
PLANT DISEASE DETECTION USING DEEP

LEARNING

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE

OF

MASTERS OF TECHNOLOGY
IN

ARTIFICIAL INTELLIGENCE

Submitted by

Barsha Biswas

2K21/AFI/30

Under the supervision of

Dr. Rajesh Kumar Yadav

DEPARTMENT OF COMPUTER SCIENCE &
ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi 110042

JUNE, 2023

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

I, Barsha Biswas, Roll No 2K21/AFI/30 student of M.Tech (Artifcial Intel

ligence), hereby declare that the project Dissertation titled �Apple Foliar Disease

Detection using Deep Learning Technique" which is submitted by me to the De

partment of Computer Science and Engineering, Delhi Technological University, Delhi in
partial fulfilment of the requirement for the award of degree of Master of Technology, is

original and not copied from any source without proper citation. This work has not pre

CANDIDATE'S DECLARATION

or other similar title or recognition.

Place: Delhi

Date:

Barsha Biswas

2K21/AFI/30

viously formed the basis for the award of any Degree, Diploma Associateship, Fellowship

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

I hereby certify that the Project Dissertation titled Apple Foliar Disease Detec

tion using Deep Learning Technique" which is submitted by Barsha Biswas, Roll No

2K21/AFI/30, Department of Computer Science and Engineering, Delhi Technological

University, Delhi in partial fulflment of the requirement for the award of the degree of

Master of Technology, is a record of the project work carried out by the student under

my supervision. To the best of my knowledge this work has not been submitted in part

or full for any Degree or Diploma to this University or elsewhere.

Place: Delhi

CERTIFICATE

Date:

ii

Dr. Ràjesh Kumar Yadav

Assistant Professor

Department of CSE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Fomerly Delhi College of Engineering)

Bawana Road, Delhi-110042

I wish to express my sincerest gratitude to Dr. Rajesh Kumar Yadav for his
continuous guidance and mentorship that he provided me during the project. He showed

me the path to achieve my targets by explaining all the tasks to be done and explained

to me the importance of this project as well as its industrial relevance. He was always

ready to help me and clear my doubts regarding any hurdles in this project. Without his

constant support and motivation, this project would not have been successful.

Place: Delhi

ACKNOWLEDGEMENT

Date:

iii

Bársha Biswas

2K21\AFI\30

Abstract

Agriculture, also known as Farming, is the science or practice of raising crops. And the

whole world is dependent on it and around 38% of the world is dependent on it. So, due

to this, its productivity rate should be high. The productivity rate of a plant is affected

by the disease in a plant. So that’s why plant disease should be detected at an early stage.

For this, Farmers generally hire an agricultural expert who detects the disease using the

naked eye and also they use instruments as well which are very expensive and which is

not possible for all the farmers to afford it. There’s another way to detect a plant disease,

by using Artificial Intelligence(AI). Machine Learning(ML), Deep Learning(DL) which is

a sub-branch of AI, is used in agriculture in order to detect disease in a plant.

So, in this work, a Dense-INC model is proposed which is based on Convolutional

Neural Network(CNN) and it’s inspired by DenseNet and InceptionNet. This model is

trained on the “Plant Pathology 2020: FGVC7 dataset” and “Plant Pathology 2021:

FGVC8 dataset”.

The proposed model is first trained with 4 optimizers: Adam, Adadelta, Adagrad,

and SGD with momentum and when I compare results then shows that Adagrad gives

better results than other optimizers. To further evaluate the performance of the proposed

model, the proposed model is further compared with two CNN-based models with Adagrad

optimizer which are already been proposed. And the results show that the proposed model

gives better results than two other CNN-based models and it’s able to detect the disease

with a low error rate.

iv

Contents

Candidate’s Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Content vi

List of Tables vii

List of Figures ix

List of Symbols, Abbreviations x

1 INTRODUCTION 1

2 PRIOR WORK 3

3 PRELIMINARY 12
3.1 Plant Disease . 12

3.1.1 Classification of Plant Disease . 13
3.2 Apple Foliar Disease . 14
3.3 Convolutional Neural Network . 16
3.4 InceptionNet . 16
3.5 DenseNet . 18

4 PROPOSED WORK 20
4.1 Problem Statement . 20
4.2 Problem Solution . 20

4.2.1 Data Preprocessing . 20
4.2.2 Proposed Model . 21
4.2.3 Optimizers Used . 26

5 DATA EVALUATION 31
5.1 Datasets Used . 31

6 EXPERIMENTS AND RESULTS 34
6.1 Performance Metrics . 34
6.2 Analysis and Visualization of the Experimental Result 35

6.2.1 Performance on Plant Pathology 2020- FCVG7 dataset 35

v

6.2.2 Performance on Plant Pathology 2021- FCVG8 dataset 38

7 CONCLUSION AND FUTURE SCOPE 42

Bibliography 43

LIST OF PUBLICATIONS 51

vi

List of Tables

2.1 Summarized review of literature papers . 11

4.1 Detailed Architecture of Dense-INC architecture 22

5.1 Destribution of Datasets . 31

6.1 Performance Evaluation of Plant Pathology 2020: FGCV7 dataset 38
6.2 Performance Evaluation of Plant Pathology 2021: FGCV8 dataset 40

vii

List of Figures

1.1 Images of disease symptoms on apple leaves captured under different light
conditions
(a) Indirect sunlight on leaf
(b) Direct sunlight on leaf
(c) Strong reflection on the leaf [9]. 2

3.1 Five plants and the diseases that each of them carries[60] 13
3.2 Classification of plant diseases . 14
3.3 Apple Leaves

(a) healthy leaves;
(b) Alternaria leaf spot;
(c) Brown spot;
(d) Mosaic;
(e) Grey spot;
(f) Rust.[61] . 15

3.4 Schematic Diagram of CNN[65] . 17
3.5 Schematic Diagram Of InceptionNet[69] . 17
3.6 Schematic Diagram Of DenseNet[73] . 18

4.1 Flowchart of Proposed Methodology . 21
4.2 Architecture of Inception Module . 24
4.3 Architecture of Dense Block . 25

5.1 Sample Images of Plant Pathology 2020-FGCV7 Dataset[7] 32
5.2 Sample Images of Plant Pathology 2021-FGCV8 Dataset[8] 32

6.1 Performace Evaluation of the Proposed model using Adam Optimizer on
Plant Pathology 2020-FCVG7 Dataset . 36

6.2 Performace Evaluation of the Proposed model using Adadelta Optimizer
on Plant Pathology 2020-FCVG7 Dataset 36

6.3 Performace Evaluation of the Proposed model using Adagrad Optimizer on
Plant Pathology 2020-FCVG7 Dataset . 37

6.4 Performace Evaluation of the Proposed model using SGD with momentum
Optimizer on Plant Pathology 2020-FCVG7 Dataset 37

6.5 Performace Evaluation of the Proposed model using Adam Optimizer on
Plant Pathology 2021-FCVG8 Dataset . 38

6.6 Performace Evaluation of the Proposed model using Adadelta Optimizer
on Plant Pathology 2021-FCVG8 Dataset 39

6.7 Performace Evaluation of the Proposed model using Adagrad Optimizer on
Plant Pathology 2021-FCVG8 Dataset . 39

viii

6.8 Performance Evaluation of the Proposed model using SGD with momentum
Optimizer on Plant Pathology 2021-FCVG8 Dataset 40

6.9 Comparison of Performance using Adagrad Optimizer 40

ix

List of Symbols

AI Artificial Intelligence
APD Apple Plant Disease
CAE Convolutional AutoEncoders
CNN Convolutional Neural Network
CV Computer Vision
DCNN Deep Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
F −RCNN Faster Regions with Convolutional Neural Network
GD Gradient Descent
ML Machine Learning
NLP Natural Language Processing
NN Neural Network
PD Plant Disease
PDD Plant Disease Detection
PNN Probabilistic Neural Network
RNN Recurrent Neural Network
ReLU Rectified Linear Unit
R− CNN Regions with Convolutional Neural Network
RMS Root Mean Square
SGD Sochastic Gradient Descent
SVM Support Vector Machine
TTA Test-Time Augmentation

x

Chapter 1

INTRODUCTION

Agriculture[1] plays a vital role in the world economy and it’s very important for the
growth of the economy as well. Around 21% of the land is used for the production of
apples. The apple plant can get easily affected by the disease. Diseases are caused by
climate change, and by pathogens as well. Diseases that are commonly found on the apple
plant which are caused by the pathogens are powdery mildew, rust, and scab.

All these diseases are found on the leaf of the apple plant. So, we can use ML[2], and
the DL[3] model uses a leaf image in order to detect apple disease[4]. This method of
using ML[2], and DL[3] algorithms is cheaper than hiring an expert. Hiring an expert is
very expensive and also they don’t give you accurate results all the time. So, Farmers
can’t afford to hire an expert but they can use AI-based models to do this task.

AI-based models learn, recognize patterns, and make decisions with minimal interven-
tion from humans. It gives good results with a low error rate and also eliminates the
possibility of human error. This helps farmers to gain insights into their crops and also
use the data to increase overall production. DL[3] and ML[2], both are subfields of AI[5]
and they both give phenomenal results. But these days, DL[3] based models are used
more extensively than ML-based models for detecting PD[6] because DL[3] based mod-
els give better accuracy than ML-based models and also it does feature extraction and
classification by themselves. But In ML[2], we have to do the feature extraction manually.

In DL[3], CNN has considered a revolutionary algorithm for the image classification
task and the detection of PD[6] is the image classification task. Because it gives high
accuracy.

In this work, the FGVC7 dataset from Plant Pathology 2020 Kaggle Competition and
FGVC8 dataset[7] from Plant Pathology 2021 Kaggle Competition[8] are used. These two
Kaggle competitions are supported by the ”Cornell Initiative for Digital Agriculture”

In Fig. 1.1, we can see apple leaves with diseased parts and it can be detected by
using deep learning techniques very easily.

Apple foliar Diseases[4] have been detected using the proposed CNN-based model and
also it is compared with two CNN-based models which are already been suggested. Images
are resized into 256x256.

This work involves the classification of images from the test dataset in order to de-
termine whether the plants are healthy or not. The proposed model is used to identify
different diseases.

This work contributes the following:

• This work reviews already proposed CNN models for the classification and identi-
fication of diseases. A Dense-INC model is proposed for this task. This proposed
model is trained on two datasets: FGVC7[7] and FGVC8[8].

1

Figure 1.1: Images of disease symptoms on apple leaves captured under different light
conditions
(a) Indirect sunlight on leaf
(b) Direct sunlight on leaf
(c) Strong reflection on the leaf [9].

• The proposed Dense-INC model is inspired by DenseNet[10] and InceptionNet[11]
and it consists of a Convolution Layer, Batch Normalization Layer, Activation Layer,
Max-Pooling Layer, Global Average Pooling Layer, Dense Layer, Dropout Layer,
Inception Block, Dense Block.

• Trained with 4 optimizers: Adam, Adadelta, Adagrad, and SGD with momentum
and compared the results with each other. The learning rate[12] is set to 0.01 in
each of the optimizers.

• Also compared the results with Two CNN-based models that are already proposed.

• And shows that the proposed model, the Dense-INC model works very well with
Adagrad Optimizer which is trained on Plant Pathology 2021- FGCV8 Dataset[8].

In Chapter 2, Related Work will be discussed in which approaches are discussed which
are already proposed to detect the disease in a plant. Then Preliminary will be discussed.
The proposed Work will be outlined in Chapter 3. In Chapter 4 Data Evaluation will be
explained. In Chapter 5, Experiments and Results will be explained, the Conclusion and
Future Scope and then References.

2

Chapter 2

PRIOR WORK

Classifying as well as detecting a disease in a plant is very important in the sector of
agriculture, and DL[3] plays a key part in the process of detecting the PD[6]. Here, we’ll
review a few of the most notable works related to this field. Some DL[3] approaches that
were proposed in recent years:

S.No. Ref. Methodology Conclusion Dataset Used
1. [13] In this paper, the deep

learning approach which is
used is CNN. The proposed
CNN model is trained us-
ing an open dataset called
PlantVillage[14] with 39 dif-
ferent classes. Before train-
ing, this dataset undergoes
six types of data augmen-
tation methods. This pro-
posed model is compared
with transfer learning[15],
[16] approaches.

Compared to popular trans-
fer learning approaches,
data augmentation can im-
prove model performance.
With transfer learning[15],
[16], deep learning models
can be built with less train-
ing data, less time, and
fewer computational costs.

PlantVillage[14]

2. [17] With the help of Google
Net[18] Inception structure
and Rainbow concatena-
tion, Deep-CNN is proposed
in this paper. There are
five types of apple leaf dis-
eases[4] that severely affect
apple yield, including Al-
ternaria leaf spot, Brown
spot, Mosaic, Grey spot,
and Rust. This proposed
model is compared with
transfer learning[15], [16]
approaches.

With Rainbow concate-
nation and the Inception
Structure of Google Net[18],
the model gives better ac-
curacy than other transfer
learning approaches.

Apple Leaf Dis-
ease Dataset
(ALDD)[19]

3

3. [20] Designed deep learning
based on the NASNet[21]
architecture. With the
help of techniques such as
differential learning rates,
cyclical learning rates, and
test-time augmentation
(TTA), the model was
fine-tuned.

With techniques such as
differential learning rates,
cyclical learning rates, and
test-time augmentation
(TTA), model accuracy
is improved without re-
ducing training efficiency.
Although there are complex
inter- and intra-class varia-
tions in the images of plant
leaves, the classification
of plant leaves as either
diseased or healthy appears
promising.

PlantVillage[14]

4. [22] CNN was developed to
identify tomato diseases
present on monitored
tomato plants, compared
CNN with F-RCNN[23],
and used Transfer Learn-
ing[15], [16] for disease
recognition on tomato plant
leaves.

Before training, data aug-
mentation is done to in-
crease the dataset size and
reduce overfitting. Trans-
fer Learning[15], [16] is used
as well. In comparison to
F-RCNN[23], the proposed
model gives better accuracy.

PlantVillage[14]

5. [24] Using transfer learning[15],
[16], the INC-VGG model,
which combines VGG19[25]
with InceptionV3[26], was
proposed. After the bot-
tom layers of VGG19 mod-
els, three 3X3 ConvBN lay-
ers were applied, then two
InceptionV3[26] layers, and
lastly a Softmax[27] layer
was applied.

This proposed model is
a combination of two
pretrained-model and it
gives better accuracy than
other pretrained models.

PlantVillage[14]

4

6. [28] proposed the DenseNet201
model which contains
201 layers. This pro-
posed model is compared
with transfer learning
approaches.

As a result of this pro-
posed model, the vanish-
ing gradient problem has
been solved, feature propa-
gation has been improved,
feature reuse has been pro-
moted, and the number of
parameters has been re-
duced. Overfitting occurs
when networks have too
many connections, which
not only reduces their com-
putation and parameter effi-
ciency, but also makes them
more susceptible to overfit-
ting.

PlantVillage[14]

7. [29] Suggested a CNN model in
which SVM[30] is used as
a classifier, Mean Shift Al-
gorithm[31] is used for seg-
mentation, artificial compu-
tation is used for shape fea-
ture extraction. CNN is
used to extract color fea-
tures. This proposed model
identifies 4 types of disease
in rice plants.

This model gives high ac-
curacy around 96.8% but
takes too much time to
train.

PlantVillage[14]

8. [32] Proposed a CNN model
having 6 convolution layers
and 3 pooling layers. It
is applied to images of the
leaves of mango plants.

This proposed model is sim-
ple and computationally ef-
ficient but gives low accu-
racy.

PlantVillage[14]
and images from
fields.

9. [33] The CNN model is pro-
posed which consists of
three convolutional layers,
three max-pooling layers,
and two fully connected lay-
ers. Nine different types of
tomato PDs[6] are identified
using this model.

This CNN model is Memory
Efficient but it’s giving low
testing accuracy.

PlantVillage[14]

10. [34] Developed a Deep Siamese
CNN. Photos of grape
leaves were collected and
sorted into four categories.

The proposed model han-
dles the challenge of a small
dataset. Although it gives
high accuracy, it is not com-
putationally efficient.

Photographs
from the field.

5

11. [35] A combined model of CNN
and CAE[36] is proposed.

The proposed model pro-
duces accurate results. Us-
ing a less dimensional input
image means less training
time, and the program auto-
matically detects the impor-
tant features without any
human intervention. The
orientations are not en-
coded and the input data is
not spatially invariant

PlantVillage[14]

12. [37] An architecture based on
CNN was proposed for the
detection of nine differ-
ent types of diseases on
tomato plant leaves. By
using conventional architec-
ture such as AlexNet[38]
and GoogleNet[18], they de-
veloped a classifier.

This proposed model elim-
inates the need to extract
features from images in or-
der to train models but
it takes too much time to
train.

PlantVillage[14]

13. [39] A Bayesian Learning[40]
based DCNN has been pro-
posed, which implements
Bayesian learning[40] on top
of a residual network. This
model is trained to detect
tomato, potato, and pepper
bell disease.

The process of feature learn-
ing is efficient but it has a
high computational time.

PlantVillage[14]

14. [41] Deployed a slight variation
of CNN called LeNet[42],
[43] which consists of the
convolutional, activation,
pooling and fully connected
layers. This model is
trained to detect tomato
disease.

Data Augmentation is done
before feeding into the
model. It’s giving around
95% of accuracy which
is much better than other
CNN or CNN based models.

PlantVillage[14]

15. [44] An image-processing tech-
niques are used in this pa-
per to detect PDs[6]. The
paper used semi-supervised
learning[45] techniques to
detect disease of four classes
and access images of 5000
healthy and diseased plant
leaves from an open dataset.

It is an improved and ad-
vanced technology. As a re-
sult of advances in technol-
ogy, devices can detect and
recognize PDs[6] more eas-
ily. Also give much bet-
ter accuracy and reduce the
impact of diseases on har-
vests by recognizing them
sooner and treating them
with faster treatment

PlantVillage[14]

6

16. [46] Proposed Improved
PNN[47] which is more
robust than simple PNN[47]
model. It aims to identify
the health and infected
disease based on the identi-
fication of featured regions.
The proposed work is di-
vided into two two parts:
first is to find the features
then second is for the
classification task.

This proposed model can
identify a disease from leaf
images, seed images as well
as root images. The work
is applied on a random ba-
sis and collected leaf images
of different plants from the
web.

Images from the
Web

17. [48] The authors developed a
three-layer CNN system
with an average accuracy
of 94.9% after 40 epochs
of training. This study
used 800 leaf images of
cucumber.

This model is prone to over-
fitting because it uses only
800 leaf images. And also
a simple model which uses
only three layers.

Images captured
from the farm.

18. [49] They studied the
AlexNet[38] and
GoogLeNet[18] DNN
architectures and achieved
a 99.55% classification
accuracy on the PlantVil-
lage[14] dataset using 50k
sample images over 30
training epochs.

AlexNet[38] and
GoogLeNet[18] DNN
architectures give more ac-
curate results as compared
to simple CNN models.

PlantVillage[14]

7

19 [50] Proposes a DL[3] based
multi-task prediction sys-
tem for detecting both
PD[6] and plant species
in images. The proposed
system consists of two
main parts: the feature
extraction network and the
prediction network. The
feature extraction network
uses a pre-trained CNN
model to extract features
from input images, while
the prediction network
includes two branches for
disease and species detec-
tion. The two branches
share the feature extraction
network, which allows for
joint learning of both tasks
and improves prediction
accuracy.

The system was trained and
evaluated on a dataset of 9
plant species and 10 differ-
ent diseases. The paper also
compares the proposed sys-
tem with other state-of-the-
art approaches and shows
that it outperforms them in
terms of accuracy. Overall,
the paper presents a promis-
ing approach for multitask
PD[6] and species detection
using deep learning, which
could have practical appli-
cations in agriculture and
plant science.

Images captured
from the farm

20. [51] Proposes a DL[3] based ap-
proach for automatic blight
disease detection in potato
and tomato plants. The
proposed approach uses a
DCNN model to classify
plant images as healthy or
diseased based on the pres-
ence of blight disease.

The model was trained
and evaluated on a dataset
of 11,000 plant images.
The paper also compares
the proposed approach with
other state-of-the-art ap-
proaches and shows that it
outperforms them in terms
of accuracy and computa-
tional efficiency. Overall,
the paper presents a promis-
ing approach for automatic
blight disease detection in
potato and tomato plants
using DL[3], which could
have practical applications
in agriculture for early dis-
ease detection and manage-
ment.

PlantVillage[14]

8

21. [52] The article discusses the
use of deep learning algo-
rithms for detecting PDs[6]
using images. It pro-
vides an overview of DL[3]
models, datasets, and pre-
processing techniques used
for training these models.
The article highlights the
importance of data augmen-
tation, transfer learning[15],
[16], and hyperparameter
tuning for achieving high
accuracy in PDD. It also
discusses the challenges and
future directions of image-
based PDD using DL[3].

Overall, the article provides
a comprehensive overview of
the use of DL[3] algorithms
for image-based PDD and
highlights the potential for
these algorithms to revo-
lutionize agricultural pro-
duction by enabling early
and accurate detection of
PDs[6].

All the datasets
used in the task
of PDD.

22. [53] The article discusses a
performance-optimized
DL[3] based approach for
detecting PDs[6] in hor-
ticultural crops in New
Zealand. The approach
uses CNNs and transfer
learning[15], [16] to achieve
high accuracy in disease
detection. The article
describes the dataset used
for training the CNN mod-
els, which includes images
of diseased and healthy
plants. The article also
discusses the pre-processing
techniques used to improve
the performance of the
models.

The results show that the
proposed approach achieved
high accuracy in detect-
ing diseases in horticultural
crops, which can help farm-
ers identify and treat PDs[6]
early, leading to better crop
yield and quality. Over-
all, the article demonstrates
the potential of DL[3] based
approaches for improving
PDD in horticultural crops.

PlantVillage[14].

9

23. [54] The article presents an
approach for detecting
PD[6] in cardamom using
the EfficientNetV2[55]
DL[3] model. The approach
involves collecting a dataset
of images of healthy and
diseased cardamom plants,
pre-processing the images,
and training the Efficient-
NetV2[55] model on the
dataset. The article also
discusses the use of data
augmentation and transfer
learning[15], [16] techniques
to improve the performance
of the model.

The results show that the
proposed approach achieved
high accuracy in detect-
ing diseases in cardamom
plants, which can help farm-
ers identify and treat PDs[6]
early, leading to better crop
yield and quality. Over-
all, the article demonstrates
the potential of DL[3] based
approaches for improving
PDD in cardamom plants.

PlantVillage[14].

24. [56] The article presents an end-
to-end DL[3] model for clas-
sifying corn leaf diseases
using a dataset of im-
ages of healthy and dis-
eased corn leaves. The pro-
posed model uses a pre-
trained CNN architecture
and fine-tuning to achieve
high accuracy in disease
classification. The arti-
cle also discusses the pre-
processing techniques used
to enhance the performance
of the model, including im-
age normalization and data
augmentation.

The results show that the
proposed model achieved
high accuracy in classify-
ing corn leaf diseases, which
can help farmers identify
and treat PDs[6] early, lead-
ing to better crop yield and
quality. Overall, the article
demonstrates the potential
of DL[3] based approaches
for improving PDD and
classification in corn crops.

PlantVillage[14]

10

25. [57] The article proposes a
method for detecting
APD[4] using leaf images
through a CNN. The ap-
proach involves collecting a
dataset of images of healthy
and diseased apple leaves,
pre-processing the images,
and training the CNN
model on the dataset. The
article also discusses the use
of data augmentation and
transfer learning[15], [16]
techniques to improve the
performance of the model.

The results show that the
proposed approach achieved
high accuracy in detecting
APDs[4], which can help
farmers identify and treat
PDs[6] early, leading to bet-
ter crop yield and qual-
ity. Overall, the article
demonstrates the potential
of DL[3] based approaches
for improving PDD in apple
crops.

PlantVillage[14]

Table 2.1: Summarized review of literature papers

The following are some of the key takeaways from the preceding table:

1. Data augmentation has shown to be a highly successful strategy for improving overall
performance and making the model more resilient to noise.

2. Oversampling strategies for adjusting for uneven numbers of entities increase per-
formance in classes with unequal numbers of entities.

3. For image classification tasks, DL[3] models are more accurate than machine learning
models.

4. The classification accuracy improves as the number of photos per class used to train
the models grows.

5. After achieving a particular high degree of accuracy, expanding the model’s com-
plexity to better suit the job yields decreasing returns.

6. When the model is trained for a small number of epochs (less than 20), the model
frequently does not acquire enough features from the input to correctly categorize
the test pictures.

7. Transfer learning[15], [16] is an excellent strategy for solving the PD[6] classification
issue since it gives improved performance as well as reduced training time because
these models have already been trained for greater performance on much bigger
classification problems in the same category.

8. When pre-trained model weights are frozen, the models tend to be less accurate on
the given task since they are more generalised.

9. The main advantage to use DL[3] Technique instead of ML[2] Technique is that
DL[3] does Feature Extraction and Classification by itself but in ML[2] we do Feature
Extraction Manually.

11

Chapter 3

PRELIMINARY

The combination of InceptionNet[11] and DenseNet[10] based CNN architecture was uti-
lized to detect PD[6]. In the sections that follow, the design of these components is
explained. Also mentioned below is thorough information regarding the techniques and
Python libraries that we employed in our suggested implementation, such as Keras[58],
TensorFlow[59], and others.

3.1 Plant Disease

PDs[6] are a group of disorders that affect the growth, development, and productivity of
plants. These diseases can be caused by a variety of factors, including bacteria, fungi,
viruses, nematodes, and environmental stressors such as drought, excess water, or extreme
temperatures.

PDs[6] can have significant impacts on agricultural production and food security. They
can reduce crop yields, lower crop quality, and cause economic losses for farmers and
agricultural industries. In some cases, PDs[6] can even lead to the complete loss of a
crop, which can have devastating consequences for farmers and communities that depend
on agriculture for their livelihoods.

There are several types of PDs[6], including foliar diseases, root diseases, stem diseases,
and fruit and seed diseases. Foliar diseases affect the leaves of plants, while root diseases
affect the roots. Stem diseases can affect the stems, branches, and twigs of plants, while
fruit and seed diseases affect the fruit or seed production of plants.

PDs[6] can be managed in several ways, including cultural, chemical, and biological
methods. Cultural methods involve practices such as crop rotation, sanitation, and use of
resistant cultivars to prevent the spread and development of PDs[6]. Chemical methods
involve the use of pesticides and fungicides to control PDs[6], while biological methods
involve the use of natural enemies, such as predatory insects or beneficial microbes, to
control PDs[6].

Prevention is the best strategy for managing PDs[6]. Farmers and agricultural in-
dustries can prevent PDs[6] by implementing good agricultural practices, such as using
disease-free seedlings, practicing crop rotation, and monitoring plants regularly for signs of
disease. Early detection and diagnosis of PDs[6] are also critical for effective management
and control.

In summary, PDs[6] are a significant challenge for agricultural production and food
security. Effective management and control of PDs[6] require a combination of prevention,
early detection and diagnosis, and appropriate management strategies tailored to the
specific disease and crop being affected.

12

Figure 3.1: Five plants and the diseases that each of them carries[60]

3.1.1 Classification of Plant Disease

PDs[6] can be classified into several categories based on various criteria, including the
type of pathogen causing the disease, the symptoms exhibited by the plant, and the mode
of transmission of the disease. Here are some common classifications of PDs[6]:

1. Based on the type of pathogen:

• Bacterial diseases - caused by bacteria such as fire blight and crown gall.

• Nematode diseases - caused by microscopic worms that attack plant roots.

• Fungal diseases - caused by fungi such as powdery mildew, rusts, and blights.

• Viral diseases - caused by viruses such as mosaic viruses and leaf curl viruses.

• etc...

2. Based on the symptoms:

• Leaf diseases - affecting the leaves of the plant.

• Stem and trunk diseases - affecting the stems or trunks of the plant.

• Root diseases - affecting the roots of the plant.

• Fruit and flower diseases - affecting the fruits or flowers of the plant.

13

• etc...

3. Based on the mode of transmission:

• Airborne diseases - transmitted through the air, such as powdery mildew.

• Soilborne diseases - transmitted through the soil, such as root rot.

• Waterborne diseases - transmitted through water, such as downy mildew.

• Insect-borne diseases - transmitted by insects, such as citrus greening disease

• etc...

Figure 3.2: Classification of plant diseases

Understanding the classification of PDs[6] can help farmers and gardeners identify
and control PDs[6] more effectively. By recognizing the type of pathogen causing the
disease, the symptoms exhibited by the plant, and the mode of transmission of the disease,
appropriate management strategies can be implemented to prevent or control the spread
of the disease.

3.2 Apple Foliar Disease

Apple foliar diseases are PDs[6] that affect the leaves of apple trees. These diseases can
have a significant impact on the health and productivity of apple trees, as well as the
quality of the fruit produced.

Here are some common foliar diseases that affect apple trees:

1. Apple scab - caused by the fungus Venturia inaequalis, apple scab is a common and
destructive disease of apple trees. It affects the leaves, fruit, and twigs of the tree,
causing dark spots and lesions on the leaves and fruit, and can ultimately lead to
defoliation and reduced yield.

2. Cedar apple rust - caused by the fungus Gymnosporangium juniperi-virginianae,
cedar apple rust is a fungal disease that affects both cedar trees and apple trees. It
causes bright orange spots on the leaves of the apple tree, and can lead to defoliation
and reduced fruit quality.

14

3. Powdery mildew - caused by various fungi, powdery mildew is a fungal disease that
affects many different plants, including apple trees. It appears as a white, powdery
coating on the leaves and can cause distorted growth and reduced fruit quality.

4. Fire blight - caused by the bacteria Erwinia amylovora, fire blight is a bacterial
disease that affects many different plants, including apple trees. It causes the leaves
and shoots to turn brown and wilt, and can lead to defoliation and reduced fruit
quality.

5. Black rot - caused by the fungus Botryosphaeria obtusa, black rot is a fungal disease
that affects the leaves, fruit, and twigs of the apple tree. It causes black spots on
the leaves and fruit, and can lead to defoliation and reduced yield.

Figure 3.3: Apple Leaves
(a) healthy leaves;
(b) Alternaria leaf spot;
(c) Brown spot;
(d) Mosaic;
(e) Grey spot;
(f) Rust.[61]

15

Prevention and control of apple foliar diseases include:

• Planting disease-resistant varieties

• Proper pruning to increase air circulation and sunlight penetration

• Removing infected leaves and fruit from the tree and the ground

• Fungicide applications, especially during periods of high humidity and rain

• Avoiding overhead irrigation, which can spread fungal spores

Regular inspection and monitoring of apple trees for signs of foliar diseases is crucial
for early detection and prompt treatment.

3.3 Convolutional Neural Network

A CNN is a type of ANN[62], [63] commonly used for image and video recognition and
analysis. CNNs are inspired by the structure and function of the visual cortex in animals
and can automatically learn and extract features from images and other types of visual
data.

The key building blocks of a CNN are convolutional layers, pooling layers, and fully
connected layers. The convolutional layers apply a set of filters or kernels to the input
image or feature map, which convolves the image and produces a new set of feature maps
that capture local patterns and structures. The pooling layers then downsample the
feature maps to reduce the dimensionality and improve the computational efficiency of
the network. Finally, the fully connected layers use the flattened feature maps as input
and perform classification or regression tasks based on the learned features.

CNNs are trained using a supervised learning[64] approach, where the network is fed
a large set of labeled training examples and adjusts its weights and biases to minimize the
error or loss function. This process is typically performed using backpropagation, which
computes the gradients of the loss function with respect to the weights and biases and
updates them accordingly.

One of the advantages of CNNs is their ability to automatically learn and extract
features from images and other types of visual data, without the need for explicit feature
engineering. This allows them to perform well on a variety of tasks, including object
detection, image segmentation, and image classification.

In recent years, CNNs have achieved state-of-the-art performance on many CV[66]
tasks, including object detection and image classification. They have also been used in
many other domains, such as NLP[67], speech recognition, and even music generation.

Overall, CNNs are a powerful and versatile type of NN that have revolutionized CV[66]
and many other fields. They are widely used in industry and academia for a variety of
applications and continue to be an active area of research and development.

3.4 InceptionNet

InceptionNet is a DCNN architecture for image classification and object recognition tasks.
It was developed by a team of researchers at Google and was first introduced in 2014.

16

Figure 3.4: Schematic Diagram of CNN[65]

InceptionNet was designed to address the challenge of creating deeper and more complex
NNs[68] while maintaining computational efficiency and avoiding overfitting.

The main innovation of InceptionNet is the use of inception modules, which are multi-
ple convolutional layers with different filter sizes and pooling operations stacked together
in parallel. These modules allow the network to capture both fine-grained and coarse-
grained features at different scales and resolutions, making it more effective at recognizing
objects with different shapes and sizes.

Another key feature of InceptionNet is the use of 1x1 convolutions, which help reduce
the dimensionality of the feature maps and improve computational efficiency. These
convolutions allow the network to combine information from different channels in a more
efficient manner and reduce the number of parameters needed in the network.

Figure 3.5: Schematic Diagram Of InceptionNet[69]

InceptionNet has achieved state-of-the-art performance on several benchmark image
classification tasks, including the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2014 and 2015. It has also been used for other tasks such as object detection,
image segmentation, and visual question answering.

InceptionNet has inspired several variations and improvements, such as Inception
V2[70], Inception V3[26], and Inception-ResNet[71], which combine the inception mod-

17

ules with residual connections for improved performance. These variations have achieved
even better performance on various tasks and have become widely used in industry and
academia.

Overall, InceptionNet is a powerful and efficient DL[3] architecture that has signifi-
cantly advanced the state-of-the-art in image classification and other CV[66] tasks. Its
success has inspired further research and development in the field of DL[3] and has con-
tributed to the rapid progress of AI[5].

3.5 DenseNet

DenseNet (Densely Connected Convolutional Networks) is a DL[3] architecture for image
recognition tasks that was introduced by a team of researchers at Facebook AI Research
in 2017. DenseNet is designed to address the challenges of training very DCNNs by
encouraging feature reuse and reducing the number of parameters in the network.

The main idea behind DenseNet is to connect every layer to every other layer in a
feedforward manner. In traditional CNNs, each layer takes the output of the previous
layer as its input. In DenseNet, however, each layer takes the feature maps of all preceding
layers as its input. This allows the network to reuse features more efficiently and reduces
the number of parameters needed to train the network.

DenseNet is built up of dense blocks, which are composed of multiple convolutional
layers with batch normalization and ReLU[72] activation functions. Each dense block
connects to the preceding block by concatenating the feature maps of all preceding layers.
The dense blocks are separated by transition layers, which reduce the dimensionality of
the feature maps and control the number of channels.

Figure 3.6: Schematic Diagram Of DenseNet[73]

DenseNet has achieved state-of-the-art performance on several benchmark image recog-
nition tasks, including the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
in 2017. It has also been used for other tasks such as object detection and segmentation.

One of the advantages of DenseNet is its ability to reduce the number of parameters
needed for training, which can lead to faster training times and better generalization
performance. This makes DenseNet particularly useful for tasks where computational
resources are limited.

18

Overall, DenseNet is a powerful DL[3] architecture that has significantly advanced the
state-of-the-art in image recognition tasks. Its success has inspired further research and
development in the field of DL[3] and has contributed to the rapid progress of AI[5].

19

Chapter 4

PROPOSED WORK

4.1 Problem Statement

As we know, agriculture[1] is the practice of raising a crop and the whole world population
is dependent on it. So, due to this, its productivity rate should be high. The productivity
rate of a plant is affected by the disease in a plant. So that’s why PD[6] should be detected
at an early stage. PD[6] detection involves developing an accurate and efficient system
for identifying diseases that affect plants. PDs[6] can be caused by various factors such as
bacteria, fungi, viruses, and environmental conditions, and can have a significant impact
on crop yield and quality. Early detection and diagnosis of PDs[6] are critical to prevent
the spread of the disease and minimize crop damage.

Traditionally, PDD has relied on visual inspection by trained experts, which can be
time-consuming, costly, and subject to human error. With advances in technology, au-
tomated systems for PD[6] detection using ML[2] and CV[66] techniques have been de-
veloped. These systems typically involve capturing images of plants, extracting relevant
features, and using ML[2] algorithms to classify the images as healthy or diseased. The
goal is to develop accurate and efficient systems for PDD that can be used by farmers
and agricultural experts to monitor and manage crop health.

4.2 Problem Solution

In this section, we will discuss the proposed Dense-INC model that is proposed in this
work. In this section, Data Preprocessing is described in the first subsection, then the
Proposed model is explained and then Optimizers used are explained in the last subsection.

Overall workflow of the proposed solution is given in Fig. 4.1.

4.2.1 Data Preprocessing

Here, two datasets[7], [8] are used in the evaluation process of the proposed model. The
details of these datasets are present in the methodology section. In the cases if the train
data set is very large, we have chosen to trim the train dataset to max 1000 samples
per class in order to reduce training time. All the images were resized to 256*256 pixels
and Data Augmentation is done as well before feeding to the model. Rescaling, rotation,
width shift, height shift, horizontal flip, zoom, shear and vertical flip are done before
training. It is done to avoid the problem of overfitting.

20

Figure 4.1: Flowchart of Proposed Methodology

4.2.2 Proposed Model

CNN based model called Dense-INC has been proposed which contains Convolution Layer,
Batch Normalization Layer, Activation Layer, Max-Pooling Layer, Global Average Pool-
ing Layer, Dense Layer, Dropout Layer, Inception Block and Dense Block.

Here Inception Block is inspired by InceptionNet[74] and Dense Block is Inspired by
DenseNet[10]. And in this proposed architecture, ReLU[72] and Softmax[27] activation
function is used.

Dense-INC architecture is given in Table 4.1.
In Dense-INC model, there are 2 Convolution Layers, 3 Batch Normalization Layers,

2 Max-Pooling Layers, 2 Activation Layers(ReLU[72]), 1 Global Average Pooling Layer, 4
Dense Layers(3 layers having ReLU[72] activation function and 1 layer having Softmax[27]
activation function), 1 Dropout Layers having dropout rate of 0.5, 2 Inception Module
and 2 Dense Module.

S.No. Name Activations Total Learn-
ables

1. Image Input 256x256x3 0
2. conv2d 256x256x64 1792
3. batch normalization 256x256x64 265
4. activation 256x256x64 0
5. max pooling2d 128x128x64 0
6. inception module 128x128x16 0
7. dense module 128x128x54 0

21

8. conv2d 1 128x128x32 156704
9. batch normalization 1 128x128x32 128
10. activation 1 128x128x32 0
11. max pooling2d 1 64x64x32 0
12. inception module 1 64x64x80 0
13. dense module 1 64x64x272 0
14. global average pooling2d 272 0
15. dense 9216 2515968
16. dense 1 4096 37752832
17. dense 2 1024 4195328
18. dense 3 128 131200
19. dropout 128 0
20. batch normalization 3 128 512
21. dense 4

• 4 (Plant
Pathology
2020)

• 12 (Plant
Pathology
2021)

• 516

• 1548

Total params:

• 46,254,604
(Plant
Pathology
2020)

• 46,255,636
(Plant
Pathology
2021)

Table 4.1: Detailed Architecture of Dense-INC architec-
ture

22

Detailed Explanation of Each Layer is given below:

1. Input: Defines the shape of the input tensor, which is (input image, input image,
3) for this model.

2. Conv2D: Performs 2D convolution on the input tensor with a specified number of
filters (64 in the first layer), kernel size of 3x3, and padding of ’same’, which means
the output feature maps will have the same spatial dimensions as the input.

3. BatchNormalization: Normalizes the outputs of the previous layer to ensure the
mean activation is close to 0 and the activation standard deviation is close to 1.

4. Activation: Applies the ReLU[72] activation function to the output of the previous
layer.

5. MaxPooling2D: Downsamples the input tensor along the spatial dimensions by tak-
ing the maximum value within a specified pool size (default is 2x2) and strides
(default is pool size).

6. inception module: A custom layer that applies the inception module that takes the
output of the previous layer as input and returns a feature map with increased depth
through concatenation of different convolutional filters.

7. dense block: A custom layer that applies the dense block that takes the output of
the previous layer as input and returns a feature map with increased depth through
concatenation of previous feature maps.

8. GlobalAveragePooling2D: Takes the average of each feature map in the previous
layer along the spatial dimensions to reduce the tensor to a vector of length equal
to the number of filters.

9. Dense: A fully connected layer that takes the vector output of the previous layer
and applies a specified number of neurons (9216, 4096, 1024, and 128 in this model)
with ReLU[72] activation.

10. Dropout: Randomly sets a fraction of input units to 0 at each update during training
to prevent overfitting.

11. BatchNormalization: Applies batch normalization to the output of the previous
layer.

12. 12. Dense: A fully connected layer that takes the output of the previous layer
and applies a Softmax[27] activation to classify the input into one of 4 possible
classes(in case of Plant Pathology 2020-FGCV7[7]) or 12 possible classes(in case
of Plant Pathology 2021-FGCV8[8]) [as defined by the number of neurons in the
output layer].

23

Two Modules that are defined in this work:

• Inception Module

• Dense Block

1. Inception Module
Inception Module is inspired by InceptionNet[74]. InceptionNet[74] is a DCNN ar-
chitecture that uses inception modules, which allow for efficient information process-
ing and feature extraction at multiple scales. Inception Module in the proposed work
contains 3 Convolution Layers of kernel size 1x1 with activation function ReLU[72]
and also the padding is same, 3 Convolution Layers of kernel size 3x3 with acti-
vation function ReLU[72] and also the padding is same, 1 Convolution Layers of
kernel size 5x5 with activation function ReLU[72] and also the padding is same and
1 Max-Pooling Layer having poolsize of 3, strides of 1x1, the padding is same and
the Concatenation Layer to merge some Layers.. The architecture of InceptionNet
is given in Fig.3.5.

Figure 4.2: Architecture of Inception Module

In Fig. 4.2, The Inception Module takes an input tensor of shape (h, w, c) and
applies a series of operations to it to produce an output tensor of shape (h, w, 4 *
filter 3x3).

The module consists of four branches of convolutional layers: a 1x1 convolution
branch, a 3x3 convolution branch, a max pooling and 1x1 convolution branch, and
a 1x1 convolution followed by 5x5 convolution and then 3x3 convolution branch.
The output of each branch is concatenated along the channel axis to produce the
final output.

24

Fig. 4.3 shows the flow of data through the Inception module, starting with the
input tensor and ending with the output tensor. The operations performed at each
layer are shown, along with the shape of the tensors at each stage. The final output
tensor is the concatenation of the output tensors from each branch along the channel
axis.

2. Dense Block
Dense Module is Inspired from DenseNet[10]. DenseNet[10] is a deep CNN architec-
ture that connects each layer to every other layer in a feed-forward fashion, leading
to feature reuse, parameter efficiency, and improved gradient flow. DenseNet[10]
consists of 4 Layers: Batch Normalization Layer, Activation Layer, Convolution
Layers of kernel size 3x3 with the same padding and the Concatenation Layer to
merge all the Layers. The architecture of DenseNet[10] is given in Fig. 3.6.

Figure 4.3: Architecture of Dense Block

In Fig. 4.3, The Dense Module takes an input tensor of shape (h, w, c) and applies
a series of operations to it to produce an output tensor of shape (h, w, nb layers *
growth rate + c).

The block consists of a series of nb layers layers, each of which performs batch
normalization, ReLU[72] activation, a 3x3 convolution with growth rate filters, and
concatenation with the input tensor. The output of each layer is fed as input to the
next layer, and the input tensor is updated to be the output of the last layer. The
final output tensor is the concatenation of all the intermediate feature maps along
the channel axis.

The Fig. 4.3 shows the flow of data through the dense module, starting with the
input tensor and ending with the output tensor. The operations performed at
each layer are shown, along with the shape of the tensors at each stage. The
Concatenation block takes the outputs from all the previous Convolutional blocks
and concatenates them along the channel axis.

25

Here, Kernel Initializer is used. In DL[3], a kernel initializer is a method used to
initialize the weights of the kernels or filters used in convolutional layers of a NN[68]. The
weights of these kernels are important as they determine the output of the layer and thus,
the overall performance of the network.

There are several different types of kernel initializers available, each with its own
strengths and weaknesses. Some of the most commonly used kernel initializers include:
Random normal, Random uniform, Glorot uniform, He normal, LeCun uniform.

Choosing the right kernel initializer can have a significant impact on the performance
of a NN[68], especially in the early stages of training. By setting the weights of the
kernels to appropriate values, we can help ensure that the network learns useful features
and achieves high accuracy on the task at hand.

In this proposed Dense-INC model, two kernel initializers are used: LeCun-uniform
initializer and another one is He-uniform initializer.

The LeCun-uniform kernel initializer and the He-uniform kernel initializer are two
commonly used methods for initializing the weights of convolutional kernels in NNs[68].

• The LeCun-uniform kernel initializer is named after Yann LeCun, and is de-
signed to initialize the weights of kernels in a way that helps to prevent gradients
from vanishing or exploding during training. The initializer uses a uniform distri-
bution to randomly initialize the weights of each kernel, with a range determined by
the formula sqrt(3/fan in), where fan in is the number of input channels to the layer.
This initialization method is commonly used in convolutional layers of NNs[68], and
has been shown to work well in practice for a wide range of tasks.

• The He-uniform kernel initializer, on the other hand, is named after Kaiming
He, and is a modified version of the LeCun-uniform initializer that is specifically
designed for use with ReLU[72] activation functions. The He-uniform initializer sets
the range of the uniform distribution used to initialize the weights to sqrt(6/fan in),
where fan in is the number of input channels to the layer. This initialization method
is preferred when using ReLU[72] activation functions because it helps to prevent
the ”dying ReLU” problem, where a large number of neurons in the network can
become permanently ”dead” (i.e. outputting zero) due to a zero gradient during
training.

Both the LeCun-uniform and He-uniform kernel initializers have been shown to work
well in practice for a variety of DL[3] tasks, and are widely used in state-of-the-art NN ar-
chitectures. The choice of which initializer to use may depend on the specific requirements
of the task at hand, and the characteristics of the dataset being used for training.

In this work, LeCun-uniform Kernel Initializer is used in convolution layers during
defining Inception Module and Dense Module and He-uniform Kernel Initializer is used
in convolution layers during defining the overall model.

4.2.3 Optimizers Used

In this proposed work, 4 optimizers are used to check which optimizer gives the better
results with the proposed Dense-INC model. Optimizers are: Adam, Adadelta, Adagrad,
SGD with momentum. Optimizers in DL[3] are algorithms used to update the weights
and biases of a NN[68] during training in order to minimize the loss function. The choice
of optimizer can have a significant impact on the performance of the model, and there

26

are several different optimizers available to choose from. Here’s a brief overview of each
optimizer used in this work:

1. Adam: Adam (Adaptive Moment Estimation) optimizer is a GD optimization
algorithm used in DL[3] for optimizing the parameters of a NN[68]. It is an extension
of the SGD algorithm and was proposed by Kingma and Ba in their paper ”Adam:
A Method for Stochastic Optimization” in 2014[75].

Adam optimizer calculates adaptive learning rates for each parameter of the NN[68]
using the first and second moments of the gradients. Specifically, it maintains two
moving averages of the gradient: the first moment (mean) and the second moment
(variance). These moments are calculated for each parameter during training and
are used to adjust the learning rate of each parameter.
The update rule for the Adam optimizer can be expressed mathematically as follows:

• Calculate the gradient of the objective function with respect to the model
parameters:

gt = ∇θJ(θt)

where gt is the gradient at time step t, θt is the model parameters at time step
t, and J(θt) is the objective function at time step t.

• Update the exponential moving average of the first moment of the gradient:

mt = β1mt−1 + (1− β1)gt

where mt is the first moment estimate at time step t, β1 is a hyperparameter
that controls the decay rate of the moving average, and m0 is initialized to 0.

• Update the exponential moving average of the second moment of the gradient:

vt = β2vt−1 + (1− β2)g
2
t

where vt is the second moment estimate at time step t, β2 is a hyperparameter
that controls the decay rate of the moving average, and v0 is initialized to 0.

• Compute the bias-corrected first and second moment estimates:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

where t is the current time step.

• Update the model parameters:

θt+1 = θt −
αm̂t√
v̂t + ϵ

where α is the learning rate, ϵ is a small constant added for numerical stability,
and

√
denotes the square root operation.

27

The Adam optimizer has several advantages over the traditional GD algorithms
such as faster convergence, better performance on sparse gradients, and robustness
to noisy gradients. Additionally, it requires less memory and computation compared
to other optimization algorithms such as Adagrad and RMSprop.

In summary, the Adam optimizer is a widely used optimization algorithm in DL[3]
that efficiently updates the parameters of a NN[68] by calculating adaptive learning
rates based on the first and second moments of the gradients.

2. Adadelta:Adadelta is a gradient-based optimization algorithm that is commonly
used in DL[3] for updating the model’s weights during training. It is an exten-
sion of the Adagrad optimizer and was introduced by Matthew Zeiler in his paper
”ADADELTA: An Adaptive Learning Rate Method” in 2012[76].

The Adadelta algorithm is designed to address some of the drawbacks of other
optimization methods such as Adagrad, which can suffer from a diminishing learning
rate problem that can lead to slow convergence. Adadelta addresses this issue by
adapting the learning rate[12] on a per-parameter basis and by keeping a moving
estimate of the second moment of the gradient.

At each time step during training, Adadelta calculates a running average of the
second moments of the gradients and uses this average to adjust the learning rate
for each weight. The learning rate[12] is scaled by the ratio of the RMS value of the
gradient to the RMS value of the parameter updates.
The update rule for Adadelta can be expressed mathematically as follows:

• Calculate the gradient of the objective function with respect to the model
parameters:

gt = ∇θJ(θt)

where gt is the gradient at time step t, θt is the model parameters at time step
t, and J(θt) is the objective function at time step t.

• Compute the exponential moving average of the squared gradients:

E[g2]t = γE[g2]t−1 + (1− γ)g2t

where E[g2]t is the moving average of the squared gradients at time step t, is
the decay rate, and E[g2]0 is initialized to 0.

• Compute the update:

∆θt = −RMS[∆θ]t−1

RMS[g]t
gt

where RMS[g]t =
√

E[g2]t + ϵ is the root-mean-square (RMS) of the gradient

at time step t, and RMS[∆θ]t−1 =
√

E[∆θ2]t−1 + ϵ is the RMS of the update
at time step t− 1.

• Compute the moving average of the squared updates:

E[∆θ2]t = γE[∆θ2]t−1 + (1− γ)∆θt

Adadelta has several advantages over other optimization algorithms such as Adagrad
and SGD, including faster convergence and more stable learning rates, which leads to

28

better generalization performance. Additionally, Adadelta does not require manual
tuning of hyperparameters such as the learning rate or the momentum term.

In summary, Adadelta is a widely used optimization algorithm in DL[3] that adapts
the learning rate[12] on a per-parameter basis using a moving average of the second
moments of the gradients. This leads to faster convergence and more stable learning
rates, making it a popular choice for training deep NNs[68].

3. Adagrad: Adagrad is a gradient-based optimization algorithm that is commonly
used in DL[3] for updating the model’s weights during training. It was introduced
by Duchi et al. in their paper ”Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization” in 2011[77].

The Adagrad algorithm is designed to adaptively adjust the learning rate of each
weight in the network based on the historical gradient information. It does this by
keeping a running sum of the squared gradients for each weight, which is then used
to scale the learning rate for that weight.
The update rule for Adagrad can be expressed mathematically as follows:

(a) Calculate the gradient of the objective function with respect to the model
parameters:

gt = ∇θJ(θt)

where gt is the gradient at time step t, θt is the model parameters at time step
t, and J(θt) is the objective function at time step t.

(b) Compute the sum of the squared gradients:

Gt = Gt−1 + g2t

where Gt is the sum of the squared gradients at time step t, G0 is initialized
to 0.

(c) Compute the update:

∆θt = − α√
Gt + ϵ

gt

where α is the learning rate, ϵ is a small constant added for numerical stability,
and

√
denotes the square root operation.

Adagrad has several advantages over other optimization algorithms such as SGD and
its variants, including faster convergence and more stable learning rates. However,
it also has some drawbacks, such as a diminishing learning rate problem that can
lead to slow convergence and difficulty in adapting to changes in the optimization
landscape.

To address these drawbacks, several variants of Adagrad have been proposed, such
as Adadelta and RMSProp, which adapt the learning rate[12] in a more sophisti-
cated way and incorporate momentum to improve convergence speed. Nonetheless,
Adagrad remains a popular choice for many DL[3] tasks, particularly in settings
where the optimization landscape is relatively stable and the gradients are not too
noisy.

29

4. SGD with momentum: SGD with momentum is an optimization algorithm that
is commonly used in DL[3] to train NNs[68]. It was first introduced by Rumelhart
et al. in their classic book ”Parallel Distributed Processing” in 1986[78].

The SGD with momentum algorithm works by adding a momentum term to the
standard SGD update rule. The momentum term is a running average of the past
gradients, which helps to smooth out the updates and prevent oscillations in the
optimization process.
The update rule for SGD with momentum can be expressed mathematically as
follows:

(a) Calculate the gradient of the objective function with respect to the model
parameters:

gt = ∇θJ(θt)

where gt is the gradient at time step t, θt is the model parameters at time step
t, and J(θt) is the objective function at time step t.

(b) Compute the momentum:
vt = γvt−1 + αgt

where vt is the momentum at time step t, γ is the momentum coefficient, and
v0 is initialized to 0.

(c) Update the model parameters:

θt+1 = θt − vt

The SGD with momentum algorithm has several advantages over standard SGD,
including faster convergence and improved generalization performance. By smooth-
ing out the updates and reducing oscillations, SGD with momentum can find better
optima and escape from local minima more easily. It can also help to avoid getting
stuck in plateaus or saddle points, which are common in high-dimensional optimiza-
tion problems.

Overall, SGD with momentum is a popular choice for training deep NNs[68] and
has been widely used in many state-of-the-art models in computer vision, NLP[67],
and other domains.

30

Chapter 5

DATA EVALUATION

For using the suggested algorithm, we have employed 2 datasets which are called Plant
Pathology 2020: FGCV7[7] and Plant Pathology 2021: FGCV8[8]. We utilized python
3.0 on an Intel i5 9th-generation CPU with 12 GB memory and NVIDIA K80 GPU with
12GB memory to acquire the experimental results for our suggested technique. Now, we
have reviewed the comprehensive description of datasets that we have compared in the
following section.

5.1 Datasets Used

In this part, we have done an overview of the details of the datasets. We have given the
dataset to detect a particular disease in an apple plant. We utilized the 2 genuine datasets
in Table 2: Plant Pathology 2020: FGCV7 and Plant Pathology 2021:FGCV8[8]. Now,
we have discussed the structure and configuration of all datasets in Table 5.1.

Dataset Name Training Images Testing Images Total Images

Plant Pathology 2020: FGCV7[7] 14,707 4,008 18,715
Plant Pathology 2021:FGCV8[8] 14,906 3,726 18,632

Table 5.1: Destribution of Datasets

1. Plant Pathology 2020: FGCV7
The Plant Pathology 2020 - FGVC7[7] dataset is a subset of images of leaves with
different diseases such as apple scab, cedar apple rust, and healthy leaves. It was
made available to the Kaggle community for the ’Plant Pathology Challenge’; part
of the Fine-Grained Visual Categorization (FGVC) workshop at CVPR 2020 (Com-
puter Vision and Pattern Recognition). The objective of this challenge was to train
a model using images of training dataset to accurately classify a given image from
testing dataset into different diseased category or a healthy leaf.

The distribution of these categories in the dataset is as follows:

• Healthy: 5162 images (27.6%)

• Multiple Diseases: 1420 images (7.6%)

• Rust: 3166 images (16.9%)

31

Figure 5.1: Sample Images of Plant Pathology 2020-FGCV7 Dataset[7]

The sample images of Plant Pathology 2020-FGCV7[7] dataset are given in Fig. 5.1.

Note that some images may have more than one label if the leaf shows symptoms
of multiple diseases or conditions. The ”Other” category refers to images that were
not classified as any of the four main categories, and it includes images with unclear
or ambiguous labels.

It is important to note that the distribution of classes in the dataset is imbalanced,
with the ”Healthy” class being the most represented and the ”Multiple Diseases”
class being the least represented. This can make it challenging to train machine
learning models that are accurate across all classes, and researchers and develop-
ers may need to use techniques such as data augmentation and class balancing to
improve model performance.

2. Plant Pathology 2021: FGCV8
Plant Pathology 2021 - FGVC8[8] is a Kaggle competition launched on March 15,
2021, and closed on May 27, 2021. The competition was aimed at developing a
model that can accurately classify a given image of a plant leaf into different diseased
categories or a healthy leaf. The dataset provided for this competition consists of
18632 labeled apple tree leaf images.

The distribution of these categories in the dataset is as follows:

• Healthy: 4826 images (25.9%)

• Complex: 821 images (4.4%)

• Rust: 6226 images (33.4%)

• Powdery Mildew: 4759 images (25.5%)

The sample images of Plant Pathology 2021-FGCV8[8] dataset are given in Fig. 5.2.

Figure 5.2: Sample Images of Plant Pathology 2021-FGCV8 Dataset[8]

Note that some images may have more than one label if the leaf shows symptoms
of multiple diseases or conditions.

32

It is important to note that the distribution of classes in the dataset is also im-
balanced, with the ”Complex” class being the least represented. This can make it
challenging to train machine learning models that are accurate across all classes, and
researchers and developers may need to use techniques such as data augmentation
and class balancing to improve model performance.

33

Chapter 6

EXPERIMENTS AND RESULTS

In this chapter, I’m going to discuss about the performance of the proposed model. Here,
two datasets are used in the evaluation process of the proposed model. The details of
these datasets are present in the Data Evaluation section. Here in this work, the proposed
model has been trained with 4 optimizers and compared the results with each other. Four
optimizers used: Adam, Adadelta, Adagrad and SGD with momentum. These optimizers
are explained in the Chapter: Proposed Work. Learning rate[12] set to 0.01 in each of
the optimizers. And also compared the results with two CNN-based models which are
already proposed.

6.1 Performance Metrics

Here, 3 performance metrics are used to compare the results: Accuracy, Precision and
Recall. These are the metrics used to evaluate the performance of a classification model,
including CNN-based models for plant disease detection.

1. Accuracy: Accuracy refers to the degree to which a measurement, calculation, or
prediction is correct or exact. It is usually expressed as a percentage or a ratio that
represents the number of correct predictions or measurements divided by the total
number of predictions or measurements made. In other words, accuracy measures
how well a model or a system is performing in terms of its ability to correctly identify
or classify data.

For example, if a model correctly classifies 90 out of 100 images, its accuracy would
be 90%. However, it’s important to note that accuracy alone may not always be
the most meaningful metric, especially in cases where the distribution of data is
imbalanced or when certain types of errors are more costly than others. In such
cases, other metrics such as precision, recall may be more appropriate to evaluate
the performance of a model or a system.

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(6.1)

2. Precision: Precision is a metric used to evaluate the performance of a classification
model or a system in terms of its ability to make precise predictions. It is defined
as the ratio of true positive predictions to the total number of positive predictions
made by the model. In other words, precision measures the proportion of the positive
predictions that are actually correct.

34

For example, suppose a binary classification model predicts that out of 100 samples,
80 are positive and 20 are negative. If the model correctly identifies 70 of the positive
samples as positive and misclassifies 10 of them as negative, then the precision of
the model would be 70/(70+10) = 0.875 or 87.5%.

Precision =
Number of Correctly Predicted Positive Instances

Number of Total Positive Positive Predictions you made
(6.2)

3. Recall: Recall, also known as sensitivity or true positive rate, is a metric used to
evaluate the performance of a classification model or a system in terms of its ability
to correctly identify positive samples. It is defined as the ratio of true positive
predictions to the total number of actual positive samples in the data. In other
words, recall measures the proportion of the positive samples that are correctly
identified by the model.

For example, suppose a binary classification model predicts that out of 100 samples,
80 are positive and 20 are negative. If the model correctly identifies 70 of the positive
samples as positive and misses 10 of them, then the recall of the model would be
70/(70+10) = 0.875 or 87.5%.

Recall =
Number of Correctly Predicted Positive Instances

Number of Total Positive Positive Instances in a Dataset
(6.3)

In the context of plant disease detection, accuracy, precision, and recall metrics can
be used to evaluate the performance of the CNN-based model in identifying healthy and
diseased plants, as well as in identifying the specific disease affecting the plant. These
metrics can help in fine-tuning the model and improving its performance by identifying
the areas where the model is performing poorly.

6.2 Analysis and Visualization of the Experimental

Result

In this section, I’m going to discuss about the performance of the proposed method on the
two datasets which is discussed in the Data Evaluation Chapter. Here, we use Accuracy,
Precision and Recall to evaluate the performance of the proposed model.

Now, we deployed the provided method on the supplied two datasets in which we
have compared Accuracy, Precision and Recall with the 4 optimizers to check which
optimizer gives the better results with the proposed Dense-INC model. Optimizers are:
Adam, Adadelta, Adagrad, SGD with momentum. These optimizers are discussed in the
Proposed Work Chapter.

6.2.1 Performance on Plant Pathology 2020- FCVG7 dataset

1. Using Adam Optimizer
On this dataset, we ran our model for 50 epochs with Adam Optimizer, and got the
highest accuracy of 0.8870, precision of 0.9009, recall of 0.8759 and the lowest loss
of 0.3208. All the performance metrics for the course are as shown in Fig. 6.1.

35

Figure 6.1: Performace Evaluation of the Proposed model using Adam Optimizer on Plant
Pathology 2020-FCVG7 Dataset

2. Using Adadelta Optimizer
On this dataset, we ran our model for 50 epochs with Adadelta Optimizer, and got
the highest accuracy of 0.6261, precision of 0.7275, recall of 0.4591 and the lowest
loss of 0.9249. All the performance metrics for the course are as shown in Fig. 6.2.

Figure 6.2: Performace Evaluation of the Proposed model using Adadelta Optimizer on
Plant Pathology 2020-FCVG7 Dataset

3. Using Adagrad Optimizer
On this dataset, we ran our model for 50 epochs with Adagrad Optimizer, and got
the highest accuracy of 0.9082, precision of 0.9234, recall of 0.8885 and the lowest
loss of 0.2758. All the performance metrics for the course are as shown in Fig. 6.3.

4. Using SGD with momentum Optimizer
On this dataset, we ran our model for 50 epochs with SGD with momentum Opti-
mizer, and got the highest accuracy of 0.8537, precision of 0.8871, recall of 0.8169
and the lowest loss of 0.4186. All the performance metrics for the course are as
shown in Fig. 6.4.

36

Figure 6.3: Performace Evaluation of the Proposed model using Adagrad Optimizer on
Plant Pathology 2020-FCVG7 Dataset

Figure 6.4: Performace Evaluation of the Proposed model using SGD with momentum
Optimizer on Plant Pathology 2020-FCVG7 Dataset

Summarization of the results is given in Table 6.1.
In Table 6.1, It is shown that Adagrad optimizer gives better results with a loss of

0.27 and Adadelta optimizer gives worst results with a loss of 0.92.

37

Optimizers Accuracy Precision Recall

Adam (in %) 88.70% 90.09% 87.59%
Adadelta (in %) 62.61% 72.75% 45.91%
Adagrad (in %) 90.82% 92.34% 88.85%

SGD with momentum (in %) 85.37% 88.71% 81.69%

Table 6.1: Performance Evaluation of Plant Pathology 2020: FGCV7 dataset

6.2.2 Performance on Plant Pathology 2021- FCVG8 dataset

1. Using Adam Optimizer
On this dataset, we ran our model for 50 epochs with Adam Optimizer, and got the
highest accuracy of 0.8895, precision of 0.9023, recall of 0.8829 and the lowest loss
of 0.3143. All the performance metrics for the course are as shown in Fig. 6.5.

Figure 6.5: Performace Evaluation of the Proposed model using Adam Optimizer on Plant
Pathology 2021-FCVG8 Dataset

2. Using Adadelta Optimizer
On this dataset, we ran our model for 50 epochs with Adadelta Optimizer, and got
the highest accuracy of 0.6356, precision of 0.7123, recall of 0.5029 and the lowest
loss of 0.645. All the performance metrics for the course are as shown in Fig. 6.6.

3. Using Adagrad Optimizer
On this dataset, we ran our model for 50 epochs with Adagrad Optimizer, and got
the highest accuracy of 0.9256, precision of 0.9523, recall of 0.9029 and the lowest
loss of 0.2543. All the performance metrics for the course are as shown in Fig. 6.7.

38

Figure 6.6: Performace Evaluation of the Proposed model using Adadelta Optimizer on
Plant Pathology 2021-FCVG8 Dataset

Figure 6.7: Performace Evaluation of the Proposed model using Adagrad Optimizer on
Plant Pathology 2021-FCVG8 Dataset

4. Using SGD with momentum Optimizer
On this dataset, we ran our model for 50 epochs with SGD with momentum Opti-
mizer, and got the highest accuracy of 0.8656, precision of 0.9023, recall of 0.8176
and the lowest loss of 0.3502. All the performance metrics for the course are as
shown in Fig. 6.8.

Summarization of the results is given in Table 6.2.
In Table 6.2, It is shown that Adagrad optimizer gives better results with a loss of

0.25 and Adadelta optimizer gives worst results with a loss of 0.64.
In Table 6.2, It is shown that Adagrad optimizer gives better results with a loss of

0.25 and Adadelta optimizer gives the worst results with a loss of 0.64.
According to Table 6.1 and 6.2, we can say that the proposed model gives better results

with the Plant Pathology 2021- FGCV8[8] dataset as compared to Plant Pathology 2020-
FGCV7[7] dataset. And the proposed model trained using Adagrad Optimizer in both
the datasets.

So to further analyze the result, the proposed model has been compared with two

39

Figure 6.8: Performance Evaluation of the Proposed model using SGD with momentum
Optimizer on Plant Pathology 2021-FCVG8 Dataset

Optimizers Accuracy Precision Recall

Adam (in %) 88.95% 90.23% 88.29%
Adadelta (in %) 63.56% 71.23% 50.29%
Adagrad (in %) 92.56% 95.23% 90.29%

SGD with momentum (in %) 86.56% 90.23% 81.76%

Table 6.2: Performance Evaluation of Plant Pathology 2021: FGCV8 dataset

CNN based models which are already suggested: Model1[79] and Model2[17]. These two
models have been trained with the Adagrad Optimizer and trained on Plant Pathology
2021- FGCV8[8] dataset.

Results are given in Fig. 6.9.

Figure 6.9: Comparison of Performance using Adagrad Optimizer

40

In Fig. 6.9, as it’s already mentioned Model1[79] and Model2[17] are the CNN-based
models and Model3 is the proposed model, Dense-INC model which is trained on Plant
Pathology 2020- FGCV7[7] dataset and Model4 is the proposed model, Dense-INC model
which is trained on Plant Pathology 2021- FGCV8[8] dataset. All the Models are trained
using Adagrad Optimizer.

So, I can conclude that Model4 which is the proposed Dense-INC model which gives
better results as compared to other models with the accuracy of 92.56%, Precision of
95.23% and Recall of 90.29%.

41

Chapter 7

CONCLUSION AND FUTURE SCOPE

In recent years, the use of CNNs for plant disease detection has gained increasing attention
in the field of agriculture. In this report, we have explored the use of a CNN-based model
for the detection of plant diseases.

The results of our study demonstrate that the proposed Dense-INC model is effective
in detecting plant diseases, with high levels of accuracy achieved in the classification of
healthy and diseased plants, as well as in identifying the specific disease affecting the
plant. The model was trained on a large dataset of plant images, which allowed it to
learn the features and patterns associated with different plant diseases. The performance
of the model was evaluated using various metrics such as accuracy, precision and recall,
and the results showed that the proposed model achieved high levels of accuracy in all
metrics.

One of the main advantages of the Dense-INC model is its ability to learn features
directly from the image data, which eliminates the need for hand-crafted features. More-
over, the use of deep learning techniques, such as CNNs, allows for the analysis of complex
data sets with high dimensional inputs, such as plant images. Additionally, the model can
be used for real-time detection of plant diseases, which can help farmers take preventive
measures before the disease spreads.

However, there are some limitations to the use of the Dense-INC model for plant
disease detection. One of the main challenges is the lack of large and diverse datasets.
Collecting and labeling a large dataset of plant images can be time-consuming and ex-
pensive, especially for rare diseases or in regions where access to plant samples is limited.
Moreover, some diseases can have similar symptoms, making it difficult for the model to
differentiate between them.

In general, it can be said that the use of the model for plant disease detection shows
great potential for improving the accuracy and efficiency of plant disease detection. The
development of such models can provide significant benefits to the agricultural industry,
by reducing the risk of crop losses and improving food security.

The use of CNNs for plant disease detection has shown promising results in recent
years. However, there is still a lot of scope for future research to improve the accuracy
and efficiency of the Dense-INC model for plant disease detection.

In this report, we discuss some of the potential areas for future research.

• Improving the dataset: One of the main limitations of CNN-based models for
plant disease detection is the lack of large and diverse datasets. Future research can
focus on creating larger and more diverse datasets, especially for rare diseases or
in regions where access to plant samples is limited. Moreover, the dataset can be

42

augmented by applying various techniques such as rotation, flipping, and zooming
to increase the diversity of the dataset.

• Improving the dataset: One of the main limitations of CNN-based models for
plant disease detection is the lack of large and diverse datasets. Future research can
focus on creating larger and more diverse datasets, especially for rare diseases or
in regions where access to plant samples is limited. Moreover, the dataset can be
augmented by applying various techniques such as rotation, flipping, and zooming
to increase the diversity of the dataset.

• Exploring transfer learning: Transfer learning involves fine-tuning a pre-trained
CNN on a smaller dataset of plant images. This approach can overcome the limi-
tations of small datasets and improve the accuracy of the model. Future research
can explore the use of transfer learning for plant disease detection and evaluate its
performance.

• Developing mobile applications: The development of user-friendly mobile appli-
cations based on CNN-based models can help farmers detect plant diseases quickly
and accurately. Future research can focus on developing such applications that are
easy to use, accessible, and provide real-time information to the farmers.

• Exploring the use of multiple modalities: CNN-based models can be trained on
multiple modalities such as visible light images, hyperspectral images, and thermal
images. Future research can explore the use of multiple modalities to improve the
accuracy of the model.

• Incorporating contextual information: Incorporating contextual information:
Plant diseases can be affected by various environmental factors such as temperature,
humidity, and soil conditions. Future research can explore the incorporation of
contextual information into the CNN-based models to improve the accuracy of the
model.

• Explainability and interpretability: CNN-based models are often considered
black boxes, and it is challenging to explain the reasoning behind the model’s pre-
dictions. Future research can focus on developing methods for explaining the model’s
predictions and making the model more interpretable.

In conclusion, there is still a lot of scope for future research to improve the accuracy
and efficiency of Dense-INC model for plant disease detection. The development of such
models can provide significant benefits to the agricultural industry by reducing the risk
of crop losses and improving food security. Future research can focus on improving the
dataset, exploring transfer learning, developing mobile applications, incorporating multi-
ple modalities, and improving the explainability and interpretability of the models.

43

Bibliography

[1] K. V. Flannery, “The Origins of Agriculture,”
https://doi.org/10.1146/annurev.an.02.100173.001415, vol. 2, no. 1, pp. 271–310,
Nov. 2003, doi: 10.1146/ANNUREV.AN.02.100173.001415.

[2] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives,
and prospects,” Science (1979), vol. 349, no. 6245, pp. 255–260, Jul. 2015, doi:
10.1126/SCIENCE.AAA8415.

[3] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553.
Nature Publishing Group, pp. 436–444, May 27, 2015. doi: 10.1038/nature14539.

[4] “Apple: Diseases and Symptoms — Vikaspedia.”
https://vikaspedia.in/agriculture/crop-production/integrated-pest-
managment/ipm-for-fruit-crops/ipm-strategies-for-apple/apple-diseases-and-
symptoms (accessed Apr. 06, 2023).

[5] J. Mccarthy, “WHAT IS ARTIFICIAL INTELLIGENCE?,” 2007, Accessed: Mar.
31, 2023. [Online]. Available: http://www-formal.stanford.edu/jmc/

[6] “plant disease - Symptoms and signs — Britannica.”
https://www.britannica.com/science/plant-disease/Symptoms-and-signs (accessed
May 25, 2022).

[7] “Plant Pathology 2020 - FGVC7 — Kaggle.” https://www.kaggle.com/c/plant-
pathology-2020-fgvc7/overview (accessed Mar. 31, 2023).

[8] “Plant Pathology 2021 - FGVC8 — Kaggle.” https://www.kaggle.com/c/plant-
pathology-2021-fgvc8 (accessed Dec. 14, 2022).

[9] “[PDF] The Plant Pathology 2020 challenge dataset to
classify foliar disease of apples — Semantic Scholar.”
https://www.semanticscholar.org/paper/The-Plant-Pathology-2020-challenge-
dataset-to-of-Thapa-Snavely/17005a1bd4189707f17d8bef9a0909c9399f7171 (accessed
Mar. 18, 2023).

[10] Y. Zhu and S. Newsam, “DenseNet for dense flow,” Proceedings - International Con-
ference on Image Processing, ICIP, vol. 2017-September, pp. 790–794, Feb. 2018, doi:
10.1109/ICIP.2017.8296389.

[11] P. Hao, J. H. Zhai, and S. F. Zhang, “A simple and effective method for
image classification,” Proceedings of 2017 International Conference on Machine
Learning and Cybernetics, ICMLC 2017, vol. 1, pp. 230–235, Nov. 2017, doi:
10.1109/ICMLC.2017.8107769.

44

[12] “Learning rate - Wikipedia.” https://en.wikipedia.org/wiki/Learning rate (accessed
Apr. 06, 2023).

[13] G. Geetharamani and A. P. J., “Identification of plant leaf diseases using a nine-layer
deep convolutional neural network,” Computers and Electrical Engineering, vol. 76,
pp. 323–338, Jun. 2019, doi: 10.1016/j.compeleceng.2019.04.011.

[14] “GitHub - spMohanty/PlantVillage-Dataset: Dataset of diseased plant leaf images
and corresponding labels.” https://github.com/spMohanty/PlantVillage-Dataset
(accessed May 25, 2022).

[15] S. Panigrahi, A. Nanda, and T. Swarnkar, “A Survey on Transfer Learning,” Smart
Innovation, Systems and Technologies, vol. 194, no. 10, pp. 781–789, 2021, doi:
10.1007/978-981-15-5971-6 83.

[16] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions
on Knowledge and Data Engineering, vol. 22, no. 10. pp. 1345–1359, 2010. doi:
10.1109/TKDE.2009.191.

[17] P. Jiang, Y. Chen, B. Liu, D. He, and C. Liang, “Real-Time Detection of Apple
Leaf Diseases Using Deep Learning Approach Based on Improved Convolutional
Neural Networks,” IEEE Access, vol. 7, pp. 59069–59080, 2019, doi: 10.1109/AC-
CESS.2019.2914929.

[18] “Deep Learning: GoogLeNet Explained — by Richmond Alake — Towards
Data Science.” https://towardsdatascience.com/deep-learning-googlenet-explained-
de8861c82765 (accessed May 26, 2022).

[19] “PlantPathology Apple Dataset — Kaggle.”
https://www.kaggle.com/datasets/piantic/plantpathology-apple-dataset (accessed
Apr. 04, 2023).

[20] A. Adedoja, P. A. Owolawi, and T. Mapayi, “Deep learning based on NASNet for
plant disease recognition using leave images,” icABCD 2019 - 2nd International Con-
ference on Advances in Big Data, Computing and Data Communication Systems,
Aug. 2019, doi: 10.1109/ICABCD.2019.8851029.

[21] “Review: NASNet — Neural Architecture Search Network (Image Classification)
— by Sik-Ho Tsang — Medium.” https://sh-tsang.medium.com/review-nasnet-
neural-architecture-search-network-image-classification-23139ea0425d (accessed Apr.
06, 2023).

[22] R. G. De Luna, E. P. Dadios, and A. A. Bandala, “Automated Image Capturing
System for Deep Learning-based Tomato Plant Leaf Disease Detection and Recog-
nition,” IEEE Region 10 Annual International Conference, Proceedings/TENCON,
vol. 2018-October, pp. 1414–1419, Feb. 2019, doi: 10.1109/TENCON.2018.8650088.

[23] “Faster R-CNN Explained for Object Detection Tasks — Paperspace Blog.”
https://blog.paperspace.com/faster-r-cnn-explained-object-detection/ (accessed
Apr. 06, 2023).

45

[24] J. Chen, J. Chen, D. Zhang, Y. Sun, and Y. A. Nanehkaran, “Using deep transfer
learning for image-based plant disease identification,” Comput Electron Agric, vol.
173, p. 105393, Jun. 2020, doi: 10.1016/J.COMPAG.2020.105393.

[25] S. Mascarenhas and M. Agarwal, “A comparison between VGG16, VGG19 and
ResNet50 architecture frameworks for Image Classification,” Proceedings of IEEE
International Conference on Disruptive Technologies for Multi-Disciplinary Re-
search and Applications, CENTCON 2021, pp. 96–99, 2021, doi: 10.1109/CENT-
CON52345.2021.9687944.

[26] “Inception V3 CNN Architecture Explained . — by Anas BRITAL — Medium.”
https://medium.com/@AnasBrital98/inception-v3-cnn-architecture-explained-
691cfb7bba08 (accessed Apr. 06, 2023).

[27] M. Wang, S. Lu, D. Zhu, J. Lin, and Z. Wang, “A High-Speed and Low-Complexity
Architecture for Softmax Function in Deep Learning,” 2018 IEEE Asia Pacific Con-
ference on Circuits and Systems, APCCAS 2018, pp. 223–226, Jan. 2019, doi:
10.1109/APCCAS.2018.8605654.

[28] V. Tiwari, R. C. Joshi, and M. K. Dutta, “Dense convolutional neural networks based
multiclass plant disease detection and classification using leaf images,” Ecol Inform,
vol. 63, no. March, p. 101289, 2021, doi: 10.1016/j.ecoinf.2021.101289.

[29] F. Jiang, Y. Lu, Y. Chen, D. Cai, and G. Li, “Image recognition of four rice leaf dis-
eases based on deep learning and support vector machine,” Comput Electron Agric,
vol. 179, Dec. 2020, doi: 10.1016/J.COMPAG.2020.105824.

[30] D. A. Pisner and D. M. Schnyer, Support vector machine. Elsevier Inc., 2019. doi:
10.1016/B978-0-12-815739-8.00006-7.

[31] D. Demirović, “An Implementation of the Mean Shift Algorithm,” Image Processing
On Line, vol. 9, pp. 251–268, Sep. 2019, doi: 10.5201/IPOL.2019.255.

[32] U. P. Singh, S. S. Chouhan, S. Jain, and S. Jain, “Multilayer Convolution Neural
Network for the Classification of Mango Leaves Infected by Anthracnose Disease,”
IEEE Access, vol. 7, pp. 43721–43729, 2019, doi: 10.1109/ACCESS.2019.2907383.

[33] M. Agarwal, A. Singh, S. Arjaria, A. Sinha, and S. Gupta, “ToLeD: Tomato Leaf
Disease Detection using Convolution Neural Network,” Procedia Comput Sci, vol.
167, no. 2019, pp. 293–301, 2020, doi: 10.1016/j.procs.2020.03.225.

[34] A. Smetanin, A. Uzhinskiy, G. Ososkov, P. Goncharov, and A. Nechaevskiy, “Deep
learning methods for the plant disease detection platform,” AIP Conf Proc, vol. 2377,
no. October, 2021, doi: 10.1063/5.0068797.

[35] P. Bedi and P. Gole, “Plant disease detection using hybrid model based on con-
volutional autoencoder and convolutional neural network,” Artificial Intelligence in
Agriculture, vol. 5, pp. 90–101, 2021, doi: 10.1016/j.aiia.2021.05.002.

[36] Y. Zhang, “A Better Autoencoder for Image: Convolutional Autoencoder”.

46

[37] M. Brahimi, M. Arsenovic, S. Laraba, S. Sladojevic, K. Boukhalfa, and A. Moussaoui,
“Deep Learning for Plant Diseases: Detection and Saliency Map Visualisation,” no.
June, pp. 93–117, 2018, doi: 10.1007/978-3-319-90403-0 6.

[38] M. Z. Alom et al., “The History Began from AlexNet: A Compre-
hensive Survey on Deep Learning Approaches,” 2018, [Online]. Available:
http://arxiv.org/abs/1803.01164

[39] G. Sachdeva, P. Singh, and P. Kaur, “Plant leaf disease classification using deep
Convolutional neural network with Bayesian learning,” Mater Today Proc, vol. 45,
pp. 5584–5590, 2021, doi: 10.1016/j.matpr.2021.02.312.

[40] Read, “Bayesian Learning”.

[41] P. Tm, A. Pranathi, K. Saiashritha, N. B. Chittaragi, and S. G. Koolagudi,
“Tomato Leaf Disease Detection Using Convolutional Neural Networks,” 2018 11th
International Conference on Contemporary Computing, IC3 2018, Nov. 2018, doi:
10.1109/IC3.2018.8530532.

[42] “LeNet - Wikipedia.” https://en.wikipedia.org/wiki/LeNet (accessed Apr. 06, 2023).

[43] Y. LeCun et al., “Handwritten digit recognition with a back-propagation network,”
Adv Neural Inf Process Syst, vol. 2, pp. 396–404, 1990, Accessed: Apr. 06, 2023.
[Online]. Available: http://yann.lecun.com/exdb/publis/pdf/lecun-90c.pdf

[44] V. Suma, R. A. Shetty, R. F. Tated, S. Rohan, and T. S. Pujar, “CNN based Leaf
Disease Identification and Remedy Recommendation System,” Proceedings of the 3rd
International Conference on Electronics and Communication and Aerospace Technol-
ogy, ICECA 2019, pp. 395–399, Jun. 2019, doi: 10.1109/ICECA.2019.8821872.

[45] M. F. A. Hady and F. Schwenker, “Semi-supervised Learning,” Intelligent Sys-
tems Reference Library, vol. 49, pp. 215–239, 2013, doi: 10.1007/978-3-642-36657-
4 7/COVER.

[46] P. Soni and R. Chahar, “A segmentation improved robust PNN model for disease
identification in different leaf images,” 1st IEEE International Conference on Power
Electronics, Intelligent Control and Energy Systems, ICPEICES 2016, Feb. 2017, doi:
10.1109/ICPEICES.2016.7853301.

[47] D. F. Specht, “Probabilistic neural networks,” Neural Networks, vol. 3, no. 1, pp.
109–118, Jan. 1990, doi: 10.1016/0893-6080(90)90049-Q.

[48] Y. Kawasaki, H. Uga, S. Kagiwada, and H. Iyatomi, “Basic study of automated
diagnosis of viral plant diseases using convolutional neural networks,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 9475, pp. 638–645, 2015, doi: 10.1007/978-3-
319-27863-6 59/COVER.

[49] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based
plant disease detection,” Front Plant Sci, vol. 7, no. September, p. 1419, Sep. 2016,
doi: 10.3389/FPLS.2016.01419/BIBTEX.

47

[50] A. S. Keceli, A. Kaya, C. Catal, and B. Tekinerdogan, “Deep learning-based multi-
task prediction system for plant disease and species detection,” Ecol Inform, vol. 69,
p. 101679, Jul. 2022, doi: 10.1016/J.ECOINF.2022.101679.

[51] A. O. Anim-Ayeko, C. Schillaci, and A. Lipani, “Automatic blight disease detection
in potato (Solanum tuberosum L.) and tomato (Solanum lycopersicum, L. 1753)
plants using deep learning,” Smart Agricultural Technology, vol. 4, p. 100178, Aug.
2023, doi: 10.1016/J.ATECH.2023.100178.

[52] A. V. Panchal, S. C. Patel, K. Bagyalakshmi, P. Kumar, I. R. Khan, and M. Soni,
“Image-based Plant Diseases Detection using Deep Learning,” Mater Today Proc,
Aug. 2021, doi: 10.1016/J.MATPR.2021.07.281.

[53] M. H. Saleem, J. Potgieter, and K. M. Arif, “A Performance-Optimized Deep
Learning-Based Plant Disease Detection Approach for Horticultural Crops of
New Zealand,” IEEE Access, vol. 10, pp. 89798–89822, 2022, doi: 10.1109/AC-
CESS.2022.3201104.

[54] C. K. Sunil, C. D. Jaidhar, and N. Patil, “Cardamom Plant Disease Detection
Approach Using EfficientNetV2,” IEEE Access, vol. 10, pp. 789–804, 2022, doi:
10.1109/ACCESS.2021.3138920.

[55] M. Tan and Q. V Le, “EfficientNetV2: Smaller Models and Faster Training.”
PMLR, pp. 10096–10106, Jul. 01, 2021. Accessed: Apr. 04, 2023. [Online]. Avail-
able: https://proceedings.mlr.press/v139/tan21a.html

[56] H. Amin, A. Darwish, A. E. Hassanien, and M. Soliman, “End-to-End Deep Learning
Model for Corn Leaf Disease Classification,” IEEE Access, vol. 10, pp. 31103–31115,
2022, doi: 10.1109/ACCESS.2022.3159678.

[57] V. K. Vishnoi, K. Kumar, B. Kumar, S. Mohan, and A. A. Khan, “Detection of
Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network,”
IEEE Access, vol. 11, pp. 6594–6609, 2023, doi: 10.1109/ACCESS.2022.3232917.

[58] “Keras: Deep Learning for humans.” https://keras.io/ (accessed Mar. 31, 2023).

[59] “TensorFlow.”
https://www.tensorflow.org/gclid=Cj0KCQjwiZqhBhCJARIsACHHEH bXjIpYxfmoP
dyXU66tPd3k61RZuKyqpRwSuKvD1G8NxXkgugHZcsaAnDGEALw wcB (ac-
cessed Mar. 31, 2023).

[60] “This figure illustrates the five plants and the diseases that each of... — Download Sci-
entific Diagram.” https://www.researchgate.net/figure/This-figure-illustrates-the-
five-plants-and-the-diseases-that-each-of-them-carries fig3 357495598 (accessed Apr.
05, 2023).

[61] “Healthy apple leaves and five common disease types: (a) healthy leaves;... —
Download Scientific Diagram.” https://www.researchgate.net/figure/Healthy-apple-
leaves-and-five-common-disease-types-a-healthy-leaves-b-Alternaria fig1 352247462
(accessed Apr. 03, 2023).

48

[62] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks: A tuto-
rial,” Computer (Long Beach Calif), vol. 29, no. 3, pp. 31–44, Mar. 1996, doi:
10.1109/2.485891.

[63] “Artificial neural network - Wikipedia.”
https://en.wikipedia.org/wiki/Artificial neural network (accessed Apr. 06, 2023).

[64] P. Cunningham, M. Cord, and S. J. Delany, “Supervised learning,” Cognitive Tech-
nologies, pp. 21–49, 2008, doi: 10.1007/978-3-540-75171-7 2/COVER.

[65] “The overall architecture of the Convolutional Neural Network (CNN)... — Download
Scientific Diagram.” https://www.researchgate.net/figure/The-overall-architecture-
of-the-Convolutional-Neural-Network-CNN-includes-an-input fig4 331540139 (ac-
cessed Apr. 04, 2023).

[66] R. A. Jarvis, “A Perspective on Range Finding Techniques for Computer Vision,”
IEEE Trans Pattern Anal Mach Intell, vol. PAMI-5, no. 2, pp. 122–139, 1983, doi:
10.1109/TPAMI.1983.4767365.

[67] K. R. Chowdhary, “Natural Language Processing,” Fundamentals of Artificial Intel-
ligence, pp. 603–649, 2020, doi: 10.1007/978-81-322-3972-7 19.

[68] C. M. Bishop, “Neural networks and their applications,” Review of Scientific Instru-
ments, vol. 65, no. 6, p. 1803, Jun. 1998, doi: 10.1063/1.1144830.

[69] “The architecture of Inception-V3 model. — Download Scientific Dia-
gram.” https://www.researchgate.net/figure/The-architecture-of-Inception-V3-
model fig5 349717475 (accessed Mar. 17, 2023).

[70] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift,” 32nd International Conference on Machine
Learning, ICML 2015, vol. 1, pp. 448–456, Feb. 2015, Accessed: Apr. 07, 2023.
[Online]. Available: https://arxiv.org/abs/1502.03167v3

[71] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning,” 31st AAAI Con-
ference on Artificial Intelligence, AAAI 2017, pp. 4278–4284, Feb. 2016, doi:
10.1609/aaai.v31i1.11231.

[72] A. M. Fred Agarap, “Deep Learning using Rectified Linear Units (ReLU),” Mar. 2018,
Accessed: Apr. 04, 2023. [Online]. Available: https://arxiv.org/abs/1803.08375v2

[73] “Example of the DenseNet model. — Download Scientific Dia-
gram.” https://www.researchgate.net/figure/Example-of-the-DenseNet-
model fig2 337919457 (accessed Mar. 17, 2023).

[74] J. Zhong, C. Pun, and S. Member, “An End-to-End Dense-InceptionNet for Image
Copy-Move Forgery Detection,” vol. 15, pp. 2134–2146, 2020.

[75] D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,”
3rd International Conference on Learning Representations, ICLR 2015 - Confer-
ence Track Proceedings, Dec. 2014, Accessed: Apr. 07, 2023. [Online]. Available:
https://arxiv.org/abs/1412.6980v9

49

[76] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” Dec. 2012, Ac-
cessed: Apr. 07, 2023. [Online]. Available: https://arxiv.org/abs/1212.5701v1

[77] DuchiJohn, HazanElad, and SingerYoram, “Adaptive Subgradient Methods for On-
line Learning and Stochastic Optimization,” The Journal of Machine Learning Re-
search, Jul. 2011, doi: 10.5555/1953048.2021068.

[78] “Parallel Distributed Processing.” https://mitpress.mit.edu/9780262680530/parallel-
distributed-processing/ (accessed Apr. 07, 2023).

[79] S. P. Singh, K. Pritamdas, K. J. Devi, and S. D. Devi, “Custom Convolutional Neural
Network for Detection and Classification of Rice Plant Diseases,” Procedia Comput
Sci, vol. 218, pp. 2026–2040, 2023, doi: 10.1016/j.procs.2023.01.179.

50

LIST OF PUBLICATIONS

1. Barsha Biswas, Rajesh Kumar Yadav, “A Review of Convolutional Neural Network-
Based Approaches for Disease Detection in Plants”. Accepted and presented at the
International Conference on Intelligent Data Communication Technologies and In-
ternet of Things (IDCIoT 2023).
Indexed by Scopus.
Paper Id: IDCIoT172

51

2. Barsha Biswas, Rajesh Kumar Yadav, “Multilayer Convolutional Neural Network
Based Approach to Detect Apple Foliar Disease”. Accepted and presented at the
International Conference on Innovation in Technology (INOCON 2023).
Indexed by Scopus.
Paper Id: INOCON499

52

oid:27535:35644412Similarity Report ID:

20% Overall Similarity
Top sources found in the following databases:

11% Internet database 10% Publications database

Crossref database Crossref Posted Content database

16% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be
displayed.

1
dspace.dtu.ac.in:8080 3%
Internet

2
Barsha Biswas, Rajesh Kumar Yadav. "Multilayer Convolutional Neural ... <1%
Crossref

3
S. Kim, D.J. Park, D.E. Chang. "RAPIDO: a rejuvenating adaptive PID-typ... <1%
Crossref

4
doctorpenguin.com <1%
Internet

5
mdpi.com <1%
Internet

6
Anju Yadav, Udit Thakur, Rahul Saxena, Vipin Pal, Vikrant Bhateja, Jerry...<1%
Crossref

7
internationaljournalssrg.org <1%
Internet

8
"Intelligent Computing Theories and Application", Springer Science and... <1%
Crossref

Sources overview

