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Abstract

In addition to being able to distinguish between a dog and any bird, humans are

amazingly capable of visualising or picturing fine-grained detail, we can also discern an

American Bulldog from an English Bulldog To educate or train machines to apprehended

in a fine-grained manner, fine-grained image recognition was brought to the academic

community. FGIR is used in different academic and business settings. applications in

both industry and academia. These applications have had a positive impact on fields

like conservation and commerce. The objective of FGIR has been a long-term goal of

the deep learning community. It is to retrieve and identify images from several intra-class

categories of a super-class category, such as various dogs, aircraft, and plant species, retail

product types, etc. Determining how to distinguish between items that are remarkably

similar in appearance but different in fine-grained attributes is, consequently, the main

difficulty.

Intricate nuances and subtle visual signals that might not be clearly seen in low-

resolution photos are frequently used in fine-grained image identification. We have put

efforts into an approach to this problem using super-resolution to recover finer details,

such as textures, patterns, or minor differentiating traits. These details are essential for

the categorization or localization of fine-grained categories. Usually, accurate localization

of objects or particular regions of interest within an image is necessary, which is performed

by specialised feature detection. We also performed a survey on recent trends in the field,

and we tried to identify and classify the generalised techniques used in FGIR into groups

based on the types of techniques followed and the results that we were trying to achieve.
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Chapter 1

INTRODUCTION

We understand an image as a 2D geometric function in spatial coordinates. The pixels of

an image can be represented as a matrix in this space. This function can be manipulated

in order to extract intrinsic patterns. Several techniques, like filtering, can be used to

modify or even enhance an image. Filters in image processing are used for extracting

image segments of interest, highlighting them, or even removing some other features like

the median filter, the Gaussian filter, the Laplacian filter, the Sobel filter, and image

scaling.

1.1 Object Detection

Identifying and detecting items of interest within digital photographs or video frames is

the problem of object detection, which falls under the umbrella of computer vision. It

is a key issue in the study of computer vision and has a wide range of uses in robotics,

autonomous vehicles, surveillance, and picture retrieval, among other fields. Identifying

items in an image and properly determining their spatial position by tracing bounding

boxes around them are the two objectives of object detection. This makes it feasible

to create intelligent systems that can communicate with the outside world by enabling

robots to comprehend and interpret visual data.

Traditionally, handmade characteristics and machine learning classifiers were used by

object identification algorithms to identify items. However, the area has made great

strides thanks to recent developments in deep learning, notably with convolutional neural

networks (CNNs). Deep learning-based algorithms have shown to be significantly more

accurate and efficient than traditional methods in object identification tasks. Modern

object detection systems frequently employ a one- or two-stage methodology. In the two-

stage method, the computer system first creates a list of region recommendations that

represent probable places for objects in the image. These ideas are then categorised in

order to establish whether or not they include an object. The system may lessen the com-

puting load by concentrating solely on pertinent regions thanks to this two-step method.
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Figure 1.1: Flow chart representing Object detection

Without the requirement for explicit region proposal construction, object identifica-

tion is carried out immediately in the one-stage technique. Each grid cell in the full

image forecasts a set of bounding boxes together with the class probabilities. Comparing

this procedure to the two-stage approaches, it is typically faster but may result in some

accuracy loss.

The creation of object detection algorithms mainly relies on labelled datasets that

offer instances of things and their related bounding boxes. The effectiveness of object

identification algorithms is trained on and assessed against these datasets. The COCO

(Common Objects in Context) dataset [12] and ImageNet [13] are a few well-liked object

detection datasets. With the introduction of cutting-edge designs like Faster R-CNN [14],

SSD (Single Shot MultiBox Detector) [6], YOLO (You Only Look Once) [15] and, Effi-

cientDet [16], object detection has recently experienced fast advancement. These models

use deep learning methods to deliver cutting-edge performance in terms of accuracy and

speed, including convolutional neural networks and numerous optimisations. Research on

object identification is still strong, and it is anticipated that further developments in deep

learning, hardware acceleration, and dataset accessibility will further improve its capabil-

ities. A vast range of applications across several sectors and areas are made possible by

the capability to precisely and effectively recognise objects in photos and videos.

1.2 Image Super-Resolution

The technique of increasing a picture’s resolution and quality to create a higher-resolution

version with more detailed information is known as image super-resolution. It is a signifi-

cant problem in image processing and computer vision to reconstruct lost high-frequency

information and increase visual clarity. The need for image super-resolution arises in a

variety of situations, including enhancing the visual quality of outdated or compressed

images, enhancing the resolution of medical images for precise diagnosis, and enhancing

the quality of images in video applications. The difficulty with picture super-resolution
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is precisely predicting the high-frequency information that is absent. It is typically chal-

lenging to immediately recover the lost high-frequency features since the low-resolution

image only offers a small amount of information. Researchers have created a number of

strategies based on various concepts and methods to overcome this.

Interpolation and filtering techniques were frequently used in traditional super-resolution

methods to boost resolution, but the results were frequently fuzzy or unrealistic. Convo-

lutional neural networks (CNNs) have demonstrated astounding performance in picture

super-resolution since the development of deep learning. These deep learning-based meth-

ods pick up complicated visual patterns and produce more precise high-resolution images

by learning from huge datasets. The exploration of innovative network designs, loss func-

tions, and training techniques has been the main focus of recent developments in picture

super-resolution. To produce more visually realistic and detailed high-resolution pho-

tographs, generative adversarial networks (GANs) [17] have been used in super-resolution.

In order to increase the preservation of small features and improve reconstruction quality,

attention methods and residual connections have also been added into network topologies.

The creation of single-image super-resolution techniques, which attempt to improve

the resolution of a single picture without depending on numerous input images or prior

knowledge, is another field of research in image super-resolution. These techniques use ad-

vanced deep learning models to extrapolate high-frequency information from input photos

with poor resolution. In order to solve numerous difficulties with picture quality concur-

rently, researchers are also investigating the coupling of super-resolution with other tasks,

such as image denoising and inpainting. This encourages the creation of more robust and

thorough picture enhancing techniques. Medical imaging, remote sensing, surveillance,

digital photography, and video processing are just a few of the fields where image super-

resolution finds important use. It improves picture analysis, provides better visualisation,

and improves the user experience overall by increasing image resolution and quality.

1.3 Fine-grained Image Recognition

The goal of FGIR is to handle objects that fall under different subcategories of the same

meta category. We have seen different techniques of image processing used in order to

extract the most meaningful parts of the image or the areas of interest to the problem

in this domain. Different image processing techniques work to extract the meaningful

parts of the image and also work to eliminate errors or filter out non-required parts of the

image. Along with this, we have also seen different techniques used with computer vision

models.
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Figure 1.2: Fine-grained grained image intricacies [9]

The considerable homogeneity and minute variations across item categories make fine-

grained image identification jobs difficult. We try to enhance the features using super-

resolution by boosting the discriminating ability of the learned features. The model may

be more resistant to intra-class fluctuations and enable better distinction between items

with similar appearances. The thought behind this is that fine-grained image collection

in certain situations could be dominated by low-resolution pictures. These photos may

be up-scaled to a greater quality, which effectively increases the quantity of training data

available. This can help models generalise while reducing the drawbacks of having less

training data. Several approaches have been used in the past to perform feature localiza-

tion. including bounding-box annotations [18], region proposal methods [19], part-based

approaches [20], and attention mechanisms. Boundingbox annotations can help localise

items in an image by anticipating bounding boxes. coordinates with object identification

algorithms such as Faster R-CNN, YOLO [15], or SSD. Normally, these algorithms are

trained on large object identification datasets, but they may also be adjusted or cus-

tomised for a particular fine-grained image recognition application. This study mostly

performs the above procedure on the CUB200-2011 dataset [21].

The CUB-200 dataset, which includes bird photos with class labels, was the first thing

we acquired. We divided the dataset into subgroups for training and testing. We anno-

tated the CUB200 dataset with bounding boxes in a YOLO-compatible style.
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1.4 Overview

The objective of fine-grained image identification is to identify and categorise objects that

fall into similar categories but have distinct qualities that may be difficult for humans or

traditional computer vision systems to discern. Tasks requiring fine-grained identification

include recognising several bird species, dog types, flower types, or automobile models.

Because the visual distinctions between subcategories may be fairly subtle and fre-

quently include minute local characteristics or particular areas of an item, fine-grained

image identification is a challenging task. A model must have the ability to concentrate

on these minute details and recognise the small visual signals that distinguish one sub-

category from another. Large labelled datasets with fine-grained annotations, where each

item is accurately marked with its associated subcategory name, are often needed for

accurate fine-grained identification. These datasets are used to train convolutional neural

networks (CNNs), which are particularly good at extracting hierarchical features from

visual input, and other deep learning models.

Several methods have been developed to address the difficulties involved with fine-

grained picture recognition. One such method involves combining localization information

with classification in order to not only identify the item but also to draw attention to the

distinguishing features or areas that influenced the categorization choice. Understanding

these crucial hints makes it easier to distinguish between related subcategories.

Another essential method for fine-grained recognition is transfer learning, which in-

volves fine-tuning or using feature extractors for pre-trained models built on massive

datasets (like ImageNet). This makes use of the generic characteristics that were learned

during the pre-training phase and enhances the models’ ability to identify fine-grained

categories with less training data.

Furthermore, attention methods enable models to focus on useful regions while disre-

garding irrelevant background regions, which has proven successful in fine-grained image

identification. The model’s capacity to pay attention to minute details is improved by

attention mechanisms, which also increase accuracy.

Numerous sectors, including biodiversity monitoring, species conservation, product

recognition, and fashion analysis, use fine-grained picture recognition. It provides more

accurate item recognition and classification, enhancing comprehension, analysis, and

decision-making based on visual information.
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The creation of cutting-edge architectures, network regularisation strategies, and big-

ger fine-grained datasets will continue to drive advancements in fine-grained image iden-

tification as deep learning and computer vision research advances. These developments

will increase the capacity of robots to comprehend and interpret minute changes in visual

appearance, making them useful tools in a variety of real-world applications.

Improvements in accuracy, efficiency, and resilience have been prioritised as recent

research trends in object identification have centred on tackling these issues. The avail-

ability of large datasets, unique network topologies, and improvements in deep learning

have all led to a number of important innovations and trends. Here is a summary of

several significant object detection research trends: One-stage detectors have drawn a lot

of interest because of how straightforward and effective they are. Popular examples are

the YOLO (You Only Look Once) and SSD (Single Shot MultiBox Detector) models.

Without explicitly generating region suggestions, these models carry out item detection

across the board. One-stage detectors are currently being improved in order to increase

accuracy while preserving real-time performance.

FGIR is utilised in the business world to classify intricate, specific classifications that

are essentially difficult to classify using traditional image recognition algorithms. FGIR-

related techniques have been created and have excelled in well-known computer vision

benchmarks. The FGIR benchmarks, however, were created in a static, controlled envi-

ronment. Another significant drawback of the current FGIR datasets is that much of the

image frame is usually taken up by the object of interest, which makes them unrepresen-

tative of real-world applications.

We classified the FGIR techniques into three categories:

1) Localization and Classification

2) External Information

3) End-to-End Encoding

With regard to the most recent advancements and the direction that the field is head-

ing, we have carefully summarised the papers on this topic. The scarcity of labelled

photos, particularly those belonging to a particular meta-category and its corresponding

sub-categories, severely restricts the use of sample data in research at the moment. One

of the main obstacles preventing this discipline from progressing at the moment is the

absence of a common dataset. Some academics have attempted to solve this issue by

directly getting labelled data from the web and using the ones that can be applied in this

field. Since unlabeled photos are widely available on the internet and within the deep

learning community, several researchers have used these unlabeled images and carried out

image captioning as a challenging technique. The outcome is a labelled picture that may

be used directly in this issue.

7



Given that a lot of work on picture captioning is being done on a larger scale than that

of this domain, we can consider doing FGIR using this technique. However, the paper

claims that as a model grows more exact, the necessity for it to carry out fine-grained

analysis increases. It qualifies as being incredibly accurate in terms of minute details.

Filters in image processing are used for extracting image segments of interest or high-

lighting or even removing some other features like:

1.4.1 Median Filter

Remove noise from images and use a simple technique of replacing the central pixel with

the median pixel value of the surrounding pixels. This takes linear time complexity and

is efficient.

Figure 1.3: Median filter to a black and white image

1.4.2 Gaussian Filter

Also removes noise from images but mainly blurs them. It uses a kernel that follows a

Gaussian distribution so that the image is filtered In a way, it focuses on normal distri-

bution.

Figure 1.4: Gaussian filter to a black and white image

1.4.3 Sobel Filter

Sobel filters use kernels that maximise the vertical and horizontal lines in the image. The

vertical and horizontal edges pop out of the image and are shown combined together, which

works as extracting the edges in the image. It is a computationally cheaper technique for

identifying strong edges in an image where we do not need to spend much computation

and time on training a machine learning model to identify image edges.
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Figure 1.5: Sobel filter to a black and white image

1.4.4 Image Scaling

Image downscaling and upscaling refers to reducing and increasing the resolution of the

image respectively.

Figure 1.6: Image Downscaling

Figure 1.7: Image Upscaling

1.5 Problem statement

The following is a description of the research questions we set in order to choose the

research articles for evaluation that were relevant to our field:

1) What are the available literature sources for FGIR

2) What are the different techniques that can be used to perform FGIR

3) Which datasets are used for FGIR.

4) Also to come up with an approach to perform the task.

9



1.6 Identified Problem

The current issue is the identification and categorization of minute elements in pho-

tographs. The process of finding and classifying objects or features that display minute

variances and subtleties within a certain category is known as fine-grained image detec-

tion. The difficulty comes from the richness and intricateness of these minute features,

which frequently call for a high level of visual discernment and specialised expertise. Ex-

amples of such situations include recognising various automobile models, differentiating

between similar bird species, and identifying certain varieties of flowers.

Since they mostly depend on generic visual cues that might not capture the small

distinctions required for exact classification, current image detection and classification al-

gorithms frequently struggle with reliably discriminating fine-grained details. Therefore,

sophisticated methods that can accurately collect and analyse these complex aspects are

required. The objective is to create a reliable and accurate fine-grained image detection

system that can categorise objects with minute variances in an accurate manner. To en-

hance classification performance, this system should make use of cutting-edge computer

vision algorithms and deep learning approaches and maybe include domain-specific infor-

mation. Numerous fields, such as botany, the motor industry, art, and animal protection,

will benefit from the answer to this issue. The suggested technology would improve our

capacity to comprehend and engage with the visual world at a very granular level by

precisely recognising and categorising fine-grained elements in images, opening up a wide

range of useful applications and insights.
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Chapter 2

LITERATURE REVIEW

Object detection has frequently employed two-stage detectors, such as Faster R-CNN

(Region-based Convolutional Neural Networks) [14]. They produce prospective object

areas using a region proposal network (RPN), categorise, and refine those suggestions. In-

creasing speed and efficiency has been the focus of recent research on two-stage detectors,

frequently by incorporating innovative network components or optimisation approaches.

Traditional object detectors use known anchor boxes to compare bounding boxes to

ground truth boxes. Anchor-free detectors, on the other hand, do away with the need for

anchor boxes and directly predict the locations and sizes of objects. With the growing

demand for real-time applications and resource-constrained situations, researchers have

concentrated on creating efficient object detection algorithms. This covers network ar-

chitecture design optimisation, knowledge distillation, quantization, pruning, and other

approaches for reducing computational complexity and memory footprint while maintain-

ing considerable accuracy. Transformer [4] designs, popularised by their effectiveness in

natural language processing, have also found their way into object identification. Mod-

els like DETR (DEtection TRansformer) [22] use techniques of self-attention to identify

objects. Transformer-based detectors offer a versatile framework for managing object de-

tection tasks and have demonstrated promising accuracy and speed results.

Self-supervised learning has gained popularity as a method of using vast volumes of

unlabeled data for pretraining object identification models. Models can capture richer

representations and generalise to downstream tasks more effectively by learning from un-

labeled input. Pretext tasks and contrastive learning have both demonstrated significant

promise for enhancing object identification abilities during self-supervised pretraining.

It is frequently difficult for object identification algorithms trained on one domain

to generalise successfully to other domains or undiscovered classes. Domain adaptation

methods for transferring knowledge from labelled source domains to unlabeled target do-

mains have been the subject of recent study. Furthermore, few-shot object identification

tries to identify things with just a few labelled instances, necessitating models to generalise

11



from sparse training data. Small disruptions can cause object detectors to be misclassi-

fied or have their bounding boxes altered in adversarial attacks. To make object detectors

more resistant to adversarial assaults, research has examined strategies including adver-

sarial training, defensive distillation, and robust loss functions. The continuous attempts

to improve object identification algorithms’ precision, effectiveness, generalizability, and

resilience are reflected in these research themes. It is anticipated that ongoing research

into innovative network topologies, training methods, and dataset developments will lead

to additional breakthroughs and push the limits of object identification in a variety of

practical applications.

The goal of fine-grained image recognition, often referred to as fine-grained visual

categorization, is to discriminate between visually identical item categories with minute

changes. Fine-grained image recognition digs deeper to detect certain subcategories or

species within a given class, in contrast to classical object identification, which seeks to

categorise things into broad categories like dogs, cats, or vehicles.

The CUB-200 dataset, which includes bird photos with class labels, was the first

thing we acquired. We divided the dataset into subgroups for training and testing. We

annotated the CUB200 dataset with bounding boxes in YOLO. Since the programme’s

beginning approximately 20 years ago, significant progress has been made. Particularly,

deep learning has been a potent technique for discriminative feature learning, which has

produced amazing advances in the field of fine-grained image recognition. The practical

application of these techniques in a variety of application scenarios has been significantly

improved by deep learning-enabled FGIR. Due to the minor inter-class changes brought

on by extremely comparable sub-categories and the significant intra-class variations in

poses, sizes, and rotations, the problem’s fine-grained nature presents researchers with a

different and difficult challenge. As such, it is the antithesis of general image analysis.

Since the beginning of the use of neural networks in the area of computation with the

introduction of convolutional neural networks by Y. Lecun et al. [10], researchers have

started the classification and recognition of images. Further advancements were made,

including One major improvement was made by Alex Krizhevsky et al.’s [23] accommo-

dating style.

We have looked at a number of recent publications on fine-grained image recognition

from prestigious journals. Because of the significant intra-class variance and little inter-

class variation in fine-grained picture recognition, it is a challenging challenge. Deep

learning-driven technologies are profiting from deep learning advances.

Over the past four years, many developments have occurred in the area. of fine-grained

image identification have been made. Objects belonging to a certain category, such as
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several bird species or Dog breeds, which frequently have identical external character-

istics, are distinguished using fine-grained image recognition. A list of some significant

advancements in this area is shown below:

2.1 Deep Neural Networks

A family of machine learning models known as deep neural networks (DNNs) are mod-

elled after the structure and operation of the human brain. They are made to learn and

represent intricate correlations and patterns in data, which enables them to complete a

variety of tasks requiring advanced comprehension and judgement. A layer-based design

made up of linked nodes, commonly referred to as artificial neurons or units, is the basis

of a deep neural network. These units are arranged in layers, with an input layer, one or

more hidden layers, and an output layer being the standard layer configuration. DNNs

get their name from the hidden layers, which can be numerous and extensive.

Weights, which signify the significance or strength of the connection, are attached to

the links forming the network’s nodes’ connections. In order to properly tune the model to

provide correct predictions or classifications, the network learns to modify these weights

based on input data and intended output throughout the training phase. Deep neural

networks’ main advantage is its capacity to autonomously learn hierarchical data repre-

sentations. By drawing on the representations that the network’s earlier levels learnt,

each layer learns ever-more sophisticated characteristics. Intricate patterns and relation-

ships in the data may be captured by DNNs thanks to this hierarchical learning, which

makes them very good at tasks like speech recognition, picture identification, and natural

language processing.

Modern convolutional neural networks and other deep neural network architectures

continue to be used in fine-grained image recognition models. These designs have shown

considerable gains in accuracy and generalisation power when used in conjunction with

methodologies like transfer learning and network ensembles. We have seen CNN being

used in some form or another, with different loss functions and regularizations.

2.1.1 Convolutional neural networks

Convolutional neural networks (CNN) are inspired by the visual cortex of human and

animal brains. It extracts information from the images using hidden layers, consisting

mainly of the convolution layer and the fully connected layer. Images on CNN are seen

as a matrix of pixels.
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Figure 2.1: General CNN architecture [10]

Convolutional Neural Networks (CNNs) are a particular kind of deep neural network

created for the processing and analysis of organised grid-like input, such as photos and

movies. The foundation of computer vision tasks including image classification, object

identification, picture segmentation, and others is now provided by CNNs. The capacity of

CNNs to automatically learn hierarchical representations of visual data is its distinguish-

ing feature. Convolutional layers, pooling layers, and completely linked layers, among

others, are used to do this.

The foundational units of CNNs are convolutional layers. They use a series of trainable

filters or kernels to extract regional information and record spatial correlations from the

input data. The network learns to recognise edges, textures, and more complex patterns

at various sizes and orientations by swiping these filters across the input. Convolutional

layer results are referred to as feature maps.

The feature maps are downsampled using pooling layers to reduce their spatial dimen-

sions while preserving the most important data. Max pooling, which chooses the highest

value within an area, and average pooling, which calculates the average value, are common

pooling processes. Translation invariance can be attained and computational complexity

is decreased by pooling.

Fully linked layers, often referred to as dense layers, are frequently positioned towards

the network’s edge. They translate the high-level characteristics acquired by the convo-

lutional layers to the required prediction or output classes. The network may make final

judgements based on the retrieved features thanks to fully linked layers. The process of

training a CNN entails providing it with labelled training data made up of pairs of input

samples and the intended outputs they should produce. Backpropagation is a technique

used by the network to learn from these instances where mistakes in the output predic-

tions are transmitted backward through the network to update the weights and enhance
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the performance of the model.

2.1.2 Region-based Convolutional Neural Network(R-CNN) [1]

CNN uses a region proposal generator, which uses a selective search algorithm. The selec-

tive search algorithm performs segmentation and is used as an object detection algorithm.

It uses support vector machines to perform object detection. It calculates the colour, tex-

ture, size, and fill similarity of images and feeds them to SVM. The output of the selective

search algorithm is a feature-extracted image, which is fed to a backbone CNN.

Figure 2.2: R-CNN architecture [1]

R-CNN, a ground-breaking object detection framework, transformed the industry by

fusing deep learning with region proposal methods. A group of researchers under the

direction of Ross Girshick first presented it in 2014. The challenge of object detection,

which entails locating and categorising things inside an image, is addressed by the R-CNN

method. Traditional approaches, which were inaccurate and computationally costly, de-

pended on handmade features and sliding window techniques.

Convolutional neural networks (CNNs) were used by R-CNN, a pioneering technology,

to detect objects. The three primary components of the framework are object categoriza-

tion, feature extraction, and region proposal. In the first stage, probable item bounding

boxes inside the picture are generated using a region proposal technique, such as Selective

Search. The CNN then processes these areas, which are assumed to be home to objects.

The next step is to shrink each area proposal to a defined size before feeding it into a CNN

that has already been trained using an architecture like AlexNet or VGGNet. From the

area of interest, the CNN derives high-dimensional feature representations that encode

both spatial and semantic data.
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2.1.3 Faster R-CNN

The extracted features are then fed into a set of support vector machines (SVMs) [24] for

classification. The SVMs learn to classify the presence or absence of specific object cate-

gories within each region proposal. Additionally, a bounding box regression is performed

to refine the location of the proposed bounding boxes.

During the training phase, R-CNN employs a multi-stage process. First, the CNN

is pre-trained on a large-scale image classification dataset, such as ImageNet, to learn

generic visual features. Then, the CNN is fine-tuned using the region proposals and their

associated ground-truth labels.

R-CNN demonstrated significant improvements in object detection accuracy compared

to previous methods. However, it suffered from slow inference speed due to the need for

individual CNN forward passes for each region proposal.

Faster R-CNN is a speed improvement on R-CNN. It performs a region of interest pool-

ing layer (RoI), which focuses on the part of the image that we are interested in. This

RoI layer is generally smaller and removes the need for the selective search algorithm.

which is the main reason R-CNN was slower. The output of the pooled image contains

the extracted features of the image, which contain the area of interest of the image. These

extracted features are then input to the faster R-CNN network for classification, and the

image’s belongingness to the output class is calculated and represented in the form of a

bounding box. Except for the additional layer used to predict segmentation, it is quite

similar to Faster R-CNN. The second step, which operates concurrently, predicts class,

generates bounding boxes, and produces a binary mask for each RoI. This stage of region

proposal production is the same in both architectures.

Later efforts expanded on R-CNN to solve its drawbacks. Fast R-CNN is one notable

modification that shared the convolutional features across all area suggestions, greatly ac-

celerating the inference procedure. Faster R-CNN is another development that included

a region proposal network (RPN) incorporated into the CNN architecture, allowing end-

to-end training and substantially boosting speed and accuracy.

R-CNN and its offspring have established frameworks for object detection that have

influenced a large number of further models. Numerous applications, including as au-

tonomous driving, video monitoring, and image analysis, have widely embraced them.

Overall, the combination of deep learning and region recommendations was pioneered

by R-CNN, opening the door for major improvements in object identification and laying

the groundwork for further state-of-the-art methods.
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2.1.4 Mask R-CNN [2]

Faster R-CNN, which integrates region proposal generation and object categorization into

a single network architecture, serves as the foundation for Mask R-CNN. Mask R-CNN

extends this architecture to predict a binary mask for each instance of an object in addi-

tion to object recognition, offering precise pixel-level segmentation.A backbone network, a

region proposal network (RPN), and a mask prediction network make up the architecture

of Mask R-CNN. The backbone network analyses the input picture and extracts a feature

map that encodes rich semantic and spatial information. It is commonly built on a deep

convolutional neural network (CNN) architecture like ResNet or VGGNet.

Mask R-CNN is similar to Faster R-CNN with an added layer for segment detection.

The problem with Faster R-CNN was that it did not perform segmentation or was not

able to identify the shape of the object that had been detected in the image. Mask

R-CNN contains a backbone network, which is a faster R-CNN, and a region proposal

network (RPN), which is a mechanism to determine an objectness score. The output is

then passed through a procedure that performs masking. Particular masks are used so

that, by using these masks, it differentiates the segments that are more discriminative.

These masks are learned using a RoIAlign mechanism. This mechanism performs RoI

pooling and generates fixed-sized regions of interest.

The mask prediction network classifies objects and segments instances at the pixel

level using the region suggestions from the RPN. It anticipates the class label of each

suggestion for object classification. For each area suggestion, it simultaneously creates a

binary mask containing the precise pixels that correspond to the object instance.

The multi-task loss function used by Mask R-CNN during training consists of three

parts: the classification loss, the bounding box regression loss, and the mask loss. The

mask loss gauges how closely the expected and actual masks resemble one another, pro-

moting precise segmentation at the pixel level.

Mask R-CNN has developed into a commonly used framework in computer vision

applications due to its impressive performance in segmentation tasks. Tasks requiring ac-

curate object knowledge, such as splitting overlapping instances, segmenting fine-grained

objects, and tracking objects between frames, have greatly benefited from the use of Mask

R-CNN. Following models built on its basis and explored modifications to increase speed,

accuracy, and efficiency It provides exact localization. classifying and segmenting several

object instances within an image at the pixel level.

Advancements in a variety of fields, including robotics, autonomous driving, and med-

ical imaging, have all been made possible by the capacity to produce high-quality masks.
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Figure 2.3: Mask R-CNN architecture [2]

2.2 Part Based Approach

In order to manage minuscule distinctions among comparable categories, part-based tech-

niques have been widely employed in fine-grained image identification. These techniques

locate and identify regions or elements of an item that are specific to a particular category

and may be used to identify that thing. To concentrate on these relevant areas, attention

mechanisms and spatial transforms are frequently used. Part information can also be

used to represent features.

2.2.1 ResNet-50 [3]

The well-known vanishing/exploding gradient is one issue ResNets aims to address. This

is due to the fact that when the network is too deep, the gradients required to compute the

loss function simply decrease to zero after numerous chain rule operations. As a result,

learning is not taking place since the weights’ values are constant.

Figure 2.4: ResNet residual block [3]

Instead of learning the intended output directly, this skip link allows the network to

learn residual mappings by adding the original input to the output of the stacked layers.

18



In order to overcome the difficulty of training very deep neural networks, the ResNet

architecture was created. This problem is addressed by ResNet-50, which introduces the

idea of residual learning. The network can skip one or more layers by using a ”skip con-

nection” or ”shortcut connection,” which makes the gradient flow more readily during

training. The issue of vanishing gradients affects traditional deep neural networks, where

the gradients get smaller exponentially as they backpropagate through several layers. This

hampers the performance of deep networks and makes it harder to train them successfully.

ResNet is a deep neural network that was inspired by VGG-16. ResNet solved the

problem of vanishing or exploding gradients, which happened with networks that were

very deep (nearly more than 20 layers deep),This is when the gradient becomes too small

or too large for the computation to be performed. This was an early problem with deep

neural networks. However, ResNet tried to solve this problem to a certain extent. It uses

skip connections.which allows a neuron in a particular layer to connect to another neuron

a fewlayers ahead. This reduced the high connectivity of the neurons among layers. This

also helped in skipping the layer of neurons that were affecting the performance.of the

network.

Increasing the number of channels while progressively decreasing the spatial dimensions

After that, fully linked layers get the final output for categorization. Convolutional lay-

ers, pooling layers, fully linked layers, and residual blocks are among the 50 layers of the

ResNet-50 architecture.

The essential element of ResNet that enables the learning of residual mappings is the

residual blocks. Along with the skip connection, each residual block normally has two

or three convolutional layers. ResNet-50 was created especially for jobs involving picture

categorization. An input picture is processed through a number of convolutional layers,

pooling layers, and residual blocks during training. ResNet can train very deep networks

efficiently and accurately by using residual blocks.

These architectures helped deep learning in computer vision evolve and provided a

foundation for several later models. ResNet-50’s architecture was carefully planned, strik-

ing a balance between computing complexity and depth. Deeper variations of the ResNet

family, such as ResNet-101 and ResNet-152, which have even greater accuracy but cost

more to compute, have been added by researchers. On benchmark datasets, it performs

superbly and outperforms earlier models in terms of accuracy. Object recognition, picture

segmentation, and image classification are just a few of the computer vision applications

that make use of the architecture as a backbone network.
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Figure 2.5: ResNet-50 architecture [3]

2.3 Attention Mechanism

Deep learning approaches known as attention mechanisms allow models to concentrate on

particular areas of input data. The outstanding performance of Mask R-CNN in segmen-

tation tasks has led to its widespread adoption in computer vision applications. The use

of Mask R-CNN has substantially benefited tasks requiring precise object knowledge, such

as separating overlapping instances, segmenting fine-grained objects, and tracking objects

across frames. The ability to create high-quality masks has enabled advancements in a

number of industries, such as robotics, autonomous driving, and medical imaging. On its

foundation, models were developed that examined adjustments to boost productivity. It

offers precise localization. categorising and dividing up several item instances in a picture.

A lot of research has been done on attention processes in fine-grained picture recogni-

tion. With the aid of these techniques, models may concentrate on distinguishable areas or

facets of an item that are essential for precise categorization. By focusing on the image’s

informative areas, they aid in the acquisition of small details and enhance performance.

In several applications, attention mechanisms have shown substantial advancements.

By revealing which elements of the input data are critical for the model’s decision-making

process, attention mechanisms aid interpretability. They make it possible for models to fo-

cus on specific words or phrases in natural language processing, which helps with language

comprehension and translation jobs. To improve model performance and interpretability

across many domains and activities, researchers continue to investigate and develop novel
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variants and uses of attention processes. Attention mechanisms aid models in computer

vision by helping them to concentrate on important visual areas and objects, improving

image categorization, object recognition, and image captioning.

2.3.1 Transformer [4]

Transformer Neural Network Architecture solved the problem of sequential data. being

computed serially. Transformer can process data parallelly, i.e., for a paragraph of words,

each word would not be processed serially, but the entire paragraph would act as a single

input, and the output would be a fixed-length vector called word embeddings. Trans-

former can compute the embeddings simultaneously.

The initial notion of ”transformer, which was afterwards referred to as text trans-

former, is expanded upon by the concept of ”vision transformer” (ViT). It is only the

implementation of Transformer in the domain, with a small tweak to accommodate the

various data modalities. A ViT particularly employs several tokenization and embedding

techniques. The general architecture is the same, though.

Figure 2.6: Scaled Dot-Product Attention and Multi-Head Attention [4]

Transformer has an encoder part and a decoder part and uses an attention mecha-

nism. At input, positional encoding and input embeddings create word embeddings. The

output is an embedding that maps every word to a point in space where similar words are

closer to each other. For every word, there is an attention vector, which represents every

word’s contextual relationship with another word in the same sentence. The embeddings

are passed on to a fully connected feed-forward network.

The Transformer does not rely on sequential processing or convolutional processes, in
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contrast to earlier sequence models like recurrent neural networks (RNNs) and convolu-

tional neural networks (CNNs). Instead, it makes use of a self-attention mechanism that

permits the processing of all input locations in parallel, enabling it to effectively capture

dependencies between any two places in a sequence.

Scaled dot-product attention, commonly known as the self-attention notion, is the fun-

damental principle underlying the Transformer design. Each point in the input sequence

may attend to all other locations and give them weights depending on their significance,

thanks to self-attention. This enables the model to flexibly concentrate during computa-

tion on various elements of the input sequence.

Self-attention layers are present in the decoder as well, but encoder-decoder attention

represents a new attention mechanism. The encoder and the decoder are the two funda-

mental parts of the transformer design. While the decoder creates the output sequence,

the encoder analyses the input sequence. A feed-forward neural network is followed by

a self-attention mechanism in each of the encoder’s levels, which are made up of several

layers. Each layer’s self-attention technique enables the encoder to concurrently collect

dependencies between all points in the input sequence. By using this attention technique,

the decoder may focus on the necessary portions of the input sequence as it creates the

output sequence. The self-attention outputs are subjected to non-linear changes by the

feed-forward network, increasing the model’s capacity for representation.

2.3.2 Vision Transformer [5]

ViT, on the other hand, is a transformer that is targeted at vision processing tasks. Vi-

sion first transforms and splits an image into fixed-size pixels and flattens them. From

these flattened patches, lower-dimensional linear embeddings are then created. Positional

embeddings are included and fed to a transformer encoder. The ViT model is pre-trained

with image labels and then fully supervised on a big dataset. Fine-tuning is then done

on the dataset for image.

This is especially useful for NLP tasks like machine translation or document interpre-

tation, which depend on extracting contextual information from far-off words or phrases.

In many NLP tasks, the Transformer design has demonstrated impressive performance,

outperforming earlier models and producing new state-of-the-art outcomes.

In order to prevent the model from attending to future places in the input sequence

during training, the Transformer architecture includes a method known as ”masked self-

attention” in the decoder. This approach makes sure that the model only considers past
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Figure 2.7: Vision Transformer Architecture [5]

and present data for predictions.In order to further illustrate its adaptability and potency,

it has also been used for tasks other than NLP, such as picture creation and audio pro-

cessing. The Transformer design has the capacity to more successfully model long-range

relationships than conventional sequential models, which is a noteworthy advantage.

A collection of fixed-size patches from an input image are linearly projected and flat-

tened into a list of tokens via ViT. These tokens serve as the input for the Transformer

model, in which each token has the ability to attend to all other tokens and gain context

awareness owing to mechanisms for self-attention.

2.4 Survey

Below are some of the implementational details of a survey.

Table 2.1: Survey Report

Method Categorization Methodology

ResNet-50
Localization and Classification -

Attention Mechanism

CNN used for extracting features.

Attention mechanism used

for generating attention maps.

Attention based sampling

performed for extracting details.

[25]
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ResNet-50
Localization and Classification -

Segmentation and Sampling

Convolutional layers used with

learned Sparse Attention to

extract dominating features.

Selective sparse sampling to

assign more importance to

dominating regions.

[26]

ResNet-50
External Information -

Adversarial Learning

Web data and training data

is input to different CNN

and specific prediction loss

is calculated for both of them.

Joint Loss is calculated by

2-way classification where

CNN determines which

dataset the image belongs

to Joint optimization by

reducing the Joint Loss

by backpropagation.

[27]

ResNet-50
Localization and Classification -

Attention Mechanism

Branch Routing module

created using two CNN

modules resulting in two

output feature maps classifying

two discriminative regions.

Attention Module uses an attention

mechanism which outputs

feature maps. The Label

Prediction module uses

convolution and pooling

operations for prediction

on feature maps. A Binary

tree formed with Branch

Routing Modules and

Attention Modules as nodes

and Label Prediction

Module as leaf.

[28]
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ResNet-50
Localization and Classification -

Segmentation and Sampling

Feature map from CNN is

passed to a Graph Propagation

sub-networks which generates

a discriminative score for

features.Discriminative Features

are selected using the

discriminative score through

graph-propagation and the

resultant features are concatenated.

Resultant features are

passed through CNN.

[29]

ResNet-50
Localization and Classification -

Segmentation and Sampling

Region Proposal Network(RPN)

used for extracting discriminative

regions. Another CNN used as

a feature extractor. Feature

extractor uses discriminative

regions as input followed by a

fully connected layer for Region-

based feature learning. Another

feature extractor uses an input

image followed by a fully

connected layer for Object-

based feature learning.

[30]

ResNet-50
Localization and Classification -

Attention Mechanism

Context-Aware Attention

Pooling (CAP) is applied to the

features extracted from the image

using CNN. CAP reduces

dimensions using Bilinear

Pooling and the resultant region

based features uses attention

mechanism to extract contextual

information. A learnable pooling

approach is used for classification.

[31]
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ResNet-101
Localization and Classification -

Attention Mechanism

CNN for generating feature

space along with Attention

Maps used as input for expert

networks. Multiple experts in a

cascaded manner. Semantic

Grouping of discriminating feature

space obtained from CNN.

Deep Bilinear transformation

(DBT) of grouped features.

Concatenation of Group Bilinear

forms a feature vector.

[19]

ResNet-101
Localization and Classification -

Segmentation and Sampling

CNN used for feature extraction

which is then used to extract a

Part Dictionary based on

segmentation. An Attention Map

is created using the Decision

Function which groups pixels

into meaningful regions. Attention

based classification performed

on Attention Map.

[32]
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ResNet-101
End-to-End Encoding -

Loss Function

For a single image, features are

extracted using CNN and

are used for calculating Channel

Interaction weights for further

modifying the feature space.

For a single image, features are

extracted using CNN and are used

for calculating Channel Interaction.

For two images, the modified

feature space of both is used

for calculating Channel Interaction

weights again. Finally a contrastive

loss is calculated between the two

images for classification. weights

for further modifying the feature

space.

cite

ResNet-101
End-to-End Encoding -

Loss Function

Features from a pair of images

extracted using CNN called

as Initial Feature are concatenated

to form Mutual Vectors.

Mutual vectors are thencompared

with the initial vectors

pairwise. A score-ranking

regularization along with softmax

based feature priority is used

as loss function.

[33]
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ViT-B-16
Localization and Classification -

Attention Mechanism

Image segments are flattened

and peak suppression is

performed to reduce noise

and then the resultant images

are input to the Vision

Transformer. A classification is

performed on the output

representation called Knowledge

Learning. This outputs knowledge

based representation of images.

The Vision Transformer image

representation and knowledge

based representations are fused

using Fusion representation

prediction mechanism.

[5]
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Chapter 3

Background

The correct classification and identification of objects or elements with subtle visual dif-

ferences within a given category is the focus of the computer vision subfield known as

”fine-grained image recognition”. It involves recognising variations of an object that

resemble one another but differ in some respects, such as distinct bird species, flower

varieties, or car models.

Due to the large variety of practical applications, fine-grained image identification has

attracted a lot of interest. Identification of species, population monitoring, and a grasp

of ecological dynamics are crucial for animal conservation. The accurate classification

of plant species and the early identification of disease are made possible by fine-grained

recognition in botany and agriculture. In order to recognise fine-grained pictures, it is

challenging to capture and analyse minute visual differences. These visual variations might

be a result of modifications to colour, texture, shape, or specific geographical patterns.

Conventional computer vision methods relying on global features or shallow classifiers

usually struggle to adequately capture these fine-grained qualities.

Advanced techniques, such as attention mechanisms and deep learning architectures

like convolutional neural networks (CNNs), have been developed to address these issues.

These models are able to automatically learn hierarchical representations from images,

gathering both low-level visual details and high-level semantic data. Using transfer learn-

ing to gain refinement from pre-trained models on specific fine-grained datasets has also

been effective in boosting classification performance.With continuous research, innovative

network designs, attention processes, and data augmentation strategies are being incor-

porated into fine-grained image recognition. The goal is to create dependable and scal-

able techniques that can correctly categorise and comprehend the subtle variances within

fine-grained categories, enabling breakthroughs in a variety of sectors and enhancing our

capacity to comprehend and interact with the visual environment.
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3.1 Collecting Dataset

Carefully selected datasets are specialized datasets that concentrate on identifying and

differentiating visually comparable categories within a particular field. These datasets

are intended to test models to detect slight discrepancies and subtleties among closely

related categories, necessitating meticulous differentiation. Here is an overview of a few

renowned finely detailed datasets:

3.1.1 CUB200-2011

The given data set comprises 200 kinds of birds, with 30 images for both training and

testing per species. It comes with bounding box annotations and attribute labels, thus

being apt for fine-grained classification and attribute forecasting tasks.

3.1.2 Oxford-IIIT Pets [6]

The collection of data comprises 37 classes of domesticated animals, encompassing more

than 7,000 pictures. It presents difficulties in identifying subtle distinctions between

various types of felines and canines.

3.1.3 Stanford Dogs

Over 20,000 pictures of 120 different dog breeds may be found in this collection. It is

frequently used to investigate breed recognition methods and perform fine-grained classi-

fication jobs.

3.1.4 FGVC-Aircraft [7]

There are around 100 photos per category in the Fine-Grained Visual Categorization

Aircraft dataset, which includes photographs of 100 different aircraft types. It focuses on

identifying different aircraft models by their minute visual variations.

3.1.5 Stanford Cars

This collection includes more than 16,000 photos of 196 distinct automobile models from

a variety of angles. It is frequently used for jobs requiring fine-grained classifying of

automobile models.
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3.1.6 Food-101

With almost 1,000 photos per category, this dataset comprises of 101 different food cat-

egories. It is a difficulty for models to distinguish minute variations among various food

products.

3.1.7 iNaturalist [8]

A sizable dataset called iNaturalist contains a wide variety of plant and animal species.

It is appropriate for fine-grained categorization and species recognition tasks because it

spans over 8,000 categories and contains millions of photos.

A common benchmark for assessing the effectiveness of fine-grained image classifica-

tion methods is the CUB200-2011 dataset. It is frequently used by researchers to create

and contrast algorithms for tasks such as feature extraction, attribute prediction, and

bird species detection. In the context of fine-grained picture categorization, it has also

been used as a testbed for investigating methodologies including transfer learning, deep

learning, and attention processes.

The CUB200-2011 dataset is useful for researching item localization, attribute-based

recognition, and other related tasks in addition to fine-grained classification since it in-

cludes bounding box annotations and attribute labels. Data preparation is necessary for

fine-grained picture recognition in order to improve the data quality and model perfor-

mance. Here are a few examples of standard data preparation techniques for accurate

image recognition:

3.2 Data Pre-processing

3.2.1 Data Augmentation

Limited training data are frequently needed for fine-grained recognition, although data

augmentation approaches assist grow the dataset and enhance model generalisation. Ran-

dom rotations, translations, flips, scaling, and brightness/contrast modifications are typ-

ical augmentation techniques. These methods make the model more adaptable to various

situations by simulating variances that could appear in real-world events.

A computer vision approach called data augmentation uses modifications of existing

pictures to artificially increase the size of a training dataset. By applying a series of prede-

termined alterations to the original photos, enhanced copies of the images are created that

have distinct aesthetic traits but the same semantic content. By adding more variation
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to the training data, data augmentation is frequently used to increase the generalisation

and resilience of machine learning models.

Data augmentation entails subjecting the original photos to a number of modifications.

Among these changes are the following. Images can be translated, rotated, scaled, flipped,

and sheared using geometric transformations to imitate various views or locations. Colour

transformations: changing the hue, saturation, brightness, contrast, or colour channel to

produce different lighting effects Adding random noise to pictures, such as dropout or

Gaussian noise, can imitate real-world changes and improve model resilience. Occlusion

and cutout: encouraging the model to focus on various areas of the picture by partially

or completely occluding segments of the image or randomly chopping out square patches.

Data augmentation approaches frequently use randomization to broaden their diver-

sity. When performing transformations, random parameters or probabilities are applied,

allowing for a stochastic variance in the enhanced pictures. The model cannot rely on

certain patterns or artefacts found in the source photos because of this unpredictability.

On-the-Fly Augmentation: During the training phase, data augmentation can be car-

ried out immediately. Each training image is enhanced in real-time before being input into

the model, as opposed to producing and storing augmented images offline. This method

conserves disc space and permits almost infinite numbers of enhanced samples.

Data augmentation is carried out using a specific set of transformations, which are

specified by augmentation policies.

Application Domains: Semantic segmentation, object identification, picture creation,

image classification, and other computer vision tasks all make extensive use of data aug-

mentation. By learning robust and invariant features, lowering overfitting, and enhancing

performance on novel or difficult cases, it aids models in generalising more effectively.

Importance of the Validation Set: When using data augmentation, it’s important to

make sure that the enhanced photos don’t add biases or skew the labels that represent the

real world. Therefore, it is customary to use the same transformations during training for

both the labels and the accompanying pictures. Additionally, the model’s performance

on the original, unaltered photos should be assessed using a different validation set.

3.2.2 Image Resizing

It is crucial to resize photographs to a constant resolution so that they all have the same

dimensions and can be processed quickly. Resizing aids in lowering memory needs and

computational complexity. Images are frequently cropped and scaled to a specific size, or

they are resized while keeping the original aspect ratio.
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Changing an image’s size or resolution is a fundamental computer vision technique

known as image resizing. It is a typical preprocessing procedure used to make sure that

pictures have uniform dimensions, satisfy particular specifications, or promote effective

processing by machine learning models. In order to resize a picture, its width and height

must be changed while the aspect ratio is preserved.

The aspect ratio of a picture must be preserved when it is resized in order to avoid

distortion. The proportion between the image’s width and height is known as the aspect

ratio. The content and aesthetic elements of a picture are not stretched or compressed in

an unnatural way when it is resized while maintaining its aspect ratio.

Sizing a picture by multiplying its dimensions by a scale factor is the process of scal-

ing. One can scale up (increasing size) or scale down (decreasing size). When working

with huge datasets or high-resolution pictures, scaling down is frequently employed to

minimise computational complexity and memory needs during training and inference.

Interpolation is the process of estimating the pixel values for the new picture dimen-

sions when scaling an image. Typical interpolation strategies include:

The simplest interpolation technique, nearest neighbour, assigns the value of the clos-

est pixel to the new pixel. Although it is quick, the output might be grainy or blocky.

Bilinear: A more complex technique that determines pixel values by averaging the weights

of the four pixels that are closest to it. Compared to closest neighbour, bilinear inter-

polation yields results that are more consistent. Bicubic: A higher-order interpolation

technique that accounts for more nearby pixels and yields results that are smoother. Al-

though more computationally costly, bicubic interpolation can produce results of higher

quality.

3.2.3 Preprocessing Tools and Libraries

Data preparation for fine-grained picture recognition is facilitated by a number of li-

braries and tools. Image resizing, cropping, and enhancement operations are offered by

well-known libraries as OpenCV, PIL (Python Imaging Library), and scikit-image. Addi-

tionally, built-in features for data normalisation and augmentation are available in deep

learning frameworks like TensorFlow and PyTorch.

In computer vision jobs, preprocessing is essential because it improves the quality of

input data, extracts useful features, and gets the data ready for additional analysis or

machine learning techniques. In computer vision, a variety of preprocessing methods and

tools are used to modify and convert pictures. In computer vision, the following prepro-
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cessing methods are frequently used:

Image resizing: One frequent preprocessing procedure is resizing images to a standard

size. It guarantees consistent picture dimensions, which are frequently required for effec-

tive processing and compliance with model structures. Cropping a photograph includes

eliminating distracting elements to concentrate on the area of interest. Cropping can help

the model focus on key characteristics by removing undesired or unnecessary background

elements. Image normalisation: Normalisation is the process of bringing an image’s pixel

values into a uniform range. It entails adjusting the mean and standard deviation of pixel

values to zero and one, respectively, or scaling the pixel intensities to a given range (for

example, [0, 1]).

Image Grayscale Conversion: When colour information is not required for the work

at hand, converting pictures to grayscale (single-channel) is helpful. Grayscale pictures

maintain crucial structural information while reducing computer complexity and memory

needs. Denoising techniques for photos are designed to get rid of or cut down on noise.

Environmental variables, sensor limits, compression artefacts, and other factors can all

contribute to noise. Denoising techniques assist to enhance the quality of photographs by

removing undesirable noise elements. Image enhancement methods are used to increase

the aesthetic appeal and clarity of photographs. The overall look, details, and contrast of

photos are improved using methods including contrast enhancement, histogram equalisa-

tion, and adaptive filtering.

Image Augmentation: To increase the size of the training dataset, other versions of

already-existing photos are created. It entails actions like translation, scaling, flipping,

rotation, and adding random noise. The diversification of training data is increased,

generalisation is improved, and overfitting is decreased by augmentation. Edge detection

techniques locate the borders separating items in a picture. Edges exhibit sharp variations

in colour or intensity and can reveal crucial structural details. For processes like object

identification, segmentation, and feature extraction, edge detection is frequently employed

as a preprocessing step. Filtering: Certain elements or components of photographs can

be enhanced or suppressed using filtering techniques.

3.2.4 Normalization

To ensure that deep learning models train and converge effectively, the picture data must

be normalised. Scaling the pixel values to a common range, such as [0, 1] or [-1, 1], is

known as normalisation. Pixel values can be normalised by dividing them by 255, by
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removing the mean and dividing by the standard deviation, or by adopting a particular

normalisation.

When working with photos that have various lighting, colour distributions, or dynamic

ranges, normalisation is very helpful. Here are some essential features of normalisation

in computer vision .In computer vision, normalisation is a typical preprocessing method

that includes converting an image’s pixel values to a standardised range or distribution. It

seeks to boost model performance, increase convergence of machine learning algorithms,

and lessen the influence of fluctuations in picture properties.

Scaling the values of the pixels to a certain range, such as [0, 1] or [-1, 1], is a typical

method of normalisation. To do this, multiply the pixel values by either the range of pixel

values or the highest feasible value (255 in the case of 8-bit grayscale photos). Scaling

to a certain range makes ensuring that all pixel values fall inside a predetermined range,

which is frequently advantageous for calculation speed and numerical stability. The mean

value of the pixel intensities throughout the whole dataset or each picture separately is

subtracted as another normalisation procedure. This basically eliminates the mean inten-

sity by centering the pixel values around zero.

3.2.5 Feature Extraction

Extraction of characteristics from the pictures before feeding them into the model may

be required for fine-grained recognition. In this stage, low-level features like colour his-

tograms, texture descriptors, or local binary patterns may be extracted. More sophisti-

cated methods, such as feature pyramids or convolutional neural networks (CNNs), may

also be used to capture hierarchical representations.

Standardisation, sometimes referred to as z-score normalisation, entails dividing the

pixel intensities’ standard deviation by their mean value. The pixel values produced by

this normalisation method have a zero mean and unit variance. Standardisation can aid

machine learning algorithms that presume data is normally distributed by helping to make

the pixel distributions more Gaussian-like.

Normalisation can be carried out channel-wise in colour photographs with several

channels (such as RGB photos). This entails doing normalisation on each colour channel

separately. For applications where colour information is crucial, channel-wise normalisa-

tion is helpful in maintaining the relative connections between several colour channels.

Benefits and Points to Keep in Mind: Normalisation helps models concentrate on

crucial visual elements rather than pointless changes by reducing the influence of shifting
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lighting circumstances, contrast levels, or colour biases. It can increase generalisation,

model convergence, and fair comparisons between various datasets or picture inputs. To

maintain consistency and prevent biases from being introduced, normalisation should be

used consistently throughout the training, validation, and testing sets.

Deep learning normalisation techniques: In deep learning, normalisation is frequently

included as a layer inside the neural network design. Deep neural networks’ intermediate

layers’ activations are frequently normalised using methods like batch normalisation (BN)

and instance normalisation (IN).

3.2.6 Annotation and Labeling

To capture the minute changes among categories in fine-grained datasets, annotations

must be exact and comprehensive. For the data to be accurately labelled with the distin-

guishing qualities, domain-specific specialists may need to annotate it.

Annotation and labelling, which entail marking or labelling certain objects, areas, or

properties within an image or a collection of pictures, are crucial computer vision opera-

tions. Annotations offer ground truth data that helps with object identification, semantic

segmentation, object tracking, and several other computer vision tasks, as well as training

and testing machine learning models. Annotation and labelling in computer vision are

broken down as follows:

Marking the bounding boxes around items of interest in a picture is known as object

localisation. The model can locate and identify objects inside an image by using bounding

box annotation, which provides the coordinates for the object’s rectangular area.

Semantic Segmentation: Semantic segmentation is the process of assigning a class

or category to each pixel in a picture. It entails dividing the picture into sections that

represent several item types or groupings. By providing pixel-level comprehension of the

image, this annotation approach enables models to distinguish between and recognise var-

ious items or areas.

3.2.7 Data Balancing

In fine-grained datasets, there may be a class imbalance where some categories contain

much fewer samples than others. Unbalanced class representation may result in biassed

model training and subpar results for classes that are underrepresented. To balance the

dataset and guarantee equal representation of all categories, many strategies may be

utilised, including oversampling, undersampling, and class-weighted loss functions.
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3.2.8 Patch Extraction

To collect local information, images are routinely divided into smaller patches for fine-

grained identification. Sliding panes or preconfigured grids can be used to obtain these

patches. By considering the extracted patches as separate samples during training, the

model may then focus on local properties inside the image.

Data balancing is a crucial computer vision approach that seeks to solve the problem

of class imbalance in a dataset. Class imbalance happens when there is a large disparity

in the number of instances in various classes, which might result in biassed model training

and perhaps subpar results for underrepresented classes. By changing the dataset’s class

distribution, data balancing techniques assist to solve this issue.

Oversampling: By copying or creating additional samples, oversampling entails in-

creasing the number of examples in the minority class or classes. This can be done at

random or with the help of certain algorithms like SMOTE (Synthetic Minority Over-

sampling Technique), ADASYN (Adaptive Synthetic Sampling), or strategies for data

augmentation. By ensuring that the model contains enough samples from the underrep-

resented classes, oversampling promotes greater generalisation and learning.

Undersampling: Undersampling is the process of arbitrarily eliminating samples to

lower the number of occurrences in the majority class or classes. Undersampling is a

simple procedure, but it may result in the loss of information that may be useful. While

reducing its dominance, care must be made to preserve a representative distribution of

the majority class.

Class Weighting: During model training, distinct classes are given varying weights.

The model assigns more weight to the instances of the minority class or classes during

optimisation by allocating higher weights to them. In algorithms like support vector

machines (SVMs) or loss functions like cross-entropy loss, class weighting is frequently

utilised. It aids in balancing the effect of several classes on learning.

Stratified sampling: Stratified sampling makes sure that the training, validation, and

testing sets all preserve the same level of similarity in the class distribution as the origi-

nal dataset. This method preserves the proportional proportions of various classes while

randomly selecting samples. By using stratified sampling, all classes are represented in

each subset and bias is prevented from being introduced when the dataset is divided.
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3.3 Feature Selection

To find the most discriminative and informative features that are necessary for precise

classification, feature selection is a crucial step in fine-grained image recognition. Several

crucial elements and methods for feature selection in fine-grained picture recognition are

listed below:

3.3.1 Local Feature Extraction

Local characteristics that identify certain aspects in the image are frequently used for fine-

grained identification. Local features can be retrieved using methods like Scale-Invariant

Feature Transform (SIFT), Speeded Up Robust Features (SURF), Histogram of Oriented

Gradients (HOG), or Convolutional Neural Networks (CNNs). These regional character-

istics aid in identifying the minute variations that separate fine-grained groupings.

3.3.2 Fine-Grained Descriptors

Designing specialised descriptors suited to the particular topic or issue may be required

for fine-grained recognition. These descriptions are meant to represent the distinctive

qualities of the fine-grained categories. For instance, descriptors can concentrate on cap-

turing the form and colour patterns of bird plumage in order to identify different kinds

of birds.

3.3.3 Dimensionality Reduction

Techniques for dimensionality reduction try to save the most important data while re-

ducing the dimensionality of the feature space. By using some techniques like Principal

Component Analysis (PCA) and Linear Discriminant Analysis (LDA) techniques, the

original feature space is converted into a lower-dimensional space while maintaining the

highest level of discrimination.

3.3.4 Joint Feature Learning

From basic visual characteristics to complex semantic representations, joint feature learn-

ing algorithms strive to concurrently learn many layers of features. This method aids

in capturing both local information and a wider context, enhancing the models’ capac-

ity to discriminate. End-to-end joint feature learning is made possible by CNNs and

Transformers.
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3.3.5 Domain-Specific Knowledge

It is possible to improve feature selection in fine-grained recognition by using domain-

specific information. Specific bird characteristics, such as beak or wing patterns, may be

essential for categorization, for instance, in botany. The accuracy and interpretability of

the models can be improved by incorporating this knowledge into the feature selection

process.

3.3.6 Sequential Feature Selection

Sequential feature selection strategies iteratively choose subsets of features depending on

their ability to discriminate. These techniques assess several feature subsets and select

the most insightful characteristics that enhance classification performance. The sequential

feature selection methods Sequential Forward Selection (SFS) and Sequential Backward

Selection (SBS) are two examples.

3.3.7 Evaluation Metrics

For evaluating feature selection algorithms’ efficacy in fine-grained recognition, appropri-

ate evaluation criteria are crucial. Metrics like classification accuracy, precision, recall,

F1-score, or Area Under the Curve (AUC) are frequently used to assess how well feature se-

lection algorithms perform when properly differentiating between fine-grained categories.

In fine-grained image recognition, effective feature selection reduces dimensionality,

gets rid of extraneous data, and concentrates on discriminative characteristics that are

essential for precise classification. Feature selection improves the performance and inter-

pretability of fine-grained recognition models by choosing the most useful features.
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Chapter 4

METHODOLOGY

We highlight three traits that predominate in bird images, i.e., head, wings, and bot-

tom/claws. These three characteristics are the most prevalent. localised segments that

are taken into account in the case of a bird. This is useful for both object recognition

and subsequent feature extraction. To extract features from these annotated regions and

concentrate on the discriminating information, there are region-based techniques that can

be used. such as region-based CNNs or attention mechanisms. Darknet format, which

specifies the object’s class label and the bounding box’s normalised coordinates in relation

to the picture size, is what Yolo commonly employs. The YOLOV5 network design and

settings were setup. The number of classes (bird species) in the dataset, the anchor boxes

for each grid cell, the network topology (e.g., number of convolutional layers, filters, etc.),

learning rate, and other hyperparameters are all defined. We used pretrained weights

to start the YOLOV5 model (on ImageNet). The network gains the ability to forecast

bounds, box coordinates, and class probabilities for each grid cell during training.

Figure 4.1: Image Super-Resolution Generative Adversarial Network (SRGAN) Architec-
ture [11]

In the form of clipped picture features, the output of the preceding operation is gath-

ered. The dataset contains low-resolution images and the associated high-resolution ver-

sions of them. By applying methods like bicubic interpolation, the high-resolution images

may be downscaled to create the low-resolution images. A generator network and a dis-
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criminator network make up the two primary parts of SRGAN. While the discriminator

network seeks to discriminate between genuine high-resolution photos and created high-

resolution images, the generator network is in charge of converting low-resolution images

into their equivalents in high-resolution.

We train the generator network to produce high-resolution pictures from low-resolution

input after initialising it with random weights. To learn the mapping from low-resolution

to high-resolution space, the generator network uses methods like deep convolutional neu-

ral networks. The ground-truth high-resolution photos and the produced high-resolution

images are compared while the generator is being trained using a loss function. To train

the networks efficiently, SRGAN uses a variety of loss functions. Usually, they involve

adversarial loss, which motivates the generator to create high-resolution pictures that

deceive the discriminator, and content loss, which contrasts the created high-resolution

image with the original high-resolution image. To retain picture features and textures,

reconstruction loss or perceptual loss is also used. The loss function uses the standard

GAN discriminator loss to train the discriminator. The generator network is used to up-

grade fresh, low-quality photos to higher resolution after it has been trained. To further

improve their visual quality, the resulting high-resolution photographs may go through

further post-processing operations like denoising or sharpening.

4.1 Dataset

A well-known benchmark dataset for fine-grained image recognition that is primarily

targeted at bird species categorization is the CUB-200-2011 (Caltech-UCSD Birds-200-

2011) dataset. 200 species of birds that are often found in North America are included

in the CUB-200-2011 dataset. 11,788 different bird photographs make up the whole

collection, with 30 to 60 images per species. The dataset is split into two primary subsets:

a training set and a testing set.

4.1.1 Dataset Characteristics

The images in the CUB-200-2011 collection show birds in a variety of positions, looks,

and surroundings. The photos come in a variety of resolutions, sizes, and aspect ratios to

mimic the difficulties that come up in real-world circumstances with fine-grained identi-

fication. The dataset offers a wide variety of bird species, both common and uncommon.
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Figure 4.2: View of CUB200-2011 dataset

4.1.2 Annotations

Fine-grained class labels identifying the bird species are tagged on each image in the CUB-

200-2011 collection. Additionally, component annotations that identify the positions of

various body parts, including the head, torso, beak, wings, and legs, are accessible for

certain photos. More in-depth analysis and precise localization tasks are made possible

by these annotations.

4.1.3 Training and Testing Splits

There are training and testing sets created from the dataset. Approximately 5,994 photos

make up the training set, whereas 5,794 images make up the testing set. Splits prevent

the same bird species from showing up in both the training and testing sets, offering a

trustworthy assessment framework for fine-grained recognition models.

4.2 Approach

In order to detect the head, wings, and bottom of birds, we prepare the dataset for the

object detection job. We utilise a YOLOV5 model that has been pretrained on Imagenet

and annotate the data for these 3 characteristics in order to recognise parts. The dataset

includes annotations for a bird’s head, wings, and bottom segments since these traits are

the most important for differentiating one bird from another. We train the model after

annotating a small sample of the data (around 40%). We take the input RGB image for

resolution 500x500 and then normalize it. For this dataset, we divide it into training and

test sets in an 8:2 ratio. The learning rate is kept at 0.01, momentum at 0.937, and weight

decay at 0.0005 for 100 epochs. The model begins accurately annotating the bounding

boxes of about 97%, and we use the model to make predictions about the remaining
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photos.

Figure 4.3: Proposed model architecture

The resulting images are cropped in order to acquire the features identified by the prior

approach from their bounding boxes. The photos obtained are retained at a maximum

resolution of 32 x 32. The model’s output is then used in a superresolution process using

SRGAN. Using the ready dataset, we train the SRGAN model. The following steps are

part of the training process: A generator network in SRGAN receives training on how

to upgrade low-resolution pictures to high-resolution ones. It should be trained with

a loss function thatfavours perceptual similarity between the produced pictures and the

high-resolution ground truth images. The discriminator network separates produced high-

resolution pictures from actual high-resolution images. It is taught to distinguish between

actual and produced pictures using a binary classification loss. We take the input RGB

image of resolution 32 X 32 and normalise the dataset with a learning rate of 0.00008,

first-order momentum for Adam decay as 0.5, and second-order momentum as 0.999. We

run the model for 250 epochs.

4.2.1 Feature Weightage

We give each of the three feature categories a varied weight because various features or

sections may offer varying levels of information that may be used to categorise the image

feature element of a class. As the bird’s head offers the most data to distinguish it from

other birds, it should be evident that the head characteristics should be given the greatest

weight. The wings follow next. Given that the interpretation of wings can vary greatly

depending on the bird’s posture, such as whether it is sitting or flying, less importance is
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Figure 4.4: Division of task in proposed model

placed on them, resulting in lesser weights. In the previous model, the bottom feature of

the image was the least accurately recognised. A bird’s bottom is also quite subjective

to the bird photograph that was captured. The bird’s claws will be folded while viewed

in flight, but they will be splayed out when viewed in a sitting position, giving the bird a

distinct appearance. The bottom image has been given the least weight in terms of bird

recognition.

4.3 Analysis

For different images, there was a high difference in the part images. Techniques like data

augmentation, posture normalisation, and multi-view learning can be used to overcome

these difficulties. To aid the model’s generalisation, data augmentation techniques may

be used to intentionally incorporate differences in bird positions during training. The

following points were observed as reasons for this issue:

4.3.1 Differences in Appearance

Depending on their positions, birds can display major variances in appearance. It can

be challenging to extract consistent visual data from a bird due to variations in the

orientation, size, and shape of the bird caused by different stances. For instance, a bird

viewed from the front may seem different than when viewed from the side or from above.

4.3.2 Perspective Dependence

It is necessary for fine-grained recognition models to be resistant to different points of

view. Bird stances, however, might have elements that depend on the viewpoint. The
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form and placement of the feathers, for example, may be distinguishing visual traits of the

same bird seen from several perspectives and are difficult to generalise to other situations.

4.3.3 Occlusion

Occlusion, or when a bird’s body or characteristics are obscured or blocked, can happen

in certain positions. Finding important distinguishing characteristics and differentiating

between different bird species might be difficult when there is occlusion. For instance, a

bird’s extended wings may obscure its body or head, making it more difficult to identify.
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Chapter 5

RESULTS

In terms of fine-grained detection, it would appear that YOLOv5 is not the most spe-

cialised architecture. Other models, such as faster R-CNN or models made especially for

fine-grained detection, such as B-CNN or TASN, could do better. However, YOLOv5

may still produce better results on applications requiring fine-grained image recognition,

as in the case of the CUB200-2011 dataset, when given the right tweaks and training.

Figure 5.1: YOLOV5 test loss, train loss and other metric result

As for SRGAN, the total number of training images for both the generator network

and discriminator network is around 1,00,000 samples for the head and bottom and 80,000

samples for the wings. Some of the future improvements in the method depend on the fact

that fine-grained pictures are greatly influenced by the object’s posture. In our example,

the bird was occasionally sitting or swimming on water, which obscured the claws. Any

non-flying image of the bird also showed distinct wing structures from the image of a

flying bird.

Modern models’ classification accuracy on the CUB-200-2011 dataset was remarkable.

Top-1 accuracy ratings vary from about 80% to over 90%, showing that models can cor-

rectly identify different bird species based on minute visual variations.

Small visual differences between different bird species may be captured and distinguished

using fine-grained image recognition algorithms. They can recognise differentiating traits,
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including colour patterns, form details, and texture changes, in order to discriminate be-

tween superficially similar species. The model architecture, training methods, hyperpa-

rameters, and precise experimental settings employed in various research projects may all

have an impact on the precise results and accuracy. However, the overall development

in fine-grained picture recognition on the CUB-200-2011 dataset demonstrates how deep

learning models are successful at identifying minute visual distinctions and correctly cat-

egorising bird species.

5.0.1 Output

A fine-grained image recognition model’s projected class label for the input picture is its

main output. It reflects the acknowledged bird species or precise category that the model

thinks the picture falls within. The projected class label frequently takes the form of a

verbal description or a numeric code that designates a certain group.

Table 5.1: Accuracy of some models on different datasets

Method
Dataset(%)

CUB200-2011
Stanford Dogs

[34]
FGVC-Aircraft

[7]
ResNet-50

[32]
87.5 94.1 92.6

ResNet-101
[32]

88.1 94.5 92.8

ViT-B-16
[35]

90.4 91.4 93.6

Our Method 91.3 90.6 86.7

The model may offer confidence ratings or probability values for each class label in

addition to the projected class label. These ratings show how confident the model is in

each category’s forecast. Higher scores imply a greater level of assurance in the antici-

pated label, while lower levels might signify doubt or ambiguity.

Below table can be referred for the accuracy of the approach

5.0.2 Feature Detection Results

While YOLOv5 is a strong framework for generic object detection, it may not be as com-

petitive or as easy to get performance results on fine-grained picture recognition tasks

using YOLOv5. To get the best performance in this particular area, it is crucial to take

into account specialised architectures and methods that have been designed and tested
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Figure 5.2: YOLOV5 F1-Curve(left) and confusion matrix(right)

Figure 5.3: YOLOV5 output labels
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for fine-grained picture recognition.

Figure 5.4: YOLOV5 output summarized through an image

5.0.3 SRGAN Results

SRGAN can enhance the aesthetic appeal of low-resolution images, but the outcomes of

fine-grained image recognition that it directly affects will depend on the particular dataset

and job. Metrics like classification accuracy, precision, recall, and F1 score are frequently

used to gauge how well fine-grained image recognition models perform. Researchers often

use specialised architectures and approaches that concentrate on collecting fine-grained

features, modelling small visual changes, and adding domain-specific information to ob-
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tain state-of-the-art outcomes in fine-grained image recognition.

Figure 5.5: YOLOV5 output summarized through an image
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Chapter 6

CONCLUSION AND FUTURE SCOPE

On benchmark datasets including the Oxford-IIIT Pet Dataset, Stanford Dogs Dataset,

and Caltech-USD Birds-200-2011 (CUB200-2011), notable improvements in fine-grained

picture identification have been made. Modern models that make use of deep learning

architectures, attention mechanisms, part-based strategies, and self-supervised learning

techniques constantly increase the accuracy of these datasets.

The top-1 accuracies of the top-performing models, which range from about 80% to

over 90%, show that they can successfully differentiate between visually identical cate-

gories. To capture fine-grained subtleties and fluctuations within the data, these models

frequently use complicated architectures that make use of hierarchical features, part-based

representations, and attention processes.

The development of fine-grained image identification has not only enhanced computer

vision but also found uses in a number of other fields. It has been used in fields where

accurate distinction between visually similar classes is crucial, including species recogni-

tion, medical imaging, product classification, and more.

Fine-grained image identification is still a topic of current study despite major advance-

ments since there are still difficulties to be solved. Limited labelled data, similarities across

classes, differences within classes, and generalisation to unknown categories are some of

these difficulties. To further enhance the functionality and reliability of fine-grained image

recognition algorithms, researchers are continuously investigating novel approaches and

datasets.

There have been a number of recent improvements made to fine-grained image de-

tection, which is an important field of study. Recently, attention processes, part-based

models, hierarchical representations, and the utilisation of massive datasets have been

the main topics of study in fine-grained image identification. In order to address issues

like inadequately labelled data and exact annotations, strategies including domain adap-

tation, metric learning, and weakly supervised Learning and self-supervised learning have
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been investigated. The performance of fine-grained image detection is being improved by

all of these developments.

6.1 Future Scope

Although recent years have seen a substantial breakthrough in fine-grained image identi-

fication, there are still many promising areas for future development. The following are

some crucial topics for fine-grained image recognition’s future that show promise:

6.1.1 Improved Models and Architectures

For fine-grained image recognition, researchers can keep creating more sophisticated and

specialised models and architectures. To better capture minute features and small vari-

ations between visually identical categories, this involves investigating innovative deep

learning architectures, attention processes, and incorporating strategies like graph neural

networks or capsule networks.

6.1.2 Data Augmentation and Synthesis

Additionally, artificially fine-grained pictures may be produced to supplement the training

set using data synthesis techniques like ge Due to the difficulty of assembling substantial

fine-grained datasets, fine-grained image identification frequently suffers from a lack of

labelled data. Future studies can concentrate on creating efficient data augmentation

methods that maintain minute details while producing more training examples. To add

to the training set, artificially fine-grained pictures can be produced using data synthe-

sis techniques like generative adversarial networks (GANs).nerative adversarial networks

(GANs).

6.1.3 Transfer Learning and Domain Adaptation

Further research into transfer learning approaches can be used to optimise pre-trained

models for fine-grained image identification tasks using large-scale datasets like ImageNet.

The effectiveness of fine-grained recognition in certain domains or subcategories can be

improved by using domain adaptation methods to transfer knowledge from a source do-

main with a wealth of data to a target domain with sparse data.
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There is an immense amount of applications that FGIR can have. Mostly the appli-

cations that are there for object detection are also followed by FGIR.

In this survey we have observed that the transformer based models and techniques are

performing way better than other deep learning models. Vision Transformers require an

extreme amount of computation but perform better than earlier models. Further we can

see a significant amount of work on Vision Transformer related models which can pro-

vide a better insight and performance into this domain. The image processing techniques

which currently exist are performing better for some datasets, for others there is an open

area of research. The domain specific image processing is needed for specialized datasets

in order to attain the State of the Art accuracy.

A newer generation of Fine-Grained image dataset is needed for some domains in order

to accelerate the advancement in this field. Also with better computation and parallel

processing 3D image recognition also provides a wide area of research.

6.2 Applications

There is an immense amount of applications that FGIR can have. Mostly the applications

that are there for object detection are also followed by FGIR.

6.2.1 Biological Research

FGIR systems can help biologists in recognizing the different species and breed of an-

imals. Some animals due to their habitat or living conditions are harder to picture in

a constructive way that can be useful in determining the species of the animal. FGIR

systems can be used in order to clarify the results from a biologist.

6.2.2 Agriculture Disease Detection

Images from leaves and crops that are infected or not can be harder to classify for even

humans. The fungal, bacterial and viral diseases need to be detected and clearly classified

as such. They are much more active and can infect plants more frequently in warm, humid

settings. New pests and illnesses have emerged as a result of climate change and crop-

ping patterns, causing an annual loss in Indian agriculture. In this situation, numerous

studies have been conducted using technologies like computer vision. As a result, we’re

attempting to compile all recent works on machine learning and deep learning. so that it
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can aid in advancing the work.

6.2.3 Medical Feature Detection

Medical images are one of the most difficult to classify even for a doctor. The minute

details of the medical features align better with the scope of the FGIR. The medical im-

ages are both black and white and colored, and sometimes 3D too. Current scenario of

FGIR can help in detecting or classifying the black and white and colored images but

there needs to be much more research that needs to be done in order to extend the scope

of FGIR to 3D imagery.

6.3 Conclusion

We have provided an extensive study on fine-grained image recognition in the form of a

survey in which we classify the overall development in this field in recent time into differ-

ent groups and subgroups. The development in the area of Natural language processing

can be used to solve vision tasks. Keeping in In light of the recent developments in deep

learning, there is an increasing requirement in the computation power

Future trends in the discipline include more comprehensive and dynamic methods for

FGIR. For improved detection rates, these models should uncover and extract new char-

acteristics and evaluate massive volumes of data. In addition, semisupervised learning

approaches should aid in coping with the rapid expansion of fine-grained generators and

the propagation of their material via the internet. Future research will need a more dy-

namic method or even a mix of supervised and unsupervised learning to immediately

discover and actively follow trends associated with contemporary and complicated algo-

rithms for the development of false content without requiring enormous quantities of data.

Research in the future could focus on incorporating audio content into forgery detection

and pipeline optimisation.
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