
Sparse R-CNN Object Detection Using Proposal Boxes

A DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE AWARD OF DEGREE

OF

MASTER OF TECHNOLOGY

IN

ARTIFICIAL INTELLIGENCE

Submitted by:

Yashasvi Pasbola

2K21/AFI/16

Under the supervision of

Dr. Shailender Kumar

(Professor)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

JUNE 2023

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I,Yashasvi Pasbola,2K21/AFI/16 of M.Tech in Artificial intelligence, hereby

declare that the report Dissertation titled “Sparse R-CNN Object Detection

Using Proposal Boxes” which is submitted by me/us to the Department of

Computer Science and Engineering, Delhi Technological University, Delhi in

partial fulfilment of the requirement for the award of the degree of Master of

Technology, is original and not copied from any source without proper citation.

This work has not previously formed the basis for the award of any Degree,

Diploma, Associateship, Fellowship or other similar title or recognition.

Place: Delhi Yashasvi Pasbola

Date:

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

This is to certify that the Report Dissertation titled “Sparse R-CNN Object

Detection Using Proposal Boxes” which is submitted by Yashasvi Pasbola

,2K21/AFI/16 from department of Computer Science and Engineering, Delhi

Technological University, Delhi in partial fulfilment of the requirement for the

award of the degree of Master of Technology, is a record of the report work

carried out by the student under my supervision. To the best of my knowledge

this work has not been submitted in part or full for any Degree or Diploma to

this University or elsewhere.

Place: Delhi Prof.Shailender Kumar

Date:

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

ACKNOWLEDGMENT

I would like to express my gratitude towards my mentor, Professor Dr.

Shailender Kumar, for giving me the opportunity to work in an impressive area

such as deep learning and his guidance, regular supervision, constructive

feedback and suggestions in completing the project.

Also I would like to thank my parents, my brother and my friends for their love

and continuous support throughout my life. Thank you for always giving me

the strength to successfully finish this project.

Yashasvi Pasbola

TABLE OF CONTENTS

1.Introduction 7
1.1.Introduction to Convolutional neural networks 7
1.2.History 8
1.3.Image Representation and processing 9
1.4.Deep Learning 12
1.5.Object detection 16

2.Convolutional neural networks 17
2.1.What are convolutional neural networks? 17
2.2.Advantages of CNN 18
2.3.Kernel 19
2.3.Striding and padding 19
2.4.Pooling 20
2.5.Applications of CNN 20

3.Types of object detection pipelines 21
3.1.Dense method in object detection 22

3.1.1.Single stage pipeline 22
3.1.2.YOLO 23

3.2.Dense to sparse method in object detection 24
3.1.1.Two stage pipeline 24
3.1.2.Region CNN 25

3.3.Sparse method in object detection 26

4.Methodology 26
4.1.Backbone of the network 27
4.2.Learnable proposal box 27
4.3.Learnable proposal features 28
4.4.Dynamic instance interactive head 28
4.5.Set prediction loss 29

4.5.1.L1 loss 29
4.5.2.Intersection over Union 30
4.5.3.Focal loss 30

5.Technologies Used 31
5.1.Python 31
5.2.Detectron2 31
5.3.OpenCV 32

6.Average precision 32
6.1.Improving average precision 34

7.Result 37
7.1.Comparison of various models 37
7.2.Output of custom images 38
7.3.Comparison with different number of proposal boxes 39
7.4.Conclusion 39
7.5.Future Work 39

8.References 41

LIST OF FIGURES

Figure No. Figure Name Page No

1 Image representation in form a two dimensional array 14

2 Sampling of image 14

3 Quantization of the image 15

4 Image types 16

5 Hue , Saturation and Value 17

6 Biological Neuron 18

7 Representation of a neural network 20

8 Feed Forward networks 20

9 Finding the global minimum 23

10 .Convolution neural network sequence 25

11 Flattening of 3x3 to 9x1 27

12 Filter working of CNN 27

13 Movement of kernel 29

14 Types of pooling 30

15 Types of object detection pipelines 32

16 Single stage object detector 34

17 YOLO Architecture 35

18 Two stage pipeline 37

19 R-CNN architecture 38

20 Sparse R-CNN pipeline 39

21 Feature extraction in FPN 40

22 Pseudo code for dynamic head 41

23 L1 loss equation 43

24 Intersection over union 43

25 Comparison with loss and probability of ground truth

class using focal loss

44

26 Confusion matrix 46

27 Average precision 47

28 COCO metrics 47

29 Augmentation of an image 48

30 Comparison with number of iterations and error 50

31 Cross validation 50

32 Comparison of sparse R-CNN with various detectors 51

33 The model showing the category as well as the

confidence level.

52

34 The model showing the category as well as the

confidence level.

52

LIST OF TABLES

Table No. Table Name Page No

1 Change in number of

proposal boxes.

52

2 Evaluation of model for 250

COCO images.

52

ABSTRACT

Artificial Intelligence has advanced a lot over the last few years to solve

various challenges in the modern day world. One of these challenges is the

recognition of images digitally and extracting important features.The topic of

deep learning has created an impact in this field and the major algorithm that

contributed is convolutional neural network.Convolutional neural network has

been continuously improving to get much efficient algorithms to extract the

features better.This report will be covering object detection various algorithms

and how they work. The methods to detect objects are mainly divided into

three groups: sparse methods, dense methods and dense to sparse.The dense

methods divides image to grid to slide proposal box to detect the object, while

the dense to sparse tries to find important regions where the object will be

present using region proposal.

Both of these methods are great but to further improve the algorithm , sparse

RCNN was introduced which takes away less user input parameters to

calculate the location and detect where the object is present in the image. It

uses iterative learning to predict where the object will be present in the image

with different sizes of proposal boxes.Then it classifies and predicts what

object it is thus creating more efficiency.

Sparse R-CNN Object Detection Using Proposal Boxes

1.Introduction

1.1.Introduction to Convolutional neural networks

Convolutional neural networks (CNNs) are exerting a significant influence on the world.

Presently, deep learning falls within the realm of machine learning and specifically deals with

unstructured data types like images, videos, and music, processing them effectively. Within

deep learning, CNNs serve as a foundational framework and have successfully addressed

various challenges, including object detection, face recognition, and advanced medical

treatments. In the context of face recognition, for instance, facial attributes like the mouth,

nose, and eyes are identified and stored as a feature vector. This feature vector is then

compared with those of other individuals to recognize their faces. In medical applications

such as X-ray and MRI imaging, CNNs have significantly contributed to accurate image

recognition. Machine learning algorithms utilising CNNs can readily identify conditions like

broken bones, tumours, and cancer by comparing the images with a database of previous

patient records. In the United States, autonomous vehicles are increasingly prevalent, and

they also employ CNNs to perceive the environment and detect objects or people in close

proximity. Additionally, document analysis tasks, such as character recognition from images

and replication, can be effectively accomplished using CNNs.

Until now, researchers and developers have explored and devised various types of

convolutional neural networks (CNNs) for object detection. The fundamental concept behind

a CNN is the utilisation of a kernel that slides over an image to extract significant features.

Among the different approaches, three main types stand out: dense methods, dense-to-parse

methods, and sparse methods.

Dense methods employ sliding window features, where anchor boxes of various sizes are

used to detect objects. By sliding these anchor boxes across the image, the network aims to

identify objects present within the image.

Dense-to-parse methods, on the other hand, rely on region-based techniques to detect edges

and extract important features for object detection. This approach focuses on parsing regions

of interest to identify objects accurately.

The latest addition is the sparse method, which utilises proposal boxes to detect objects.

These proposal boxes are trained using previous images and attempt to predict the likely

location of objects within the image.

Overall, these different approaches to object detection within CNNs have been extensively

researched and developed, each with its own advantages and applications [1].

Let's start by exploring the evolution of convolutional neural networks (CNNs) from the

nineteenth century to the present day. We'll delve into the fundamental workings of CNNs,

including how they extract features, the role of the kernel, and the sliding window feature.

We'll also examine different technologies utilised for object detection, such as Python [58],

Detectron2 [29], and OpenCV [56].

Next, we'll delve into a comparison of various methods used for object detection, focusing on

their advancements and improvements. Specifically, we'll discuss dense methods,

dense-to-sparse methods, and sparse methods. We'll examine the key methodologies and

functioning of Sparse R-CNN [1], exploring its different modules and how they interact with

one another. We'll also compare Sparse R-CNN with other models in the field.

Lastly, we'll assess the results obtained from the model, considering its performance and

effectiveness.

Object detection is the process of finding the location of an object as well as classifying what

the object is.First let us see the history of object detection and how it continuously evolved

over the years.

1.2.History

The history of convolutional neural networks can be traced back to the nineteenth century,

where the foundation of artificial neural networks was established. In 1943, McCulloch and

Pitts introduced the MP model, marking the initial development of artificial neural networks

[2].

Advancements in the field continued in the following decades, particularly in the 1950s and

1960s, when Rosenblatt modified the MP model and introduced the single-layer perceptron

model [3],[4]. However, the perceptron model faced limitations in solving linearly

non-separable problems, as demonstrated by the XOR problem.

To address this challenge, another researcher named Hinton et al. proposed a groundbreaking

solution in 1986. They introduced the multilayer feedforward network, which was trained

using the error backpropagation algorithm. This model enabled the learning of complex

representations and successfully tackled non-linear problems [5].

Delay Neural Network [6]. This model utilised a one-dimensional neural network and found

significant application in speech recognition tasks.

Building upon this progress, Zhang [7] developed the first two-dimensional convolutional

neural network in the same year. This network, known as the shift-invariant artificial neural

network, made advancements in handling two-dimensional data effectively.

In 1989, LeCun et al. introduced a convolutional model specifically designed for recognizing

zip codes [8]. Notably, this model marked the initial usage of the term "convolution" in the

context of neural networks. Referred to as the original version of LeNet, this model laid the

foundation for further advancements in convolutional neural networks.

In the 1990s, several shallow networks were developed, including the general regression

neural network [8] and chaotic neural network [9]. However, one of the most widely

recognized and influential networks during this period was LeNet-5 [10].

The evolution of convolutional neural networks faced significant challenges that hindered the

accuracy of the models. One key obstacle arose when increasing the depth of neural

networks. At the time, the backpropagation algorithm encountered various issues that were

difficult to resolve. These problems included gradient vanishing, local optima, gradient

exploding, and overfitting.

In 2006, Hinton et al. proposed a groundbreaking model [11] that introduced two key

features. Firstly, it incorporated multi-layer hidden features, enabling high adaptive feature

learning. This allowed the network to automatically learn and extract meaningful features

from the input data. Secondly, the model introduced a layer-wise training approach, which

helped overcome the challenges associated with training deep neural networks. By training

one layer at a time, starting from the bottom and gradually moving upwards, the difficulties

in optimising deep learning networks were mitigated.

In 2012, Alex et al. achieved remarkable success in the ImageNet Large Scale Visual

Recognition Challenge [12]. They utilised a deep convolutional neural network architecture,

known as AlexNet, which significantly outperformed other methods in image classification

tasks. This breakthrough result attracted widespread attention and sparked a surge of interest

in convolutional neural networks. It served as a catalyst for further advancements and the

accelerated development of this field.

1.3.Image Representation and processing

An image is typically represented as a two-dimensional array consisting of pixels. Each pixel

represents a specific point in the image and contains a value ranging from zero to two

hundred fifty-five, indicating the intensity of light or colour at that particular location [59]. In

computer systems, images are commonly displayed and processed using pixels as the

fundamental unit of representation on a screen.

Figure 1.Image representation in form a two dimensional array [40].

After storing an image, we have the flexibility to perform various operations on it, such as

rotation, scaling, and transformation. This process is known as image processing. Image

processing allows us to manipulate and modify the image to enhance its quality, extract

relevant features, or prepare it for further analysis using machine learning models.

Sampling

Figure 2.Sampling of image [37].

Sampling is a technique used to determine the spatial resolution of an image at different

intervals. By increasing the value of N (the sampling interval), the resolution of the image

increases, meaning more pixels are included in the image. Conversely, when the value of N is

lower, the image appears blurrier as fewer pixels are present.

In the given figure, it can be observed that increasing the value of N leads to an increase in

image resolution. However, at certain values of N, such as 110 and 220, there might not be a

significant difference in resolution. In such cases, it is possible to use a lower resolution value

to conserve computational resources while still maintaining an acceptable level of detail for

the intended purpose, such as in a machine learning model [53]. This approach allows for a

balance between image quality and computational efficiency.

Quantization

Figure 3.Quantization of the image [37].

Quantization is a process in image processing that involves determining the intensity levels or

colours of an image. In the provided figure, it demonstrates the impact of the parameter k on

the image. Here, k represents the number of colours or intensity levels that an image can be

represented by.

For black and white images, where only shades of grey are present, a higher value of k may

not be necessary. Since black and white images have a limited range of intensity values,

employing a large number of colours or intensity levels would be unnecessary and wasteful in

terms of storage and computational resources [53]. Therefore, a lower value of k can be

sufficient to represent the image accurately and efficiently.

Image types

Figure 4.Image types [38].

In the provided figure, there are three main types of images depicted:

Binary Images: Binary images consist of only two colours, typically black and white. These

images are represented by pixels that can be either on (white) or off (black). Binary images

are commonly used in applications such as image segmentation, edge detection, and shape

analysis.

Grayscale Images: Grayscale images have a range of intensity values from zero to two

hundred fifty-five. These images contain shades of grey, where darker shades correspond to

lower intensity values and lighter shades correspond to higher intensity values. Grayscale

images are widely used in various image processing tasks, such as image enhancement,

feature extraction, and texture analysis.

Coloured Images: Coloured images are composed of three colour channels: red, green, and

blue (RGB). Each pixel in a coloured image is represented by a combination of intensity

values for these three channels. By varying the intensity values for each channel, a wide

range of colours can be achieved. Coloured images are commonly used in applications such

as digital photography, computer vision, and multimedia systems.

By leveraging the appropriate image type, different image processing techniques and

algorithms can be applied to perform specific tasks and extract meaningful information from

the images [54].

Hue, Saturation and Value

Figure.5 Hue , Saturation and Value [37].

In colour theory and image processing, the concept of colour can be described using three

main components: hue, saturation, and value (HSV model). These components provide

different aspects of the colour information:

Hue: Hue refers to the dominant colour in an image or pixel. It represents the specific colour

itself, such as red, blue, or green. Hue is measured in degrees on a colour wheel, where each

angle corresponds to a specific colour. For example, 0 degrees represents red, 120 degrees

represents green, and 240 degrees represents blue.

Saturation: Saturation determines the purity or brilliance of a colour. It indicates the intensity

or vividness of the hue. Higher saturation values indicate more intense and vibrant colours,

while lower saturation values result in more muted or desaturated colours. A saturation value

of 0 results in a grayscale image, as all colours are desaturated.

Value: It determines how bright or dark a colour appears. A higher value corresponds to a

lighter colour, while a lower value indicates a darker colour. Value is often used to control the

overall brightness of an image or adjust the lightness of individual colours.

The HSV colour model provides a more intuitive and perceptually relevant representation of

colour compared to the RGB model. By manipulating the hue, saturation, and value

components, various colour adjustments and transformations can be performed in image

processing to achieve desired visual effects and enhancements [54].

1.4.Deep Learning

Deep learning, a subset of machine learning, aims to replicate the functionality of the human

brain by mimicking its processes. The brain consists of neurons that communicate with each

other to facilitate various functions in the body. Biological neurons have three main

components: the cell body, dendrites, and an axon.

The cell body of a neuron contains the nucleus and other essential components for its

functioning. Dendrites are branch-like structures that receive signals from other neurons.

These signals, in the form of electrical impulses, travel through the dendrites and reach the

cell body.

Once the signals are processed in the cell body, the resulting output is transmitted through the

axon. The axon is a long, slender projection that carries the electrical signals away from the

cell body and transmits them to other neurons or target cells.

By simulating the behaviour of neurons and their interconnectedness, deep learning

algorithms attempt to learn and extract meaningful patterns and representations from data,

similar to how the human brain processes information [39].

Figure 6.Biological Neuron [36].

Artificial neuron

Artificial neurons, also known as perceptrons or artificial neural units, share similarities with

biological neurons and possess the following key features:

Incoming Links: Artificial neurons receive input signals from other neurons or external

sources through incoming links. These links represent the connections between neurons in a

neural network.

Weights: Each incoming link to an artificial neuron is associated with a weight. These

weights determine the strength or importance of the input signal. The weights can be adjusted

during the learning process to optimise the performance of the neural network.

Activation Function: An activation function is applied to the weighted sum of the input

signals within the neuron. This function determines the output or activation of the neuron

based on the input signals and their associated weights. The activation function introduces

non-linearity to the neuron, enabling it to model complex relationships and make non-linear

decisions.

By combining these features, artificial neurons are capable of processing and propagating

signals through a neural network, enabling the network to learn and make predictions based

on the input data. The weights and activation functions play crucial roles in shaping the

behaviour and decision-making capabilities of artificial neural networks.

Figure 7.Representation of a neural network [35].

In the above figure each input is linked and each link has a particular weight associated with

it [52].The output equation is given by the following formulae

Output = Activation function (Sum of (wi * xi) + bias)

FeedForward networks

Figure 8.Feed Forward networks [34].

Feedforward neural networks typically consist of three main layers: the input layer, hidden

layer(s), and output layer. Let us see the use of each layer:

Input Layer: The input layer is the starting point of the neural network. It receives raw data or

features as input and passes this information forward to the hidden layers. Each input node in

the input layer represents a specific feature or input variable.

Hidden Layer(s): Hidden layers are located between the input layer and the output layer.

These layers perform computations on the input data using weights associated with the

connections between neurons. The hidden layers apply mathematical operations and

transformations to the input data, calculating the weighted sums of the inputs and passing

them through activation functions. The number of hidden layers and the number of neurons in

each hidden layer can vary depending on the complexity of the problem being solved.

Output Layer: The output layer is responsible for producing the final output or prediction of

the neural network. It takes the processed information from the hidden layers and generates

the desired output format. The number of nodes in the output layer corresponds to the number

of output variables or classes in the problem being addressed.

Through the feedforward mechanism, data flows from the input layer through the hidden

layers and finally reaches the output layer, producing the desired result. Each layer plays a

crucial role in processing the information and contributing to the overall computation

performed by the neural network [52].

Backpropagation

After initialising the weights in a neural network, which are typically random values, the

model may not initially fit the data optimally, resulting in some error. To correct this error and

improve the model's performance, backpropagation algorithms are commonly used. Here are

the main steps of the backpropagation process:

Weight Initialization: Initially, the weights of the neurons in the network are randomly

initialised. These weights determine the strength of connections between neurons and play a

crucial role in the learning process.

Forward Propagation: The input data is fed forward through the neural network. The

calculations are performed layer by layer, starting from the input layer, passing through the

hidden layers, and finally reaching the output layer. Each neuron computes a weighted sum of

its inputs, applies an activation function, and passes the result to the next layer.

Error Calculation: After obtaining the output of the neural network, the predicted values are

compared with the actual values from the training data. The actual value and predicted value

gives a difference which is how error is calculated.

Backward Propagation: Starting from the output layer the error is propagated backwards. By

using a technique called chain rule, the error is distributed back to the previous layers. This

process calculates how much each weight contributes to the overall error.

Weight Update: The calculated error is used to update the weights in the network. The

weights are adjusted based on the gradient of the error with respect to the weights. This step

aims to minimise the error and improve the model's performance. Various optimization

algorithms, such as gradient descent, are commonly used to update the weights.

Iterative Process: Steps 2 to 5 are repeated iteratively for multiple epochs or until the error is

minimised to an acceptable level. Each iteration helps the network learn and adjust its

weights to better fit the training data.

By iteratively adjusting the weights based on the error, the backpropagation algorithm allows

the neural network to learn and improve its performance over time, making it more accurate

in making predictions or producing desired outputs [52].

Figure 9.Finding the global minimum [39].

The above figure we try to find the global minimum by the backpropagation algorithms.

Now we know that deep learning algorithms are an integral part of machine learning which

can be used to solve various challenges in these fields.

1.5.Object detection

In computer vision, the extraction of important features from an image is crucial for various

tasks, including object detection, text recognition, and signature verification. Object detection

specifically involves recognizing shapes and determining the location of objects within an

image [12]. This field plays a fundamental role in computer vision, as it provides semantic

information about images and videos, enabling applications such as face recognition,

self-driving cars, and advancements in medical healthcare.

However, object detection poses several challenges. Variations in illumination, different

viewpoints, and poses make it difficult to accurately detect objects in diverse scenarios.

Researchers are actively working on developing optimal solutions to address these challenges

[13]. The ultimate goal is to improve the accuracy and robustness of object detection

algorithms, enabling them to handle real-world complexities and achieve reliable results in

various applications.

The main goal of object detection is to detect what type that object the class it belongs to as

well as the location of the object in the localised image area.There are three main stages in

which object detection is divided into -

Informative region selection

Detecting objects in an image poses challenges due to their potential presence anywhere in

the image and the possibility of various orientations, resulting in different aspect ratios. The

conventional approach to object detection involves scanning the entire image using boxes of

different aspect ratios. However, this brute force approach can be computationally expensive.

Using fewer boxes may lead to the risk of missing some objects, as the limited coverage

might not capture all potential locations and orientations of objects in the image [55].

Balancing the number of boxes used for detection is crucial to strike a balance between

computational efficiency and ensuring comprehensive object coverage.

Feature extraction

To detect and recognize objects in an image, it is essential to extract relevant visual attributes

and features. Two commonly used methods for feature extraction are Scale-Invariant Feature

Transform (SIFT) [14] and Haar-like features [15].Despite the effectiveness of these feature

extraction techniques, challenges still exist when dealing with variations in illumination and

object orientation. Illumination changes can affect the appearance of objects, making it

difficult to create optimal algorithms that accurately describe their rich features. Similarly,

object orientation variations introduce additional complexities in feature extraction.

Classification

After detecting an object in an image, the next step is to determine the class or category to

which the object belongs. This involves creating a classifier that can compare and predict the

features of the object to assign it to a specific class [55].

The process of object detection typically involves two main approaches: classification-based

and regression-based. In classification-based object detection, the goal is to classify the

detected object into predefined classes or categories. This is achieved by training a classifier

on labelled data, where the classifier learns to associate specific features or patterns with each

class. Once the object is detected, the classifier analyses its features and assigns it to the most

suitable class based on its learned knowledge.

On the other hand, regression-based object detection focuses on predicting the coordinates or

bounding box parameters that enclose the detected object. Instead of classifying the object,

the model directly regresses the spatial coordinates of the object within the image. This

approach is commonly used in tasks such as object localization or object tracking.

2.Convolutional neural networks

2.1.What are convolutional neural networks?

Figure 10.Convolution neural network sequence [16].

A convolutional neural network (CNN) is a deep learning algorithm designed specifically for

image processing tasks. It operates by assigning weights to different parts of an input image,

allowing it to differentiate between various aspects and features of the image. By leveraging

these learned weights, a CNN can perform tasks such as image classification, object

detection, and image segmentation.

The pre-processing step in a CNN involves resizing and resampling the input image, which

helps ensure that the image is in a suitable format for further analysis. This step does not

significantly impact the computational complexity of the network, as it primarily involves

adjusting the dimensions of the image.

In Figure 10, we can observe the sequence of operations performed by a convolutional neural

network, which typically includes convolution, pooling, and fully connected layers.

Convolutional layers apply filters to the input image, capturing local patterns and features.

Pooling layers reduce the spatial dimensions of the feature maps, helping to extract the most

relevant information. Finally, fully connected layers perform classification or regression tasks

based on the extracted features.

The architecture of a convolutional neural network is inspired by the pattern matching

capabilities of neurons in the human brain. By emulating the structure and function of

biological neurons, CNNs can effectively learn and recognize complex patterns and features

in images, making them well-suited for a wide range of computer vision tasks [51].

2.2.Advantages of CNN

Indeed, representing an image as a flattened vector and feeding it into a multi-layer

perceptron (MLP) is not effective in capturing the spatial relationships between pixels. MLPs

are not designed to handle the inherent structure and locality of image data.

Convolutional neural networks (CNNs) address this limitation by leveraging the advantages

of weighted kernels and pooling operations. The use of convolutional layers in CNNs allows

for the extraction of local features by convolving a set of learnable filters (kernels) over the

image. These filters detect patterns and edges at different spatial locations, capturing the

interdependence of pixels and their relationships.

Figure 11.Flattening of 3x3 to 9x1 [16].

To define and asset the temporal and spatial dependencies in an image a convolutional neural

network captures it better. We basically reduce the redundant parameters and extract the

important features in an image [51].

2.3.Kernel

Figure 12.Filter working of CNN [42].

In convolutional neural networks (CNNs), a kernel or filter is used to perform convolution

operation on the input image. The kernel is typically a small matrix of weights, such as a 3x3

filter as mentioned in your example.

The convolution operation involves sliding the kernel over the entire image and computing a

weighted sum of the pixel values within the receptive field covered by the kernel. This

computation is performed element-wise, multiplying the corresponding kernel weights with

the corresponding pixel values and summing them up. This process is repeated for each

position of the kernel as it slides across the image.

By using the kernel to convolve with the image, the CNN extracts local features and spatial

patterns. The output of this convolution operation is a feature map, where each element

represents the result of convolving the kernel with a local region of the input image.

The dimension of the output feature map depends on the size of the input image, the size of

the kernel, and the stride used during the convolution operation. In the example above, using

a 3x3 filter, the dimension of the output feature map will be reduced compared to the input

image.

The use of kernels in CNNs allows for localised feature extraction, enabling the network to

learn and capture important patterns and structures in the image. The weighted averaging of

the kernel values with the input image pixels helps to highlight relevant features and reduce

the dimensionality of the output, which can help in simplifying and accelerating subsequent

computations.

Overall, the convolutional operation with kernels is a fundamental component of CNNs and

plays a crucial role in extracting meaningful features from the input image [51].

2.3.Striding and padding

Figure 13.Movement of kernel [16].

Striding refers to the step size or the number of pixels the kernel moves horizontally and

vertically as it slides over the input image. A stride of 1 means the kernel moves one pixel at

a time, scanning the image column by column. A higher stride value, such as 2, would cause

the kernel to skip pixels and move faster, resulting in a lower dimension of the output feature

map. Striding affects the spatial resolution of the output feature map, as it determines how

much overlapping or skipping occurs during the convolution operation [16].

Padding, on the other hand, involves adding extra border pixels to the input image. It is often

used to control the spatial dimensions of the output feature map. Padding can be applied to

ensure that the output feature map has the same spatial dimensions as the input image, or it

can be used to increase the spatial dimensions. Padding with zeros (zero-padding) is a

common approach, where zeros are added around the borders of the image. This helps in

preserving the spatial information at the boundaries and preventing a reduction in

dimensionality during convolution [16].

2.4.Pooling

Figure 14.Types of pooling [16].

Max pooling and average pooling are the two commonly used types of pooling operations.

In max pooling, a pooling filter (usually with a small size, such as 2x2) slides over the input

feature map, and for each location, it selects the maximum value within the filter window.

The selected maximum value is then assigned to the corresponding position in the output

feature map. Max pooling helps in capturing the most prominent or dominant features within

the filter window and discarding less important or less significant information. It is

particularly useful for achieving translation invariance and reducing the impact of small

spatial translations in the input [16].

On the other hand, average pooling computes the average value within the filter window and

assigns it to the corresponding position in the output feature map. Average pooling can help

in reducing the impact of noise in the input and providing a smoother representation of the

features. However, it may not preserve detailed information as effectively as max pooling

[16].

Both max pooling and average pooling are used to downsample the feature maps, reducing

their spatial dimensions. By reducing the spatial dimensions, pooling helps in reducing the

computational complexity of the network and extracting higher-level, more abstract features.

Overall, max pooling is commonly preferred in convolutional neural networks due to its

ability to capture dominant features and its effectiveness in reducing noise. However, the

choice between max pooling and average pooling can depend on the specific task and the

characteristics of the data being processed [16].

2.5.Applications of CNN

As artificial intelligence is the future , convolution neural network demand is getting

higher.Big companies such as Tesla,NASA are continuously researching in the field.Some

major applications of CNN are -

Face recognition

Here, we recognise and store rich features on the face, including the eyes, nose, mouth, and

ears.These features are then compared against the database's features to determine whether

they match [49].

Document Analysis

Text recognition from digital images is basically what happens when text is turned to an

image.This means that we can use it for a wide range of activities, including signature

verification, handwriting comparison, and file verification [49].

Climate analysis

Understanding climate is a difficult task due to the presence of global warming and heating

issues.By feeding the image to a network,we can find patterns to why this is happening and

what is the relation between them [49].

Object detection

Due to global warming and other heating-related problems, understanding the climate is a

challenging undertaking.We can discover patterns to explain why this is happening and what

the relationship between them is by feeding the image to a network [49].

Collecting Historic elements

We can discover the connections between each of them by gathering natural historical

elements such as evolution, natural biodiversity, and habitat loss.primarily how that particular

biodiversity led these individuals to that solution [50].

Understanding Grey areas

Similar to machine learning, probability can do better than humans in areas where they

determine the final product.In cases involving fuzzy reasoning, convolutional neural

networks can produce better results [50].

The convolutional neural network uses these properties, which are present, to reduce the size

of the image and extract rich features from it.As a result, less computing power will be

needed, which will increase the accuracy of object prediction in photos.There are currently

primarily three forms of object detection that are in use.Now, we'll describe the various types

and demonstrate how they operate.

3.Types of object detection pipelines

Figure 15.Types of object detection pipelines [1].

Object detection is a challenging task that involves locating and categorising objects within

an image and determining their respective classes. There are several pipelines or methods

used in object detection, and Figure 6 provides an overview of some of these methods.

To create an optimal algorithm instead of scanning the whole image with various aspect ratios

to search a particular object is a huge task.Let us see what types of object detection pipelines

are currently present.We can see the various working in figure 6 of the different types of

method present in object detection.

3.1.Dense method in object detection

The sliding window algorithm is commonly employed in object detection pipelines to detect

objects. However, the performance of this method has reached a plateau despite utilising deep

convolutional neural networks to extract rich image features [17]. In the dense method,

one-stage detectors such as YOLO, RetinaNet, and SSD are used. These detectors employ

anchor boxes of various sizes and slide them across the image grid to capture objects with

different orientations, sizes, and aspect ratios [18] [19] [20]. Recent advancements have

introduced anchorless algorithms that select specific anchor boxes in restricted region areas,

reducing computation requirements.

To evaluate object detection accuracy, dense methods use intersection over union (IoU) to

measure the overlap between predicted and ground truth bounding boxes. Additionally,

non-maximum suppression techniques [21] are applied to remove redundant predictions and

optimise computation.

Despite these advancements, object detection remains challenging due to factors such as

object appearance variation, viewpoint changes, occlusion, and environmental conditions.

Researchers continue to explore new techniques and algorithms to enhance the accuracy,

efficiency, and robustness of object detection systems.

3.1.1.Single stage pipeline

Figure 16.Single stage object detector [31].

Dense object detection employs a single-stage pipeline that directly extracts features from the

entire image. This approach does not involve region of interest (ROI) algorithms to determine

potential object areas. Instead, anchor boxes of various aspect ratios are applied across the

image to capture rich features [31]. As a result, multiple anchor boxes may overlap with each

other after object detection.

One-stage object detectors like YOLO and SSD are notable examples of dense object

detection methods [18] [19]. These detectors use anchor boxes and employ a unified

framework to simultaneously predict object classes and their bounding box coordinates. By

leveraging deep convolutional neural networks, these models achieve real-time performance

and high accuracy in object detection tasks.

3.1.2.YOLO

Figure 17.YOLO Architecture [31].

In YOLO, a single-stage pipeline is employed for object detection. The input image is

processed by a neural network that divides it into multiple regions, each assigned with a

bounding box. These bounding boxes are weighted to provide a confidence score indicating

the presence of an object within the box [31].

The YOLO system consists of 24 convolutional layers and two fully connected layers, each

serving a specific purpose [31].

-The first 20 layers are convolutional layers, followed by a pooling layer and a fully

connected layer.

-The network is pre trained using images with a resolution of 224 x 224 x 3.

-For object detection, there are four additional convolutional layers and two fully connected

layers.

-The final layer is responsible for generating bounding boxes and confidence scores.

-The activation function used in YOLO is ReLU (Rectified Linear Unit). It introduces

non-linearity into the network and helps improve its ability to learn and extract features from

the input data.

3.2.Dense to sparse method in object detection

In two-stage object detection pipelines, a different approach is taken compared to the

single-stage pipelines. These pipelines have gained prominence in the field of object

detection. They build upon the dense method by introducing a two-step process:

Region Proposal: In this step, the algorithm generates region proposals, which are areas in the

image where objects are likely to be present. These proposals serve as potential regions of

interest for further analysis. To refine the proposals and remove redundant ones,

non-maximum suppression is applied. Examples of region proposal algorithms include

Selective Search [22] and Region Proposal Networks [23].

Object Detection: After obtaining the region proposals, a second stage is employed to classify

and localise objects within these proposals. This stage involves further processing and

analysis to identify the objects accurately. The output is the detection of objects with their

corresponding bounding boxes and class labels.

One notable advancement in two-stage object detection is the DETR (Detection Transformer)

approach, which is capable of detecting objects without relying on manually created

parameters. It achieves impressive results and represents a significant development within the

dense-to-sparse method.

3.1.1.Two stage pipeline

Figure 18.Two stage pipeline [31].

In the dense-to-sparse object detection using a two-stage pipeline, the focus is on obtaining

regions of interest (ROIs) in the initial stage. These ROIs are specific areas within the image

where objects are expected to be located. The goal is to reduce the computational load by

narrowing down the search space.

Once the ROIs are identified, the second stage of the pipeline comes into play. This stage

involves processing the ROIs and applying anchor boxes of various aspect ratios to detect and

classify objects within these regions. Non-maximum suppression is then utilised to eliminate

redundant object detections and refine the final results.

An example of a two-stage pipeline for object detection is Fast R-CNN [22]. It has gained

popularity for its ability to efficiently detect objects by combining region proposal and

classification stages, providing accurate results with improved computational efficiency.

3.1.2.Region CNN

Figure 19.R-CNN architecture [41].

The object detection system employs a two-stage pipeline. In the first stage, the system

identifies and localises regions of interest using various techniques. In the subsequent stage,

object detection is performed within these regions. The network is trained using stochastic

gradient descent (SGD) with 32 sample windows during pre-training. The final output

includes approximately 2000 region proposals for object classification. Support Vector

Machines (SVM) are utilised for classifying the detected objects into specific categories. [33]

3.3.Sparse method in object detection

Although the dense method techniques are removed by the sparse method, the accuracy of

these approaches is typically lower than that of the dense to sparse or dense methods. This

kind of technique is used by G-CNN [25], which updates boxes in a grid iteratively to

forecast the objects.But it hasn't succeeded in getting very accurate. Sparse R-CNN [1] finds

a solution to that issue and outperforms its competitors in terms of accuracy.

We will now examine the Sparse R-CNN's working approach, as well as its components,

technology, and architecture.

4.Methodology

The primary concept behind Sparse R-CNN is the elimination of numerous object

detection-related parameters.We use a small number of proposal boxes rather than enormous

quantities of anchor boxes or region proposal boxes.Let's examine the Sparse R-CNN

pipeline's architecture.

Figure 20.Sparse R-CNN pipeline [1].

The pipeline of Sparse R-CNN [1] comprises three essential components: the backbone

network, the dynamic head, and the final output.

The backbone network is responsible for extracting image features, which are vital for object

detection. It processes the input image to obtain high-level representations using

convolutional operations and other relevant techniques.

The dynamic head interacts with the extracted features and performs continuous refinement

and adaptation. It integrates information from different feature levels and dynamically adjusts

the network parameters to improve detection accuracy.

The final output of the pipeline includes both classification and regression information. The

classification output identifies the object classes present in the image, while the regression

output provides refined bounding box coordinates. The input to the pipeline consists of the

image itself, as well as proposal features and proposal boxes that can be trained and updated

to enhance the detection performance [1].

4.1.Backbone of the network

Figure 21.Feature extraction in FPN [45].

Sparse R-CNN leverages a feature pyramid network (FPN) based on the ResNet architecture

[26] to generate multi-scale feature maps of the input images. The FPN operates by resizing

the image into different resolutions and extracting rich features at each scale. These

multi-scale feature maps are then utilised in the pipeline for object detection, enabling the

model to capture objects of varying sizes and scales.

4.2.Learnable proposal box

In the Sparse R-CNN pipeline, a limited number of boxes are initialised as region proposals,

unlike the region proposal networks that generate a large number of proposals. These boxes

are represented as 4-dimensional vectors, including normalised centre coordinates, height,

and width. Unlike region proposal networks, the values of these boxes are learnable and

updated through the backpropagation algorithm during training [1]. This eliminates the need

for manual parameter specification and allows the model to predict object locations in the

image. Additionally, these boxes in Sparse R-CNN are designed to be less correlated with

each other compared to region proposal networks.

4.3.Learnable proposal features

The proposal boxes in the Sparse R-CNN pipeline are 4-dimensional representations that

capture certain values, but they may not fully capture important features such as the shape

and orientation of the object. To address this limitation, higher-dimensional learnable

proposal features are introduced. These features store richer information about the object and

encompass all its characteristics, allowing for more comprehensive object representation and

detection [1].

4.4.Dynamic instance interactive head

Figure 22.Pseudo code for dynamic head how the kth proposal feature makes dynamic

parameters for the kth region of interest.Here BMM means batch matrix multiplication while

linear is linear projection [1].

The Sparse R-CNN pipeline operates on N proposal boxes, where each box undergoes the

RoIAlign operation to extract its corresponding feature. These proposal features are then

utilised in the dynamic head for final output prediction. Each region of interest has its own

head for processing. With N proposal boxes, there are N proposal features, and each proposal

feature is further filtered using an RoI to eliminate irrelevant information and generate the

final object feature.

The pipeline involves an iterative process where the proposal boxes generated in the first

stage serve as inputs for the second stage. Additionally, a self-attention module is

incorporated to capture the relationships between different objects and enhance the overall

detection performance [1].

4.5.Set prediction loss

The loss function used in the Sparse R-CNN pipeline is defined as:

Loss = λ(Focal Loss Coefficient) · L(Focal Loss) + λ(L1 Loss Coefficient) · L(L1 Loss) +

λ(Intersection over union Coefficient) · L(Intersection over union loss)

Here, each term in the loss function is defined as follows:

Focal Loss: It is a loss function introduced in the RetinaNet model [27] that addresses the

problem of class imbalance in object detection. It assigns higher weights to hard examples

(misclassified examples) and reduces the influence of easy examples.

L1 Loss: It is a regression loss that measures the absolute difference between predicted box

coordinates and ground truth box coordinates. It is used to penalise the discrepancies between

predicted and target box positions.

Intersection over Union (IoU) Loss: It measures the similarity between predicted and ground

truth bounding boxes by calculating the intersection over union ratio. It penalises the

differences in box overlap and helps in accurate localization.

Each term in the loss function is multiplied by a corresponding coefficient (λ) that determines

its contribution to the overall loss. These coefficients allow adjusting the relative importance

of each loss term during training based on the specific requirements of the detection task [1].

4.5.1.L1 loss

This loss is used for minimising or reducing the value between predicted and actual value

[57].It is not affected by outliers also.

L1 = sum of | predicted - actual |

Figure 23.L1 loss equation [47].

4.5.2.Intersection over Union

Figure 24.Intersection over union [48].

The loss function in object detection, as defined by the Intersection over Union (IoU),

measures the overlap between the predicted and ground truth bounding boxes. By calculating

the ratio of the intersection area to the union area, the IoU reflects the accuracy of object

detection. A higher IoU value corresponds to a higher level of accuracy. In practical

applications, the IoU is commonly employed as a threshold to eliminate overlapping or

redundant bounding boxes in order to refine the object detection results [28].

4.5.3.Focal loss

Figure 25.Comparison with loss and probability of ground truth class using focal loss [27].

Focal loss is an enhanced version of cross-entropy loss that addresses the issue of class

imbalance in object detection. It assigns different weights to hard misclassified examples

(e.g., noisy or blurred images) and easy misclassified examples (e.g., background) [27]. In

cross-entropy loss, the imbalance between foreground and background objects can lead to

suboptimal performance in single-stage object detectors.

The formula for cross-entropy loss is given as:

Cross entropy = -log(pt),

where p represents the probability of the class label, ranging from 0 to 1. However, this

traditional approach fails to handle the class imbalance effectively [27]. Focal loss introduces

a tunable focusing factor, gamma, and modifies the loss function as:

Focal loss = -(1-p)^gamma * log(pt).

The gamma value, greater than zero, adjusts the contribution of each example to the loss

calculation [27]. Figure 7 illustrates the impact of different gamma values on the focal loss.

These are the key parameters and features of the Sparse R-CNN network. Now, let's explore

the results achieved by this model.

5.Technologies Used

5.1.Python

It is a high-level programming language that currently rules the fields of artificial intelligence

and machine learning. It is employed in numerous situations, including scripting, testing, and

the programming of various applications.

5.2.Detectron2

The Facebook research team created Detectron2 [29], which focuses on employing object

detection. It includes a number of libraries and techniques for keypoint identification,

segmentation, and object detection.

5.3.OpenCV

A library called OpenCV [56] is used for a variety of picture representation, conversion, and

recognition tasks.It provides a vast selection of image processing algorithms.

6.Average precision

In order to assess the model's performance in object detection, accuracy alone is not

sufficient.The area under the precision and recall curves is used to calculate average

precision.Let's first look at how to compute these values [30].

True positive (TP) - when a proper output is detected by the model and the actual output is

positive.

True negative(TN) -when a valid output is detected by the model but the actual outcome is

negative.

False negative(FN) - when the result that the model recognises as being wrong is actually

positive.

False positive(FP) - when the result that the model recognises as being wrong is actually

negative.

These four values define a confusion matrix [48].

Figure 26.Confusion matrix [48].

Now precision and recall are calculated by the following formula.

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

After evaluating the precision and recall metrics, we can determine the performance of a

model by examining the area under the curve (AUC). Precision measures the frequency of

correct predictions made by the model, while recall assesses the model's ability to correctly

identify positive instances.

A higher precision with lower recall suggests that the model has a high level of accuracy in

predicting positive outputs but may miss some instances. Conversely, a higher recall with

lower precision indicates that the model has a greater ability to identify positive instances but

may also generate more false positives.

By analysing the AUC, we can gain a comprehensive understanding of the model's overall

performance, taking into account both precision and recall [30].

Figure 27.Average precision [48].

Thus to calculate the AP we need to find the area under the precision and recall curve.Now in

the COCO dataset we use the following metrics for various APs.

Figure 28.COCO metrics [43].

The above COCO metrics are used for calculating various metrics which are used to compare

different object detection models [43].

6.1.Improving average precision

To improve the average precision we need to improve the accuracy of our CNN model.Let us

see the many ways on how we can improve the accuracy of the CNN model.

1.Tune parameters of the network

We can adjust a lot of factors, such as the learning rate, the number of epochs, or the

optimisers in our algorithm.To determine the ideal number of epochs to employ for training

our model, we must do numerous trials.

2. Image data augmentation

Because of the variety, we are aware that the more data we supply, the higher its accuracy.To

produce more image samples, we can rotate and vary the direction of the image.

Figure 29.Augmentation of an image [44].

The accompanying illustration illustrates how we might enhance the image to broaden the

size of our input sample.We may incorporate the rotated version of these images to boost

accuracy because CNN is also rotation invariant.

3. Deeper network topology

Instead of expanding the network's width, we can increase its depth and increase

accuracy.The depth of the network will combine all the crucial elements, whilst the width of

the network determines what input we must provide to the network [44].However, excessive

width and depth might lead to costly computation issues.Finding the proper depth is crucial,

thus.

4. Underfitting and overfitting

Overfitting occurs when the model that was trained by the model is trained too well and

provides too much lower accuracy for predicting unknown data [60].When tested on the

training set of data, the model underfits poorly.

Underfitting can be fixed by either adding more layers to our network or fine-tuning the

parameters to maximise accuracy.

For overfitting we do the following methods

-Train with more data

Larger the data set ,lesser the possibility of overfitting due to the variety of the data present in

the input sample.

-Early stopping

Figure 30.Comparison with number of iterations and error [44].

Numbers of iteration do improve the model,but after some time the model tries to overfit on

the training dataset,therefore stopping before can help in removing overfitting.

-Cross validation

Figure 31.Cross validation [44].

We divide our data set into k partitions and for each partition we do the training.Then we

average out the accuracy for each iteration.In the k partitions k-1 are used for training while

the remaining are used for validation [44].

7.Result

The average precision measurement in object detection determines the outcome. The outcome

is displayed on the COCO dataset and contrasted with other datasets.Let's check the average

precision first.

7.1.Comparison of various models

The comparison between various models was taken from their before output and papers [28]

and we are currently comparing with the sparse R-CNN.

Figure 32.Comparison of sparse R-CNN with various detectors [1].

We can readily observe that Sparse R-CNN outperforms a number of its rivals.Its average

accuracy is rather comparable to DETR.As a result, sparse R-CNN outperforms other

detectors in the object detection field in terms of performance with less parameters. The

highlighted portion shows which of them has the highest average precision.Small images are

denoted by APs, whereas medium and big images are denoted by APm and APl, respectively.

While the percentage of intersection over union is denoted by the AP50, AP75.

7.2.Output of custom images

Figure 33.The model showing the category as well as the confidence level.

Figure 34.The model showing the category as well as the confidence level.

The output can be seen in the custom images with the confidence score as well.We can see it

is able to categorise and show how accurate the result is.

7.3.Comparison with different number of proposal boxes

Proposals AP AP50 AP75

100 42.3 61.2 45.7

300 43.9 62.3 47.4

500 44.6 63.2 48.5

Table 1 Change in number of proposal boxes.

We can see that average precision increases with the number of proposal boxes but the

training time as well as increases.

AP AP50 AP75 APs APm APl

45.7 65.0 49.8 32.4 49.9 61.6

Table 2 Evaluation of model for 250 COCO images.

7.4.Conclusion

We may observe that the sparse R-CNN outperforms its competitors in terms of accuracy

without requiring a sizable number of parameters. With a high degree of accuracy, it is

possible to extract and detect objects by employing the proposal boxes as well as proposal

features. Additionally, the non-maximum suppression in the photographs is not used. As a

result, Sparse R-CNN can be applied to object detection and enhanced.

7.5.Future Work

Additionally, we can create additional algorithms based on the sparse R-CNN model after

hyper-tuning the parameters to get an ideal method. Other object detectors can be combined

and assembled to further raise the average precision. We can improve the model's average

precision by adjusting the proposal box values as well as the network's depth.

8.References

[1] Sun, P., Zhang, R., Jiang, Y., Kong, T., Xu, C., Zhan, W., Tomizuka, M., Li, L., Yuan, Z.,

Wang, C., & Luo, P. (2021). Sparse R-CNN: End-to-end object detection with learnable

proposals. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR).

[2] W. S. Mcculloch, and W. H. Pitts, “A logical Calculus of Ideas Immanent in Nervous

Activity,” The Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1942.

[3] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain,” Psychological Review, pp. 368-408, 1958.

[4] C. V. D. Malsburg, “Frank Rosenblatt: Principles of Neurodynamics: Perceptrons and the

Theory of Brain Mechanisms.” .

[5] Davd. Rumhar, Geoffrey. Hinton, and RonadJ. Wams, “Learning representations by

back-propagating errors.”

[6] A. Waibel, T. Hanazawa, G. E. Hinton, K. Shikano, and K. J. Lang, “Phoneme recognition

using time-delay neural networks,” IEEE Transactions on Acoustics Speech & Signal

Processing, vol. 37, no. 3, pp. 328-339, 1989.

[7] W. Zhang, “Shift-invariant pattern recognition neural network and its optical

architecture,” in Proceedings of annual conference of the Japan Society of Applied Physics,

1988.

[8] Specht, and D.F., “A general regression neural network,” IEEE Transactions on Neural

Networks, vol. 2, no. 6, pp. 568-576.

[9] K. Aihara, T. Takabe, and M. Toyoda, “Chaotic neural networks,” Physics Letters A, vol.

144, no. 6-7, pp. 333-340.

[10] B. L. Lecun Y , Bengio Y , et al., “Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[11] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks,” Advances in neural information processing systems, vol.

25, no. 2, 2012.

[12] P. F. Felzenszwalb, R. B. Girshick, D. Mcallester, and D. Ramanan, “Object detection

with discriminatively trained part-based models,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 32, no. 9, p. 1627, 2010.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate

object detection and semantic segmentation,” in CVPR, 2014.

[14] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. of

Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.

[15] R. Lienhart and J. Maydt, “An extended set of haar-like features for rapid object

detection,” in ICIP, 2002.

[16] A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way.Sumit

Saha, 2018

[17] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In

CVPR, 2005

[18] Joseph Redmon and Ali Farhadi. YOLO9000: Better, faster, stronger. In CVPR, 2017.

[19] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C. Berg. SSD: Single shot multibox detector. In ECCV, 2016.

[20] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for

dense object detection. In ICCV, 2017.

[21] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chunhua Shen. Solov2: Dynamic

and fast instance segmentation. In NIPS, 2020.

[22] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards

real-time object detection with region proposal networks. In NeurIPS, 2015

[23] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders.

Selective search for object recognition. IJCV, 104(2):154–171, 2013.

[24] Nicolas Carrion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander

Kirillov, and Sergey Zagoruyko. End-toEnd object detection with transformers. In ECCV,

2020.

[25] Mahyar Najibi, Mohammad Rastegari, and Larry S Davis. G-cnn: an iterative grid based

object detector. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 2369–2377, 2016.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In CVPR, 2016.

[27] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for

dense object detection. In ICCV, 2017.

[28] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio

Savarese. Generalised intersection over union: A metric and a loss for bounding box

regression. In CVPR, 2019.

[29] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick.

Detectron2. https://github. com/facebook research/detectron2, 2019.

[30] Beitzel, S.M., Jensen, E.C., Frieder, O. (2009). MAP. In: LIU, L., ÖZSU, M.T. (eds)

Encyclopedia of Database Systems. Springer, Boston, MA.

https://doi.org/10.1007/978-0-387-39940-9_492

[31] Ndonhong, Vanessa & Bao, Anqi & Germain, Olivier. (2019). Wellbore Schematics to

Structured Data Using Artificial Intelligence Tools. 10.4043/29490-MS.

[32] Redmon, Joseph & Divvala, Santosh & Girshick, Ross & Farhadi, Ali. (2016). You Only

Look Once: Unified, Real-Time Object Detection. 779-788. 10.1109/CVPR.2016.91.

[33] Haripriya, P., & Porkodi, R. (2020). Deep Learning Pre-Trained Architecture Of Alex

Net And Googlenet For DICOM Image Classification.

[34] Main Types of Neural Networks and its Applications — Tutorial. (2021). Retrieved 15

January 2021, from

https://towardsai.net/p/machine-learning/main-types-of-neural-networks-and-its-applications-

tutorial-734480d7ec8e

[35] Instance Segmentation of Point Clouds using Deep Learning, Gerardo Francisco Perez

Layedra, UPC, (2021). Retrieved 15 January 2021, from

https://upcommons.upc.edu/bitstream/handle/2117/117737/131440.pdf?sequence=1&isAllow

ed=y

[36] A biological neuron. | BruceBlaus, CC BY 3.0, via Wikimedia Commons

[37] Introduction to Image Processing — Part 1: from

Fundamentals,https://perez-aids.medium.com/introduction-to-image-processing-part-1-funda

mentals-579cc414cebe

[38]Image Processing with Fiji/ImageJ,Jan 1 ,from

https://learning.rc.virginia.edu/notes/fiji-intro/

[39] What is Deep Learning? ,Saniya Parveez, Roberto Iriondo from

https://pub.towardsai.net/what-is-deep-learning-34767bb10366

[40] 2D Image Digital Representation from

https://edtech.engineering.utoronto.ca/object/2d-image-digital-representation

https://creativecommons.org/licenses/by/3.0
https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png

[41] Haripriya, Ponnapalli and R. Porkodi. “Deep Learning Pre-Trained Architecture Of Alex

Net And Googlenet For DICOM Image Classification.” (2020).

[42] Convolutional Neural Networks By: IBM Cloud Education,20 October 2020

[43] Coco metrics from https://cocodataset.org/#detection-eval

[44] Improving Performance of Convolutional Neural Network,Dipti Pawar,Aug 14, 2018

[45] Object Detection with Deep Learning: A Review Zhong-Qiu Zhao, Member, IEEE, Peng

Zheng, Shou-tao Xu, and Xindong Wu, Fellow, IEEE

[46] Intersection over union

,https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

[47] Loss Functions in Deep Learning,Sanober

Ibrahim,2021,https://insideaiml.com/blog/LossFunctions-in-Deep-Learning-1025

[48]Padilla, Rafael & Netto, Sergio & da Silva, Eduardo. (2020). A Survey on Performance

Metrics for Object-Detection Algorithms. 10.1109/IWSSIP48289.2020.

[49]Wang, Xiaoming & Li, Jianping & Liu, Yifei. (2018). Application of Convolutional

Neural Network (Cnn)in Microblog Text Classification. 127-130.

10.1109/ICCWAMTIP.2018.8632583.

[50]Lu, H. & Zhang, Q.. (2016). Applications of deep convolutional neural networks in

computer vision. 31. 1-17. 10.16337/j.1004-9037.2016.01.001.

[51]Chauhan, Rahul & Ghanshala, Kamal & Joshi, R.. (2018). Convolutional Neural

Network (CNN) for Image Detection and Recognition. 278-282.

10.1109/ICSCCC.2018.8703316.

[52]Grossi, Enzo & Buscema, Massimo. (2008). Introduction to artificial neural networks.

European journal of gastroenterology & hepatology. 19. 1046-54.

10.1097/MEG.0b013e3282f198a0.

[53]Oleiwi, Zahraa. (2019). Digital Image processing: sampling and quantization (Bit

resolution).

[54]Mohan, Vaka & Durga, B. & Devathi, Swathi & Raju, Srujan. (2016). Image Processing

Representation Using Binary Image; Grayscale, Color Image, and Histogram.

10.1007/978-81-322-2526-3_37.

[55]Sharma, Kartik & Thakur, Nileshsingh. (2017). A review and an approach for object

detection in images. International Journal of Computational Vision and Robotics. 7. 196.

10.1504/IJCVR.2017.081234.

[56]Mahamkali, Naveenkumar & Ayyasamy, Vadivel. (2015). OpenCV for Computer Vision

Applications.

[57]Kopciak, Peter. (2015). Introduction to Machine Learning with Feed-Forward Artificial

Neural Networks and Evolving with Genetic Algorithms. 10.13140/RG.2.1.2951.3449.

[58]Haslwanter, Thomas. (2016). Python. 10.1007/978-3-319-28316-6_2.

[59]Gilanie, Ghulam. (2022). Image Representation and Description.

[60]Zhu, Mu. (2004). Recall, precision and average precision.

oid:27535:36076975Similarity Report ID:

PAPER NAME

Final report Sparse R-CNN Object Detecti
on Using Proposal Boxes.docx

WORD COUNT

10090 Words
CHARACTER COUNT

57688 Characters

PAGE COUNT

55 Pages
FILE SIZE

3.3MB

SUBMISSION DATE

May 24, 2023 6:06 PM GMT+5:30
REPORT DATE

May 24, 2023 6:08 PM GMT+5:30

11% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

4% Internet database 0% Publications database

Crossref database Crossref Posted Content database

11% Submitted Works database

Excluded from Similarity Report

Bibliographic material Quoted material

Cited material Small Matches (Less then 8 words)

Summary

