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ABSTRACT 
 

Carbon Storage can be of two types i.e., 1) Organic Carbon storage and 2) Inorganic 

Carbon Storage. Research studies depicts that in arid, semiarid area and coastal area with 

high alkalinity and salinity in soil is of great importance to store Carbon in inorganic 

form. However, Soil Organic Carbon (SOC) is a widely accepted indicator to predict the 

soil health and carbon storage in soil. Soil Organic Carbon stock (tonnes/hector) data (0 

– 30 m) from the latest release of SoilGrids (May 2020) has been used in this study to 

correlate the SOC stock with multiple indices derived from Landsat 8 band dataset. The 

study areas selected here are East Calcutta Wetland (Ramsar site no. 1208) & Sundarban 

Wetland (site no. 2370) which are inscribed in a single Landsat 8 tile (WRS Path/Row: 

138/45) and are of international importance for rich biodiversity and climate change. 

Several studies by numerous scholars have been proved that SOC stock has a deep 

correlation with NDVI and crop phenology. Numerous physical, chemical, and biological 

parameters regulate the carbon cycle and this complex interaction is hard to predict with 

a few laboratories analysis and can be cost-extensive or site accessibility for sampling is 

often denied for numerous bio-geophysical constraints. However, spatiotemporal changes 

of parameters derived from satellite data can be a good option to specify the sampling 

area with more certainty and cross validation for lab analysis. Built-up area, cloud cover 

and presence of surface water plays important role to regulate the prediction of subsurface 

SOC stock. Hence Multiparameter (NDVI, NDBI, NDWI, LST & SMI) analysis, 

variation, and best possible correlation (r, Pearson correlation coefficient) is established 

here which can be used for further research progress in these study areas. Sampling in the 

study areas is done by Google Earth Engine to generate 1000 and 19000 random sampling 

points at the site no. 1208 and 2370, consequently. ArcGIS 10.8.2 software is used in this 

analysis to estimate the band statistics and interpolation of SOC data input, data 

extraction, resampling, and raster calculation for derived indices (NDVI, NDBI, NDWI, 

SMI) and LST. Predictability of SOC stock using Ordinary Kriging method with spherical 

variogram has been established in this study through the variation trend of covariates like 

Root Mean Square (RMSE) and R2 are shown here where extracted point dataset is used 

as measured and interpolated point dataset are used as predicted value in SOC stock 

analysis. Linear Regression method is also to compare statistical outcome between the 

two study areas. Monthly variation of the derived multiparameter with SOC stock data is 
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the key concern throughout this work.  Excel and Tableau software are used to analysis 

the data in this study. The results showing the variation of statistical metrices and linear 

regression has done to fit the line with a minimum R2 values for both extracted and 

interpolated SOC data points at both study sites. In this analysis, the monthly variation of 

multiparameter in case of EKW is higher than Sundarban Wetlands which is mainly due 

to anthropogenic activity at Ramsar site 1208. Though both the wetlands are of different 

types, but they have a good on an average amount of SOC stock as per the data collection. 

The importance of wetland in environmental balance is the key moto which has tried to 

be established in through this study. 

 

Keywords: East Calcutta Wetlands, Sundarban Wetland, SOC, NDVI, NDBI. 

NDWI, LST, SMI, R2, RMSE 
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CHAPTER  1 

INTRODUCTION 
 

 

 

 

1.1 Overview 

The biogeochemical cycle through which Carbon (C) is interchanged between various 

layers of earth such as biosphere, geosphere, pedosphere, hydrosphere, and atmosphere, 

is referred to as Carbon Cycle. The primary concern behind Carbon storage and Carbon 

management is to reduce climate risk and enhance climate resiliency. In today’s world, 

atmospheric Carbon pool is getting higher day by day with respect to the underground 

and fixed carbon stock. Carbon can be stored in various forms in earth such as Soil 

Organic Carbon (SOC) including Particulate Organic Carbon (POC); Dissolved Organic 

Carbon (DOC), other type of carbon fixation mechanism is in the form of Soil Inorganic 

Carbon (SIC). There are several nature-based solutions for Carbon sequestration like 

afforestation, conservation of biosphere and mangroves, conservation of wetlands, 

grasslands, peatlands etc. Research study shows that in dryland Carbon gets stored in 

the form of Soil Inorganic Carbon whereas, in peatland and wetland Carbon storage in 

the form of Soil Organic Carbon dominates. It has been also studied that two-third of 

carbon storage in the world is in Soil Organic Carbon form whereas, rest of the portion 

stores Carbon in inorganic form. Here, in this study SOC storage in two different types 

of wetlands is of primary concern. Based on the types of wetlands, vegetation type in 

wetland, several physical, chemical, and biological factors present in wetland soil; 

carbon sink for long term assurance differs. All wetlands are enabled of sequestering 

and storing carbon through photosynthesis and accumulation of organic matter in 

sediments, soils, and vegetation biomass. During the study of complex processes that 

occur in wetlands, it is observed that in general, wetland plants grow at a faster rate than 

they decompose, contributing to a net annual carbon sink. As a result of waterlogging in 

wetland, anaerobic condition generated in soils, limits oxygen diffusion into sediment 

profiles. Consequently, the decomposition rates slow down, leading to significant 

accumulation of organic carbon in wetland sediments. However, the presence of 
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anaerobic conditions creates an ideal environment to produce greenhouse gases, 

including methane (𝐶𝐻4) and nitrous oxide (𝑁2𝑂). In periodically flooded systems like 

floodplains, methane emissions can vary significantly. During periods of inundation and 

anaerobic conditions, methane production may occur. Conversely, when these wetlands 

are dry, they can serve as methane sinks. Additionally, salinity acts as an inhibiting 

factor for methane production, resulting in lower methane emission rates in coastal 

wetlands compared to freshwater wetlands. 

1.2 Carbon Cycle & Carbon Storage in Wetland 

 

 

Figure 1.1: Carbon Cycle and Carbon Storage in Wetland 
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1.3 Soil in-situ Factors Affecting Carbon Storage 

There are several physical, chemical & biological factors inside soil which actively 

regulate the Carbon cycle and carbon storage in soil. 

1.3.1 Physical 

Bulk Density, Clay Content, Coarse Fragment, Sand, Silt these are some important 

physical properties of soil. 

1.3.2 Chemical 

Cation Exchange capacity, Nitrogen, Soil Organic Carbon, pH of water are some 

important chemical properties of soil. 

Based upon these physical and chemical properties, soil organic carbon stock 

(tons/hector) and organic carbon density (gm/dm3) are derived by ISRIC team with the 

help of machine learning algorithm. 

1.4 About SoilGrids 

SoilGrids TM is a digital soil mapping system designed for global-scale mapping of soil 

properties, utilizing advanced machine learning techniques. The models used in this 

system are trained using a vast dataset of over 230,000 soil profile observations sourced 

from the WoSIS database, along with a wide range of environmental covariates. More 

than 400 environmental layers derived from Earth observation data, including climate, 

land cover, and terrain morphology, were incorporated to extract relevant covariates. 

The outcome of SoilGrids is a collection of global maps depicting various soil 

properties at six standard depth intervals (as per the specifications of the Global Soil 

Map IUSS working group). These maps have a spatial resolution of 250 meters, an 

improvement from the previous resolution of 1 km. To assess prediction uncertainty, a 

90% prediction interval is calculated using the lower and upper limits. Additionally, an 

uncertainty layer is provided on the SoilGrids website, which represents the ratio 

between the inter-quantile range and the median. The SoilGrids data is publicly 

accessible under the CC-BY 4.0 License. 

For generating SOC stock maps at depths ranging from 0 to 30 cm, a two-step process 

was followed. Firstly, carbon stocks were computed at the sampling locations by 

modelling carbon density based on SOC concentration, bulk density, and the proportion 

of coarse fragments for each observation. Then, a weighted sum of carbon densities was 
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calculated for observations within the 0-30 cm depth range. Finally, a Quantile Random 

Forest model was calibrated and applied to generate the global SOC stock map. 

It is important to note that the calculations and models excluded organic layers present 

on top of mineral soils. The total global carbon stocks estimated using version 2 of 

SoilGrids amounted to 599 Pg of carbon for the 0-30 cm depth range, which aligns 

more closely with other global estimates. SoilGrids has homolosine projection. Hence, 

it can be used by any GIS software. 

1.5 About Landsat-8 

Landsat 8, also known as the Landsat Data Continuity Mission (LDCM), is a satellite 

operated by NASA and the United States Geological Survey (USGS) that plays a crucial 

role in Earth observation and monitoring. Launched on February 11, 2013, Landsat 8 is 

the eighth satellite in the Landsat program, which has been providing valuable data 

about our planet's land surface since 1972. 

Landsat 8 carries two main instruments: the Operational Land Imager (OLI) and the 

Thermal Infrared Sensor (TIRS). The OLI captures images with improved resolution 

and accuracy compared to its predecessors, offering nine spectral bands ranging from 

visible to shortwave infrared. This multispectral capability allows scientists and 

researchers to study a wide range of phenomena, such as vegetation dynamics, land 

cover changes, urban development, and the health of coastal and inland water bodies. 

The TIRS instrument on Landsat 8 measures thermal energy emitted from the Earth's 

surface. It provides valuable data for monitoring surface temperatures, identifying 

thermal anomalies, and studying processes like volcanic activity, wildfire detection, and 

urban heat island effects. The combination of OLI and TIRS data allows for a more 

comprehensive understanding of Earth's land surface dynamics and helps in managing 

and protecting our planet's resources. 

Landsat 8 orbits the Earth in a sun-synchronous polar orbit, which means it passes over 

the same area at approximately the same local solar time on each orbit. This consistent 

viewing geometry is crucial for comparing images over time and monitoring changes in 

land use and land cover. The satellite covers the entire globe every 16 days, capturing 

high-quality images with a spatial resolution of 30 meters for most of its spectral bands. 
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One significant advancement introduced by Landsat 8 is its onboard data storage 

capacity. It can store up to 4 terabytes of data, enabling the satellite to collect and store 

a considerable amount of imagery even in areas with limited ground receiving stations. 

The stored data can be downlinked to ground stations during subsequent passes over 

those stations, ensuring that valuable observations are not lost. 

The data captured by Landsat 8 is freely available to the public, making it a valuable 

resource for a wide range of applications. Scientists, policymakers, land managers, and 

researchers around the world rely on Landsat imagery to monitor environmental 

changes, assess the impacts of natural disasters, plan urban development, manage water 

resources, study climate change, and support various other applications aimed at 

understanding and protecting our planet. 

Landsat 8 continues the legacy of the Landsat program, providing a long-term and 

consistent record of Earth's land surface observations. Its high-quality data, improved 

capabilities, and open data policy make it an indispensable tool for studying our 

changing planet and making informed decisions for a sustainable future. 

Table 1.1: Landsat 8 OLI Bands Identity 

Band Type OPERATIONAL LAND IMAGER (OLI) BANDS 

Band No. Band 

1 

Band 

2 

Band 

3 

Band 

4 

Band 

5 

Band 

6 

Band 

7 

Band 

8 

Band 

9 

Band Name Ultra-

Blue 

Blue Green Red NIR SWIR 

1 

SWIR 

2 

Panch

romati

c 

Cirrus 

Wavelength

(µm) 

0.435-

0.451 

0.452-

0.512 

0.533-

0.590 

0.636-

0.673 

0.851-

0.879 

1.566-

1.651 

2.107-

2.294 

0.503-

0.676 

1.363-

1.384 

Resolution 

(Meter) 

30 30 30 30 30 30 30 15 30 
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Table 1.2: Landsat 8 TIRS Bands Identity 

Band Type Thermal Infrared Sensor (TIR) Bands 

Band No Band 10 Band 11 

Band Name TIRS 1 TIRS 2 

Wavelength (µm) 10.60-11.19 11.50-12.51 

Resolution (Meter) 100 (30) 100 (30) 
 

1.6 Multiparameter of This Study 

1.6.1 Normalized Difference Vegetation Index (NDVI) 

NDVI estimates vegetation with the measurement of the difference between Near-

infrared (which is strongly reflected by greeneries) and red light (which is absorbed by 

greeneries). It is considered as the foundation of remote sensing. It has several uses like: 

1. To identify vegetation separately, from other types of Land-use & Land-cover 

2. To estimate vegetation density and health of the vegetation 

3. To some extent NDVI can measure the phase of crops as it has a strong 

correlation with crop phenological parameters. 

4. NDVI can be used in vine vigor assessment, though the accuracy depends on 

proper soil management  

5. Additionally, NDVI has other uses like optimizing fungicide application, 

Eradicating Weed Infestation, deforestation monitoring, forage abundance 

measurement and many more. 

The outcomes of the NDVI estimation range are -1 to 1. The negative values indicate to 

areas with water bodies & surfaces with water, human made structures, clouds, rocks & 

snow. Bare soil typically exhibits NDVI values in the range of 0.1 to 0.2, while plants 

generally display positive values between 0.2 and 1. A healthy and dense vegetation 

canopy is expected to have an NDVI above 0.5, whereas sparse vegetation typically 

falls within the 0.2 to 0.5 range. It is important to note that these are rough guidelines, 

and the interpretation of NDVI values should always take into account factors such as 

season, plant types, and regional variations to gain a precise understanding of their 

meaning. 
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1.6.2 Normalized Difference Built-up Index (NDBI) 

NDBI is estimated by the difference of NIR and SWIR bands to focus on manufactured 

built-up areas. NDBI is ratio based on mitigating the effects of terrain illumination 

differences and atmospheric effects. 

Indexes representing built-up area can be of several types as follow: 

1. Normalized Difference Built-up Index (NDBI) 

2. Built-up Index (BU) 

3. Urban Index (UI) 

4. Index-based Built-up Index (IBI) 

5. Enhanced Built-up and Bareness Index (EBBI) 

These are the most usual indexes to estimate the built-up areas. These different indexes 

having their own empirical equation for estimation which is used as raster formula in 

various geoprocessing software by using the input band data of several geoinformatics 

sources like Sentinel, MODIS or Landsat. It has seen that, soil at built-up areas and 

barren land reflects more SWIR and less NIR. Infrared spectrum cannot be reflected by 

water bodies. In case of surface with green vegetation, NIR spectrum reflection is more 

than SWIR spectrum. For a better result, we can use Built-up Index (BU). Built-up 

Index is a satellite data processed indicator to estimate the urban pattern by using the 

difference of NDBI and NDVI. Built-up index is the binary image with only higher 

positive value indicates built-up and barren thus. Thus, it allows BU to generate a 

processed map the built-up area in an efficient way. 

NDBI value lies in between the range of -1 to +1. The negative values represent 

wasteland areas where no structures have been built up since now and positive values 

indicates highly built-up areas. 

1.6.3 Normalized Difference Water Index (NDWI) 

NDWI is used widely to estimate the water bodies. The index can be estimated by using 

Green and NIR bands of remote sensing images. The NDWI is used to get accurate 

water information in an efficient way. It has a high sensitivity for build-up land and 

result in over-estimated water bodies. The NDWI products can be used in conjunction 

with NDVI change products to assess context of apparent change areas. 

NDWI value lies in between -1 to +1. The range breaks are as following: 
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0.2 to 1 – This indicates the water surface, 

0.0 to 0.2 – This indicates the flood situation and humidity, 

-0.3 to 0.0 – This indicates the moderate drought and surfaces with no or less water 

-1 to -0.3 – This indicates the drought situation and completely non-aqueous surfaces 

1.6.4 Land Surface Temperature (LST) 

LST refers to the perceived heat of the Earth's "surface" in a specific location. When 

observed from a satellite, the "surface" encompasses whatever is visible through the 

atmosphere, such as snow, ice, grass, rooftops, or forest canopies. It is important to note 

that LST differs from the air temperature reported in daily weather forecasts. 

LST represents the radiative temperature of the land surface as detected by remote 

sensors. It is derived from Top-of-Atmosphere brightness temperatures obtained from 

the infrared spectral channels of geostationary satellites like Meteosat Second 

Generation, GOES, and MTSAT/Himawari. The estimation of LST also considers 

factors such as albedo (surface reflectivity), vegetation cover, and soil moisture. 

LST reflects a combination of temperatures from both vegetation and bare soil. Since 

both components respond rapidly to changes in solar radiation caused by cloud cover, 

aerosol concentration, and diurnal variations in illumination, LST exhibits rapid 

fluctuations as well. In turn, LST influences the energy exchange between the ground 

and vegetation, ultimately impacting the surface air temperature. 

Calculation of LST is still challenging. Some of the proposed Algorithm for LST 

calculation is as follow: 

1. The retrieval of LST involves the utilization of the Radiative Transfer Equation 

along with atmospheric parameters. These parameters are used to estimate the 

temperature of the Earth's surface from remote sensing data. 

2. A Single-Channel Algorithm developed by Jiménez-Muñoz et al. (2014) can be 

employed for LST retrieval. This algorithm utilizes specific coefficients and 

equations to calculate the temperature based on data from a single spectral 

channel. 

3. Another option is the Split-Window Algorithm, also developed by Jiménez-

Muñoz et al. (2014), which utilizes coefficients and equations designed for split-
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window spectral channels. This algorithm allows for the estimation of LST 

using the data from multiple spectral channels. 

4. Alternatively, the Split-Window Algorithm developed by Du et al. (2015) can be 

utilized. This algorithm incorporates specific coefficients and equations suitable 

for split-window spectral channels, enabling the retrieval of LST from remote 

sensing data. 

1.6.5 Soil Moisture Index (SMI) 

The measurement known as the soil moisture index (SMI) quantifies the relationship 

between the current soil moisture and the permanent wilting point relative to the field 

capacity and residual soil moisture. The SMI is expressed as a numerical value ranging 

from 0 to 1, where 0 represents extremely dry conditions, and 1 represents extremely 

wet conditions. This index serves as an indicator of soil moisture levels and provides 

valuable insights into the moisture status of an area. It has an important use in drought 

monitoring. 

1.7 Objectives  

This study is based on remote sensing data entirely. Here, in this study, Soil Organic 

Carbon stock (in tons/hector) has been collected from SoilGrids 250 m and time series 

variation of indices (NDVI, NDBI, NDWI, SMI) & LST are calculated from Landsat 8 

OLI & TIR bands to fulfill the following objectives: 

1) Inter-comparison of SOC stock between the two types of wetlands (Inland-

human made wetland & coastal-intertidal wetland) 

2) To check the correlation of monthly variation of Multiparameter with SOC stock 

for following cases:  

(a) Soil Organic Carbon Stock & Normalized Difference Vegetation Index 

(NDVI) [Jan – Dec]  

(b) Soil Organic Carbon Stock & Normalized Difference Built-Up Index 

(NDBI) [Jan – Dec] 

(c) Soil Organic Carbon Stock & Normalized Difference Water Index (NDWI) 

[Jan – Dec] 

3) To analyze the Lansat 8 data with SOC data collected from SoilGrids and 

establish the decision on the Carbon storage in both type of wetland from the 

statistical outcomes along with interpolation accuracy in random sampling 
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CHAPTER 2 

REVIEW OF LITERATURE 
 

 

 

Research study carried out by (H. Xu) introduces a “Modified” NDWI (MNDWI) as a 

novel approach, based on Mcfeeters' NDWI from 1966. The MNDWI utilizes MIR 

(Band 5) instead of NIR (Band 4) to construct the index. Experimental testing of the 

MNDWI was conducted in various environments, including ocean, lake, and river areas 

with built-up lands, as well as vegetated lands with both clean and polluted water 

bodies, using Landsat TM ATM imagery. 

The results of this study demonstrate that the MNDWI significantly improves the 

accuracy of water detection, particularly in areas predominantly consisting of built-up 

land. By effectively suppressing information related to built-up land, the MNDWI 

successfully highlights water features and enables accurate extraction of water body 

information within the study areas.[1] On the other hand, using the NDWI alone for 

enhancing and extracting water information in built-up land-dominated areas leads to 

mixed results, as it tends to incorporate noise from the built-up land, resulting in 

overestimation of the water body extent. 

Moreover, the MNDWI exhibits enhanced capability in capturing subtle water features 

compared to the NDWI and other visible spectral bands. Additionally, the MNDWI 

image proves effective in identifying non-point pollution surrounding Xian en Island, 

resulting from agricultural activities. Notably, the ratio computation employed in the 

MNDWI facilitates the removal of shadow noise from water information, eliminating 

the need for complex procedures that would otherwise be required 

Research work carried out by (L. Yang et al) Mapping the spatial distribution of soil 

organic carbon (SOC) content or stock is crucial for climate change studies and land 

management decision-making.  In croplands, crop species/crop rotations and 

agricultural management practices significantly influence the spatial variability of SOC. 

In regions where climatic conditions and farming practices are relatively consistent 

within a crop species' cultivation territory, crop phenology serves as a reliable indicator 

of the crop's response to soil conditions. Therefore, integrating phenological parameters 



Multiparameter Relation With Soil Organic Carbon Stock at Indian Wetlands 

11 
 

with crop rotation information can be an effective approach for mapping soil organic 

carbon in these areas. 

In this study conducted in Anhui province, China, phenological parameters were 

derived from time series data of the NDVI. These parameters, along with crop rotation 

information, were utilized to predict topsoil organic carbon content in cropland areas. 

The results revealed that the base levels (average of the left and right minimum values 

of a time series profile) for both seasons emerged as the most significant predictors in 

the study area.[2] Incorporating both crop rotation and the two phenological parameters 

into the analysis, in addition to the natural environmental variables, resulted in a 

substantial improvement in prediction accuracy. Specifically, the inclusion of these 

variables enhanced the R2 value by 50% and reduced the root mean square error 

(RMSE) by 13.4%. 

In the context of digital soil mapping, study conducted at a regional scale by (L. Yang, 

Y. Cai, L. Zhang, M. Guo, A. Li, and C. Zhou) have encountered challenges when 

attempting to map SOC due to the complex relationships between SOC and 

environmental factors. One potential approach to address this challenge is to incorporate 

vegetation phenology as an environmental covariate, as it directly reflects the long-term 

characteristics of vegetation growth. 

This paper investigates the effectiveness of ten-year MODIS MCD12Q2 phenology 

variables for SOC prediction using a convolutional neural network (CNN) model in 

Anhui province, China. To compare the performance, a random forest (RF) model was 

also employed, and three sets of environmental variables were utilized. The results 

demonstrate that the inclusion of land surface phenology variables in conjunction with 

natural environmental variables significantly improved the prediction accuracy of the 

CNN model. Specifically, the addition of land surface phenology variables led to a 

reduction of 5.57% in root mean square error (RMSE) and an increase of 31.29% in R2 

compared to the CNN model without these variables.[3] 

The evaluation of SOC accumulation in tropical forests was conducted at Ranthambhore 

Tiger Reserve Forest area by (P. Kumar et al), utilizing both remote sensing images 

and field methods. Multiple soil samples were randomly collected from various 

locations within the region for laboratory analysis to estimate surface soil carbon 

concentrations. The study employed regression analysis to establish relationships 
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between bare soil index, NDVI, SOC, and the correlation between SOC and NDVI. By 

comparing reference SOC (SOC measured in the field) with predicted SOC (estimated 

from satellite imagery), the study derived results and findings. 

Remote sensing images were utilized to accurately predict the carbon content associated 

with organic matter in the soil using NDVI and relevant equations. These predictions 

were then utilized to generate a digital map of soil organic carbon, providing a spatial 

representation of SOC in the study area.[4] The relationship between NDVI and both 

reference and predicted SOC was established using equations to derive digital SOC 

values from remote sensing data. The study also presented the statistical relationship 

between reference SOC, pH concentrations, and NDVI values, demonstrating the 

variations among these variables in relation to predicted SOC 

The findings of this study conducted by (S. Pal, S. Manna, A. Aich, B. 

Chattopadhyay, and S. K. Mukhopadhyay) revealed that East Calcutta Wetlands has 

significant potential for storing organic matter in the soil, thereby contributing to carbon 

sequestration. The efficient carbon storage capacity of EKW highlights its importance 

from both economic and ecological perspectives, emphasizing the need for 

conservation, sustainable development, and responsible management of this valuable 

wetland ecosystem. The study also observed that the application of composite 

wastewater increased the concentration of cations in soil samples. Elevated 

concentrations of these cations can lead to competition among them, thereby reducing 

their uptake by plants. This competition negatively impacts plant species development 

and overall system productivity. Given the economic importance of EKW for activities 

such as pisciculture and agriculture, it is crucial to implement control measures to 

prevent excessive waste discharge from this delicate ecosystem.[5] 

Spatial distributions of chemical factors in surface soils exhibited notable variability 

within the East Kolkata Wetland, and distinct patterns of distribution were observed 

among the seven studied sites. This highlights the necessity of employing a spatially 

explicit sampling approach to accurately assess the underlying variability of soil 

properties. In this study, by combining geographical information with a spatially 

explicit sampling approach, a model was developed for estimating soil properties. This 

approach can also serve as a guide for formulating a comprehensive conservation plan 

for the fragile ecosystem of East Kolkata Wetlands. 
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In another study, correlation and single regression analyses were performed to examine 

the relationship between SOC and various geochemical properties done by (K. Ashida 

et al). Specifically, the correlations and quantitative relationships were assessed 

between SOC and oxalate extractable Al and Fe, pyrophosphate extractable Al and Fe, 

and the combined content of clay and silt. 

In the subsurface soils, strong correlations were observed between SOC and oxalate 

extractable Al and Fe (𝐴𝑙𝑜 + 𝐹𝑒𝑜) as well as pyrophosphate extractable Al and Fe 

(𝐴𝑙𝑝 + 𝐹𝑒𝑝) (r = 0.79–0.85 and 0.58–0.85, respectively). The quantitative relationships 

between SOC and these properties were consistent across different weathering groups 

(4–5 and 5–8, respectively). However, no strong correlation or similar quantitative 

relationships were found between SOC and the combined content of clay and silt. 

This study remained a key note on required caution when using 𝐴𝑙𝑝 and 𝐹𝑒𝑝 for SOC 

estimation, as their measurements can be significantly influenced by experimental 

procedures such as centrifugation speed and filter pore size. In the present study, (clay + 

silt), (𝐶𝑎𝑒 +𝑀𝑔𝑒) (calcium and magnesium exchangeable cations), and free Fe oxides 

showed weaker correlations with SOC, except in surface soils with a pH of 6.[6] In 

surface soils with higher pH, (𝐶𝑎𝑒 +𝑀𝑔𝑒) and (clay+ silt) exhibited higher correlation 

coefficients compared to (𝐴𝑙𝑝 + 𝐹𝑒𝑝)  and (𝐴𝑙𝑜 + 𝐹𝑒𝑜). The study also revealed that in 

the acidic subsoils, SOC content was primarily influenced by active and/or organically 

bound Al and Fe, with a similar molar ratio of SOC to (𝐴𝑙𝑜 + 𝐹𝑒𝑜)  (4–5) and (𝐴𝑙𝑝 +

𝐹𝑒𝑝)  (5–8). 

Significant variation in soil organic carbon (SOC) stocks among several land-cover 

types within the park, with wetland soils exhibiting the highest SOC content (13.99 ± 

1.05 𝑘𝑔 𝑚2⁄ ), followed by forest, lawn, and bare soils as per investigated by (J. Bae 

and Y. Ryu). This study discovered a deep-seated "cultural layer" preserving the 

historical land use significantly contributed to the higher SOC stocks observed in the 

wetland. In terms of SOC concentrations in the topsoil, there was an approximately 

three-fold increase from 2003 to 2013 (256 ± 130%). By analyzing the NDVI derived 

from MODIS and Landsat satellite images, it was observed that land-use history, 

expansion of plant areas, and plant growth played a role in the observed increase in 

SOC concentrations over the 10-year period.[7] These findings suggest that urban park 

soils have the potential to act as carbon sinks, and careful consideration of land-use 
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history and land-cover choices in park planning can significantly impact the carbon 

budget of urban parks. 

An investigation of the temporal and spatial trends of NDVI in the northern region of 

China and its response to meteorological factors was the primary focus of the research 

work carried out by (S. Pan, X. Zhao, and Y. Yue).  Over the past 30 years, the study 

area has exhibited a slow growth trend in NDVI with increased fluctuations. The 

minimum NDVI value was recorded in 2004 at 0.4048, while the maximum was 

observed at 0.4683. The growth rate of NDVI was calculated to be 1.5%. 

The research findings indicate that the influence of precipitation and temperature varies 

across different terrains in the northern region. In higher alpine and subalpine regions, 

NDVI shows a higher correlation and partial correlation with temperature compared to 

precipitation. Conversely, in northern grasslands, the correlation coefficient between 

NDVI and precipitation is higher than that of temperature, as confirmed by partial 

correlation analysis. This suggests that typical grasslands and desert grasslands in arid 

and semi-arid areas are particularly sensitive to precipitation, while plateau grasslands 

and woodlands at higher altitudes exhibit greater sensitivity to temperature.[8] 

Mineralogy plays a crucial role in soil's ability to store carbon. In this study, the 

composition of sediments rich in mud was analysed by (L. Borromeo, S. Andò, C. 

France-Lanord, G. Coletti, A. Hahn, and E. Garzanti) in terms of their mineralogy 

and geochemistry. To ensure accuracy and precision comparable to that achieved for 

sand samples, a range of techniques were employed. These techniques included laser 

granulometry, optical microscopy, Raman spectroscopy, X-ray diffraction (XRD), 

inductively coupled plasma optical emission spectrometry/mass spectrometry (ICP-

OES/ICP-MS), and X-ray fluorescence (XRF). The analysis was conducted on both the 

bulk sample and the low-density LM (light minerals) and high-density HM (heavy 

minerals) fractions of six different grain-size classes, which spanned from particles 

smaller than 5 μm to larger than 63 μm. The separation of minerals was achieved using 

wet sieving. 

For grains as small as 5 μm, a meticulous approach involving a combination of optical 

observations under a microscope and Raman spectroscopy was utilized to accurately 

identify transparent-heavy-mineral species on a grain-by-grain basis. Standard XRD and 

XRF methods were employed to analyse the <5-μm class of particles. By adopting this 
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comprehensive approach, the researchers were able to investigate both the 

compositional variability between different sediment samples and the variability within 

each individual sample.[9] The sieve analysis conducted during the study confirmed 

that the fine mode in all the samples predominantly consisted of very fine silt and clay. 

This finding validated the observation that laser granulometry tends to underestimate 

the clay content in the analysed sediment samples. 

Artificial neural networks (ANNs) were utilized to develop models for predicting soil 

organic carbon density (SOCD) at various depths within the soil layers. The input 

variables in this study done by (S. Falahatkar, S. M. Hosseini, S. Ayoubi, and A. 

Salmanmahiny) considered for the models consisted of selected environmental factors 

such as vegetation indices, soil particle size distribution, land use type, and primary and 

secondary terrain attributes. The results revealed that the developed ANN models 

accounted for 77% and 72% of the variability in SOCD for the soil layers at depths of 

0–20 cm and 20–40 cm, respectively, at the study site. 

In this study, sensitivity analyses were conducted to determine the significant 

contributions of variables in predicting SOCD. The findings indicated that the most 

influential variables for predicting SOCD in the 0–20 cm soil layer were land use type, 

NDVI, NDWI, silt, clay, and elevation, in descending order.[10] Conversely, for the 

20–40 cm soil layer, the order of importance in predicting SOCD was land use type, 

followed by NDVI, NDWI, clay, and silt. 

Role of Wetlands in Carbon cycle was issued by a paper published by Department of 

Sustainability, Environment, Water, Population, and communities of Australian 

Government on July 2012. This paper gave an overview on Carbon sequestration in 

different types of wetlands globally along with degradation of wetlands and potentiality 

for carbon capture by the wetland. This paper reveals the data about Australian wetland, 

climate change and it’s impact on wetland, international policies and Australian policies 

for wetland security and management.[11] 

A research work done by (Ayala Izurieta et al. 2021) reveals Multi‑predictor mapping 

of SOC in the alpine tundra region through the development of SOC multi-predictor 

model specifically for the complex Andean páramo area. The model was calibrated with 

high accuracy, achieving 82% for SOC in weight percentage and 77% for SOC in 
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Mg/ha. Estimating SOC distribution in such complex areas is challenging due to various 

factors such as climate, topographical variability, and geological diversity.[12] 

To overcome these challenges, an optimization process was conducted using a Random 

Forest (RF) machine learning algorithm. This algorithm selected nine environmental 

variables that are closely related to SOC sequestration dynamics. These variables 

include geological unit, soil taxonomy, precipitation, height, orientation, LS factor, BI 

index, average annual temperature, and TOA Brightness Temperature. These variables 

were found to be highly relevant in quantifying SOC in the study area. 

An article published by (Hengl et al. n.d) reveals the technical advancements and 

accuracy evaluation of the latest version of the SoilGrids system, which offers improved 

soil mapping at a resolution of 250 meters (June 2016 update). These improvements can 

be attributed to three main factors: (1) the adoption of machine learning techniques 

instead of linear regression, (2) the generation of covariate layers at a finer resolution, 

and (3) the inclusion of additional soil profiles to enhance the modeling process. 

To further enhance the SoilGrids system, future developments could focus on refining 

methodologies to incorporate input uncertainties and deriving posterior probability 

distributions at the pixel level.[13] Moreover, there is potential for automating spatial 

modeling to facilitate the generation of soil maps for numerous soil variables. 

Additionally, a promising area for future research involves developing techniques for 

merging SoilGrids predictions with local or national gridded soil products at different 

scales, such as resolutions up to 50 meters. This integration would contribute to the 

production of increasingly accurate, comprehensive, and consistent global soil 

information. 

A research work that shows a clear representation of NDVI temporal variation to predict 

SOC was done by (Zhang et al. 2019). In this study several models like OK, SLR, 

PLSR, SVM and ANN were used and intercomparison was done. The results showed 

that ANN is the best tool for prediction. However, OK method is significantly good to 

predict just after ANN. In this research, a practical demonstration was presented on the 

effective mapping of regional soil organic carbon (SOC) in plains, addressing the 

challenges associated with selecting auxiliary variables. The utilization of NDVI time 

series data demonstrated significant potential in predicting SOC, and the application of 

artificial neural networks (ANN) effectively extracted valuable information for digital 
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soil mapping. Therefore, it is recommended to explore and implement approaches that 

leverage the time series characteristics of multiple key auxiliary variables using ANN in 

various geographical areas to predict other soil properties. Enhancing our understanding 

of the spatial distribution of soil properties through such methods supports improved 

soil management practices, enhances agricultural productivity, and facilitates ecological 

planning.[14] 

To calculate Land Surface temperature, various algorithms are followed. Such a study 

in Bangladesh, to calculate LST, four algorithms and their intercomparison was carried 

out by (Sajib et al. 2020). In this study, the results obtained from the Single-Channel 

algorithm for Land Surface Temperature (LST) exhibit a higher Root Mean Square 

Error (RMSE) with an average RMSE of 4.11°C, compared to the RTE-based method. 

In contrast, the Split-Window Algorithm developed by Jiménez-Muñoz et al. 

demonstrates superior performance with the lowest average RMSE of 1.19°C among the 

evaluated methods. These two algorithms, the Split-Window Algorithm and the Single-

Channel algorithm, are recommended in situations where (a) accurate measurement of 

water vapor content is available and (b) other atmospheric parameters are not necessary. 

It is important to note that the Single-Channel algorithm may not be suitable for images 

that contain multiple thermal bands and, therefore, caution should be exercised when 

employing this method in such cases.[15] 

Another comparison study for LST calculation was done by (Yu et al. 2014) to compare 

among Radiative Transfer Equation-Based Method, Split Window Algorithm and 

Single Channel Method. In this research, three different methods were applied to 

Landsat 8 Thermal Infrared Sensor (TIRS) data, namely the radiative transfer equation 

(RTE) based method, the split-window (SW) algorithm, and the single-channel (SC) 

method. For the RTE method, the National Centers for Environmental Prediction 

(NECP) data was utilized to simulate the required parameters using the MODTRAN 

model. In the SW algorithm, coefficients were adjusted based on the spectral response 

functions of TIRS bands 10 and 11. Atmospheric transmittance was derived from the 

MODTRAN model, employing a standard atmospheric profile. As for the SC method, 

parameters were obtained through regression analysis using a general spectral function 

corresponding to simulated atmospheric absorption profiles.[16] Land surface 

emissivity was estimated using the NDVI threshold method. To validate the results, 

forty-one imagery scenes were compared with measurements from four SURFRAD 
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sites that possess high-frequency irradiance data and the MODIS Land Surface 

Emissivity (LSE) product. 

Research progress by (Sobirno et al. 2008) depicts Retrieval From Different VNIR and 

TIR Sensors show us This study to calculate LST was done by TES algorithm. This 

study highlights several key advantages TES algorithm. Firstly, it enables the 

simultaneous retrieval of surface temperature and emissivity. Secondly, it can be 

applied to various natural surfaces, making it suitable for mineral mapping even with 

high spatial resolution data. However, there are some notable disadvantages. Firstly, 

accurate atmospheric correction is essential for obtaining reliable results. Additionally, 

challenges arise in classifying pixels with low or high spectral contrast, leading to 

artificial discontinuities in the emissivity products.[17] Furthermore, the TES algorithm 

is not applicable to most operational sensors, as it necessitates a minimum of four 

Thermal Infrared (TIR) bands located in atmospheric windows. 

The literature survey done here, ensure more versatile and accurate approach is to adapt 

for the calculation of LST. Most of the studies of SOC mapping focuses to correlate it 

with NDVI. However, other various indices such as NDBI, NDWI and NDBI are 

requires to acknowledge to enlighten the SOC mapping from all aspects. LU-LC 

classification for more particular and in-depth study in SOC mapping, interpolation and 

prediction can be adapted as a future research scope. 

Spatial Resolution is a key element for remote sensing accuracy. However, study shows 

that SoilGrids 250m is a open data source of 250 m spatial resolution which was earlier 

at 1 km spatial resolution. This is a good sign for betterment and accuracy of the 

research work. However, more research should be done on it and comparison of remote 

sensing database with field data connection should be taken as a long term future 

research scope to enhance the security and accuracy of existing research work. 
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CHAPTER 3 

MATERIALS & METHODOLOGY 
 

 

 

3.1 Study Area 
In this study, two Ramsar designated wetlands in India are considered as Study area. 

These are: 

1. East Calcutta Wetland (Ramsar site 1208); also known as EKW (East Kolkata 

Wetland) 

2. Sundarban Wetland (Ramsar site 2370) 

 

Figure 3.1: Study Area Identity 

3.1.1 Ramsar Site 1208 

 

3.1.1.1 Description 

Located east of Kolkata in West Bengal, the East Calcutta Wetlands is a remarkable 

man-made inland wetland recognized worldwide as "an exceptional model of 

environmental protection and development management." Its primary purpose is to 
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serve as an urban facility for wastewater treatment, employing an efficient nutrient 

recovery system that allows the utilization of treated water for pisciculture and 

agriculture. Spanning around 4,000 hectares, the wetland comprises fish ponds where 

water flows, facilitating the treatment process.  

The East Calcutta Wetlands received its designation as a Ramsar site on August 19, 

2002, based on its compliance with criterion 1, which recognizes its unique wetland 

type. The wetland encompasses intertidal marshes, including salt marshes and salt 

meadows, alongside significant wastewater treatment areas such as sewage farms, 

settling ponds, and oxidation basins. Notably, it holds the distinction of being the largest 

congregation of sewage-fed fish ponds in the world, all concentrated in a single 

location. The wetland plays a crucial role in sustaining the local economy by providing 

approximately 150 tons of fresh vegetables daily and supporting the production of 

around 10,500 tons of table fish per year. These fisheries directly support the 

livelihoods of over 50,000 people and indirectly benefit many more. 

Over the years, the East Calcutta Wetlands has evolved into a natural water-logged area, 

fostering a diverse range of fauna and flora. It serves as a habitat for various mammal 

species, including the marsh mongoose, small Indian mongoose, palm civet, and small 

Indian civet. The wetland is also home to an impressive avian population, with over 40 

bird species recorded, including both resident and migratory species. Notable avian 

inhabitants include grebes, coots, darters, shags, cormorants, teals, egrets, jacanas, 

snipes, terns, eagles, sandpipers, gulls, rails, and kingfishers. 

The East Calcutta Wetlands stands as a testament to the harmonious coexistence of 

human development and environmental preservation. Its unique combination of 

wastewater treatment, sustainable aquaculture, and agricultural practices has not only 

transformed it into a vital ecological hub but also contributed significantly to the local 

economy and livelihoods of thousands of people. 

 

 

 

 



Multiparameter Relation With Soil Organic Carbon Stock at Indian Wetlands 

21 
 

3.1.1.2 Salient Observations 

 

Table 2.1: Salient Observations at East Calcutta Wetlands 

Name East Calcutta Wetlands 

Location 22o28’00” to 22o35’18” N Latitude 

88o 22’55” to 88o 30’16” E Longitude 

Type Of Wetland Waterlogged (man-made) 

Area of Wetland 12512 ha 

Perimeter 83 km 

Elevation 2 m 

Open-water 

Post-monsoon: 

Pre-monsoon: 

 

362 ha 

65 ha 

 

3.1.2 Ramsar Site 2370 

 

3.1.2.1 Description 

The Sundarbans, an extensive region comprising numerous islands and an intricate 

network of rivers, tributaries, and creeks, is situated at the delta region formed by the 

Ganga and Brahmaputra rivers, where they meet the Bay of Bengal. It stretches across 

India and Bangladesh and holds more than 60% of India's mangrove forest area. 

Notably, it has been officially recognized as the 27th Ramsar Site in India, highlighting 

its significance as a protected wetland. Covering a vast area of 4,23,000 hectares, it 

stands as the largest protected wetland in the country. 

The Ramsar designation for the Indian Sundarbans was granted based on the fulfillment 

of multiple criteria. It satisfied four out of the nine criteria necessary for the status of a 

'Wetland of International Importance.' These criteria include the presence of rare species 

and vulnerable ecological communities, remarkable biodiversity, substantial fish 

populations with important spawning and migration areas. Additionally, the Sundarbans 

holds the esteemed title of a UNESCO World Heritage site and serves as a vital habitat 

for the majestic Royal Bengal Tiger. It also provides a sanctuary for various rare and 

globally endangered species, such as the critically endangered northern river terrapin 

(Batagur baska), the endangered Irrawaddy dolphin (Orcaella brevirostris), and the 

vulnerable fishing cat (Prionailurus viverrinus). Moreover, the region boasts the 

existence of two out of the world's four horseshoe crab species and eight out of India's 

twelve kingfisher species. Remarkably, it supports a total of 2,626 faunal species and 

hosts 90% of the mangrove varieties found in the country. 
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However, the Sundarbans face multiple threats arising from human activities. The 

northern and northwestern periphery of the Indian Sundarbans is densely populated, 

exerting significant pressure on the ecosystem. The Ramsar Information Sheet identifies 

fishing and the exploitation of aquatic resources as high-impact threats to the wetland. 

Other detrimental factors include dredging, oil and gas extraction, logging, wood 

harvesting, hunting, and the collection of terrestrial animals. While salinity levels pose a 

moderate actual threat, tourism poses a relatively low actual threat to the region. 

Preserving and safeguarding the Sundarbans is of utmost importance to protect this 

distinctive and ecologically vital habitat, ensuring the survival of its diverse species and 

upholding the integrity of this invaluable wetland ecosystem 

3.1.2.2 Salient Observations 

Table 3.2: Salient Observations at Sundarban Wetland 

Name Sundarban Wetland 

Location 21o 32’00” to 22o 40’00” N Latitude 

88o 05’00” to 89o 00’ E Longitude 

Type of Wetland Coastal Wetland 

Wetland Area 423,000 ha 

Elevation 0.9 to 2.1 m 

 

3.2 Tools & Techniques 

3.2.1 ArcGIS 

ArcGIS is a comprehensive geographic information system (GIS) software suite 

developed by Esri. It provides a powerful platform for capturing, managing, analyzing, 

and visualizing spatial data. ArcGIS is widely used across various industries, including 

environmental management, urban planning, transportation, natural resource 

exploration, and many others. 

At the core of ArcGIS lies its ability to integrate and manipulate different types of 

spatial data, such as maps, satellite imagery, aerial photographs, and geospatial 

databases. The software enables users to create, edit, and organize geographic 

information, allowing for efficient data management and exploration. 



Multiparameter Relation With Soil Organic Carbon Stock at Indian Wetlands 

23 
 

ArcGIS offers a diverse set of tools and functionalities that enable users to perform 

complex spatial analysis. These tools allow for the identification of patterns, 

relationships, and trends within the data, aiding in decision-making processes. With 

ArcGIS, users can perform spatial queries, conduct proximity analysis, generate 

heatmaps, perform network analysis, and create models to simulate real-world 

scenarios. 

The software also provides advanced mapping capabilities, allowing users to create 

visually compelling and informative maps. ArcGIS offers a wide range of cartographic 

tools for symbolizing and labeling features, adjusting map layouts, and creating 

interactive map applications. Users can generate maps that effectively communicate 

spatial information and support data-driven insights. 

ArcGIS extends its capabilities through various extensions and add-ons, catering to 

specific industry needs. These extensions provide specialized tools and workflows for 

fields such as spatial statistics, 3D visualization, image analysis, geostatistics, and more. 

This flexibility makes ArcGIS a versatile and adaptable GIS software suite. 

Furthermore, ArcGIS provides a collaborative environment through its ArcGIS Online 

platform. This web-based platform allows users to share maps, data, and applications 

with others, facilitating data collaboration and decision-making. It also enables the 

creation of interactive web maps and web applications that can be accessed and utilized 

by a broad audience. 

In conclusion, ArcGIS is a powerful GIS software suite that enables users to effectively 

manage, analyze, and visualize spatial data. Its comprehensive set of tools and 

functionalities make it an asset across various industries, supporting data-driven 

decision-making, spatial analysis, and the creation of informative maps and 

applications. ArcGIS continues to evolve and innovate, remaining at the forefront of 

geospatial technology. In this Study, Spatial Analyst tool, Resampling, Clipping and 

Raster Calculation has been done through ArcGIS 10.8.2 

3.2.2 Google Earth Engine 

 

Google Earth Engine is a unique platform that combines an extensive collection of 

satellite imagery and geospatial datasets with advanced analysis capabilities on a global 

scale. It serves as a valuable resource for scientists, researchers, and developers who 
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seek to identify changes, track trends, and quantify differences across the Earth's 

surface. While commercial use of Earth Engine is now available, it continues to be 

freely accessible for academic and research purposes. The platform operates on a cloud-

based infrastructure, enabling efficient processing of remote sensing data on a large 

scale. By consolidating trillions of scientific measurements obtained from satellite 

imagery spanning nearly four decades, Earth Engine provides a comprehensive online 

repository for scientists, independent researchers, and nations to leverage this vast pool 

of data in order to detect changes, analyze trends, and assess variations in Earth's 

features. Numerous applications of Earth Engine exist, including deforestation 

detection, land cover classification, estimation of forest biomass and carbon, and 

mapping of areas without roads across the globe. Among the tools available within 

Earth Engine, the Earth Engine Code Editor stands out as a web-based integrated 

development environment (IDE) that simplifies the creation of complex geospatial 

workflows. 

3.2.2.1 Sampling at Ramsar Site 1208 
//IMPORTS 

var geometry = /* color: #00ffff */ee.Geometry.Polygon( 

        [[[88.42629076327229, 22.581559604094647], 

          [88.41393114413167, 22.56539157809551], 

          [88.40878130282307, 22.558099494948554], 

          [88.40225817049885, 22.55080702625915], 

          [88.39710832919026, 22.53970905177128], 

          [88.39470506991292, 22.529244430042137], 

          [88.39710832919026, 22.52353612034532], 

          [88.40157152499104, 22.513704589692118], 

          [88.39985491122151, 22.503237998305867], 

          [88.39333177889729, 22.486109140182116], 

          [88.39024187411214, 22.481033515790187], 

          [88.42011095370198, 22.462632817773475], 

          [88.4540999063387, 22.445816250109164], 

          [88.49770189608479, 22.433440492212625], 

          [88.52104784335042, 22.42645880850978], 

          [88.54164720858479, 22.43693120236426], 

          [88.55812670077229, 22.499748958459957], 

          [88.53993059481526, 22.508947146373398], 

          [88.5368406900301, 22.534952503840316], 

          [88.51521135653401, 22.558416550059558], 

          [88.48808885897542, 22.57204923026097], 

          [88.47229601229573, 22.583144602582937], 

          [88.4654295572176, 22.581559604094647], 

          [88.45101000155354, 22.581876605251168], 

          [88.43830705965901, 22.58124260220875], 

          [88.43178392733479, 22.583144602582937]]]); 
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//Random samples 

//Create 1000 random sample points in the region. 

var randomPoints = ee.FeatureCollection.randomPoints(geometry, 1000); 

//Display the points. 

Map.addLayer(randomPoints, {}, 'random points'); 

Map.centerObject(geometry); 

//Exporting Tabular Data 

//Export the FeatureCollection to a KML File 

Export.table.toDrive({ 

  collection: randomPoints, 

  description: 'ExportKML', 

  fileFormat: 'KML' 

}); 

//Export the FeatureCollection to a CSV File 

Export.table.toDrive({ 

  collection: randomPoints, 

  description: 'ExportCSV', 

  fileFormat: 'CSV' 

}); 

//Display the points. 

Map.addLayer(randomPoints, {}, 'random points'); 

Map.centerObject(geometry); 
 

 

3.2.2.2 Sampling at Ramsar Site 2370 

 

 

 

 

Figure 2.2: Random Sampling Points Generated at Site No. 1208 & 2370 

 

//IMPORTS: 

var table = ee.FeatureCollection("projects/ee-wetland-

sohom/assets/Sundarban"); 

Map.addLayer(table, {},'projects/ee-wetland-sohom/assets/Sundarban'); 

 

//Random samples 

//Create 19000 random sample points in the region. 

var randomPoints = ee.FeatureCollection.randomPoints(table, 19000); 

 

//Display the points. 

Map.addLayer(randomPoints, {}, 'random points'); 

Map.centerObject(table); 
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3.3 Methodology for Multiparameter Measurement: 

 

3.3.1 Measurement of Normalized Difference Vegetation Index (NDVI): 

 

𝑵𝑫𝑽𝑰 =
(𝑵𝑰𝑹 −𝑹𝒆𝒅)

(𝑵𝑰𝑹+𝑹𝒆𝒅)
=
(𝑩𝒂𝒏𝒅 𝟓 −𝑩𝒂𝒏𝒅 𝟒)

(𝑩𝒂𝒏𝒅 𝟓 +𝑩𝒂𝒏𝒅 𝟒)
               …(3.1) 

The equation mentioned is a widely used formula for calculating the NDVI. It calculates 

NDVI based on the spectral reflectance measurements acquired in the red (visible) and 

near-infrared regions. The spectral reflectances represent the ratio of reflected radiation 

to incoming radiation for each spectral band, ranging between 0 and 1. As a result, the 

NDVI itself varies between -1 and +1, following its design and definition. 

3.3.2 Measurement of Normalized Difference Built-up Index (NDBI) 

 

NDBI is calculated according to the following raster formula: 

𝑵𝑫𝑩𝑰 =
(𝑺𝑾𝑰𝑹 − 𝑵𝑰𝑹)

(𝑺𝑾𝑰𝑹+ 𝑵𝑰𝑹)
=
(𝑩𝒂𝒏𝒅 𝟔 − 𝑩𝒂𝒏𝒅 𝟓)

(𝑩𝒂𝒏𝒅 𝟔 + 𝑩𝒂𝒏𝒅 𝟓)
             …(3.2) 

NDBI range from -1 to +1 where the negative values represent areas with no built-up 

structures and positive values represent highly built-up areas. 

3.3.3 Measurement of Normalized Difference Water Index (NDWI) 

Popularly, NDWI can be calculated according to the following raster formula suggested 

by Gao (1996): 

𝑵𝑫𝑾𝑰 =
(𝑵𝑰𝑹 −𝑺𝑾𝑰𝑹)

(𝑵𝑰𝑹+𝑺𝑾𝑰𝑹)
=
(𝑩𝒂𝒏𝒅 𝟓 −𝑩𝒂𝒏𝒅 𝟔)

(𝑩𝒂𝒏𝒅 𝟓+𝑩𝒂𝒏𝒅 𝟔)
              …(3.3) 

There is a modified formula suggested by Xu, H. (2005) as a research outcome. 

𝑴𝑵𝑫𝑾𝑰 =
(𝑮𝒓𝒆𝒆𝒏 −𝑺𝑾𝑰𝑹)

(𝑮𝒓𝒆𝒆𝒏 + 𝑺𝑾𝑰𝑹)
=

(𝑩𝒂𝒏𝒅 𝟑 −𝑩𝒂𝒏𝒅 𝟔)

(𝑩𝒂𝒏𝒅 𝟑 + 𝑩𝒂𝒏𝒅 𝟔)
              …(3.4) 

The NDWI product is dimensionless and varies between -1 to +1, depending on the leaf 

water content but also on the vegetation type and cover (Figure 2). High values of 

NDWI (in blue) correspond to high vegetation water content and to high vegetation 

fraction cover. 
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3.3.4 Measurement of Land Surface Temperature (LST) 

The End Formula to calculate LST is as follows as used here. However, the full 

calculation pathway is provided under Framework of LST calculation in the next 

section: 

𝑳𝑺𝑻 =  
𝑩_𝟏𝟎_𝟏𝟏

(𝟏+ (
𝝀∗𝑩_𝟏𝟎_𝟏𝟏

𝒑
)∗𝒍𝒏(𝑳𝑺𝑬𝑴𝒆𝒂𝒏))

=  
𝑩_𝟏𝟎_𝟏𝟏

(𝟏+ (
𝟏𝟎.𝟖𝟗𝟓 ∗𝑩_𝟏𝟎_𝟏𝟏

𝟏𝟒𝟑𝟖
)∗𝒍𝒏(𝑳𝑺𝑬𝑴𝒆𝒂𝒏))

     …(3.5) 

3.3.5 Measurement of Soil Moisture Index (SMI) 

SMI is calculated according to the following raster formula: 

𝑺𝑴𝑰 =
(𝑳𝑺𝑻𝑴𝒂𝒙−𝑳𝑺𝑻)

(𝑳𝑺𝑻𝑴𝒂𝒙−𝑳𝑺𝑻𝑴𝒊𝒏)
                 …(3.6) 

3.4 Framework Methodology 

3.4.1 Land Surface Emissivity Calculation 

 

In quantitative terms, emissivity is defined as the ratio between the thermal radiation 

emitted by a surface and the radiation from an ideal black surface at the same 

temperature, as stated by the Stefan-Boltzmann law. LST from Top of Atmosphere 

(TOA) brightness temperature, it is crucial to consider the emissivity of land surfaces. 

The term Land Surface Emissivity (LSE) specifically refers to the emissivity of land 

surfaces, which can vary depending on the composition of materials present, including 

soils, vegetation, and water. One approach to obtain LSE is by utilizing the NDVI, 

which indicates the level of greenness in land surfaces and provides insights into the 

types of materials presents. Consequently, different NDVI values correspond to 

different land surface materials. For instance, an NDVI value below 0.2 signifies bare 

soil, and in this scenario, emissivity can be calculated using reflectivity values in the red 

region of the image. On the other hand, an NDVI value above 0.5 indicates a land 

surface consisting entirely of vegetation. In such cases, a constant emissivity value, 

typically 0.99, can be applied. However, when the NDVI falls between 0.2 and 0.5, the 

LSE for a given band can be related to the NDVI and the proportion of vegetation (Pv) 

can be calculated using the [Equation 3.7]: 
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𝑷𝒗 = {

𝒂𝒊𝝆𝒓𝒆𝒅 + 𝒃𝒊
𝝐𝒗,𝒊 + 𝝐𝒔,𝒊(𝟏 − 𝑷𝒗) + 𝑪𝒊

𝝐𝒗,𝒊 + 𝑪𝒊

       
𝑵𝑫𝑽𝑰 < 𝟎. 𝟐

𝟎. 𝟐 ≤ 𝑵𝑫𝑽𝑰 ≤ 𝟎. 𝟓
𝑵𝑫𝑽𝑰 > 𝟎. 𝟓

          …(3.7) 

In the provided equation, where 𝜖𝑣,𝑖  represents the emissivity of fully vegetated 

surfaces and 𝜖𝑠,𝑖  denotes the emissivity of barren soil in the band i. The proportion of 

vegetation, 𝑃𝑣, is calculated using the equation mentioned earlier. The coefficients 𝑎𝑖  

and 𝑏𝑖  can be estimated from laboratory spectra of soils through statistical fits, 

assuming a linear relationship between emissivity and reflectivity in the red band. The 

symbol Ci in the equation represents the roughness of land surfaces. In the case of plain 

and homogeneous land surfaces, the roughness factor 𝐶i can be disregarded by setting 

𝐶i= 0. However, for rough and heterogeneous surfaces like soil-vegetation mixed 

pixels, 𝐶i accounts for the increment in emissivity resulting from the cavity effect and 

multiple scattering in these mixed pixels. 

By incorporating the emissivity values for soil and vegetation and considering the range 

of NDVI values typically found in earth surfaces (around 0.2 to 0.5), the calculation of 

land surface emissivity (LSE) can be performed using the NDVI-threshold method, as 

indicated in the [Equation 3.8]: 

𝑳𝑺𝑬 = 𝝐𝒗𝑷𝒗 + 𝝐𝒔(𝟏 − 𝑷𝒗) + 𝑪                 …(3.8) 

The variable "C" mentioned in the equation above is equivalent to "𝑑𝜖" as described in 

the literature. 

In accordance with the equation, the computation of Land Surface Emissivity (LSE) for 

Landsat 8 thermal bands requires the estimation of 𝜖𝑠 and 𝜖𝑣 values for both Thermal 

Infrared (TIR) bands. Yu et al. derived these values by utilizing the MODIS UCSB 

(University of California, Santa Barbara, CA, USA) emissivity library, accessible at the 

following link: https://icess.eri.ucsb.edu/modis/EMIS/html/em.html. The estimated 𝜖𝑠 

and 𝜖𝑣 values are provided in the [Table 3.3]. 
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Table 3.3: Emissivity values of soil and vegetation for TIR band 10 and band 11 

TIR Band Emissivity values 

Vegetation (𝜖𝑣) Soil (𝜖𝑠) 

Band 10 0.9863 0.9668 

Band 11 0.9896 0.9747 

 

In Equation, an approximate estimation of C is given by: 

𝑪 = (𝟏 − 𝝐𝒔)(𝟏 − 𝑷𝒗)𝑭𝝐𝒗                 …(3.9) 

In this equation, the variable "F" represents a shape factor. In their study, Sobrino et al. 

examined this shape factor (F) across various geometrical distributions, with an 

average value of 0.55. 

Considering Equations (3.8) and (3.9), the Land Surface Emissivity (LSE) can be 

computed using the following formula:[17] 

𝑳𝑺𝑬 = 𝒎𝑷𝒗 + 𝒏                …(3.10) 

𝒎 = 𝝐𝒗 − 𝝐𝒔 − (𝟏 − 𝝐𝒔)𝑭𝝐𝒗              …(3.11) 

𝒏 = 𝝐𝒔 + (𝟏 − 𝝐𝒔)𝑭𝝐𝒗              …(3.12) 

Using the provided emissivity values and the mathematical expression in Equation, we 

can compute the Land Surface Emissivity (LSE) for both thermal infrared (TIR) bands 

of Landsat 8 data. To begin, we need to determine the m and n values for the respective 

bands. For TIR band 10, the calculation is as follows: 

𝑚𝑇𝐼𝑅 10 = 0.9863 − 0.9668 − (1 − 0.9668) × 0.55 × 0.9863 ≈ 0.0015 

𝑛𝑇𝐼𝑅 10 = 0.9668 − (1 − 0.9668) × 0.55 × 0.9863 ≈ 0.9848 

Thus, following the Equation (3.10), LSE for TIR band 10 can be estimated as below: 

𝑳𝑺𝑬𝑻𝑰𝑹 𝟏𝟎 = 𝟎. 𝟎𝟎𝟏𝟓𝑷𝒗 + 𝟎. 𝟗𝟖𝟒𝟖      …(3.13)  

In the same way, for TIR band 11, 

𝑚𝑇𝐼𝑅 11 = 0.9896 − 0.9747 − (1 − 0.9747) × 0.55 × 0.9896 ≈ 0.0011 

𝑛𝑇𝐼𝑅 11 = 0.9747 − (1 − 0.9747) × 0.55 × 0.9896 ≈ 0.9885 
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𝑳𝑺𝑬𝑻𝑰𝑹 𝟏𝟎 = 𝟎. 𝟎𝟎𝟏𝟏𝑷𝒗 + 𝟎. 𝟗𝟖𝟖𝟓              …(3.14) 

3.4.2 Framework of LST calculation for this Study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Framework of LST Calculation 

TOA Radiance (Lλ) 

Calculation 

𝐿𝜆 = (𝑀𝐼 ∗ 𝑄𝑐𝑎𝑙) + 𝐴1 

 

 

𝑇𝑂𝐴𝐵11
= (0.0003342 × 𝐵11)

+ 0.10000 

𝑇𝑂𝐴𝐵10
= (0.0003342 

× 𝐵10) + 0.10000 

Satellite Brightness 

Temperature (BT) 

Calculation 

𝐵𝑇 = (
𝐾2

𝐿𝑛(
𝐾1

𝐿𝜆
+1)
) − 273.15  

[in ºC] 

𝐵𝑇𝐵11 = (
1201.1442

𝐿𝑛 (
480.8883
𝐿𝜆

+ 1)
) − 273.15 𝐵𝑇𝐵10 = (

1321.0789

𝐿𝑛 (
774.8853
𝐿𝜆

+ 1)
)

− 273.15 

 

Cell statistics Calculation (BT_10_11) 

Land Surface Emissivity (LSE) 

Calculation 

𝐿𝑆𝐸𝐵10
= (0.0015 × 𝑃𝑣)

+ 0.9848 

𝐿𝑆𝐸𝐵11
= (0.0011 × 𝑃𝑣)

+ 0.9885 

 

𝐿𝑆𝐸𝑀𝑒𝑎𝑛 =
𝐿𝑆𝐸𝐵10 + 𝐿𝑆𝐸𝐵11

2
 

LST Final Calculation 

𝐿𝑆𝑇 =

(

 
 𝐵𝑇_10_11

(1 + (𝜆× 𝐵𝑇_10_11
𝑝

) × 𝐿𝑛(𝐿𝑆𝐸𝑀𝑒𝑎𝑛))
)

 
 
=

(

 
 𝐵𝑇_10_11

(1 + (10.895× 𝐵𝑇_10_11
1438

) × 𝐿𝑛(𝐿𝑆𝐸𝑀𝑒𝑎𝑛))
)

 
 

 

Proportion Of  Vegetation (Pv) Calculation 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)
2

 Pv Calculation is Done For 0.2≤  NDVI ≤ 0.5 
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3.4.3 Framework of Ordinary Kriging 

 

The predicted model can be expressed as follows: 

𝒁∗(𝒙𝟎) = ∑ 𝝀𝒊 ∗ 𝒁(𝒙𝒊)
𝒏
𝒊=𝟎               …(3.15) 

where Z (𝑥0)  represents the estimated SOC value of variable Z at location 𝑥0, 𝑍∗(𝑥𝑖)  is 

the measured SOC data, 𝝀𝒊  represents the weights combined with the measured values, 

and n is the number of measured values within a neighborhood of four or eight. In this 

study, the OK model was created using a spherical variogram model in ArcGIS 10.8.2. 

The equation for the spherical model is defined as follows: 

= {

0

𝐶0 + (
3ℎ

2𝑎
−

ℎ3

2𝑎3
)

𝐶0 + 𝐶

 
ℎ = 0

0 < ℎ < 𝑎
ℎ > 𝑎

             …(3.16) 

where h is the spatial lag between two locations, a is the range, 𝐶0 is the nugget value, 

and 𝐶0 + 𝐶   is the partial sill. 

3.5 Data Collection 
 

3.5.1 Landsat-8 Data Collection 

 

Table 3.4: Landsat-8 Data Collection Details 

SL 

No. 

Date of 

Image 

Capture 

Details of 

Path/Row 

Cloud 

Information 

(Percentage) 

Scenario ID No. 

1 06/01/2022 138/45 0.08 LC81380452022006LGN00 

2 07/02/2022 138/45 0.00 LC81380452022038LGN00 

3 19/03/2022 138/45 0.01 LC91380452022078LGN00 

4 07/04/2023 138/45 1.15 LC91380452023097LGN00 

5 06/05/2022 138/45 13.93 LC91380452022126LGN00 

6 09/06/2020 138/45 45.48 LC81380452020161LGN00 

7 27/07/2020 138/45 21.37 LC81380452020209LGN00 

8 31/08/2021 138/45 32.84 LC81380452021243LGN00 

9 27/09/2022 138/45 23.68 LC91380452022270LGN01 

10 21/10/2022 138/45 0.01 LC81380452022294LGN00 

11 114/11/2022 138/45 0.01 LC91380452022318LGN01 

12 16/12/2022 138/45 0.04 LC91380452022350LGN02 
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3.5.2 Data Collection from SoilGrids-250 

 

SOC Stock data has collected from SoilGrids 250 open data source. The collected SOC 

stock (Mean) raster is as below for the two study areas:  

 

(a)                                                   (b) 

Figure 3.4: (a & b): SOC Stock (t/ha) Mean Data Collected from SoilGrids 250 m 

3.6 Calculation of Statistical Metrices 

3.6.1 Formula for Pearson’s correlation coefficient 

𝒓 =
∑ (𝒙𝒊−𝒙)
𝒏
𝒊=𝟏 (𝒚𝒊−�̅�)

√∑ (𝒙𝒊−𝒙)
𝟐(𝒚𝒊−�̅�)

𝟐𝒏
𝒊=𝟏

               …(3.17) 

r = correlation coefficient 𝑥𝑖= values of the x variable in a sample 

�̅� = mean of the values of the x variable 𝑦𝑖= values of the y variable in a sample 

�̅� = mean of the values of the y variable 

3.6.2 Formula for Root Mean Square Error (RMSE) & R2 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑ (𝑴𝒊 − 𝑷𝒊)

𝟐𝒏
𝒊=𝟏                 …(3.18) 

𝑹𝟐 =
∑ (𝑷𝒊−𝑴𝒊̅̅ ̅̅ )

𝟐𝒏
𝒊=𝟏

∑ (𝑴𝒊−𝑴𝒊̅̅ ̅̅ )
𝟐𝒏

𝒊=𝟏

                 …(3.19) 

𝑀𝑖  = Measured (Here, Extracted) SOC value at site i,  𝑃𝑖 = Predicted (Here, 

Interpolated) SOC value at site i, 𝑀𝑖̅̅ ̅ = The average value of measured SOC, n = The 

total no. of modelling data. 
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CHAPTER 4   

RESULTS & DISCUSSION 
 

 

 

4.1 Interpolation Result for Soil Organic Carbon 

 

4.1.1 At Ramsar Site 1208 

 

Figure 4.1: Interpolated (OK Method) SOC Stock Map at East Calcutta Wetlands 

 

4.1.2 Resampling & Interpolation at Ramsar Site 2370 

 

 

Figure 4.2: Interpolated (OK Method) SOC stock map of Sundarban Wetland 
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Table 4.1: Band Statistics of Interpolated SOC Stock Map at EKW 

 

Table 4.2: Resampling & Band Statistics of Interpolated SOC Stock Map at 

Sundarban Wetland 

 

 

 

Figure 4.3: Inter-Comparison of SOC Stock Band Statistics 

[See Table 4.1 & Table 4.2] 

 

CELL SIZE 

(X, Y) 

Band Statistics 

Max Min Mean Std Dev 

0.00057, 

0.00057 

 

62.50038 

 

42.25 50.92787 

 

4.34799 

 

CELL SIZE 

(X, Y) 

(Before 

Resampling) 

CELL SIZE 

(X, Y) 

(After 

Resampling) 

Band Statistics 

Max 

(t/ha) 

Min 

(t/ha) 

Mean 

(t/ha) 

Std Dev 

0.00057, 

0.00057 

 

0.02258, 

0.02258 

 

69 41.49710 52.18245 4.97682 
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4.2 Result of Regression Analysis 

 

4.2.1 At Ramsar Site 1208 

 

 

 

Figure 4.4: Linear Regression Curve Fitting for SOC Stock Data at EKW 

Extracted from SoilGrids-250 

 

 

 

Figure 4.5: Linear Regression Curve Fitting for Interpolated SOC Stock Data at 

EKW 
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4.2.2 At Ramsar Site 2370 

 

 

Figure 4.6: Linear Regression Curve Fitting for SOC Stock Data at Sundarban 

Wetland Extracted from SoilGrids-250 

 

 

Figure 4.7: Linear Regression Curve Fitting for Interpolated SOC Stock Data at 

Sundarban Wetland 
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Table 4.3: Linear Regression Parameters Output 

 

REGRES

SION 

PARAME

TERS 

EKW_EXT

RACTE 

EKW_INTERP

OLATED 

SUNDARBAN_EX

TRACTED 

SUNDARBAN_INTE

RPOLATED 

Slope 0.001095 0.003766 4E-05 5.753E-05 

SE(Slope) 0.002471 0.002926 1.06E-05 1.557E-05 

R² 0.000617 0.00572 0.001686 0.0013351 

F 0.19632 1.656855 14.18057 13.648509 

ss reg 11.15639 28.82483 410.5852 315.56254 

Intercept 51.56578 49.51582 52.73953 51.161754 

SE(Interce

pt) 

0.88258 0.49113 0.118421 0.0950459 

SE(y) 7.538416 4.171009 5.380899 4.8083947 

df 318 288 8397 10209 

ss resid 18071.22 5010.427 243127.4 236038.82 

 

 

 

 

Figure 4.8: Linear Regression Outputs 
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4.3 Temporal Variation Results of NDVI 

 

4.3.1 At Ramsar Site 1208 

 

 

Figure 4.9: Temporal Variation of NDVI at Ramsar Site 1208 

Table 4.4: Datasheet of NDVI Temporal Variation at Ramsar Site 1208 

MONTHS NDVI_Max NDVI_Min NDVI_Mean NDVI_Std. Dev 

January 0.397244781 -0.0758056 0.116440935 0.087325174 

February 0.446687967 -0.08036109 0.131908248 0.091153838 

March 0.531121433 -0.09117498 0.198024954 0.12534119 

April 0.512178123 -0.06761719 0.22367931 0.117438534 

May 0.517307103 -0.05478989 0.206843302 0.102650885 

June 0.464955211 -0.0157484 0.139932686 0.090770185 

July 0.423001945 0.01027084 0.177902393 0.084671393 

August 0.642488956 -0.19129439 0.230869741 0.171901166 

September 0.562286615 -0.08512764 0.193312146 0.136031542 

October 0.543851197 -0.09886503 0.233585381 0.14547491 

November 0.48940891 -0.1287002 0.178264461 0.120545324 

December 0.455922157 -0.13046362 0.13104712 0.094993329 
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4.3.2 At Ramsar Site 2370 

 

 

Figure 4.10: Temporal Variation of NDVI at Ramsar Site 2370 

Table 4.5: Datasheet of NDVI Temporal Variation at Ramsar Site 2370 

MONTHS NDVI_Max NDVI_Min NDVI_Mean NDVI_Std. 

Dev 

January 0.402650535 -0.15518914 0.080741103 0.195919467 

February 0.402016759 -0.15364763 0.078355574 0.187945599 

March 0.473025262 -0.16489205 0.07232953 0.201001776 

April 0.495476514 -0.16910741 0.086997665 0.193916895 

May 0.495603323 -0.18332143 0.08486201 0.193803209 

June 0.428662866 -0.1920556 0.057737242 0.137761653 

July 0.455007941 -0.1597691 0.074286978 0.15542037 

August 0.639933169 -0.27101067 0.095474982 0.198666546 

September 0.590074718 -0.23227474 0.088388233 0.212394477 

October 0.54363513 -0.17084812 0.130948787 0.239383579 

November 0.445745498 -0.19635805 0.09129031 0.222643856 

December 0.412745088 -0.14967172 0.093261763 0.188904692 
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4.4 Temporal Variation Results of NDBI 

 

4.4.1 At Ramsar Site 1208 

 

 

Figure 4.11: Temporal Variation of NDBI at Ramsar Site 1208 

Table 4.6: Datasheet of NDBI Temporal Variation at Ramsar Site 1208 

MONTHS NDBI_Max NDBI_Min NDBI_Mean NDBI_Std. 

Dev 

January 0.181069702 -0.34214476 -0.117452741 0.048982574 

February 0.181257859 -0.36665621 -0.128912413 0.051913248 

March 0.205212787 -0.40690866 -0.136106994 0.075907805 

April 0.183639959 -0.38886121 -0.15185873 0.06488309 

May 0.277434886 -0.3854844 -0.150456427 0.058243549 

June 0.167609483 -0.47561723 -0.185055817 0.050074372 

July 0.463145077 -0.34638047 -0.211134219 0.043698741 

August 0.368381619 -0.48675513 -0.185591434 0.087020838 

September 0.141091615 -0.45992631 -0.195124333 0.064232748 

October 0.358150959 -0.43528929 -0.192431299 0.063744753 

November 0.173717886 -0.39474577 -0.151958893 0.058083738 

December 0.170328617 -0.36313018 -0.103374522 0.059168268 
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4.4.2 At Ramsar Site 2370 

 

 

Figure 4.12: Temporal Variation of NDBI at Ramsar Site 2370 

Table 4.7: Datasheet of NDBI Temporal Variation at Ramsar Site 2370 

MONTHS NDBI_Max NDBI_Min NDBI_Mean NDBI_Std. Dev 

January 0.121940911 -0.38757136 -0.175231281 0.092488983 

February 0.139813349 -0.36646527 -0.174364747 0.084373584 

March 0.160515532 -0.37148127 -0.186252323 0.073890795 

April 0.127747089 -0.36683235 -0.17518502 0.079886819 

May 0.113878623 -0.56052476 -0.158254364 0.079187114 

June 0.279830962 -0.69921857 -0.175945932 0.083393028 

July 0.113882549 -0.40630254 -0.147821974 0.079296278 

August 0.22679393 -0.66932958 -0.208042172 0.122408101 

September 0.157821044 -0.53549016 -0.200734604 0.101619403 

October 0.150931761 -0.44701096 -0.194915625 0.118888684 

November 0.125989795 -0.42802256 -0.197491958 0.092898714 

December 0.140128449 -0.39674923 -0.15800744 0.101931654 
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4.5 Temporal Variation Results of NDWI 

 

4.5.1 At Ramsar Site 1208 

 

Figure 4.13: Temporal Variation of NDWI at Ramsar Site 1208 

Table 4.8: Datasheet of NDWI Temporal Variation at Ramsar Site 1208 

MONTHS NDWI_Max NDWI_Min NDWI_Mean NDWI_Std. 

Dev 

January 0.258248776 -0.3409906 0.04009003 0.104082395 

February 0.263539732 -0.36603287 0.039635176 0.106253075 

March 0.281522602 -0.3833957 -0.019296234 0.13156409 

April 0.246016681 -0.41457707 -0.026560515 0.117649493 

May 0.254910111 -0.48056608 -0.012775029 0.120115591 

June 0.451321542 -0.41008982 0.081402928 0.097802214 

July 0.271540225 -0.66656071 0.090839007 0.096481479 

August 0.367075354 -0.59457862 0.014909728 0.122609857 

September 0.399166971 -0.4100315 0.055837848 0.115682128 

October 0.310924381 -0.49005291 0.014568779 0.127343949 

November 0.298408061 -0.33820102 0.019103439 0.122653758 

December 0.261943072 -0.26820871 0.007605623 0.117263901 
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4.5.2 At Ramsar Site 2370 

 

 

Figure 4.14: Temporal Variation of NDWI at Ramsar Site 2370 

Table 4.9: Datasheet of NDWI Temporal Variation at Ramsar Site 2370 

MONTHS NDWI_Max NDWI_Min NDWI_Mean NDWI_Std. 

Dev 

January 0.294578552 -0.29656717 0.144137735 0.11287786 

February 0.294124991 -0.30333233 0.149305653 0.114188318 

March 0.345011979 -0.33200058 0.162221212 0.135999907 

April 0.336712599 -0.3134726 0.142654067 0.12341841 

May 0.544091225 -0.33153611 0.122539928 0.135597669 

June 0.685478389 -0.24327727 0.145678892 0.127346458 

July 0.386227936 -0.23143157 0.109767073 0.119345974 

August 0.659827173 -0.29457363 0.160184481 0.127593592 

September 0.528426766 -0.23463708 0.154197083 0.120367104 

October 0.352544308 -0.37943476 0.131765305 0.128116413 

November 0.349008441 -0.33042073 0.156658249 0.130465678 

December 0.291388988 -0.3032344 0.126868741 0.113630098 

 

 



Multiparameter Relation With Soil Organic Carbon Stock at Indian Wetlands 

44 
 

4.6 Temporal Variation Results of LST 

 

4.6.1 At Ramsar Site 1208 

 

 

Figure 4.15: Temporal Variation of LST at Ramsar Site 1208 

Table 4.10: Datasheet of LST Temporal Variation at Ramsar Site 1208 

MONTHS LST_Max LST_Min LST_Mean LST_Std. Dev 

January 23.66839218 17.4587498 19.16462053 0.663125599 

February 24.43097305 18.3827076 20.16170856 0.716267041 

March 31.10351372 19.8161354 23.77726492 1.782116246 

April 29.63694382 19.7540207 22.91120611 1.367075348 

May 22.6145916 16.2570515 19.07141573 0.744787591 

June 20.22824097 -0.4941768 15.8458965 2.492941896 

July 17.42556381 -4.9212250 15.09981016 1.82029203 

August 23.36969566 16.5483589 20.68999697 0.551612008 

September 17.12936783 7.13450956 14.5466955 0.784393144 

October 30.5097084 23.7293854 25.40732741 0.832072701 

November 28.22816467 19.1037655 21.92052498 0.986893333 

December 20.60356522 13.6722498 16.29232374 1.009957533 
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4.6.2 At Ramsar Site 2370 

 

 

Figure 4.16: Temporal Variation of LST at Ramsar Site 2370 

Table 4.11: Datasheet of LST Temporal Variation at Ramsar Site 2370 

MONTHS LST_Max LST_Min LST_Mean LST_Std. Dev 

January 26.60201645 17.8632278 19.29720054 0.4034337 

February 25.40582466 18.5329018 19.70010982 0.299408935 

March 29.11580276 19.6916866 22.63101264 0.799081076 

April 26.27116394 15.8414907 19.69725869 0.852442963 

May 25.01716614 0.37797475 18.48879879 1.075360901 

June 22.31991005 -0.6599898 18.90397117 1.736642868 

July 19.34545708 9.59361649 17.42291114 0.661245796 

August 23.56080818 -24.771167 17.8097356 5.625965147 

September 16.12379646 -27.288858 7.973501773 6.668869233 

October 29.04547501 22.5156651 23.86341962 0.254975665 

November 28.07186699 19.669529 21.35259561 0.363582407 

December 21.50751686 14.6139755 15.81258383 0.273864291 
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4.7 Temporal Variation Results of SMI 

 

4.7.1 At Ramsar Site 1208 

 

 

Figure 4.17: Temporal Variation of SMI at Ramsar Site 1208 

Table 4.12: Datasheet of SMI Temporal Variation at Ramsar Site 1208 

MONTHS SMI_Max SMI_Min SMI_Mean SMI_Std. Dev 

January 0.908754289 0.29157335 0.739206518 0.065908539 

February 0.820205569 0.14131927 0.620521964 0.080397243 

March 0.855902612 0.18591724 0.620781705 0.105781151 

April 0.522094727 0.07125363 0.37794651 0.062392996 

May 0.304883927 0.12708731 0.22617669 0.020828925 

June 0.73761797 0.13440001 0.261967602 0.072568139 

July 0.690846801 0.11833668 0.17792097 0.046634693 

August 0.156204492 0.03275345 0.08125004 0.009982952 

September 0.242001578 0.0602346 0.107203204 0.014265013 

October 0.858257234 0.17746778 0.689780729 0.083545627 

November 0.793910325 0.20482892 0.612057172 0.063714934 

December 0.030285235 0.0039748 0.02033975 0.003833677 
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4.7.2 At Ramsar Site 2370 

 

 

Figure 4.18: Temporal Variation of SMI at Ramsar Site 2370 

Table 4.13: Datasheet of SMI Temporal Variation at Ramsar Site 2370 

MONTHS SMI_Max SMI_Min SMI_Mean SMI_Std. Dev 

January 0.868552864 -1.71E-06 0.726029295 0.040097571 

February 0.803347051 0.03189726 0.672334017 0.033607093 

March 0.863289535 0.30390188 0.688819851 0.04743109 

April 0.700577259 0.22479442 0.524684081 0.038886906 

May 0.748962343 0.05989627 0.242470308 0.030073825 

June 0.742444694 0.0735127 0.172948765 0.050552699 

July 0.318986058 0.06915027 0.118404639 0.016940686 

August 0.90399611 0.02929474 0.133376372 0.101817469 

September 0.868026674 0.07852197 0.226743634 0.121280389 

October 0.980122864 0.32448655 0.844799328 0.025601251 

November 0.757384002 0.21491967 0.648723325 0.023473286 

December 0.026710559 0.0005435 0.022160785 0.001039556 
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4.8 Time Series Variation Results of Correlation Coefficient (r) 

 

4.8.1 Case 1: SOC & NDVI 

 

4.8.1.1 At Ramsar Site 1208 

 

Table 4.14: SOC vs NDVI Correlation Coefficient chart at Ramsar Site 1208 
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Figure 4.19: r value variation at Ramsar site 1208 (SOC &NDVI) 
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4.8.1.2 At Ramsar Site 2370 

 

Table 4.15: SOC vs NDVI Correlation Coefficient chart at Ramsar Site 2370 
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Figure 4.20 r value variation at Ramsar site 2370 (SOC &NDVI) 
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4.8.2 Case 2: SOC & NDBI 

 

4.8.2.1 At Ramsar Site 1208 

 

Table 4.16: SOC vs NDBI Correlation Coefficient chart at Ramsar Site 1208 
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Figure 4.21: r value variation at Ramsar site 1208 (SOC &NDBI) 
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4.8.2.2 At Ramsar Site 2370 

 

Table 4.17: SOC vs NDBI Correlation Coefficient chart at Ramsar Site 1208 
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Figure 4.22: r value variation at Ramsar site 2370 (SOC &NDBI) 
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4.8.3 Case 3: SOC & NDWI 

 

4.8.3.1 At Ramsar Site 1208 

 

Table 4.18: SOC vs NDWI Correlation Coefficient chart at Ramsar Site 1208 
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Figure 4.23: r value variation at Ramsar site 1208 (SOC &NDWI) 
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 4.8.3.2 At Ramsar Site 2370 

 

Table 4.19: SOC vs NDWI Correlation Coefficient chart at Ramsar Site 2370 
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Figure 4.24: r value variation at Ramsar site 2370 (SOC &NDWI) 
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4.9 Variation of Statistical Metrices: 

 

4.9.1 Root Mean Square (RMSE) & R2 Variation 

 

 

Figure 4.25: RMSE & R2 Variation at East Calcutta Wetlands 

 

Table 4.20: Datasheet for Root Mean Square (RMSE) & R2 Variation at East 

Calcutta Wetlands [SOC stock Interpolation] 

 

SAMPLING FOR 

RMSE 

CALCULATION 

50(E) - 

50(I) 

100(E) - 

100(I) 

150(E) - 

150(I) 

200(E) - 

200(I) 

250(E) - 

250 (I) 

320(E) - 290 

(I) 

RMSE 1.225652 0.508333 1.007012 1.119586 0.748406 0.190846571 

R² 0.510082 0.649962 0.924668 0.57048 0.255116 0.010257301 

E: Extracted I: Interpolated 

 

4.9.3 Root Mean Square (RMSE) & R2 Variation 

  

    

Figure 4.26: RMSE & R2 Variation at Sundarban Wetland 
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Table 4.21: Datasheet for Root Mean Square (RMSE) & R2 Variation at 

Sundarban Wetland [SOC stock Interpolation] 
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TION 

1000 

(E) - 
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(E) - 
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6000 
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RMSE 0.031
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828 
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574 
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0.050

455 

0.135

813 
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358 
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0.440

51 
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06 
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448 
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0.000

15 

E: Extracted I: Interpolated 

 

 

4.10 Discussion on Number of Sampling points vs. Statistical metrices output 

 It has been shown in Fig. 4.25 & 4.26 that RMSE and R2 is varying with number of 

sampling points at both sites. The variation for RMSE was observed from a maximum 

value of 1.225 to minimum of a 0.19 at East Calcutta Wetlands and for Sundarban 

Wetland, the variation was in a range of 0.338 to 0.028. The variation for R2 was 

observed from a maximum value of 0.92 to minimum of a 0.01 at East Calcutta 

Wetlands and for Sundarban Wetland, the variation was in a range of 60 to 0.0001. Here 

to say that, R2 value cannot be greater than 1 and hence the cases of R2>1 should not 

consider. As this RMSE and R2 values at these site areas indicates towards the 

efficiency interpolation of Soil Organic Carbon stock through Ordinary Kriging method, 

therefore we can say that in case of East Calcutta Wetlands, as area is less than 

Sundarban Wetland, therefore uncertainty layer is also smaller and thus interpolation 

accuracy is higher than Sundarban Wetland and range variation is less. Whereas, in case 

of Sundarban Wetland, statistical metrices variation (for R2) is quite wider. 

4.11 Discussion on cloud cover for correlation output 

Cloud Cover, surface emissivity, atmospheric reflection, and atmospheric absorption, 

these are quite important features behind the accuracy of remote sensing study. In 

highly cloud cover condition, it is not necessary to get an absurd value upon raster. It is 

because of the study area of our concern, may be out of the cloud interference whereas 

for a comparatively low cloud cover satellite image, the reverse phenomenon may be 

observed based upon the location of study area. Thus, as a result, correlation coefficient 
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varies accordingly as multiparameter measurement (NDVI, NDBI, NDWI, LST, SMI) 

changes in case to case. 

5.3 Discussion on Correlation Output in this Study 

From the [Table 4.14 to 4.19] and [Fig. 4.19 to 4.24], we get the total representation of 

correlation coefficients associated with this study. Except NDVI vs SOC correlation 

output at Sundarban Wetland and NDWI vs SOC correlation output at East Calcutta 

Wetlands, rest of the monthly correlation coefficient variations with multiparameter 

shows a net negative trend. Though the Landsat 8 data accumulation is in a range of 

year 2020 to 2023, the month-to-month correlation of multiparameter has a positive 

trend. It also indicates that no significant changes have occurred in the study areas. As, 

East Calcutta Wetlands is an inland wetland surrounded by Kolkata City and new 

extensions, hence a threat from anthropogenic activity always remains over it but from 

the functionality viewpoint and wetland health in terms of SOC stock, we can say that it 

is secured till now and requires a continuous management. At East Calcutta Wetlands, 

SOC vs NDVI monthly correlation variation has a net negative trend which indicates 

wetland plants are getting destroyed and a replantation and rejuvenation program is 

need to be taken to ensure wetland plant security because these plants not only store 

SOC in their biomass and rootzone, but also play a key role in the bioremediation and 

sewage treatment and also are of medicinal importance. Whereas, net positive trend of 

NDVI vs SOC correlation variation at Sundarban Wetland, reveals that new mangrove 

forest may be densified during the study period. As pisciculture dominates at East 

Calcutta wetland, therefore due to the seasonal change of water-logged area, bottom of 

the ponds may be exposed out which results into SOC vs NDWI net positive trends at 

East Calcutta Wetlands. 

5.4 Discussion on Field Sampling vs Random Sampling 

The conventional method for Soil Organic Carbon Testing is Walkley-black Method. 

However, this method needs to laboratory efficiency to execute and number of sample 

points and sample location accessibility by physically, may be restricted in some cases. 

In this case, remote sensing can be effectively used as a preliminary work out before 

laboratory execution. 
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CHAPTER  5 

CONCLUSION 
 

 

In this study, we have seen that the SoilGrids 250 m is a widely acceptable open source 

for Soil Organic carbon stock data collection. Through this work, we observed two 

different types of wetlands in a single Landsat -8 tile. The multiparameter with SOC 

correlation variation is less in Sundarban Wetland than East Calcutta Wetland. It 

indicates, how anthropogenic activities play a key role in the loss of underground 

Carbon stock. 

Another feature which is important to predict the indices (NDVI, NDBI, NDWI, SMI 

etc.) in study, that is also depends upon the type of vegetation at Study area. Presence of 

Soil Organic Carbon indicates the healthy mineralogical profile of soil along with the 

presence of organic biomass. This indicates the source of nutrition to the plant. Presence 

of Mangrove in coastal line area are itself is a key indicator of Soil Organic Carbon 

stored in that area. Whereas, in case of inland wetland like East Calcutta Wetland, 

several wetland plant species along with pisciculture plays a conjugate role in Carbon 

capture and sequestration. 

The most important parameters among the multiparameter considered in this study is 

NDVI. Temperature and Rainfall have key correlation with NDVI. However, water 

stored in soil voids and LST has more priority to the growth of plants. Hence, SMI and 

LST is considered in this study. Besides that, anthropogenic activity plays the key role 

to land cover and land use. Hence NDBI is considered in this study to check the 

correlation with SOC stock. Another parameter, NDWI as per Xu et al. 

recommendation, considered here so to identify the water-logged/ stream flow areas 

which is needed to done to separate terrestrial ecosystem from aquatic ecosystem in Soil 

parameters study. 

More accurate interpolation could be done by using same sources of data with different 

interpolation technique, including Artificial Neural Network. Field Samples may be 

collected for cross validation of this study. Lastly, I want to convey the message to the 

fellow readers that we must act and make management plan with wide implementation 

opportunity to reduce emission and protect the wetlands. 
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APPENDIX 1 

SPATIOTEMPORAL VARIATION OF MULTIPARAMETER AT RAMSAR 

SITE (1208) 

 

Figure A 1.1: Multiparameter at East Calcutta Wetlands in January 

 

 

Figure A 1.2: Multiparameter at East Calcutta Wetlands in February 
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Figure A 1.3: Multiparameter at East Calcutta Wetlands in March 

 

 

Figure A 1.4: Multiparameter at East Calcutta Wetlands in April 
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Figure A 1.5: Multiparameter at East Calcutta Wetlands in May 

 

 

 

Figure A 1.6: Multiparameter at East Calcutta Wetlands in June 
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Figure A 1.7: Multiparameter at East Calcutta Wetlands in July 

 

 

Figure A 1.8: Multiparameter at East Calcutta Wetlands in August 
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Figure A 1.9: Multiparameter at East Calcutta Wetlands in September 

 

 

Figure A 1.10: Multiparameter at East Calcutta Wetlands in October 
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Figure A 1.11: Multiparameter at East Calcutta Wetlands in November 

 

 

Figure A 1.12: Multiparameter at East Calcutta Wetlands in December 
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APPENDIX- 2 

SPATIOTEMPORAL VARIATION OF MULTIPARAMETER AT RAMSAR 

SITE (2370) 

 

 

Figure A 2.1: Multiparameter at Sundarban Wetland in January 

 

 

Figure A 2.2: Multiparameter at Sundarban Wetland in February 
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Figure A 2.3: Multiparameter at Sundarban Wetland in March 

 

 

Figure A 2.4: Multiparameter at Sundarban Wetland in April 
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Figure A 2.5: Multiparameter at Sundarban Wetland in May 

 

 

Figure A 2.6: Multiparameter at Sundarban Wetland in June 
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Figure A 2.7: Multiparameter at Sundarban Wetland in July 

 

 

 

Figure A 2.8: Multiparameter at Sundarban Wetland in August 
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Figure A 2.9: Multiparameter at Sundarban Wetland in September 

 

 

Figure A 2.10: Multiparameter at Sundarban Wetland in October 
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Figure A 2.11: Multiparameter at Sundarban Wetland in November 

 

 

Figure A 2.12: Multiparameter at Sundarban Wetland in December 
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