

belief network (DBN) with a k-means clustering algorithm to better deal with wind and 

numerical prediction datasets to predict wind power generation. A numerical weather 

prediction dataset was utilized as an input for the proposed model [86]. Dolara et al. used a 

feed forward artificial neural network for the accurate forecasting of wind power. Their results 

were compared with predictions provided by numerical weather prediction (NWP) models 

[87]. Abhinav et al.  presented a wavelet-based neural network (WNN) for forecasting the wind 

power for all seasons of the year. The results showed better accuracy for the model with less 

historic data [88]. Yu et al. suggested long- and short-term memory-enriched forget gate 

network models for wind energy forecasting [89]. Zheng et al. suggested a double-stage 

hierarchical ANFIS to forecast short-term wind energy. To predict the wind speed and turbine 

hub height, the ANFIS first stage employs NWP, while the second stage employs actual power 

and wind speed relationships [90]. Jiang et al. developed an approach to enhance the power 

prediction capabilities of a traditional ARMA model using a multi-step forecasting approach 

and a boosting algorithm [91]. Zhang et al. evolved an autoregressive dynamic adaptive 

(ARDA) model by improving the autoregressive (AR) model. In this approach, a fixed 

parameter estimation method for the autoregressive model was enhanced to a dynamically 
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adaptive stepwise parameter estimation method. Later on, the results were compared with those 

of the ARIMA and LSTM models [92]. Qin et al. developed a hybrid optimization technique 

which combined a firefly algorithm, long short-term memory (LSTM) neural network, 

minimum redundancy algorithm (MRA), and variational mode decomposition (VMD) to 

improve wind power forecasting accuracy [93]. Huang et al. used an artificial recurrent neural 

network for forecasting [94]. Recently, some researchers have developed their own 

optimization approaches, such as in [95], where the authors developed sequence transfer 

correction and rolling long short-term memory (R-LSTM) algorithms [96]. Akhtar et al. 

constructed a fuzzy logic model by taking the air density and wind speed as input parameters 

for the fuzzy system used for wind power forecasting [97]. Aly et al. developed a model to 

forecast wind power and speed using various combinations, including a wavelet neural network 

(WNN), artificial neural network (ANN), Fourier series (FS) and recurrent Kalman filter (RKF) 

[98]. Bo et al. [99] proposed nonparametric kernel density estimation (NPKDE), least square 

support vector machine (LSSVM), and whale optimization approaches for predicting short-

term wind power. Li et al.  developed an ensemble approach consisting of partial least squares 

regression (PLSR), wavelet transformation, neural networks, and feature selection generation 

for forecasting at a wind farm [100]. Colak et al. proposed the use of moving average (MA), 

autoregressive integrated moving average (ARIMA), weighted moving average (WMA), and 

autoregressive moving average (ARMA) models for the estimation of wind energy generation 

[101]. Saman et al. proposed six distinct machine heuristic AI-based algorithms to forecast 

wind speeds by utilizing meteorological variables [102]. Yan et al. investigated a two-step 

hybrid model which used both data mining and a physical approach to predict wind energy 

three months in advance for a wind farm [103]. From the literature survey, it is clear that there 

have been several research studies that have investigated the forecasting of wind energy by 

employing various analytical approaches across several horizons, among which persistence and 
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statistical approaches have been used. Statistical approaches have not been suitable approaches 

for forecasting wind power as they have not been able to handle huge datasets, adapt to 

nonlinear wind dataset, or make long-term predictions [104-105]. Prior to our research, there 

have been many types of prediction models that have been shaped to predict wind energy, 

namely, physical models, statistical models, and teaching and learning-based models, which 

employ machine learning (ML) and artificial intelligence (AI)-based algorithms. Current 

studies typically adopt machine learning algorithms (ML). In particular, naive Bayes, SVM, 

logistic regression, and deep learning architectures of long short-term memory networks are 

typically used [106]. 

2.3   REVIEW ON SOLAR POWER FORECAST 

The rise in prices for fossil fuels and concern about climate change has increased demand 

for RES, which has numerous advantages, such as being sustainable and environmentally 

friendly. Solar energy is a renewable energy that converts sunlight into electricity using solar 

photovoltaic systems. These sources are highly intermittent and chaotic in nature. Solar 

photovoltaic output is typically highly dependent on the sun's radiation, temperature, and other 

meteorological conditions. A generative power is typically determined by numerical weather 

forecasts, also known as a physical model [107]. The reliability of the energy predicting 

algorithm is heavily dependent on numerical weather prediction, which indicates it degrades 

with increasing time horizons. Forecasting algorithm horizons range from short-term forecasts 

in hourly ranges, mid-term forecasts up to some days, to long-term forecasts in the range of 

some weeks. Different time horizons are of interest to different market participants, which aid 

in the improvement of various power system applications [108]. There are several models 

available, including long-term forecasts, mid-term forecasts (e.g., day-ahead forecasts), and 

short-term forecasts (e.g., hourly-ahead forecasts). Different time horizons, such as extremely 
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short-term, short-term, medium-term, and long-term forecasting, are taken into consideration 

depending on the users' interest in scheduling to management. Very short-term forecasting, 

which is useful for quick actions, focuses on an interval of a few seconds to 30 minutes interval. 

In contrast, load dispatch planning and operational security benefit from short-term forecasting, 

which is done up to six hours in advance. Long-term forecasting, from one day to a longer time 

horizon, is taken into consideration. For instance, medium forecasting, starting from a day 

ahead forecast, is beneficial when achieving considerable operational management and cost 

optimization. Studies have revealed that sun radiation is essential to the operation of solar 

energy systems. In comparison to other approaches (such as temperature-based, cloud-based, 

or other meteorological parameter-based models), solar radiation-based forecasting models 

offer the highest level of accuracy. However, due to high measuring costs and weather 

conditions, solar radiation is not always available for various specialized usage objectives (such 

as short-term, medium-term and long-term). Analysis of solar radiation over a short period of 

time is significantly more difficult because minute solar radiation is uncommon. Hourly data 

cannot forecast short-term behaviour, even though they are typically correct when used to 

assess the total energy delivery of a solar system. Models based on hourly radiation 

measurements have been utilised despite the fact that it has been known for more than 30 years 

that they are not an accurate representation of instantaneous or minute radiation. This is because 

there aren't any detailed radiation data available. Therefore, it is crucial to create a suitable 

short-term forecasting model that can lessen the restrictions mentioned before. Additionally, 

voltage fluctuation, poor power quality, and stability concerns are some of the additional issues 

brought on by the intermittent and uncontrollable nature of solar generation. In brief, the new 

model is also required for estimating reserves, scheduling the power system, congestion 

management, optimal management of storage with stochastic production, trading produced 

power in the electricity market, and, ultimately, to reduce the costs of electricity production. 
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Meftah et al. forecasted solar power data using a deep learning technique. The LSTM network 

and Multi-layer Perceptron (MLP) network were compared in terms of performance using the 

following metrics: Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), 

Root Mean Squared Error (RMSE), and Coefficient of Determination (R2). The prediction 

outcome demonstrates that for each category of days, the LSTM network provides the best 

results [107]. Mohamed Abuella et al. used machine learning algorithms to forecast a solar 

photovoltaic system's solar power output in order to reduce the uncertainty associated with 

changeable renewable resources. Forecasts are created by support vector machines, and random 

forest is used to aggregate the forecasts as an ensemble learning technique [108]. Zhang Yue 

et al. presented the system-level application of three recognised forecasting models to the 

prediction of solar power over the next 24 hours. In this study, the Least Squares Support 

Vector Machine (LS-SVM), Radial Basis Function Neural Network (RBFNN) and Auto 

Regressive Integrated Moving Average (ARIMA), models are all examined [109]. In order to 

predict monthly solar output power, Kuo-Ping Lin et al. created an evolutionary seasonal 

decomposition least-square support vector regression (ESDLS-SVR). Seasonal decomposition 

and least-square support vector regression are used to generate the ESDLS-SVR (LS-SVR). 

The parameters of the LS-SVR are chosen simultaneously using genetic algorithms (GA). The 

Taiwan Power Company's monthly solar power output figures are used. Experimental findings 

show that the proposed forecast model performs better in terms of forecasting accuracy [110]. 

In order to estimate reliable power generation, Su-Chang Lim et al. suggested a hybrid model 

that combines a long short-term memory (LSTM) and, a convolutional neural network (CNN). 

While the LSTM learns power generation patterns depending on weather circumstances, the 

CNN categorises weather conditions. The PV power output data from a power plant in Busan, 

Korea, were used to train and test the suggested model [111].Similarly, using deep learning 

approaches, such as the LSTM algorithm, this Tamer Musha’I AI-Jaafreh et al. investigated 
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the impact of several atmospheric parameters, such as evapotranspiration and soil temperature. 

According to the results, predicting accuracy increased when new sun irradiation-related 

features were added [112]. However, the majority of forecasters do not emphasis on the 

influences of photovoltaic module parameters on the forecasts. Therefore, Yilin Zhou et al. 

proposed a novel multivariable hybrid prediction system that combines a swarm intelligence 

optimization technique, deep learning models, artificial intelligence models, and signal 

decomposition in order to close this gap. To increase the accuracy and effectiveness of solar 

forecasts, this method completely makes use of independent variable variables, including 

module temperature [113]. Ying Wang et al. developed a time-series-based solar power 

forecasting (SPF) model using the local meteorological station's forecasted weather data and 

the time element. The long short-term memory (LSTM) algorithm is used for short-term SPF 

in consideration of the data correlation [114]. Yinpeng Qu et al. provided a novel hybrid model 

to forecast distributed PV electricity production based on Gated Recurrent Units [115]. Using 

data gathered from a photovoltaic plant in Uruguay, Naylene Fraccanabbia et al. created a 

forecasting model that uses time series to enable the prediction of electricity energy production. 

Models (base-learners), pre-processing methods, and models (meta-learners) from the 

Stacking-Ensemble Learning (STACK) method were used to build the proposal [116]. In this 

study, we focus on the challenge of daily half-hourly forecasting of the electricity produced by 

photovoltaic solar systems. Jose F. Torres introduced DL, a deep learning method for huge data 

time series that breaks the forecasting challenge down into a number of smaller issues. DL is 

based on feed-forward neural networks. The authors conducted an extensive evaluation using 

two years' worth of Australian solar data, assessing precision and training time, and contrasting 

the performance of DL with two other cutting-edge approaches utilizing pattern sequence 

similarity and neural networks [117].  Using hourly auto-regressive moving average (ARMA) 

models, Bismark Singh et al. provided a step-by-step methodology to forecast power output 
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from a photovoltaic solar generator [118].  Abinet Tesfaye Eseye et al. used a hybrid forecasting 

model (Hybrid SVM-PSO-WT) that combines support vector machines, particle swarm 

optimization, and wavelet transform for the short-term (one-day-ahead) generation power 

forecasting of a real micro grid PV system [119]. In addition, a thorough error analysis was 

conducted by Marco Pierro et al. along with the development of deterministic and stochastic 

models for day-ahead PV production forecasts [120]. Similarly, Irani Majumder et al. 

mentioned a forecasting technique that depends on a hybrid Extreme Learning Machine (ELM) 

and empirical mode decomposition (EMD) to predict solar power [121]. In order to create 

short-term probabilistic solar power forecasts, Simone Sperati et al. applied the Ensemble 

Prediction System (EPS) of the European Centre for Medium-Range Weather Forecasts 

(ECMWF) (SPF). The EPS is based on repeatedly running a climatological model from initially 

disrupted conditions. Estimating the prediction uncertainty is made possible by the distribution 

of these many runs [122]. Vinayak Sharma et al. developed a method for forecasting 

photovoltaic (PV) power generation one day in advance without using numerical weather 

prediction (NWP) data. The proposed method only accepts historical generated PV power data 

as input and employs a closed loop non-linear autoregressive artificial neural network (CL-

NAR-ANN) model [123]. To make short-term predictions of solar irradiation and wind speed 

and to look into the energy use of micro grids, a novel prediction interval model made up of 

several sections (modified multi-objective fruit fly optimization algorithm, Group Method of 

Data Handling neural network, hybrid feature selection and wavelet transform) has been 

developed [124]. Jie Zhang et al. presented a set of broadly applicable and value-based metrics 

for solar prediction for a wide range of scenarios (i.e., geographic locations, different time 

horizons, and applications) that were created as part of the U.S. Department of Energy Sun 

Shot Initiative's efforts to enhance the precision of solar prediction [125]. A hybrid model of 
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genetic algorithm (GA)/multiverse optimization (MVO), artificial neural networks (ANNs) 

was used to forecast cell temperature, efficiency and PV output power [126].   

2.4   REVIEW ON DEVELOPMENT OF HYBRID SYSTEMS  

The unavailability or shortage of electrical networks in remote locations, the excessive 

cost of grid extension, and the harsh topography frequently lead to the exploration of other 

alternatives. One of the most promising approaches to meet these areas' need for electrification 

now involves standalone hybrid systems. Flavio Odoi- Yorke et al. examined the possibility of 

using a hybrid solar PV/biogas/battery energy system to provide power to distant areas in 

Ghana. The objective is to employ locally accessible renewable energy sources to reduce 

greenhouse gas emissions while achieving a Levelized Cost of Electricity (LCOE). The results 

show that in terms of cost and pollution savings, PV/biogas/battery systems outperform 

PV/diesel/battery and diesel-only systems [127]. Endeshaw Solomon Bayu et al. conducted a 

study to incorporate wind turbines, micro-hydro systems,  solar photovoltaic (PV) systems, and 

battery systems to check the feasibility of hybrid systems to electrify the remote place [128]. 

Paul et al. examined the economic viability and feasibility of utilizing a hybrid-electricity 

system in rural areas. The findings show that, when compared to PV/Diesel Generator (DG)/B 

and isolated DG systems, the photovoltaic (PV)/battery (B) system based on renewable energy 

(RE) has the lowest net profit cost (NPC) and cost of energy (COE). Although the COE 

and NPC values of the diesel generator (DG) hybrid-electric system (HES) are lower than those 

of the PV/DG/B system, the DG system still emits the most substantial pollution [129].   

Similarly, Nyagong Santino et al. evaluated the viability of a hybrid power system for a 

remote South Sudanese community without electricity access. Based on the community's 

energy requirements, average energy consumption profiles were created over the course of a 

year. The system was configured and optimized using the HOMER pro application, and based 
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on the standalone mode of operation, six potential combinations were modeled and examined 

technically and economically.  Due to the significant solar potential, the Battery/DG/ 

PV system has the minimum Net Present Cost (NPC) and Cost of Energy (COE) and provides 

a 22.94% investment return [130]. For the Atacama Desert in Chile, Francisco et al. conducted 

a cost-benefit analysis of the TEG-HPV system under actual environmental and market 

circumstances. The economic, electrical, and thermal models of the TEG-HPV system are 

constructed and examined in MATLAB. With regard to system costs, energy losses, ordinal 

efficiencies of TEG and  PV modules, and their contributions to the economical viability of 

TEG-HPV systems, five distinct cases are taken into consideration. Payback durations for 

every scenario are calculated at maximum and minimum  PV temperatures for the Atacama 

Desert, taking into account the industrial and residential prices of electricity [131]. Laetitia  et 

al. conducted a feasibility study with the goal of incorporating renewable energy sources into 

Popova Island's energy system. It takes an analytical strategy that entails using an energy 

systems model and the Monte Carlo method before assessing the financial results [132]. Ahmad 

et al. investigated the feasibility of meeting the load demand with the best system that produces 

the least amount of CO2 and net present cost (NPC) emissions. The modeling results 

demonstrate that the NPC of the proposed grid/PV system is more sufficient than other 

configurations at the present grid tariff, resulting in a renewable proportion of more than over 

50%, a payback period of 17 years, and a 54.3% decrease in CO2. The outcomes further 

demonstrate that the integration of a 62 kW PV array with the primary grid is the optimal 

configuration that results in a minimal COE of 0.0688 $/kWh and sale back power of 9.16% 

of Al Baha University's total electricity consumption [133]. Mohammad Amin et al. developed 

the best renewable energy system possible to power a small community using only renewable 

energy sources. Like many remote Iranian communities, this one experiences regular power 

shortages. A hybrid stand-alone and on-grid renewable energy system using fuel cells, biogas 
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generators, wind turbines and photovoltaics,  is suggested. İn addition to the fuels cells, 

batteries, a hydrogen tank, an electrolyzer or reformer, and other backup and storage 

components are employed. The major objective is to identify the best design that can fulfill the 

demand for power while being acceptable from an environment and an economic standpoint. 

The findings demonstrate that the cheapest option is to use biogas, wind and solar rather than 

adding a fuel cell to this design would raise prices by 33-37% while simultaneously increasing 

the scalability of the system [134]. 

It is clearly revealed from the literature that a hybrid energy system with a diesel engine 

has several benefits over one that is solely powered by a diesel engine, including a longer 

engine lifespan, lower O&M (Operation and Maintenance) costs, lower fuel consumption and 

less of an adverse impact on the environment [135-137]. Such systems still depend on fossil 

fuel, which is unfriendly to the environment and necessitates logistical arrangements for 

delivering the fuel to the community, which is the problem with them [138]. Local fuel 

availability is frequently poor because of expensive transit expenses and theft danger.  

The diesel engine may be totally replaced with a biogas engine to solve the aforemention

ed issues, and its fuel can be produced locally in a limited digester. Utilizing locally generated 

biogas from dung can resolve issues associated with diesel fuel [139-140]. 

2.5 REVIEW ON OPTIMIZATION OF SPACE AND ORIENTATION OF 

SOLAR PV MODULE 

PV module energy generation is affected by several factors, including solar irradiance 

intensity, shadowing, pollution, environmental dust, ventilation, module positioning, wind 

speed and ambient temperature. The total amount of solar energy generated by PV modules is 

determined by the optimal positioning of the modules under the preferred solar cell efficiency 
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and meteorological factors. PV module positioning is determined by the module's position in 

relation to the inclination angle (horizontal plane) and the azimuth angle (vertical 

plane).  Standard Test Conditions (STC) determine PV cell efficiency, which usually depends 

on  operating temperature of the cell and type of cell ( thin amorphous silicon efficiency is 

approximately 9.5%, polycrystalline silicon efficiency is 16.0%-18%, and monocrystalline 

silicon efficiency is approximately 23%). PV increases current while decreasing voltage and 

electrical power as the temperature rises. Numerous studies have been conducted in order to 

solve the problem of raising accumulated power by identifying the 'optimised panel positioning' 

at various geographic locations around the world. The optimum module orientation can be 

calculated for various periods of time (e.g. annual, semi-annual, seasonal, monthly, daily and 

hourly) and weather conditions. Using the harmony search (HS) meta-heuristic algorithm, M. 

Guo et al. [141] finds the azimuth angle and optimum tilt angle of pv systems (PV) panels. In 

Taiwan, the tilt angle of pv systems (PV) modules is determined using a particle-swarm 

optimization technique with nonlinear time-varying evolution (PSO-NTVE). The goal is to 

maximise the modules' output electric power [142]. N. Ur Rehman et al. provided a 

mathematical model that takes into account the tilt angle of the field as well as the modules and 

calculates the significant photovoltaic power formation over a specific time frame. The model's 

validity is determined by comparing the outcomes to measurement taken from a computer-

aided 3D model [143]. Q. Hassan et al. evaluated the potential for solar power and identify the 

optimal tilt angles for maximum solar irradance in Iraq. The optimal south-facing tilt angle has 

been calculated for eighteen Iraqi cities in order to estimate radiation from the sun. The 

optimising method is carried out over a period of nineteen years, using hourly experimental 

solar radiation dataset. The findings indicated that the greatest solar radiation can be collected 

with a tilt angle ranging from 0° to 64°, with the optimum angle calculated by searching for 

the maximal hourly-daily solar radiation values with a 1° resolution [144]. 
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2.6   RESEARCH CHALLENGES AND OBJECTIVES 

From the aforementioned critical literature review relating to methods that have been used 

for wind and solar power forecasting as well as for the feasibility analysis and development of 

the hybrid model the following research challenges are identified: 

• Based on the literature, it has been found that several researchers have been working on 

developing reliable wind power forecast models. Since, most of these techniques have 

failed to deliver satisfactory outcomes for various wind farm areas when forecasting has 

been done under irregular and turbulent wind conditions. Due to these factors, there are 

much more input variables needed. 

• Auto-regression and Support vector regression, Linear regression and, among other ML-

based regression forecast methods, are widely used nowadays. These methods are 

employed in wind energy, grid management, solar irradiance prediction for photovoltaic 

systems, electric load forecasting, and power generation and consumption. The parameters’ 

tuning needs multiple trials and hence takes a long time to get the optimal solution. 

Moreover, the best solutions achieved by such algorithms cannot be replicated exactly thus 

several trials should be performed to ensure accuracy and meaningful statistical results. 

• Due to the fact that, the methods and algorithms are unable to give satisfactory results with 

high precision, therefore, for the production of wind and solar power, an accurate and 

precise forecasting method is necessary. In addition, few researchers have performed 

exploratory data analysis in polar and Cartesian coordinates system for short-term wind 

power forecasts rather than long-term forecasts. 

• The literature survey also indicates that HRES is a more reliable and cost-effective source 

of power than conventional grid systems.  
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• Additionally, the aforesaid research mostly focused on household electrification of rural 

areas while ignoring the need for power for schools and panchayat ghar. To the author's 

knowledge, there is no thorough study on the techno-economic analysis of such HRES in 

using HOMER on the selected location.  

• Only a few studies have been reported for India especially North-West i.e Uttar Pradesh 

state.  

• Also, the creation of such models relied on the use of solar and wind energy, and there are 

only a small number of studies in which biogas and biomass energy sources were regarded 

as important sources for generating electricity.  

• İn this regard, an HRE-based power producing system is suggested for supplying 

continuous electricity to two schools and Panchayat ghar, located in Sarai Jairam village, 

district Agra, Uttar Pradesh, India.  

• Solar and biogas energy sources have only been used in a small number of research for 

constructing hybrid power systems. 

2.7   SUMMARY 

Exploration and use of RES are essential for the sustainable development of humanity. 

This chapter reviews the literature on wind and solar power forecasting, feasibility 

studies, hybrid model design and development, and intelligent modelling and sizing approaches 

for hybrid systems powered by renewable energy sources. Based on the literature survey, 

research gaps are recognized and research objectives have been framed for the present research 

work. 



37 

 

CHAPTER 3 

WIND ENERGY SCENARIO, SUCCESS AND INITIATIVES 

TOWARDS RENEWABLE ENERGY IN WORLDWIDE 

 

3.1   INTRODUCTION 

 Power generation using wind has been extensively utilised, with substantial capacity 

add-on worldwide, during recent decades. The wind power energy sector is growing, and has 

turned into a great source of renewable power production [145]. In the past decades of the 21st 

century, the capacity of installed wind energy has almost doubled every three years. This review 

paper presents the crucial facets and advancement strategies that were approved and adopted by 

the Government of various nations for intensifying the country’s own power safety, by the 

appropriate use of existing power sources. From India’s viewpoint, wind energy is not only 

utilized for power production but also to provide power in a more economical way. The 

particulars of India’s total energy production, contributions of numerous renewable sources and 

their demand are also encompassed in this paper.  

After an exhaustive review of the literature, detailed facts have been identified about the 

present position of wind energy, with an emphasis on government achievements, targets, 

initiatives, and various strategic advances in the wind power sector. Wind power potential is 

discussed, which can assist renewable power companies to select efficient and productive 

locations. All analyses carried out in this paper will be incredibly valuable to future renewable 

energy investors and researchers. The current scenario of wind power production in India is also 

paralleled with that of other globally prominent countries. 
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3.2   STATUS OF GLOBAL WIND POWER 

 During the 1990s, the price of electrical power produced via wind was six times higher 

than current prices. Since then, wind power technology has been emerging at a fast rate among 

all RES with reference to enhanced installed capacity [146]. At the start of 2015, almost 85% of 

total global new wind power installation has been accomplished by the top ten wind energy 

leading countries, namely, China, US, Germany, India, Spain, UK, Canada, Italy, France and 

Denmark. Global new wind energy installations surpassed 90 GW in 2020, which was 53% 

growth since 2019, increasing total installed capacity to 742.9 GW. A growth of about 14% in 

comparison with the previous year was observed as shown in Fig. 3.1. The top five marketplaces 

for new installations were mainly China, US, Brazil, Netherlands and Germany [147-148]. 

These marketplaces jointly comprised almost 81% of wind installations of the previous year, 

amounting to about 10% more than in 2019. At the end of 2020 the cumulative installations of 

the top five marketplaces was the same. These marketplaces were China, US, Germany, India 

and Spain, which collectively led to about 74% of the total wind energy installations as presented 

in Fig. 3.2. Wind power installation began in India in 1990 and has significantly increased over 

the past several years [149-150]. The total installed wind power capacity in 2022 was 40.36 

GW, being the fourth highest installed wind-power capacity globally. Due to the reduced price 

of wind power from onshore wind energy, numerous wind power projects have been instigated.  

The MNRE has already set an ambitious target to achieve 450 GW of renewable energy 

installed capacity by 2030 [151-152]. A total of 42.633 gigawatts of wind power was installed 

as of March 31st, 2023. In India, the main producers of wind energy have been Adani Green 

Energy, Alfanar, SembCorp Green Infra and Renew Power [153-155]. 
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Fig 3.1: Global wind power cumulative capacity (GW) (2006–2022) 

 

 

Fig 3.2: Cumulative installed capacity (CIC) of wind power (MW) 2022 [155] 

3.3    EMISSION OF CARBON DIOXIDE  

Fig. 3.3 shows the CO2 emission (billion metric tons) produced by the foremost ten 

countries in the year 2021. It is worth noting that the above-mentioned amount of 742.9 GW of 

wind power production can reduce carbon dioxide emissions by 1.1 billion tons yearly [156]. 
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 Fig 3.3: CO2 emission in billion metric tons (as on 27 October 2021) by the foremost 

countries in the world in the year 2021 

As stated in the latest data of the Global Carbon Project, China, the United States, India, 

Russia, and Japan are the five top nations which generate the most carbon dioxide. Conventional 

power resources emit approximately half of the total carbon dioxide. Globally, China is the 

biggest emitter of CO2, as approximately 58% of the total power supplied in China is derived 

from coal alone.  

Worldwide, India is the third largest emitter of CO2, although it is still well behind China, 

the world’s largest emitter, and the United States. The global emission of CO2 totals 

approximately 33.1 billion metric tons each year [157]. However, due to COVID-19 induced 

lockdowns, the worldwide carbon dioxide emissions reduced by an estimated 2.5 billion metric 

tons in 2021.  

The Government of India is aware about its adverse impacts and has developed a National 

Action Plan (NAP) on changing climate.  
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However, while growing the Indian economy improves the wellbeing level of individuals, 

it also upsurges the electricity demand. RES has emerged as the best solution for upholding the 

equilibrium between demand and generation of electricity [158]. 

In seeking to achieve this, the Government of India has taken numerous initiatives to 

augment wind energy utilisation, such as (i) no transportation concerns due to finished goods 

and raw material, (ii) no management and administrative problems for promoting wind energy, 

(iii) savings from various taxes, (iv) problems associated with sale of energy is no more because 

various distribution companies and state electricity boards are ready to buy the power, and, (v) 

easy availability of bank loans for installing wind power plants [159]. The growth of wind 

energy creates significant problems in areas such as grid integration, inter-connections, network 

stability, and frequency control, etc. 

Therefore, for secure, stable and systematic operation of power systems, various nations 

have set up new grid codes. The majority of Indian states have gigantic wind power scope and 

other needed provisions for the steady and secure functioning of wind power plants. For 

upholding the energy development of any nation, forecasting the potential of future renewable 

energy is also necessary. Various techniques are being utilised to analyse and forecast the pattern 

of the future growth of wind power, and also the duration of time for attaining the technical 

wind power mission [160]. 

MNRE, Government of India, is outlining policy guidelines and looking towards the 

promotion of offshore wind projects. An analysis of the Indian shoreline has been conducted, 

which revealed that approximately 6–8% additional wind potential may occur along the eastern 

offshore. To select the site, the main steps are to identify several potential sectors following data 

collection across a large area. Accurate forecasting of wind power density is also necessary for 

selection of the site.  
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Various models such as Weibull distribution and extreme learning machine have already 

been implemented and are being utilised for determining the wind power density [161]. In the 

last 20 years, the worldwide generation of wind power has been advanced approximately 15 

times.  

In addition, extensive research has been undertaken to estimate the future potential and 

current status of renewable power. Several technologies have been developed and implemented 

by many researchers for enhancing the renewable power potential and technology enhancement 

behind RESs for improving the system security and quality of power [162]. 

3.4   RENEWABLE POWER CONTRIBUTION BY TECHNOLOGY 

During the past few decades, several nations have become conscious of the harmful impacts 

of global warming. Hence, to reduce the environmental pollution and harmful impact of 

greenhouse gases all nations are eager to utilise RES. For the first time, 2015 witnessed an 

extraordinary growth of the wind industry as yearly installations traversed the historic mark of 

60 gigawatts.  

Wind turbines with a capacity of more than 63 gigawatts have been installed. The earlier 

record was set in 2014, when more than 51.7 gigawatts of new capacity was added worldwide 

[163]. In 2016, 54 gigawatts of wind energy capacity was added around the world. 

The rapid development of, and large capacity addition to, the renewable power-sector is 

mainly delivered by hydro, solar and wind power. However, in the majority of nations, among 

all the RES, wind farms contribute the most power due to being easily available and having a 

low maintenance cost [164]. Fig. 3.4 presents the renewable power contribution (in TWh) of the 

foremost six countries in 2020-21. 
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Fig 3.4: Global top countries in the world with renewable power capacities in 2021 (in   

TWh). Source: REN21 (Renewable Energy Policy Network for the 21st Century) [163]. 

 

3.5   INVESTMENT FLOW OF RES 

At present, the majority of nations have recognised the necessity of renewable energy and 

have engaged in innovating for large investment in the renewable power sector, and intend to 

grow further.  

 

Fig 3.5: Flow of investment in renewable energy in the world from 2011 to 2020 (in billion 

USD). Source: REN21 (Renewable Energy Policy Network for the 21st Century) [165] 
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In 2019, global investment was USD 282.2 billion in new RE capacity, and merely 1% 

higher than the total of the year before. The highest figure of USD 315.1 billion was set in the 

year 2017, while in the year 2020, global investment in RE capacity increased by 2% to USD 

303.5 billion. Fig. 3.5 presents investment flow of RES among developing and developed 

countries from 2009 to 2019. The data clearly shows that since 2015, overall investment flows 

in RE among emerging nations have outpaced total investments in developed nations. In 2015, 

investment in wind power grew by 9% (i.e., USD 107 billion), while solar PV investment grew 

by 12% (i.e., USD 148.3 billion) in the same year as compared with 2014. Additionally, in 2019 

investment was USD 152 billion, or 55% of the global total of USD 282.2 billion [165]. 

3.6   RENEWABLE ENERGY JOBS 

 For any energy sector, employment is the major factor; accordingly, the wind power field 

has the capability of creating employment that grows each year, in various nations. Therefore, 

the renewable energy field demands the majority of people for research and development, 

operation, maintenance and expansion. Throughout the world, employment in the renewable 

energy field is continuously growing. 

In 2021, the renewable energy sector directly and indirectly employed 12.7 million people. 

Over the last decade, the number of jobs in the solar photovoltaic (PV), bioenergy, hydropower, 

and wind power industries has increased. Fig. 3.6 depicts IRENA's estimates of renewable 

energy employment since 2014. In 2019, global employment in RE was calculated at 11.5 

million jobs, while in 2018 it was estimated at 11 million jobs, as shown in Fig 3.6. Since 2012, 

global RE employment has been continuously growing. The biggest employers have been solar 

PV, wind power, hydro, and bio-energy industries. These employment trends are influenced by 

a wide range of variables, such as prices, expenditures, new and cumulative capacities, as well 

as a variety of policy strategies to enable the deployment of energy from renewable sources, 
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produce viable supply chains, and develop skilled labour. During 2021, the COVID-19 

pandemic continued to have an impact on the global economy, changing both the volume and 

structure of energy demand [166]. 

 

Fig 3.6: Global employment in the field of renewable energy (2014-2021). Source: Renewable 

Energy and Jobs [166] 

Table 3.1: Estimated number of jobs in the renewable energy industry worldwide in 2020-

2021. Source: Renewable Energy and Jobs [166] 

Renewable Sources (Jobs in 

Thousands) 
China 

United 

States 
Brazil India 

European 

Union 
World 

Wind power 654 120.2 63.8 35 298 1371 

Solar PV 2682 255 115.2 217 235 4291 

Solar heating/cooling 636 - 42 19 19 769 

Hydro power 872.3 72.4 176.9 414 89 2370 

Geothermal energy 78.9 8 - - 60 196 

Solid biomass 190 46.3  58 314 716 

Liquid biofuels 51 322.6 874.2 35 142 2421 

CSP 59.2 - - - 5.2 79 

Biogas 145 - - 85 64 307 

Total 4361 923 1272 863 1242 12677 

 

This section also contains employment statistics for a number of leading countries as well 

as a few other countries. The section also delves into employment in these countries' various 

states or provinces. As in previous editions, the emphasis is on China, Brazil, India, the United 

States, and European Union members (Table 3.1), the countries that lead in equipment 
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manufacturing, project engineering, and installations. Overall, Asian countries account for the 

majority of renewable energy employment, accounting for 63.6% of these jobs in 2021. Table 

1 displays global existing status of estimated jobs in 2020-21 in the field of renewable power. 

United States and China are consistently working in the RE sector and upheld their top places 

for annual investment, capacity add-on and power production from solar and wind energy [166]. 

3.7   WIND POWER INSTALLATION CAPACITY 

 At present, India and China are experiencing large demand for power because of their large 

populations. Thus, it is necessary to enhance electricity production from RE sources to meet 

their increasing demand. As a result, numerous countries have established renewable power 

plants and are deploying cutting-edge technology to increase production capacity. At the end of 

2021, worldwide installed wind energy capacity reached a huge level of 824,874 MW, while in 

2020, capacity was 733,276 MW [167]. 

 

Fig 3.7: Wind power installation capacities of the world’s major countries on a year-by-

year basis (MW, at the end of 2021) [167]  
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In 2017, the total renewable power capacity reached 2,179 GW. However, hydro power 

contributed the biggest part of the world RE, with 1,152 GW installed capacity. Solar and wind 

power contributed a major portion, with capacities amounting to 397 GW and 514 GW, 

respectively. Other renewable sources were 500 MW of marine power, 13 GW of geothermal 

power and 109 GW of bio-power [168]. 

In 2018, global renewable production capacity was 2,351 GW, where hydropower 

contributed the biggest share, with an installed capacity of 1,172 GW. Solar and wind power 

contributed the major portion, providing capacities of 486 GW and 564 GW respectively. Other 

renewable sources were 500 MW of marine power, 13 GW geothermal power, and 115 GW of 

bio-power [169].  

During 2019, worldwide renewable power capacity was 2,537 GW, where hydropower 

contributed the major portion with a capacity of 1190 GW. Solar and wind power contributions 

were 586 GW and 623 GW installed capacities, respectively, while other renewable sources 

such as marine power, geothermal, and bio-power contributed 500 MW, 14 GW and 124 GW, 

respectively [170]. 

During 2020, global renewable power capacity reached 2,799 GW. Hydropower continued 

to be the major producer of the global total, with a capacity of 1,211 GW. Solar and wind 

contributed equally to the remainder, with capacities of 714 GW and 733 GW, respectively. 

However, other renewable-sources, namely, marine power, geothermal power and bio-power 

capacities were 500 MW, 14 GW and 127 GW, respectively [171]. 

 Global renewable generation capacity was 3 064 GW as of the end of 2021. With a capacity 

of 1 230 GW, hydropower had the largest share of the global total. With capacities of 849 GW 

and 825 GW, solar and wind energy accounted for equal shares of the remainder. Other 
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renewables included 143 GW of bioenergy, 16 GW of geothermal energy, and 524 GW of 

marine energy. Renewable production capacity by various sources of energy from 2017 to 2020 

is shown in Fig. 3.8 [172]. 

 

Fig 3.8: Renewable production capacity by energy sources (2017–2021). Source: Global 

Wind Report [168–172] 

 

 

3.8 VARIOUS ACHIEVEMENTS AND SIGNIFICANT INFORMATION 

RELATED TO WORLDWIDE WIND ENERGY 

Successes of several nations towards wind-energy production are enumerated as follows: 

 At the end 2014, 2.5% of worldwide power was delivered by wind; 

 The most powerful offshore wind turbine in the world is Haliade-X, with 14 mega-watts 

capacity, a 107 m blade, rotor diameter of 220 m, digital capabilities, and lo-cated in 

Saint-Nazaire, France; 

 According to the Global Wind Energy Council (GWEC), at the beginning of 2017, more 

than 341,000 wind turbines were revolving and generating power; 

 Since 2020, China and USA have been two outstanding growth markets of wind energy; 
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 In the beginning of 2021, worldwide renewable production capacity reached 2,799 GW, 

with hydropower contributing the major portion (1211 GW) although wind and solar are 

increasing fast; 

 China, already the biggest global marketplace for renewable energy production, added 

136 GW in 2020, with the major portion sourced from 49 GW of solar and 72 GW of 

wind; 

 The United States installed 29 GW of renewable capacity in 2020, about 80% more than 

in 2019, including 14 GW of wind, and around 15 GW of solar; 

 The increased share of renewables as a portion of the total energy production is par-tially 

attributable to the net withdrawal of fossil fuel power in North America, Europe and 

Turkey, Russia, Georgia, Azerbaijan and Armenia. Total fossil fuel add-on dropped to 

60 GW in 2020 from 64 GW the previous year, underlining a continued downward trend 

of fossil fuel increase; 

 Wind power growth nearly doubled in 2020 (111 GW) as compared with 2019 (58 GW); 

 Emissions of carbon and sulphur oxides in 2020 reduced by nearly 7%, the biggest drop 

ever, as nations around the globe enforced lockdowns to restrain the spread of COVID-

19. Nearly 743 GW of wind energy capacity could reduce the emission of over 1.1 

billion tons of CO2 in 2020, globally; 

 India installed new wind capacity of 1119 megawatts in 2020. In addition, the re-

newable energy target of 175 gigawatts could be achieved by 2022, which includes 60 

gigawatts of onshore wind. The Government of India has also shared its dream for a 

long-term renewable energy target of 450 GW by 2030, including a target of 140 gi-

gawatts of wind capacity; 

 India, is the fourth largest power consumer following China, the United States, and the 

European Union, and the third highest carbon emitter after China and USA; 
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 For onshore installations, 2020 was a record year. South America, North America and 

the Asia Pacific jointly installed 74 GW of new onshore wind capacity, 76% more than 

the previous year. In the offshore market, 6.1 GW was installed globally in 2020, making 

2020 a great year; 

 As stated in the GWEC report, wind power helped the world reduce emissions of CO2 

by more than 637 MT. In addition, 2020 witnessed milestone commitments to carbon 

neutrality, with South Africa, Canada, South Korea, Japan and EU each pledging to 

achieve net zero by 2050; 

 Incorporating China’s net zero intention by 2060 and the United States’ target to reach 

net zero by 2050, nations which have planned net zero target now represent two-thirds 

of the world economy and 64% of the global greenhouse gases emissions; 

 According to IEA and IRENA, to control global warming worldwide it is necessary to 

install at least 180 gigawatts of new wind energy capacity annually to limit global 

warming to below 2 °C, and would need to install up to 280 GW annually to con-struct 

pathway yielding net zero by 2050; 

 The Wind Vision Report of the Department of Energy states that wind could poten-tially 

create more than 600,000 jobs by 2050, and help reduce 12.3 gigatons of green-house 

gases [173,174].  

 

3.9   CONCLUSION 

During the past Presently, India is finally defeating the tremendous challenge of the 

shortage of electricity, which may lead to lesser utilization of fossil fuels and greater utilization 

of RES. The Indian Government has taken a number of significant steps to encourage wind 

power, to build India a vast wind potential nation. The success of initiatives taken by the Indian 
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Government to encourage wind power projects can be observed with the trend of exponentially 

growing annual capacity additions. India also plays a significant role in enhancing opportunities 

for employment, besides minimizing power shortages and carbon emissions. In recent years, 

several new policies have been introduced in India in the wind power sector that appear to be a 

sturdy agent in the remarkable development of the wind power markets. In various countries, 

wind power policies include several benefits such as subsidies, tax exemption, attractive 

financing options such as lower interest rates, and the involvement of research institutes, etc. 

Additionally, in several countries (including India), the idea of the Renewable Energy 

Certificate (REC) has been initiated. 

 Additionally, renewable power is the best choice for Indian villages that are unable to 

receive power supply. It also assessed that up to 400,000 megawatts of power could be required 

by 2022. Therefore, India needs to utilize all existing RESs in order to reach the country’s 

electricity needs. Presently, India has been included among the top five nations worldwide for 

the creation of job opportunities in the field of renewable power, installations and capacity 

additions.  

Wind power development can be a major tool for reducing import dependence and 

production cost, and maximizing power security. India has significant wind power potential, 

and it could be one of the leading sources of power in the near future. For effective execution 

of various policies, socio-economic, environmental, financial and technical hurdles, along with 

uncertainties in policy matters, are required to be overcome. In addition, offshore wind projects 

are the most efficient method of utilizing wind energy in India. However, in India, offshore wind 

generation remained undeveloped until 2015, and little progress has been made in this area. 

Therefore, resource assessment and strong policies to commercialize offshore projects must be 

taken into consideration.  
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The Indian Government had a target of achieving a wind power capacity of up to 60 

gigawatts by 2022. However, according to former trends, the annual capacity addition is not 

above 4 gigawatts; however it requires almost 6 gigawatts annual capacity addition to achieve 

the target of 60 gigawatts. This can only be achievable with the superior integration of 

infrastructure, technology and management in the power sector. Promoting research and 

development activities, and developing financially stable institutional centers of research in 

every windy state, could be beneficial. Additionally, regular inspections and monitoring of 

existing projects should be executed more frequently. To achieve desired targets, the re-

powering of projects and an initiative that can assist in achieving the intended goal, an 

independent policy framework is required. Even while new initiatives implemented by Indian 

government have long-term consequences, they must be carefully analysed, and policy 

execution must be ensured by the government in order to achieve the goal of 60 gigawatts by 

2022. A well-connected grid network, devoted research centers, modifications in policies and 

energy prices with ongoing market trends, effective policy implementations and attractive 

incentives for projects can set wind power markets of India ahead of the other leading nations. 
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CHAPTER 4 

COMPARATIVE STUDY OF MACHINE LEARNING 

MODELS FOR WIND POWER FORECASTING 

 

4.1   INTRODUCTION 

 In recent years, renewable energy sources (RES) have become a centre of exploration due 

to the advantages they are providing to power systems. As the penetration of RES intensifies, 

the associated challenges in power systems are also escalated. Among various renewable energy 

resources, wind energy has gathered ample importance due to its sustainability, non-polluting, 

and free nature [175,176]. Irrespective of the various advantages of wind power, errorless power 

prediction for wind energy is a very difficult task. Both the climatic and various seasonal effects 

are not only the factors influencing the generation of wind power, but the intermittent nature of 

wind itself also makes it increasingly complicated to forecast [177].  

 Wind energy is critically important for the social and economic growth of any country. 

Considering this, reliable and precise wind power prediction is crucial for the dispatch, unit 

commitment, and stable functioning of power systems. This makes it easier for grid operators 

of the power system to support uniform power distribution, reduce energy loses, and optimize 

power output [178,179]. Besides this, without the functionality of forecasting, wind energy 

systems that are extremely disorganized can cause irregularities and brings about great 

challenges to a power system [180-182]. Consequently, the integration of wind power globally 

relies on correct wind power prediction. It is necessary to develop dedicated software in this 

regard, where weather forecast data and wind speed data are model inputs and would predict the 

power that a wind farm or a particular wind turbine could produce on a particular day [183-185]. 
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Furthermore, forecasted outputs could be analysed in terms of a town’s actual per-day power 

demands [186]. When the forecasted power is not sufficient to meet the daily requirements of 

the town, then adequate decisions could turned off to prevent surplus generation 

4.2   PROBLEM FORMULATION 

From the literature survey, it is clear that there have been several research studies that have 

investigated the forecasting of wind energy by employing various analytical approaches across 

several horizons, among which persistence and statistical approaches have been used [187-

189]. Statistical approaches have not been suitable approaches for forecasting wind power as 

they have not been able to handle huge datasets, adapt to nonlinear wind datasets, or make 

long-term predictions of repeated power outages and protecting generated power from being 

wasted [190-191]. Many of these algorithms have not produced acceptable results for different 

wind farm locations in which forecasting has been carried out with erratic and turbulent wind 

conditions. Under these circumstances, the number of required input variables substantially 

increases [192-194].  

Nowadays, ML-based regression forecasting techniques such as support vector regression 

models and auto-regression, among others, are very prominent [195-196]. These techniques 

are used in power generation and consumption, electric load forecasting, solar irradiance 

prediction for photovoltaic systems, grid management, and wind energy production [197-198]. 

Prior to our research, there have been many types of prediction models that have been shaped 

to predict wind energy, namely, physical models, statistical models, and teaching and learning-

based models, which employ machine learning (ML) and artificial intelligence (AI)-based 

algorithms [199-202]. Current studies typically adopt machine learning algorithms (ML). In 

particular, naive Bayes, SVM, logistic regression, and deep learning architectures of long short-

term memory networks are typically used [203-206]. In the present study, the primary reason 
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for adopting ML algorithms is that they can adapt themselves to changes with regard to the 

location of wind farms. Varying locations can have more erratic and turbulent trends, and thus 

generating predictive models on the basis of an input dataset instead of utilizing a generalized 

model is of importance [207-209]. Therefore, a reliable and accurate forecasting algorithm is 

essential for wind power production. 

4.3   CONTRIBUTION 

The foremost contribution of this research is short-term wind power forecasting on the 

basis of the historical values of wind speed, wind direction, and wind power by using ML 

algorithms. Furthermore, short-term wind power forecasts are analysed compared to the 

forecasting of long-term wind power, as the algorithms and methods are unable to deliver 

satisfying results at high precision with respect to wind speed forecasting in this regard. In this 

study, regression algorithms such as random forest, k-nearest neighbor (k-NN), gradient 

boosting machine (GBM), decision tree, and extra tree regression are wind energy generation 

is examined.  

Scatter curves depicting the relationships between the wind speed and the produced turbine 

power are plotted for all of the methods here and the predicted average wind power is compared 

with the real average power from a turbine with the help of the plotted error curves. The results 

demonstrate the superior forecasting performance of gradient boosting machine regression 

algorithm considered employed to enhance the forecasting accuracy for wind power production 

for a Turkish wind farm situated in the west of Turkey.  

Regression algorithms have been applied because of forecasting problems encountered 

with continuous wind power values. Polar curves have been plotted and the impacts of input 

variables such as the wind speed and direction on wind energy generation is examined. Scatter 



56 

 

curves depicting the relationships between the wind speed and the produced turbine power are 

plotted for all of the methods here and the predicted average wind power is compared with the 

real average power from a turbine with the help of the plotted error curves. The results 

demonstrate the superior forecasting performance of gradient boosting machine regression 

algorithm considered here. 

 

4.4  PROPOSED MODEL 

4.4.1  Input Metrological Parameters 

This section is devoted to estimate suitable input parameters that will affect the active 

power of wind turbine, considering the wind farm layout. The selected variables are exogenous 

inputs of machine learning algorithms. The data analysis for forecasting has been accomplished 

over the freely accessible dataset which has been collected in the north western region of 

Turkey [210, 219]. The wind farm is onshore Yalova wind farm, having 36 wind turbines, with 

total capacity of 54,000 kW, according to www.tureb.com.tr/bilgi-bankasi/turkiye-res-durumu 

(accessed on May, 2020) and has been running since 2016.  

4.4.2  Predictive Analysis   

 

The steps involved in predictive analysis are illustrated in Fig 4.1 The Data-Exploration is 

the initial step in the analysis of data where users explore a large dataset in an unstructured way 

to un-cover initial-patterns, the points of attention, and characteristics [211].  

Data cleaning refers to identifying the irrelevant, inaccurate, incomplete, incorrect, or 

missing parts of the data and then amending, replacing, and removing data in accordance with 

the requirements [212-213].  

Modelling denotes training the machine learning algorithm to forecast the levels from the 

structures and then tuning and validating for the holdout data [214]. The performance of 
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machine learning algorithm is evaluated by different performance metrics using training and 

testing datasets 

 

Fig 4.1: Steps involved in predictive analysis 

       

The proposed model for the data analysis and forecasting is illustrated in Fig 4.2. The 

supervisory control and data acquisition (SCADA) system has been employed to measure and 

save wind turbines data-set.  

The SCADA system captures speed of wind, wind direction, produced power, and 

theoretical power on the basis of the turbine’s power curve [215-216]. Every new line of data-

set is captured at 10 min time intervals and the time period of dataset is one year. The data are 

accessible in CSV format [217].  

Table 4.1 presents dataset information for the wind turbine. The wind turbine technical 

specifications are given in Table 4.2. Although, there are a quite few gaps and at some points 

generated output power is absent, which may be due to wind turbine maintenance, malfunction 

or lower wind speed than the cut-in-speed.  

The dataset contains total of 50530 observations whereas 3497 data points were considered 

as outliers because of zero power production at these timestamps. After removing outliers or 

missing values, the rest of the dataset i.e. 47033 data points were considered for implementing 

machine learning models.  

The dataset consists of two parts, namely, the training set containing the first 70% of the 

whole dataset, and the testing set containing the latter 30% of the dataset.  
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Fig 4.2: Functional block diagram of the proposed model 

Table 4.1: Information for the wind turbine (Yalova wind firm, Turkey) 

Input Variables  
Wind Speed, Wind Direction, 

Theoretical Power, Active Power 

Draft Frequency  10 mins 

Start-Period  Jan 1, 2018 

End-Period  Dec. 31, 2018 

 

Table 4.2: Wind turbine technical specifications.  

Characteristics  Wind Turbine 

SINOVEL(Turbine manufacturer)  SL1500/90(Turbine model) 

Rated power  1.5 MW 

Hub height  100 m 

Rotor diameter.  90 m 

Swept Area  6,362 m2 

blades  3 

Cut-in speed of wind  3 m/sec 

Rated speed of wind  10 m/sec 

Cut-off speed of wind  22 m/sec 

 

As stated in the power curves of a wind turbine, when plotted between the cut-in speed, 

rated speed and, cut-out speed, can be established by an n degree algebraic equation (Equation 

(4.1)), for forecasting the power output of a wind turbine [218-221]. 



59 

 

𝑷𝒊(𝒗)     {

𝟎,                                                                                    𝒗 < 𝒗𝒄𝒊
(𝒂𝒏𝒗

𝒏 + 𝒂𝒏−𝟏𝒗
𝒏−𝟏 +⋯+ 𝒂𝟏𝒗 + 𝒂𝟎),        𝒗𝒄𝒊 ≤ 𝒗 < 𝒗𝑹 

𝑷𝑹,                                                                        𝒗𝒄𝒊 ≤ 𝒗 < 𝒗𝑹
𝟎,                                                                                    𝒗 ≥ 𝒗𝒄𝒐

                         (𝟒. 𝟏)                             

 

where, 𝑷𝒊(𝒗) is power produced from related wind speed and regression constants are given 

by 𝒂𝒏 𝒂𝒏−𝟏 𝒂𝟏𝒂𝒏𝒅 𝒂𝟎, 𝒗𝒄𝒊 is the cut-in-speed, 𝒗𝑹 is rated-speed, 𝒗𝒄𝒐 cut-out-speed. The 

energy output for a considered duration can be calculated by Equation (4.2): 

 

                                      𝑬𝒄 = ∑ 𝑷(𝒗𝒊)∆𝒕
𝑵
𝒊=𝟏                                                                     (4.2) 

 

where, N denotes the number of hours in the study period and ∆𝒕 is the time interval [222]. The 

energy produced with a given wind speed can be appraised by multiplying the power produced 

by the wind turbine by wind speed v and the time period for which the wind speed v prevails 

at the given site.  

         The overall energy generated by the turbine over a given period can be assessed by 

summing the energies corresponding to all possible wind speeds with the related conditions at 

points where the system is functional.  

          Fig 4.3 shows a plot of wind speed power scatter curves where the theoretical power 

generation curve usually fits with the real power generation. It may also be observed that the 

power generation curve reaches the maximum level and continues in a straight line when the 

wind speed reaches ~13 m/s. At wind speeds higher than 3 m/s (cut-in speed), there are some 

points of zero power generation, and this could be due to maintenance, sensor malfunction, 

degradation, and system processing errors.  

         Closer examination of the wind turbine power highlighted three anomaly types in the 

SCADA data of the wind turbine.   
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          Type-1 anomalies are displayed in the scatterplot via a horizontal dense cluster of data 

where the generation of power is zero at a wind speed higher than the cut-in speed. Such 

anomalies generally occur due to the turbine downtime that can be cross-referenced when 

utilizing an operation log [223, 224].  

          Type-2 anomalies are shown by a dense cluster of data that fall below the ideal power 

curve of the wind turbine. These anomalies can occur because of wind curtailment, where the 

turbine output power is controlled by its operator to be lower than its operational capacity. 

Wind restriction can be executed by operators of a wind farm due to various reasons, such as 

difficulty in the storage of huge capacities of wind power, a lack of demand for power at several 

times, and at times where volatile wind conditions cause the produced electricity to be unstable 

in nature.  

        Type-3 anomalies are arbitrarily dispersed around the curve and these are generally the 

result of sensor degradation or malfunction, or they may be due to noise at the time of signal 

processing [225,126].  

          It is also worth noting that a segment of type-2 and type-3 anomalies can also be 

illustrated by the dispersion produced on account of incoherent wind speed measurements 

taken as a result of turbulence [227]. 

 

 

Fig 4.3: Wind speed-power curve of the raw dataset 
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 Fig 4.4: Hourly average-power production in a day (kW) 

 

 

Fig 4.5: Monthly average-power production (kW) 

Fig 4.4 shows hourly average power production over a day, while the monthly average 

power production is shown in Fig 4.5.  Fig 4.6 shows paired scatter plots describing the 

relationship of each feature with each other feature. The plots with a diagonal shape represent 

histograms showing the probability distribution of each weather feature.  

The lower and upper triangles display the scatter plots representing the relationships 

between the features. It is also seen that each feature demonstrates the distribution with other 
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features. The paired scatter plots show the changes for one feature in comparison to all other 

features. 

 

Fig 4.6: Scatter plot demonstrating the relation between input and output parameters 

 

4.4.3  Analysis in Polar Coordinates 

Fig 4.7 presents a polar diagram exhibiting the qualitative distribution of power generation 

with wind speed and wind direction from the sample dataset. It is clear from the polar diagram 

that the wind speed, wind direction, and power generation are vastly correlated, as wind turbine 

generates maximum power if the wind blows from a direction between 0–90 or 180–225 

degrees.    
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It is also seen from the polar diagram that there is   no power generation beyond the cut-

out speed of 22 m/s. Also, from some directions, very low power generation is taking place. 

The wind direction parameter is denoted by the radius of the polar graph. In the polar graph, 

light color points represent low power generation when the wind speed is below the cut-in 

speed (i.e., 3 m/s) of the wind turbine. As the speed of wind increases beyond the cut-in speed, 

power production increases, as represented by the dark and densely spaced points in the polar 

diagram.  

 

Fig. 4.7: Polar diagram of the wind speed, wind direction, and power generation. 

4.4.4  Analysis in Cartesian Coordinates 

Fig 4.8 shows a three-dimensional quantitative visualization of the power generation with 

the wind speed and wind direction in a Cartesian coordinate system for the whole year. In Fig 

4.8, it can be seen that the two regions that are dense contribute to the maximum power 

generation. The first region is observed when the direction of the wind varies from 0◦ to 90◦ 

and the second region is observed when the wind direction varies from 180◦ to 230◦. 
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Fig. 4.8: Relationship between wind speed, wind direction, and power generation in a 3D 

visualization 

4.5  SCADA DATA PRE-PROCESSING 

 1. Outlier removal:  The procedure of cleaning and preparing the raw data to make it 

compatible for training or developing machine learning models is called data pre-processing. 

To limit the impact of noise and turbulence, a sampling rate of 10 min was used when 

processing the SCADA data; however, deep analysis of individual parameters identified certain 

errors in the SCADA data, such as, power production being zero above the cut-in speed (i.e., 3 

m/s), negative values of wind speed, or active power and missing data at some timestamps. 

These results carry no practical significance in terms of the generation of power. As such, to 

prevent a negative impact on the forecasting, data points belonging to the same timestamp have 

been removed.  

Such erroneous data points are commonly the result of wind farm maintenance, sensor 

malfunction, degradation, or system processing errors. It is crucial that the SCADA data are 

pre-processed prior to developing the forecasting models. 
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2. Normalization of dataset: The input parameters of the wind power forecasting model 

incorporate the wind speed and wind direction, but their dimensions are not of the same order 

of magnitude. Hence, it is essential to regulate these input vectors to be within in the same 

order of magnitude. As such, a min-max approach was used to normalize the input vectors as 

follows: 

𝑥̅ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
                                                                     (4.3) 

where the actual data is given by x and xmin and xmax represent the minimum and maximum 

values of the dataset. The result x remains within the range of [0,1]. 

4.6  MACHINE LEARNING 

 

Machine learning is a solicitation of AI (artificial intelligence) that offers automatically 

learning capabilities for systems and the ability to learn from experiences without being 

explicitly programmed to do so.  

Machine learning algorithms exhibit a dataset-based behavior and model input features 

corresponding to the desired output, thereby forecasting output features by learning from a 

historic dataset. ML is essential for prediction here due to the following reasons: Firstly, ML 

gives best performance when the input and output relationship is not clear. It also improves in 

terms of decision making or predictive accuracy over time. ML algorithms can easily identify 

changes in the environment and adapt themselves according to the new environment; however, 

there are several machine algorithms, each of which is specifically utilized for applications or 

problems. For instance, regression and classification algorithms are mainly used for forecasting 

problems [228]. ML also has the ability to handle complex systems. We implemented five 

regression analysis algorithms, namely random forest regression, k-nearest neighbor regression 

(k-NN), gradient boosting machine regression (GBM), decision tree regression, and extra tree 
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regression. These algorithms were selected based on good performance and extensive usage in 

the literature. These algorithms have distinct theoretical backgrounds in forecasting problems, 

where they have provided results successfully.  

Additionally, these algorithms have various parameters known as hyper-parameters which 

affect the runtime, generalization capability, robustness, and predictive performance. We have 

adopted a trial-and-error approach to select the best parameters for algorithms, and this is 

known as hyper-parameter tuning. Also, for the best observed outputs, the values of these 

parameters for each regression algorithm are placed at the bottom of the section for each 

algorithm. 

4.6.1  Random Forest Regression 

 Random forest (RF) regression is a famous decision tree algorithm where multiple decision 

trees are produced from a given input dataset. First, the algorithm divides the dataset randomly 

into several sub-parts and for each subpart it builds multiple decision trees. Then, it merges the 

predicted output of each decision tree to obtain a more stable and accurate prediction [229]. 

 In RF regression, the output value of any input or subset is a mean of the values predicted 

by several decision trees. The following process is performed: 

1. Produce n tree bootstrap samples from the actual input dataset; 

2. For individual bootstrap samples, expand an unpruned regression tree, including 

subsequent alteration at every node, instead of selecting the best split among all 

predictors. Arbitrarily sample mtry predictors and then select the best split from 

those variables. (“Bagging” can be considered a special case of RF and where mtry 

= p predictors. Bagging refers to bootstrap aggregating, i.e., building multiple 

distinct decision trees from training dataset by frequently utilizing multiple 

bootstrapped subsets of the dataset after averaging the models); 
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3.  Estimate new data values by averaging the predictions of the ntree, decision trees 

(i.e., “average” in case of problems of regression and the “majority of votes” for 

classification problems); 

4. Based on the training data, the error rate can be anticipated using the following 

steps: 

• At each bootstrap iteration, predict data not in the bootstrap sample (as 

Breiman calls “out of bag” data) by utilizing the tree developed with the 

bootstrap sample.  

• Averaging the out of bag predictions, on the aggregate, where each data 

value would be out of bag around 36% of the times and hence averaging 

those predictions. 

• Compute the error rate and name it the “out of bag” estimate of the error 

rate. 

 

Fig. 4.9: Flowchart of the random forest regression algorithm 



68 

 

        In practice, we have observed that out of bag estimation of the error rate is fairly truthful, 

provided that large numbers of trees are grown, otherwise the bias condition may occur in the 

“out of bag” estimate. A complete flowchart for the process can be seen in Fig. 4.9. In this 

model, the random state was chosen as 40 and the number of trees was selected as 100, as 

increasing the number of tress to larger than 100 did not significantly improve the forecasting 

output. Also, an appropriate number of trees is required to be chosen to optimize the forecasting 

performance and runtime. Fig. 4.10a shows a scatter plot depicting the relationship between 

the wind speed (m/s) and the power produced (kW) by the turbine when using random forest 

regression. Fig. 4.10b presents the predicted average of wind power as compared with real 

average power from turbine (kW) when using random forest regression. 

4.6.2  k-Nearest Neighbor Regression 

k-Nearest Neighbor (k-NN) regression is one of the most simple, easy to implement, non-

parametric regression approaches used in machine learning. The main objective behind k-

nearest neighbor regression is that whenever a new data point is to be predicted, the point’s k 

 
.  (a) 

 
                                            (b) 

 

Fig. 4.10: (a) Scatter plot depicting relation between the wind speed(m/s) and the power 

produced (kW) from turbine using random forest regression; (b) Predicted average of wind 

power as compared with real average power from turbine (kW) using random forest 

regression.  
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nearest neighbors are nominated from the training-dataset. Accordingly, the prediction of a 

new data point will be the average of the values of the k-nearest neighbors [227, 230].  

The basis of the k-nearest neighbor algorithm can be outlined in three major steps: 1. 

Compute the predefined distance between the testing dataset and training dataset; 2. Select k-

nearest neighbors with k-minimum distances from the training dataset; 3. Predict the final 

renewable energy output based on a weighted averaging approach. 

 A distance measure is needed to distinguish the similarity between two instances. The 

Manhattan and Euclidean distances are widely used distance metrics in this regard [230]. In 

the present study, the actual Manhattan distance was improved by the use of weighting. The 

weighted Manhattan distance is determined by the following: 

𝑫[𝑿𝒊, 𝑿𝒋] = ∑𝒘𝒏|𝒙𝒏
(𝒊)
− 𝒙𝒏

(𝒋)
|

𝒓

𝒏=𝟏

                                                        (𝟒. 𝟒) 

Where  𝑋𝑖 and  𝑋𝑗 are two instances and there are r attributions for each instances i.e 𝑋 =

[𝑥1, … , 𝑥𝑛, … , 𝑥𝑟] and 𝑤𝑛 is the weight allocated to nth attribution. The weight   𝑤𝑛
  equals to 

‘1’ in original Manhattan-distance that means equal contribution of each attribute to the 

distance ‘D’. Although, the significance of each attribution is quite distinct in renewable power 

generation forecasts. The  𝑤𝑛
 weight considers the contribution of every variable to the 

distance, and would be computed by the process of optimization.  

        So, Prediction is done based on the target values linked with them, once the value of k 

nearest neighbors is determined. Consider 𝑋1, … , 𝑋𝐾indicate k nearest instances that are 

nearest to testing instance𝑋, and their power outputs are shown by 𝑝1, … , 𝑝𝐾. The distance 

between k nearest neighbor and 𝑋 follows the ascending order𝑑1 ≤ ⋯ ≤ 𝑑𝐾, where 

𝑑𝐾=D[𝑋, 𝑋𝑘](k=1,..., 𝐾). So, renewable power production, point prediction is estimated with 

an average weighed through exponential function. 
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𝑝⏞ =  ∑𝛿𝑘𝑝𝑘 =
∑ 𝑒−𝑑

𝑘
. 𝑝𝑘𝐾

𝑘=1

∑ 𝑒−𝑑
𝑘𝐾

𝑘=1

                                                               (4.5)

𝐾

𝑘=1

 

where 𝑑𝑘 and 𝑝𝑘 are distance associated with the instance 𝑋𝑘 and the renewable power output, 

correspondingly. Fig. 4.11 presents the flowchart of k-Nearest Neighbors Regression method. 

In this paper, k is selected as 7 and Manhatten-distance was chosen as distance measure. Fig. 

4.12a shows a scatter plot depicting the relationship between the wind speed (m/s) and the 

power produced (kW) and Fig. 4.12b presents the error curves, showing the comparison of 

forecasted average power with the real average power (kW) when using k-nearest neighbor 

regression. 

 

 Fig. 4.11: The k-nearest neighbor flowchart regressor procedure 
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4.6.3  Gradient Boosting Trees 

Gradient boosting regression tree algorithms involve an ensemble learning approach where 

robust forecasting models are formed by integrating several individual regression trees 

(decision trees) that are referred to as weak learners. Such an algorithm reduces the error rate 

of weakly learned models (regressors or classifiers). Weakly learned models are those which 

have a high bias regarding the training dataset, with low variance and regularization, and whose 

outputs are considered only somewhat improved when compared with arbitrary guesses. 

Generally, boosting algorithms contains three components, namely, an additive model, weak 

learners, and a loss function.  

        The algorithm can represent non-linear relationships like wind power curves and uses a 

range of differentiable loss functions and can inherently learn during iterations between input 

features [231]. GBM (gradient boosting machines) operate by identifying the limitations of 

weak models via gradients. This is attained with the help of an iterative approach, where the 

task is to finally join base learners to decrease forecast errors, where decision trees are 

 
                                              (a) 

 
                                           (b) 

Fig. 4.12: (a) Scatter plot depicting relation between the wind-speed (m/s) and the power 

produced (kW) from turbine using k- nearest neighbor regression; (b) Predicted average 

power in comparison with real average power from turbine (kW) using k- nearest neighbor 

regression.  
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combined by means of an additive model while reducing the loss function via gradient descent. 

The GBT (gradient boosting tree) Fn(Xt) can be defined as the summation of n regression-

trees. 

𝐹𝑛(𝑥𝑡) =∑𝑓𝑖(𝑥𝑡)

𝑛

𝑖=1

                                                                     (4.6) 

where, every 𝑓𝑖(𝑥𝑡) is a decision tree (regression-tree). The ensemble of trees are constructed 

sequentially by estimating the new decision tree 𝑓𝑛+1(𝑥𝑡)  with the help of given equation, 

𝑎𝑟𝑔𝑚𝑖𝑛∑𝐿(𝑦𝑡 . 𝐹𝑛(𝑥𝑡) + 𝑓𝑛+1(𝑥𝑡))                                                      (4.7)

𝑡

 

For, some loss-function L(·), where L(·) is differentiable. This optimization is solved by 

steepest-descent method. In this study, leaning rate 0.2 and estimators were selected as 100. 

The smaller learning rate makes it easier to stop prior to over fitting.  

 
                                           (a) 

 
                                            (b) 

Fig. 4.13. (a) Scatter plot depicting relationship between the wind-speed(m/s) and the power 

production(kW) from turbine using gradient boosting regression; (b) Predicted average power 

in comparison with real average power from turbine (kW) using gradient boosting regression  

 

Fig. 4.13a presents a scatter plot depicting the relationship between the wind speed (m/s) and 

the power production (kW) of the turbine, and Fig. 4.13b presents the error curves of the 
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predicted average power in comparison with the real average power of the turbine (kW) when 

using gradient boosting regression. 

4.6.4  Decision Regression Trees 

A decision tree algorithm is an efficacious algorithm in machine learning which is utilized 

in supervised learning. This algorithm can be used to solve both regression and classification 

tasks. In decision analysis, it can be employed to explicitly and visually show both decisions 

and decision making. The foremost objective of using the algorithm is to produce a training 

model which can be used to forecast the value of the target variable with the help of learning 

modest judgment principles inferred from the training data [230, 231]. As the name goes, it has 

a simple tree-like structure of decisions. In a decision tree, each node depicts a conditional 

statement and the branches of it show the outcome of the statement shown by the nodes. The 

algorithm iterates from the root node (highest node) to leaf nodes (bottom-most nodes). After 

executing all attributes in the nodes above, the leaf node (terminal node) shows the decision 

formed. This approach is considerably more accurate than SVM and ANN techniques. 

       The input to the algorithm includes training record E and attribute set F. The algorithm 

functions by recursively selecting the best feature in order to split the data and increases the 

leaf nodes of the tree until the ending criterion is encountered (Algorithm 1). 

        Tree Growth (𝐸, 𝐹) 

1. if  stopping _cond(𝐸, 𝐹) = 𝑡𝑟𝑢𝑒 then 

2.     leaf = createNode() 

3.     𝑙𝑒𝑎𝑓. 𝑙𝑎𝑏𝑒𝑙 = Classify(𝐸) 

4.     return 𝑙𝑒𝑎𝑓 

5. else  

6.     𝑟𝑜𝑜𝑡 = create Node() 

7.     𝑟𝑜𝑜𝑡. 𝑡𝑒𝑠𝑡_𝑐𝑜𝑛𝑑 = find_best_split(𝐸, 𝐹) 
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8.   let𝑉 = { 𝑣|𝑣 is a possible outcome of 𝑟𝑜𝑜𝑡. 𝑡𝑒𝑠𝑡_𝑐𝑜𝑛𝑑 

9. for each 𝑣 ∈ 𝑉 do 

10.       𝐸𝑣 = {𝑒 | 𝑟𝑜𝑜𝑡. 𝑡𝑒𝑠𝑡_𝑐𝑜𝑛𝑑(𝑒) = 𝑣 𝑎𝑛𝑑 𝑒 ∈ 𝐸} 

11.       𝑐ℎ𝑖𝑙𝑑 = TreeGrowth(𝐸𝑣  𝐹) 

12. add 𝑐ℎ𝑖𝑙𝑑 as descendent of 𝑟𝑜𝑜𝑡 and label the edge (𝑟𝑜𝑜𝑡 → 𝑐ℎ𝑖𝑙𝑑) as 𝑣 

13.        end for 

14. end if 

         return root 

In this study, the decision tree depth was selected as 17. In general, if the decision tree depth is 

greater, then the complexity of the model increases as the number of splits increases and 

contains more information about the dataset.  

         This is the main reason for overfitting with DTs, where the model is perfectly fit with the 

training dataset and will not be able to generalize well with the testing dataset. In addition, a 

very low depth causes model under-fitting. Fig. 4.14a presents a scatter plot depicting the 

relationship between the wind speed (m/s) and the power production (kW) of the turbine and 

Fig 4.14b shows the predicted average power in comparison with real average power of the 

turbine (kW) when using decision tree regression. 

 
                                          (a) 

 
                                             (b) 

Fig. 4.14. (a) Scatter plot depicting relation between the wind-speed(m/s) and the power-

production(kW) from turbine using decision tree regression; (b) Predicted average power in 

comparison with real average power from turbine (kW) using decision tree regression.  
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4.6.5  Extra Tree Regression 

Extra tree or extremely randomized tree regression algorithms involve an ensemble 

machine learning technique. The algorithm has been evolved as an expansion of random forest 

algorithm, but the main difference is that it randomly chooses cut points partly or completely, 

with individual attributes, and selects splits.  

Extra tree regression utilizes the same rule as the RF algorithm and uses a random subset 

of topographies to train each base estimator. The nodes above the leaf node (the terminal node) 

show the decision that is formed. This approach is considerably more accurate than SVM and 

ANN techniques [230].  

This algorithm randomly selects the paramount features, along with the consistent value 

for splitting a node; however, rather than selecting the most discriminative split in each mode 

[232], the extra tree approach utilizes the whole training dataset to train each regression tree. 

On the other hand, the RF algorithm utilizes a bootstrap replica to train the forecast model. 

These significant differences makes extra tree regression less likely to over-fit a dataset, as 

there is better reported performance in the nodes above the leaf node (terminal node). 

 In the present study, the number of trees was selected as 90 and the maximum depth of 

trees was selected as 14. Generally, deeper tree sizes result in better performance. For extra 

tree regression, trees deeper than 14 started to depreciate the model performance. A maximum 

depth of six did not perform significantly better as the performance metrics were approximately 

equal.  

At a maximum depth of two, the model became under-fitted, resulting in lower R2 values 

and higher values for performance matrices. Fig 4.15a presents a scatter plot depicting the 

relationship between the wind speed (m/s) and the power production (kW) of the turbine and 

Fig 4.15b shows the predicted average power in comparison with the real power of the turbine 

from turbine (kW) when using extra tree regression. 
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                                           (a) 

 
                                            (b) 

Fig 4.15. (a) Scatter plot depicting relation between the wind-speed(m/s) and the power-

production(kW) from turbine using extra tree regression; (b) Predicted average power in 

comparison with real average power from turbine (kW) using extra tree regression 

 

4.7  RESULTS AND DISCUSSIONS 

Based on the study performed in the above sections, the present section scrutinizes the 

outcomes and the key observations accomplished from the performances of the various 

regression models after programming for the forecasting of wind power. All models mentioned 

and explained above were trained and tested on a machine featuring 12 GB of 16 MHz DDR3 

RAM and a 1.6 GHz Intel Core i5 processor running in a Jupiter notebook (Python 3.9.5 

version) development environment. 

Several hyper-parameters, such as the learning rate, size of trees (depth), and regular- 

ization parameters stated with the various regression models were empirically selected by a 

stepwise searching approach to find the optimal hyper-parameters for the regression models. 

The performances of all algorithms were estimated based on the mean absolute error (MAE), 

mean absolute percent error (MAPE), root mean square error (RMSE), mean square error 

(MSE), and coefficient of determination (R2). Algorithms with minimum errors indicate the 

most desirable and accurate method. The MAE reflects the sum of absolute differences between 

the actual and predicted variables. The MAPE estimates accuracy in terms of the differences 
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in the actual and predicted values. The RMSE is the standard deviation of the prediction errors, 

and practically it can be generalized that the lower the value of the RMSE, the better is the 

model considered to be. A model is considered to be good and without over-fitting if the RMSE 

values of the training and testing samples are within a close range. The MSE is average square 

of the errors, and R2 checks how well-the observed outputs are reproduced by the model. 

Among the five performance indices estimated here, we are certain that we can suggest that the 

RMSE may be viewed as the metric of primary focus, where the errors are squared prior to 

being averaged and impose a high weight for large errors. As such, the minimum value of the 

RMSE inferred the minimum error rate in reality. The values of the root mean square, being 

adjacent to the mean absolute error, would imply that there is no significant variation between 

the magnitudes of error, in turn signifying the effectiveness and generalization of the model. 

Table 4.3 shows the MAE, MAPE, RMSE, MSE, and R2 results for the training and testing 

dataset values for forecasting wind power. Generally, errors in the training dataset present the 

suitability of the developed model, while errors in the testing data present the generalization 

capabilities of the developed model. For optimizing model accuracy and performance, the ML 

model parameters were tested using hundreds of runs for the individual algorithms on the basis 

of the learning rate, number of trees, value of k, distance measure, and random state, etc. 

The various machine learning performances can be analysed through the overlapping 

scatter plots that depicts the relationships between the wind speed and power produced by the 

turbine and from the graph between the forecasted average power values of the wind power in 

comparison with actual average power produced by the wind turbine, which graphically 

demonstrates the individual regression model performances as depicted in Figures 10 and 12–

15. Fig. 4.10a represents the results of the RF regression. It is evident from the figure that the 

RF algorithm could predict values of power positively; however, its performance was better 

than the DT regression model, although, at high values of wind speed, this algorithm could not 
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produce correct forecasts. From Fig. 4.10b, most of the forecasted or predicted values are 

overlapping or close to the real average power values and the model has a high R2 value. As 

such, the overall performance of the RF regression model was better. 

Fig. 4.12 depicts the results of the k-NN regression model. As can be seen from Fig. 4.12a, 

the k-NN model could be seen to be more successful at predicting both high and low values of 

wind speed with a lower training time and better handling of higher values of wind speed in 

contrast with both the DT and RF models. As is clear from Fig. 4.12b, the majority of the values 

of predicted power are overlapping and close to the real average power or active power. As 

such, it can be seen that the k-NN regression model also performed satisfactorily. Fig. 4.13 

presents the outputs of the GBM regression model. As is clear in Fig. 4.13a, the GBM algorithm 

gave the best results for forecasting both low and large values of wind speed and was successful 

at handling high values of wind speed, which is in contrast to the other regression models. 

Moreover, as can be seen from Fig. 4.13b, the prediction curve successfully fits or 

completely overlaps with the real average power curve. Hence, the performance of the GBM 

algorithm can be observed to have the best performance when compared with the other 

algorithms. Fig. 4.14 shows the results of the DT regression model. As can be clearly observed 

in Fig 3.14a, this algorithm could not predict correct power values. Among the five regression 

algorithms, the DT algorithm exhibited poor performance and had a high forecasting error, as 

is clearly visible from the given performance indices shown in Table 4.3. In addition, this 

algorithm also had a lower R2 value than the other regression algorithm. Fig 4.15 represents 

the results of the ET regression algorithm. As can be seen in Fig. 4.15a , the ET algorithm 

performed well with both low and high values of wind speed and the algorithm resulted in 

lower values for the MAE, RMSE, MSE, and MAPE, but with a higher value of R2, though 
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still demonstrating the good performance of ET regression model. The model performances 

based on the MAE, MAPE, RMSE, MSE, and R2 metrics are given in Table 4.3. 

Table 4.3: Model performance based on the MAE, MAPE, RMSE, MSE and R2 metrics. 

Italic and bold parameter indicate better performance. 

 

4.8  CONCLUSION 

As the world is increasingly utilizing renewable energy sources like wind and solar energy, 

forecasting such energy sources is becoming a crucial role, particularly when considering smart 

electrical grids and integrating these resources into the main power grid. At present, wind 

energy is being utilized on a massive scale as an alternate source of energy. Because of the 

fluctuating nature of wind energy, forecasting is not an easier task and consequently integration 

into primary power grids represents a big challenge.  

As forecasting can never be considered free from error, this provokes us to create advanced 

models to mitigate such errors. In this study, comparative analysis of various machine learning 

methods has been carried out to forecast wind power based on wind speed and wind direction 

data. To achieve this objective, Yalova wind farm, located in the west of Turkey, was utilized 

as a case study. A SCADA system was used to collect experimental data over the period of 

January 2018 through to December 2018 at a sampling rate of 10 min for training and testing 

Regression 

Models 

Performance evaluation on Training Dataset Performance evaluation on Testing Dataset Training 

Time 

(sec.) MAE MAPE RMSE MSE R2 MAE MAPE RMSE MSE R2 

Random 

Forest 
0.0186 0.2966 0.0588 0.0040 0.9888 0.0277 0.3310 0.0672 0.0045 0.9651 11.9 

K-NN 0.0278 0.2960 0.0580 0.0036 0.9742 0.0286 0.3248 0.0667 0.0044 0.9656 0.08 

GBM 0.0260 0.0555 0.0228 0.0031 0.9897 0.0264 0.3012 0.0634 0.0040 0.9690 5.83 

Decision 

Tree 
0.0325 0.3213 0.0592 0.0055 0.9660 0.0336 0.3349 0.0884 0.0078 0.9497 0.22 

Extra Tree 0.0274 0.2915 0.0522 0.0036 0.9782 0.0276 0.3243 0.0655 0.0041 0.9678 3.05 
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ML models. To appraise the forecasting performance of the ML models, different statistical 

measures were employed.  

The results show that the random forest (RF), k-nearest neighbor (k-NN), gradient boosting 

machine (GBM), decision tree (DT), and extra tree (ET) regression algorithms are powerful 

techniques for forecasting short-term wind power. Among these algorithms, the capability of 

the gradient boosting regression (GBM)-based ensemble algorithm, with a MAE value of 

0.0264, MAPE value of 0.3012, RMSE value of 0.0634, MSE value of 0.0040 and R2 value of 

0.9690 for forecasting of wind power, has been verified with better accuracy in comparison 

with the RF, k-NN, DT and ET algorithms. The performance of the DT algorithm was not 

satisfactory, with a MAE of 0.0336, MAPE of 0.3349, RMSE of 0.0884, and MSE of 0.0078, 

although the R2 (0.9497) values of the DT algorithm were relatively acceptable, with a training 

time 0.22s.  

In gradient boosting, an ensemble of weak learners is used to improve the performance of 

a machine learning model. The weak learners are usually decision trees. Combined, their output 

results in better models. In the case of regression, the final results are generated from the 

average of all weak learners. In gradient boosting, weak learners work sequentially, where each 

model tries to improve upon the error from the previous model. Furthermore, decision trees are 

structurally unstable and not robust, and thus small changes in the training dataset can lead to 

significant changes in the structures of the trees and different predictions for the same 

validation examples. 

The developed tree-based ensemble models can provide reliable and accurate hourly 

forecasting and could be used for sustainable balancing and integration in power grids. As 

described previously, it is extremely beneficial to provide predictions for wind power that can 

be produced in a day on the basis of input parameters (wind speed and wind direction), and our 
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machine learning models have been proven to be quite accurate for such purposes. Future 

research areas for further analysis may be comprised of the exploration of other deep learning 

methods, the improvement of machine learning algorithms for point forecasts, forecasting 

combinations, forecast interval formation, and the amalgamation of wind power for speed 

forecasting. 
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CHAPTER 5 

COMPARATIVE STUDY OF MACHINE LEARNING 

MODELS FOR SOLAR POWER FORECASTING 

 

5.1   INTRODUCTION 

Photovoltaic (PV) systems are used worldwide to produce solar power. Solar power 

sources are unpredictable in nature because their output power is alternating and heavily 

reliant on the external environment [233-234]. These variables include things like irradiance, 

PV surface temperature, humidity and wind speed.  Since solar power forecasting is necessary 

for the electric grid, it is essential to plan ahead for solar power generation due to the 

unpredictable nature of photovoltaic generation [235].  

The production of solar energy is weather-dependent and erratic; the forecast is tough and 

complex [236]. The effects of various environmental factors on a PV system's production are 

discussed in this chapter. With weather variables as model inputs, machine learning (ML) 

algorithms have demonstrated excellent results in time series forecasting and can be used to 

predict power [237].  

The forecasting of solar power using a variety of machine learning, artificial neural 

network, deep learning techniques. Here, regression models using machine learning methods 

such as random forest, k-nearest neighbor, gradient boosting, decision tree and extra 

tree regression models were used. The random forest regressor outperformed the other 

four regression models in terms of accuracy by a wide margin. 
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5.2 THEORY AND MATHEMETICAL BACKGROUND 

In this section, we will discuss the theory related to solar power and describe the 

mathematical theory of machine learning. We have a dataset that displays the ambient 

temperature, irradiation, module temperature and followed by the amount of power produced.  

5.2.1 Solar Power  

Solar power is the direct or indirect conversion of sunlight energy into electricity using 

photovoltaic (PV) or concentrated solar power. Using the photovoltaic effect, photovoltaic cells 

convert light into an electric current. 

5.2.1.1 Photovoltaic Cell 
 

A PV cell is a non-mechanical device that converts sunlight directly into electricity. The 

system contains no mechanical moving devices, unlike hydroelectric power plants, steam 

power plants, thermal power plants, and nuclear power plants. A PV cell is a semiconductor 

diode with a sun-exposed p-n junction. Photons of solar energy make up sunlight. These 

photons contain varying amounts of energy that correspond to the solar spectrum's various 

wavelengths. When photons strike a PV cell, they have three options: they can reflect off the 

cell, they can pass through the cell, or they can be absorbed by the semiconductor material. 

Absorbed photons are in charge of generating electricity. When enough sunlight is absorbed 

by the semiconductor material, electrons are emitted from the material's atom. Only photons 

with energies greater than the PV cell's band gap are useful for generating electricity; the rest 

of the energy is dissipated as heat energy in the PV cell [237-238]. 

5.2.1.2 The Nature of Light Energy:  

Light is made up of energy. The light from the sun appears white because it is composed 

of many different colors that, when combined, produce white light. Each visible and invisible 
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radiation in the sun's spectrum has a different amount of energy. Within the visible spectrum 

(red to violet), red has the lowest energy and violet has the highest.  

Light in the infrared spectrum has less energy than light in the visible spectrum. The 

ultraviolet region of light has more energy than the visible region. Visible light is only a small 

part of the vast radiation spectrum. Light and similar radiation studies indicate that how one 

light ray interacts with another or with other physical objects can often be explained as if light 

is moving as a wave.  

Every wave has a set distance between its peaks (called the wavelength). This wavelength 

is also known as a frequency. The wavelength-frequency relationship is inverse [239].  

The energy associated with light waves enhances as the frequency is increased 

(wavelength decreases). Red light has a wavelength of about 3×10-24 kWh per photon, while 

violet light possesses 4.5×10-24 kWh. 

5.2.1.3 Global Horizontal Irradiance 

The global horizontal irradiance that strikes the earth's surface is made up of two 

components: diffuse horizontal irradiance and direct normal irradiance.  

The geometric relationship between GHI, DNI, and DHI is as follows: 

 

𝐺𝐻𝐼 =  𝐷𝑁𝐼. 𝑐𝑜𝑠𝜃𝑧 + 𝐷𝐻𝐼                                                     (5.1) 

 

where z denotes the zenith angle. The zenith angle is the angle formed by the zenith and 

the centre of the Sun's disc. Watts per square metre is the unit of global horizontal irradiance.  

Fig. 5.1 depicts the relationship between altitude (α), zenith angle (𝜃𝑍), and azimuthal 

angle (𝐴𝑍) [240].  
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Fig. 5.1: The solar locus 

5.2.1.4 Modeling of Photovoltaic Devices 

A PV cell can be mathematically modelled as shown in Fig. 5.2.  

              𝐼 =  𝐼𝑝𝑣 − 𝐼𝑑                                                                       (5.2) 

where Ipv is the incident light current and Id is the Shockley diode equation, that can be 

expressed as; 

 𝐼𝑑 = 𝐼𝑜 [𝑒
(
𝑞𝑉

𝑎𝑘𝑇
) − 1]                                                           (5.3) 

Equation (5.2) can now be rewritten as, 

 𝐼 =  𝐼𝑝𝑣 −  𝐼𝑜 [𝑒
(
𝑞𝑉

𝑎𝑘𝑇
) − 1]                                                   (5.4) 

where 𝐼𝑜 is the diode's reverse saturation or leakage current, 𝑞 is the electron charge 

(1.60217646 × 10-19C), 𝑘 is the Boltzmann constant (1.3806503 × 10-23J/K), 𝑇 is the pn 

junction temperature (T), and 𝑎 is the diode ideality constant. Because ideal PV cell modelling 

is no longer valid for practical PV arrays, the following equation can be approximated: 

𝐼 =  𝐼𝑝𝑣 −  𝐼𝑜 [𝑒
(
𝑉+ 𝑅𝑠𝐼

 𝑉𝑡𝑎
)
− 1] − 

𝑉 + 𝑅𝑠𝐼

𝑅𝑝
                                  (5.5) 
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where, 𝐼𝑜 and 𝐼𝑝𝑣 are the saturation and photovoltaic currents, respectively and 𝑉𝑡 = 
𝑁𝑆𝐾𝑇 

𝑞
 is 

the thermal voltage of the array with 𝑁𝑠 cells connected in series. If 𝑁𝑝  number of cells were 

connected in parallel, then 𝐼𝑜 = 𝐼𝑜,𝑐𝑒𝑙𝑙 𝑁𝑝  𝑎𝑛𝑑 𝐼𝑝𝑣 = 𝐼𝑝𝑣,𝑐𝑒𝑙𝑙 𝑁𝑝.  

Furthermore, 𝑅𝑝 is the equivalent parallel resistance of the array and 𝑅𝑠 is the equivalent series 

resistance [241-242].  

As shown in Fig. 5.3, the equation generates the I-V curve with three distinct points: short 

circuit (0, 𝐼𝑠𝑐), maximum power point ( 𝑉𝑚𝑝,𝐼𝑚𝑝), and open circuit (𝑉𝑜𝑐, 0) . 

                            

Fig. 5.2: Equivalent circuit of single-diode model of PV cell 

 

 

Fig. 5.3: Practical PV cell I-V curve 
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5.3    SOLAR POWER DATASET 

The solar power dataset utilized in this thesis is an actual data gathered from the Qassim 

University, KSA. It is a 6300 WP solar photovoltaic system (SPV). This system consists of 

fourteen 450 WP SPV modules arranged in a 7 × 2 configuration on the roof of the building 

of Qassim University in KSA. This assessment is carried out by gathering data from the 

installed SPV system. This data includes incident irradiance (W/m2), module temperature, 

ambient temperature and power produced by the system. This information is gathered using a 

wattmeter, an irradiance metre, voltage sensors, and current sensors. Every new line of the 

dataset is captured at a 5 min time interval and the time period of the dataset is one year 

(September 2021- August 2022). The data are accessible in the Excel format. 

 

5.4    METHODOLOGY 

 

Fig. 5.4: Solar power forecast methodology 
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The explained process is shown in a flow diagram in Fig. 5.4 Inputs included historical 

ambient temperature, Irradiation, module temperature and output is solar power data. A 

wattmeter, an irradiance meter, voltage sensors, and current sensors are used to collect this 

data. The dataset's new lines are recorded every 5 minutes. There after data-preprocessing has 

been done for cleaning the dataset and making it suitable for a ML model which also enhances 

the efficiency and accuracy of a ML model. As the data points in the dataset are not of the same 

order of magnitude so, it is required to bring the data-points in the same order of magnitude. 

Hence, the given dataset is normalized using the relation. 

𝑥̅ =  
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
                                                            (5.6) 

where, actual data is specified by x, 𝑥𝑚𝑎𝑥 (maximum value of the dataset), 𝑥𝑚𝑖𝑛 (minimum 

value of the dataset) and x is the scaled data specified within the range 0–1. Later the dataset 

were used to develop the ML Models. The dataset is separated into two portions: first 75% of 

the dataset is considered for training and the rest 25% dataset is considered for testing purpose. 

 

5.5   DATA PREPROCESSING   

Data preprocessing in machine learning is the process of getting the raw data ready 

(organizing   and cleaning it) so that it can be used to create and train machine learning models. 

It is the first and crucial step while creating a machine learning model. In the raw dataset, there 

were some timestamp where dataset values were negative or missing. These negative and null 

values in the raw dataset indicate noticeable outliers. As a result, these evident outliers, as well 

as the related variables under the same time stamps, would be deleted. This could be due to 

irregular maintenance of solar panel or malfunction. The dataset contains 50,420 observations 

in total, with 2,496 data points considered outliers due to zero power production. After 
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removing outliers and missing values, the remaining dataset, 47,924 data points, was 

considered for machine learning model implementation. 

5.6 MACHINE LEARNING MODELS FOR SOLAR POWER 

FORECASTING   

5.6.1 Random Forest 

Random Forest Regression is an ensemble supervised learning approach, which involves 

fitting numerous regression trees on random selections of the training dataset. Initially, the 

algorithm randomly divides the dataset into numerous subparts and then generates various 

decision trees for each subpart. All trees are utilized for prediction, and their forecasts are 

averaged to produce a more reliable and precise forecast. Also, it is capable of effectively 

handling huge datasets.  

This approach also manages variables quickly, which makes it suitable for complex tasks. 

The random forest cannot forecast values that are not in the training dataset target range [242]. 

We utilized scikit-learn for random forest regression implementation. In RF, a random vector 

of k is generated, which is a subset of the dataset's feature space, and each tree is built utilizing 

k and the training data. In a random forest, margin function and the generalization error are 

stated in Equation (5.7). 

𝑃𝐸∗  =  𝑃𝑋,𝑌(𝑚𝑔(𝑋, 𝑌) < 0)                                                                                                          (5.7) 

𝑤ℎ𝑒𝑟𝑒, 𝑚𝑔(𝑋, 𝑌) =  𝑎𝑣𝑘𝐼(ℎ𝑘(𝑋) = 𝑌) − 𝑚𝑎𝑥𝑗≠𝑌𝑎𝑣𝑘𝐼(ℎ𝑘(𝑋) = 𝑗) 

where hk are the classifiers, I (.) is the indicator function, mg is the margin function which 

governs the average votes at random vectors for the right output as compared to any other 

output, 𝑃𝐸∗is the generalization error and X,Y are random vectors.  
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In RF algorithm, the random state is set to 35, and the number of trees is set to 100, because 

raising the number of trees to more than 100 did not substantially increase the forecast outcome. 

In order to improve runtime and forecast performance, an adequate number of trees must be 

determined.  

Fig. 5.5(a) depicts the scatter plot employing RF regression showing the relationship 

between Irradiation (w/m2) and SPV power generation (kW) and Fig. 5.5(b) compares the 

forecast average power with the actual average power (kW) produced from the solar panels. 

 

5.6.2 K-Nearest Neighbors 

The K-Nearest Neighbors (KNN) technique is a non-parametric approximation approach 

that may be used to solve problems like classification and regression. The assumption behind 

KNN is that an item belongs to the same class as its nearest neighbors. The approach demands 

the input of a positive integer k at initially. For every sample, the method finds the k points on 

the dataset that have a similar pattern to that of the sample. The distance between all of the 

samples in the dataset and the newly analysed sample is needed for this selection procedure 

 
 (a) 

 
                                            (b) 

Fig. 5.5: (a) Scatter plot depicting relation between the Irradiation(w/m2) and the power generation 

(kW) from SPV using random forest regression; (b) Predicted average of solar power as compared 

with real average power from SPV (kW) using random forest regression 
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[242]. It has an algorithmic framework that is simple to understand and implement, and it does 

not involve any model fitting or function estimation.  

The KNN regressor is widely considered as one of the most prominent data mining 

algorithms in the area of research due to its sophisticated capabilities. The KNN approach, 

when applied in forecasting applications, determines the neighbors: components from the 

training set that meet the reference conditions based on certain pre-set criteria.  

 The past data on wind power, wind direction and speed are the significant features of this 

study. These data are organized in a matrix 𝑋𝑖𝑗, where each row represents a feature vector for 

a certain estimate period. The nearest neighbor for a new data point at time t, as defined by the 

feature vector 𝑦𝑗, is compared to all of the rows in 𝑋𝑖𝑗, and the result is recorded in the 

Euclidean distances vector 𝑑𝑖:  

 

𝑑𝑖 = √∑(𝑋𝑖𝑗 − 𝑦𝑗)2

𝑖

                                                                            (5.8) 

 

The first k matches are obtained after sorting the distance values in increasing order. The 

numerical value for 𝑦𝑗 is the average of all the ‘K’ nearest neighbors variable numerical values.                

In this algorithm, the Euclidean distance was used as the distance metric and the number of 

neighbors for the kNN algorithm was determined to be 5.  

Fig. 5.6(a) depicts a scatter plot employing KNN regression which shows the relationship 

between Irradiation (w/m2) and SPV power production (kW) whereas Fig. 5.6(b) depicts the 

forecast average power compared to the actual average power (kW) employing KNN 

regression. 
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5.7 RESULTS AND DISCUSSION 

This segment discusses the findings and significant observations obtained from the final 

outcomes of wind power forecast models. All of the algorithms presented and detailed above 

were trained and tested on a Jupiter notebook (Python 3.9.5 version) equipped with 12 GB of 

16 MHz DDR3 RAM and a 1.6 GHz Intel Core i3 processor. This assessment is carried out 

by gathering data from the installed SPV system. All the models are trained by utilizing the 

selected input parameters incident irradiance, module temperature, ambient temperature, and 

generated power, produced by the system. Following that, the model is given a testing/ 

validation dataset depending on which it provides production forecasts (active power). The 

forecast accuracy of all machine learning models is evaluated by utilizing the statistical 

indicators R2, MAE, MSE, RMSE, and MAPE. In general, errors in the train set demonstrate 

the applicability of the generated model, whereas errors in the test set demonstrate the model's 

prediction performance. Algorithms with minimal errors represent the most accurate 

and acceptable method. The statistical indicator, R2 indicates how efficiently the model 

 
                                              (a) 

 
                                           (b) 

Fig. 5.6: (a) Scatter plot depicting relation between the Irradiation(w/m2) and the power 

generation (kW) from SPV using  k- nearest neighbor regression ; (b) Predicted average of solar 

power as compared with real average power from SPV (kW) using k- nearest neighbor 

regression.  
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reproduces the measured outputs. The MSE represents the average square of the errors. The 

RMSE is the standard deviation of the forecast errors; the lower the RMSE, the superior the 

model is regarded to be. Moreover, a model is deemed good and free of over-fitting if the 

RMSE values of the testing and training sets fall within a restricted range. The MAE is 

calculated by adding the absolute differences between the real and forecast values. The MAPE 

determines accuracy by comparing the real and forecast data points. Amongst the 

five evaluation criteria assessed here, RMSE should be seen as the key focus, with errors 

squared before being averaged and a significant weight assigned to significant errors. As a 

result, the smallest value of the RMSE deduced the actual error rate. The fact that the values 

of the root mean square are comparable to the mean absolute error implies that there is no 

considerable variance in the magnitudes of error, indicating the model's efficacy and 

generality. The forecast model parameters have been evaluated utilizing numbers of runs for 

the separate algorithms based on the random state, value of k, distance measure, number of 

trees, learning rate and booster parameter among other things, in order to optimize the model 

performance and accuracy. The performance of all forecast models can be assessed 

utilizing the overlapping scatter plots which indicate the correlations between the power 

developed (kW) by the solar photovoltaic panel and Irradiation (w/m2), as well as the plot 

between the forecast average power values in comparison to the actual average power 

generated by the solar photovoltaic panel, that pictorially reveals the performances of 

regression models, as can be seen in Figures 5.5 and 5.6. The RF regression model's outcomes 

are shown in Fig. 5.5. As seen in Fig. 5.5a and 5.5b, this approach was able to anticipate 

accurate power values. The RF method performed good and had a high accuracy rate and 

small predicting error, as demonstrated by the performance measures presented in Table 5.1. 

as compared to the KNN method. Additionally, the R2 value of this algorithm was higher than 
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that of the other model with longer execution times. The majority of the forecast values are 

found overlapping or near to the actual average power levels, as illustrated in Fig. 5.5b 

The KNN regression results are shown in Fig. 5.6. The KNN method could forecast power 

values favourably, as shown in the graph; nonetheless, its performance was not better than the 

RF regression model, despite the fact that this algorithm could not make proper forecasts as 

shown in Fig. 5.6b.  Also the model has a small R2 value than that of the RF regression model. 

As a result, the overall performance of the RF regression model was found to be very good.  

Table 5.1: Model performance based on the MAE, MAPE, RMSE, MSE and R2 metrics. 

Italic and bold parameter indicate better performance. 

 

5.8   CONCLUSION 

Forecasting the solar power output is necessary for the proper functionality of the power 

grid. Machine learning regression models are used to estimate solar photovoltaic (SPV) panel 

output, which overcomes the drawbacks of traditional models. In this chapter, we have 

compared two ML regression models (RF and K-NN) with real-world data gathered from 

Qassim University, KSA. In the practical application, our research demonstrates the superiority 

of using Random Forest Regression model over K-NN method with MAPE, RMSE, MAE, 

MSE and R2 is 0.7674, 0.0191, 0.0132, 0.0003 and 0.65 respectively. 

  

Regression 

Models 

Performance evaluation on Training Dataset Performance evaluation on Testing Dataset Training 

Time 

(sec.) MAE MAPE RMSE MSE R2 MAE MAPE RMSE MSE R2 

Random 

Forest 
0.0091 0.2708 0.0126 0.0001 0.9979 0.0132 0.7674 0.0191 0.0003 0.9953 0.65 

K-NN 0.0108 0.5834 0.0158 0.0002 0.9967 0.0134 1.2703 0.0196 0.0003 0.9950 0.18 
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CHAPTER 6 

A FEASIBILITY STUDY AND COST-BENEFIT ANALYSIS OF 

AN OFF-GRID HYBRID SYSTEM FOR A REMOTE AREA 

ELECTRIFICATION 

 

6.1 INTRODUCTION 

Prior to the development of any model based on RES, it is critical to accurately estimate 

their potential. The proposed research aims to create a hybrid model based on RES like wind 

energy, solar energy, biogas, biomass, etc [243]. To examine the viability of the available RES 

for the creation of a hybrid model, the potential of these sources has thus been estimated in this 

chapter. The Sarai Jairam village, district Agra, Uttar Pradesh, India has been chosen as study 

area, in the present chapter. The potential of various RES at the chosen places has also been 

calculated using the data gathered. According to this evaluation, study area has adequate 

supplies of solar energy, biomass, and biogas. The mathematical modelling of various RES and 

system components used in the creation of the hybrid model has also been provided. 

6.2 METHOD OF MODELING HYBRID SYSTEMS       

For the design and construction of an optimum hybrid system for a rural region, a 

systematized modelling technique is an integral step since it ensures that the rural population 

has reliable, consistent and dependable access to electricity. The HOMER pro software has 

been utilized as a tool to identify the set of optimum systems that meet the load demand under 

specific system restrictions and input assumptions. HOMER pro is a distributed power 
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optimization tool designed by the National Renewable Energy Laboratory in the United States 

[243]. Due to the uncertainties, a sensitivity analysis is conducted to investigate the influence 

of input assumptions on the optimization outcomes. Fig. 6.1 depicts the process and proposed 

framework for system modelling and analysis. In the current study, a modelling technique that 

is shown in the following sections includes a description of the selected location, assessment 

of renewable energy sources potential, electrical load estimation and system design and 

optimization procedure. 

 

Fig. 6.1: Process and proposed framework for system modelling and analysis 

 

6.3 LOCATION DISCRIPTION 

It is crucial to choose the right location for the development of the hybrid model. For the 

proposed work, sites with a significant potential for many RES have therefore been taken into 

consideration. Based on the lack of grid power to homes or other essential facilities like 

panchayat ghar and primary schools, etc., two separate sites in Sarai Jairam village, district   
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Agra, Uttar Pradesh, India have been taken into consideration for creating hybrid models. 

Uttar Pradesh is situated between 23°52'N and 31°28'N latitudes and 77°3'E and 84°39'E 

longitudes. Uttar Pradesh has a total land area of 240,928 square kilometres (93,023 sq mi) 

and is the fourth largest state in the country in terms of area, and the first in terms of 

population. There is a 3,000 MW shortfall in Uttar Pradesh. Only 20,000 MW are available to 

meet the roughly 23,000 MW demand, which forces load shedding in rural and smaller 

communities. According to data made available by the state power agency, energy is currently 

provided in rural areas on average for 15 hours and 7 minutes instead of the 18 hours that are 

scheduled. In the same way, electricity is delivered on average in towns at 19 hours 3 minutes 

as opposed to the scheduled 21 hours 30 minutes, and in tehsil headquarters in 19 hours 50 

minutes as opposed to 21 hours 30 minutes.  

The site for this study is Sarai Jairam village in Uttar Pradesh, India. The abundance of 

renewable energy and the region's strategic significance was taken into consideration while 

choosing the location. The location is identified by the coordinates at the longitude of 78o 

10.7’E and latitude of 27o 20.2’N and time zone (GMT+05:30) from NASA meteorological 

data. Fig. 6.2 shows the geographic view of the research location.  

 

Fig. 6.2: The geographic view of the research location 
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6.4 ASSESSMENT OF WIND AND SOLAR RESOURCES POTENTIAL 

AT THE SELECTED SITE 

From NASA meteorological data, the solar and wind energy data for Sarai Jairam village 

have been extracted, and the data are shown in Table 6.1 with their latitude and longitude (27o 

20.2’N, 78o 10.7’E), and time stamp (GMT+05:30). Fig. 6.3 and Fig. 6.4 provide graphical 

representations of the specifics of solar radiation throughout the course of the year and wind 

data over the same period. Table 6.1 provides data on the selected site's annual average daily 

radiation (kWh/m2/day), clearness index and wind speed (m/s). 

Table 6.1: Average monthly daily radiation, clearness index and wind speed 

Month Solar Energy (SE)  

(kWh/m2/day) 

Clearness Index Wind Speed 

(WS) (m/s) 

Jan 3.670 0.578 4.230 

Feb 4.690 0.623 4.690 

March 5.590 0.620 5.020 

April 6.080 0.589 5.100 

May 6.360 0.574 5.250 

June 6.010 0.531 5.180 

July 4.960 0.444 4.740 

Aug 4.540 0.430 4.410 

Sept 4.750 0.503 4.150 

Oct 4.730 0.595 3.450 

Nov 4.030 0.611 3.360 

Dec 3.490 0.585 3.700 

Average 4.908 0.5569 4.44 

 

 

Fig. 6.3: Monthly average solar irradiance throughout the year 
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Fig. 6.4: Monthly average wind speed throughout the year 

6.4.1 Solar energy 

The sun provides an improbable amount of solar energy to the planet, which can be used 

to produce electricity. The database of the Indian meteorological service reveals that India has 

between 250 and 300 bright days each year, which suggests that the nation can readily use solar 

energy. Historically, only things like pickles, jam, and clothes were dried using solar energy 

[244-245]. In addition, a solar water heater uses solar energy to heat water, and a solar cooker 

uses solar energy to prepare food. However, modern solar thermal and photovoltaic (PV) 

technology also uses it to produce energy. PV cells made of a thin layer of semiconductor 

material are used in SPV technology to convert solar energy into electrical energy [246]. One 

PV cell typically produces relatively little voltage between 0.5 and 0.8 volts. Therefore, PV 

cells are connected in series to create a PV module, which may then be connected in series or 

parallel to create a PV panel or array, in order to take advantage of this technology and increase 

the voltage level [247]. Therefore, when exposed to solar radiation, PV panels or arrays 

produce high voltages and currents at their output terminal that can be used to provide our 

electricity needs. PV panels, however, are unable to produce power when there is a lack of 
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solar radiation, such as at night or in overcast conditions [248]. In order to store energy that 

can be used at night or in cloudy weather, a storage device like a battery is needed. 

DC power is produced by PV panels. The majority of electrical gadgets, however, need 

AC power. Therefore, a device that can convert DC power to AC power is required. An inverter 

is able to achieve this [249-250]. Consequently, the SPV system is made up of PV panels, 

batteries, an inverter, and a charge controller. The charge controller is a crucial component of 

the SPV system because it controls the energy flow from the renewable energy source via the 

battery bank and the load demand [251]. The SPV system can be operated in grid-connected 

or off-grid modes. While it is not connected to the grid when in off-grid mode, the SPV system 

is connected to the utility grid when in grid connected mode. 

 

Fig. 6.5: PV System Schematic Diagram 

Additionally, Fig. 6.5 depicts the schematic diagram of the SPV system. The amount of 

solar radiation, or irradiance, in a chosen area must be estimated in order to build and construct 

an SPV system [252]. In order to collect the solar radiation data for the various months of the 

year, the HOMER software was given the longitude, latitude, and time zone of the study 

location. The results are shown in Table 6.1. The Sarai Jairam village has higher annual average 

solar daily radiation of 5.26 kWh/m2/day, as can be seen in Table 6.1. Due to its best solar 
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energy potential, the village of Sarai Jairam has been chosen. The chosen site's 4.91 

kWh/m2/day of yearly average global solar radiation is sufficient to produce electricity 

effectively. Further observation reveals that the solar radiation reaches its peak in May (6.36 

kWh/m2/day) and reaches its minimum (3.49 kWh/m2/day) in December as can be seen in Fig. 

6.2. Additionally, using the following calculation, the yearly solar energy potential (𝐸𝑃𝑉) of the 

chosen site was calculated to be 1792.15 kWh/m2/year. 

𝐸𝑃𝑉 = 𝑄𝑃𝑉 × 365                                                                     (6.1)  

Where, 𝑄𝑃𝑉 is the average daily solar radiation per year (4.91 kWh/m2/day) [253]. 

6.4.2 Wind energy 

Electricity is generated by a wind turbine using the kinetic energy of the wind. Small wind 

turbines in India called aero generators are made to withstand winds of up to or close to 10 m/s 

[254]. According to Fig. 6.6, it consists of the wind turbine rotor, inverter, charge controller, 

and battery bank.  

The wind turbine's output is collected by the charge controller, which also charges the 

battery bank [255-256]. To power an AC load, an inverter converts DC electricity to AC. The 

chosen area's 4.44 m/s average annual wind speed is somewhat low for the production of 

electricity, as seen in Table 6.1. As a result, wind energy has not been considered as a source 

of electricity production for the indicated site in this study. 

 

Fig. 6.6: Small-scale aero-generator schematic diagram 
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6.4.3  Bio Gas 

A biogas system generates biogas by using a biological agent such as bacteria to break 

down organic waste like animal dung, food scraps, or human sewage. Anaerobic digestion is 

the term for this process [257]. The biogas that is produced includes some solid wastes as well 

as 50–60% CH4 and 30–40% CO2. A biogas collecting tank, an anaerobic digester, and an IC 

engine with a generator make up the biogas-based power generation system [258, 259]. 

Additionally, the evaluation of biogas generation in the study area is done using animal manure 

from various animals, such as buffaloes, cows, sheep, and goats. It is predicted that the study 

area I has a total of 310 buffaloes, 175 cows, and 25 goats based on the thorough survey and 

data collection. The chosen area's biogas potential is assessed as follows: 

𝑄𝐺 = 𝑑𝑔  ×  𝑌𝐺                                                                                  (6.2) 

 

Where QG is the biogas availability per day (m3/day),  𝑌𝐺 is the biogas yield (m3/kg) and 

dg is the availability of cattle dung (kg/day) [260, 262].  Additionally, Table 6.2 provides an 

evaluation of the biogas and energy potential at the chosen site. Around 1750 kg of cow manure 

are available daily in Study Area.  

It is predicted that 1 kg of cow and buffalo dung can produce 0.036 m3 of biogas, but 

sheep and goat produce 0.070 m3 and 0.078 m3 respectively. The evaluation of biogas output 

is based on the cattle dung acquired from various species [261]. The research area’s available 

biogas is calculated to be 116.175 m3/day using a 50% collection efficiency assumption. 

Additionally, it is thought that 0.5 m3 of biogas can generate 1 kWh of energy [262]. The 

computed annual energy potential of the chosen site is 84,807.75 kWh/year. According to 

Table 6.2, the main source of biogas generation comes from buffaloes (72.04%) followed by 
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cows (27.1%), and goats (0.84%), respectively. As a result, the total annual energy potential of 

various RES at the chosen site is estimated and shown in Table 6.3. 

Table 6.2: Biogas and energy potential assessment in the study area 

Description Buffaloes Cow Goat 

No. of animals 310 175 25 

Dung per cattle (kg/day/cattle) 15 10 1 

Dung from different animals (kg/day*no. of cattle) 4650 1750 25 

Availability of cattle dung at 50% collection efficiency (kg/day) 2325 875 12.5 

Biogas yield rate (m3/kg)  0.036 0.036 0.078 

Biogas yield from different animals (m3/day) 83.7 31.5 0.975 

Total biogas from all animals (m3/day) 116.175 

Annual energy potential (kWh/year) 84,807.75 kWh/year 

 

Table 6.3: Potential estimates for various RES in the study region 

S. No.  Renewable energy sources (RESs) Annual energy potential 

1 Solar energy 1792.15 kWh/m2/year 

2 Biogas 84,807.75 kWh/year 

 

Table 6.3 shows that the selected area has a large potential for various RES that can be used to 

meet the energy needs of the rural people in the given area. Furthermore, biogas has the greatest 

potential, followed by solar energy. As a result, this village has been selected for the 

configuration of a renewable energy-based system for power production 

6.5  ASSESSMENT OF BIOMASS ENERGY RESOURCE POTENTIAL 

AT THE SELECTED LOCATİON 

In Sarai Jairam village animal dung may be simply used to produce biogas through the 

digestion and combustion processes, respectively. Anaerobic digesters are used to treat the 
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manure produced by cattle and produce power. The total dung produced annually from the 

community is calculated by equation (6.3); 

                                               𝑀𝑛 = ∑ 𝑁𝑗𝑚𝑗                                                                                         (6.3)
𝑗
𝑛=1                                                                                                                                                                                          

where, 𝑀𝑛 is the annual total amount of manure produced, 𝑁𝑗 is the number of the selected 

group of animals, 𝑛 is the overall number of cattle and 𝑚𝑗 shows manure produced per cattle 

[263, 272].  

Table 6.2 lists the number of animals and the availability of animal manure in the village 

of Sarai Jairam. The total amount of manure produced by all the animals is estimated to be 

6.425 tons/day, which may be used to produce 84,807.75 kWh/year of power annually. The total 

potential of biomass is shown in Fig. 6.7.  

 

Fig. 6.7: Technical potential of biomass (animal manure) 

6.6   FEASIBILITY ANALYSIS 

Electrical load assessment and data on various RES have also been done in order to do 

the feasibility analysis of the chosen sites [164]. 
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6.6.1  Assessment of Electrical Load 

 In this work, a hybrid system that employs energy from solar and biogas has been 

designed to meet the electrical demands of one Primary school, Junior school and Panchayat 

ghar. The panchayat ghar has two rooms with two fans and four tube lights. The primary school 

contains six rooms with twelve fans, twelve tube lights, two computers and one submersible 

pump, while, five rooms, ten fans, ten tube lights, two computers and one submersible pump 

make up the junior high school. Table 6.4 provides the quantity, power ratings and power 

consumption for each load. Fig. 6.8 depicts the electricity load of the proposed region taking 

into account future expansion. The data has been gathered from the school and panchayat ghar 

employees.  

Table 6.4: Electricity load calculation for the selected communities 

S.No. 1 2 3 4 

Load Fan Tube light 

 

Computer 

 

Water pump 

Power rating (watts) 60 30 100 500 

Panchayat ghar No. in use 2 4 0 0 

Utilization hours 10 10 0 0 

Primary school No. in use 12 12 2 1 

Utilization hours 8 8 8 1 

Junior school No. in use 10 10 2 1 

Utilization hours 8 8 8 1 

Total energy 

Consumed (Watt) 

11760 6480 3200 1000 

 

Total load 22.440kWh 

 

 

Fig. 6.8: Monthly load profile during the whole year  
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The proposed location is not yet connected to the grid, a DG set, or any other type of 

power source. As a result, connected load and the data supplied by the proposed Primary 

school, Junior school and Panchayat ghar were used to determine the hourly load assessment.  

6.7 INTRODUCTION OF HOMER SOFTWARE 

The National Renewable Energy Laboratory (NREL) produced the well-known 

software called Hybrid Optimization Model for Electrical Renewables (HOMER) [265, 

272].  For the design of various off-grid and grid-connected RES-based hybrid systems, it runs 

simulations. This software initially determines if the system can technically meet the energy 

demand given the various techno-economic data inputs and constraints provided by the 

modeler [266, 273]. Following that, it runs hourly-based simulation for a year, calculates the 

net present costs (NPC) of all possible system configurations, and then ranks them according 

to which has the lowest NPC. NPC of a hybrid system is essentially the algebraic total of all 

costs and revenues over the lifespan of the system. Various costs include capital investment, 

operating and maintenance costs, replacement costs, fuel prices, grid power purchases, 

penalties, etc [267]. Different revenues take into account the salvage value of a biomass 

generator, a battery, the amount of power sent to the grid, etc [268]. The initial investment cost 

of the component is its capital cost. Operation and maintenance (O&M) cost is the annual cost 

incurred for operating and maintaining the components, whereas replacement cost is the cost 

of replacing that component with a new one at the end of the old one's lifetime [269, 270]. 

Additionally, sensitivity analysis can be carried out with this tool to evaluate the system's 

performance in ambiguous situations [271]. Fig. 6.9 shows the flowchart for the design and 

development of the hybrid system utilizing the HOMER tool. 

The system components that will be employed in the HOMER softwere are explained in 

section 6.8 for the estimate of power and energy potential of RES. Furthermore, equation 6.4 
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can be used to determine the power output of the SPV system (PV P (t)) in HOMER software. 

𝑃𝑃𝑉  (𝑡) =  𝑅𝑃𝑉  × 𝐷𝐹 × 
𝑄𝑃𝑉 (𝑡)

𝑄𝑃𝑉.𝑆𝑇𝐶
                                                        (6.4) 

Where: 𝑄𝑃𝑉 (𝑡) is the solar irradiance incident on the SPV array in kW/m2; 𝑅𝑃𝑉 is the rated 

capacity of the SPV array under standard test conditions (STC); and 𝑄𝑃𝑉.𝑆𝑇𝐶 is the solar 

irradiance incident under STC (1 kW/m2). The SPV array's derating factor, or DF, is utilized 

to account for output reduction under real-world environmental factors includes 

shadow, dust etc. 

 

Fig. 6.9: Flow chart of design and development of hybrid model 
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6.8  VARIOUS RENEWABLE ENERGY SYSTEM COMPONENTS 

MATHEMATICAL MODEL 

 

Mathematical modelling is an important step in designing a renewable energy-based model 

because it provides knowledge about the operation and performance of system components 

under various circumstances [272, 273]. The following sections discuss the mathematical 

modelling of each component of various RESs for power potential evaluation:  

 6.8.1 Solar Photovoltaic (SPV) System 

PV modules are connected in series and parallel in an SPV system. The output power (PPV (t)) of 

an SPV system is calculated as follows [272-274]: 

𝑃𝑃𝑉(𝑡) = 𝑁𝑃𝑉  × 𝑉𝑂𝐶  (𝑡) × 𝐼𝑆𝐶  (𝑡) × 𝐹𝐹                                                      (6.5) 

Where NPV denotes the number of SPV modules, FF denotes the fill factor,  𝐼𝑆𝐶  (𝑡) and 𝑉𝑂𝐶  (𝑡) 

denote the short circuit current (A) and open circuit voltage (V) of the SPV module, respectively, 

and A SPV module's 𝐼𝑆𝐶  (𝑡) and 𝑉𝑂𝐶  (𝑡) can be calculated as follows: 

𝑉𝑂𝐶 (𝑡) =  𝑉𝑂𝐶𝑆 −  𝜏 × (𝑇𝑃𝑉 (𝑡) − 25
𝑜 )                                                    (6.6) 

𝐼𝑆𝐶(𝑡) = [𝐼𝑆𝐶𝑆 +  𝜏 (𝑇𝑃𝑉(𝑡) − 25
𝑜 )] ×  

𝑄𝑃𝑉 (𝑡)

1000
                                                (6.7) 

𝑇𝑃𝑉 (𝑡) =  𝑇𝑎𝑚𝑏 (𝑡) + 
𝑇𝑃𝑉𝑛𝑚 (𝑡)− 20

𝑜)

800
 ×  𝑄𝑃𝑉 (𝑡)                                        (6.8) 

Under standard test conditions (STC), 𝐼𝑆𝐶𝑆 and VOCS are short circuit current (A) and open circuit 

voltage (V) respectively. 𝑇𝑎𝑚𝑏 (𝑡) is the ambient temperature ( oC ). 𝑇𝑃𝑉𝑛𝑚 (𝑡) is the nominal or 

rated cell temperature in oC,  𝑇𝑃𝑉  (𝑡) is the operational temperature of the solar cell, 𝑄𝑃𝑉 (𝑡 is the 

global solar irradiance (W/m2) incident on the SPV module, 𝜍  is the short circuit current 

temperature coefficient (A/oC) and 𝜏 is the open circuit voltage temperature coefficient (V/oC).  
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Furthermore, the fill factor (FF) of an SPV module is calculated as the product of the voltage at 

maximum power point (Vmpp) and corresponding current (Impp) divided by the product of short 

circuit current (ISC) and open circuit voltage (VOC) utilising equation (6.9) as: 

 Fill Factor =  
Vmpp × Impp

VOC × ISC
                                                                                 (6.9) 

The energy generated EPV (t) by the SPV system (kWh) at hour "t" was calculated using equation 

(6.10) as follows: 

𝐸𝑃𝑉 (𝑡) =  𝑃𝑃𝑉(𝑡)  ×  ∆𝑡                                                                                 (6.10) 

where, ∆𝑡 is a time step of one hour in the current study. 

6.8.2  Biogas Generator (BG) System 

The BG system's output power 𝑃𝐺(𝑡) is computed as follows: 

PG(t) =  
𝑄𝐺 × 𝐹𝐺 ×𝜂 𝐺

860 ×𝐻𝐺
                                                    (6.11) 

Where 𝜂 𝐺 and  FG are assumed to be 28% and 4700 kcal/m3 respectively, HG represents the 

number of operating hours of the biogas generator per day. 𝜂 𝐺 is the overall conversion efficiency 

from biogas to electrical power production, FG is the calorific value of biogas (kcal/m3), which 

is divided by 860 to convert kcal to kWh, and 𝑄𝐺 is the availability of biogas per day (m3/day). 

6.8.3  Wind Energy Generator System 

The manufacturer's actual power-wind speed chart is used to curve-fit the mathematical 

model of the wind energy generator. According to the following equations, the power output of 

a chosen wind energy system at hour "t" can be calculated: 
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PW(t)  =  

{
 

 
0,                                              when   V < Vci and V >  Vco
(x1V

2 + y1V +⋯+ z1),                                 Vci ≤ V < V1 
(x2V

2 + y2V +⋯+ z2),                                  V1 ≤ V < V2
(x3V

2 + y3V +⋯+ z3)                                   V2 ≤ V < Vco

                                      (6.12) 

Where Vco  and Vci and stand for the cut-out and cut-in speeds of a wind turbine, V indicates 

wind speed in m/s. The quadratic equation's coefficients are denoted as x, y, and z. The energy 

produced by a wind energy system 𝐸𝑊 (𝑡) is calculated as follows: 

𝐸𝑊 (𝑡) =  𝑁𝑊  × 𝑃𝑊 (𝑡)  ×  ∆𝑡                                          (6.13) 

where 𝐸𝑊 (𝑡) stands for the number of wind turbines. 

6.8.4 Battery System  

The product of power capacity (kW) and step size can be used to determine the hourly energy 

production of renewable generators (kWh) (1 hour). Battery operation consists of two states: 

charging and discharging, depending on supply and demand. The generation from RES exceeds 

the hourly load demand in the charging state. In contrast, in the discharging condition, the hourly 

load demand exceeds RES generation. Equations (6.14-6.16) have been used to calculate the 

battery capacity at hour t during the charging and discharging states as shown in: 

𝐸𝐵 (𝑡) =  𝐸𝐵 (t – 1) + [𝐸𝑋𝑊 (𝑡) + 𝐸𝑋𝑀 (𝑡) + 𝐸𝑋𝐺  (𝑡) + 𝐸𝑋𝑃𝑉  (𝑡)]  × η 𝑐ℎ                                         (6.14)             

Where 𝜂 𝑐ℎ is the charging efficiency, EXPV (t), EXG (t), EXM (t), and EXW (t) are the amount of 

energy that is left over after the load has been met by the SPV, biogas, biomass, and wind based 

generator systems, respectively (kWh), EB (t) is the amount of energy that is stored in the battery 

in kWh. 

𝐸𝐵(𝑡) = (1 −  𝛾) × 𝐸𝐵(𝑡 − 1) − 
𝐸𝑑𝑓(𝑡)

η𝑖𝑛𝑣  ×  η𝑑ℎ
                                              (6.15) 
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𝐸𝑑𝑓 (𝑡) =  𝐸𝐷(𝑡) − [𝐸𝑊(𝑡) + 𝐸𝑀(𝑡) + 𝐸𝐺(𝑡)] − [𝐸𝑃𝑉  (𝑡)  ×  η𝑖𝑛𝑣                                                    (6.16) 

where, the term 𝐸𝐷(𝑡) is "hourly load demand" (kWh), 𝐸𝑑𝑓(𝑡) is unmet or deficit demand that is 

not satisfied by Renewable energy source (kWh), 𝜂𝑖𝑛𝑣 and 𝜂𝑑ℎ shows inverter efficiency and 

discharging efficiency of battery and 𝛾 indicates self-discharging rate of battery at hour t [273, 

274]. 

6.9   SYSTEM DESIGN AND ASSESSMENT 

The system configuration shown in Fig. 6.10 includes a PV panel, biogas engine generator, 

and battery storage with a bidirectional converter. An electric load and biogas generator are 

connected to the AC bus. The battery storage and PV module are connected to the DC bus. 

Additionally, the converter is coupled with the AC and DC buses. Table 6.5 shows the technical 

specifications and capital costs of components. 

 

Fig. 6.10: Configuration of off-grid hybrid PV-biogas system 
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Table 6.5: Technical specifications and cost of components 

Hybrid system 

components 

Specifications Value 

Solar PV Capital cost 650$/kW 

O&M cost 1$/kW 

Replacement cost 0$/kW 

Sizes 0,1,1.5,2,2.5,3,3.5,4,4.5,5,6,7,7.5,8,9,

10 

Tracking system No 

Ground reflectance  20% 

Derating factor 80% 

Life span 25 years 

Azimuth,Slope 0 

Converter Capital cost 190$/kW 

Replacement cost 190$/kW 

Sizes 0,1,1.5,2,2.5,3,3.5,4,4.5,5 

Rectifier efficiency 85% 

Capaicity relative to 

inverter 

100% 

Inverter efficiency 95% 

Life span 20 years 

Annual rate of 

interest 

0% 

Battery Capital cost 150$/kW 

Replacement cost 30$/kW 

Nominal capacity 1kWh 

Float life 5 years 

Round trip efficiency 80% 

Mninmum state of 

charge 

40% 

Lifetime throughput 917kWh 

Biogas 

generator 

Capital cost 250$/kW 

O&M cost 0.08$/kW 

Sizes 0, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 

Replacement cost 150$/kW 

Biomass cost $3.75/tone 

Lowest load ratio 30% 

Life span 20000 hours 

 

 

  

6.10 RESULTS AND DISCUSSION 

6.10.1 System sensitivity analysis outcomes 

For technical and economical assessment purposes, the system must be designed with 

certain constraints or control variables that have an impact on the operating costs and output of 

the HRES system. Because the developed system is sustainable and the possibilities like the 

changes in solar radiations and biomass supply were taken into account for the sensitivity 
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analysis. Since animal dung is a free source of biomass, hence, the biomass price was not 

considered in the system design. It enables planners and designers in selecting a very efficient 

and cost-effective method for the specified design parameters. To find out how variations in 

solar radiation and biomass supply might affect the system economy, both variables were 

varied. As the supplied biomass was 6.43 tonnes per day, it varied between 6.43-6.50 tonnes 

per day for the sensitivity analysis, and the solar radiation varied between 4.91-4.99 

kWh/m2/day. The sensitivity analysis outcomes of the HRE system are displayed in Table 6.6, 

which highlights how changes in the supply of biomass and solar radiation affect the NPC, 

COE, and operating costs. The findings reveal that as biomass is increased and solar radiation 

changes are taken into account, net present and operating costs also rise. 

Table 6.6: Sensitivity outcomes for the hybrid PV/biogas system 

Sensitivity Architecture Cost 

Solar Scaled 

Average 

(kWh/mÂ²/day) 

Biomass 

Scaled 

Average 

(t/d) 

PV 

(kW) 

Bio 

(kW) 

1kWh 

LA 

Converter 

(kW) 

NPC ($) COE ($) Operating 

cost ($/yr) 

Initial 

capital 

($) 

4.91 6.43 5 1.5 30 3.25 57283 0.614 4547 8743 

4.92 6.44 5 1.5 32 3.25 56901 0.610 4483 9043 

4.95 6.46 5 1.5 32 3.25 55964 0.600 4396 9043 

4.97 6.48 5 1.5 32 3.26 55345 0.594 4337 9044 

4.99 6.5 5 1.5 32 3.25 54762 0.587 4283 9043 

6.10.2 System optimization outcomes 

 

      The developed hybrid Photovoltaic/biogas system with sensitivity inputs was modelled in 

HOMER Pro software by ranging the potential of the biogas generator and solar radiance in 

order to determine the most efficient, optimized, and cost-effective system for the Primary 

school, Junior school, and Panchayat ghar in rural areas.  

      To maximize the system's ability to meet the electricity demand, the capacity range of the 

biomass generator varied between 1kW to 5 kW, while the capacity range of the PV system 

varied between 4kW to 6 kW. In this study, a 1.50 kW biogas generator, a 5 kW PV array, a 
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3.25 kW converter, and 30 storage batteries were the optimal and most economically viable 

configurations evaluated for the hybrid system. This configuration is depicted in Fig 6.10.  As 

NPC, COE, and beginning capital investment are used to sort HOMER's optimum results. The 

total capital cost, NPC and COE for the best optimized PV-Biogas configuration are, 

respectively $8,743, $57,283, and $0.614. Other designs with varying equipment sizing that 

can meet the same energy load have low initial capital costs but high NPC, COE, and operating 

costs over the lifetime of the project. 

Table 6.7: Various different optimized system configurations with economic parameters 

Various Configuration NPC ($) COE ($) Operating Cost ($) Initial Cost ($) 

PV/Biogas/Battery/Converter 57283 0.6145 4547 8743 

PV/Biogas/Converter 169188 1.8107 15458 4178 

Biogas/Battery/Converter 213798 2.3475 19884 1539 

Biogas 260688 2.8009 24362 625 

 

 

Table 6.8: Electricity generation of different feasible system designs 

Parameters PV/Biogas/Battery/Conve

rter 

PV/Biogas/Convert

er 

Biogas/Batter

y/Converter 

Biogas 

PV array (kWh/year) 7,868 (81.1%) 7,868 (56.2%) - - 

Biogas generator (kWh/year) 1,830 (18.9%) 6,128 (43.8%) 9,013 (100%) 10,185 

(100%) 

Total electricity generation 

(kWh/year) 

9,698 (100%) 13,996 (100%) 9,013 (100%) 10,185 

(100%) 

Renewable fraction (%) 100 100 100 0 

Capacity shortage (kWh/year) 0.212 (0%) 143 (1.63%) 2.11 (0.1%) 111 

(1.27%) 

Excess electricity (kWh/year) 65.0 (0.67%) 5,055 (36.1%) 0 1,466 

(14.4%) 

Unmet electric load (kWh/year) 0.0000267 (0%) 6.77 (0.0773%) 1.10 (0%) 41.0 

(0.468%) 

 

The various system designs with their significant economic parameters are shown in Table 6.7.  

Table 6.8 also depicts the share of power production of each configuration throughout a year, 

total electricity production, renewable percentage, and excess electricity with unmet load for 

all different system designs.  
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Fig. 6.11 depicts the average monthly electricity production from a hybrid PV-

Biogas system, where orange bars show the power supplied by the photovoltaic panel and green 

bars show the power generated by bio gas generator. 

 

Fig. 6.11: Monthly average electricity generation from the hybrid system 

 

Fig. 6.12: Cost summary of the hybrid PV/Biogas system 

The total initial cost is calculated at $8,743 as shown in Table 6.7. This is the first investment 

needed to start the project. The initial cost of Lead acid battery and photovoltaic panels are more 

as compared to other components as shown in Fig. 6.12. This higher cost is a result of the 

substantial battery storage capacity, which is intended to offer reliable electricity dispatch when 

the electricity produced by the power systems is not enough to fulfill the load. In addition, the 

photovoltaic panels, which are less expensive once installed than a biogas generator, as biomass 
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is available for free, which is why the fuel category has not been presented. Fig. 6.13 displays 

the power generated by each component and the total electrical load served is represented in the 

above plot while the lower plot shows the unmet electrical load, total renewable power output, 

ac primary load served, input power and state of chage of battery over the course of July 9 to July 

18 to help with a better understanding of how the system operates.  

 

Fig. 6.13: Total electrical load served, unmet electrical load, total renewable power output, state 

of charge of the battery, ac primary load served and generated power by each component during 

July 9 to July 18. 

Table 6.9: Annual generation and consumption of electricity by a hybrid system 

Generation kWh/year % Consumption kWh/year % 

PV Modules 7,868 81.1 AC primary load 8,733 100 

Biogas Generator 1,830 18.9 DC primary load 0 0 

Total 9,698 100 Total 8,733 100 

 

Table 6.9 and Fig. 6.11 make it clear that the photovoltaic system consistently outperforms biogas 

in terms of electricity production. Being off the grid, the system uses solar and biogas as resources 

to meet the load demands because our maximum demand hours are during the daytime for 
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community load (schools and panchayat ghar) purposes. The capacity factor of the PV modules 

is about 81.1%, and it operates throughout the year depending on load requirements, producing 

about 7,868 kWh/year, compared to 1,830 kWh/year from the biomass generator having a 

capacity factor of 18.9%. Due to the lack of biomass availability throughout the day, biogas 

power generation is reduced. Furthermore, the system is producing more power than it needs to 

satisfy its annual power usage of 8,733 kWh, which can be saved or used for other productive 

purposes. 

6.11 Conclusion  

This chapter offers a technical and economical assessment of different stand-alone 

solutions for Primary school, Junior school and Panchayat Ghar buildings of Sarai Jairam 

village in Uttar Pradesh, India.  HOMER pro analysed several hybrid PV-biogas system 

configurations by modelling a dynamic hybrid model.  

An ideal solution was suggested based on the cost analysis after these hybrid designs 

underwent sensitivity analysis using variables such as solar radiation, biomass resource, and 

system sizing. In this study, the combination of a 1.50 kW biogas generator, 5 kW PV array, a 

3.25 kW converter and 30 storage batteries was found to be the most cost-effective option with 

a total capital cost of $8,743, Net Present Cost (NPC) of $57,283 and Cost of Energy (COE) 

$0.61, respectively. This hybrid renewable energy system produces roughly 9,698 kWh per 

year, with an additional 965 kWh per year being generated to make the study area grid-

independent. Additionally, the system has an estimated payback period of 0.41 years and a 

favourable net current cost for a projection timeframe of 25 years. By providing rural areas 

with these hybrid renewable energy systems, the Indian government may significantly 

contribute to resolving the country's current energy crisis.  
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Additionally, the existing legislation that supports the use of such systems only offers tax 

breaks or reductions, which is insufficient to allow low-income populations to make use of 

these systems. The government may alter its supporting policies, offer rewards for system 

employment, and launch a national electrification campaign. Similar studies could be 

undertaken for other rural places in order to electrify them, which would also help the Indian 

government achieve its goal of "Power to all."  
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CHAPTER 7 

   SOLAR PV SYSTEM PARAMETERS OPTIMIZATION TO 

EXTRACT MAXIMUM POWER 

 

7.1 INTRODUCTION 

An optimal and cost-effective system that works in sync with the existing grid must be 

developed to meet the immense electricity demand with solar energy.  In developing countries 

such as India, the government is creating fantastic opportunities and schemes to promote 

RESs such as solar power generation [175]. This chapter aims to investigate the economic and 

efficient production of electricity using solar photovoltaic (PV) systems, as developing an 

economical and efficient solar PV system is always a challenge for the design engineer. Aside 

from technical problems, structural factors influence PV module power production. This 

chapter presents an innovative architecture of a non-movable tracking system that improves 

PV module energy production by simply providing two grooves in the mounting structure 

instead of the tracking system. 

7.2  PVsyst MODELLING 

        Scientists and researchers must focus on issues such as generating power economically, 

minimization of losses and optimal space utilisation from PV solar systems. Several researchers 

have developed new topologies for inverters as well as DC-DC converters in order to reduce 

losses and increase production [276]. However, aside from optimum space utilisation, technical 

features  for PV system placement is one of the most important factor for all developers [277]. 

The research is primarily concerned with generating the most energy possible within the 
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available space. The tracking system has been subjected to research, so as to collect the 

maximal solar radiation by the Photovoltaic panels. Commercially available trackers include 

dual axis, single axis, and seasonal tracking, but they have drawbacks in terms of maintenance 

and initial investment [278-279]. To address these issues and capture the maximal irradiance, 

this work proposes the module tilt angle (MTA) strategy, which is explained below. Another 

possible solution to the problem of optimal space utilisation by designers is optimal module 

placement (OMP). This study demonstrates that the system can be enhanced in efficiency and 

technically viable by performing a few simple steps during the setup process. 

7.2.1  Tilt angle of module  

         In most cases, when designing a photovoltaic solar power system, the tilt angle of the 

module should be nearly equal to the latitude of the site or area. To track as much energy and 

consequently enhance solar power generation, designers preferred dual axis or single axis 

trackers. However, the placing of trackers is also an issue.  

        First, the tracking system adds a cost to the project, and second, it requires regular 

maintenance. Even though companies are working on maintenance-free trackers, this adds to 

the overall project cost. As a result, the PVsyst report results were investigated in order to 

analyse this issue and its potential solutions. After accounting for all possible losses, a case 

study was done using a 5 kW solar photovoltaic system considering a location in New Delhi, 

India, is modelled utilizing PVsyst software. The details of the case study is presented in Table 

7.1 which contains the relevant data. Several intriguing facts were discovered after a close 

study of the generation pattern over the course of the year. Currently, 2 different tilt angles are 

taken into account, the first at 30 degrees, which is roughly identical to the latitude of New 

Delhi, and a second at zero degrees, which keeps the sun right angles to the flat plane. It has 

been discovered that from April to August, the irradiance collected is greater if the module is 
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at 0°, or horizontal or flat to the surface, while production is greater at 30° slanted module. 

Thereby, if a space is provided in the mounting structure with only two grooves, one at the 

identical angle as the latitude and a second at zero degrees to the surface, the irradiance and 

thus the production of the PV system can be increased by not employing a tracking system.  

Table 7.1: Irradiance comparison analysis with various configurations. 

Month Irradiance at 0o tilt 

obtained based on  

PVSYST data (in 

kWh/m2) 

Irradiance at 30o 

tilt obtained based 

on PVSYST data 

(in kWh/m2) 

Irradiance obtained with the 

proposed configuration based on 

PVSYST data     (in kWh/m2) 

Jan 117.0 167.8 167.8 

Feb 138.0 177.2 177.4 

March 187.0 214.5 214.5 

April 208.0 206.4 207.0 

May 221.0 199.7 222.0 

June 198.0 171.0 197.0 

July 166.0 149.0 167.0 

Aug 161.0 151.7 160.0 

Sept 170.0 182.4 182.4 

Oct 166.0 205.9 205.7 

Nov 128.0 184.5 184.7 

Dec 116.0 174.3 174.1 

Total 1976.0 2184.4 2259.6 

 

Table 7.1 reveals how the proposed method improves the irradiance received by the 

Photovoltaic system, which leads to increased solar energy generation. The power produced 

from the 5 kW solar photovoltaic system by PVsyst software has been analysed and validated 

by comparing the outcomes with the hardware configuration mounted on the rooftop. Fig. 7.1 

depicts the experimental setup for the 5 kW system. The following are the specifics of the 

inverter and solar PV module utilized in the hardware: 

Solar Photovoltaic Module Datasheet: 

 Number of cells per module = 60 

 Module efficiency (η) = 15.2% 
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 Vmpp = 30.72 V 

 Impp = 8.15 A 

 Voc = 37.05 V 

 Isc = 8.58 A 

 Model: PM-250 

 

Inverter Datasheet: 

 Efficiency (η) = 98.1% 

 Absolute max. PV voltage = 1000 V 

 MPP voltage range = 200-900 V 

 Max input current = d.c. 2×11A 

 ISC PV(absolute maximum) = d.c. 2×16.5A 

 Rated grid voltage = ~380/400V 

 Max. continuous output current = a.c. 3×8.5A 

 Max. AC output apparent power = 5500VA 

 Max. AC output active power = 5500W 

 Rated grid frequency = 50/60Hz 

 Operating temperature range = -25…+60oC 

 Model: Evershine TLC5000 

 

                

                                     

Fig. 7.1: Hardware implementation of GCPV system 
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         The results obtained from the software and hardware depicts that energy injected into the 

grid with 30o tilt from the hardware setup (in kWh) is less as compared to the energy injected 

into the grid with 30o tilt from PVsyst data (in kWh). However, this variation could be owing 

to environmental parameters like heat and smog. Throughout the analysis of the power 

produced by the hardware configuration, the level of pollution in Delhi was very high, 

especially from November to February, and thus the smog in Delhi was too substantial. This 

explains why there are more differences in the results obtained using hardware and software 

throughout these months. With no additional financial burden on the project, a simple alteration 

can produce upto 5% more power per year from the solar photovoltaic (PV) system. In general, 

the Photovoltaic system is considered for a 25-year period. As a result, with a minor change in 

the structure, approximately 2000 more units can be produced. In the mounting structure, a 

groove with two slots must be provided, one with a defined tilt angle based on the area specific 

and the other parallel to the surface or ground  where it is installed.  

      Based on the results obtained and the data provided in Table I, it can be indicated that the 

module can be positioned parallel to the surface from April to August, and in the remaining 

months of the year, panels can be placed at 30o or latitude angle of the area. This chapter focuses 

on the two grooves that must be altered only twice a year. As a result, it is an easy approach 

with no extra cost or labour. The regular maintenance team is capable of carrying out the same. 

Even so, end users of this technique may use other grooves for greater conversion while saving 

on labor and maintenance costs. 

7.2.2 Optimal module positioning (OMP)  

Another important consideration in the design of a solar PV system is optimal space 

utilisation. By orienting the modules correctly, the area can be maximised. There are primarily 

two orientations available, vertical and landscape, and the designer must select one of the two. 
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However, no such guidelines are available. Based on the size and shape of the land, the designer 

may consider any orientation. This section discusses an investigation that suggests the most 

efficient manner to place modules in order to maximise production from a limited land area. 

Furthermore, the number of modules used in parallel-series combinations to establish the array 

is determined by the calculation of voltage and current.  However, no such techniques exist to 

illuminate the module combination in an array. Combining modules to frame an array remains 

a tough problem for a product designer because the whole shadow computation or distance 

between the rows is totally reliant on the size of the array, which has a significant impact on 

the PV system design calculation. This research analysed various combinations along with the 

area requirement and shadow calculation, which enables the design team to design photovoltaic 

(PV) systems with optimum usage of space. The calculation of the PV array row spacing is a 

crucial task prior determining the required area. Here are the exact PV array row spacing or 

inter-row space calculations. The several solar Photovoltaic designers use the inter-row 

distance formula in Equation (7.1) that is correct yet fails to offer an accurate calculation. 

𝑆ℎ𝑎𝑑𝑜𝑤 𝐿𝑒𝑛𝑔ℎ𝑡 = 𝑤 × (cos𝛽 + 
𝑠𝑖𝑛 𝛽

tan𝛽
)                           (7.1) 

where 𝛼 = 90𝑜 − (𝜙 + 23.45),   𝛽  is module tilt angle,  𝜙 is the latitute of the area, 𝑤 is 

module width. This work has proposed a generalised Eq. (7.2) for calculating the inter-row 

area and shadow length, where 𝛽 is the tilt angle, 𝑤 is the module width and  𝜃 is the azimuth 

angle at December 21. The date of December 21 is chosen because the sun's altitude angle is 

greatest on this day, and thus the shadow length is greatest. A represents the area's altitude 

angle on December 21. Fig. 7.2 depicts the shadow length calculation quite clearly. This 

work considers the Delhi site. As a result, the altitude angle (𝛼) and azimuth angle (𝜃) are 

assumed to be 28o and 143.5o, respectively.  
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𝑆ℎ𝑎𝑑𝑜𝑤 𝐿𝑒𝑛𝑔ℎ𝑡 (𝐷) = 𝑤 × 
𝑠𝑖𝑛𝛽 × cos (180𝑜 −  𝜃 )

tan𝛼 
                        (7.2)     

The following parameter calculations are taken into account when designing the experimental 

setup: 

 

Fig. 7.2: Shadow length calculation 

7.2.2.1 Thermal Parameters 
 

Thermal loss factor U = UC  + UV × Wind velocity, where Uv is the wind loss factor (taken to 

be 0W/m2k m s) and Uc is the constant loss factor (taken to be 29 W/m2k). The module 

mounting structure is designed as a free-standing module with proper ventilation. 

7.2.2.2 Ohmic loss  
 

The 5 kW system is made up of 2 strings of 10 modules each. So every module is rated at 

250Wp. Each module's Impp (current at maximum power point) and Vmpp (voltage at maximum 

power point) and are 8.15 A and 30.72 V, respectively. As a result, the wire's cross-sectional 

area is computed as 

𝐴𝐷𝐶 =
2 × 𝐿𝐷𝐶  ×  𝐼𝐷𝐶  ×  𝜌

𝐿𝑜𝑠𝑠 ×  𝑉𝑚𝑝𝑠𝑡𝑟𝑖𝑛𝑔
                                                 (7.3) 
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        We chose copper wire for the DC side because it has less loss. As a result, the 

corresponding constant values for copper wire are used here as well. We also factored in a 

0.5% voltage drop. 𝑉𝑚𝑝𝑠𝑡𝑟𝑖𝑛𝑔 is the total voltage of the string at MPP. 𝑉𝑚𝑝𝑠𝑡𝑟𝑖𝑛𝑔 is the voltage 

of the entire string at MPP. In this case,  𝑉𝑚𝑝𝑝 per module is 30.72 V. As a result, 𝑉𝑚𝑝𝑠𝑡𝑟𝑖𝑛𝑔 = 

30.72 × 10 = 307.2 V because a string contains 10 modules.  

        The unit of 𝜌 is Ω /m mm2. With the help of equation (7.3), the cross-section of the wire 

with ohmic losses from the array to the array junction box (AJB) and from the AJB to the 

inverter for the DC side can be calculated. The losses on the AC side are calculated using 

standard equations.  

7.2.2.3 Mismatch or Module quality loss 
 

The module quality or mismatch loss is entirely dependent on the module manufacturer. 

The module's datasheet may be useful in this regard. However, the proposed study considers 

the standard or average module mismatch loss to be 1.5%. Furthermore, loss when running at 

fixed voltage is assumed to be 4% and power loss at MPP is assumed to be 2%.  

7.2.2.4  Soiling loss 
 

If soil or other dust particles are spread over the modules, their efficiency decreases and 

they do not produce the expected power. This loss is entirely determined by the area. Rajasthan, 

India, has a sandy terrain, so soiling loss is higher there. In regions such as Delhi, the soil loss 

are significantly low. This study assumed a soiling loss of 2% per year on average.  

This loss can be reduced if a proper PV plant module cleaning schedule is planned and 

implemented. After calculating the inter-row spacing or shadow calculation, the total optimised 

precised area (OPA) required is proposed as; 
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𝑂𝑃𝐴 (𝑖𝑛 𝑚2) =  ⌊{𝑤 cos 𝛽 + (
𝑤sin𝛽 ×cos(1800− 𝜗)

tan𝛼
)}  × 𝑛𝑟⌋×[𝑛ℎ × 𝑙 + (𝑛ℎ − 1) × 𝑑𝑚 +

 𝑑𝑎  × (𝑛𝑎 − 1)],                                                                                                                      (7.4) 

where  𝑛𝑎  denotes the number of array tables, da denotes the distance between arrays (in m), 𝑑𝑚 

denotes the distance between modules for air circulation (in m),  𝑙 denotes the length of each 

module (in m), 𝑛ℎ denotes the total number of modules connected horizontally and 𝑛𝑟 denotes 

the number of rows.   

 The optimized area for a 5 kW test system in Delhi, India, is calculated utilizing the 

proposed formula. Fig. 7.3 depicts the module dimensions taken for the experimental setup as 

well as the two different module orientations; vertical orientation and landscape orientation. 

The test system is 5 kW in size, with every module rated at 250 Wp.  

 As a result, the proposed system necessitates the use of 20 such modules. These 20 modules 

were placed in various positions and configurations so that the area requirement could be 

calculated using the same number and dimensions of modules.  

 Various module placements have been analysed with these two orientations in mind to 

figure out the optimal area requirement for setting up the solar photo voltaic plant. Fig. 7.4 and 

Fig. 7.5 show the distinct layout of modules with vertical and landscape orientation. 
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Fig. 7.3: Dimensions and orientation of the test system module 

 

 

 

Fig. 7.4: Different module configurations in landscape orientation 
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Fig. 7.5: Different module configurations in vertical orientation 

 

It is clearly evident from Fig. 7.4 and Fig 7.5, that area required varies with the placement and 

orientation of the photovoltaic modules. If the modules are arranged vertically, they will take 

up more space than if they are arranged horizontally. 

It has been discovered that the area requirement varies depending on module configuration. 

The space required to form a 5 kW solar PV system with the same number and size of modules 

significantly increases without affecting Photovoltaic systems output generation. 

 Here, equation (7.4) is proposed to determine the optimised precised area requirement for 

setting up the solar photovoltaic (PV) system, and then the module placement can be carried 

out on the field. This will aid in calculating the optimal area requirement and making better use 

of the available area. 
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7.3 CONCLUSION 

        Because of rapid population growth, the need for space or land for power plant installation 

has become a significant issue nowadays. A solar photovoltaic system is an excellent 

alternative because it can be installed on the top of buildings and other available waste 

areas.  Even in such cases, optimal space must be used to produce peak energy. In this work, 

efforts were made to enhance power. In this research, a test system of 5 kWp has been simulated 

utilising PVsyst software for observation of solar power at different angles of orientation of the 

photovoltaic panel, and the results have been evaluated by comparing with the hardware 

configuration. The results obtained for solar energy generation are nearly precise by assessing 

real-time losses, taking into account the specified geographic area, and using adequate shading 

computation. In this analysis, two models were proposed: Module Tilt Angle (MTA) and 

Optimal Module Placement (OMP). The MTA technique increases energy generation upto 5% 

by modifying the module mounting structure to allow for different module tilt angles. 

        Furthermore, in the MTA module, distinct case studies with two distinct orientations of 

the module were conducted, and a formula for calculating space requirements was derived 

based on their results, hence, the area requirements for the same dimensions and number of 

modules have been significantly reduced depending on module orientation and arrangement.  
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CHAPTER 8 

   CONCLUSION AND FUTURE SCOPE 

 

8.1 INTRODUCTION 

This chapter describes the most important findings from the research that is carried out 

in this thesis, as well as some brief suggestions for potential future research tasks. The 

important original contributions are discussed and listed below.  

8.2 CONCLUSIONS OF THE PRESENT RESEARCH 

Good prediction models are required to integrate the rapidly expanding wind and solar 

power sectors and ensure that the electrical grid is always balanced. Based on prior research, 

this work focuses on short-term power forecasting for Turkish wind farm which is located in 

the north-western region of Turkey. Renewable power forecasting is crucial when we deal with 

the smart-grid and integrating renewable sources into the grid to meet the increasing demand 

of electricity. Based on the past data power requirements can be forecasted and it is most 

significant to improve power saving strategies and for managing power production, 

transmission as well as distribution. In addition, advances in RE power technology have created 

a slew of new obstacles, and the only way to anticipate the proper power generation is to use 

new machine learning approaches. Currently, power generated from wind turbine is being used 

on an immense scale as an alternative source of power. Wind power forecasting is difficult due 

to the intermittent nature of wind. As a result, integrating wind energy into the main grid is a 

challenging task. Since wind power forecast can never be accomplished error free, so this 

provokes the researchers to develop intelligent forecasting models. Based on the data of speed 
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of wind and its direction, a comparative analysis of two regression algorithms is done for wind 

power prediction. To accomplish the desired aim, the SCADA system data from the Yalova 

wind-farm which is situated in west Turkey, was collected for the time period 1 January to 31 

December 2018 (1 year dataset) at 10-min sampling rate to train and test the regression models. 

The performance evaluation of regression models has been done using various statistical 

metrics (MSE, RMSE, MAPE, MAE and R2). The results show that the random forest (RF), k-

nearest neighbor (k-NN), gradient boosting machine (GBM), decision tree (DT), and extra tree 

(ET) regression algorithms are powerful techniques for forecasting short-term wind power. 

Among these algorithms, the capability of the gradient boosting regression (GBM)-based 

ensemble algorithm, with a MAE value of 0.0264, MAPE value of 0.3012, RMSE value of 

0.0634, MSE value of 0.0040 and R2 value of 0.9690 for forecasting of wind power, has been 

verified with better accuracy in comparison with the RF, k-NN, DT and ET algorithms. The 

performance of the DT algorithm was not satisfactory, with a MAE of 0.0336, MAPE of 

0.3309, RMSE of 0.0884, and MSE of 0.0078, although the R2 (0.9497) values of the DT 

algorithm were relatively acceptable, with a training time 0.22 sec. The model performances 

based on the MAE, MAPE, RMSE, MSE, and R2 metrics are given in Table 4.3. Hence the 

developed ensemble models are accurate and reliable for hourly forecasts and can be utilized 

for sustainable balancing and grid integration. 

In chapter 5, various forecasting techniques based on ML algorithms was presented to 

forecast photovoltaic power and the dataset from the Qassim University, KSA, was used to 

evaluate the proposed models. After analysing the performance metrics of both regression 

techniques i.e. Random Forest (RF) and K-Nearest Neighbor, it was determined that Random 

Forest (RF) regression outperformed the other technique in terms of all statistical indicators 

(MAE 0.0132, MAPE 0.7674, RMSE 0.0191, MSE 0.0003, R2 0.9953) considered with 

training time 0.65. 



133 

 

In this thesis, we have introduced high-accuracy machine learning models and demonstrate 

their effectiveness in forecasting wind and solar power generation. We anticipate that our 

methodology will provide decision-makers, system operators, engineers and practitioners, in 

the wind and solar power industry with an efficient method for making decisions using 

reliable forecasts. 

The research area for  developing hybrid power systems based on renewable energy have 

been determined based on the data gathered of un-electrified Primary school, Junior school and 

Panchayat Ghar buildings of Sarai Jairam village in the Indian state of Uttar Pradesh. In 

addition, the selected study area has significant potential for solar radiation and biogas that can 

be used for power generation, according to estimates of their RES potential. The feasibility 

research has been done in order to determine the most cost-effective and feasible hybrid system, 

and the generated models are used for applications in schools and Panchayat Ghar buildings. 

The simulation and comparison of various potential models has been done. According to the 

NPC and COE data, the PV/Biogas/Battery/Converter hybrid system is the best option for study 

area. One of the most important considerations is the optimal design or sizing of each hybrid 

system component because it influences the cost and power security of the system. In this study, 

the combination of a 1.50 kW biogas generator, 5 kW PV array, a 3.25 kW converter and 30 

storage batteries was found to be the most cost-effective option with a total capital cost of 

$8,743, Net Present Cost (NPC) of $57,283 and Cost of Energy (COE) $0.61, respectively. 

This hybrid renewable energy system produces roughly 9,698 kWh per year, with an additional 

965 kWh per year being generated to make the study area grid-independent. Additionally, the 

system has an estimated payback period of 0.41 years and a favourable net current cost for a 

projection timeframe of 25 years. By providing rural areas with these hybrid renewable energy 

systems, the Indian government may significantly contribute to resolving the country's current 

energy crisis. In chapter 6, Fig. 6.11 and Table 6.9 make it clear that the photovoltaic system 
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consistently outperforms biogas in terms of electricity production. Being off the grid, the 

system uses solar and biogas as resources to meet the load demands because our maximum 

demand hours are during the daytime for community load (schools and panchayat ghar) 

purposes. The capacity factor of the PV modules is about 81.1%, and it operates throughout 

the year depending on load requirements, producing about  7,868 kWh/year, compared to 1,830 

kWh/year from the biomass generator having a capacity factor of 18.9%. Due to the lack of 

biomass availability throughout the day, biogas power generation is reduced. Furthermore, the 

system is producing more power than it needs to satisfy its annual power usage of 8,733 kWh, 

which can be saved or used for other productive purposes. Although HOMER software gives 

the size of each component, it has some drawbacks, such as black box coding, longer computing 

times, calculation and algorithm not evident, lack of hourly variability, and immutable 

simulation models for system components.  

On the current research, it can be concluded that hybrid energy systems, particularly in 

developing nations like India, are capable of resolving the demand and generation imbalance 

problems. 

The small-scale SPV system is primarily installed on the roof. However, the space issue is 

always linked to the roof-top system. The investigation was conducted to discuss the two main 

issues associated with rooftop solar photovoltaic systems: optimum area utilization and 

increasing the energy output from the prearranged solar system. In this study, two methods 

were suggested: Optimum Module Placement (OMP) and other is Module Tilt Angle 

(MTA).  MTA technique increases power production upto 5% using the same array of solar 

photovoltaic modules by making a simple modification to the module mounting structure by 

introducing special grooves for changing MTA in two fixed positions. Furthermore, in the 

OMP model, distinct case analyses with 2 distinct module orientations were conducted, and 
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based on the results, a formula to calculate space requirements was developed. The area 

requirements for the same number of modules and dimensions have been significantly reduced 

depending on module orientation and arrangement. And hence, the optimal area required by 

the proposed formula results in significant reduction in space requirement, which can be used 

for other purposes or to increase the capacity of the solar power plant. The proposed structure 

was mathematically calculated and designed to simulate. A test system of 5 kWp has been 

simulated utilizing software for analysis of solar power at several angles of inclination of solar 

modules, and the outcomes have been satisfactorily compared with the hardware configuration. 

Results for solar power generation are nearly precise when real-time losses, specified 

geographic locations, and adequate shading measurements are considered. 

8.3 RESEARCH AREA OF FUTURE WORK 

The forecast for wind power has been the focus of extensive research. This study has 

demonstrated its impact on short-term forecasting of wind power produced by turbines in the 

north western region of Turkey. To increase the forecasting of wind power produced by 

turbines, more research is necessary. Firstly, machine learning algorithms using wind speed 

and wind direction as input parameters have produced satisfactory results. 

The process of research and development is never-ending. Each end of a study effort marks 

the beginning of an opportunity for new possibilities for future research. For future study, the 

following suggestions have been made. These additional tasks can be added to the current 

work: 

 While employing the same input parameters, alternative forecasting models like 

recurrent neural networks and other machine learning algorithms such as, support 
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vector machines, logistic regression and linear regression should be taken into 

account or improvement of machine learning algorithms for point forecasts. 

 In addition, more meteorological factors should be considered for future studies 

for more in-depth assessments. 

 The forecast accuracy could also be improved in future study, and more machine 

learning algorithms will be tested using the suggested approaches. 

 It is possible to study more areas across several villages, districts, states, etc. 

 The analysis may also take into account minor hydroelectric power plants. 

 In the current study, every effort has been made to develop the most practical 

solution for study area that is also the least expensive. Moreover, intelligent 

techniques or hybrid optimization methods can be investigated, like the School of 

Fish, the Ant Lion Optimizer (ALO), the Moth Flame Optimizer (MFO), the 

hybrid PSO-GWO, the hybrid HS-Random Search, etc.  
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