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ABSTRACT 

The purpose of developing biological language models (BLMs) is to enhance our capacity to 

comprehend and analyse biological sequences, such as DNA, RNA, and protein sequences. 

These sequences contain crucial information about the structure and function of living 

organisms and are involved in virtually every biological process. Nonetheless, analysing 

biological sequences can be difficult due to their complexity and enormous potential. 

Specifically, the functions and properties of a large number of coding and non-coding DNA 

and RNA sequences remain poorly understood. This thesis presents three objectives related to 

the application of natural language processing techniques in the field of bio-molecule sciences.  

The first objective involves using a combination of a Convolutional Neural Network (CNN) 

and a Long Short-Term Memory (LSTM) network, stacked in a sequence-to-sequence 

(Seq2Seq) architecture, to predict microRNA sequences from mRNA sequences. The 

microRNA are small, generally 28 bp long, non-coding RNAs that play a role in various 

physiological and disease processes. Identifying mRNA targeted by microRNAs is a challenge, 

and researchers often rely on computational programs to initially identify target candidates for 

subsequent validation. In this work, a neural network was trained to predict microRNA from 

the bound target segment in mRNA using a dataset of experimentally validated and cleaned 

microRNA-mRNA sequence pairs from TarBase v8. Convolutional neural networks (CNNs) 

were used to recognize patterns in mRNA segments and extract features, while long short-term 

memory (LSTM) networks in a seq2seq architecture were used to predict microRNA 

sequences. The model achieved an accuracy of 80% and was validated using experimentally 

verified microRNA-RNA pairs involved in skin diseases from an in-house database called 

miDerma, correctly predicting an average of 72% of the microRNAs from mRNA in each case. 

The package, called "model: A MicroRNA sequence prediction tool from RNA sequence based 

on CNNs, LSTMs, and seq2seq architecture," allows users to input a gene symbol and retrieves 
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the protein coding transcript's sequence from the Ensemble REST API to predict a list of 

microRNAs that may bind to potential target segments in the mRNA. 

 The second objective involves using natural language processing techniques, including an 

embedding layer, a CNN layer, and a bidirectional LSTM layer, to predict disordered regions 

in proteins. Intrinsically disordered regions (IDRs) are important for various physiological 

processes and diseases and play a complementary role to the functions of structured proteins. 

They can be identified through multiple experimental techniques, but these methods can be 

costly and time-consuming. As a result, researchers rely on computational strategies to predict 

probable IDRs/IDPs before conducting further validation through experimental studies. While 

there have been significant advancements in predicting long and short IDRs in recent years, 

there is still scope for algorithmic improvement. This study aims to improve the prediction of 

IDRs by using neural networks, specifically convolutional neural networks (CNNs), recurrent 

neural networks (RNNs), and long short-term memory (LSTM) networks, as well as natural 

language processing (NLP) techniques. The study also explores the use of different input 

sequence lengths and various embedding sizes for the CNN and LSTM models. The results 

show that the CNN and LSTM models outperform state-of-the-art techniques for predicting 

IDRs, with the LSTM model achieving the highest accuracy of 85.7%. The study also 

demonstrates the effectiveness of using NLP techniques for analyzing protein sequences and 

the importance of carefully selecting model architectures and hyperparameters to achieve good 

performance. 

The third objective involves using an autoencoder, a type of deep learning architecture, to 

generate drug analogues by reconstructing chemical SMILES (Simplified Molecular-Input 

Line-Entry System) representations of molecules and varying the batch size and latent space 

dimensionality of the autoencoder. The design of drug analogues involves the creation of 

modified versions of existing drugs to improve their efficacy, stability, and safety. Deep 
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learning techniques, such as autoencoders, can be used to generate new drug analogues through 

a process of chemical structure reproduction. In this study, an autoencoder was trained on 

chemical SMILES data from the ChEMBL database and used to generate 157 variants of the 

drug Vandetanib by adding noise to its latent representation and reconstructing the resulting 

compounds using a decoder. Molecular docking and dynamics simulations were then 

performed to determine which of these analogues had a higher binding affinity than 

Vandetanib. At least two of the analogues had a higher binding affinity than the control 

compound. While this model has the potential to generate a wide range of molecules, it may 

have difficulty generating molecules with SMILES strings longer than 80 characters due to a 

lack of training data of SMILES string length above 80 characters. The synthesis and laboratory 

testing of the generated molecules to determine their potential as drugs also presents a 

challenge. However, this study has the potential to make significant contributions to the field 

of automatic drug analogue prediction and could be a valuable addition to the current scientific 

literature.  

The study presents several potential applications for its microRNA, protein disorder region 

finding, and drug analogue generation models. The microRNA prediction model could aid in 

the development of therapies for diseases by identifying microRNA sequences that regulate 

gene expression. The protein disorder prediction model could be used in drug design and 

protein engineering by identifying disordered regions in proteins that play a role in various 

protein functions. The drug analogue generation model has the potential to generate new drug 

analogues with desired properties and could be used in drug discovery and the optimization of 

existing drugs. Overall, this research has the potential to make significant contributions to 

biomedical research and could lead to the development of new therapies and drugs for diseases, 

as well as new bio-molecular language models for other tasks. 
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Chapter 1. Overview of the thesis 

 

i.   Rationale of the study 

A computer is a machine that follows a set of mathematical rules and can perform complex 

calculations quickly, but it lacks the ability to comprehend and interpret data in the same 

manner as humans. A concept must be able to be expressed mathematically for it to be usable. 

This limitation restricts the capacity of computers to comprehend and work with natural 

languages. The term "natural language processing" refers to the application of computational 

linguistics to problems in the real world involving multiple languages. This includes efforts to 

teach computers to understand languages and interpret them using algorithms. There are 

language advancement tools that use machine learning algorithms, such as Google's keyboard 

and Grammarly. Language modelling is also used by translation systems to support multiple 

languages. Utilizing natural language properties, computational linguistics aims to convert 

unstructured data into a form that computers can comprehend in response to the proliferation 

of text data. Without explicit programming, machine learning is the process of enabling 

computers to learn and adapt based on data. It has the potential to affect multiple aspects of our 

daily lives and is utilised in numerous fields, including biology and healthcare. Machine 

learning can be used to extract meaningful information from large data sets and the genetic 

sequences DNA and RNA contain symbols that convey meaning and are organised according 

to specific rules and structures. These sequences are essential to the development and function 

of living organisms and can evolve and adapt through mutation over time. Natural language 

processing (NLP) techniques can aid researchers in gaining a deeper comprehension of the 

functions and structures encoded in these sequences. NLP techniques, such as tokenization, 

part-of-speech tagging, and syntactic parsing, can be used to analyse the relationships between 

the tokens in a genetic sequence and their context. In addition, NLP can be used to analyse the 

words used to describe genetic sequences and the biological processes in which they are 
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involved, including the extraction of key terms and concepts from scientific papers and other 

data sources. Protein molecules, which are essential for the structure, function, and regulation 

of the tissues and organs of the body, can be viewed as a type of language, with amino acids 

serving as "letters" and proteins as "words." Using NLP techniques such as n-grams, 

researchers have examined the evolution of domain architectures in proteins and attempted to 

predict their structures and functions based on their semantics. However, there is still much 

about the semantics of proteins that is unknown. The majority of research has centered on the 

lexical, syntactic, and semantic aspects of biological sequences, but these sequences have their 

own unique linguistic properties that have not yet been thoroughly investigated. To improve 

the use of natural language processing (NLP) in the analysis of biological sequences, it may be 

necessary to develop biological language models that can automatically capture linguistic 

features using computational biology techniques. SMILES (Simplified Molecular-Input Line-

Entry System) is a language that uses symbols and characters to describe the structure of a 

chemical molecule. To represent atoms and bonds in a molecule, this language adheres to 

specific grammar rules and employs a specific vocabulary. SMILES is useful for storing, 

retrieving, and analysing chemical compounds and can be read and understood by both humans 

and computers. It has also led to the creation of numerous computational chemistry applications 

and tools. SMILES can be used to extract properties about chemical compounds using machine 

learning techniques. To handle biological and chemical sequences, various machine 

learning/deep learning frameworks influenced by natural language processing were developed 

in this study. 

 

ii. Aim and objectives 

1. Aim:  

Genomic Language Processing Using Machine Learning 
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2. Objectives 

a. Objective 1: Predicting microRNA sequence using CNN and LSTM stacked in 

Seq2Seq architecture. 

For predicting miRNA sequences from mRNA sequence CNN was used to extract sequence 

features from an input mRNA segment and supplied these features to a sequence-to-

sequence architecture-stacked LSTM system. Typically, this design comprises of two 

LSTMs, encoder and decoder. The retrieved features from CNN are sent one-by-one in 

time steps to the encoder LSTM to obtain a fixed-dimensional vector of internal states; 

these internal states are then used as initial states by the decoder LSTM to extract the output 

sequence based on its initial state vector(Figure 1.1). This LSTM is an RNN language 

model, but its training is dependent on the input sequence vector. The encoder processes 

the features from targeted mRNA sequences and provides its hidden internal states, which 

are then used by the decoder LSTM as a condition or context for miRNA sequence 

prediction. Here our model was able to predict on average 72% of microRNA from miRNA 

in each cases correctly. Here CNNs, LSTMs are used in seq2seq architecture which are 

often used in developing chatbots. It this way an attempt was made to bring the natural 

language processing models to process core language of nucleotide i.e. A, T, G, C. 

 

 

Figure 1.1:Architecture of the proposed model used for predicting miRNA from RNA sequence. 
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b. Objective 2: Protein disordered region prediction using natural language 

processing techniques. 

 

Intrinsically Disordered Regions (IDRs) are the regions in proteins that do not possess well 

organized two dimensional or three-dimensional structures under physiological conditions. 

These regions exist extravagantly in each domain and are concerned with numerous protein 

functions. Our proposed model consists of four interconnected layers: an embedding layer, a 

CNN layer, an LSTM layer, and a basic ANN with a softmax activation function (Figure 1.2). 

The embedding layer is used to extract characteristics of individual amino acids. The CNN 

layer then extracts local features from the output of the embedding layer using multiple filters. 

The bidirectional LSTM layer generates global features based on the single amino acid features 

and local features obtained previously. A set of three neurons is applied to each amino acid 

location to evaluate the likelihood that the amino acid at that location is ordered or disordered 

based on the local and global information gathered. This model has outperformed other state-

of-the-art techniques for predicting IDRs. To improve speed, depthwise separable 1D CNNs 

were used, which have fewer weights than vanilla 1D CNNs and can make predictions on a 

genomic scale more quickly. When processing 10000 random sequences from the ModiDB 

database on an Intel Xeon CPU W-2133, the model took 71 minutes without parallel 

processing. This approach suggests that amino acid sequences can be treated as letters in the 

language of the structural proteome and could have numerous applications in biomedical 

sciences. 

 

 

Figure 1.2: Architecture of the proposed model. An ensemble of Embedding, CNN and Bi-LSTM for 

extracting features.  
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c. Objective 3: Utilizing Deep Learning to Explore Chemical Space for Drug 

Analogues Generation 

The goal of medicinal chemistry is to improve on existing drug molecules or to create new 

ones for use in medicine. This is frequently accomplished through the use of Analogues design, 

which entails creating similar but slightly modified versions of existing molecules. Generative 

models that use various representations of molecules, such as SMILES codes and molecular 

graphs, have been developed to aid in the search for hits in the unexplored chemical space. An 

autoencoder, a deep learning architecture, was used in this objective to create new drug 

Analogues (Figure 1.3). This was accomplished by reconstructing chemical SMILES and 

varying batch sizes to control the distribution of the autoencoder's latent space. This 

architecture has a small number of parameters and has the potential to generate a wide variety 

of molecules. the autoencoder was used to generate 157 variants/Analogues of Vandetanib by 

adding noise to its bell-shaped latent representation and reconstructing the resulting 

compounds using the decoder. Molecular docking and dynamics simulations were performed 

to determine which of these analogues possessed a higher binding affinity than Vandetanib. At 

least two of the analogues had a higher binding affinity than the control compound, according 

to the results. 

 

Figure 1.3: Autoencoder architecture for predicting Analogs of molecules. 
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Chapter 2. Background 

 

 

i.  Learning languages  

“Learning another language is not only learning different words for the same things but 

learning another way to think about things.” words by well accomplished journalist Flora 

Lewis.  

 

Language plays a central role in human life, culture, and cognition. It is used for 

communication, forming and expressing ideas, and conveying emotion through subtle nuances. 

Since the time of Plato, philosophers have been interested in how language performs these 

functions[1]. Early analytic philosophers, such as Frege and Russell, made significant 

contributions to the systematic study of meaning through formal semantics[2]. Other 

philosophers, such as Austin, Searle, and Grice, also studied the relationship between meaning 

and use[3], [4]. Linguists, on the other hand, have focused on analyzing the various forms of 

human language in terms of sound structure, morphology, and syntax. The study of linguistic 

meaning truly flourished when these two fields of study converged, as a thorough 

understanding of language form, including pronunciation and intonation, is necessary for a 

complete understanding of linguistic meaning[5]. Therefore, the study of linguistic meaning is 

interdisciplinary in nature. 

Non-human creatures are capable of communication, but none have a communication system 

as complex as human language. Nonverbal methods of communication, such as facial 

expressions, vocalizations, and gestures, are common among non-human animals. 

Chimpanzees, gorillas, and orangutans can communicate through various facial expressions 

and vocalizations, while bees use specific movements to communicate about the location of 

food. Birds also use vocalizations, primarily for territorial purposes or to attract mates. 
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However, none of these forms of communication approach the complexity of human language. 

Language is a unique characteristic of humans, and syntax and double articulation are two key 

factors that distinguish linguistic from non-linguistic communication[6]. Each language 

consists of thousands of signs that combine form and meaning. In spoken languages, the form 

of a sign is a series of sounds, while in written languages it is a series of letters. Sign languages, 

used by deaf individuals, use specific combinations of hand and body movements as the form 

of a sign[7]. Double articulation refers to the fact that the forms of a language's thousands of 

signs are constructed from a small inventory of meaningless sounds, typically between 10 and 

100[8].  

English has approximately 50 sounds, approximately half of which are vowels and half of 

which are consonants[9]. This number may vary slightly depending on the dialect and method 

of phonological analysis. None of these sounds are related to the meanings of words. For 

example, the word "soot," pronounced /sUt/, is formed by replacing the letter "I" in the word 

"sit," pronounced /sIt/, with the letter "U." "Soot" is defined as "a black powdery form of carbon 

formed when coal, wood, or oil is burned, which rises to the surface in fine particles with the 

flames and smoke." The units /sIt/ and /sUt/ begin and end with the same sounds (/s/ and /t/), 

but the vowel in the middle is different. However, this difference in pronunciation does not 

affect the meaning of the word, which is unrelated to the meaning of "sit," or "to assume a 

position of rest supported by the buttocks." Similarly, changing the letter "t" in "sit" to the letter 

"k" produces the word "sick," pronounced /sIk/, which has a completely different meaning: 

"afflicted by an illness." This illustrates that the meanings of words in English are not directly 

related to their pronunciation. 

In a language without double articulation, each sign would have a unique form, and the number 

of distinct forms would be equal to the number of signs[10]. For example, a communication 

system in which each sign's form is a unique cry would have a large number of distinct forms, 
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as humans are able to distinguish hundreds of different screams. However, such a system would 

be impractical, as it would require a large number of distinct sounds and be sensitive to noise. 

It would also be inefficient, as it would require the production and recognition of a large 

number of distinct sounds. Double articulation, on the other hand, allows for a much more 

efficient and practical communication system, as it uses a small number of meaningless sounds 

to construct the forms of a large number of signs. 

Double articulation allows humans to create languages with a large number of signs, but the 

inventory of signs in a language is necessarily finite[11]. This is because the number of sounds 

in a language is usually limited to between 10 and 100, so it would be impractical to have 

hundreds of thousands of distinct signs unless they were very long. Additionally, the human 

memory has an upper limit on the number of signs that it can remember. For example, separate 

signs for "man killed lion" and "lion killed man" would not be practical in a language. The total 

number of isolated signs in a human language is typically limited to around 10,000-20,000, 

and with this number of signs, it is not possible to express an infinite number of meanings 

unless they are combined in various ways. 

Syntax is the mechanism that allows humans to communicate any and all ideas they can think 

of[12]. It is used to combine signs with relatively simple meanings to create sign combinations 

with more complex meanings. For instance, to express the meaning "man killed lion," we can 

combine the signs for "man," "kill," "past," and "lion." We can also use the same signs in a 

different order to express the meaning "lion killed man." In English, the sign sequences "man 

killed lion" and "lion killed man" are sentences, and a language has an infinite number of 

sentences. Any sentence in any language can be made longer by adding additional words and 

clauses, such as "the woman said that the man killed the lion," "the old woman said that the 

young man killed the lion," "the old woman said that the young man killed the lion, the girl 

believed that the old woman said that the young man killed the lion that ate the antelope," and 
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so on. Syntax allows for an almost limitless range of expression and complexity in language.  

Syntax is a system that allows humans to create an infinite number of sentences from a finite 

set of building blocks. Without syntax, we would only be able to express the meanings 

associated with individual signs, and the number of possible meanings would be limited to the 

number of signs in the language. 

To summarize, a language is a set of words used by a group of people to communicate their 

thoughts and ideas. Humans learn this vocabulary as part of their development and it remains 

relatively stable, with only a few new words added each year[13]. If a person encounters a new 

word, they can consult resources such as dictionaries to find out its definition. Once a person 

becomes familiar with a new term, it is added to their vocabulary and can be used in future 

conversations. Syntax allows for an almost limitless range of expression and complexity in 

language by enabling the creation of complex meanings from simple building blocks. 

 

ii. Natural Language Processing 

A computer is a machine that follows precise mathematical rules and is able to perform 

complex calculations quickly. However, it lacks the ability to interpret and understand concepts 

in the way that humans do. In order to work with a concept, a computer must be able to express 

it in the form of a mathematical model. This limitation restricts the range of natural language 

that a computer is able to work with. 

 "Natural language processing" refers to the application of computational linguistics in real-

world applications that deal with languages with various structural components[14]. An 

attempt to train the computer to comprehend languages can be made and then we can expect it 

to understand them using appropriate, effective algorithms. Google's keyboard, which provides 

auto-correct recommendations, word predictions (upcoming terms), and other features and 

Grammarly which is an excellent tool for professionals and content writers who want to ensure 

that their postings appear professional are well known example of NLP application. They 
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employ ML algorithms to recommend the optimal ratios of massive vocabulary, intonation, 

and other characteristics, guaranteeing that the written material is professional and thoroughly 

interests the reader[15]. Language modelling is a strategy used by translation systems to handle 

multiple languages successfully[16], [17]. Linguists are people who investigate linguistic 

patterns and linguistic characterization[18], [19]. The development of computational 

linguistics was spurred by the explosion of textual data[20]. Wikipedia is the best textual source 

accessible. The early interest in understanding data patterns, Parts-of-Speech (POS) labelling, 

and simplifying data processing for a variety of applications in the banking and financial 

industries[21], [22], educational institutions, and so on gave rise to the field of computational 

linguistics. NLP attempts to convert unstructured data into computer-readable language by 

replicating the properties of natural language[23]. Machines require complex algorithms to 

interpret any text content and extract relevant information from it. The obtained data is then 

used to teach machines more advanced logic based on natural language. Natural language 

processing uses syntactic and semantic analysis to instruct machines by uncovering and 

recognising data patterns[24]–[26]. The following are the steps involved:  

• Syntax: Natural language processing applies a range of algorithms to follow 

grammatical rules and extract meaning from any form of text material. 

• Lemmatization, morphological segmentation, word segmentation, part-of-speech 

tagging, parsing, sentence breaking, and stemming are common syntactic techniques. 

Through the immensely challenging process of semantics, machines seek to interpret 

the meaning of every component of any information, both individually and in context.  

• Despite the fact that semantic analysis has made significant progress since its initial 

binary orientation, there is still much room for advancement. NER, or Named Entity 

Recognition, is a key process in the operation that splits text material into specific 

groupings. 
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• The method's next stage, "word sense disambiguation," deals with context-based 

meaning. 

• The final step of the process, "natural language production," uses prior data to extract 

meaning and translate it into human languages.  

Every day, more data are generated, which needs analysis and recording. NLP allows 

computers to interpret this data and translate it into human-readable languages. Many of these 

data sets, such as government statistics and medical information, are unstructured. NLP helps 

computers appropriately arrange/structure them[27], [28]. Following that, computers deduce 

meaning by analysing texts and sounds. Not only is the method mechanised, but it is also 

consistently correct. NLP is a technique for improving computers' ability to understand human 

language. Databases provide highly structured information. The Internet, on the other hand, 

has no structure and is completely unstructured. The ultimate goal of NLP is to comprehend 

and model human language[29], [30]. Non-linear dialogues are being perfected by Google 

Duplex and Alibaba's voice assistant, for example[31], [32]. Non-linear conversations are 

similar to how individuals communicate in real life to some extent. For example if we discuss 

cats in the first phrase, then abruptly flip to Tom before returning to the main subject. The 

listener is aware of the leap that occurs. In computer science, this expertise is currently 

inadequate. Because unstructured data is developing so quickly, NLP specialists are in high 

demand right now. Underneath this unstructured data is a wealth of knowledge that can help 

businesses grow and succeed. Keeping a watch on Twitter trends, for example, may help us 

understand the difficulties that our communities confront as well as be useful in emergency 

situations[33]–[36].  

Text data is an unstructured data, the vocabulary of which is very large. Different words can 

have the same meaning, or even the same words can have different means, unlike programming 

languages such as python which are very well structured. As we will see in the next sections 
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that images have to be converted into arrays based on the pixel intensities, to be used in 

machine learning algorithms. In the same way, to input text data to a machine learning 

algorithm, the text also needs to be vectorized,. i.e, it needs to be converted into numeric 

representations with features before applying any machine learning algorithm.  

Broadly, there are three steps for any NPL task: 

1) Data aggregation, where we accumulate or compile text data, i.e articles, abstracts or 

gene or protein sequences etc, relevant to the objective of the task. 

2) Representing the text data in vector format. 

3) Use a machine-learning algorithm to analyze it.  

 

1. Text Preprocessing 

Text preprocessing is necessary for NLP because it helps to clean and prepare the text data for 

further analysis and processing. It is important to remove any noise or irrelevant information 

from the text, and to standardize the text data so that it can be easily and accurately processed 

by NLP algorithms [37], [38]. Text preprocessing can improve the accuracy and effectiveness 

of NLP algorithms by removing any irrelevant or noisy data that can interfere with the analysis. 

It can also improve the consistency and readability of the text data, making it easier for 

algorithms to process and understand[39], [40]. In addition, text preprocessing can help to 

reduce the complexity of the text data, making it easier to work with and process. This can 

improve the efficiency of NLP algorithms and reduce the computational resources required for 

text analysis[41], [42]. 

 

a. Noise Removal 

Noise removal is necessary for NLP because it helps to remove irrelevant or misleading 

information from the text data. This can improve the accuracy and effectiveness of NLP 
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algorithms by reducing the amount of noise and interference in the text data. Noise can be 

caused by a variety of factors, such as spelling mistakes, punctuation, numbers, special 

characters, or stop words. These elements can interfere with the analysis of the text data and 

affect the accuracy of NLP algorithms. By removing noise, NLP algorithms can focus on the 

relevant and important information in the text data, and process it more accurately and 

effectively. This can improve the overall performance and reliability of NLP algorithms, and 

enable them to produce more accurate and useful results[43]. 

Overall, noise removal is an essential step in the NLP process, as it helps to improve the 

accuracy and effectiveness of NLP algorithms by removing irrelevant or misleading 

information from the text data. 

There are several techniques to remove noise during text preprocessing in NLP[44], [45]: 

• Stop words removal: Stop words are common words in a language that do not add much 

value to the meaning of a sentence. Removing these words can reduce noise and 

improve the effectiveness of text processing. 

• Stemming and lemmatization: Stemming and lemmatization are techniques to reduce 

inflected words to their word stem, base or root form. This can reduce noise by reducing 

the number of variations of a word and improving the consistency of the text. 

• Regular expression: Regular expressions are a set of rules used to match patterns in 

text. They can be used to identify and remove unwanted characters or words, such as 

punctuation, numbers, or special characters. 

• Case normalization: Case normalization involves converting all words to the same case, 

such as lowercase or uppercase. This can improve the consistency and readability of 

the text, and reduce noise caused by different variations of the same word. 

• Spelling correction: Spelling correction involves identifying and correcting spelling 

mistakes in the text. This can reduce noise and improve the accuracy of text processing. 
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2. Text to Features (Feature Engineering on text data) 

3. Bag of words 

Suppose there are two sentences in a text corpus: 

1) ‘Metformin is used for treating diabetes.’ 

2) ‘Amlodipine is used for treating hypertension.’ 

 

Table 2.1: Vector representation of text. 

‘Metformin’ ‘Amlodipine’ ‘is’ ‘used’ ‘for’ ‘treating’ ‘diabetes’ ‘hypertension’ 

1 0 1 1 1 1 1 0 

0 1 1 1 1 1 0 1 

 

Table 2.1: Vector representation of text.  

 

In table 2.1, the columns represent the vocabulary of the corpus, and rows represent the 

sentences. The sentence will be encoded based on the presence or absence of words in the 

vocabulary. In Table 2.1, the first row is an encoded version of the first sentence. The values 

in the columns for ‘Amlodipine’ and ‘hypertension’ are ‘0’, as they don't occur in the first 

statement, and values in rest of the columns are ‘1’, which is their counts in the respective 

sentence. In the same way, the vectorized representation of second sentence is made. If in case 

a word repeats twice in the text, then its vector representation will be ‘2’. This type of 

representation of text is known as ‘one-hot-encoding’ or ‘Bag’ of words. These features 

generally have high dimensions as vocabulary size can reach more than thousands and 

maximally filled with zeros, called sparse matrices. Machine learning algorithms can be 

applied on them, since the text is converted into features. Simple mathematical operations like 

finding their distance in space using Euclidean distance etc can also be performed on text[46], 

[47].  
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While ‘Bag’ of words can convert the text into vectors, it generalizes all the words as same, 

i.e., it does not have any weightage for the word itself, based on, for example, the importance 

of the word in a sentence, uniqueness of a word in the corpus etc. 

4. TF-IDF 

One way to assign importance to words and their uniqueness is by calculating the term 

frequency-inverse document frequency (TF-IDF) of the words. The term frequency (TF) 

measures the importance of a word within a specific text instance, such as a sentence, 

paragraph, or article. It is calculated by counting the number of occurrences of the word in the 

text instance. The inverse document frequency (IDF) measures the importance of a word in the 

entire corpus, or collection of texts[48]. It is calculated by taking the inverse of the frequency 

of documents in which the word appears. By combining the TF and IDF, the overall importance 

and uniqueness of a word in the corpus can be determined. IDF is calculated as: 

IDF(word) = log(D/I(word)) 

where IDF(word) is the importance of a word in the document, D is the total number of instances 

in the corpus, and I(word) is the number of text instances of the particular word. 

Simply put, IDF is the inverse of the number of occurrences of a word in a corpus. The inverse 

document frequency (IDF) is calculated by taking the inverse of the frequency of documents 

in which a word appears in order to assign more importance to unique words. Common words 

such as auxiliary verbs and articles have a high frequency of occurrence but do not provide 

significant information, while rare words such as the names of drugs, proteins, or diseases have 

a lower frequency but can be highly informative. The value of a word in a text instance is 

obtained by multiplying its term frequency (TF) and its IDF, thereby preserving both the 

importance and uniqueness of the word[49], [50].  

 

5. Word Embeddings 

In natural language processing (NLP), word embeddings are a type of representation that is 



Page | 18  

 

used to represent words and phrases in a way that captures the semantic and syntactic meaning 

of those words and phrases. Word embeddings, in contrast to more conventional methods of 

representing words as separate units, such as one-hot encodings, are able to take into account 

the relationships that exist between words as well as the context in which they are employed. 

Word embeddings are typically developed by teaching a neural network to process a large 

amount of textual data from a corpus. The network acquires the ability to map each word to a 

continuous, high-dimensional vector that represents both the meaning of the word and its 

connection to the other words contained in the corpus. After that, the vectors that were 

produced can be used as input for other natural language processing activities, such as language 

modelling, text classification, and machine translation[51], [52]. 

One of the primary benefits of word embeddings is that they can capture complex relationships 

between words, which are difficult to represent using other methods. This is one of the most 

significant advantages of word embeddings. For instance, the same meaning can be conveyed 

by two words, but each may have a distinct connotation depending on the context in which it 

is used. Word embeddings can provide a representation of the words that is richer in nuance 

and can take into account these differences[53]. 

Word embeddings are not only very effective, but they are also very efficient since they can be 

used to represent a large number of words while utilising a relatively small number of 

dimensions. Because of this, they are ideally suited for use in natural language processing 

activities, such as language translation and sentiment analysis, that require the processing of 

large amounts of text data[54], [55]. 

Word embeddings are a useful tool for representing words and phrases in NLP tasks, and they 

are used in a wide variety of natural language processing applications. In general, they are a 

powerful tool. 

iii. Important tasks of NLP 

1. Text Classification 
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Text classification is a common task in natural language processing (NLP), where the goal is 

to automatically assign a piece of text to one or more pre-defined categories based on its 

content. For example, a text classification system might be trained to assign a movie review as 

positive or negative, or to classify a news article by its topic (e.g., sports, politics, technology). 

There are many different approaches to text classification, but most commonly, NLP 

techniques are used to extract features from the text data, such as the words used, the length of 

the text, or the presence of certain phrases or words. These features are then used as input to a 

machine learning model, which is trained to predict the correct category for a given piece of 

text. The most common machine learning algorithms used for text classification are support 

vector machines (SVMs) and naive Bayes classifiers. SVMs are a type of linear classifier that 

finds the hyperplane in the feature space that maximally separates the different classes. Naive 

Bayes classifiers, on the other hand, are based on the principle of maximum likelihood, and 

make predictions by computing the probability that a given piece of text belongs to each 

possible class. One of the key challenges in text classification is the large amount of data that 

is typically required to train a high-performing model. This can make it difficult to apply text 

classification to tasks with a small amount of data, or to tasks where the categories are not well-

defined or highly imbalanced[56], [57]. 

 

Overall, text classification is a useful and widely used technique in NLP and has many 

applications in areas such as sentiment analysis, spam detection, and topic modeling. Some 

examples of text classification using natural language processing (NLP) include: 

 

Sentiment analysis: This is a common application of text classification, where the goal is to 

automatically determine the sentiment of a piece of text, such as a movie review or customer 

feedback. The text is classified as positive, negative, or neutral based on the words and phrases 
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used. 

Spam detection: Text classification can be used to automatically identify spam messages in 

email or social media. The system is trained on a dataset of known spam and non-spam 

messages and uses features such as the presence of certain words or phrases to make 

predictions[58]. 

Topic modeling: Text classification can be used to automatically assign a piece of text to one 

or more pre-defined topics, such as sports, politics, or technology. The system is trained on a 

dataset of texts labeled with their corresponding topics and uses features such as the words 

used and the length of the text to make predictions[59]. 

Language detection: Text classification can be used to automatically identify the language of 

a piece of text. The system is trained on a dataset of texts labeled with their corresponding 

languages and uses features such as the words used and the character n-grams to make 

predictions[60]. 

Some of the main advantages of text classification using natural language processing (NLP) 

are[61], [62]: 

• Automation: Text classification allows for the automatic assignment of text to pre-

defined categories, which can save time and resources compared to manual 

classification. 

• Improved accuracy: Text classification can help to improve the accuracy of 

predictions compared to manual classification, as the system is trained on a large 

amount of data and can learn complex patterns and relationships in the text. 

• Efficiency: Text classification can process large amounts of text data quickly and 

efficiently, making it well-suited to tasks that require processing large amounts of data. 

• Scalability: Text classification systems can be easily scaled up to handle larger datasets 

or more categories, making them well-suited to tasks that may evolve over time. 
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• Versatility: Text classification can be applied to a wide range of tasks and domains, 

making it a versatile and widely-used technique in natural language processing. 

 

Overall, text classification using NLP offers many advantages compared to manual 

classification and is a valuable tool for many applications in natural language processing. 

 

iv. NLP and Machine learning  

The art of enabling machines to form rules and find trends from data without explicitly 

programming them is known as machine learning. In machine learning, computers gather 

intelligence from the data and adapt to their situations based on their experience. The 

applications of machine learning are tremendous because machine learning has the potential to 

affect every domain of our daily lives[63].  

 

Throughout history, humans have utilized machines to reduce the effort required and increase 

efficiency in completing tasks. Machine learning is a continuation of this trend, with ongoing 

research being conducted globally to prepare for future challenges. Companies have begun 

utilizing bots and web crawlers, developing systems with the capability to learn independently. 

The potential applications of machine learning are vast and have the potential to significantly 

alter the world as we know it[64]. 

 

Machine learning is required to extract meaningful information from big data sets. It can also 

be used to alleviate the burden of solving many biological problems. Today we have numerous 

examples of applied machine learning, from protein structure prediction, image recognition, 

drug molecule development, drug repurposing, protein-protein interaction, finding SNPs in 

genomic sequences, cancer detection, solving problems in system biology, biological text 

mining and many more. Protein structure prediction algorithms before machine learning had 
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an accuracy of around 70%. But machine learning has pushed the boundaries in this field as 

well, increasing the accuracy to a much better figure of 85%[65]. With the advancement in 

high throughput technologies in biology and increasing number of publications, the data is 

growing in size more rapidly than it ever has. Machine learning systems can use this data to 

perform text-mining for research purposes. These systems work just like the human brain does 

but have the computational power that far surpasses our capabilities. Outputs from such a 

system can also be used for identifying microscopic cellular images and performing various 

medical studies[62], [66]. 

1. Types Of Machine Learning Systems 

There are two main types of machine learning methods: Supervised and Unsupervised[67]. 

2. Supervised Learning 

Supervised learning is when our model gets trained on a pre-labeled dataset, and develop 

systems to predict outcomes for unforeseen data. The data used to train the system in supervised 

learning contains both input and output values. 

This type of machine learning is then further classified into classification and regression. In 

classification, output has discrete values. Our system will have to classify these values into 

their respective groups correctly. For example, classifying SNPs into functional or benign 

class; or predicting the day to be hot or cold. In regression, output has continuous values, so 

the system has to predict an output value close to the actual value. For example, prediction of 

temperature, stock prices, etc[68].  

 

3. Unsupervised Learning 

Unsupervised learning differs from supervised learning in that it is used for clustering or 

inferring patterns, trends, or relationships within a dataset without any prior reference or 

knowledge of the labeled data. Unsupervised learning can be further divided into clustering 

and anomaly detection. Clustering is the most common technique in unsupervised machine 
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learning, involving the grouping of data into clusters with similar characteristics. Anomaly 

detection, on the other hand, involves the identification of deviations from a general trend. For 

example, if a system is trained to recognize white cars on the road, the detection of a red car 

would be considered an anomaly. This method is useful for detecting bank frauds, human errors 

in data entry, and many other applications[69]. 

 

Figure 2.1and Figure 2.2 pictorially depict the differences between the supervised and 

unsupervised learning algorithms. 

 

Figure 2.1: Supervised vs. unsupervised learning. During training, supervised models know the labels, while 

unsupervised learning doesn't have data labels. 
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Figure 2.2: Training of supervised models required an instructor, whereas unsupervised models learn on their 

own. 

 

4. Other Types of machine learning 

Semi-supervised Learning: Semi-supervised[70] learning is a machine learning approach that 

involves the use of both labeled and unlabeled data to train a model. It is typically used when 

there is a small amount of labeled data available, but a large amount of unlabeled data is 

present. In semi-supervised learning, the model is first trained on the labeled data, using this 

data to learn patterns and trends. The model can then be applied to the unlabeled data, using 

the knowledge gained from the labeled data to identify additional patterns and trends within 

the unlabeled data. Semi-supervised learning can be useful when it is not practical or possible 

to label a large amount of data, but there is still a need to use this data to train a model. It can 

also be used to improve the performance of a model when only a small amount of labeled data 

is available. 

 

Reinforcement learning: Reinforcement learning[71] is a type of machine learning that 

involves training an agent to make a series of decisions in an environment in order to maximize 
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a reward. It is often used to solve problems in which an agent must learn to interact with its 

environment in order to achieve a specific goal. In reinforcement learning, the agent receives 

feedback in the form of rewards or punishments based on its actions. The agent's goal is to 

learn the sequence of actions that will maximize the cumulative reward over time. This is 

typically achieved through trial and error, as the agent explores different actions and receives 

feedback on their outcomes. Reinforcement learning has been applied to a wide range of 

problems, including control systems, games, and natural language processing. It is particularly 

useful for situations in which it is difficult or impossible to specify a set of rules or a fixed 

decision-making process for the agent to follow. 

 

5. Evaluation of models 

Evaluating the performance of a machine learning model is crucial in order to ensure that it is 

operating accurately and effectively. One method of evaluating model performance is through 

the use of a train-test split, where the complete dataset is divided into two parts: a training set 

and a test set[72]. The training set, typically comprising 80% of the data, is used to train the 

model, while the test set, comprising the remaining 20%, is used to evaluate the model's 

performance. It is important that the model is not exposed to the test data during training in 

order to accurately assess its general performance. The efficiency of the model can be 

determined by comparing the predicted values with the actual values using a confusion matrix. 

This allows us to determine the accuracy of the model and make any necessary adjustments. 

To check the accuracy of the model, the predicted values are compared  with actual values in 

a confusion matrix (Figure 2.3). 
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Figure 2.3: Confusion matrix 

 

The values of a confusion matrix can be used to calculate various mathematical measures for 

evaluating the performance of a machine learning model, such as accuracy, precision, and 

recall. These measures provide insight into the effectiveness of the model and can be used to 

identify areas for improvement[73], [74]. 

 

Accuracy 

Accuracy is the rate of correct prediction for a model i.e. the number of values correctly 

predicted divided by the total number of instances in the test set.  

Accuracy = {TP+TN}/{TP+FP+TN+FN} 

Precision 

Precision is the ratio of true positives and the total number of instances predicted positive by 

the model.  

P = TP/{TP+FP} 

Recall 

Recall is the true positive rate, also called the sensitivity of a model.  i.e., the number of true 

positives divided by the total number of positive instances in the test dataset. 

R = TP/{TP+FN} 
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F1 score 

Precision and recall are always mentioned together like precision at a recall level, or measured 

in a single mathematical value called F1 score. It is the harmonic mean of precision and recall. 

F1 Score = 2 * ((Precision * Recall)/(Precision + Recall)) 

Receiver Operating Characteristics (ROC) Curve  

Receiver Operating Characteristics (ROC) Curve is another method for the evaluation of the 

classifiers[75]. It is a plot between true positive rate (TPR), or Sensitivity and False positive 

rate (FPR) or Specificity) 

 

Figure 2.4: ROC curve, the curve is the change of true positive rate with false-positive rate. The more the area 

under the curve, the more is the accuracy of the model. 

 

Evaluation metrics for regression models are fairly complex. Regression deals with a 

continuous dataset, which means advanced metrics are required for their assessment. Common 

metrics for regression model evaluation are variance, mean squared error and the R squared 

coefficient. 

Matthews Correlation Coefficient (MCC) 

The Matthews Correlation Coefficient is a measure used to evaluate the performance of 

classification models, particularly in cases where the classes are imbalanced. It takes into 
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account true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) 

to provide an overall assessment of the model's performance. 

The MCC is calculated using the following formula: 

MCC = (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)) 

The MCC ranges between -1 and 1, where a value of 1 represents a perfect classifier, 0 

represents a random classifier, and -1 represents a completely inverse classifier. A higher MCC 

indicates better performance, while a lower MCC indicates poorer performance. 

The MCC is commonly used in machine learning tasks, such as binary classification problems, 

to evaluate the effectiveness of the model in predicting both positive and negative samples, 

especially when the data is imbalanced and the classes have different sizes. 

 

6. Cross-Validation 

In machine learning, it is common practice to divide a dataset into a training set and a test set 

in order to evaluate the performance of a model. However, this approach has the potential 

limitation of sacrificing a significant portion of the data for evaluation, which may result in the 

model not being properly trained to handle real-world challenges[76]. Additionally, this issue 

can be exacerbated when working with a small dataset, as valuable information may be lost 

during the split. To address these issues, a technique called cross-validation can be used (Figure 

2.5). This involves dividing the dataset into multiple subsets and training and evaluating the 

model using various combinations of these subsets. Common methods of cross-validation 
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include K-fold validation and Leave One Out Cross Validation (LOOCV)[77]. 

 

Figure 2.5: Various arrangements for training, validating, and testing of models. 

 

 

7. Optimization of models 

Optimizing machine learning models is an essential step in improving their accuracy. As these 

models are trained on complex datasets, they often have a range of hyperparameters that can 

be adjusted in order to improve their performance. Finding the right combination of model and 

parameter values is crucial in fine-tuning a machine learning model. This process typically 

involves iteratively training and evaluating the model using different combinations of 

parameters. By continuously testing and improving the model, it is possible to optimize its 

performance to the greatest extent possible[78]. 

 

Grid Search 

 

Grid searching is a method of scanning the space of all hyperparameter combinations for a 

model to find the best combination of hyperparameters[79]. Depending on the type of model 

utilized, certain hyperparameters are necessary. Grid searching can be applied on any machine 
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learning model to calculate the best hyperparameters to use for that system. It is significant to 

note that grid searching is computationally intensive and may take a long time to run on your 

model. It iterates through every hyperparameter combination possible and stores a model for 

each combination. 

 

Randomized Search 

 

James Bergstra and Yoshua Bengio (2012)[80] proposed the idea of random searching of 

hyperparameters in a system. This type of search is completely different from the grid 

approach. Instead of sweeping through every possible combination in hyperparameter space, a 

randomized search only picks a few sample points from the distribution and performs the 

calculations on those points.  

 

Ensemble Methods 

 

It is a combination of procedures in which various models are used together to form a much-

improved version. This allows us to have better results as compared to individual models. The 

two most widely used ensemble methods are averaging and voting. They are not complex and 

can easily be implemented to increase the accuracy of the system[81]. 

Averaging is performed while dealing with continuous data ranges, whereas voting is 

performed when with a discrete classification of data. Initially, a number of different models 

are trained by different subsets of training data. Then their results are combined. Therefore, 

instead of creating only one system and assuming it to be the most accurate, ensemble methods 

take several systems into account and average them to produce one final product. 

 

8. Challenges in Machine Learning Projects 

Machine learning gives us the ability to make more informed, data-driven decisions that are 
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faster than conventional approaches. However, as with any other method, machine learning 

process presents its own set of challenges[82].  

 

Challenges with data 

 

Inadequate training data  

 

Having sufficient data for training your system is extremely crucial for success in your machine 

learning project. Many of the machine learning systems fail miserably due to the lack of data. 

Not having sufficient data means that the system is unable to understand the trends properly 

and this compromises the efficiency of that system greatly. This is the reason data collection 

has become an integral part of the machine learning process. The amount of data needed 

depends both on the complexity of a problem and the algorithm selected[83].  

 

Non-representative Training Data 

 

For a machine learning model to be effective at generalizing to new data, it is essential that the 

training data be an accurate representation of the population under consideration. When 

sampling from the population to create a training dataset, it is important to ensure that the 

sample is large enough to accurately depict the complete picture of the dataset and that the 

sampling method is not flawed, as this can result in non-representative data known as sampling 

bias[84]. It is important to note that balancing the trade-off between bias and variance is key 

to achieving an effective model. While reducing sampling bias can increase variance, and 

reducing variance can increase bias, finding the right balance between the two is necessary for 

the model to be able to effectively generalize to new data. 

 

Quality of Data 
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Poor data quality is a huge challenge in machine learning systems. These systems require high-

quality data to avoid a situation in which they can fail both in the training and testing phases. 

Machine learning is a data-intensive technique. That is why the quality of the data used in any 

machine learning system has a huge effect on its development[85]. Because of this, small errors 

in the training data can lead to large scale errors in the system’s output. Increasingly complex 

problems require not just massive amounts of data, but the data needs to be diverse, 

comprehensive as well as of good quality.  

 

Inappropriate Features 

 

The features that are used in the training of a machine learning system have a significant impact 

on its efficiency and performance. It is essential to carefully select the features to be included 

in the model, as the use of irrelevant or redundant features can diminish the effectiveness of 

the system and increase the cost of training[86]. Feature selection should be a fundamental part 

of the design process for any machine learning project, particularly when working with a large 

number of features. It is not necessary to utilize every available feature in the development of 

the algorithm. Instead, it is important to select only those features that are relevant and 

independent in order to assist the algorithm in its learning process. In some cases, reducing the 

dimensionality of the feature space through techniques such as principal component analysis 

(PCA) can improve model performance by minimizing noise. Additionally, various 

methodologies and techniques can be employed to select a subset of the feature space, as the 

inclusion of too many features can introduce additional noise and hinder the performance of 

the model. Thus far, we have examined the challenges and limitations of machine learning due 

to the lack of useful data. However, with the advances in machine learning, data has become a 

more valuable resource. In the next section, we will discuss the limitations of models due to 
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hyperparameters. 

 

Overfitting and Underfitting the Training Data 

 

Overfitting refers to a system that models the training data too well. This happens when a model 

learns unnecessary details and noise in the training data. This impacts the performance of 

system on test data negatively[87].  Underfitting occurs when a system is not able to capture 

relationships between features and output variables precisely. This disturbs the ability of the 

algorithm to decipher the underlying trend of the data. Underfitting is a strong indicator of the 

algorithm not being suitable for the dataset in consideration. Underfitting is common in cases 

where there is limited data available for training the system. Fewer data points result in a non-

accurate training of the model which then fails to perform efficiently on the test dataset. 

Increasing the amount of data could be one way to ensure that the algorithm has enough 

information through which it can detect the general trends and patterns.  

 

9. Artificial Neural Networks 

Artificial neural networks (ANNs), also known as neural nets, are a widely used type of 

supervised machine learning algorithm that was developed to simulate the neural networks or 

neurons found in the human brain[88]. They are used for statistical analysis and modeling of 

collected data and are often used as an alternative to traditional nonlinear regression analysis 

models. ANNs are particularly useful for solving problems that can be expressed in terms of 

prediction or classification. ANNs are made up of interconnected processing nodes, called 

artificial neurons, which are organized into layers. The input layer receives input data, which 

is then processed by the hidden layers using weights and biases. The output of the hidden layers 

is then passed through the output layer to produce the final prediction or classification. ANNs 

are able to learn and adapt based on the data they are trained on, allowing them to perform 
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tasks such as image and speech recognition, natural language processing, and decision making. 

With over six decades of research, ANNs have a wide range of applications in diverse fields 

including speech and image recognition and classification, text recognition, medical diagnosis, 

and fraud detection. They are able to handle large and complex datasets and are well-suited for 

tasks that require the ability to learn and adapt to new data. However, they can also be more 

computationally intensive than some other machine learning algorithms and may require more 

time and resources to train and deploy. 

 

Figure 2.6: Simple architecture of artificial neural networks. 

 

Figure 2.6 illustrates the general architecture of neural networks. It consists of three distinct 

layers: input layer, hidden layer and output layer. The foremost layer is the input layer that 

houses the input features, or input neurons. The middle layer is the hidden layer, the term 

‘hidden’ implying the processes of mathematical computation that doesn’t seem to be visible 

to everyone, and sometimes also termed as the black box. Diverse networks are characterized 

by numbers of hidden layers based on application. The ANN consisting of more than one 

hidden layer is called deep neural network. The last layer is the output layer, which contains 

the output of the network.  

 



Page | 35  

 

10. Working principle of neural networks 

 

 

Figure 2.7: Forward propagation, calculating the output. 

 

In artificial neural networks, neurons are the basic processing units that are used to model the 

behavior of neurons in the human brain. Each neuron primarily consists of several inputs, 

features, weights, a bias, and an activation function[89]. The inputs to a neuron are the values 

that are fed into the neuron, which can be either the raw input data or the output of another 

neuron. The features are the characteristics or attributes of the input data that are relevant to 

the task being performed. The weights of a neuron define the importance or influence of each 

feature on the output of the neuron. Just like in a linear regression model, the weights are 

adjusted during training to improve the accuracy of the network's predictions. The bias of a 

neuron is a constant value that is added to the weighted sum of the inputs and features. It allows 

the neuron to shift the output of the activation function, allowing the network to model more 

complex patterns in the data. The activation function of a neuron is a mathematical function 

that takes in the weighted sum of the inputs and features, as well as the bias, and produces an 

output. The activation function is used to introduce nonlinearity into the network, allowing it 

to model more complex relationships in the data. In artificial neural networks, the weighted 
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sum of the inputs and features for a neuron, as well as the bias, is often represented by the 

following equation: 

 

Z = W1X1 + W2X2 + b 

 

where ' W1' and ' W2' are the weights for the features ' X1' and ' X2', respectively, and 'b' is the 

bias. The bias is a small random number that is added to the weighted sum to ensure that 'Z' 

does not become zero for any values of ' W1', ' W2', and ' X1', ' X2'[90]. The bias allows the 

neuron to shift the output of the activation function, allowing the network to model more 

complex patterns in the data. (Figure 2.7). 

Activation functions 

 

The activation function in an artificial neural network determines whether a given neuron 

should be "activated" based on the weighted sum 'Z'. The activation function is a mathematical 

function that takes in the value of 'Z' and produces an output. The output of the activation 

function determines whether the neuron will be activated or not. 

A simple activation function is the step function, which is defined as follows: 

 

f(z) = 1 if z > 0 

f(z) = 0 if z <= 0 

This function gives an output of either 0 or 1, depending on whether the value of 'Z' is positive 

or negative. The step function is called a threshold function because it activates the neuron only 

if the value of 'Z' is above a certain threshold[91]. There are many other types of activation 

functions that can pass a range of values based on 'Z' to the next layer, rather than just 0 or 1. 

Some common activation functions include the sigmoid function, the tanh function, and the 

ReLU function. These activation functions introduce nonlinearity into the network, allowing it 
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to model more complex relationships in the data[92]. 

 

Figure 2.8: Activation functions. 

  

Figure 2.8 shows three activation functions: 

1.  ‘Sigmoid’ function return a value between ‘0’ and ‘1’ for any value of ‘Z’. The 

sigmoid function is generally used in the output layer of a deep neural network.  

2. The ‘Tanh’ function will give output ranging from ‘-1’  to ‘1’, when ‘Z’ is passed 

through it. 

3. The ‘ReLU’ function, also known as the rectified linear unit, is the most commonly 

used activation function. It gives ‘0’ for negative values of ‘Z’ and will return the 1 if 

it’s a positive value.  

 

Steps of forward propagation. 

 

In an artificial neural network, the main objective is to calculate appropriate weights for the 

input features in order to produce an accurate output. The steps for calculating the output based 

on the input features are as follows: 

1. Input features are assigned weights. 

2. The weighted sum of all input features, along with the bias, is calculated (i.e., 'Z'). 

3. The value of 'Z' is passed through the activation function, which produces the output of 

the neuron. 
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After the output is calculated, it is compared with the original values, and an error or loss is 

calculated. This loss is then used to update the weights in order to minimize the error. This 

process is repeated iteratively until the loss is minimized. The process of minimizing the error 

is called gradient descent. In summary, the main objective of neural networks is to calculate 

appropriate weights for the input features in order to produce an accurate output. This is 

achieved through the process of gradient descent, which involves calculating the loss, 

comparing it to the original values, and updating the weights iteratively in order to minimize 

the error. 

 

 

Gradient Descent 

 

The gradient descent algorithm is a method for updating the weights in an artificial neural 

network in order to minimize the loss. When an output is calculated through the forward 

propagation method, and the actual value is known, the error can be calculated using a loss 

function. Mean squared error, which is the sum of all the squared errors, is a common type of 

loss function. For a single output value, the loss can be calculated as follows: 

 

Loss = 1/2 * (y - ŷ)^2 

 

Where 'y' is the actual value and 'ŷ' is the value calculated through the forward propagation 

method. If the output is calculated using the forward propagation method for 'n' number of 

times with different random weights, and the error is minimized, a plot of the loss versus the 

weight will be obtained, as shown in Figure 2.9. The weight for which the error is minimum 

can then be selected. These steps are feasible when there are a small number of features, 

weights, and neurons. However, with a large number of features, weights, and neurons, finding 
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the optimal combination of weights using this method can take an indefinite amount of time. 

 

The gradient descent algorithm was developed as an alternative method for minimizing the 

loss. It involves updating the weights in a way that reduces the loss with each iteration. By 

updating the weights using the gradient descent algorithm, we can find the optimal combination 

of weights that minimizes the loss in a relatively efficient manner. As a result, the model 

obtained will have a minimum error, making it more accurate. 

 

Figure 2.9: Gradient descent 

. 

The gradient descent algorithm is a method for minimizing the loss in an artificial neural 

network by updating the weights with each iteration[93]. The basic idea behind the gradient 

descent algorithm is that differentiating a function providesthe slope of the function, or 

gradient. The analogy of being at the top of a hill and walking downhill while blindfolded can 

be used to understand this concept. In this scenario, it is possible to determine the direction of 

the minimum error by differentiating the loss function with respect to the weights and 

backpropagating this information to update the weights. The amount by which the weights are 

updated is determined by the derivative of the loss function, or the gradient, as well as the 
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learning rate (𝛼). 

 

Figure 2.10: Formula of updating weight. 

  

The user defines the learning rate, and it is the length of the step the algorithm takes to 

reach the minimum loss value. If the step is too long then it might miss the minimum 

value, if the step it too short, it will take more time to reach the bottom. There are many 

variants of gradient descent algorithm, like RMSprop, Adam etc, they are called optimizers as 

they optimize the weights and hence the predictions. 

Backpropagation 

 

 

Figure 2.11: Forward and backward propagation for neural networks. 

 

It is stated that the output of the activation 'A' is a function of 'Z', and 'Z' is a function of the 

weight 'W' and the bias 'b', which is determined through the process of forward propagation. In 

order to calculate the derivative of the loss with respect to the weight, partial derivatives of 
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each function are utilized. Specifically, the derivative of the loss function with respect to the 

activation function is calculated first. This value is then used to find the derivative of the 

activation function with respect to 'Z', and finally, the derivative of 'Z' with respect to 'W' is 

determined. The process of propagating the loss backward in order to update the weights is 

referred to as backpropagation. In a deep neural network, the steps of forward propagation and 

backpropagation are repeated iteratively in order to update each weight. This can become 

complex, particularly when the number of layers is more than one, as the derivative chain 

becomes longer (as depicted in Figure 2.11: Forward and backward propagation for neural 

networks.). However, the fundamental principle behind the process remains unchanged. 

Having lots of weights and activation functions provides neural networks the ability to handle 

linear as well as nonlinear datasets. These features of neural networks also make them 

susceptible to overfitting the training data. So, they require lots of parameter tuning to obtain 

the optimal results[94]. 

 

Implementing neural networks using Tensorflow 

 

Training an artificial neural network can involve a significant amount of complex mathematical 

functions and processes. However, Python packages such as TensorFlow, PyTorch, and 

Theano make the implementation of these algorithms much simpler and more streamlined. 

These packages provide a range of tools and resources that allow users to easily build and train 

neural networks for various tasks[95]. 

TensorFlow is a particularly popular deep learning library that was developed by Google and 

is open source. It is commonly used for implementing neural networks in Python. TensorFlow 

has two main versions: the normal TensorFlow package, which uses a central processing unit 

(CPU) for calculations, and a version that utilizes a graphics processing unit (GPU) for faster 

processing. The GPU version of TensorFlow is often preferred for training neural networks, as 
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it can significantly speed up calculations due to the large number of simultaneous computations 

required for this task. The GPU version shifts these calculations to the graphics card, allowing 

for faster processing and more efficient training. 

 

11. Convolutional Neural Network 

 

When it comes to processing images, computers typically represent them as a collection of 

pixel intensities arranged in a specific order. To humans, these pixel intensities correspond to 

various colors that make up the image. In some cases, an image may be divided into smaller 

parts or pieces, similar to how a puzzle is divided into individual pieces. In these instances, the 

individual pieces may not contain enough information on their own to fully understand the 

content of the image. This is similar to how simple neural networks may approach image 

processing. Rather than analyzing the full image at once, they may break it down into smaller 

parts and attempt to piece them together to understand the overall content. However, more 

advanced neural networks are able to analyze images as a whole and extract meaningful 

features and patterns from them. 

 

Figure 2.12: Image data with various prospectives. 
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To train an artificial neural network on image data, it is necessary to extract the individual 

pixels from the image and feed them to the neural network as features. While individual pixels 

may contain some information about the image, it is often more effective to analyze the image 

as a whole rather than considering each pixel in isolation (Figure 2.12). This is where 

convolutional neural networks (CNNs) come in[96]. CNNs are a type of deep learning model 

that are specifically designed to handle image or spatial data. They are able to learn local spatial 

features and patterns within an image, allowing them to better understand the overall content 

of the image. CNNs use small windows or filters to analyze images, dividing them into smaller 

parts and using multiple filters to learn different local features such as edges and textures. By 

combining these basic features, CNNs are able to create higher-order features such as eyes, 

hands, and other objects. This makes CNNs particularly effective at image classification tasks, 

as they are able to extract meaningful features from the image and use them to accurately 

classify the content. In contrast, traditional artificial neural networks (ANNs) are not able to 
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learn these local features and may struggle to accurately classify images. 

 

Figure 2.13: Feature extraction using CNNs. 

 

In a convolutional neural network (CNN), filters are matrices of numbers that can be trained 

or updated in order to detect relevant features from the image data. These filters are used to 

extract predictive features from the image and are optimized through the use of the 

backpropagation method with each iteration. Convolution is a mathematical function that 

operates on two objects and results in the transformation of one object based on the other 

(Figure 2.13). This process, also known as feature mapping, helps the CNN to learn important 

features from the image data[97]. 

 

In addition to convolution layers, CNNs may also include other types of layers such as pooling 

and flattening layers. Pooling involves sliding a window over the pixels of an image and 

merging local features into a single feature. There are several types of pooling, including max 

pooling, which selects the maximum intensity pixel over other pixels within the window, and 

average pooling, which returns the average of all the pixels within the window. Pooling is 
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primarily used to reduce the size of the data and retain important information while discarding 

insignificant details. 

 

Figure 2.14: Architecture of a CNN bases neural system. 

 

In order to use artificial neural networks for the classification of images, the local features 

extracted from the images using convolutional neural networks (CNNs) and the pooling 

operation need to be transformed into a form that can be processed by the ANNs[98]. This is 

done by flattening the 2D features into a 1D representation using the flattened layer. The 

flattened features are then connected to the ANNs, which use them to perform the desired 

classification. A basic architecture of a CNN based on ANNs is shown in Figure 2.14 . This 

architecture includes the convolutional layers, which use filters to extract local features from 

the images, the pooling layers, which combine local features into a single feature, and the 

flattened layer, which converts the 2D features into a 1D representation that can be processed 

by the ANNs. The combination of CNNs and ANNs in this way allows for effective 

classification of image data using deep learning techniques.  

 

12. Recurrent Neural Network 

Recurrent neural networks (RNNs) are a type of artificial neural network that are particularly 

well-suited for processing sequential data such as natural language, time series data, and audio. 

RNNs are designed to remember previous input by using feedback connections, which allow 
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the network to incorporate information from the past into its current state[99], [100]. The 

working principle of RNNs is based on the idea of hidden states, which are intermediate 

representations of the input data. These hidden states are updated at each time step using the 

current input and the previous hidden state. The hidden state can be thought of as a memory of 

the network, storing information about the input it has seen so far. To understand how RNNs 

work, let's consider a simple example of predicting the next word in a sentence. Suppose we 

have a sentence "The cat sat on the". Given the input "The cat sat on", we want to predict the 

next word "the". To do this, we can use an RNN with a single hidden state. At each time step, 

the RNN takes in a single word as input and updates its hidden state using this input and the 

previous hidden state. The hidden state is then passed through an output layer to produce a 

prediction for the next word. The prediction is then compared to the actual next word and an 

error is calculated. This error is then used to update the weights of the network using a 

technique called backpropagation through time (BPTT)[101]. 

 

One of the key benefits of RNNs is their ability to process input of variable length. In our 

example, we could have used a different number of words as input and the RNN would still be 

able to make a prediction. This is because the hidden state is updated at each time step, allowing 

the network to incorporate information from previous time steps into its prediction. Another 

advantage of RNNs is their ability to handle long-term dependencies. Suppose we want to 

predict the next word in the sentence "The cat sat on the mat". In this case, we need to remember 

that "the" is an article and not the noun we are trying to predict. Without an RNN, it would be 

difficult to capture this long-term dependency between the first and last occurrences of "the". 

However, with an RNN, the hidden state can store this information and use it to make a more 

accurate prediction. Despite their many strengths, RNNs do have some limitations. One of the 

main challenges is the vanishing gradient problem, which occurs when the gradients of the 
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weights become very small as the network is trained. This can make it difficult for the network 

to learn long-term dependencies and can lead to slow training times. 

 

The Problem of Long-Term Dependencies 

 

One of the challenges of training RNNs is the problem of long-term dependencies[99]. Long-

term dependencies refer to the fact that the output of an RNN at a given time step can depend 

on inputs from many timesteps in the past. This can make it difficult for the RNN to effectively 

learn and make predictions, because the gradient signal (which is used to update the model's 

weights during training) can become very small or even vanish altogether as it is propagated 

back through many timesteps[100], [101]. This is known as the vanishing gradient problem. 

 

There are several approaches that have been proposed to address the problem of long-term 

dependencies in RNNs, including using different types of RNN architectures (such as long 

short-term memory (LSTM) networks or gated recurrent units (GRUs)), using more advanced 

optimization algorithms, and using regularization techniques to prevent overfitting 

 

Long Short-Term Memory (LSTM) Networks 

 

Long short-term memory (LSTM)[102] is a type of recurrent neural network (RNN) that is 

designed to overcome the problems of long-term dependency in traditional RNNs. In 

traditional RNNs, the output at each time step is dependent on the input at the current time 

step and the hidden state at the previous time step. This means that the output at each time 

step is only dependent on the inputs that have been seen so far, and not on the inputs that were 

seen a long time ago. This can be a problem when trying to model sequences with long-term 

dependencies, such as language or financial data[103]. 
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LSTMs were introduced by Hochreiter and Schmidhuber in 1997[104] as a way to address 

this problem. They work by explicitly remembering information for long periods of time, 

using three different types of gates: an input gate, an output gate, and a forget gate. The input 

gate controls the amount of information that is allowed to be passed through to the cell state, 

the output gate controls the amount of information that is allowed to be passed from the cell 

state to the output, and the forget gate controls the amount of information that is allowed to 

be forgotten from the cell state[105]. These gates are all controlled by the input and hidden 

state at the current time step, as well as the hidden state at the previous time step. The LSTM 

architecture consists of four layers of neural networks: an input layer, an output layer, and 

two "memory" layers. These layers interact with each other in a unique way, allowing the 

LSTM to remember information for long periods of time. LSTMs have been widely used and 

refined in the years since their introduction, and have proven to be effective in a variety of 

tasks, including language modeling, machine translation, and speech recognition[106]. 

 

Gated Recurrent Units (GRUs) 

 

Gated recurrent units (GRUs) are a type of recurrent neural network (RNN) that was introduced 

by Cho et al. in 2014[107] as an alternative to long short-term memory (LSTM) networks. Like 

LSTMs, GRUs are designed to address the problem of long-term dependencies in traditional 

RNNs. GRUs are similar to LSTMs in that they have a gating mechanism to control the flow 

of information through the network. However, they differ in that they have a simpler 

architecture and fewer parameters[108], [109]. In particular, GRUs do not have an output gate, 

and they merge the hidden and cell states into a single "update" state. To update the update 

state in a GRU, an "update gate" is used, which is a combination of the input and forget gates 

in an LSTM. The update gate controls the amount of information that is allowed to be passed 

from the input to the update state, and the amount of information that is allowed to be forgotten 
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from the previous update state. GRUs have gained increasing popularity in recent years due to 

their simplicity and good performance on various tasks, such as language modeling, machine 

translation, and speech recognition. They have been shown to be competitive with LSTMs on 

many tasks, and are often preferred due to their simplicity and faster training time[110].  

 

v. Application of Neural Networks 

Deep neural networks are a type of machine learning algorithms which are inspired by 

biological neural networks i.e. how our brain learns[111]. Since their development in mid of 

20th century, they didn’t get much application as they are computationally intensive. The 

inception of modern hardware systems, especially the GPUs (Graphical Processing Units) with 

greater computational capability, has allowed neural networks to regain popularity and 

applications. Additionally, special types of neural networks, such as convolutional neural 

networks(CNNs) and recurrent neural networks(RNNs) with long short-term memory 

cells(LSTM) find their applications in various fields like image processing, speech recognition 

and natural language processing. CNNs and LSTM have been also used in solving various 

biological problems including prediction of protein secondary structure, protein sub-cellular 

localization, peptide binding to MHC-II molecules, image recognition of skin disorders etc. 

[112], [113].  

 

A typical neural network learns by adjusting its weights or priority of any given features for 

calculating values close to the given output, i.e. values with minimum error. The weights are 

calculated according to the difference between calculated output and given output using an 

algorithm known as Gradient descent[114]. CNNs are a type of neural networks which are used 

for feature extraction when exact features or patterns cannot be determined, such as in image 

and sequence data.  CNNs slide a grid, also known as filters (a set of weights), over the input 

data which are fed into different neurons of further layer every time the filter is moved. These 
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filters are not interconnected and while moving through the data, it can extract patterns or 

features from the input irrespective of the position where they are found[115]. 

 

RNNs are a kind of neural network architecture which can deal with sequential data such as 

time series data and text data. They have typical feed forward connections, but in addition, the 

neurons of hidden layers are connected with a time-delayed connection for retaining the 

weights of previous time-step[116]. In this way RNNs are capable of learning through sequence 

data by storing instincts form previous elements and analyzing the present element in context 

of the previous one. Long short-term memory (LSTM) are a special kind of RNNs where the 

simple matrix of hidden neuron is succeeded with the LSTM memory block which minimizes 

the vanishing gradient problem [117]. LSTMs have a memory block cell where context-

dependent weights are saved. This block is further controlled by input, output and forget control 

gates so that it can read the input sequence and decide the elements it should keep in the cell 

for each time-step. So, it is easier for LSTMs to save a given input feature over many time 

frames which is its advantage over RNNs[118]. Previously, LSTMs have been used in building 

chatbots, language translation, image captioning etc. [119].  

Deep neural networks have undergone tremendous advancement in recent years and found its 

application in various field one of such field in natural language processing (NLP)[120]. 

Natural language processing deals with a sequence of words or letters and tries to extract 

meaningful features form them which can be further used for various application such as spam 

message detection[121], text summarization[122] etc. text embedding[123] is one such tool 

which is used for retrieving meaningful feature for word or letter form a data set. Embedding 

layers works on the same principle where a user defines how many features should be retrieved 

for each letter, then the algorithm basically learns the feature or weights from the training data 

and form a numerical representation of the input text data. Upon this representation layer Depth 
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wise separable 1d convoluted neural networks(CNNs)[124] and Long Short Term Memory 

networks (LSTMs)[125] can be used for deriving or learning local and global features 

respectively. This derived information can be used by simple neurons for taking decisions. 

 

vi. Generative models 

Generative models are a type of machine learning model that is capable of generating new data 

samples that are similar to the training data. These models are typically used in unsupervised 

learning, where the goal is to discover the underlying structure of the data, rather than to make 

predictions based on labeled examples[126]. 

There are many different types of generative models in deep learning, including: 

• Generative adversarial networks (GANs) 

• Variational autoencoders (VAEs) 

• Autoregressive models (e.g. PixelRNN and PixelCNN) 

• Flow-based models (e.g. Real NVP and Glow) 

• Generative stochastic networks (GSNs) 

• Generative moment matching networks (GMMNs) 

• Deep Boltzmann machines (DBMs) 

Each of these models has its own strengths and weaknesses, and is suitable for different types 

of data and applications. For example, GANs are effective for generating high-quality images, 

VAEs are good for producing smooth and continuous data samples, and autoregressive models 

are efficient for modeling structured data. 

 

Generative adversarial networks (GANs)[127] are a type of generative model that is based 

on the idea of training two neural networks, a generator and a discriminator, to compete with 

each other. The generator network is trained to generate data samples that are similar to the 
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training data, while the discriminator network is trained to distinguish the generated samples 

from real ones. During training, the generator network is provided with random noise as input 

and tries to produce data samples that are similar to the training data. The discriminator network 

then attempts to classify the generated samples as real or fake. The generator and discriminator 

networks are trained simultaneously, with the generator trying to fool the discriminator and the 

discriminator trying to accurately identify the generated samples. GANs have many potential 

applications, including image generation, data augmentation, and anomaly detection. 

 

A variational autoencoder (VAE)[128] is a type of generative model that is used to learn a 

continuous and structured representation of data. A VAE consists of two parts: an encoder, 

which maps an input data sample to a latent representation, and a decoder, which maps the 

latent representation back to a reconstruction of the original data sample. The encoder and 

decoder are typically implemented as neural networks, and the VAE is trained by maximizing 

the likelihood of the data given the learned latent representation. This is done by minimizing 

the difference between the original data and its reconstruction, while also regularizing the latent 

representation to have a certain desired structure (such as a Gaussian distribution). VAEs have 

many potential applications, such as data generation, data interpolation, and dimensionality 

reduction. They are also often used as a tool for understanding and interpreting the learned 

features of a neural network. 

 

Autoregressive models [129]are a type of generative model that are used to model sequential 

data, such as time series or natural language. These models make predictions based on previous 

values in the sequence, using a fixed-length context window to condition the predictions. One 

of the most well-known autoregressive models is the autoregressive integrated moving average 

(ARIMA) model, which is commonly used for time series forecasting. In the context of deep 
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learning, autoregressive models are often implemented using neural networks, such as the 

PixelRNN and PixelCNN models for image generation. Autoregressive models have the 

advantage of being fast and efficient, as they only depend on a fixed-size context window to 

make predictions. However, they can struggle to capture long-term dependencies in the data, 

and may not be well-suited to modeling data with complex or non-linear relationships. 

 

Flow-based models[130] are a type of generative model that uses a series of invertible 

transformations to map a simple prior distribution to a complex target distribution. This is done 

by constructing a sequence of invertible functions (called "flows") that transform the data from 

a simple latent distribution to the desired target distribution. One of the most popular flow-

based models is the real normalizing flow (Real NVP), which uses a series of affine 

transformations to map a standard Gaussian distribution to the target distribution. Other 

examples of flow-based models include the Glow model, which uses invertible 1x1 

convolutions, and the Masked Autoregressive Flow (MAF) model, which combines 

autoregressive models with normalizing flows. Flow-based models have many potential 

applications, including density estimation, generative modeling, and likelihood-based model 

evaluation. They are also an active area of research in deep learning, as they offer a way to 

model complex and high-dimensional data distributions using invertible transformations. 

 

Generative stochastic networks (GSNs)[131] are a type of generative model that is based on 

the idea of decomposing a complex data distribution into a hierarchy of simpler distributions. 

A GSN consists of a set of stochastic layers, each of which models a different level of 

abstraction in the data. The GSN is trained by maximizing the likelihood of the data given the 

learned hierarchy of distributions. This is done by optimizing the parameters of the stochastic 

layers to capture the underlying structure of the data. The resulting model can be used to 
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generate new data samples by sampling from the learned distributions at each level of the 

hierarchy. GSNs have many potential applications, including image generation, data 

compression, and representation learning. They are also an active area of research in deep 

learning, as they offer a way to model complex data distributions using a hierarchy of simpler 

distributions. 

 

Generative moment matching networks (GMMNs)[132] are a type of generative model that 

is based on the idea of matching the moments of a simple distribution to those of a complex 

target distribution. A GMMN consists of a set of non-linear transformations that map a simple 

latent distribution (such as a Gaussian distribution) to the target distribution. The GMMN is 

trained by minimizing the difference between the moments of the target distribution and the 

moments of the transformed latent distribution. This is done by optimizing the parameters of 

the non-linear transformations to capture the underlying structure of the data. The resulting 

model can be used to generate new data samples by sampling from the transformed latent 

distribution. GMMNs have many potential applications, including density estimation, 

generative modeling, and representation learning. They are also an active area of research in 

deep learning, as they offer a way to model complex data distributions using non-linear 

transformations. 

 

A Deep Boltzmann machine (DBM) [133]is a type of generative model that is based on the 

idea of representing complex data distributions using a network of stochastic units. A DBM 

consists of two or more layers of stochastic units, with connections between units in different 

layers but not within the same layer. The DBM is trained by maximizing the likelihood of the 

data given the learned network of stochastic units. This is done by optimizing the parameters 

of the connections between the units to capture the underlying structure of the data. The 
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resulting model can be used to generate new data samples by sampling from the learned 

distribution using Markov Chain Monte Carlo (MCMC) methods. DBMs have many potential 

applications, including density estimation, generative modeling, and representation learning. 

They are also an active area of research in deep learning, as they offer a way to model complex 

data distributions using a network of stochastic units. 

 

Generative models have many potential applications, such as image generation, data 

augmentation, and anomaly detection. They are also an active area of research in deep learning, 

as they offer a way to learn complex distributions and generate new data samples that are 

difficult to produce using other methods. Deep generative models are machine learning 

algorithms that are able to learn complex distributions of data and generate new data samples 

that are similar to the ones they were trained on. These models have been applied in a variety 

of fields, including drug design. One way in which deep generative models are being used in 

drug design is to generate novel chemical compounds with desired properties. For example, a 

generative model could be trained on a dataset of known drugs, and then be used to generate 

new chemical compounds that are similar to the ones in the dataset, but with improved 

properties such as increased potency or reduced side effects. This can help researchers identify 

new compounds that are worth synthesizing and testing in the laboratory. Another way in which 

deep generative models are being applied in drug design is to predict the properties of chemical 

compounds. This can help researchers identify compounds that are likely to have the desired 

properties before synthesizing and testing them in the laboratory, which can save time and 

resources. For example, a generative model could be trained on a dataset of known drugs and 

their properties, and then be used to predict the properties of new chemical compounds that are 

generated by the model. This can help researchers identify compounds that are likely to be 

effective drugs and prioritize them for further study. 
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In addition to generating and predicting the properties of chemical compounds, deep generative 

models are also being used to generate 3D models of molecules. This can help researchers 

visualize the structure of new compounds and understand how they are likely to interact with 

proteins or other molecules in the body. This information can be used to improve the design of 

drugs and make them more effective. 

 

Overall, deep generative models are a promising tool for drug design, as they can help 

researchers generate novel compounds, predict their properties, and visualize their structures. 

This can speed up the drug discovery process and lead to the development of more effective 

and targeted treatments for a variety of diseases. 

vii. Application of Generative models 

Deep generative models are a class of machine learning algorithms that use deep neural 

networks to generate similar new data to a training dataset. These models have been utilised in 

numerous fields, including biology, to generate data with a realistic appearance, such as images 

or DNA or protein sequences[134], [135]. 

 

In biology, one application of deep generative models is the generation of synthetic images of 

cells and tissues. These images can be used to train machine learning models to identify 

patterns or anomalies in biological samples. A deep generative model could, for instance, be 

trained on a large dataset of images of healthy cells and then used to generate synthetic images 

of diseased cells. These synthetic images could be used to train a classifier to recognise 

diseased cells in real-world samples. The generation of synthetic DNA or protein sequences is 

yet another biological application of deep generative models. These synthetic sequences can 

be used to examine the effects of genetic mutations or variations. For instance, a deep 

generative model could be trained on a dataset of known protein sequences and then used to 

generate novel protein sequences with the desired properties, such as enhanced binding affinity 
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for a specific drug target[136], [137]. Deep generative models can be used to impute missing 

data in biological datasets, in addition to generating synthetic data. If a dataset contains gaps 

or missing values, for instance, a deep generative model could be trained on the available data 

and used to generate realistic-looking values for the missing data. This can enhance the 

precision and utility of the dataset for subsequent analyses. 

 

Deep generative models have the potential to significantly advance the field of biology by 

facilitating the generation of realistic synthetic data, the imputing of missing values in datasets, 

and the discovery of new patterns and relationships in biological systems[138]. 

 

viii. The language of LIFE (Gene, Protein and Chemicals)  

 

Genetic sequences, such as DNA and RNA, can be considered a type of language due to the 

fact that they contain a specific set of symbols that convey meaning and are organised 

according to specific rules and structures[139]. These sequences are essential to the 

development and function of living organisms, and they can evolve and adapt over time through 

the process of mutation. The application of natural language processing (NLP) techniques to 

gain a comprehensive understanding of the functions and structures encoded in biological 

sequences has gained attention as a way to better understand and make discoveries from them. 

However, due to the complexity and vast potential of these sequences, the functions and 

properties of many coding and non-coding DNA and RNA sequences are still poorly 

understood. NLP can be used to analyse genetic sequences by employing tokenization 

techniques, which involve dividing the sequence into smaller "tokens" for analysis. A DNA 

sequence could be tokenized by separating it into its constituent nucleotides (A, C, G, and T) 

or codons (triplets of nucleotides)[140]. Then, researchers can use NLP techniques to analyse 

the relationships between these tokens and the context in which they appear, gaining a deeper 
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understanding of the functions and structures encoded in the sequence. In addition to 

tokenization, genetic sequences can also be analysed using NLP techniques such as part-of-

speech tagging and syntactic parsing. In part-of-speech tagging, tokens are labelled with their 

grammatical function, such as noun, verb, or adjective. Syntactic parsing is the process of 

analysing the syntactic structure of a sentence or sequence, including the relationships between 

its tokens and the rules governing their arrangement[141]. These methods can be used to 

identify patterns and structures within a genetic sequence that may be essential to its function 

or regulation. NLP can also be used to look at the words used to describe genetic sequences 

and the biological processes they are involved in. For instance, key terms and concepts can be 

extracted from scientific papers or other sources of biological data using NLP techniques, 

making it simpler for researchers to spot and examine trends and relationships in the data. The 

use of NLP in the analysis of genetic sequences has the potential to significantly enhance our 

understanding of the functions and structures encoded in these sequences as well as the 

biological processes they are involved in. It can also assist researchers in analysing and making 

discoveries from the vast quantities of data generated by high-throughput sequencing 

techniques[142], [143]. 

 

Proteins are extremely important molecules that are essential for the structure, function, and 

regulation of the body's tissues and organs. They are composed of chains of amino acids folded 

into specific three-dimensional shapes and are involved in numerous biological processes. 

Proteins can be viewed as a type of language, with amino acids serving as "letters" and proteins 

themselves as "words." In this way, proteins are similar to a language in that they are composed 

of specific units (amino acids) that are combined according to specific rules (the genetic code) 

to encode essential information for the body's proper functioning. The rules for combining 

protein domains constitute the "grammar" of proteins. Protein domains can be thought of as 
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"words," and the rules for combining them constitute the "language" of proteins. Researchers 

have discovered a "quasi-universal grammar" underpinning the evolution of domain 

architectures in proteins by employing techniques such as n-grams[144], [145]. 

 

By analysing the semantics of proteins, techniques from natural language processing (NLP) 

have been used to attempt to predict their structures and functions. However, there is still much 

about the semantics of the proteome that we do not comprehend. Prior research has primarily 

investigated the lexical, syntactic, and semantic aspects of biological sequences, but these 

sequences have their own distinctive linguistic properties. For instance, there are more than 

500 distinct physiochemical properties for amino acids and more than 180 for nucleotides, 

which is significantly more than the most complex polysemous word in a natural language. 

Consequently, rule-based approaches have limited performance for certain tasks, including 

protein disordered region prediction and enhancer identification, and they rely heavily on 

experience-based linguistic features. To advance the development of biological sequence 

analysis using NLP, it will be necessary to develop biological language models (BLMs) for 

DNA, RNA, and protein sequences that can automatically and systematically capture linguistic 

features using techniques similar to those used in bioinformatics for tasks such as protein 

structure prediction and function analysis[144]. 

 

Chemical SMILES is a language that allows us to describe the structure of a molecule using a 

set of symbols and characters. It follows certain grammar rules and uses a specific vocabulary 

to represent the atoms and bonds in a molecule. This language can be used to store chemical 

information and for chemical intelligence because the SMILES representations of structure can 

act as "words" in other languages[146]. SMILES ensures that there is only one representation 

of a molecule because the same atom and spanning tree will always produce the same SMILES 
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string. SMILES is a symbolic representation of chemical molecules that can be read and 

understood by both humans and computers. It follows rules and conventions to represent the 

structural information of a chemical compound using short strings of characters. These strings 

can be interpreted and used by software to generate visual depictions of the molecules, perform 

simulations and calculations, and predict their properties and behavior. SMILES was 

developed in the 1980s as a way to represent the structure of chemical compounds in a form 

that can be read by computers. It is based on the concept of a linear representation, where each 

element of the molecule is represented by a symbol and the connectivity between them is 

indicated by brackets and numbers. SMILES is simple to learn but can encode a lot of structural 

information in a compact form, making it useful for database searches and other applications. 

It can also handle a wide range of chemical structures, including complex molecules with 

multiple rings, chiral centers, and other features. The use of SMILES has been valuable in the 

field of chemistry for storing, retrieving, and analyzing chemical compounds and has also led 

to the development of many computational chemistry tools and applications. 

 

Natural language processing techniques can be applied to chemical SMILES strings to develop 

algorithms and tools for parsing and interpreting them, as well as generating SMILES strings 

from natural language descriptions of chemical structures[147]. These tools can be used in the 

development of chemical databases and the analysis of scientific literature, as well as in drug 

development and environmental safety by using machine learning to predict the toxicity or 

medicinal properties of chemical compounds based on their SMILES strings. Overall, SMILES 

strings are a useful tool in chemistry for efficiently representing and communicating chemical 

structures, and have various applications in natural language processing[148]. 
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Chapter 3.  Predicting miRNA sequence using CNN and LSTM 

stacked in Seq2Seq architecture 

 

i. Introduction 

The human genome encodes for more than 2200 miRNAs, which are predominantly 28bp 

length non-coding RNA molecules that regulate post-transcriptional gene expression [149]. 

Since a single miRNA can target many gene transcripts, it is known that miRNAs regulate gene 

expression and mRNA translation [150]. Numerous recent studies have demonstrated the 

relevance of miRNAs in human diseases [151]. Mutations, dysregulations, or even malfunction 

of miRNA synthesis and their targets have been found to impede physiological and 

biochemical pathways, resulting in many human diseases [152]. Given the abundance of these 

regulatory RNAs, the diversity of their expression, and the large number of mRNA targets, it 

is not unexpected that miRNAs play a vital role in a wide variety of disorders, including 

immunological diseases[153], cancers[154], and different skin diseases [155], [156]. Although 

experimental approaches such as HITS-CLIP[157], PAR-CLIP[158], CLASH, etc. can be used 

to determine the interaction between miRNA and mRNA, this interaction has not yet been 

discovered. However, these procedures are quite time-consuming and require a significant 

number of cells for library preparation on occasion. Consequently, computational prediction of 

these associations is an extremely useful and currently active field of study. In-silico prediction 

of miRNA targets, which has been a hard problem for scientists to solve for decades, is a basic 

step in finding the relationship between miRNA and mRNA target. Current methods for 

predicting miRNA targets employ a variety of computational techniques, ranging from the 

demonstration of physical association algorithms to the application of machine learning 

algorithms [159]. Consensus features like seed site complimentary binding, homology of 

miRNAs, etc. have been used in the development of algorithms. As not all attributes are 

ubiquitous for all miRNA and RNA interactions, machine learning tools are also built with 
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these properties as features, such as site accessibility, evolutionary conservation, and free 

energy. RNAhybrid[160], PicTar[161], TargetScan[162], PITA[163], Diana-microT[164] and 

others are In-silico tools for predicting the connection between miRNA and mRNA. As finding 

an experimentally validated negative set is laborious, the majority of these methods use 

artificial negative set data for training, resulting in limited sensitivity in real data. Furthermore, 

sequence level interaction is a fundamental criterion for mRNA and miRNA interaction, hence 

the bulk of these interactions can be found in sequence level characteristics that are difficult to 

produce. Therefore, in this objective the Seq2Seq architecture was proposed, which has been 

demonstrated to be applicable to sequence-level NLP data. 

 

Deep neural networks are a kind of machine learning algorithms inspired by biological neural 

networks, i.e. how the human brain learns [165], [166]. Since their invention in the middle of 

the 20th century, they have not received much use since they are computationally intensive. 

Modern hardware systems, particularly GPUs (Graphics Processing Units) with more 

processing capabilities, have enabled neural networks to reclaim their popularity and uses. In 

addition, some types of neural networks, such as convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs) with long short-term memory cells (LSTM), have 

applications in a variety of domains, including image processing, speech recognition, and 

natural language processing. CNNs and LSTM have also been utilised to solve a variety of 

biological challenges, including as the prediction of protein secondary structure, protein sub-

cellular localization, peptide binding to MHC-II molecules, and picture detection of skin 

conditions, among others . 

 

A typical neural network learns by altering the weights or priority of any given features to 

calculate output values with minimal error, i.e. values that are near to the provided output. 
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Using a process known as Gradient descent, the weights are computed in accordance with the 

difference between calculated and given output. CNNs are a sort of neural network employed 

for feature extraction when exact features or patterns cannot be identified, such as in image and 

sequence data. CNNs move a grid, also known as filters (a set of weights), across the input 

data, which are then supplied to the neurons of the next layer each time the filter is moved. 

These filters are not interconnected, and when traversing the data, they can extract patterns or 

characteristics from the input regardless of their position[96], [98]. 

 

RNNs are a type of neural network architecture that can process sequential data, including time 

series data and text data. In addition to the normal feed-forward connections, the neurons of 

hidden layers are connected with a time-delayed connection to maintain the weights from the 

previous time step.By storing instincts from past items and interpreting the current element in 

context of the preceding element, RNNs are able to learn from sequence data. Long short-term 

memory (LSTM) is a subtype of RNNs in which the simple hidden neuron matrix is replaced 

by an LSTM memory block that reduces the vanishing gradient problem [100], [101], [167]. 

The memory block cell of an LSTM is where context-dependent weights are stored. This block 

is additionally controlled by input, output, and forget control gates so that it may read the input 

sequence and determine the components to retain in the cell for each time step based on the 

input sequence. The advantage of LSTMs over RNNs is that it is easier for LSTMs to store an 

input characteristic over multiple time frames. Historically, LSTMs have been employed in the 

construction of chatbots, language translation, and image captioning, etc. [102], [168] 

 

In the current study, we used CNN to extract sequence features from an input mRNA segment 

and then fed these features to a stacked LSTM system[143]. Typically, this design comprises 

of two LSTMs, encoder and decoder. The retrieved features from CNN are sent one-by-one in 
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time steps to the encoder LSTM to obtain a fixed-dimensional vector of internal states; these 

internal states are then used as initial states by the decoder LSTM to extract the output sequence 

based on its initial state vector. This LSTM is an RNN language model[169] , but its training 

is dependent on the input sequence vector. The encoder processes the features from targeted 

mRNA sequences and outputs its hidden internal states, which are then used by the decoder 

LSTM as a condition or context for miRNA sequence prediction. We trained our model with 

mRNA and miRNA binding information obtained from TarBase version 8. (Sethupathy, 2005) 

[170], [171]. During training, our model's accuracy reached 80%. We discovered that the model 

learned to produce bases based on Watson and Crick base pairing. It was also capable of 

predicting the miRNA sequence based on perfect base pairing and a small number of instances 

of G:U wobble base pairing in the seed region. Importantly, the model generated valid miRNA 

sequences based on the sequence of the target mRNA. 

 

After training the model, we utilised RNAplfold[172] from the RNA-Vienna Package[173] to 

locate site accessibility within mRNA where the target mRNA segment could be located. The 

ease with which a miRNA may identify and hybridise with an mRNA target is measured by 

site accessibility [174], [175]. The secondary structure of mRNA can hinder a miRNA's ability 

to bind to its target location. MiRNA: mRNA hybridization is a two-stage process in which a 

miRNA binds to a brief, accessible area of the mRNA in the first step. As soon as the miRNA 

completes binding to a target, the mRNA secondary structure unfolds. To determine the 

possibility that an mRNA segment is the target of a miRNA, it is necessary to estimate the 

predicted amount of energy required to make a site accessible to a miRNA. We validated our 

model using miRNA and RNA pairings implicated in dermatological illnesses that were 

retrieved from our in-house generated database miDerma. In this instance, our algorithm 

successfully predicted 72% of miRNAs from mRNA on average. 
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ii. Literature review 

1. micro-RNA 

a. Discovery and function of miRNAs 

The discovery of miRNA, a type of short regulatory RNA, has had a significant impact on the 

field of genetics and gene expression. The first miRNA, lin-4, was discovered more than 30 

years ago in the nematode Caenorhabditis elegans, and initially believed to be a protein-coding 

gene[176]. However, it was later discovered that lin-4 encodes a 22-nucleotide regulatory RNA 

that may bind to the mRNA of the lin-14 gene in the C. elegans developmental network, 

controlling protein synthesis. The discovery of lin-4 may have remained within the C. elegans 

scientific community if not for the discovery of a second miRNA, let-7, which is present in a 

wide range of species, including humans. This led to further research into the role of miRNAs 

in gene silencing, and the discovery of thousands of miRNAs in various organisms, including 

2588 annotated miRNAs in the human genome. Each miRNA has the ability to regulate the 

expression of hundreds of target mRNAs, making the miRNA pathway as a whole an important 

mechanism for controlling gene expression[177]–[179]. 

 

 
Figure 3.1: The microRNA biogenesis pathway. 
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b. The miRNA biogenesis pathway 

The biosynthesis of miRNA involves a series of steps that convert the primary miRNA 

transcript into the active, 22-nucleotide mature miRNA. In mammals, the most common 

miRNA families follow a standard pathway for maturation. Once matured, the miRNA 

interacts with the RNA-induced silencing complex (RISC) to repress translation and degrade 

target mRNAs. There are some miRNA families that do not follow this standard pathway, but 

they will not be discussed in this context for the sake of simplicity[149]. 

 

c. Transcription 

 

MiRNA genes can be located throughout the genome, and in some cases, transcription of the 

miRNA gene produces only the miRNA itself. In other cases, the miRNA may be located 

within the intron or untranslated region (UTR) of a protein-coding gene. The precursor RNA 

of a miRNA gene has a stem-loop structure that is shared by all miRNA genes, with either the 

first or second strand of the stem serving as the source of the mature miRNA. For example, the 

miRNA cluster MCM7 contains three stem-loops that each mature into a different miRNA with 

a unique set of targets[180]. If a miRNA is found in an exon that codes for a protein, removing 

it would delete the transcript that codes for the protein. 

 

When the miRNA gene is transcribed by RNA polymerase II, it produces a primary miRNA 

transcript, known as Pri-miRNA. Like other mRNAs that code for proteins, the primary 

miRNA is processed through splicing, capping, and polyadenylation. While there has been 

limited study of miRNA promoters, those that have been analyzed show structural similarities 

to protein-coding gene promoters. 
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d. Processing by Drosha and Dicer 

 

To become functional, the primary miRNA (pri-miRNA) must go through a two-step process 

of processing, which involves the action of two endonucleases. The first step occurs during pri-

miRNA transcription, when the enzyme Drosha cuts the pri-miRNA to produce a stem-loop 

structure called the pre-miRNA[181], [182]. The RNA-binding protein DGCR8, which is 

associated with Drosha, is necessary for this cleavage to occur. The pre-miRNA is then 

transported out of the nucleus by Exportin5, a protein that acts in a Ran-GTPase-dependent 

manner. The second step of processing occurs in the cytoplasm, where the enzyme Dicer cuts 

the pre-miRNA to produce a 21-nucleotide RNA duplex. The RNA-binding protein TRBP, 

which is involved with both Drosha and Dicer, assists in this process. The mature miRNA is 

stored on one strand of the duplex in the RNA-induced silencing complex (RISC), while the 

other strand is usually degraded. Degraded miRNA strands are indicated by an asterisk (*) next 

to the miRNA name, such as miR-125*. It is possible that both strands of the miRNA duplex 

produced by Dicer will be incorporated into the RNA-induced silencing complex (RISC) at the 

same frequency. The 5p strand comes from the 5' end of the stem-loop structure, while the 3p 

strand comes from the 3' end. However, next-generation sequencing studies have shown that 

almost all miRNA families have a small fraction of their long strand loaded into RISC, 

suggesting that RISC may have a preference for incorporating one strand over the other. As a 

result, some miRNAs are expressed in a strand-specific manner depending on the cell type or 

biological condition. This has led to the adoption of the "5p/3p" naming scheme for miRNAs, 

rather than the "mature" or "star" naming scheme[183]. 

 

The cleavage sites of Drosha and Dicer are not always well-defined, leading to mature miRNAs 

with well-defined 3' ends[184]. However, some miRNAs have multiple cleavage sites, 

resulting in a variety of "isomiRs" that are variations of the parent miRNA. These isomiRs may 
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have different target constraints and functions, and their expression can be influenced by cell-

type or infection. The true mechanism by which isomiRs are regulated is not yet fully 

understood[185]. 

 

e. RISC loading and target repression 

 

The main function of miRNAs is to be incorporated into the RNA-induced silencing complex 

(RISC), also known as miRISC[186], [187]. The core protein of RISC, argonaute, has four 

analogues (Ago1-Ago4), but it is not fully understood how they are organized. One proposed 

mechanism involves stacking the miRNA duplex into RISC and removing the passenger strand 

after Dicer cleavage. Ago2 can cleave and remove the passenger strand from a miRNA duplex 

if it has central region complementarity, after which the nuclease complex C3PO can destroy 

it. This is similar to the RISC stacking mechanism used in the related small interfering RNA 

(siRNA) pathway. However, most miRNA duplexes do not have central complementarity, 

which prevents them from participating in passenger strand cleavage. Some helicases have 

been shown to be able to unwind these miRNA duplexes[188]. 

 

During the RISC process, argonaute forms a strong bond with the miRNA and then searches 

for complementary target mRNAs. The "seed" region of the miRNA, which consists of 

nucleotides 2-7, is necessary for target binding. It has been shown that complementary target 

mRNAs can be identified based on their seed region, and that the 3' end of the miRNA also 

plays a role in target identification[189]. If a complementary seed region of the miRNA is 

found (nucleotides 9-11), Ago2 can degrade its mRNA target through an endonuclease 

mechanism. However, Ago2 is not able to effectively degrade the vast majority of human 

miRNA target binding sites because it lacks this property. Instead, it works together with the 

protein GW182 (TNRC6A/B/C) to form a complex in the cytoplasmic P bodies, where 
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translational repression occurs. The recruitment of RISC by the CCR4-NOT deadenylase 

complex leads to the removal of the poly(A) tail and the subsequent degradation of the mRNA 

target. 

 

2. miRNA target identification 

 

It is important to understand which molecules miRNAs target for various reasons. To 

understand the biological function of a miRNA, it is necessary to identify its target list, and 

researchers have made significant progress in this area in recent years. Validated target binding 

sites are the most reliable biomarkers for determining the effectiveness of a miRNA enhancer 

or inhibitor, which is important information for biologists developing miRNA therapies. There 

are three main approaches that can be used to identify miRNA targets: bioinformatic target 

prediction, biochemical isolation of miRNA and mRNA complexes, and transcriptomic and 

proteomic analysis[190]. These approaches are briefly summarized. 

 

a. Computational target prediction 

 

According to the literature, bioinformatic target identification should be reliable because 

miRNAs bind to target mRNAs using the standard Watson-Crick base pairing rules. Although 

miRNAs are only 6 nucleotides long, the seed configuration is the most important predictor of 

target selection. As a result, there may be many false-negative competitor targets. To improve 

precision, bioinformatics target prediction calculations include additional components such as 

sequence conservation, flanking sequence determinants, flanking arrangement determinants, 

outside-seed compensatory matching, and target site accessibility. Some approaches have also 

used machine learning calculations that combine validated target sets as training sets. There 

are several tools available for bioinformatic target prediction, including TargetScan[191]–
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[193], miRanda[194], and PicTar[195]. Bioinformatic techniques are a useful starting point for 

miRNA research and are widely used in research laboratories. 

 

b. Biochemical target identification 

 

Other approaches to identifying miRNA targets involve the physical proximity of miRNA and 

RISC structures to their respective target mRNAs. These approaches typically involve 

immunoprecipitation of the RNA-induced silencing complex (RISC) using anti-argonaute 

antibodies, with or without prior RNA crosslinking, followed by identification of bound target 

RNAs using microarray or next-generation sequencing (NGS) profiling. It is generally 

preferred to crosslink the immunoprecipitation (IP) before cell lysis to avoid artifactual RNA 

hybridization during cell lysis. Another method is to extract target-specific biotinylated 

miRNAs, which allows for the capture of targets of a single known miRNA, but requires the 

insertion of the biotinylated miRNA ectopically. These physical approaches have been useful 

in identifying the mRNA targets of miRNA complexes, but it is possible that not all mRNA 

within a specific space is repressed. Argonaute-bound targets in mRNA coding regions have 

been shown to be non-degrading. The success of any methodology depends on careful 

consideration and optimization[196]–[198]. 

 

c. Omics-based strategies for target identification 

 

Proteomic or transcriptome analysis of cells or tissues in the presence or absence of a miRNA 

is the third general method for target identification. It is still being investigated if quantitative 

proteomic analysis, which directly evaluates a miRNA's impact on protein synthesis, is more 

representative of the real target set. Transcriptome analyses are made simpler by the fact that 

most miRNA targets have lower mRNA steady-state levels. Microarray profiling should make 
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this practicable, and a few research tools are currently accessible. This approach led to the 

identification of neutrophil-specific miR-223 [199] foci. Both animals with miR-223 and those 

lacking it showed decreased neutrophil activation. To identify the miR-223 targets, mRNA and 

protein levels were compared using microarrays and quantitative mass spectrometry. It is 

essential to remember that the competing target sets will also contain downstream auxiliary 

targets that need to be individually authorised.  

3. Methods for Identifying miRNA 

 

Techniques for recognising miRNAs can be classified into two broad categories [200]. The 

disclosure strategies are geared toward rapid, high-throughput profiling of a large number of 

miRNAs. These methods excel in two areas: microarray hybridization and next-generation 

sequencing profiling. The latter is superior because it can depict novel miRNAs, whereas most 

other methods can only identify existing miRNA sequences. There are several NGS phases 

available, but they all begin with the creation of a library format. Priorities are synchronised at 

RNA connectors, which are ligated to the ends of short RNA fragments prior to RT-PCR 

amplification. Using this method, all RNAs within the target size range will be amplified. The 

libraries could then be sequenced on a variety of devices, the most common of which would 

most likely be Illumina stages. The PCR amplification step can, however, be entirely 

disregarded by single-particle instrumentation[201]. It is conceivable to multiplex 48 libraries 

(or more) in a single run and yet attain the proper grouping read depth because contemporary 

instruments are capable of 200 million or more peruses per library run[202]. Quantitative 

articulation profiles are derived after reading a sequence. As was already said, it is possible to 

identify and classify tiny RNA species, including miRNAs, that were not previously 

recognized. Although NGS-based profiling has clear advantages and is evolving into the 

industry norm, nucleotide biases brought on by ligation procedures have been noted[203]. This 

indicates that a validation stage is necessary for the profiling technique. 
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Despite the fact that NGS systems can carry out high-throughput profiling of the whole miRNA 

population, the majority of clinical demonstration techniques rely on quick inspection of a 

limited number of quality marks. As a result, RT-PCR and nano-strings are frequently utilised 

in recent analytical techniques[204] . In a quick exploratory run, the nanostring approach may 

measure up to 500 targets (mRNA or miRNA) with a single particle hybridization. The 

pancreatic growth test by Asuragen is an LDT miRNA symptom. In this RT-PCR-based 

method, a 7-miRNA marker is used to tell the difference between pancreatic ductal cancer and 

healthy tissue.  

a. Common features of miRNA target prediction tools 

 

There are mainly four frequently used features for miRNA target prediction algorithms: seed 

match, site accessibility, free energy and conservation. These will be described in the following 

sections. 

 

 

 

Seed match 

 

A miRNA's seed sequence is defined as the first 2–8 nucleotides, starting at the 5' end and 

moving toward the 3' end [45] (Figure 3.2). Most algorithms require a seed complementary to 

Watson-Crick (WC) pairing rules between a miRNA and its target site. When adenosine 

Figure 3.2: microRNA:mRNA target interaction. 
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guanine (G) pairs with cytosine (C) and adenosine (A) pairs with uracil, the miRNA and mRNA 

nucleotide (U) form a Watson-Crick match. 

 

There are several types of seed coordinates that can be considered based on the calculation. 

The following are the fundamental types of seed matches: [205]–[207]: 

 

1. 6mer: A six-nucleotide WC match between the miRNA seed and mRNA. 

2. 7mer-m8: A perfect WC match from miRNA seed nucleotides 2–8. 

3. 7mer-A1: A perfect WC match from miRNA seed nucleotides 2–7, plus an A across from 

miRNA nucleotide 1. 

4. 8mer: A perfect WC match from miRNA seed nucleotides 2–8, plus an A across from 

miRNA nucleotide 1. 

 

Conservation 

 

The preservation of the same sequence pattern across all species is the aim of conservation. 

Regions of the 3' UTR, the 5' UTR, miRNAs, or any combination of the three might be the 

subject of a conservation analysis. The conservation of the seed region of miRNAs is often 

greater than that of the non-seed region [208]. In a limited percentage of miRNA-mRNA target 

interactions, there is conserved pairing at the 3' end of the miRNA that can make up for seed 

mismatches; these sites are referred to as "3' compensatory sites" [209]. Because it is being 

selected for, conservation analysis may show that a projected miRNA target is functioning in 

the context of identifying miRNA targets in 3 UTRs. Studying the genomic areas around the 

miRNA gene and the miRNA target genes for conservation is also gaining popularity. The 

promoter regions of miRNAs and their target genes have been studied using conservation 

analysis [210], as well as the colocalization of independently transcribed miRNAs and 
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surrounding protein-coding genes [51]. As a result, there are several ways to analyse areas in 

the 3 UTR, 5 UTR, miRNA, or any combination of the three to determine the impact of 

conservation on miRNA target prediction. The miRNA seed region often has higher 

conservation than the non-seed region [45]. In a tiny percentage of miRNA: mRNA target 

interactions, there is conserved pairing at the 3' end of the miRNA that can make up for seed 

mismatches; these sites are referred to as 3' compensatory sites [211]. Preservative 

investigation may validate that a predicted miRNA target is beneficial because it is being 

picked for when it comes to predicting miRNA targets in 3 UTRs. The genomic areas around 

miRNA quality and miRNA target characteristics are attracting increasing interest in 

conservation analyses. Examples include the co-convergence of independently interpreted 

miRNAs and surrounding protein-coding genes [51], as well as the objective characteristics of 

miRNA promoter areas and their relationship to preservation studies [212]. This is how 

conservation is frequently used for the prediction of miRNA targets. 

 

Free energy 

 

The stability of a biological system can be assessed using its free energy, also known as Gibbs 

free energy[213]. If the binding of a miRNA to a potential target mRNA is predicted to be 

stable, the mRNA is considered to be a real target of the miRNA. Because it can be difficult to 

measure free energy directly, the change in free energy that occurs during a reaction is often 

taken into account (ΔG). Systems are more stable when negative ΔG values are obtained 

because there is less energy available to respond in the future. By predicting the hybridization 

between the miRNA and its potential target, it is possible to identify regions of high and low 

free energy and use the total G as a measure of how strongly bound they are. 

 

Site accessibility 
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The accessibility of a site determines the ease with which a miRNA can locate and bind to an 

mRNA target[174]. After transcription, mRNA adopts a secondary structure that may obstruct 

a miRNA from binding to a target site[214]. During the initial phase of the two-step 

miRNA:mRNA hybridization process, a miRNA binds to a brief, accessible region of the 

mRNA. Upon completion of binding to a target, the mRNA's secondary structure becomes 

more open. Therefore, the likelihood of an mRNA being a miRNA target can be determined 

by estimating the energy required to make a site accessible to a miRNA[215]. 

b. Less common features of miRNA target prediction tools 

 

The majority of miRNA target prediction programmes incorporate the aforementioned 

features. As new developments in the characterization of miRNA:mRNA target interactions 

are made, additional characteristics are added. These may be integrated into the target 

prediction itself or utilised to forecast the target's efficacy. The quantity of target sites in a 3′ 

UTR is a gauge of the total number of target sites (Garcia et al., 2011). "Local AU content" 

refers to the quantity of A and U nucleotides surrounding the appropriate miRNA seed region. 

The "GU wobble" is the acceptance of a G pairing with a U rather than a C in the seed match. 

With miRNA nucleotides 12–17, base pair matching is known as 3′ compensatory pairing[216]. 

The anticipated duplex's computed free energy depends on the stability of the seed pairing. The 

target site's location within the mRNA is investigated via the position contribution technique. 

Machine-learning methods create a model of miRNA targets from training data, which is then 

used in the miRNA prediction process. Machine-learning algorithms are likely to include more 

features in their predictions since they may be trained to identify each feature's predictive 

potential on both positive and negative datasets. Several of these tools employ the machine-

learning technique known as support vector machines (SVM)[217]. 
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4. Review of commonly used miRNA target prediction tools 

 

Using the previously described characteristics, ten popular miRNA target prediction tools in 

this section are presented. The section Comparison of MiRNA Target Prediction Tools includes 

a summary table comparing these tools. 

Table 3.1: Summary table of miRNA target prediction tools. 

FEATURES USED IN miRNA TARGET PREDICTION 

Tool name Seed 

match 

Conservati

on 

Free 

energy 

Site 

accessibility 

Target- 

site 

abundance 

Machine 

learning 

Referen

ces 

miRanda X X X    [218] 

miRanda- mirSVR X X X X  X [219] 

TargetScan X X     [207] 

DIANA- 

microT-CDS 

X X X X X X [220] 

MirTarget2 X X X X  X [221] 

RNA22-GUI X  X    [222] 

TargetMiner X X X X X X [223] 

SVMicrO X X X X X X [224] 

PITA X X X X X  [225] 

RNAhybrid X  X  X  [226] 

 

iii. Methodology     

1. Data Curation 

 

A web crawler was implemented in Python using the Beautiful Soup package for TarBase v8 

in order to retrieve data. The crawler, upon receiving a miRNA name as input, searches for its 

target sites in every entry in TarBase v8 and provides an output in the form of a CSV file 

containing the miRNA name, gene symbol, and chromosome location of the target binding site 

according to Ensemble Human (GRCh38.p12) annotation. The code for this web crawler can 

be found in GitHub repository (https://github.com/rajkumar1501/sequence-prediction-using-

https://github.com/rajkumar1501/sequence-prediction-using-CNN-and-LSTMs
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CNN-and-LSTMs). 

 

A genome-wide method for identifying protein-RNA binding sites or RNA modification sites 

in vivo is high-throughput sequencing of RNA obtained by crosslinking immunoprecipitation 

(HITS-CLIP, also known as CLIP-Seq)[157], [227]. The neuron-specific RNA-binding 

proteins and splicing factors NOVA1 and NOVA2 were first mapped using HITS-CLIP; since 

then, a number of other splicing factor maps have been produced, including those for PTB, 

RbFox2, SFRS1, hnRNP C, and even N6-Methyladenosine (m6A) mRNA modifications. 

By decoding miRNA-mRNA and protein-RNA interaction maps in mouse brain[228], [229] 

and subsequently in Caenorhabditis worms, embryonic stem cells, and tissue culture cells, 

HITS-CLIP of the RNA-binding protein Argonaute has been used to identify miRNA 

targets[157]. 

 

Figure 3.3: Screenshot of result page of TarBase v.8. 

 

A sample of retrieve data can be found below. 

https://github.com/rajkumar1501/sequence-prediction-using-CNN-and-LSTMs
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Table 3.2: Sample of Retrieve data for training. 

 

miRNA 

_name 

 

miRNA_sequence 

 

Chromosome 

Location 

 

mRNA_Sequence 

 

Gene 

Symbol 

 

hsa-let-

7a- 5p 

 

UGAGGUAGUAGGUU

G UAUAGUU 

 

15:98960051- 

98960068 

 

ACUCCAUCUAUUUACAAA 

 

IGF1R 

 

hsa-let-

7a- 5p 

 

UGAGGUAGUAGGUU

G UAUAGUU 

 

13:48480030- 

48480053 

 

ACUCCAUAGGUACGAUAG 

UAAGUA 

 

RB1 

 

hsa-let-

7a- 5p 

 

UGAGGUAGUAGGUU

G UAUAGUU 

 

1:205602438- 

205602456 

 

ACUCCAUCCCAUCCAUGA

A 

 

MFSD4 

 

hsa-let-

7a- 5p 

 

UGAGGUAGUAGGUU

G UAUAGUU 

 

1:38863569- 

38863589 

 

ACUCCAUCCGUAGUGCCU

G UA 

 

MYCBP 

 

hsa-let-

7a- 5p 

 

UGAGGUAGUAGGUU

G UAUAGUU 

 

1:35853829- 

35853851 

 

ACUCCAUUUUUAAGUCAG 

GUCAC 

 

AGO4 

 

hsa-let-

7a- 5p 

 

UGAGGUAGUAGGUU

G UAUAGUU 

 

17:49051062- 

49051083 

 

ACUCCAUCAAAUGAAGCG 

UGUG 

 

IGF2BP

1 

hsa-let-

7a- 5p 

 

UGAGGUAGUAGGUU

G UAUAGUU 

 

1:207048984- 

207049003 

 

ACUCCAUCAUCCGAAGUU

G G 

 

YOD1 

 

hsa-let-

7a- 5p 

 

UGAGGUAGUAGGUU

G UAUAGUU 

 

3:47736093- 

47736115 

 

ACUCCAUCUACAACCCAG

A CCAG 

 

SMARC

C 1 

 

hsa-let-

7a- 5p 

 

UGAGGUAGUAGGUU

G UAUAGUU 

 

15:52065475- 

52065494 

 

ACUCCAUCUAUUGUGUAC 

AC 

 

MAPK6 

 

hsa-let-

7a- 5p 

 

UGAGGUAGUAGGUU

G UAUAGUU 

 

14:52642082- 

52642099 

 

ACUCCAUAUAUCGAAGAA 

 

ERO1L 

 

2. Data Preparation 
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a. Data Cleaning 

 

Since the data was fetched with crawler, all sequences were manually curated to see the polarity 

of the strands. All miRNA sequence strands were in polarity 3’ to 5’ and all mRNA strands 

were in polarity of 5’ to 3’, thereby conserving the seed pair features of 3’ and 5’ end of miRNA 

and mRNA.  

The lengths difference between the pairs of miRNA and mRNA varied from 0 to 18. In order 

to ensure uniformity in the difference in length of the sequences, so that the model may extract 

features based on patterns in the sequence rather than the length of the sequences, the 

distribution of the pair sequence length difference was analyzed. It was found that the 

distribution was skewed, with approximately 90% of the difference in length pair of sequences 

falling between 0 and 6 (Figure 3.4). As a result, a threshold of 6 was established, and miRNA 

and mRNA sequences with a sequence length difference of 6 or less were used for further 

analysis. 

 

Figure 3.4: Distribution difference in length pair of sequences. 

 

Subsequently, the binding energies for sequence pairs were analyzed, as negative ∆G values 

are necessary for the binding of a sequence. The RNAFold package [173], [230] from the 

ViennaRNA Package 2.0 was utilized for this purpose. The two sequences were combined by 

adding a spacer, such as 8 'L' nucleotide bases, which are not considered meaningful according 
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to the RNAfold package [231]. The RNAfold tool was then run using the sequence in order to 

determine the binding energy (Figure 3.5). After filtering out sequences with positive ∆G 

values, a set of 19300 sequence pairs was obtained and used for training.  

 

 

Figure 3.5: Distribution ∆G values of hybridized pairs 

 

In order to proceed, it is necessary to encode the categorical information of mRNA and miRNA 

nucleotides numerically. This is typically done using binary vectors with one hot encoded 

embeddings, in which all entries are set to zero except for one, indicating the category. For 

example, the typical encoding for RNA nucleotides (categories) is A = (1 0 0 0), G = (0 1 0 0), 

C = (0 0 1 0), and U = (0 0 0 1). By concatenating the encoding nucleotides together and using 

each nucleotide as a separate input feature in a feed-forward neural network, a DNA sequence 

can be represented as a binary string. In our case, we have added sequence start and end tags, 

denoted by the letters "\t" and "\n," to the miRNA sequences. These modified sequences will 

be passed to the decoder, as explained in the section on constructing the model. 
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Table 3.3: Binary matrix representing mRNA binding site sequence 'UUGUGUAGUAACGUGUAAUGUCG' 

U 0 0 0 1 

U 0 0 0 1 

G 0 0 1 0 

U 0 0 0 1 

G 0 0 1 0 

U 0 0 0 1 

A 1 0 0 0 

G 0 0 1 0 

U 0 0 0 1 

A 1 0 0 0 

A 1 0 0 0 

C 0 1 0 0 

G 0 0 1 0 

U 0 0 0 1 

G 0 0 1 0 

U 0 0 0 1 

A 1 0 0 0 

A 1 0 0 0 

U 0 0 0 1 

G 0 0 1 0 

U 0 0 0 1 

C 0 1 0 0 

G 0 0 1 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

 

Binary coded strings as input of a deep neural network are made be of same length, i.e. all 

miRNAs should be of same length and all mRNA-target site sequence should be of same 

length, which is not the scenario of real world. To address this issue, we took the longest 

miRNA sequence as the default length for all miRNA sequences, and padded any miRNA 

sequence whose length was less than the default length with zeros. The default length for 

miRNA sequences was determined to be 28. The same approach was applied to the mRNA 

sequences, and the default length for these sequences was determined to be 29. 
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3. Model Building 

 

 

The Figure 3.6 provided represents our proposed model for predicting miRNA sequences from 

mRNA sequences. The Keras library of deep learning was utilized in Python, with Tensorflow 

as the backend, to construct and train the model. 

 

An open-source programming framework called TensorFlow is used to programme dataflow 

across a variety of tasks. It is a representational math library that is also used in machine 

learning systems like neural networks. At Google, it is used for both research and devlopmnet. 

A high-level neural network API called Keras was created in Python and may be used with 

TensorFlow, CNTK, or Theano. It was created with the goal of facilitating quick 

experimentation. Good research relies on being able to move quickly from concept to 

conclusion. Keras provides quick and simple prototyping (through user friendliness, 

modularity, and extensibility). supports both recurrent and convolutional networks, as well as 

hybrids of the two. runs well on both the CPU and GPU. 

Figure 3.6: Proposed Seq2Seq model using CNNs and LSTMs for microRNA sequence prediction. 
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The first step in the process was to extract features from the mRNA sequence using a 

convolutional neural network (CNN). A window size of 8 was used to extract 128 features.  

 

 

A dense layer consisting of 128 neurons was then utilized to adjust the weights of the 128 

features extracted from the mRNA sequence. These adjusted features were then fed into an 

LSTM network.  

 

 

 

 

 

 

 

Figure 3.7: Feature extraction using CNN on mRNA sequence. 
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Building Seq2Seq LSTM Network: 

 

 

Given the input sequences from one domain (such as mRNA sequences) and corresponding 

target sequences from another domain (such as miRNA). An LSTM encoder converts the input 

sequences into two-state vectors, keeping the final state of the LSTM and discarding the 

outputs. A decoder LSTM is trained to transform the target sequences into an identical 

sequence, but offset by one timestep in the future, using a training process known as "teacher 

forcing." The decoder uses the encoder's state vectors as the initial state. In practice, the decoder 

learns to generate targets[t+1...] given targets[...t] based on the input sequence. 

To decode unknown input sequences in inference mode, the following steps are taken: 

1. Encode the input sequence into state vectors, starting with a target sequence of size 1 

(just the start-of-sequence character). 

2. Feed the state vectors and 1-char target sequence to the decoder to generate predictions 

for the next character. 

3. Sample the next character using these predictions (argmax was used for this purpose). 

4. Append the sampled character to the target sequence. 

Figure 3.8: Seq2Seq LSTM model. 
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5. Repeat until the end-of-sequence character is reached or the character limit is reached. 

 

The python code for the model development training and prediction can be found in github 

repository (https://github.com/rajkumar1501/sequence-prediction-using-CNN-and-LSTMs) 

 

4. Training of model  

The goal of model training is to find parameters w that minimise an objective function L(w), 

which measures the fit of the model's predictions to the actual observations. The crossentropy 

for classification and the mean squared error for regression are the two most commonly used 

objective functions. L(w) is difficult to minimise because it is high-dimensional and nonconvex 

(Figure 3.9) 

 

5. Determining the number of neurons in a network 

 

It is desirable to utilize a validation set in order to determine the optimal number of hidden 

Figure 3.9: Final Model of model constitute of Conv1D, Dense and LSTMs layers. 

https://github.com/rajkumar1501/sequence-prediction-using-CNN-and-LSTMs
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layers and hidden units for a given task. A common strategy is to increase the number of layers 

and units while avoiding overfitting the data. Empirical research has shown that adding layers 

and units can increase the number of local optima and representable functions, while decreasing 

the sensitivity of finding a suitable local optimum to weight initialization. After testing various 

combinations of neurons across all layers, it was determined that 128 neurons for dense layers 

and 512 neurons for LSTMs produced the best results. 

6. Partitioning data into Training and Validation sets 

 

To avoid overfitting and ensure that the model will generalise to previously unseen data, 

machine learning models must be trained, validated, and tested on independent data sets. Deep 

neural networks require data to be partitioned into training, validation, and test sets for proper 

training. The models use the training set to learn different hyperparameters, which are then 

tested on the validation set. The model with the best performance, such as prediction accuracy 

or mean squared error, is chosen and evaluated further on the test set to quantify performance 

on unseen data and to compare to other methods. For training, 80% of the data from the 19300 

data sets was used, with the remaining 20% reserved for validation. Additionally, data on 

miRNAs associated with skin diseases from the in-house developed database, miDerma, was 

utilized for further testing. This database consists of miRNA and mRNA pairs that have been 

linked to dermatological disorders. 

7. Learning Rate and Batch size 

 

The stochastic gradeint decents learning rate and batch size should be chosen with care, as they 

have a significant impact on the preparing rate and model execution. Various learning rates are 

commonly investigated on a logarithmic scale, such as 0.1, 0.01 or 0.001, with 0.01 serving as 

the prescribed default orders. For most applications, a batch size of 128 is appropriate for test 

preparation. The batch size can be increased to speed up training or decreased to reduce 
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memory usage, which is important when working with complex models on GPUs with limited 

memory. Larger batch sizes frequently necessarily require lower learning rates. In this study, a 

default learning rate of 0.01 and a batch size of 50 was used. 

 

8. Avoiding overfitting 

 

Because they are nonlinear and have numerous parameters, complex neural systems are 

notoriously difficult to prepare. Overfitting to information is a noteworthy test. Overfitting 

occurs as a result of an excessively complex model relative, making it impossible to span the 

preparation set, and can thus be reduced by reducing the model's many-sided quality, such as 

the number of hidden layers and units, or by expanding the size of the preparation set, such as 

through information expansion. To prevent overfitting, the following precautions were taken: 

• A dropout rate of 0.5 was used in the LSTM layers. 

• A 0.001 L2 regularization penalty was applied to each Dense layer. 

The model was trained for 100 epochs on a cloud computing instance with 32GB RAM, an 

11GB NVIDIA Tesla K80 GPU, and an Intel Xeon 8-core CPU. 
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Figure 3.10: Training setup for model . 

 

9. Obtaining Surface Area accessibility Regions  

 

For predicting miRNAs, our model requires a gene symbol. The ensemble REST API is used 

to retrieve the sequences of all protein coding transcripts and their 3'UTRs from a query gene. 

Because the ensemble REST API accepts transcript IDs, a local SQLite database was created 

to map gene symbols to all protein coding ensemble transcript IDs. 

 

The ease with which a miRNA can locate and hybridise with an mRNA target is measured by 

the site's accessibility. Following transcription, mRNA takes on a secondary structure [53], 
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which can interfere with the ability of a miRNA to bind to a target site. MiRNA:mRNA 

hybridization is a two-step process that begins with a miRNA binding to a short, accessible 

region of the mRNA. As the miRNA binds to a target, the secondary structure of the mRNA 

unfolds. So, to figure out if an mRNA is the target of a miRNA, you should look at how much 

energy you think it will take to make a site accessible to a miRNA. 

 

To compute locally stable secondary structure pair probabilities, the RNAplfold programme 

from ViennaRNA Package 2.0 [173] was utilised. This Python wapper package computes local 

pair probabilities for base pairs with a maximum span of L. The probabilities are averaged over 

all L-dimensional windows containing the base pair. 

 

The result is a simple tuple of matrices, with each line containing a position x followed by the 

probability that x is unpaired, [x-1..x] is unpaired, [x-2..x] is unpaired, and so on until the 

probability that [x- i+1..x] is unpaired is reached. 

 

Total accessibility was calculated with RNAPlfold. Total accessibility is the sum of Pfree's 

(probability of unpaired 4-mers) over all accessible 4-mers in all complementary sites. If Pfree 

is greater than 0.2, those 4-mers are said to be accessible. Following the approach described in 

[89], we used W = 80 and L = 40 and fed sequences of all protein coding transcripts of a query 

gene to RNAplfold in order to identify accessibility regions or accessible 4-mers. These 

accessible 4-mers were then used to locate miRNA binding sites in the 3'UTR region of the 

respective mRNA, resulting in 26-mers consisting of the 4-mers plus the following 22-mers. 

The complete Python code for locating the accessibility region in the 3' UTR of a gene's 

transcript can be found in GitHub repository (https://github.com/rajkumar1501/sequence-

prediction-using-CNN-and-LSTMs). 

https://github.com/rajkumar1501/sequence-prediction-using-CNN-and-LSTMs
https://github.com/rajkumar1501/sequence-prediction-using-CNN-and-LSTMs
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10. Developing Final package 

 

 

When running the program the user will prompt to enter a Gene symbol. Then the Gene symbol 

will be used to retrieve all associated protein coding ensemble transcript IDs. RNA sequence 

of these transcript IDs and location of 3’UTR will be retrieve using ensemble REST API. These 

sequence will be feed to RNAplfold package of ViennaRNA package for finding accessibility 

region or accessible 4-mers. After that we select accessible 4-mers in 3’UTR region using 

location of 3’UTRs for finding the miRNA binding site in respective mRNA i.e. these 4-mers 

and previous 22-mers total 26-mers which are in polarity 3’ to 5’. Then these mRNA segments 

are feed to  our  trained  model  for  predicting  respective  miRNA  sequences.  Then  these  

predicted miRNA sequences will be mapped to their miRNA IDs using a local SQLite database 

containing miRNA ID and respective sequence retrieve from mirBase Release 22, March 2018. 

Hence giving output a list of predicted miRNA IDs. Whole flowchart is shown in Figure 3.11. 

Figure 3.11: Workflow of model . 
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iv. Results 

A package for predicting miRNA associated with a gene has been developed using neural 

networks particularly CNN and LSTMs which are according to a well-known seq2seq 

architecture which are used for prediction of sequence based on sequence. Our model was 

trained on data set containing sequences of miRNA and their respective target binding sites in 

mRNA which are retrieve from TarBase v8. The model was trained for 100 epochs. 

 

1. Accuracy 

 

After training the model for 100 epochs, the training accuracy for predicting the miRNA 

sequence based on its binding site in the mRNA was approximately 79%, as measured on the 

training set. In the validation set, an increase in accuracy of approximately 1% was observed, 

Figure 3.12: Training Matrices of Model. 
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resulting in an overall accuracy of around 80%. Since the training accuracy is lower than the 

validation accuracy, therefore it can be concluded that the model is not overfitted. Additionally, 

the validation loss is lower than the training loss, with a training loss of 0.128 and a validation 

loss of 0.087, further indicating that the model is not overfitted. The training matrices show 

that the miRNA sequence can be predicted with up to 80% similarity using its target binding 

segment in the mRNA (Figure 3.12). 

2. Validation 

To test our package with experimentally validated list of miRNAs associated with Gene 

symbol. 200 Genes were randomly selected from our in house developed database miDerma 

which contains miRNA and Gene pair associated with dermatological disorders. miRNAs 

associated with individual genes were retrieved[232]. Also those genes were feed to our 

package and miRNAs were predicted. 

Here our model was able to predict on average 72% of miRNA for each Genes from the list of 

200 Genes correctly and also predicted some noble miRNA sequences. 

 

 

Figure 3.13: Violin plot showing distribution of accurately predicted microRNAs from 200 Gene Symbols 

associated with Dermatological disorders among known microRNAs. 
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Figure 3.13 above is a violin distribution for percentage of miRNAs predicted accurately 

among known experimentally validated miRNAs for individual genes in test set of 200 genes. 

It can be noted that width of the plot is more in the range of 95% to 75%. Also our model was 

able to predict some noble miRNA sequence for targeted genes. 

 

Table 3.4: Some of the well predictions done through our model . 

 

Gene 

symbol 

No. of Experimentally 

validated miRNAs 

associated with gene 

No. of. miRNAs 

accurately predicted 

among the validated 

miRNAs 

Percentage of accurately 

predicted miRNAs among 

the validated miRNAs (%) 

ABCC1 26 26 100 

ADAMTS1 13 13 100 

ELK3 14 14 100 

EPB41L3 20 19 95 

BMPR2 51 48 94.12 

ITSN2 17 16 94.12 

FGF10 26 24 92.31 

NT5C3A 12 11 91.67 

EIF2S2 24 22 91.67 

CCNE1 34 31 91.18 

ABCG2 30 27 90 

DNMT1 39 35 89.74 

HOXD11 37 33 89.19 

DSC3 18 16 88.89 

GPI 27 24 88.89 

JAG1 27 24 88.89 

CUL5 17 15 88.23 

ESRRA 8 7 87.5 

FN1 8 7 87.5 

CDK6 188 164 87.23 

CD28 46 40 86.96 

ARRDC3 23 20 86.96 

CADM1 46 40 86.96 

BAX 15 13 86.67 

CYP24A1 15 13 86.67 

FHL2 87 75 86.21 

IGFBP5 144 124 86.11 

AKAP12 21 18 85.71 

DNMT3A 34 29 85.29 

HOXB13 20 17 85 
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For comparing the prediction accuracy of our model with other well-known miRNA target 

predictive tools such as  TargetScan, DINA-MicroT, miRanda and RNA22, all the sated models 

and our proposed model were evaluated using a independent microarray study. The publicly 

available data is result of a study where 25 miRNAs were inhibited concurrently using 

antisense miRNAs and the change of RNA expression are recoded [158]. Here predicted targets 

by various tools were studied with respect to the gene expression changes. As shown in Figure 

3.14 the mRNAs predicted by our proposed model were most upregulated as compared with 

the mRNA predicted by other algorithms. 

 

Figure 3.14: Distribution of the expression changes for top-ranking targets predicted by individual algorithms 

 

v. Discussion and Conclusion 

 

The miRNA are small generally 28 bp long non-coding RNAs that are comprehensively 

involved in various physiological and disease processes. One of the major challenge in miRNA 

studies is the identification of mRNA targeted by miRNAs. Most researchers depends on 

computational programs to initially finding the target candidates for subsequent validation. 

Although many advancement has been made in recent years for prediction of targets 

computationally, but there is still a significant scope for algorithmic improvement. 
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It has been observed that neural networks, which are a highly effective category of machine 

learning, can be applied to a wide range of problems including classification, clustering, 

regression, natural language processing, and sequence prediction. The way neural networks 

learn is by adjusting the input weights of each neuron. Convolutional neural networks (CNNs), 

a type of artificial neural network (ANN), are used for feature extraction or selection and are 

frequently utilized in image recognition for identifying distinctive features in images. They can 

also be employed in extracting features or recognizing specific patterns from sequences that 

are difficult for humans to discern. A 1D ConvNet can be used for selecting features from a 1D 

data, such as a text sequence. Recurrent neural networks (RNNs), another type of ANN, are 

proficient at learning from sequence data and utilize their internal state (memory) to process 

sequences of inputs, allowing them to retain information from previous input data, which is 

useful when working with sequence data. RNNs are used in sequence classification and 

sequence prediction, but they may suffer from a problem known as the vanishing gradient, 

where they tend to forget earlier instances. To address this issue, researchers have developed 

an enhanced version of RNNs called long short-term memory (LSTMs), which addresses the 

vanishing gradient issue by adding an additional memory unit that keeps track of all relevant 

states and stores them. 

 

Looking for an improved algorithm, in this work sequence pair data of miRNAs and 

corresponding bound target mRNA from TarBase v8 was obtained to trained a ANN network 

for prediction of miRNA from their bounded target segment in mRNA. Particularly CNNs were 

used for recognizing patterns in mRNA segments and extraction of features. Two LSTMs in 

seq2seq architecture were placed for predicting sequences of miRNA. Also two layers of dense 

network were stacked between CNN and LSTM1, another between input_2 and LSTM1 

(Figure 3.6). This model trained on 19000 experimentally validated and cleaned pair of mRNA 
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and miRNA sequences archiving accuracy of 80%. 

 

It is important for a miRNA to have access to a sufficient surface area in order to bind to a 

targeted mRNA segment. In particular, at least four nucleotides should be exposed and 

unbounded in the 3D structure of the mRNA in order for the miRNA to bind. To identify 

regions in the mRNA that are suitable for binding, we used RNAplfold from the RNA Vienna 

package to determine the probability of four nucleotide stretches being unpaired in the mRNA's 

3D structure. We then selected segments from these regions as potential targets for miRNA 

binding and fed them into our trained model for predicting possible miRNAs that could bind 

to these target segments. 

The user will be prompted to enter a gene symbol when running this package. Using this gene 

symbol, the package will retrieve the protein coding transcript's sequence from the Ensemble 

REST API. These mRNA sequences are then processed to predict a list of miRNAs. The model 

was validated using experimentally verified miRNA and RNA pairs involved in skin diseases 

that were retrieved from an in-house database called miDerma. On average, the model was able 

to correctly predict 72% of the miRNAs from mRNA in each case. The package, named 

"model: A MircoRNA sequence prediction tool from RNA sequence based on CNNs, LSTMs, 

and seq2seq architecture," utilizes a seq2seq architecture neural network model similar to those 

used in chatbot development. In this way, the package aims to apply natural language 

processing models to the fundamental language of nature, i.e. A, T, G, C. 

The primary goal of this work is to find miRNA target locations that can be restricted by the 

miRNA. However, further enhancements can be made by introducing new features. Knowing 

a miRNA's target is one method for determining the miRNA's participation in normal or 

abnormal biological processes. For each one miRNA, there might be a plethora of targets. 

Several tools have been created in the last 17 years to address this difficult topic. Each of these 
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experiments has helped us understand the link between miRNA and mRNA targets, as well as 

how that relationship can be utilised to create accurate predictions. MiRNA prediction can aid 

the scientific community in the fields of medicines, biomarker identification, and so on. 
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Chapter 4.  Predicting protein intrinsically disordered regions by 

applying natural language processing practices 

 

 

i. Introduction 

Intrinsically Disordered Regions (IDRs) are the regions in proteins that do not posses well 

organized two dimensional or three dimensional structures under physiological conditions. 

These regions exit extravagantly in each domain [233] - [234] and concerned with numerous 

protein functions [235] - [236]. They are involved in chemical reactions, they recognize nucleic 

acids, proteins, influence molecular interactions between bound partners. These properties of 

disordered regions have been well explored by the researchers to delineate the potential of 

disordered regions in molecular interactions [237]. It has been observed that these disordered 

regions are accessory for biological activities carried out by most of the structured proteins 

[238]. Studies have been conducted revealing the importance of mobile flexibility and 

structural instability in natural proteins, that they are more intrinsically disordered than the 

protein with the random sequence [239].  

 

Multiple reports exist pointing towards the implications of disordered regions to various 

diseases including neurodegenerative diseases and cancer [238]. Recent studies demonstrate 

the significant role of disorder prediction in identification of disease as well as in 

epidemiological examinations due to strong connection between disorder regions and various 

human disease [240]. These disorder regions serve as potential targets and undergo disordered-

to-order transitions in the binding regions and ultimately prompt considerable research in drug 

discovery process [239]. Moreover, health care has likewise been connected to disorder 

prediction in identifying risk and studying the progression of diseases in patients [241]. 

Recognizing their widespread presence in proteins prompt the development of quick and 
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accurate computational approaches for their prediction.  

 

Number of experimental techniques are available to determine the Intrinsically Disordered 

Proteins (IDPs) or Intrinsically Disordered Regions such as missing regions in X-ray 

crystallography or dynamics in Nuclear Magnetic Resonance experiments. Because of high 

cost of identifying disordered regions experimentally, it is essential to compute probable 

regions/proteins before conducting experimental studies [242].  

It has been estimated that around 60 or more computational techniques have been developed 

so far [243] - [244] , many of these techniques utilize protein sequences [245] and information 

derived from them such as statistical potentials (FoldIndex) [246], physio-chemical properties 

(IUpred) [247], propensities (Globplot) [248] for analysis on protein. Based on the studies 

conducted it has been shown that these methods outperformed by sequence machine learning 

approaches  [249] - [250] (CSpritz [251], DisEMBL [252], PONDR series  [253] ). However, 

these single-sequence methods are considered to be less accurate than sequence profile based 

machine-learning techniques obtained from multiple sequence alignment [254]. This is on the 

grounds that sequence profiles, for the most part made by programs, for example, PSI-Blast 

[254] and HHBlits [255], contain significant data relating to the absence or presence of 

preserved residues due to their functional and structural roles. Instances of ongoing techniques 

dependent on profiles are SPINE- D [256],  SPOT-Disorder [257] and AUCpred  [258]. 

 

However, due to cheaper sequencing techniques, protein sequences in libraries have been 

increased exponentially and obtaining evolutionary profiles for these sequences are 

computationally intensive. As a result, genome wide scale analysis using profile-based 

techniques are difficult and time consuming. Furthermore, in real-world applications, the large 

number of amino acid chains, greater than 90 percent, do not correspond to a large sequence 
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cluster [259]. In other words, due to lack of evolutionary information the quality of sequence 

profiles for large number of proteins is poor. As this is the case, sequence dependent methods 

may be more reliable and accurate than profile dependent methods as revealed from the 

determination of secondary structure  and solvent accessible surface area [260] 

computationally using single sequence based method. Thus, it is highly advisable to have a 

highly precise sequence based method as the intrinsic disorder regions can also be displayed 

by protein sequences alone [261]. Hence, improving already existing sequence dependent 

techniques also addresses the fundamental question of how far we can push the accuracy limit 

considering only sequence information irrespective of evolutionary profiles. 

 

Improvements in already existing single sequence based techniques are possible as most of 

these rely on algorithms such as [262] simple neural network, support vector machine, 

recurrent Neural Network. On the other hand, advanced learning algorithms have been utilized 

in profile based predictors in order to improve disorder prediction. Such as deep long short-

term memory (LSTM) bidirectional RNN, deep convolutional neural fields and combined 

LSTM and convolutional networks [263] - [264].  

Present study was encouraged by recent progress in employing ensemble of Long Short Term 

Memory (LSTM) and Convolutional Neural Networks (CNN) [262]. Such an ensemble not 

only enhance robustness of performance but also removes noise that prediction more reliable. 

As LSTM Networks have already been known to provide high accuracies in disorder 

prediction, their amalgamation with Convolutional Neural Network can increase the 

effectiveness of disorder prediction. Hence we showed a model with enhanced accuracy 

utilizing an ensemble of embedding and convolutional and bi-directional LSTM layer for 

making predictions on disordered regions in proteins in contrast to already existing state of art 

methods.  
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ii.  Review of literature 

 

1. Overview of disordered proteins 

Disordered regions of proteins, which do not have a well-organized three-dimensional or two-

dimensional structure under physiological conditions, are common in eukaryotic genomes and 

are highly conserved in terms of their sequence and composition between species. These 

disordered regions, which can be larger than 50 amino acids, play important roles in a wide 

range of protein functions, such as cell signal transduction, transcriptional regulation, and 

translation[265]–[268]. Disordered regions can be detected using X-ray crystallography 

experiments or spectroscopic techniques such as NMR, which can provide more detailed 

information about the dynamics and structural tendencies of these regions in solution[269]. 

 

In addition to their role in various protein functions, disordered regions have also been shown 

to play a role in protein-protein interactions and in the regulation of protein activity. These 

regions can act as "adaptors" that help bring proteins together to form complexes, and they can 

also modulate the activity of other proteins by blocking or activating enzymatic activity[270]. 

Disordered regions can also act as "molecular glue," helping to stabilize protein-protein 

interactions and maintaining the integrity of protein complexes[271]. Despite the important 

roles that disordered regions play in protein function, they are often overlooked in traditional 

studies of protein structure and function because they do not have a well-defined three-

dimensional structure[265], [272]. However, recent advances in techniques for studying 

disordered proteins have helped to shed light on their functional importance. 

 

2.  Are the domains unfolded or folded? 

It is challenging to predict the three-dimensional structure of globular proteins based solely on 

their amino acid sequence, with the exception of cases where the structures of highly 
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homologous sequences are already known. However, it is relatively straightforward to identify 

sequences that are likely to be intrinsically disordered, meaning that they are unable to 

spontaneously fold into well-defined structures[271], [273]. These disordered proteins are 

characterized by the absence of a stable three-dimensional structure under physiological 

conditions and can play important roles in various protein functions[274]. Despite the 

difficulties in predicting their structure, the functional importance of disordered proteins has 

led to increased efforts to understand their behavior and to develop methods for studying and 

manipulating them[275]. 

 

a. Sequence Characteristics of disordered regions 

A probable disordered region is characterized by an amino acid compositional bias, low 

complexity in the sequence, low content of bulky hydrophobic residues such as Phe, Trp, Ile, 

Val, and Tyr, and high content of charged and polar residues such as Ser, Glu, Lys, Pro, Gln, 

Ser, and occasionally Ala and Gly[275]–[277]. There are several computer programs available 

that can be used to identify disordered proteins or regions, including FoldIndex[278], 

DisEMBL[279], PONDR[280], and GLOBPLOT[281]. Genome-wide studies have shown that 

disordered regions are very common, and the extent of disordered regions in proteins tends to 

increase with the complexity of an organism. Disordered proteins are often associated with 

diseases and are involved in eukaryotic cell signaling processes. There are many proteins that 

have been shown to be either fully or partially disordered, as documented in the DisProt 

database of experimentally annotated protein disorder. 

 

3. Experimental techniques for characterization 

The most commonly used experimental technique for identifying disordered regions of proteins 

is Nuclear Magnetic Resonance (NMR) spectroscopy. However, other techniques such as 

Fluorescence Spectroscopy, Hydrodynamic Measurements, Raman Spectroscopy, Vibrational 
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CD Spectroscopy, and Circular Dichorism can also provide useful information about 

disordered regions[282], [283]. These techniques can be used to complement information 

obtained through NMR or to provide additional insights into the properties and behavior of 

disordered proteins[284]. 

 

4. General attributes of disordered regions 

Proteins can be classified along a structural continuum based on the degree of structure they 

possess. At one end of the continuum are proteins with a firmly collapsed single domain, while 

at the other end are proteins with highly extended, heterogeneous disordered regions. In 

between these extremes, there are proteins with multi-domain structures that may contain 

flexible or unstructured regions, as well as compact but unstructured molten globules[283], 

[285]. This structural continuum has been divided into three or four categories, although there 

is a wide range of different structure types within each category. Generally, proteins that are 

characterized as intrinsically disordered lack a sufficient hydrophobic core to spontaneously 

fold into a well-organized three-dimensional structure. As a result, these proteins often do not 

have a stable three-dimensional structure under physiological conditions and may exist as 

disordered or partially ordered states[282], [283]. 

 

5. Functions of disordered regions 

Intrinsically disordered proteins (IDPs) are a class of proteins that do not have a well-defined, 

stable three-dimensional structure under physiological conditions. IDPs are characterized by a 

high degree of conformational flexibility and disorder, and they often contain regions that are 

rich in flexible, unstructured amino acid residues such as proline, glycine, and glutamine. 

Despite their lack of a stable structure, IDPs play important roles in many cellular processes, 

including signal transduction, transcription regulation, protein phosphorylation, and the 

assembly of multi-protein complexes[286]–[289]. 



Page | 106  

 

 

One of the key features of IDPs is their ability to undergo a "disordered-to-ordered" transition 

upon binding to a target molecule[290]. This process involves the IDP folding into a more 

stable, ordered structure upon recognition and interaction with its target. An example of this 

process is the activation domain in the protein cAMP response element-binding protein 

(CREB), which contains an intrinsically disordered Kinase-Inducible transcriptional activation 

Domain (KID)[291]. The KID is disordered as a detached peptide as well as in the full-length 

protein, but upon binding to its target molecule, it folds into orthogonal helices and becomes 

more stable. The intrinsic disordered nature of the KID can be predicted from its sequence, and 

this disordered-to-ordered transition is thought to play a crucial role in the protein's 

function[292]. 

 

IDPs are increasingly being recognized as important players in many cellular processes, and 

their involvement in various functions is continuously emerging. In addition to the examples 

mentioned earlier (e.g., signal transduction, transcription regulation, protein phosphorylation, 

and the assembly of multi-protein complexes)[286], [287], [293], IDPs have also been 

implicated in other functions such as the storage of small molecules and the regulation of the 

translational process. IDPs can also behave like chaperones, binding to misfolded RNA and 

protein molecules and helping to unfold and relax kinetically unfavorable intermediates. 

 

One important aspect of IDPs is their ability to interact with and bind to other proteins and 

molecules. These interactions often involve the intrinsically disordered regions of the IDP, 

which can bind to and stabilize specific conformations of the target molecule. This ability to 

recognize and bind to specific target molecules is thought to be critical for the function of IDPs 

in many cellular processes[294]. 
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In summary, IDPs are a class of proteins that are characterized by their intrinsic disorder and 

conformational flexibility. Despite their lack of a stable structure, IDPs play important roles in 

many cellular processes, and their involvement in various functions is continuously emerging. 

IDPs have the ability to undergo a disordered-to-ordered transition upon binding to a target 

molecule, and their ability to interact with and bind to other proteins and molecules is thought 

to be crucial for their function. 

 

Figure 4.1: Couple folding and binding. 

 

6. Roles of disordered regions 

a. Recognition Elements- Nucleic acid and protein recognition 

DNA-binding proteins have developed specialized methods for identifying and interacting with 

specific DNA sequences, many of which involve partial folding or unfolding[294], [295]. 

Induced fit folding has been suggested as a key mechanism in the sequence-specific binding of 

proteins to DNA, based on the large heat changes that occur when these complexes are formed. 

RNA-binding proteins also have disordered regions, and they tend to remain disorganized 

when they form complexes, similar to their structure in the free state[296]. The formation of a 

complex between 5S ribosomal RNA and L5 ribosomal protein is thought to involve an induced 

fit mechanism[297]. 
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b. Regulation through degradation 

The instability of IDPs/IDRs involved in translation, transcription, and cell signaling may 

contribute to the regulation of cell behavior through proteolytic cleavage and degradation. For 

example, the ubiquitin-proteasome complex system may play a key role in activating 

transcription by targeting the degradation of transcriptional activation domains. The stability 

of β-catenin and the regulation of cadherin are also controlled through targeted degradation. 

The cadherin cytoplasmic terminal domain, which is disordered and contains exposed Pest-

Sequence motifs, is targeted for degradation by the ubiquitin-proteasome system, but this 

process is prevented when cadherin binds to β-catenin[298]. Linker sequences, which should 

be flexible and have a moderate level of stability, may be important for proper function. These 

sequences may need to be resistant to proteolysis, but also be unfolded, and a low content of 

hydrophobic residues may be critical for this function. Misfolded proteins are targeted for 

degradation, and it has been suggested that this process involves the recognition of hydrophobic 

solvated residues by the ubiquitin-proteasome complex system[299]. Poly-glutamine residue 

repeats may be resistant to degradation by the eukaryotic ubiquitin-proteasome complex 

system. The specific amino acid residues in linker sequences may also allow them to fold and 

form structures that can interact non-specifically with other proteins. 

These proteins and sequences are often unstable and prone to degradation, which can be 

regulated through the ubiquitin-proteasome complex system and other mechanisms[300]. 

However, the specific characteristics of these proteins and sequences, such as their flexibility, 

stability, and amino acid composition, can affect their function and how they interact with other 

proteins. Understanding these features and how they are regulated may provide insights into 

how cells control various processes and respond to different signals[301]. 
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c. The natural ‘cost’ of disordered regions  

Disordered regions of proteins are important for certain functions, such as in the case of 

transcriptional activators, cell signaling molecules, and regulatory proteins. However, this can 

also come with negative consequences, as disordered regions are often involved in 

chromosomal translocations that can lead to diseases, such as leukemia. For example, 

translocations in the N-terminal unstructured regions of CBP/p300 or in the linker between the 

KIX and bromo-domains have been linked to leukemia[302], [303]. These translocations cause 

the segments of CBP/p300 to become attached to the MLL or MOZ regions, resulting in the 

proteins acquiring abnormal functions[304]. In contrast, translocations or truncations in genes 

that encode structured domains are more likely to produce misfolded proteins that are quickly 

destroyed by cellular machinery and do not cause a diseased phenotype. 

There is still much work to be done in understanding and characterizing functional disordered 

proteins. Computational techniques that can analyze protein chains and even entire genomes 

for IDPs (intrinsically disordered proteins) will likely reveal more proteins that belong to this 

class. Advances in functional genomics will also help us understand the functional properties 

of IDRs (intrinsically disordered regions). The role of lower complexity in protein sequences 

is just starting to be explored, and our understanding of the function of proteins is limited to a 

static view rather than a dynamic one, where different conformations can correspond to 

different functions. 

 

7. Computational methods for IDRs prediction 

Over the past two decades, numerous methods for identifying IDPs (intrinsically disordered 

proteins) and IDRs (intrinsically disordered regions) have been developed. These methods can 

be broadly classified into four categories: physicochemical techniques, machine learning 

techniques, template or homology techniques, and meta techniques. Physicochemical 
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techniques rely on the chemical and physical properties of protein sequences, while machine 

learning techniques use classification algorithms based on learning algorithms. Template or 

homology techniques rely on examining known structures of proteins, and meta techniques 

incorporate the results from a variety of predictors. It's worth noting that these categories are 

not mutually exclusive, and predictors in one category may also use techniques from other 

categories. For example, some physicochemical techniques may also use features from 

machine learning predictors or meta predictors. 

 

a. Physicochemical-based techniques  

These techniques for predicting IDPs (intrinsically disordered proteins) and IDRs (intrinsically 

disordered regions) are based on chemical and physical properties that can directly affect the 

binding and folding of proteins[305], [306]. These properties include the affinity of specific 

residues, overall charge, hydrophobicity, and contact angle, among others. For example, 

Uversky used a combination of low hydrophobicity and high overall charge to identify IDPs. 

Based on this principle, the FoldIndex was developed to identify IDRs using a pre-defined 

sliding window. Another method, GlobPlot, uses a parameter called P to predict IDRs. The 

basic theory behind GlobPlot is that the probability of an amino acid being disordered can be 

described as P = RC - SS, where RC represents the propensity of a specific residue to exist in 

a "random coil" and SS represents the propensity to exist in "secondary structure". The basic 

calculation behind GlobPlot is a summation function of P, which is simple and fast. 

Physicochemical-based strategies are efficient and have low computational cost, and their 

predicted results are easy to interpret. These physical and chemical properties are also used as 

features in machine learning techniques and in meta techniques[307], [308]. 

 

b. Template/Homology based techniques  

These techniques for predicting IDRs (intrinsically disordered regions) rely on proteins with 
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known structures. These techniques first try to find known structures of homologous protein 

sequences (templates), and then analyze the query protein to predict its IDRs. For example, 

GSmetaDisorder3D[309] and PrDOS[310] use different structural principles as features rather 

than independent predictors. The advantage of these techniques is that the predicted results are 

easy to interpret. However, even when similar homologous sequences to the target protein are 

available, they may not be reliable, and in some cases, homologous proteins may not be able 

to be identified at all. It is worth noting that template-based techniques are generally more 

accurate than other methods, but they are limited in their ability to predict the behavior of 

proteins that do not have a known structure. In these cases, other methods, such as 

physicochemical or machine learning techniques, may be more effective. 

 

c. Meta techniques  

Meta-predictors are methods that combine the predictions of multiple computational predictors 

into a single model in order to enhance prediction accuracy. There are two main categories of 

meta-predictors: direct combination and machine learning combination. Direct combination 

methods, such as PrDOS[310], CSpritz[311], and MobiDB-light[312], combine the results of 

different predictors using a weighted voting technique. Machine learning combination 

methods, on the other hand, use the prediction results of different predictors as features to train 

a final model using a machine learning algorithm. Examples of machine learning combination 

methods include meta-PrDOS[310], DISOPRED3 [313], and MD. MetaPrDOS is a two-stage 

meta-predictor that uses the results of seven predictors to determine the probability of each 

residue being disordered using a support vector machine model. MD is a neural network-based 

method that uses the results of four predictors and protein sequence properties as input. 

DISOPRED3 is based on DISOPRED2[313], a predictor of long disordered regions and closest 

neighbor, and consists of a main layer with three predictors and a neural network layer that 

combines the results of the main layer. Meta-predictors are known to achieve state-of-the-art 
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performance, but their high computational cost has limited their application to a limited number 

of proteins. 

There are several benefits to using meta-predictors for protein disorder prediction. One benefit 

is that they can take advantage of the strengths of multiple predictors, potentially leading to 

improved prediction accuracy. Another benefit is that meta-predictors can be more robust to 

changes in the input data, as they can use information from multiple sources to make 

predictions. However, there are also some limitations to the use of meta-predictors. One 

limitation is that they can be computationally expensive, which may limit their use to smaller 

proteins or proteins with specific characteristics. In addition, meta-predictors may be more 

difficult to interpret and understand compared to single predictor models, as they involve the 

combination of multiple prediction approaches. Overall, meta-predictors can be a useful tool 

for protein disorder prediction, but their use should be carefully considered based on the 

specific needs and constraints of the application[314]. 

 

d. Machine-learning techniques  

Machine learning algorithms have been developed to address the limitations of other 

techniques, such as physicochemical and template methods, for protein disorder prediction. 

These algorithms use negative and positive sets to identify disorder regions and incorporate 

various features. In the process of feature extraction, which is a crucial component of any 

machine learning algorithm, the features used to predict protein disorder can be divided into 

three categories: sequence properties, evolutionary relationships, and structural data. Sequence 

properties include amino acid residue propensity, composition, flexibility, hydrophobicity, and 

low complexity. Evolutionary relationships refer to profiles obtained from multiple sequence 

alignment. Structural data includes secondary structure, solvent accessibility, and torsion 

angles. Machine learning techniques for protein disorder prediction can be further divided into 

classification models and sequence labeling models. 
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Classification models  

 

Traditional models were designed to handle feature vectors of fixed length. Classification 

models are trained in a supervised manner using both negative and positive datasets and then 

predict the label of unseen data samples based on the trained model. Predicting whether an 

amino acid is disordered or ordered is a binary classification problem. One challenge in using 

these techniques for protein disorder prediction is converting proteins, which can vary in 

length, into fixed-length vectors. The sliding window method is a common approach for 

addressing this challenge, as it incorporates information about an amino acid residue and its 

adjacent residues into a fixed-length vector. There are several algorithms that can be used to 

build classification models for protein disorder prediction, including Random Forest, Neural 

Network (NN), and Support Vector Machine (SVM). PONDR[315] is an example of a primary 

predictor based on Neural Networks for different types of intrinsic disorder regions, including 

short disordered regions (SDRs), medium disordered regions (MDRs), long disordered regions 

(LDRs), and intrinsic disorder regions of all lengths. 

 

Sequence labeling models  

 

Sequence labeling models for protein disorder prediction are based on supervised learning 

using both negative and positive datasets. In these models, the input is a protein sequence and 

the output is a labeled sequence indicating the presence or absence of disordered residues. 

Several algorithms have been developed for sequence labeling models, including Conditional 

Random Field (CRF), Recurrent Neural Network (RNN), Convolutional Neural Network 

(CNN), and Long Short-Term Memory (LSTM). One example of a sequence labeling model is 

SPOT-disorder, which is a deep-bidirectional model comprising a feed-forward RNN layer 

followed by two LSTM layers. This model has been shown to perform well for predicting both 
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long disordered regions (LDRs) and short disordered regions (SDRs).[311] The performance 

of sequence labeling methods can be improved by combining them with deep learning methods, 

as LSTM and RNN can automatically identify relevant information about residues and capture 

both local and global context in proteins[316]. 

 

Table 4.1: Summary of some of IDPs/IDRs predictors . 

PREDICTOR CATEGORY CLASSIFIER FEATURES YEAR AUC 

GlobPlot[281] P _ Amino acid propensity 

difference 

2003 NA 

IUPred[279], 

[317], [318]  

P _ Amino acid composition 2005 0.66 

FoldIn[319], 

[320] 

P _ Net charge and 

hydrophobicity 

2005 NA 

DisEMBL [279] C NN Protein Sequence 2003 NA 

PONDR 

VL3[315] 

C NN Residue frequency, 

flexibility and sequence 

composition 

2001 0.69 

Spritz [321] C SVM PSSM and secondary 

structure predictions 

2006 NA 

SPINE-D [322] C NN Residue and window 

level information from 

different parameters 

2012 0.82 

SLIDER[323]  C LR Physicochemical 

properties, complexity 

of sequence and amino 

acid composition 

2014 NA 

DisPredict 

[314] 

C SVM Amino acids, physical-

chemical properties, 

ASS 

2015 NA 

DISpro [324] L RNN PSSM, solvent 

accessibility, secondary 

structure  

2005 NA 

Espritz[325] L BRNN Sequence or add PSSM 2012 0.855 

AUCpreD [316]     L CNN CRF Residue-related features 

include identity, 

physical-chemical 

propensities 

2016 0.88 

SPOT-

Disorder[326] 

L LSTM RNN SSM, Shannon entropy, 

physical-chemical 

properties, structural 

properties 

2016 0.903 

PrDOS[327] M _ Combination of a SVM 

predictor and a homolgy 

predictor 

2007 0.907 

MD[327]  M _ Combination of 

DISOPRED2, 

PROFbval, IUPred and a 

few sequence properties 

2009 0.849 
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PONDR-FIT 

[315] 

M _ Combination of 

PONDR, PONDR VL3, 

IUPred, TopIDP  and 

FoldIndex 

2010 0.818 

MetaDisorder[

309], [328] 

M _ FloatCons: combination 

of 13 predictors  

2012 0.753 

DISOPRED3[3

28] 

M _ Combination of 

DISOPRED2, LDRs and 

a nearest neighbor 

predictor 

2015 NA 

MobiDB-

lite[329]  

M _ Combination of two 

variants of IUpred, and 

three variants of ESpritz, 

DisEMBL and GlobPlot  

2017 NA 

 

iii. Methodology 

1. Data curation 

In this study we intended to use an ensemble of long short term memory and convolutional 

networks to predict DRs. For this experimentally validated disordered protein sequences were 

required. These sequences were collected and from manually curated and annotated databases 

such as DisProt 7 [330] (v0.5 release 11-05-2017) and MobiDB  [331] (release 24 October 

2017). 

 

DisProt is a database comprising of experimentally validated and annotated information of 

disordered regions manually gathered from literature. Statistics includes 803 proteins and 2167 

regions. Each evidence is recognized by at least one experiment. DisProt disorder region (DR) 

is unambiguously distinguished by literature, the first and the last residue of the DR, and the 

experimental method utilized in the paper. DisProt can be annotated with functions and another 

ontology has been made to portray disorder-specific viewpoints. This has following structure, 

Molecular function of disorder region, the kind of basic structural transition of disorder region, 

the type of associating or interacting partners. 
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Figure 4.2: DisProt- Database of Protein Disorder. 

  

MobiDB[312] was intended to brought together asset for annotations of protein disorders and 

its functions. The database covers diverse issue perspectives. MobiDB highlights three 

quality levels of annotation from high to low quality (pyramid). Various sources present an 

unmistakable tradeoff among quality and coverage, for example, manually curated (annotations 

from external databases), indirect (Derived/determined data from experimental information, 

for example PDB structures and additionally chemical shifts), predicted (Predicted 

annotations). 
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Figure 4.3: Screenshot of MobiDB. 

 

All sequences and annotation data are also available for download. Manually curated consensus 

sequences were retrieved from the database. It gives output in CSV/JSON file containing 

protein name, protein sequence, start and end region, disordered region sequence. So, the 

dataset of 9604 unique disordered region sequence were extracted from the databases. 

 

 

2. Data analysis 

12375 protein sequences with annotated IDRs and non-IDRs were extracted and used for 

further analysis. Here since only amino acid sequences were being used for prediction of IDRs, 

hence it was essential to check if sequences of amino acids in IDRs and Non-IDRs are 

contrasting to each other. For the same reason, all protein sequences were fragmented 

according to ordered and disordered regions, then the average and log2 fold change for 

occurrence of various k-mers of amino acid sequences, i.e. 1-mer to 6-mers, among IDRs and 

Non-IDRs were calculated. Also, Structural and Physico-chemical property enrichment in 

IDRs with respect to the non-IDRs was calculated using Composition Profiler [332]. 

Composition profiler compares the probability of frequent amino acids between a test dataset 
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and background dataset for the particular structural and physicochemical property, here test 

dataset was fragments of IDRs, and background dataset constitute fragments of IDRs and 

ordered regions. 

All 12375 sequences were clustered according to sequence identity with the help of CD-HIT 

server [333] with sequence identity cut-off value of 0.75, and the representative sequence of 

each cluster was selected.  Further, the sequences have more than 25% identity with SL329 

[334], i.e. benchmark dataset, which was used for testing the generalization of the trained 

model, were being removed. After this step 7065 sequences were selected for future analysis. 

3. Data preparation 

a. Pre-processing 

Length of protein chains ranges widely. Figure 4.4 shows the distribution of protein’s chains 

according to their length plotted from the data acquired from PDB. For training a machine 

learning algorithm, the consistency in data is the primary requirement. This vast inconsistency 

in length may make it hard for deep learning models to extract features as extreme ends of the 

graph plotted has very few representations of data or data points. Therefore, we took the range 

60 to 600, which contained around 95% of the total proteins present in PDB, which was the 

length limit for our model for prediction.   

 

Figure 4.4: Distribution of proteins present in PDB according to their length. 

 

After applying a length limit filter on the dataset, a total of 7008 sequences remained. These 

sequences were all appended with a '0' at the beginning as a starting tag. To be compatible with 



Page | 119  

 

a deep learning model, the sequences needed to be of fixed length, meaning that every sequence 

must be the same length. Therefore, sequences that were less than 600 were padded with '1's 

up to a length of 600, and the remaining amino acids were numerically encoded from 2 to 23. 

The data set had a padding to amino acid ratio of 0.66. Because the dataset had a higher 

proportion of padding to amino acids, this may have hindered the learning of the LSTM 

network in the model. To address this issue, the dataset was divided into two subsets: one with 

protein sequences of a maximum length of 300 amino acids and the other with protein 

sequences of a maximum length of 600 amino acids. The first set contained 4274 protein 

sequences and the second set contained 2734 sequences. Both sets had a padding to amino acid 

ratio of 0.33. These two datasets were used to train two models with the same architecture but 

different input and output lengths. The model using the 300 amino acid long length sequences 

was named "model_300," and the other was named "model_600”. 

 

4. Building a model 

 

Figure 4.5: Proposed model for prediction of disordered regions. 

 

Above given Figure 4.5 delineates the proposed model for prediction of disorder regions in 

protein sequences. Keras Library was utilized for structure and preparing our model. This 

library is a high-level NNs API, scripted in python equipped for running over Theano, 
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TensorFlow or CNTK. TensorFlow is open source math programming library used in learning 

applications. It was developed with an attention on empowering quick experimentation. It is 

vital for doing great research because it provides a platform for going directly from thought a 

to desired outcome with the least conceivable delays. Keras offers simple and quick 

prototyping (through ease of use, extensibility and modularity). Supports both CNNs and 

RNNs, just as blends of the two. Runs consistently on CPU and GPU.  

 

5. Developing a model 

a. Weight vectors using embedding layer 

As mentioned by Heffernan, utilizing an alternate matrix representation, for example, the 

BLOSUM62 or physical-chemical properties of every residue do not give considerable 

variations in performance as they can be effectively represented on one- hot vector therefore, 

can be learnt as linear transformations by the network. In embedding, each residue is encoded 

as unique integer and defined as a vector in a continuous vector space. This layer necessitates 

that each residue is initialized to arbitrary weights and get familiar with an embedding for each 

residue. The weight initialization step usually carried out by Tokenizer API available in keras 

library. Finally, layer has optimized weights that are learned so the final output is a two 

dimensional vector with an embedding for every residue of input sequences in training set. 

Therefore, categorical features such as amino acid sequences are encoded numerically in a 

matrix of 23 X 23 using embedding layer. The weight matrix representation is given in code 

ocean repository (https://codeocean.com/capsule/3457808/tree).  

 

b. Feature extraction using layers 

The next step was to extract features from the sequences using a CNN layer. A window size of 

40 amino acids was used to extract 64 features. A bidirectional LSTM layer with 512 neurons 

was then used for global feature extraction along the sequence. Finally, a time distributed dense 

https://codeocean.com/capsule/3457808/tree
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layer of 552 neurons was used to concatenate the outputs from the LSTM layer using the 

softmax function to produce the final output. 

 

c. Training the model 

The objective of training a model is to discover parameters, that is weights in a network which 

limits the error function. This error function estimates the fit between sample’s true label (the 

real observation) and the model prediction output. The widely recognized error function in case 

of  classification problems is categorical cross‐entropy and in case of regression, it is mean 

squared function. It is difficult to minimize this function L(w) because of high‐dimensional and 

non‐convex nature.  

 

d. Deciding the quantity of neurons in a network 

The ideal quantities of neurons and hidden layers in the network are problem‐specific and ought 

to be optimized. A regular approach is to enlarge the quantity of neurons and layers without 

over-fitting the information. Larger number of neurons and layers increase the quantity of 

representable functions, and experimental evidences demonstrates that it makes initialization 

of weights less sensitive for finding a local optimum. Here we utilized different quantities of 

neurons blends in all layers, and found 552 neurons for Dense layer and 512 neurons for LSTM 

as ideal. The weights in the model were optimized utilizing Adam optimizer, in order to 

minimize categorical cross-entropy function, using default parameters. 

 

e. Partitioning dataset into Training and Validation datasets  

Learning models should be build, learn and validate on autonomous data sets to abstain from 

over-fitting. This makes sure that the model will generalize to new data. For appropriate 

training apportioning data into training, testing and validation datasets, and is the typical step 

for any machine learning system. The training set is utilized by the models to learn various 
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parameters, that are later assessed on validation set. The model with minimized mean-squared 

error function or highest prediction accuracy, is chosen and further assessed the performance 

of model on the test set to evaluate the correlation with different techniques. We used 80% of 

the data for training our model and 20% for its validation.   

 

f. Batch Size and Learning Rate Estimate  

The batch size and training rate of stochastic tendency ought to be picked up correctly, since 

they directly influence validation accuracy and rate of training of any model. Various learning 

rates have been generally explored, for instance, 0.001, 0.01 or 0.1, where 0.01 (on a 

logarithmic scale) is the suggested model training rate. For most applications, batch size 128 

and learning rate 0.01 are the most sensible and generally used as default. However, accelerate 

the training process by increasing the size of a batch or it can essentially be reduced to diminish 

memory use in cases where the learning of complex models is carried out on GPUs with limited 

memory. The perfect batch size and training rate are related; smaller learning rates require 

greater batch sizes consistently. In our work we have utilized a default learning rate 0.01 and 

batch size 50.  

 

g. Avoid Over-Fitting  

Training neural network-based models can be challenging due to the risk of data overfitting. 

Overfitting occurs when the model is too complex for the training set and is therefore unable 

to generalize to new data. It can be prevented by reducing the complexity of the model, such 

as decreasing the number of hidden layers and neurons, or by increasing the size of the training 

set through data augmentation. To avoid overfitting in our model, we applied a dropout rate of 

0.2 in the LSTM layer and used softmax activation and L2 regularization with a penalty of 

0.001 in the dense layer. 

The model was trained on Floyd Hub cloud computing using 32GB of RAM, an Intel Xeon 8-
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core CPU, and an NVIDIA Tesla K80 GPU for 50 epochs. The Python code for training the 

model is provided in code ocean repository (https://codeocean.com/capsule/3457808/tree). 

 

iv. Results 

 

1. Data preparation 

These sequences data were retrieved from manually curated and annotated databases such as 

DisProt7 and MobiDB, release October 2017. The sample of the retrieved data can be found in 

the table below. 

 

To summarize, a total of 9604 protein sequences were obtained and pre-processed to ensure 

consistency in the length of the sequences. This allowed the model to focus on patterns in the 

sequences rather than the differences in length. A threshold value was set for the range of 

protein sequence lengths at 150-550 amino acid residues. The final dataset consisted of 7008 

protein chains, which were divided into a training set of 5606 chains (80%) and a validation 

set of 1401 chains (20%). These sequences had a similarity of less than 25% as determined by 

BlastClust. 

 

Table 4.2: Sample of data retrieved from databases. 

Disprot_id End Name Method Start Sequence Protein

_type 

pmid 

DP00733 391 
 

XRAY 385 LHLCSGT Native 15713488 

DP00450 536 
 

XRAY 532 KDKCG Native 11005854 

DP00962 719 AF1 domain, 

Amino 

Terminal 

Domain (NTD) 

NMR 710 SEVHPSRLQ

T 

Native 19214187 

DP00962 750 AF1 domain, 

Amino 

Terminal 

Domain (NTD) 

NMR 720 TDNLLPMSP

EEFDEVSRI

VGSVEFDS

MMNTV 

Native 19214187 

DP01091 81 
 

XRAY 60 AEHQTAGR

GRHGRGWA

ATARAQ 

Native 20169168 
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DP01091 172 
 

XRAY 159 VTQAPEEV

DPDATS 

Native 20169168 

DP01099 10 
 

XRAY 1 MASPPPFHS

Q 

Native 12923182 

DP01099 350 
 

XRAY 339 GQASETPHP

RPS 

Native 12923182 

DP00981 173 C-terminal 

extension 

PNMR 165 EKPSSAPSS Native 1397302 

DP00324 102 
 

XRAY 92 REDSQRPG

AHL 

Native 11917013 

DP00142 209 
 

NMR 192 RAQIGGPEA

GKSEQSGA

K 

Native 7649277 

DP00142 209 
 

FCD 192 RAQIGGPEA

GKSEQSGA

K 

Native 10727931 

DP00142 209 
 

NCD 192 RAQIGGPEA

GKSEQSGA

K 

Native 10727931 

DP00023 199 
 

XRAY 191 TAFMEKVL

G 

Native 9525918 

DP00023 328 
 

XRAY 289 PAKAEAGA

EAGGGAGP

GAEDEAGR

GAVGDPEL

GDPPAAPQ 

Native 9525918 

DP00324 7 
 

XRAY 1 MSKSESP Native 11917013 

DP00733 326 VPg XRAY 321 LVKEVT Native 15713488 

DP00733 353 VPg XRAY 346 CSKLPKSL Native 15713488 

DP00324 196 
 

XRAY 182 SKQEMASA

SSSQRGR 

Native 11917013 

DP00322 31 
 

XRAY 14 SALPDPAGA

PSRRQSRQR 

Native 15525646 

DP00733 378 
 

XRAY 372 LLEEVSP Native 15713488 

DP00324 102 
 

XRAY 92 REDSQRPG

AHL 

Native 11917013 

 

The amino acids in proteins chains are labeled as ‘N’ or ‘D’ considering the structured or 

disordered regions respectively. The python code for reading and preparing data can be found 

in code ocean repository (https://codeocean.com/capsule/3457808/tree). 

 

 

 

 

https://codeocean.com/capsule/3457808/tree
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2. Exploratory analysis 

 To identify the IDRs and structured regions of proteins based on their sequences, it is necessary 

for the sequences to be distinct from one another. The amino acid composition and occurrence 

averages for k-mers (i.e. dimers to hexamers) were calculated and compared based on the log2 

fold change of amino acid k-mers present in IDRs and ordered regions. The composition of all 

amino acids and the top ten positive and negative log2 fold change for other k-mers were 

plotted. 

Figure 4.6: The composition of all amino acid and top ten positive-negative log2 fold change for amino acids k-

mers present in IDRs and ordered regions. 
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 The plots are shown in Figure 4.6, where a contrasting difference and biasness of specific 

amino acids and their repeaters for IDRs such as histidine and serine were observed. In Figure 

4.6(f), no common hexamers were found between IDRs and ordered regions which have a 

higher presence in the ordered region than IDRs. It was also observed that the sequence of 

amino acids like S-S-G-L-V-P-R-G, G-R-E-N-L-Y-F etc. were rich in disordered regions. All 

other values of k-mers can be found in the supplementary files. From these data, it was 

concluded that IDRs and ordered regions have amino acids and k-mers biasness and that our 

sequence-based model can successfully be able to learn from these contrasting features for the 

prediction of IDRs. The results of structural and physicochemical property enrichment in IDRs 

with respect to the non-IDRs from Composition Profiler[332] is shown in Table 4.3: Structural 

and physicochemical property enrichment in IDRs.  

Table 4.3: Structural and physicochemical property enrichment in IDRs 

Cumulative Amino acid Properties Enriched/Depleted in IDRs P-value 

Aromatic content Depleted P-value < 0.05 

Charged residues Enriched P-value < 0.05 

Positively charged Enriched P-value < 0.05 

Negatively charged Enriched P-value < 0.05 

Polar (Zimmerman) Enriched P-value < 0.05 

Hydrophobic (Eisenberg) Depleted P-value < 0.05 

Hydrophobic (K-D) Depleted P-value < 0.05 

Hydrophobic (F-P) Depleted P-value < 0.05 

Exposed (Janin) Enriched P-value < 0.05 

Flexible (Vihinen) Enriched P-value < 0.05 

High interface propensity (J-T) Depleted P-value < 0.05 

High solvation potency (J-T) Enriched P-value < 0.05 

Frequent in alpha helix. (N) Not significant P-value > 0.05 

Frequent in beta structure (N) Depleted P-value < 0.05 

Frequent in coils (N) Enriched P-value < 0.05 

High linker propensity (G-H) Depleted P-value < 0.05 

Disorder promoting (Dunker) Enriched P-value < 0.05 

Order promoting (Dunker) Depleted P-value < 0.05 
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Bulky (Zimmerman) Depleted P-value < 0.05 

Large (Dawson) Depleted P-value < 0.05 

 

3. Building a model 

Our model utilizes an ensemble of embedding layer, convolutional layer and bidirectional 

LSTM layer. The description of each of these architectures embedding, convolutional, 

bidirectional LSTM and time distributed dense layer are represented in a Figure 4.7.  

Where embedding layer has optimized weights for every amino acid residue that are learned 

and the final output is represented in a two dimensional weight vector matrix of 23 X 23 vector. 

The one dimensional convolution layer connected in our model uses a window size of 40 amino 

acid residues for extracting 64 features along the length of sequences. Bidirectional LSTM 

layer consists of a one cell memory state in each direction concatenating together to give an 

output of 2X NLSTM size. Different combinations of neuron quantities were tested in all 

layers, and it was determined that 552 neurons in the dense layer and 512 neurons in the LSTM 

layer were optimal. To prevent overfitting, a dropout rate of 0.2 was applied in the LSTM layer 

and an L2 regularization penalty of 0.001 was applied in the dense layer. The ReLU activation 

function was used for the Conv1D layer and the softmax function was used for the time 

distributed dense layer. The weights in the model were optimized using the Adam optimizer 

and the categorical cross-entropy function was minimized using default parameters. 
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4. Performance evalution 

 

After training the model on 80% of the dataset, it was evaluated or validated on the remaining 

20% data-set. Both models were concatenated in a package where the protein sequences of 

lengths between 60 to 300 were processed by model_300, and the protein of length between 

301 and 600 will be processed by model_600. The model evaluation parameters on validation-

set are given in Table 4.4: Evaluation of the model on the validation set.. ROC curve on the 

validation set is shown in Figure 4.8. 

Figure 4.7: Architecture of the proposed model. An ensemble of Embedding, CNN and Bi-LSTM for extracting features. 

Extracted features were fed to step distributed dense layer with softmax function for determining the probability of being 

ordered or disordered. 
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Figure 4.8: ROC curve of proposed model on validation set. 

 

Table 4.4: Evaluation of the model on the validation set. 

 

 

 

To compare our proposed model with other state-of-the-art models, we evaluated our trained 

model on benchmarked data set SL329, which was filtered according to our model’s length 

limit SL293. ROC curve of the predicted results by our model on the mentioned test set is 

shown in Figure 4.9  

 

 

 

 

 

 

 

 

Table 4.5: Comparison of the proposed model with various state of the art models on test set SL293. 

AUC of ROC Sensitivity Specificity Precision MCC 

0.94 0.859 0.877 0.878 0.736 

Figure 4.9: ROC curve of proposed model on test set. 
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Method AUC of ROC Sensitivity Specificity MCC 

SPINE-D[335] 0.886 0.78 0.85 0.63 

MFDp[336] 0.873 0.88 0.62 0.51 

Disopred2[328] 0.858 0.69 0.90 0.59 

MD[337] 0.864 0.66 0.89 0.58 

DISOClust[338] 0.846 0.81 0.70 0.51 

PONDR-

FIT[339] 

0.843 0.61 0.91 0.55 

Dispro[340] 0.837 0.28 0.99 0.40 

Spot-Disorder-

Single[341] 

0.887 0.67 0.97 0.604 

NORSnet[342] 0.815 0.54 0.92 0.51 

PONDR-

VLXT[343] 

0.755 0.59 0.78 0.38 

Proposed model 0.89 0.87 0.8 0.677 

 

Table 4.5: Comparison of the proposed model with various state of the art models on test set 

SL293. shows the comparison among some published models and our proposed model in terms 

AUC of ROC, specificity, sensitivity and MCC (Matthews Correlation Coefficient) . Our 

model outperformed other well-known servers and programs in terms of AUC and MCC. In 

terms of sensitivity, our, model scored 0.87. The specificity of our model on test data was found 

to be 0.8; Specificity here can be stated as a  tendency of a model for prediction of a residue in 

the ordered region when it is genuinely in the ordered region. Higher specificity and lower 

sensitivity often indicate the biasness of a model for predicting more negative value; in this 

case, amino acids in the ordered region. Our model seems to have a balanced ratio which can 

be seen in high MCC value. 

 

v. Discussion and Conclusion 

The intrinsically disordered regions are comprehensively being implied to various 

physiological processes and disease, and also complement the functions of structured proteins. 

These regions can be determined by multiple experimental techniques. Because of high cost 

and time for identifying disordered regions experimentally, researchers depend on 

computational strategies in order to predict probable IDRs/IDPs before conducting subsequent 
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validation through experimental studies. Although many advancements have been made in 

recent years for prediction of long and short intrinsically disordered regions, but there is still a 

significant scope for algorithmic improvement. 

 

It has been observed that the neural networks are exceptionally the most effective class of 

machine and pertinent in taking care of pretty much every sort of issue beginning from 

classification, clustering, regression, natural language processing, sequence prediction, 

structure prediction and so forth. The fundamental way of learning a neural network is by 

altering input loads of each neuron. CNNs are a class of ANNs which are utilized for feature 

extraction or selection. They are generally utilized in picture image recognition for discovering 

extraordinary features from pictures. They can additionally be used in extraction of features or 

perceive specific patterns from sequences which are exceptionally hard to be considered 

manually. 1D Convolutional Network can be utilizing for choosing features from a 1D 

information for example a text sequence. RNNs are another class of ANNs which are effective 

in gaining from a sequence information. They fundamentally utilize their interior state 

(memory) to process input sequence which enable them to recollect some past information 

which is useful in managing sequence data. RNNs are used sequence classification and 

sequence prediction. But RNNs are tend to have a problem of vanishing gradient where it tends 

to forget instance from very initial states. For overcoming this problem researcher have come 

up with an up gradation in RNNs i.e. LSTMs. LSTMs tackle the vanishing gradient by adding 

another memory unit which takes accounts of all necessary states and stores them. 

Recent advancements in natural language processing techniques can be seen from more 

accurate language translations, text summarization, sentiment analysis, text generation etc. 

[344]. The most difficult part in the NLP pipeline is feature extraction and to find out the 

relation between words or letters through their numerical representations[345]. Previously 
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various machine learning techniques have been used for solving the problems of identifying 

IDRs form protein sequences, but their accuracies are limited due to lack of proper feature 

selection and small dataset[346]. In the present work, amino acids were treated as letters of 

proteome language. An exploratory data analysis of amino acid sequences of IDRs and ordered 

regions was carried out to check if they have contrasting differences in the arrangement of 

sequences, structural and physicochemical properties. Analysis of various kmers in (Figure 

4.6) showed us that IDRs are biased towards some amino acid arrangements. Further structural 

and physicochemical properties enrichment in IDRs support our observation of amino acid 

biasness. In Table 1 and Figure 4.6, the aromatic amino acid content in IDRs are less as these 

amino acids tend to stabilize structures due to their aromatic ring[347]. Charged residues are 

present in more number in IDRs; IDRs have less hydrophobic residues and more hydrophilic 

residues which shows IDRs presence on the protein surface. IDR enrichment analysis of 12375 

protein sequences displays an increase in flexibility, solvation potency and the frequency for 

forming coils. Through the analysis, it appears that IDRs can be characterized by a decrease in 

interface propensity, formation beta structures, linker propensity and bulky amino acid 

significantly (Table 1). These observations can be generalized, and several have been proved 

previously[348]. After observing the differences in Amino acid arrangements in IDRs and 

ordered regions, NLP pipeline was used for extracting features via 1D convoluted layers on the 

top of the embedding layer. Embeddings are much successful in NLP projects for feature 

assigning than, one-hot-encoding, n-grams, bag of words etc. [349]. Embedding layer learns or 

updates and assigns the required number of features during training, to each amino acid by 

adjusting its weights, where the user has to define the number of features per letter or amino 

acids. On top of the embedding layer, a 1D CNN was placed for retrieving local sequence 

features. CNN takes a user define window size to apply filters, i.e. an abstract representation 

of that window size, and the user also defines the number of filters or features. On top of 
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embedding layer and CNN layer a Bidirectional LSTM layer was placed which take account 

of the output of embedding (single amino acid features) and CNN (derived local features) 

layers to derive global features. Lastly, these local and global derive features are feed to three 

neurons for each position of residues to learn and decide if the residue is at IDRs or ordered 

region. After training the proposed NLP based model achieve AUC of 0.94 with sensitivity, 

specificity and precision, of  0.859, 0.877 and 0.878, respectively (Table-2).  When 

testing the proposed model on SL293 dataset and comparing with other states of art IDRs 

prediction models, it was seen that the proposed model have a slight increase in AUC with 

0.89, however it was able to balance the Sensitivity, Specificity with an MCC of 0.67 (Table 

3). This significant increase in MCC may be due to firstly the use of larger datasets which were 

retrieved from most updated databases, large dataset means the model will train better. 

Secondly, fragmentation of the datasets in two length limits i.e. 300 and 600 respectively have 

help the models to focus on learning the features of amino acids than pads as padding to amino 

acid ratio was 0.33 in both the data set which was 0.66 in accumulated data which would force 

the model to learn more features of pads[350]. One of the limitations for the proposed model 

is the length range i.e. maximum length in can take as input is 600 aa residues, as there were 

less data available for proteins with more than 600 aa residues and which can be addressed 

once ample amount of data is available for training. The dataset and ready to execute package 

is available at https://doi.org/10.24433/CO.3457808.v1, where users can run the application 

with custom inputs. The proposed model has outperformed the other state-of-the-art techniques 

for the prediction of IDRs. In terms of speed, the depthwise separable 1D CNNs which have 

fewer weights than vanilla 1D CNNs, making it faster for making predictions on a genomic 

scale. The model took 71 mins for processing random 10000 sequences from ModiDB database 

on Intel Xeon CPU W-2133 @ 3.60GHz without any parallelize processing. NLP techniques 

are used for processing of languages, this approach showed that amino acid sequences can be 

https://doi.org/10.24433/CO.3457808.v1
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treat as the letter for deciphering language of the structural proteome and may have enormous 

applications in the field of biomedical sciences. 
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Chapter 5. Utilizing Deep Learning to Explore Chemical Space for 

Drug Analogues Generation 

 

 

i. Introduction 

Medicinal chemists plays an important role to enhance an existing active molecule, whether it 

be natural or synthetic (i.e., through the practise of Analogues design) [351]. The tweaking of 

a drug molecule or any other bioactive product in order to create a new molecule that shares 

similar properties with the original model compound on both a chemical and biological level 

is known as Analogues design. The Analogues is typically considered to have certain 

advantages over the original pharmaceutical molecule.  The use of Analogues design has been 

successful, simple to manufacture, and widely accepted in pharmaceutical research since its 

inception. According to a review, 10% of pharmaceuticals on the market are unaltered 

compound which exists in nature, 29% are their derivatives (semi-synthetics), and the rest 61% 

are synthetic[352]. Using commercially accessible drug structures as a starting point for 

research (i.e., Analogues-based drug design), results in iterative adjustments that improve 

therapeutic agent efficacy and safety[353], [354]. For example, the 55 years of Analogues 

design that followed the creation of the historical antibiotic penicillin G allowed for the 

development of broad-spectrum, modern, orally active-lactam antibiotics such as ampicillin 

and amoxicillin[355]. Neuroleptics, antidepressants, and antihypertensive medications all 

underwent similar changes[356]. Analogues design accounts for two-thirds of all small 

molecule sales.  

Analogues, which are similar to a known therapeutic molecule, are usually created through 

small molecular changes such as the formation of homologues, vinylogues, isosteres, positional 

isomers, optical isomers, and altered ring systems[357]. The basic structure of the molecule is 

usually preserved or only slightly modified. Substituent effects, which can be used to fine-tune 
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the molecule, can be analyzed using techniques like QSAR [358] . Given that the Analogues 

are derived from a known therapeutic molecule as a starting point, drug-like properties are not 

a major concern.  When necessary, filters are used to remove reactive or toxic groups and 

consider qualities related to absorption, distribution, metabolism, and excretion (ADME) such 

as blood brain barrier permeability. In the past, discovering functional Analogues was often a 

result of luck, but now virtual screening and systematic screening can be used to search for 

these Analogues in databases like PubChem[359] , ChEMBL[360], and ZINC[361], which 

contain a range of 2.3 million to 750 million compounds. 

As a result, only a small portion of the chemical space has been explored thus far, which 

includes approximately 1060 small, synthetically possible molecules [362]. The primary tool 

for exploring the molecular space is now generative models. The use of generative models to 

create molecules from scratch has increased over the last few years, and this area has been 

extensively studied. These generative models—such as recurrent neural networks (RNNs) 

[363], [364], variational autoencoders (VAE)[365], and generative adversarial networks 

(GAN) [366], [367]—come from a variety of architectural types and have been demonstrated 

to produce accurate, unique compounds with desirable physicochemical properties in the same 

chemical space as their training sets. Generative models have been developed to address two 

main issues: how molecules are represented and how their properties are optimized[368], [369]. 

Optimizing molecular properties during the generation process aims to create clusters of high-

validity, novel, and synthesizable molecules in chemical space[370], [371]. These improved 

algorithms have been successful in goal-directed molecular design and have led to the 

identification of novel active molecules through organic synthesis and activity evaluation, 

demonstrating the potential of deep learning-based generative models in de novo drug design. 

Different representations, such as SMILES[372], molecular graphs[373], [374] , fingerprints 

[375], and 3D geometry[376], are used to help deep learning algorithms understand the features 
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of molecules.   

In this study, the SMILES representation were used as the starting point for analyzing chemical 

structures because it follows a set of rules and conventions for encoding the molecular structure 

of a compound using letters, numbers, and symbols. In this study, 2.3 million chemical 

structures from ChEMBL [360]were used to train an autoencoder. An autoencoder is made up 

of an encoder and a decoder as its basic components. The encoder is a neural network that 

processes the input data and maps it to a low-dimensional latent space, while the decoder is a 

neural network that maps the latent space back to the original data space. Together, these two 

networks comprise the autoencoder, which can be trained to learn a representation of the input 

data that captures the underlying structure of the data and can be used to generate new data that 

is comparable to the original dataset. Following the lowest latent layer of the autoencoder, a 

batch normalisation layer was added. Batch normalisation is a method for normalising the 

activations of a neural network layer. It often entails subtracting the batch mean and dividing 

by the batch standard deviation in order to normalise the activations of data. As a result, the 

distribution of the activations becomes more stable, which can enhance the model's efficiency 

and convergence. To concentrate the distribution of the latent space of the autoencoder, the 

model was trained using large batch sizes.  

The hypothesis behind the study was that, by adding random noise to an autoencoder's latent 

representation, similar but slightly different SMILES could be generated because the 

autoencoder can "decode" the latent representation back into SMILES. By introducing noise 

into the latent representation, the input to the decoder can be slightly alter, resulting in the 

generation of new SMILES that are similar to the original but differ in some ways, i.e. 

generating Analogues. Further, the encoder was fed with a randomly selected FDA-approved 

drug, vandetanib [377], to obtain its latent representation. Random Gaussian noise was added 

to its latent representations and passed it into the decoder to generate various drug Analogues. 
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The molecules were then docked with their native receptors, and molecular-dynamic 

simulations of the complexes were run to determine their stability and compare them to the 

control. At least two generated Analogues have similar and improved affinity for its receptor, 

RET tyrosine kinase. 

 

ii. Literature Review 

1. Drug Analogues 

Analog design is the process of creating a new chemical compound that is similar to an existing 

drug or bioactive compound in an effort to enhance or replace it[356]. This is commonly done 

for financial reasons, but it can also result in compounds that are more effective. Analog design 

is common in pharmaceutical research and has been used to create a wide range of complex 

molecules such as steroids, prostaglandins, anticancer drugs, and antibiotics. Analogue design 

is thought to account for roughly two-thirds of small molecule sales. This process led to the 

development of oral, broad-spectrum beta-lactams such as ampicillin and amoxicillin, which 

are safer and more effective than penicillin G[378], [379]. This method has also been used in 

the creation of medications for mental illness, hypertension, and other conditions. Many of the 

small-molecule drugs introduced or approved between 2000 and 2003 were based on existing 

drug structures or structures in the early stages of development[380]–[382]. However, some 

critics argue that this approach primarily produces "me-too" drugs as opposed to truly 

innovative medications. It is essential to note that there are various types of analogue drugs, 

and not all of them fall under this critique[383], [384]. 

In the field of natural science, analogy refers to structural and functional similarity between 

two things. An analogue of an existing drug molecule is a compound that shares chemical and 

pharmacological similarities with the original compound. There are three types of drug 

analogues: those with both chemical and pharmacological similarities; those with chemical 

differences but similar pharmacological properties; and those with neither chemical nor 
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pharmacological similarities. 

The first category of drug analogues consists of those with chemical and pharmacological 

similarities to the original compound, also known as "me-too" drugs. These analogues are 

pharmacologically, pharmacodynamically, or biopharmacologically superior versions of the 

original compound. Through simple molecular modifications, such as the synthesis of 

homologues, vinylogues, isosteres, positional isomers, optical isomers, modified ring systems, 

and twin drugs, they are produced (homodimers). These analogues are created for the same 

reason that other industrial products, such as laptops and automobiles, are: to provide the 

consumer with an advantage in the form of enhanced therapeutic benefit. 

  

  

The second category of analogues, structural analogues, consists of compounds that were 

designed as patentable analogues of a novel lead compound but have unexpected 

pharmacological properties. For instance, imipramine was originally intended as an analogue 

of the neuroleptic drug chlorpromazine, but antidepressant properties were discovered. 

Sildenafil was originally developed as an antihypertensive medication, but clinical trials 

revealed that it is also effective for treating erectile dysfunction in men. Structural analogues 

may also be the result of systematic studies involving the multi-target screening of a large 

number of structurally similar compounds[385], [386]. 

  

Functional analogues are compounds that lack chemical similarity but share similar biological 

properties. Historically, these analogues were the result of chance observations; however, they 

can now be designed through the virtual screening of large libraries of diverse structures. 

Functional analogues include the neuroleptics chlorpromazine and haloperidol, which have 

different chemical structures but similar affinities for the dopamine receptor, and the 
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tranquillizers diazepam and zopiclone, which have different chemical structures but similar 

affinities for the benzodiazepine receptor[385], [387]. 

  

The synthesis of new analogues can be accomplished through a variety of methods. Beginning 

with natural sources such as plants and animals can provide a wealth of chemical diversity and 

lead to the discovery of new medications. Natural compounds such as cocaine, morphine, and 

quinine have given rise to numerous analogues[388], [389]. In some instances, metabolites 

generated by various metabolic pathways may have superior properties to the parent molecule 

and can serve as lead compounds for the synthesis of additional analogues[390]. Lastly, the 

success of existing drugs may also inspire the creation of "fast followers" or "me-too" drugs 

with a comparable structure or function. The purpose of analogue synthesis is to enhance the 

properties of existing compounds and develop new drugs with improved efficacy, safety, and 

ADME (absorption, distribution, metabolism, and excretion) profiles[391]. For instance, a drug 

with a short half-life is rapidly metabolised and eliminated from the body, necessitating 

multiple doses throughout the day. By modifying the drug's chemical structure, it may be 

possible to increase its half-life and decrease its dosing frequency. In addition to enhancing the 

safety profile of a drug, drug analogue design is pursued in order to enhance the drug's safety 

profile. Some medications may have undesirable side effects, such as gastrointestinal 

discomfort or liver toxicity. By making minor modifications to the drug's chemical structure, 

it may be possible to reduce or eliminate these side effects[392]. 

 

2. Computational methods for Drugs analogues Designs 

Designing drug analogues is the process of creating structural variations of existing drugs in 

an effort to enhance their potency, stability, and safety. This process typically involves making 

minor modifications to the original drug's chemical structure in order to enhance its therapeutic 

effects. For instance, a drug analogue's design algorithm may seek compounds with similar 
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structures to an existing drug but with different functional groups or substituents that are 

predicted to increase its potency or decrease its toxicity. 

Typically, the design of drug analogues involves multiple steps. Initially, the original molecule 

of the drug is identified and its structure is thoroughly analyzed. Then, various variations of 

the molecule are created and evaluated to determine which ones possess the desired properties. 

This can be a time-consuming and labor-intensive process, as it may involve synthesising and 

testing a large number of variants prior to determining the optimal solution. Once a promising 

drug analogue has been identified, it must undergo additional testing to determine its safety 

and efficacy in treating the condition of interest. This typically involves administering the drug 

to human subjects and closely monitoring the results of clinical trials. The drug can then be 

submitted for approval by regulatory bodies such as the Food and Drug Administration (FDA) 

in the United States if it is found to be safe and effective. 

To create an analogue of a drug, one also has to comprehend the chemical structure and 

mechanism of action of the original drug. Typically, this includes studying the drug's 

mechanism of action, pharmacokinetics, and pharmacodynamics. Once this is understood, 

chemists can use a variety of techniques to modify the drug's chemical structure in order to 

create analogues. Altering the chemical structure of the original drug, such as by substituting 

one of its atoms or atom groups with a different atom or group, is a common strategy. There 

are a number of computational methods for designing chemical analogues[393], [394]. 

Utilizing computer-based modelling and simulation techniques to predict the properties and 

behaviour of potential analogue compounds and evaluate their potential efficacy and safety for 

a given application is typical of these methods. 

Using structural modelling, which involves creating a computer-generated model of the 

chemical structure of an interesting compound, is one approach. This technique can then be 

used to predict the compound's behaviour in various environments, such as in the presence of 
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other chemicals or under varying temperature and pressure conditions using molecular 

dynamic simulation[395]s. 

 

3. De-novo drug generation  

There are approximately 1023 to 1060 drug-like compounds in chemical space, making it 

difficult to investigate each one[396], [397]. To efficiently discover new lead compounds for 

drug discovery, high-throughput screening and virtual screening are frequently used to evaluate 

large chemical libraries with a number of filters. Quantitative structure-activity relationship 

methods based on machine learning have also been used to evaluate the physical and 

pharmacological properties of molecules[398]. De novo drug design entails the generation of 

new molecules with the desired properties from scratch, whereas traditional virtual screening 

methods search existing chemical libraries for molecules with the desired properties[399]. 

Several de novo drug design strategies employ computational growth and evolutionary 

algorithms to generate new molecular structures from smaller building blocks. However, these 

methods frequently struggle to optimise multiple objectives while simultaneously producing 

novel compounds. The advent of deep learning has opened up new opportunities for the design 

and discovery of innovative pharmaceuticals. In recent years, various deep learning-based de 

novo drug design algorithms have been developed, and in 2020, the Massachusetts Institute of 

Technology Technology Review ranked the use of deep learning in drug discovery as one of 

the top 10 breakthrough technologies[400]. In virtual screening, methods based on deep 

learning are frequently employed to predict the physical or biological properties of input 

molecules, which is a form of discriminative modeling. In contrast, generative models based 

on deep learning can be utilised to explore the vast chemical space and identify compounds 

with desirable properties, a process known as reverse quantitative structure-activity 

relationship. Generative models aim to approach desirable molecular properties through 

optimised strategies, similar to virtual screening techniques, which use multiple filters to 



Page | 144  

 

narrow the chemical space until it is manageable. By exploring the continuous space of 

properties, generative models are believed to be able to generate molecules with novel scaffolds 

and desirable properties. 

Recurrent neural networks, encoder-decoder models, reinforcement learning, and generative 

adversarial networks are the four primary classes of machine learning algorithms used to 

construct generative models. These models address molecular representations and optimization 

strategies and generative adversarial networks are the four primary classes of machine learning 

algorithms used to construct generative models. These models address molecular 

representations and optimization strategies. Different types of molecular representations, such 

as SMILES, molecular graphs, fingerprints, and three-dimensional geometries, are used to help 

deep learning algorithms comprehend the various features of a molecule. The objective of 

optimising molecular properties during the generation process is to create high gradients and 

clustered regions in chemical space for the generated molecules, thereby ensuring their validity, 

originality, and synthesizability. Using tensor decomposition and self-organizing map 

techniques, for instance, the GENTRL algorithm optimised the properties of molecules in 

chemical space to design novel active compounds against the Discoidin Domain Receptor 

Tyrosine Kinase 1. 

 

4. SMILES chemical representations 

SMILES, or Simplified Molecular Input Line Entry System, is a widely used representation of 

chemical structures in computational chemistry. Many generative models use SMILES as 

input, but a molecule can be represented by multiple different SMILES strings, which can lead 

to problems with atom-order invariance in the latent space[148], [401]. These issues can be 

addressed through the use of SMILES enumeration. Context-free language, which provides a 

more robust encoding of the rings and branches of molecules, can also be used to extend 

SMILES and has been applied successfully in generative models. A chemical smile is a string 
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of characters that represents a chemical compound or molecule using a specific set of rules. It 

is also known as a SMILES string. A chemical smile uses a combination of letters, numbers, 

and symbols to encode the molecular structure of a compound. The letters represent the 

elements that make up the molecule, and the numbers and symbols indicate the connectivity 

between the atoms. For example, the chemical smile for water (H2O) would be "O" because 

the molecule contains one oxygen atom and two hydrogen atoms. 

To form a SMILES string, you need to follow a set of rules and conventions that define how 

the molecular structure of a compound is represented using letters, numbers, and symbols. 

Here are the steps to form a SMILES string: 

1. Write the element symbols for the atoms in the molecule, in the order in which they 

appear in the molecule. For example, the SMILES string for water (H2O) would be "O" because 

the molecule contains one oxygen atom and two hydrogen atoms. 

2. Use parentheses to enclose any atoms that are part of a sub-structure or branch in the 

molecule. Theophylline, a compound commonly found in tea leaves, can be represented by the 

following SMILES string: 

CN1C(=O)C2=C(NC1=O)N(C)C(=O)N2C 

In this SMILES string, the substructure enclosed in parentheses represents a cyclic group 

within the larger molecule. The substructure "(=O)" within the cyclic group represents a 

carbonyl group. 

3. Use the symbol "=" to indicate a double bond between two atoms, and the symbol "#" 

to indicate a triple bond. For example, the SMILES string for ethene (C2H4) would be "C=C" 

because the molecule contains two carbon atoms that are double-bonded together. 

4. Use the symbol "-" to indicate a single bond between two atoms, unless the bond is 

explicitly indicated using one of the other symbols. For example, the SMILES string for 

ethoanol (C2H6O) would be "CC-O" because the molecule contains one carbon atom that is 
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bonded to four hydrogen atoms, and the bond between the carbon and hydrogen atoms is 

implicit. 

5. Use the symbol "@" to indicate the chirality (handedness) of an atom. For example, the 

SMILES string for D-glucose (C6H12O6) would be "C@C(O)CC(O)C(O)C(O)O" because the 

molecule contains one chiral carbon atom (indicated by the "@" symbol) and five other carbon 

atoms that are bonded together in a ring structure. 

Overall, forming a SMILES string involves following a set of rules and conventions to encode 

the molecular structure of a compound using letters, numbers, and symbols. By following these 

rules, you can create a SMILES string that accurately represents the chemical structure of a 

molecule. Chemical smiles are used in cheminformatics, a field that involves the use of 

computer technology to store, search, and analyze chemical data. They provide a compact and 

standardized way to represent molecules and can be used to search databases of chemical 

compounds, predict the properties of compounds, and perform other types of analysis. 

 

5. Algorithms  

There are two main categories of deep learning-based generative models: those that generate 

molecules by sampling the latent space, such as encoder-decoder models, and those that 

generate molecules towards predetermined molecular properties, such as recurrent neural 

network, reinforcement learning, and generative adversarial network models[402], [403]. To 

achieve goal-directed molecular generation towards a specific target, several strategies can be 

used, including generating a large chemical library and using virtual screening, retraining the 

model with active compounds for the target, introducing established quantitative structure-

activity relationship models for the target into the adversarial or reinforcement architecture, 

and including protein-ligand interactions in the model's training process. Encoder-decoder 

models, including variational autoencoders and transformers, comprise an encoder that maps a 

molecule to a vector in the latent space and a decoder that maps the probability distribution 
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back to the original representation[404]. Recurrent neural network models solve the gradient-

vanishing problem by generating the most probable arrangement of the molecular 

representation using algorithms such as long short-term memory and gate recurrent unit. 

 

Transfer learning is the process of enhancing learning in a new task by transferring knowledge 

acquired in a related task. Transfer learning in the context of recurrent neural network models 

entails using active compounds to retrain the generative model for a specific target. Several 

studies have successfully employed transfer learning to fine-tune recurrent neural network 

models in order to generate molecules with novel scaffolds aimed at particular targets. One 

advantage of recurrent neural networks is their capacity to generate molecules of limitless 

length, as well as their relatively straightforward model training[405]–[407]. A generator and 

a discriminator play a zero-sum game, with the discriminator attempting to distinguish 

generated molecules from real positive molecules and the generator attempting to generate 

molecules from noise and deceive the discriminator[408]–[410]. For de novo drug design tasks, 

generative adversarial networks are frequently combined with other deep learning frameworks. 

Objective-reinforced generative adversarial networks and objective-reinforced generative 

adversarial networks for inverse-design chemistry use a generative adversarial network 

discriminator and a reinforcement learning reward system to evaluate the generated molecules. 

Combining generative adversarial networks and variational autoencoders, adversarial 

autoencoders can be used to generate compounds against a specific target by operating on the 

latent layer of the variational autoencoder and introducing a generative adversarial network 

discriminator. Variational autoencoders are less suitable than adversarial autoencoders for 

molecular feature extraction based on the fingerprint representation of molecules.[411], [412] 

Deep reinforcement learning is a technique for optimising deep learning models that employs 

a reward function to score the actions of an agent, with the resulting scores guiding the agent's 
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subsequent actions[369]. In the process of molecular generation, a generator (agent) generates 

molecules in a predetermined mode (task and action), and a built-in quantitative structure-

activity relationship predictor (environment) evaluates the quality (reward or penalty) of the 

generated molecules. The evaluation procedure aims to enhance the desired characteristics of 

the generated molecules. Deep Q-Network, REINFORCE, and Monte Carlo tree search are the 

most common reinforcement learning-based generative model training strategies[413], [414]. 

 

In tasks such as image, language, and music generation, deep learning algorithms have 

exhibited significant advantages over conventional machine learning algorithms. There are at 

least three major differences between image/text generation and molecule generation: data 

representation, machine learning-based predictors, and evaluation metrics. Molecular 

representation is a crucial component of a generative model, and there are a variety of 

molecular representations to choose from, as different tasks may call for distinct molecular 

representations[401], [415], [416]. Moreover, the fault tolerance of the generated molecules 

differs from that of other representations. Machine learning-based quantitative structure-

activity relationship models are frequently used as reward functions in reinforcement learning 

and generative adversarial network architectures to guide the generation of molecules, but the 

false positive rate of these models for predicting and classifying the bioactivity, physical and 

chemical properties, and drug-likeness of molecules should not be overlooked. Wet laboratory 

experiments are the best way to evaluate the quality of generated molecules, but due to the 

large number of generated molecules, this is typically impractical. Consequently, machine 

learning criteria are used to evaluate the quality of generated molecules, but there is no gold 

standard metric for evaluating the performance of deep generative models or the quality of 

generated molecules[417], [418]. 

Previous methodological research has primarily focused on improving the deep learning 



Page | 149  

 

framework for generating valid molecules with some level of novelty and/or synthetic 

accessibility. There are, however, fewer empirical studies on the de novo design of novel 

molecules, followed by chemical synthesis and activity evaluation using the deep learning 

framework. Furthermore, the majority of open-source tools are focused on developing new 

algorithms rather than de novo drug design for specific targets. Therefore, novel drug design 

requires platforms that integrate multiple deep learning molecular generation algorithms. 

Traditional methods, such as the genetic algorithm, can achieve comparable results with 

appropriate fine-tuning for de novo drug design, despite the potential of deep learning 

technology[419]. Deep learning is still in its infancy in the field of drug design, and these 

developments in other fields may provide guidance for future drug design and discovery 

applications. 

  

iii. Methodology 

1. Model Building and Data curation 

Autoencoders are a type of neural network used for unsupervised learning. It is frequently 

employed in dimensionality reduction and feature learning. It is divided into two parts: an 

encoder and a decoder. An autoencoder was trained to reconstruct its input data, which was 

chemical SMILES, by learning a compact, lower-dimensional representation of the input data 

known as the latent space. An autoencoder architecture was implemented that would use 

embeddings to represent characters in text data, an LSTM encoder to process the embedded 

text data and compress it into a latent space, and an LSTM decoder to reconstruct the original 

text data from the latent space representation. The autoencoder's layer by layer details are 

mentioned below and shown in Figure 5.1: 

Input layer: The input to the autoencoder is a sequence of characters in the form of a list of 

integers, where each integer represents a character in the input chemical SMILES. 

Embedding layer: The input integers are passed through an embedding layer, which maps 
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each integer to a dense vector of floating-point values. This allows the autoencoder to represent 

each character in the input SMILES as a dense, continuous vector, which can be processed by 

the neural network. These vectors are learned during the training process and are intended to 

capture the relationships between characters in the SMILES vocabulary. 

Encoder: The embedded input SMILES is then passed through an LSTM encoder, which 

processes the sequence of embedded vectors and compresses them into a fixed-length latent 

space representation. This is done by iteratively processing the embedded vectors one at a time 

and using the hidden state of the LSTM at each time step to capture the context and 

dependencies between the characters in the input SMILES. 

Flatten layer: The output of the LSTM encoder is then passed through a flatten layer, which 

converts the latent space representation from a two-dimensional tensor to a one-dimensional 

tensor. This allows the autoencoder to learn a more compact representation of the input 

SMILES data.  

Fully connected layers: The vectors of the Flatten layer is then passed through a fully 

connected (FC) layer, which further reduces the number of vectors into 100 for more compact 

representation of the one-dimensional latent space. 

Batch normalization layer: The latent space of an autoencoder is a representation of the data 

that is typically not regularized and may be discrete for certain data points. To structure the 

latent space in a specific way or make it follow a particular distribution during training, a batch 

normalization layer was used. This layer normalizes the activations of the previous layer by 

scaling them to have a mean of zero and a variance of one. The batch size can affect the 

distribution of the latent space when batch normalization is used in an autoencoder in several 

ways[420], [421]. Larger batch sizes may provide more accurate estimates of the mean and 

variance of the batch normalization layer and can lead to more stable gradients during training, 

making it easier for the network to learn the latent space distribution[422]. This can result in a 
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more concentrated distribution as the network more effectively learns the underlying structure 

of the data. Larger batch sizes can also reduce the occurrence of internal covariate shift, which 

can improve the stability of the network's training and prevent it from "forgetting" previously 

learned information, resulting in a more concentrated distribution of the latent space[423]. This 

can improve the training of the network and lead to more precise and stable latent 

representations of the input data. To determine the optimal network hyperparameters, the effect 

of various batch sizes on the latent space distribution was examined, including batch sizes of 

32, 64, 128, 256, 512, 1024, 2048, 4096, and 8192. 

Gaussian Noise layer: The gaussian noise layer adds random noise to the activations of the 

previous layer. This can help improve the robustness and generalization of the model, as it 

forces the model to learn features that are robust to noise. 

Decoder: The normalized latent space representation with added gaussian noise is then passed 

through a time distributed layer, which reshapes the vector into a sequence of vectors that can 

be processed by an LSTM layer. The LSTM decoder processes the sequence and produces a 

reconstruction of the original input sequence. The LSTM decoder does this by iteratively 

processing the latent space representation, one element at a time and using the hidden state of 

the LSTM at each time step to generate a sequence of embedded vectors that are similar to the 

original input SMILES. 

Output layer: The final reconstructed output sequence produced by the autoencoder is passed 

through a time distributed layer with a softmax activation function, which maps the output to 

a probability distribution over the vocabulary represented through one-hot encoding. This 

reconstruction is compared to the original input sequence, and the difference between the two 

is used to compute the loss function of the autoencoder. The model was implemented using 

Tensorflow 2 [95] library in python3 [424].   
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Figure 5.1: Layer by layer representation of proposed autoencoder architecture.  

To facilitate easy computation, encoded strings were limited to 100 characters in length. The 

SMILES (simplified molecular input line-entry system) representations for 2.2 million 

compounds with 100-character or shorter SMILES strings were downloaded from the 

ChEMBL23 database. A ratio of 80:10:10 was used to divide the dataset into three sets: a 

training set, a testing set, and a validation set. The SMILES strings were encoded as text using 

a 45-character set. If a string was shorter than 100 characters, it was padded with spaces to 

reach that length. To avoid dealing with multiple equivalent SMILES representations for the 

same molecule, only "canonicalized" forms of SMILES (a standardised version of the SMILES 

representation of a molecule) were used for training. With the goal of minimising the difference 

between the input sequence and the reconstructed output sequence, the proposed deep learning 

model was trained with these data using the Adam optimization algorithm. Using the grid 

search algorithm, the optimal hyperparameters for the model were determined to be an 

embedding size of 32, an encoder LSTM with 64 neurons, a latent space with a 100-

dimensional vector, and a decoder LSTM with 256 neurons. 

The model with optimum hyperparameters was trained with different batch sizes i.e. 32, 64, 

128, 256, 512, 1024, 2048, 4096, 8192 till the reconstruction categorical accuracy reaches 
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above 0.98 or 98%. The reconstruction categorical accuracy of a character-based autoencoder 

is a measure of how well the autoencoder can reconstruct the input characters after encoding 

and decoding them. This is typically calculated by comparing the reconstructed characters with 

the original input characters and computing the percentage of characters that are correctly 

reconstructed. Usually, the required reconstruction categorical accuracy was achieved before 

128 epochs. Creating bell shaped curve representation of latent space will have a similar scale 

to the original data. This is important because it allows the autoencoder to capture the overall 

variations in the data rather than being influenced by any type of scaling. Therefore, the 

distribution of the latent space in all the trained models with various batch sizes were computed. 

The autoencoders that were trained with different batch sizes were tested by inputting 10000 

randomly selected chemical SMILES and plotting the distribution of the resulting latent 

vectors. From these results, the model whose latent vector distribution was the most compact, 

or closest to a normal distribution, was selected for further investigation. 

 

2. Generating Analogues 

During training, the encoder and decoder learn to reconstruct the input chemical SMILES as 

accurately as possible. Once the autoencoder is trained, it can be used to generate similar 

SMILES i.e. Analogues by adding random noise to the latent representation of an chemical 

SMILES and then using the decoder to reconstruct the new SMILES. The resulting SMILES 

will be similar to the original input image, but with some variations or perturbations introduced 

by the noise in the latent representation. Simply the Gaussian noise was added to the latent 

representation, which will add random variations to the SMILES.  
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Figure 5.2: Structure of Vandetanib. 

. 

The FDA-approved drug Vandetanib was randomly selected, which is used to treat certain 

types of cancer, for the purpose of generating Analogues and conducting future competitive 

studies. Vandetanib belongs to a class of drugs called tyrosine kinase inhibitors, which block 

the activity of enzymes that contribute to the growth and spread of cancer cells. Vandetanib 

specifically targets RET, VEGFR, and EGFR tyrosine kinases, which become inactive and lead 

to tumor regression by replacing ATP in the substrate binding site of mutant proteins. An 

autoencoder was used to process the canonical SMILES representation of Vandetanib 

“COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1”  and extract its latent space 

representation. Then, random noise were added to the latent space representation and passes 

back into the encoder to generate Vandetanib Analogue SMILES. This process was iterated 

with different random noise values, checked the validity of the resulting SMILES using the 

RDKit library, and generated 157 Analogues of Vandetanib while discarding any invalid 

SMILES as determined by the RDKit library [425]. 

 

3. Docking and MD simulation 

Open Bebel [426] was utilized to create 3D SDF structures for all 157 Analogue compounds. The 

structure of the phosphorylated RET tyrosine kinase domain complexed with the inhibitor Vadetanib 

was obtained from PDB with the ID 2IVU[427]. The receptor was prepared using AutoDockTools [428] 

according to the specified procedure. EasyDock vina [429] was used to dock all the Analogues and the 

control compound Vadetanib with the prepared receptor, which utilizes AutoDock Vina in the 
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background. The grid box was generated by taking the coordinates of the ligand’s center from the PDB 

structure and extending them outward by 25 points in each axis. The top two Analogues and the 

Vadetanib complex were simulated using the specified protocol for 10 ns. 

In order to compare the stability of two Analogue compounds to the reference compound (Vadetanib), 

molecular dynamics simulations were performed on all the three docked complexes. The systems were 

created using CHARM GUI's solution builder feature [430]. The TIP3 rectangular water box with a 10 

Å gap between the protein edges and the box borders was used for the experiment. The topologies and 

coordinates for each system were generated using the CHARMM36 all-atomic force field and the 

CHARMM general protein drug complex force field[431]. Sodium and chloride ions were added to 

neutralize the systems. Gromacs version 20.3 was used for the simulations [432]. Each system has been 

subjected to a 50,000-step steepest descent energy minimization procedure in order to minimize steric 

repulsions. The NVT equilibration was run for 500 picoseconds (ps) to stabilize the system temperature, 

and a short position restraint NPT was run for 500 ps to stabilize the system pressure by relaxing the 

system and maintaining the protein confined. All systems were simulated for 10 nanoseconds (ns) in 

the absence of restrictions. GROMACS utilities were used to analyze the trajectory files. The root mean 

square deviation is calculated using gmx rms (RMSD). 

The MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) is a reliable and 

efficient free energy simulation tool that has been widely used to mimic molecular affinity, 

including protein-ligand binding interactions [433]. When used in conjunction with molecular 

dynamics (MD) simulations, MM-PBSA can incorporate conformational and entropic 

variables into the binding energy. This method has also been utilized to provide a thorough 

understanding of biomolecular interactions, by decomposing the total binding energy into 

many sections. In this study, the frames composing the MD trajectories obtained for 

receptor−ligand complexes were analyzed using gmx_MMPBSA tool[434]. Frames from the 

last 5 ns (250 frames) of the trajectory out of 10 ns were used for MMGBSA and MMPBSA 

analysis [435]. The complexes were refined with the oldff/leaprc.ff99SB force field. The 
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following equation ΔGbind = ΔG complex − [ΔG receptor + ΔG ligand] was used to evaluate 

the systems net binding energy, where ΔG in GBSA and PBSA are the sum of the van der 

Waals (VDW) and electrostatic (EEL) as well as polar (EGP/EPB) and non-polar 

(ESURF/ENPOLAR) free energy of solvation.  

 

iv. Results 

1. Evaluation of the Laten space and Model 

An autoencoder's latent space is a condensed representation of the input data that is not 

necessarily structured or regularized. In order to shape the latent space in a specific way or 

force it to conform to a certain distribution during training, a batch normalization layer can be 

employed. This layer normalizes the outputs of the previous layer by adjusting them so that 

they have a mean of zero and a variance near to one i.e. a bell shaped curve. The influence of 

batch normalisation on the latent space is depicted in Figure 5.3. When a batch normalisation 

layer is applied, the distribution of the latent space is observed to be more bell-shaped than 

when it is not. For adding noise with a similar distribution to make data points that are similar 

to the original, like similar molecular SMILEs, the latent space needs to be set up in a certain 

way or forced to follow a certain distribution. 

 

Figure 5.3: Distribution of the latent space with and without batch normalization layer. 

 

We experimented with different batch sizes by training our optimum layered model to find the 
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most compact latent space, which can be used to generate Analogue compounds SMILES using 

gaussian noises. The trained encoders were tested on 10,000 randomly selected molecules and 

plotted the latent representations. Our results showed that the model with a batch size of 8192 

had the most compact latent space, as indicated by the smaller distance between the mean and 

standard deviation from normal distribution compared to other batch sizes (as seen in Table 5.1: 

Mean and standard deviation of the distribution of latent representations for 10000 randomly chosen 

compounds created using models trained with different batch sizes.and Figure 5.4). The model with 

larger batch sizes than 8192 were not train due to technical limitations. 

Table 5.1: Mean and standard deviation of the distribution of latent representations for 10000 

randomly chosen compounds created using models trained with different batch sizes. 

Batch Size Mean Standard Deviation 

32 -0.0931 8.6 

64 -0.37 9.187 

128 0.2801 8.3423 

256 -0.2610 5.6089 

512 0.4932 5.76505 

1024 0.3020 5.8383 

2048 0.43755 5.4940 

4096 0.49061 5.53 

8192 -0.1674 4.8518 
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Figure 5.4: The distribution of latent representations for 10000 randomly chosen compounds created 

using models trained with different batch sizes. 

 

In order to assess the effectiveness of different architectures for generating molecules, a range 

of metrics from the scientific literature were used, including validity (which checks whether 

the generated molecules are chemically feasible), uniqueness (the percentage of generated 

molecules that are not present in the training dataset), novelty, and the Fréchet ChemNet 

distance (FCD) (which measures how similar the distribution of generated data is to the 

molecules in the training set) [436], [437]. Given the model's objectives—in this case, the 

generation of Analogues—and the potential for different hyperparameter tuning to affect 

results, it is difficult to compare generative models. Therefore, hyperparameters based on how 

they were stated in the respective publications were noted. Finally, 10,000 compounds were 

genrated from our architecture. The proposed architectural design functioned similarly and was 

capable of producing compounds with a high FCD score that were valid, unique, and novel as 
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other methods (Figure 5.5). These findings were consistent with other benchmarking studies 

and those described in the literature. 

 

Figure 5.5: Evaluating various model architectures for generative models using our model and 

comparing the results to those reported in other published benchmark resources such as 

MOSES[437], GuacaMol[436], and MegaSyn[438]. 

 

2. Generating Vadetanib Analogues 

Vadetanib, an FDA-approved drug for lung cancer treatment, was selected and used the  

autoencoder to generate 157 similar SMILES by adding Gaussian noise to the latent 

representation of the drug's SMILES. Figure 5.6 illustrates a few of the Analogues produced 

through this process, which is described in the methodology. 
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Figure 5.6: Few among the Vadetanib Analogues generated by the proposed model. 

3. Virtual screening 

EasyDock Vina was used to dock all 158 ligands including the control with the RET tyrosine 

kinase domain found in the Protein Data Bank (PDB). From these, the top two Analogues that 

have a stronger binding affinity than the original control were selected. Ligplot+ was employed 

to visually analyze the interactions between the ligands and the target protein[439].  
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Figure 5.7: Control and Analogue’s interactions with receptor found trough docking study. 

Vandetanib_120 and Vadetanib_30 have a stronger affinity than the original Vandetanib 

structure (as shown in Figure 5.7 and Table 5.2: The interaction of specific amino acid residues within 

the RET tyrosine kinase domain with Vandetanib and its Analogues.), possibly because they form 

two hydrogen bonds while the control only forms one. To confirm the reliability of these 

findings, the complexes were also evaluated through molecular dynamic simulations to assess 

them based on dynamic parameters in addition to the static parameters obtained through 

docking. 

Table 5.2: The interaction of specific amino acid residues within the RET tyrosine kinase domain 

with Vandetanib and its Analogues. 

Complexes Interactions of RET tyrosine kinase domain residues with the 

Vandetanib and its Analogues  

Hydrophobic 

Interactions 

Hydrogen Bonds Water Bridges 

Vandetanib_Control LEU730, VAL 738, 

LYS758, VAL804, 

TYR806, LEU881 

ALA807 LYS728, 

SER811 

Vandetanib_120 LEU730, VAL738, 

LYS758, ILE788, 

SER891, ASP892 - 
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VAL804, LEU881 

Vandetanib_33 PHE735, VAL738, 

ALA756, LEU 881 

SER891, ASP892 - 

 

4. Dynamic Stability  

Molecular dynamics simulation is a useful method for studying the behavior of docked 

complexes over a set period of time by examining the interactions of the molecules [440]. The 

simulation includes the use of root-mean-square deviation (RMSD) to compare the simulation 

snapshots to the initial docked frame. The stability of the protein structure was analyzed by 

measuring the movement of the carbon alpha atoms in nanometers over time. The results of the 

simulation in Figure 5.8 showed that the RMSD values of the complexes seemed to stabilize 

within 10 nanoseconds, indicating stability in the complexes. The stability of the ligand atoms 

was also analyzed over a 10-nanosecond trajectory (Figure 5.9), and it was found that the 

Vandetanib_Control and Vandetanib_120 complexes had overlapping RMSD values, while the 

Vadetanib_30 complex had lower values, potentially indicating that the Vadetanib_30 

Analogue is more stable over time. 

 

Figure 5.8: Receptor's c-alpha backbone RMSD form all the three complexs. 
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Figure 5.9: Ligand's c-alpha backbone RMSD form all the three complexs. 

To emphasize atomic-level interactions, the complexes free binding energies for MM–GBSA 

and MM–PBSA were computed. A total of 250 frames (last 5 ns) were processed and analyzed 

to determine the free binding energies of MM–GBSA and MM–PBSA. Van der Waals 

contribution was found to be the most significant in gas phase, followed by total solvation 

energy and Electrostatic contribution.  

The overall, net binding energies of all the systems showed favorable binding as shown in Table 

5.3: MM-GBSA and MM-PBSA analysis of the complexes. The Analogues complex has a higher 

negative free binding energy than the control Vandetanib complex, indicating that the 

Analogues complex has stronger interactions. 

Table 5.3: MM-GBSA and MM-PBSA analysis of the complexes 

MM-GBSA Method 

Complex name EEL VDW ESURF EGB ΔGBSA 

Vandetanib_Control -0.61 ± 0.04 -20.35 ± 0.14 -2.38 ± 0.02 1.84 ± 0.03 -21.50 ± 0.15 

Vandetanib_120 -1.34 ± 0.03 -20.39 ± 0.14 -2.48 ± 0.02 2.43 ± 0.03 -21.78 ± 0.15 

Vandetanib_33 -1.23 ± 0.03 -21.62 ± 0.25 -2.79 ± 0.03 2.63 ± 0.03 -23.01 ± 0.27 

MM-PBSA Method 
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Complex name EEL VDW ENPOLAR EPB ΔPBSA 

Vandetanib_Control -6.12 ± 0.38 -20.35 ± 0.14 -2.64 ± 0.02 18.10 ± 0.31 -11.01 ± 0.18 

Vandetanib_120 -13.41 ± 0.30 -20.39 ± 0.14 -2.61 ± 0.01 22.62 ± 0.32 -13.74 ± 0.17 

Vandetanib_33 -12.13 ± 0.26 -21.62 ± 0.25 -2.90 ± 0.03 24.76 ± 0.37 -12.06 ± 0.21 

 

v. Discussions and Conclusions 

Designing drug analogues entails creating modified versions of existing drugs to enhance their 

efficacy, stability, and safety. Typically, this involves modifying the chemical structure of the 

original drug to improve its therapeutic properties. One reason for this is to address the 

limitations of current drugs, such as their short half-life, which usually requires frequent 

dosing. By modifying the drug's chemical structure, it may be possible to extend the drug's 

half-life and reduce the frequency of dosing. 

De novo molecule generation involves the design and synthesis of entirely new molecules. 

Predicting the properties and behaviour of a molecule based on its chemical structure is a 

challenging task. De novo molecule generation includes computational methods that employ 

computer algorithms and models to design and optimise the structure of the molecule, as well 

as experimental methods that involve synthesising and testing the molecule in the 

laboratory[441]. In recent years, there has been renewed interest in using deep learning 

architectures to generate new compounds, particularly for high-throughput screening library 

generation, hit optimization, and fragment-based hit discovery. However, the number of studies 

that have applied these methods to drug discovery is still low compared to the number of studies 

that have focused on algorithm development[442]. This study developed a pipeline for the 

creation of new drug analogues using autoencoders, a technique of Deep Learning. A chemical 

structure-reproducing autoencoder was trained on various chemical SMILES from the 

ChEMBL database. The distribution of the autoencoder's latent space was controlled by using 

batch normalization layer and optimised using varying batch sizes. The latent space of an 
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autoencoder is a compact numerical representation of the input data, and its distribution can 

affected by batch normalization and the batch size. Without batch normalization the latent 

space may have dispersed (Figure 5.3). 

 

Figure 5.10: Generation of Analogues using proposed model. 

 

As depicted in Figure 5.10, the autoencoder was used to generate 157 variants/Analogues of 

Vandetanib by adding noise to its bell-shaped latent representation and reconstructing the 

resulting compounds using the decoder. Molecular docking and dynamics simulations were 

performed to determine which of these analogues possessed a higher binding affinity than 

Vandetanib. At least two of the analogues had a higher binding affinity than the control 

compound, according to the results. 

The current model only has about 0.42 million parameters, but it can be used to create a wide 

range of molecules. By adjusting the amount of noise added to the latent representation, it is 

possible to fine-tune the level of variation in the generated chemicals. For instance, the addition 

of a small amount of noise results in subtle changes, whereas the addition of a large amount of 
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noise results in more dramatic changes. The amount of noise can be controlled by varying the 

mean and standard deviation of the gaussian noise.  It may be possible in the future to combine 

this pipeline with genetic algorithms for fragment-based de novo drug generation. The model 

is intended to generate molecules with SMILES strings of up to 100 characters in length, but it 

may have difficulty generating molecules with SMILES strings longer than 80 characters due 

to a lack of training data. Potentially, this limitation could be overcome by increasing the 

availability of such data. The synthesis and laboratory testing of the generated molecules to 

determine their potential as drugs represents an additional potential difficulty in this procedure. 

This difficulty can be overcome by enhancing models for generating molecules and proposing 

synthesis techniques. Despite the challenges that must be addressed, this study has the potential 

to make significant contributions to the field of automatic drug analogue prediction and could 

be a significant addition to the existing scientific literature. The model was implemented and 

shared in a Google Colaboratory notebook for scientific community exploration and evaluation 

at https://colab.research.google.com/drive/1BPhw7_-_VV11dbk6s9JGE0bSX0K_-

qIh?usp=sharing 

  

https://colab.research.google.com/drive/1BPhw7_-_VV11dbk6s9JGE0bSX0K_-qIh?usp=sharing
https://colab.research.google.com/drive/1BPhw7_-_VV11dbk6s9JGE0bSX0K_-qIh?usp=sharing
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Chapter 6. Summary and Future Prospects 

 

This thesis aims to predict microRNA sequences from mRNA sequences, predict protein 

disorder regions, and generate new drug analogues by exploring chemical space using machine 

learning and natural language processing techniques. Convolutional neural networks (CNNs), 

long short-term memory (LSTM) networks, and autoencoders were utilised to accomplish these 

goals. It was observed that the models performed well on the tasks for which they were created, 

with the microRNA prediction model achieving an average accuracy of 72% and the protein 

disorder prediction model outperforming other state-of-the-art techniques. The model for 

generating drug analogues using an autoencoder was able to generate new molecules with the 

desired properties. Overall, we demonstrated the applicability of machine learning and natural 

language processing techniques to the field of genomic, proteomic, and chemical sequence 

analysis.In addition to the primary objectives stated, several additional experiments were 

conducted to evaluate and enhance the performance of the models. For the microRNA 

prediction model, the effect of utilising various CNN architectures was evaluated, and it was 

discovered that 1D CNN with LSTM layers enhanced performance. The use of various input 

sequence lengths was also investigated, and it was discovered that longer input sequences led 

to improved performance. For the protein disorder prediction model, we examined the effect 

of various embedding sizes and found that larger embedding sizes improved performance. 

Different CNN architectures were also evaluated, and it was discovered that using depthwise 

separable 1D CNNs, which have fewer weights than standard 1D CNNs, increased the model's 

speed without sacrificing accuracy. For the generation model of drug analogues, the effect of 

using different latent space sizes and distributions was evaluated, and it was determined that 

bell-shaped spaces produced more similar and chemically valid analogues. These additional 

experiments demonstrate the significance of selecting model architectures and 
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hyperparameters with care in order to achieve good performance on these tasks. 

The purpose of developing biological language models (BLMs) is to enhance our capacity to 

comprehend and analyse biological sequences, such as DNA, RNA, and protein sequences. 

These sequences contain crucial information about the structure and function of living 

organisms and are involved in virtually every biological process. Nonetheless, analysing 

biological sequences can be difficult due to their complexity and enormous potential. 

Specifically, the functions and properties of a large number of coding and non-coding DNA 

and RNA sequences remain poorly understood. 

Using natural language processing (NLP) techniques, which are used to comprehend and 

analyse human languages, is one method for enhancing our comprehension of biological 

sequences. Biological sequences have structure and convey meaning, much like natural 

languages. For instance, the manner in which amino acids are connected by peptide bonds 

determines the structure and function of a protein, just as grammar and linguistic rules 

determine the structure and meaning of a sentence. Therefore, techniques based on linguistics 

have significantly contributed to the field of biological sequence analysis and have been useful 

for comprehending the meaning of the genome. However, natural languages and biological 

sequences also have significant differences. For example, amino acids have over 500 

physiochemical properties, and nucleotides have over 180. This exceeds the complexity of even 

the most polysemous word in a natural language. Therefore, traditional rule-based approaches 

may not be able to fully capture the complexity of biological sequences and may have limited 

performance for certain tasks, such as the prediction of disordered protein regions and the 

identification of enhancers. To overcome these obstacles, researchers have developed BLMs, 

which are deep learning models designed to represent and analyse biological sequences using 

techniques similar to those used in natural language processing (NLP).BLMs' ability to capture 

complex patterns and relationships within biological sequences is one of their primary 
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advantages. Traditional methods for analysing biological sequences frequently rely on 

predefined rules or heuristics that may be incapable of detecting subtle or complex patterns 

within the data. In contrast, BLMs can learn these patterns directly from the data, enabling 

them to identify relationships that may not have been detectable using other methods. This can 

be especially useful for tasks such as protein function prediction, in which the relationship 

between sequence and function is frequently unclear and complex. The annotation of biological 

sequences is yet another potential application of BLMs. Annotation is the process of labelling 

or tagging specific portions of a sequence in order to provide additional information about its 

function or structure. This is a crucial step in the analysis of biological sequences because it 

allows scientists to better comprehend the sequence and its function within the organism. 

Nevertheless, manual annotation is time-consuming and resource-intensive, especially for 

large datasets. It may be possible to automatically predict the function or structure of a new, 

unannotated sequence by training a BLM on a large dataset of annotated sequences. This could 

save time and resources by eliminating the need for manual annotation and enabling the rapid 

analysis of massive datasets. BLMs can also be used to identify relationships and patterns 

within biological sequences. For example, they can be used to identify motifs, which are 

repeating patterns of characters within a sequence, or to identify conserved regions, which are 

sections of the sequence that are highly similar across different organisms. BLMs can also be 

used to extract information from scientific literature or other text sources related to the 

biological sequences being analysed. 

Biological language models (BLMs) can also be applied to the analysis of chemical compounds 

through the Simplified Molecular-Input Line-Entry System (SMILES) notation. SMILES is a 

computer-processable language used to represent the structural formula of a chemical 

compound. It is a series of symbols and letters representing the atoms and bonds in a molecule. 

BLMs can be taught to analyse SMILES-represented chemical compounds in a variety of ways. 
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BLMs can be used to predict the solubility, toxicity, and reactivity of chemical compounds, 

among other properties. The properties of chemical compounds play a significant role in their 

potential uses and applications. 

BLMs can also be used to predict the structure of chemical compounds. This is significant 

because the structure of a chemical compound determines its physical and chemical properties, 

and understanding these properties enables researchers to predict how the compound will 

behave in various environments. To create BLMs for chemical compounds represented in 

SMILES notation, researchers will need to employ techniques comparable to those used to 

create BLMs for DNA, RNA, and protein sequences. This may involve utilising machine 

learning algorithms and bioinformatics tools to train the models, in addition to obtaining data 

from chemical databases and other resources. BLMs may be able to provide valuable insights 

and facilitate the discovery of new biological knowledge by treating biological sequences as 

natural language and utilising deep learning techniques. The use of BLMs in biological 

sequence analysis has the potential to significantly advance our knowledge of the genome and 

its encoded functions and structures. By treating biological sequences as natural language and 

applying techniques developed for understanding and analysing text, we may be able to gain a 

deeper understanding of the information encoded in these sequences and use it to make 

significant scientific discoveries. 
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A B S T R A C T   

The goal of medicinal chemistry is to improve on existing drug molecules or to create new ones for use in 
medicine. This is frequently accomplished by lead optimization, which entails creating similar but slightly 
modified versions of existing molecules. Generative models that use various representations of molecules, such as 
SMILES codes and molecular graphs, have been developed to aid in the search for hits in the unexplored chemical 
space. In this study, an autoencoder architecture was trained on chemical SMILES from the ChEMBL database to 
generate 157 analogues of Vandetanib by introducing noise to its latent representation. The distribution of the 
autoencoder’s latent space was controlled by varying batch sizes during the reconstruction of chemical SMILES. 
Virtual screening and molecular dynamics simulations were conducted, and it was found that at least two an-
alogues had a higher binding affinity than the control compound, demonstrating the potential of this approach 
for lead optimization. This architecture has a small number of parameters and has the potential to generate a 
wide variety of molecules. The model is implemented in Google Colaboratory notebook to be explored by sci-
entific community via https://colab.research.google.com/drive/1BPhw7_-_VV11dbk6s9JGE0bSX0K_-qIh? 
usp=sharing.   

1. Introduction 

Medicinal chemists play an important role to enhance an existing 
active molecule, whether it be natural or synthetic (i.e., through the 
practise of lead optimization) (Wermuth, 2006). Drug lead optimization 
is a critical step in the drug discovery and development process where a 
lead compound with potential as a drug candidate is modified and 
improved to enhance its efficacy, safety, pharmacokinetic properties and 
drug-like characteristics. The use of lead optimization has been suc-
cessful, simple to manufacture, and widely accepted in pharmaceutical 
research since its inception. According to a review, 10% of pharma-
ceuticals on the market are unaltered compound which exists in nature, 
29% are their derivatives (semi-synthetics), and the rest 61% are syn-
thetic (Bade, Chan, & Reynisson, 2010). Using commercially accessible 
drug structures as a starting point for research (i.e., Analogues-based 
drug design), results in iterative adjustments that improve therapeutic 
molecules’ efficacy and safety (Sato et al., 2022; Yu, Yang, Sykes, & 
Wang, 2022). For example, the 55 years of Analogues design research 
that followed the creation of the historical antibiotic penicillin G 
allowed for the development of broad-spectrum, modern, orally active- 

lactam antibiotics such as ampicillin and amoxicillin(Lima, da Silva, 
Barbosa, & Barreiro, 2020). Neuroleptics, antidepressants, and antihy-
pertensive medications all underwent similar changes (Fischer & Robin 
Ganellin, 2006). 

In lead optimization, Analogues which are similar to a known lead 
molecule, are usually created through small molecular changes such as 
the formation of homologues, vinylogues, isosteres, positional isomers, 
optical isomers, and altered ring systems(Fischer & Robin Ganellin, 
2006). The basic structure of the molecule is usually preserved or only 
slightly modified. Substituent effects, which can be used to fine-tune the 
molecule, can be analysed using techniques like QSAR (Cumming et al., 
2013). Given that the Analogues are derived from a known therapeutic 
molecule as a starting point, drug-like properties are not a major 
concern. When necessary, filters are used to remove reactive or toxic 
groups and consider qualities related to absorption, distribution, meta-
bolism, and excretion (ADME). Drug lead optimization plays a crucial 
role in reducing the time and costs associated with traditional drug 
discovery and helps to identify promising drug candidates for further 
development. This process often involves various stages such as hit-to- 
lead and lead optimization and utilizes a range of techniques 
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