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ABSTRACT 

Power electronic systems in switched-mode DC-DC converters exhibit complex behaviors such 

as rapid adjustments, bifurcation and chaotic performance. These unexpected behaviors are often 

attributed to random external influences, leading to issues like sensor failure, electromagnetic 

interference and reduced efficiency and in the worst cases it leads to converter failure. The 

growing demand for affordable DC-DC power conversion requires reliable operation in all 

loading conditions, including extreme scenarios. In the past decade, researchers have focused on 

studying these boundary conditions in power electronic converters, employing various analytical 

and theoretical approaches. However, the most intriguing findings are based on abstract 

mathematical structures that cannot be directly applied to the development of practical industrial 

applications. 

In this thesis utilizes the discrete time Iterative mapping method to investigate the dynamics of 

non-linear behavior in DC-DC Boost and SEPIC converters. By establishing a state space and 

discrete iterative mapping, the stability of the system can be demonstrated incorporating 

comprehensive information about closed-loop control and DC converter parameters. The discrete 

iterative mapping technique enables further analysis of stability considering the impact of 

nonlinear loads and potential extensions to different types of converters. Based on the findings, 

modern control algorithms can be developed to ensure the converter's proper functionality and 

prevent complex behaviors, including rapid and slow-scale bifurcations. The Boost and SEPIC 

converters are both theoretically derived and analyzed with simulation results focusing on 

doublet and chaotic bifurcations. 
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CHAPTER I 

INTRODUCTION 

1.1 Overview of Power Electronics: 

Power electronics is a branch of electrical engineering that deals with the study, design, and 

application of electronic devices and circuits for the control, conversion, and conditioning of 

electric power. Power electronic systems rely on specialized semiconductor devices capable of 

handling high power levels. Common power semiconductor devices include diodes, thyristors 

(such as SCRs and TRIACs), power MOSFETs, IGBTs (Insulated Gate Bipolar Transistors). 

These devices provide the foundation for power conversion and control. Power electronic 

systems often involve energy storage elements such as capacitors and inductors. Inductors stores 

energy in their magnetic field, whereas capacitors store it in their electric field. Energy storage 

elements play a vital role in smoothing out voltage and current waveforms, providing transient 

response, and maintaining system stability. 

Power electronic circuits employ various topologies to convert electrical energy from one form 

to another. Some common power conversion topologies include AC-DC rectifiers, DC-DC 

converters (for example buck, boost, and buck-boost converters), DC-AC inverters, and AC-AC 

converters (like Cycloconverters). Each topology has a specific function in applications such as 

electric car drives, power supplies, renewable energy systems and more. 

 

Figure 1.1-Various types of Power Electronic Converters 

Power electronics finds applications in various industries and systems. It is integral to renewable 

energy systems, such as solar photovoltaic (PV) inverters and wind power converters, enabling 
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efficient conversion of renewable energy into usable electricity. Power electronics is also crucial 

in motor drives for electric vehicles, industrial machinery and robotics. Other applications 

include uninterruptible power supplies (UPS), supplies power for electronic devices, electric grid 

systems, and more. Power electronic systems aim to achieve high efficiency in power 

conversion, minimizing losses and improving energy utilization. Efficient power conversion is 

essential for reducing energy consumption, optimizing system performance, and minimizing 

environmental impact. Power electronics also plays a role in improving power quality by 

reducing harmonics, mitigating voltage fluctuations, and providing power factor correction. 

Power electronics is a rapidly evolving field, with ongoing research and development in 

emerging technologies.  

DC-DC converters offer several advantages over other types of power conversion methods. Here 

are some of the key benefits of using DC-DC converters: 

 

Fig. 1.2 – Advantages of DC-DC Converters 

High Efficiency:  

DC-DC converters are highly efficient, with conversion efficiencies typically above 90%. This is 

due to the absence of a bulky transformer, which can result in lower losses and higher efficiency. 

Isolation:  

Some DC-DC converters provide isolation between the input and output, which can improve 

safety and protect sensitive electronic components. 
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Voltage Regulation:  

DC-DC converters can regulate output voltage irresepective of input voltage fluctuations. This 

feature is especially useful in battery-powered applications, where the voltage of the battery 

drops over time. 

High Accuracy:  

Some DC-DC converters can provide output voltages with high accuracy and low ripple. This is 

especially important in sensitive applications, such as medical devices or aerospace systems. 

Size and Weight:  

DC-DC converters are typically smaller and lighter than their AC counterparts. This makes them 

ideal for use in portable and mobile devices. 

Wide Input Voltage Range:  

DC-DC converters can operate over a wide scope of input voltages, from a few volts to several 

hundred volts. This feature makes them suitable for a wide range of applications, inclusive of 

renewable energy systems and electric vehicles. 

Overall, DC-DC converters offer a range of benefits, including high efficiency, small size and 

weight, wide input voltage range, flexibility and high accuracy. These advantages make them a 

popular choice in a wide range of applications like consumer electronics, industrial automation, 

renewable energy systems and more. 

1.2 Nonlinear Phenomena in Switching Power Converters: 

Nonlinearity in power electronic converters arises from various factors related to the 

components, circuit topology, and control strategies.  

Here are some common causes of nonlinearities in power electronic converters: 

Switching Nonlinearities:  

Power electronic converters involve switching operations, where the switching devices 

(transistors or thyristors) turn on and off to control the flow of current. The switching process 
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introduces nonlinearities, including voltage spikes, ringing, and switching losses. These 

nonlinearities can lead to electromagnetic interference (EMI) affect the efficiency of the 

converter and introduce disturbances in the output voltage or current. 

Nonlinear Characteristics of Semiconductor Devices:  

Power electronic converters rely on semiconductor devices, such as diodes, transistors, and 

thyristors, which exhibit nonlinear characteristics. For example, the voltage-current relationship 

of a diode is nonlinear, and the current-voltage relationship of a MOSFET or IGBT can exhibit 

nonlinear behavior in certain operating regions. These nonlinearities impact the operation and 

efficiency of power electronic converters. 

Nonlinear Loads: 

Power electronic converters are often connected to nonlinear loads, such as rectifiers, motor 

drives, or LED lighting systems. Nonlinear loads draw non-sinusoidal current waveforms, 

introducing harmonic content and nonlinearity in the input current of the converter. It can lead to 

distortion, increased losses, and challenges in power quality management. 

Nonlinear Control Techniques:  

Control strategies employed in power electronic converters can introduce nonlinearity. Pulse 

Width Modulation (PWM), which is popularly used for regulating the output voltage or current, 

is inherently nonlinear. The switching signals and control algorithms used in PWM introduce 

nonlinearities in the converter operation. Additionally, the implementation of feedback control 

and the limitations of the control circuitry can introduce nonlinear behavior. 

Nonlinearities in power electronic converters can impact the performance, efficiency, and 

stability of the system. Engineers employ various techniques to mitigate these nonlinear effects, 

including careful component selection, advanced control strategies, filtering techniques, and 

system-level design considerations. 

DC-DC converters are nonlinear systems that exhibit complex dynamics. When the operating 

conditions, such as input voltage, output load, or control parameters, are within certain ranges, 

the converter can enter chaotic behavior. Chaotic behavior arises from the nonlinearity of the 
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system and the interaction between its components [1, 2]. DC-DC converters are highly sensitive 

to changes in their operating parameters. Small variations in component values, such as 

inductors, capacitors or resistors, can lead to significant changes in the system behavior. When 

the parameters reach certain thresholds or fall within specific ranges, chaotic behavior may 

emerge. DC-DC converters can undergo bifurcations, which are sudden qualitative changes in 

system behavior as a parameter is varied.  

Bifurcations can lead to the onset of chaos, where the system transitions from stable or periodic 

behavior to unpredictable and irregular dynamics. Examples of bifurcations include period-

doubling bifurcations and saddle-node bifurcations [3-6]. DC-DC converters are typically 

controlled using feedback control techniques to control the output voltage or current. If the 

control loop is not properly designed or the feedback gains are set incorrectly, it can result in 

instability and chaotic behavior. Control instability can cause the system to oscillate, exhibit 

irregular voltage ripple, or fail to settle into a steady-state. DC-DC converters operate by rapidly 

switching power semiconductor devices, such as transistors or diodes, to regulate the flow of 

energy. The switching action introduces nonlinearities and can lead to complex switching 

dynamics. When the switching frequency or duty cycle approaches certain values, the converter 

may enter chaotic behavior due to the intricate interactions between the switching components. 

External noise and disturbances, such as electromagnetic interference or variations in the input 

voltage or load, can influence the behavior of DC-DC converters. In the presence of noise, the 

system response can become unpredictable and chaotic, especially when the noise magnitude is 

significant or resonates with the system's natural frequencies. 

Chaotic behavior in DC-DC converters is generally undesired, as it can lead to issues such as 

excessive voltage ripple, electromagnetic interference, reduced efficiency or instability. 

Therefore, careful design and analysis techniques are employed to ensure stable and predictable 

operation. 

Several researchers have studied the chaotic behavior of DC-DC converters. 

The work of Brockett and Wood [7] published in 1980s is a significant contribution to the 

understanding of chaos phenomena in power electronic converters. In their research, Brockett 

and Wood investigate the dynamic behavior of a class of power electronic converters, 
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particularly DC-DC converters. Moreover, Brockett and Wood highlight the potential 

implications of chaos in power electronic converters. They discuss challenges in control design, 

such as the difficulty of stabilizing chaotic behavior and the need for robust control strategies. 

They also explore the impact of chaos on electromagnetic interference (EMI) and harmonic 

distortion in power electronic systems. The work of Brockett and Wood on chaos in power 

electronic converters contributed to the broader understanding of the dynamics of these systems 

and the presence of chaotic behavior.  

The chaotic behavior in the buck converter Fossas and Oliva [8] typically analyze the system's 

behavior through numerical simulations or experimental measurements trajectory evolution near 

the chaotic attractors is examined by considering initial conditions that are close to each other 

and observing the subsequent divergence of trajectories over time. Hongwei Xu and Yanyan 

Huang [9] are published about the nonlinear behavior by using discrete time iterative mapping 

technique. After that many researchers worked in DC-DC converters like Buck Converter [10-

13], Boost Converter [14-16], Cuk Converter [17-19] and Forward Converter [20-21]. These 

researchers, along with many others have contributed to our understanding of chaotic behavior in 

DC-DC converters through theoretical analysis, simulation studies and experimental validations. 

Their work has provided valuable insights into the underlying mechanisms, control techniques 

and stability considerations of chaotic dynamics in these systems. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Problem Formulation on power switching converters: 

Nonlinearity is a fundamental characteristic of power switching converters due to their inherent 

switching action and nonlinear components. The nonlinearity in power switching converters 

arises from various sources, including the switching devices (like transistors or diodes), energy 

storage elements (like capacitors or inductors) and control strategies employed in the converters. 

The switching action in power converters can result in the generation of high-frequency 

harmonics. These harmonics introduce nonlinear distortion in the converter's output voltage or 

current waveform, affecting the quality of the output signal and potentially causing 

electromagnetic interference (EMI) issues. 

Stability analysis techniques for DC-DC converters are methods used to assess the stability of 

these power electronic systems. Stability analysis is crucial in ensuring the reliable and safe 

operation of DC-DC converters. 

Averaged modeling is a widely used technique for stability analysis of DC-DC converters. It 

involves simplifying the converter's nonlinear dynamics by obtaining an averaged or reduced-

order model that captures the essential behavior of the system. By employing an averaged model, 

stability analysis techniques that are applicable to linear systems can be applied to the simplified 

representation of the converter. This approach allows for easier analysis of stability criteria such 

as gain and phase margins, Eigen value analysis, or frequency response characteristics. Averaged 

modeling for stability analysis is a valuable tool in understanding the stability characteristics of 

DC-DC converters and aids in the design and optimization of control strategies for improved 

system performance.  

State-space averaging [22-25] is a technique used to derive a simplified averaged model of a DC-

DC converter based on its state-space representation. It provides a reduced-order model that 

captures the essential dynamics of the converter while maintaining accuracy for stability analysis 

and control design. State-space averaging simplifies the dynamics of the converter by replacing 

the fast-switching variables with their averaged values, resulting in a reduced-order model that is 
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easier to analyze. However, it is important to note that state-space averaging relies on certain 

assumptions, such as the assumption of continuous conduction mode or certain control strategies, 

which may limit its applicability to specific operating conditions or converter topologies. State-

space averaging technique is a valuable tool in stability analysis and control design for DC-DC 

converters, allowing for a more manageable analysis while retaining the critical dynamics of the 

system. 

Frequency-dependent averaged modeling [26] is a technique used to derive a more accurate 

representation of the dynamics of a DC-DC converter by considering the frequency dependence 

of certain components or parameters in the averaged model. It extends the traditional time-

averaging approach by incorporating frequency-dependent effects, which can be particularly 

relevant in high-frequency switching converters or when dealing with specific component 

characteristics. By considering the frequency-dependent effects in the averaged model, the 

frequency-dependent averaged modeling technique provides a more accurate representation of 

the converter's behavior, particularly at higher frequencies where the effects of parasitic 

elements, losses, or control dynamics become more significant. This can be useful for assessing 

stability, designing control strategies, and analyzing the converter's performance in the frequency 

domain.  

Multi-frequency averaged modeling [27-29] is a technique used to derive a more accurate 

representation of the dynamics of a DC-DC converter by considering the effects of multiple 

frequencies in the averaged model. It takes into account the harmonics and inter modulation 

components that arise from the switching action of the converter. By incorporating the effects of 

multiple frequencies, the multi-frequency averaged modeling technique provides a more accurate 

representation of the converter's behavior, particularly in systems with high-frequency switching 

or significant harmonic content. It allows for the assessment of system performance, stability, 

and control design at different frequency components. Frequency-selective averaged modeling 

[30] is a technique used to derive a simplified averaged model of a DC-DC converter that 

considers the frequency-dependent behavior of certain components or parameters. It allows for a 

more accurate representation of the converter's dynamics by incorporating the selective effects of 

specific frequency ranges or frequency bands. By considering the frequency-selective behavior 

of specific components or frequency ranges, the frequency-selective averaged modeling 
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technique provides a more accurate representation of the converter's dynamics. It allows for the 

analysis of stability, control design, and performance within the specific frequency ranges that 

are most relevant to the converter's operation. 

Discrete nonlinear modeling is a technique used to describe and analyze the behavior of systems 

that exhibit nonlinear dynamics in discrete-time domains. It is particularly applicable to systems 

with digital or discrete-time control, such as digital controllers for power electronic converters or 

digital signal processing systems. Discrete nonlinear modeling provides a valuable tool for 

understanding and analyzing the behavior of systems with nonlinear dynamics in discrete-time 

domains. It allows for the study of stability, performance, and control design in digital systems, 

and it is particularly useful in applications where accurate representation of nonlinear behavior is 

essential. Nonlinear map-based modeling [31-33] is a technique used to describe and analyze the 

behavior of systems with nonlinear dynamics using maps or discrete-time iterations. It is a 

mathematical approach that represents the system's behavior through iterative equations, 

capturing the evolution of the system from one state to another.  

Nonlinear map-based modeling provides a useful tool for understanding and analyzing the 

behavior of systems with nonlinear dynamics. It simplifies the description of the system by 

capturing its dynamics through a set of iterative equations, allowing for the study of stability, 

bifurcations, and other nonlinear phenomena. A stroboscopic map [34] is a nonlinear map-based 

modeling technique used to describe the behavior of a dynamical system by considering its 

response at discrete time intervals or stroboscopic instants. It is particularly useful for systems 

with periodic or quasi-periodic dynamics. The stroboscopic map captures the relationship 

between the system's state at one time instant and its state at the next stroboscopic instant, 

allowing for the analysis of long-term behavior and stability properties.  

An S-switching map [35] is a type of nonlinear map used to model systems with switching 

behavior or hybrid dynamics. It describes the evolution of the system's state based on different 

modes or regimes of operation associated with the switching events. The S-switching map 

captures the transitions between different modes and characterizes the system's behavior in each 

mode, providing insights into stability, bifurcations, and other nonlinear phenomena. An A-

switching map [36] is another type of nonlinear map used to model systems with switching 

behavior or hybrid dynamics. Similar to the S-switching map, it represents the evolution of the 
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system's state based on different modes or regimes of operation associated with the switching 

events. The A-switching map, however, considers asynchronous or arbitrary switching events 

that do not follow a predefined pattern or synchronization. It captures the system's behavior 

under these arbitrary switching events, enabling the analysis of stability, transient behavior, and 

other nonlinear effects.  

 

Fig 2.1- Various approaches are employed to assess the stability of power switching converters. 

Both S-switching and A-switching maps are valuable tools for understanding and analyzing 

systems with switching dynamics, such as power electronic converters, hybrid control systems, 

or biological systems with intermittent behavior. These maps provide a discrete-time 

representation of the system's behavior, allowing for the study of stability, transient response, 

and bifurcations, and facilitating the design and optimization of control strategies. Floquet theory 

[37-40] is a mathematical technique used to analyze the stability of periodic systems. It is 

particularly useful for studying the stability properties of time-varying systems, such as those 

encountered in power electronic converters with periodic switching. Floquet theory provides a 

way to determine the stability of the system by examining the eigen values of the Floquet matrix. 

The Floquet matrix captures the dynamics of the system over one period and helps identify 

stability regions or conditions for stability. Floquet theory is often used to analyze stability, 

bifurcations, and limit cycle behavior in periodically driven systems.  
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Lyapunov-based methods [41-46] are a family of techniques used to analyze stability and 

convergence properties of nonlinear systems. These methods rely on Lyapunov's stability theory, 

which states that if a function (called a Lyapunov function) can be found that satisfies certain 

properties, then the system is stable or asymptotically stable. Lyapunov-based methods can be 

used to prove stability, convergence, and robustness properties of nonlinear systems, including 

power electronic converters. Common Lyapunov-based methods include the direct method, 

indirect method, and energy function methods. These methods often involve finding a Lyapunov 

function and analyzing its derivative or rate of change to establish stability or convergence 

properties. Both Floquet theory and Lyapunov-based methods are powerful tools in stability 

analysis for nonlinear systems.  

Floquet theory is well-suited for analyzing the stability of periodic systems, such as power 

electronic converters with periodic switching. Lyapunov-based methods, on the other hand, offer 

a more general framework for analyzing stability and convergence properties of nonlinear 

systems, including those with time-varying dynamics. These methods are widely used in control 

system design and analysis to ensure stability and robustness. The trajectory-sensitive approach 

[47] provides valuable insights into the behavior of nonlinear systems and helps in designing 

control strategies that can enhance stability and robustness.  

The design-oriented ripple-based approach [48-49] is a method used in the design and analysis of 

power electronic converters to assess and control the ripple components in the system. It focuses 

on understanding and managing the ripple currents or voltages that occur in the converter's 

operation, which can affect the system's performance, efficiency, and stability. The system-poles 

approach [50, 51] is a method used in stability analysis and control system design to evaluate the 

stability and performance characteristics of a system based on the location of its poles in the 

complex plane. The poles of a system represent the values of the system's transfer function 

where its response becomes unbounded or unstable. By analyzing the pole locations, stability 

margins, and pole-zero cancellations, the system-poles approach provides insights into the 

stability and dynamic behavior of the system. 
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2.2 Non-linear Control Methods in Power Switching Converters: 

Nonlinear control methods play a crucial role in achieving high-performance and robust 

operation in power switching converters. These methods are designed to handle the inherent 

nonlinearity, uncertainties, and disturbances that are present in power electronics systems. These 

nonlinear control methods offer advanced techniques to deal with the challenges associated with 

nonlinear dynamics, uncertainties, and disturbances in power switching converters. By 

employing these methods, it is possible to achieve precise control, improved efficiency, and 

enhanced robustness in power electronic systems. 

Feedback-based control utilizes feedback signals from the converter's output or intermediate 

stages to regulate and stabilize the system. Proportional-Integral-Derivative (PID) control is a 

commonly used feedback-based control technique in power converters. Nonlinear control 

techniques, such as sliding mode control, can also be applied within the feedback loop to handle 

nonlinear dynamics and uncertainties. The Ott-Grebogi-Yorke (OGY) approach [52] is a 

nonlinear control method used for stabilizing chaotic systems. It involves adding a small 

perturbation signal to the system's state variables to drive the chaotic behavior towards a desired 

stable orbit. In the context of power switching converters, the OGY approach can be employed to 

control and stabilize the converter's output voltage or current, particularly when the system 

exhibits chaotic or unpredictable behavior. Time-delayed feedback control [53] is a technique 

that introduces a delayed version of the system's output or state variables into the control loop. 

By carefully choosing the delay time and control gain, this method can stabilize or suppress 

unwanted oscillations in the system.  

Washout filter-aided control [54] is a technique that utilizes a washout filter to remove unwanted 

high-frequency components from the system's signals. This method is commonly used in power 

switching converters to reduce harmonics, noise, or disturbances in the output voltage or current. 

By applying washout filter-aided control, the converter's performance can be improved, and the 

effects of nonlinearities and disturbances can be mitigated. Filter-based non-invasive [55-57] 

methods are control techniques that utilize filtering or signal processing approaches to estimate 

or extract specific parameters or signals without the need for invasive measurements. In power 

switching converters, these methods can be used for state estimation, fault detection, or condition 

monitoring. By employing advanced filtering techniques, such as Kalman filters, particle filters, 
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or wavelet transforms, accurate estimation and control of the converter's variables can be 

achieved, enhancing the system's performance and robustness. 

The self-stable chaos control method is a technique used to stabilize chaotic behavior in 

nonlinear systems. It involves designing a control strategy that allows the system to self-adjust 

and achieve a stable state. This method takes advantage of the inherent dynamics of chaotic 

systems to guide them towards desired attractors or orbits, thereby achieving stability. In the 

context of power switching converters, the self-stable chaos control method can be applied to 

regulate and stabilize the converter's output voltage or current, even in the presence of chaotic 

behavior. Predictive control is particularly effective in handling nonlinearities, constraints, and 

uncertainties in power switching converters. By predicting the future behavior of the system, 

predictive control can make proactive adjustments to maintain desired performance and stability. 

The frequency-domain approach in control design involves analyzing the system's behavior and 

designing control strategies based on frequency response characteristics. This approach utilizes 

techniques like Nyquist plots, Bode plots and frequency response analysis to understand the 

system's stability, phase margin, gain margin and frequency characteristics. In power switching 

converters, the frequency-domain approach can be used to design compensators or filters to 

achieve desired frequency response and stability. 

The two-parameter chaotic approach is a control method that exploits the chaotic behavior of a 

system to achieve control objectives. It involves adjusting two control parameters in a controlled 

manner to induce chaotic behavior, which can then be controlled to achieve desired system 

performance or stabilization. This approach can be implemented to power switching converters 

to regulate the converter's output voltage or current by exploiting the chaotic dynamics of the 

system. The chaotic SPO (State-Position Output) algorithm is a control method that utilizes 

chaos theory and bifurcation analysis to achieve control objectives. It involves adjusting system 

parameters to induce chaotic behavior, and then using bifurcation analysis to identify stable 

regions or attractors within the chaotic system. By controlling the system's parameters within 

these stable regions, desired performance or stabilization can be achieved. In power switching 

converters, the chaotic SPO algorithm can be applied to control the converter's output voltage or 

current by exploiting the chaotic dynamics and stable regions of the system. 
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Fig.2.2- Switching power converters utilize non-linear control techniques to enhance their performance. 

Non-feedback control methods aim to regulate the power switching converter without explicit 

feedback from the output or intermediate stages. These techniques often rely on feed forward 

control or open-loop control strategies. Nonlinear control methods, such as adaptive control or 

neural network control, can be used in non-feedback control to address uncertainties and enhance 

performance. Resonant parametric perturbation is a control method that utilizes periodic 

perturbations to stabilize or control the behavior of a system. By introducing specific parametric 

perturbations at resonant frequencies, the system's dynamics can be manipulated to achieve 

desired control objectives. In power switching converters, resonant parametric perturbation can 

be employed to stabilize the system's operation, enhance performance or mitigate undesired 

oscillations. The ramp compensation approach is a control technique used to compensate for 

voltage or current ramps in power switching converters. It involves modifying the control signal 

or parameters to account for the variations in the system's behavior due to ramp effects. This 

approach helps in achieving a more accurate and stable output voltage or current, especially 

during transient or dynamic conditions. 

Power switching converters are prone to electromagnetic interference (EMI) generation due to 

fast switching transitions. EMI reduction techniques are employed to minimize the emission of 

undesirable electromagnetic noise. These techniques include filtering, shielding, grounding, and 
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the use of soft-switching or zero-voltage switching (ZVS) techniques. Nonlinear control methods 

can be integrated into the control algorithms of these techniques to improve their effectiveness 

and address nonlinear dynamics. Chaos-based pulse width modulation is a technique that utilizes 

chaotic systems or chaotic maps to generate modulation signals for power switching converters. 

Instead of using conventional modulation techniques, chaos-based PWM employs the 

unpredictable and pseudo-random behavior of chaotic systems to generate modulation patterns. 

This approach can improve the spectral characteristics of the converter's output, reduce harmonic 

distortion, and enhance efficiency. 

Random modulation is a technique that introduces randomness or noise into the modulation 

signals of power switching converters. By incorporating random variations in the switching 

patterns, random modulation can distribute the energy of the converter's output over a wide 

frequency spectrum, reducing the concentration of energy at specific frequencies. This approach 

helps in mitigating electromagnetic interference (EMI) and improving the converter's 

performance. Soft switching is a technique used in power switching converters to minimize 

switching losses and improve efficiency by ensuring that the switches operate under zero-voltage 

or zero-current conditions during the switching transitions. Combining soft switching techniques 

with chaotic mapping involves using chaotic dynamics to determine the optimal switching 

instants or patterns for achieving soft switching. By exploiting chaotic behavior, this approach 

can optimize the converter's operation and minimize losses. 

2.3 Thesis Organization: 

Bifurcation and chaotic phenomena are frequently encountered in power electronics circuits and 

systems. In power electronics, altering any parameter be it input, output or load, often results in 

nonlinear behaviors. These behaviors may include the emergence of coexisting attractors, Hopf 

bifurcation, period-doubling bifurcation, and boundary collisions. Extensive research has been 

conducted in the field of power electronics and systems regarding bifurcation behavior, leading 

to a mature understanding of this phenomenon. Numerous studies have reported various 

bifurcation behaviors and identified the theoretical parameters responsible for their occurrence, 

as well as the associated side effects. In the past decade, research papers have focused on 

harnessing the complex behaviors observed in power electronics for practical applications in 

industrial settings within the field of power electronics and systems. One of my research interests 
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involves developing methodologies to mitigate bifurcation behavior in practical applications of 

power electronics and systems. While abstract mathematical formulations can provide detailed 

insights into bifurcation outcomes, they cannot be directly applied to the design of industrial 

systems. Therefore, future study and research work should focus on exploring more practical, 

design-oriented approaches that can be experimentally tested and implemented in real-world 

applications. 

This thesis focuses on the analysis and regulate of rapid nonlinear behaviors in DC-DC power 

electronic switching converters, with the aim of enhancing our understanding of nonlinear 

modeling and bridging the gap between theoretical research and practical applications. It 

provides comprehensive details on feedback control system implementation and stability 

analysis, addressing the specific timescale dynamics of these converters. By doing so, it 

contributes to advancing knowledge in this field and improving the practicality of research 

findings. The research employs a method of nonlinear analysis based on the Iterative Mapping 

Matrix. This approach provides a comprehensive understanding of boundary operation 

conditions and facilitates the development of new control methodologies to address instability 

issues. By adopting a design-oriented strategy, this research offers practical options that can be 

readily applied in the conceptual design process and expedite progress at a practical scale. 
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CHAPTER III 

METHODOLOGIES: 

3.1 A comprehensive review of the analysis of nonlinear dynamics in power switching 

converters: 

Nonlinear dynamics refers to the study of complex behaviors exhibited by systems with 

nonlinear relationships between inputs and outputs. In the context of power switching converters, 

nonlinear dynamics can arise due to factors such as switching losses, magnetic core saturation, 

parasitic elements, and nonlinear loads. There are different power switching converter topologies 

like buck, boost, buck-boost, flyback and forward converters. Each topology has unique 

characteristics that can affect the nonlinear dynamics. Review various modeling techniques used 

to describe the behavior of power switching converters, such as state-space averaging, small-

signal modeling, and discrete-time models. Examine the nonlinear phenomena observed in 

power switching converters, including sub harmonic oscillations, chaos, bifurcations, and limit 

cycles. These phenomena can occur due to the nonlinearity introduced by the converter's 

components and control schemes. 

Methods for analyzing the stability of power switching converters, such as Lyapunov stability 

analysis, describing functions and frequency response analysis. Investigate the impact of 

nonlinear dynamics on the converter's stability and the design of stabilizing control strategies. 

Analysis of nonlinear dynamics in power switching converters would involve a thorough 

exploration of the theoretical foundations, modeling approaches, control strategies, and 

experimental findings related to the nonlinear behavior of these converters. 

3.2 Information about switching power converters: 

Switching power converters are electronic devices that efficiently convert electrical energy from 

one form to another by rapidly switching power semiconductor devices like transistors or diodes, 

on and off. These converters play a vital role in various applications inclusive in power supplies, 

renewable energy systems, motor drives and electric vehicles. Switching power converters 

operate by employing high-frequency switching techniques to control the flow of energy. They 

typically consist of several key components, including an input power source, power 
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semiconductor devices, energy storage elements (like inductors and capacitors), control circuitry, 

and an output load. The operation of switching power converters involves cyclically switching 

the power semiconductor devices between on and off states. During the on-state, energy is stored 

in the energy storage elements, while during the off-state, this energy is transferred to the output 

load. This switching action enables efficient voltage or current transformation, allowing for 

voltage regulation, power factor correction, isolation, and other desired functionalities. 

 

Fig.3.1- Non-isolated DC-DC power switching converters 

Switching power converters offer several advantages over traditional linear converters, including 

higher efficiency, smaller size, and improved control capabilities. However, they also introduce 

challenges due to their nonlinear characteristics. These nonlinearities arise from various factors, 

including the nonlinear behavior of the power semiconductor devices, parasitic elements, 

magnetic core saturation, and interactions between control loops. Understanding the behavior 

and characteristics of switching power converters is crucial for their design, analysis, and 

control. It involves modeling the converter's dynamics, analyzing its transient and steady-state 

responses, investigating stability issues, and developing control strategies to achieve desired 

performance objectives. 

3.3 Control Methods: 

Voltage mode control and current mode control are regularly used control schemes in power 

electronics for regulating the output voltage or current of switching converters. 

(i) Voltage Mode Control Method: 

Voltage mode control alternatively known as voltage loop control is a control scheme where the 

output voltage of the converter is detected and compared to a reference voltage. The control 
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circuit adjusts the duty cycle of the power switch to sustain the output voltage at the desired 

level.  

 

Fig.3.2- Voltage Mode Control Technique 

Here's how voltage mode control typically works: 

 An error amplifier compares the detected the output voltage with the reference voltage 

and generates an error signal proportional to the difference between the two. 

 The sensed output voltage can be obtained using a voltage divider network connected to 

the output of the converter. 

 The error signal is processed by a compensator or a control loop filter to shape the 

response and provide stability. 

 The output of the compensator is fed into a pulse-width modulation (PWM) generator, 

which generates the control signal for the power switch. The duty cycle of the PWM 

signal is altered based on the error signal to regulate the output voltage. 

Voltage mode control offers good dynamic response and stability. It is commonly used in 

applications where voltage regulation is the primary requirement, such as power supplies, 

DC-DC converters, and voltage regulators. 

(ii) Current Mode Control Method: 

Current mode control, also referred to as current loop control, is a control scheme where the 

current flowing through a sensing element (usually an inductor or a current-sensing resistor) is 

sensed and used as the primary feedback signal for control. The control circuit adjusts the duty 

cycle of the power switch to maintain a stable current level.  
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Fig. 3.3- Current Mode Control Technique 

Here's an overview of current mode control: 

 A current sense amplifier measures the current flowing through the sensing element and 

generates a proportional voltage signal. 

 The current sense amplifier provides the current feedback signal to the control circuit. 

 Similar to voltage mode control, a compensator or control loop filter processes the 

current feedback signal to shape the response and ensure stability. 

 The output of the compensator is used to generate the PWM signal, adjusting the duty 

cycle of the power switch based on the current feedback. 

Current mode control delivers inherent cycle-by-cycle current limiting and faster transient 

response evaluated to voltage mode control. It is commonly used in applications where current 

regulation, current limiting, or fast load transient response is critical, such as motor drives, LED 

drivers, and high-frequency power converters. 

Both voltage mode control and current mode control have their advantages and are suitable for 

different applications. The choice of control scheme depends on the specific prerequisites of the 

power converter and the desired performance characteristics. 

3.4 Modeling of Power Electronic Switching Converters: 

The state-space averaging approach is a commonly used technique for modeling power 

electronic switching converters. It provides a systematic procedure for deriving average-value 

state-space models, which capture the steady-state behavior of the converter. 
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Fig. 3.4 - The procedural scheme of the state-space averaging approach 

State equations describe the dynamic behavior of a system in terms of its state variables. In the 

context of power electronic systems, state equations represent the relationships between the 

system's inputs, outputs and the time derivatives of the state variables. These equations are 

typically formulated as first-order differential equations in state-space form, where the states 

represent variables like inductor currents and capacitor voltages. 

( )
( ( ), )

dx t
f x t t

dt
                                                                        (1) 

Averaging is a technique used to obtain the average behavior of a power electronic system over a 

switching period. By averaging the system's equations, the fast switching dynamics are smoothed 

out resulting in simplified average-value equations that capture the steady-state behavior. 

Averaging is often used in conjunction with the state-space averaging approach to derive 

average-value models of switching converters. 

( )
( ( ), )

dx t
f x t d

dt
                   (2) 

Perturbation refers to small deviations or disturbances from the steady-state operating conditions 

of a system. In power electronic systems, perturbations can arise due to changes in the input 

voltage, load variations, or control signal variations. Analyzing the system's response to these 

perturbations helps evaluate the stability and performance of the system. 

ˆ( ) ˆˆ( ( ), )
dx t

f X x t D d
dt

                      (3) 
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Steady state refers to the operating condition of a system where the system's variables no longer 

change with time. In the context of power electronic systems, steady state represents a condition 

where the system's voltages, currents, and other variables have reached a stable and constant 

value. Steady-state analysis is essential for understanding the behavior and performance of 

power electronic converters under normal operating conditions. 

ˆˆ( ) ( )x t f d                    (4) 

Linearization is the process of approximating the nonlinear behavior of a system by considering 

small deviations around a given operating point. In power electronic systems, linearization is 

commonly used to linearize the system's equations and obtain linear small-signal models. 

Linearized models enable the application of linear control techniques, such as transfer function 

analysis and stability analysis. 

ˆ( ) ˆˆ( ( ), )
dx t

f x t D d
dt

                     (5) 

A transfer function is a mathematical portrayal of the relationship between the input and output 

signals of a system in the frequency domain. In power electronic systems, transfer functions are 

derived from linearized models and describe the frequency response characteristics of the 

system. Transfer function analysis helps evaluate stability, gain and phase margins, and 

frequency-domain performance. 

( )X f D                    (6) 

Stability analysis is an essential aspect of analyzing power electronic systems. It involves 

evaluating the stability of the system's response to perturbations or disturbances. Stability 

analysis techniques, such as Bode plots, Nyquist plots, and root locus plots, are used to assess the 

stability margins, determine stability criteria, and design stable control systems for power 

electronic converters. 

3.5 The Equilibrium points Solution's Stability: 

The stability of equilibrium points refers to the behavior of the system around its steady-state 

operating points. An equilibrium point, also known as a steady-state solution, is a set of values 
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for the system's variables (such as voltages and currents) where the system remains constant over 

time in the absence of external perturbations. 

It's important to note that stability analysis is based on the assumption of small perturbations 

around the equilibrium points. Nonlinear effects, large disturbances, or parameter variations may 

require more advanced stability analysis techniques, such as Lyapunov stability analysis or direct 

time-domain simulations. By solving this state-space representation, one can analyze the 

behavior, stability, and response of the linear system to different inputs and disturbances. It is a 

powerful framework for modeling and controlling a wide range of dynamic systems, including 

power electronic converters. 

X Ax BE                      (7) 

Where, A represents the system matrix it captures the dynamics of the system and describes how 

the state variables evolve over time. It is an n x n matrix, where n is the dimension of the state 

vector X and B represents the input matrix B relates the inputs of the system to the rate of change 

of the state variables. It is an n x m matrix, where m is the number of input variables or control 

signals affecting the system and E represents the external input vector E represents any external 

disturbances.  

The expression X Ax BE   represents the dynamic evolution of the state vector X over time. 

It states that the rate of change of the state variables (Ax) is influenced by both the internal 

dynamics described by the system matrix A and the external inputs represented by the product of 

the input matrix B and the external input vector E. 

In state-space models, the stability of equilibrium points can be analyzed by examining the eigen 

values of the system's state matrix. The eigen values provide information about the system's 

stability characteristics. The stability of equilibrium points can be determined based on the 

location of the eigen values in the complex plane. An equilibrium point is considered stable if all 

eigen values of the state matrix have negative real parts. This means that any small perturbations 

from the equilibrium point will decay over time, and the system will return to the steady state. 

An equilibrium point is unstable if at least one eigen value of the state matrix has a positive real 



24 
 

part. In this case, small perturbations will grow over time, causing the system to diverge from the 

steady state. 

0AI                       (8) 

If the state matrix has eigen values with zero real parts, the equilibrium point is marginally 

stable. Perturbations at this equilibrium point neither decay nor grow exponentially, resulting in a 

bounded response. 

Stability analysis can also be performed using transfer functions derived from linearized models. 

For linear time-invariant systems, stability can be determined based on the poles of the transfer 

function.  

3.6 Characterization of Dynamical Systems:  

The characterization of dynamical systems involves a combination of analytical, numerical, and 

graphical techniques to understand the behavior, stability, and response of systems over time. 

The combination of analytical approaches, numerical methods, and experimental verifications 

provides a comprehensive approach to characterizing dynamical systems. Analytical methods 

provide insights into system behavior and can offer simplified models for initial analysis. 

Numerical methods allow for more accurate and detailed simulations, especially for complex and 

nonlinear systems. Experimental verifications provide practical validation and real-world insight, 

helping to bridge the gap between theory and practice. 

The averaging approach is particularly useful for obtaining simplified models and understanding 

the steady-state behavior of power electronic systems. It allows for the analysis of systems 

without explicitly considering the fast switching dynamics, which can be computationally 

intensive. However, the approach assumes that the slow variations dominate the system's 

behavior, and it may introduce some approximation errors. The perturbation method is valuable 

in gaining insights into the effects of small disturbances or nonlinearities on system behavior. It 

allows for the analysis of nonlinear systems without the need for complex numerical simulations 

or solving the equations exactly. 
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Fig. 3.5- A common way to describe a dynamical system is through its typical characterization. 

A phase portrait is a graphical representation of the trajectories or orbits of a dynamical system 

in the state space. It provides a visual depiction of the system's behavior and helps in 

understanding its qualitative properties. In a phase portrait, each point represents a unique state 

of the system, and the trajectories show how the system evolves over time. The shape, stability, 

and attractors of the system can be inferred from the phase portrait. Switching maps are used to 

analyze and understand the behavior of systems with discrete or switching dynamics, such as 

power electronic converters. These maps capture the evolution of the system's variables between 

consecutive switching events or discrete time instants. The switching map represents the 

relationship between the system's states before and after each switching event, allowing for the 

analysis of stability, periodic behavior, bifurcations, and other dynamic properties. By plotting 

the state variables of the system at the instances they cross the Poincare section, a reduced-

dimensional representation of the system's behavior can be obtained. Poincare sections help in 

identifying periodic orbits, stability and chaotic behavior of the system.  

A bifurcation diagram is a graphical representation that shows the qualitative changes in a 

dynamical system as a parameter of the system is varied. It helps in understanding how the 

system's behavior changes with different parameter values. The bifurcation diagram typically 

plots the system's equilibrium points, periodic orbits, or other key features against the varying 

parameter. It reveals information about stability, the onset of bifurcations (such as period-
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doubling, saddle-node bifurcation, or Hopf bifurcation), and the existence of different dynamical 

regimes in the system. These tools and techniques play a crucial role in the analysis and 

characterization of dynamical systems. They provide insights into the system's behavior, 

stability, periodicity, chaos, and the effects of parameter variations. 

3.7 Bifurcation Diagram: 

Bifurcation patterns are characteristic structures or patterns observed in the bifurcation diagram. 

These patterns reflect the different dynamic regimes or behaviors exhibited by the system. 

Common bifurcation patterns include period-doubling bifurcations, saddle-node bifurcations, 

Hopf bifurcations, pitchfork bifurcations and more. When examining the bifurcation diagram of 

a switching power electronic converter, the horizontal axis represents the parameter of interest, 

such as the control parameter or the operating conditions. The vertical axis represents a relevant 

output characteristic, such as the output voltage or current. 

Period 1 behavior is often desirable in power electronic converters as it represents a stable and 

predictable operating mode. It indicates that the system is operating in a controlled manner, 

providing a consistent output waveform over time. Stable period 1 operation is typically 

associated with a specific parameter range in the bifurcation diagram where the system is stable 

and exhibits regular periodic behavior. Understanding the presence and location of period 1 

points in the bifurcation diagram of switching power electronic converters helps in designing 

stable and efficient converter operation. It provides insights into the parameter ranges where the 

system operates in a predictable and controlled manner. 

A "period 2" point on the bifurcation diagram indicates that the system exhibits stable periodic 

behavior with a period of two. This means that the output waveform of the converter repeats 

itself exactly after completing two cycles, and then repeats the same pattern again. This behavior 

is characterized by a doubling of the period compared to the period 1 behavior. Period 2 behavior 

can occur as a result of a period-doubling bifurcation in the system. As the control parameter or 

operating conditions are varied, the system transitions from a stable period 1 behavior to a stable 

period 2 behavior. This bifurcation point in the bifurcation diagram represents the onset of the 

period-doubling phenomenon. Understanding the presence and location of period 2 points in the 

bifurcation diagram of switching power electronic converters helps in analyzing the stability and 
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dynamic behavior of the system. However, it's important to note that the system can exhibit 

further bifurcations leading to higher-order periodic behavior, such as period 4, period 8, and so 

on, as the control parameter is further varied. 

Chaotic behavior in the bifurcation diagram indicates the presence of regions where the system 

exhibits chaotic dynamics. Chaotic behavior occurs when the system undergoes a bifurcation, 

such as a period-doubling bifurcation or other types of bifurcations, leading to the onset of 

irregular and unpredictable output waveforms. 

 

 

Fig.3.6 - An illustration of a bifurcation plot depicting the behavior of a dynamical system. 

In a bifurcation diagram, chaotic regions can be identified by their fractal-like patterns, where 

fine-scale structures are repeated on different scales. These regions reflect the sensitivity of the 

system to small changes in initial conditions or parameter values, resulting in significantly 

different output behavior. Chaotic behavior in switching power electronic converters can arise 

due to a combination of nonlinear dynamics, feedback effects, and the interaction between 

different components of the converter. It can have various negative effects, such as increased 

output ripple, reduced efficiency, or electromagnetic interference. 
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CHAPTER-IV 

Chaotic Behavior of DC-DC Boost Converter: 

The chaotic behavior of a DC-DC boost converter refers to the occurrence of complex and 

unpredictable dynamics in its operation. It manifests as irregular and aperiodic output 

waveforms, exhibiting sensitive dependence on initial conditions and parameter values. Chaotic 

behavior in a DC-DC boost converter can arise due to the nonlinear dynamics of the system, 

which result from the interaction of the various components such as the inductor, capacitor, 

switch, and diode. 

The inductor and capacitor in a boost converter exhibit nonlinear characteristics, such as 

magnetic hysteresis in the inductor core and voltage-dependent capacitance. These nonlinearities 

can introduce complex dynamics and contribute to the onset of chaos. The switching action in 

the boost converter, where the switch transitions between on and off states, can introduce 

nonlinear effects and generate complex behavior. Rapid changes in voltage and current during 

the switching events can lead to bifurcations and the emergence of chaotic dynamics. The control 

parameters of the boost converter, such as the switching frequency, duty cycle, and feedback 

control gains, can influence its dynamic behavior. Small variations in these parameters can result 

in significant changes in the system's output, leading to chaotic behavior. Parasitic elements in 

the converter, such as stray capacitance, inductance, and resistance, can contribute to nonlinear 

behavior and instability. These effects, coupled with the inherent nonlinearity of the system, can 

lead to chaotic dynamics. Understanding and analyzing chaotic behavior in a DC-DC boost 

converter is important for system design, control, and optimization. It allows identifying 

parameter ranges and operating conditions where chaos occurs, and take appropriate measures to 

mitigate its effects. Techniques such as nonlinear control methods, feedback stabilization, and 

parameter optimization can be employed to suppress or avoid chaotic behavior in the converter, 

ensuring stable and reliable operation. 

4.1 Mathematical Analysis of Boost Converter by Using Discrete Iterative Mapping: 

The mathematical analysis of a boost converter can be performed using discrete iterative 

mapping techniques. These techniques involve modeling the converter's behavior as a discrete-



29 
 

time dynamical system and applying iterative equations to describe the system's state evolution 

over time. 

The boost converter is represented by a set of nonlinear difference equations that describe the 

relationships between the system's input, output, and control variables. These equations capture 

the switching dynamics, energy storage elements (inductor and capacitor), and control 

mechanisms of the converter. The discrete-time equations obtained from the discretization 

process form the basis of the iterative mapping. Starting from an initial condition, the system's 

state variables (such as the inductor current and capacitor voltage) are updated iteratively based 

on the discrete equations. The iterative mapping allows the simulation of the system's behavior 

over multiple time steps. The mathematical analysis of a boost converter using discrete iterative 

mapping provides valuable insights into the converter's behavior, stability, and performance 

characteristics. It allows engineers and researchers to understand the system's dynamics, 

optimize the control strategy, and design efficient and reliable power conversion systems. 
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Fig.4.1 - The Circuit diagram of Boost converter 

The Boost converter’s state space equations can be stated as follows: 

.
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Integrating the RHS of (2) and replacing the t =
'

nt  will get the common solution to the switch on 

interval. This results in the end value of the switch on period after substitution.     
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            (8) 

Where, Vc represents the voltage of the capacitor (C) and IL represents the current of the inductor 

(L). Apply the Laplace transformation to the switch-off interval equation to obtain the solution. 
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Where, X(s) represents the Laplace transform of x(t). Therefore, the s-domain expression for the 

capacitor’s voltage (Vc) and the inductor’s current (IL) in the above Laplace equation can be 

written as 
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( )
( )

I II
c

K s KE
V s

s H s
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Where, 
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2 1
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CR LC
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The inverse Laplace transformation can be used to get the time-domain equations for the 

capacitor voltage Vc(s) and inductor current IL(s) in the interval of  '

1n nt t t    

'( ) '( ) cos ( )nt t

C I nV t E K e t t
  
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L III n
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



 
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Where,  

21

LC
              (21) 



32 
 

Where, KI, KII, KIII and KIV are the functions of 
'( )nx t  which a function is in turn off ( )nx t  and d. 

The difference equation's basic form is represented by the 

1( ) ( ( ), )n nx t f x t d                  (22) 

  

The function f (.) in this case is provided by 

11 12 1

21 22 2

( , )
f f g

f x d x E
f f g

   
    
   

         (23)  

Where, 
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(1 )

12

1
sin(1 )d Tf e d T

C

 


           (25) 

(1 )

21

1
sin(1 )

dT
d T

RCf e d T
L







 

           (26) 

(1 )

22

d Tf e   1 1
cos(1 ) sin(1 )d T d T

CR
  



  
     

  
     (27) 

(1 )

1 1 d Tg e    1
cos(1 ) sin(1 )

dT
d T d T

LC
  



  
     

  
     (28) 

(1 )

2

1
{1 1 cos(1 )d T RdT

g e d T
R L

    
    

 


1 1
sin(1 )

RdT R
d T

CR L L
  



  
     

  
 (29) 

1( ) ( ( ), )n nx t f x t d           (30) 

The boost converter's discrete-time state equation for continuous mode operation is provided by 

the equations above. To assure that the circuit functions in   discontinuous mode, the inductance's 

value must be appropriately low. It has been suggested that the inductance value L should not be 
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larger than 21
(1 )

2
D D RT  for a discontinuous conduction mode operation, where T indicates the 

switching period and D indicates the duty cycle.  

There are three basic topologies, and each of them has a state equation with an explicit solution. 

Using the interval 
'

n nt t t   as an example, the solution is given by 

1 1 1( ) ( ) ( ) ( ) .

n

t

n n

t

x t t t x t t T B E dT       
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A map that iteratively represents 
1( )nx t 

 in terms of x would be produced by "stacking" 

successive solutions over a switching period ( )nx t ,i.e., 
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

             (32) 

Where, 
' " " '

1, ,c n n e n n d n nt t t t t t t t t      and ( )k   is the transition matrix which is provided by 

the series of equations below: 

1

1
( ) 1

!

n n

k k

n

A
n

 




       for      k=1,2,3.              (33)   

After computing and substituting each transition matrix in equation (33), an iterative map is 

produced             

 1( ) ( ),n n nx t f x t d           (34) 

Where, nd  represents the duty cycle for the n
th

 period, which is defined as 
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c
n

t
d

T
                (35)   

Typical switching regulator applications have switching periods that are significantly less than 

the time constant for capacitance-load-resistance. The examination of the transition matrix (.)k  

is significantly streamlined by this condition yields a finite series representation of (.)k  that is 

quite accurate.  

2 2 21
( ) 1

2
k k kA A              for   k = 1,2,3      (36)                   

Moreover, the inductance current 
LI  grows linearly throughout the time period 

'

n nt t t   at a rate 

of  E/L from zero to a value of 
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maxi to zero at the rate of 
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t x E
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           (37) 

Using equations from (4)-(6), (36) and (37), and aware that the ( ) 0L ni t  ,  n in equation (33) 

can estimated be classified as 
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Where, 
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Here, we're concentrating on the system that is managed by the simple feedback system shown 

below: 

.n nd k x              (42) 

Where, the closed-loop dynamics can be changed by using the feedback parameter k. The 

preceding equation suggests the usage of a uniform sampling strategy, where in d  is 

determined for each switching period using the value of ( )nx t , which is sampled at the 

beginning of each switching period. 

The closed-loop system's Poincare map may now be obtained by substituting (18) in (14), which 

results in 

2 2

1

( )n
n n

n

h d E
x x

x E


  


         (43) 

Where, 

( )n nd D k x X             (44) 

0 0

( ) 1 0

,

n

n n

n

if d

h d if d
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 

  
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         (45) 

4.2 Feedback Control Loop of Boost Converter: 

RVin

L D

C
+
Vo

-

K

D Vref

+

-

+

+

 

Fig.4.2 Circuit diagram for Closed-loop Boost Converter 
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There are several ways to modulate the output voltage of Boost converter. In this study, a voltage 

mode control system was used to adjust the output voltage. The feedback loop serves as the main 

component of this control, monitoring changes in output voltage (Vc) and adjusting the duty 

cycle as necessary. In a compensation network, a control signal (Vcon) is produced particularly 

from the variance between the reference voltage (Vref) and the output voltage (Vc).  

( ) ( )con ref cV t g V V              (46) 

 

Fig. 4.3 – Voltage Mode Control Technique 

Where the compensation network's determination of g(.) is the function. This control signal 

efficiently indicates how to modify the duty cycle (D) is to provide the output voltage with the 

optimal transient dynamics. 

4.3 Bifurcation Diagram of Boost Converter: 

The bifurcation diagram with different feedback gain, one can gain insights into the system's 

behavior as the feedback gain is varied. It helps to understand the stability boundaries, parameter 

regions that induce bifurcations, and the effects of feedback on the system's performance. This 

information can guide the design and optimization of the control system for improved stability, 

performance, or desired dynamic behavior. To determine the initial and final conditions under 

which the converter may operate securely, the bifurcation diagram is plotted. Bifurcation can be 

examined using this graphic depiction as well. In this case, computer simulations are a great tool 

for figuring out the chaotic behavior. In the simulation from the computer, one parameter is 

altered while the other parameters are held constant. 
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Fig.4.4. Diagram for bifurcation with different feedback gain 

In the above Fig.3, a stable period up to about 0.15 can be noticed, and the diagram of 

bifurcation with reference to feedback gain is visible. Double bifurcation, often known as 2T, 

happens after k= 0.15. Up until k=0.37, this occurs. Moreover, the output voltage splits into 

period 4 (or 4T) after k = 0.38, continuing until almost k = 0.42. At some point after k = 0.43, 

this finally moves into a chaotic area. 

Table 4.1 - Simulation Parameters of Boost Converter 

Switching frequency (fs) 3000Hz 

Inductance (L) 208  H 

Input Voltage (E) 16V 

Capacitance (C) 222 F 

Output Voltage (X) 25V 

Load Resistance (R) 12.5  

4.4 Results: 

      (i) Time Domain waveforms of Boost Converter: 
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Fig.4.5 - Fundamental waveforms of Vc and IL at 5ms interval from the simulation at k=0.13     

    

       

Fig.4.6 - Period-II waveforms of Vc and IL at 5ms interval from the simulation at k=0.2 
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Fig.4.7 period-IV waveforms of  Vc and IL at 5ms interval from the simulation at k=0.4 

 

 

Fig.4.8- Waveforms of Vc and IL at 5 ms intervals chaos sampled at k=0.45 

Time domain waveforms can be used to confirm the bifurcation diagram. Here, the voltage 

waveform of the capacitor and the current waveform of the inductor have been recorded. The 

system shown in fig.4 operates in stable mode when the voltage and current waveforms of 

capacitor and the inductor have been replicate or mirror each other for every one time period. 

Moreover, fig.5 shows that the system contains period-doubling bifurcations of the voltage 

waveform of the capacitor and the current waveform of the inductor duplicates themselves for 

every two time periods. Figure 6 show that the voltage and current waveforms of capacitor and 
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the inductor time domain waveforms, which are similar in that they repeat for every four cycles. 

Hence, the system has four bifurcations in total. And finally in Fig. 7, the system has no 

repeating cycles, indicating that chaos has taken over. The bifurcation diagram's phase portraits 

are covered in more detail in the next section. 

(ii) Phase Portrait Diagrams of Boost Converter: 

 

Fig .4.9- Diagram of Phase Portrait for Vc and IL at stable 1 period (1T) 

                       

                    Fig .4.10- Diagram of Phase portrait for Vc and IL at period 2 (2T) 

                          

                       Fig .4.11- Diagram of Phase portrait for Vc and IL at period 4 (4T)                                 
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                                 Fig.4.12- Diagram of Phase portrait for Vc and IL at chaos 

Phase portrait diagrams of the Capacitor’s voltage (Vc) Vs Inductor’s current (IL) at various 

system stages (period-I, period-II (2T), period-IV (4T) and chaotic) are shown in Figures 8, 9, 

10, and 11. 
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CHAPTER V 

Chaotic Behavior of SEPIC Converter 

The SEPIC (Single-Ended Primary Inductor Converter) converter is a type of DC-DC converter 

that can exhibit chaotic behavior under certain conditions. Chaotic behavior in the SEPIC 

converter refers to the occurrence of irregular and unpredictable dynamics in its operation, 

characterized by aperiodic and sensitive dependence on initial conditions and parameter values, it 

consists of nonlinear components such as inductors, capacitors, and switches. The nonlinear 

characteristics of these components, coupled with the switching action of the converter, can give 

rise to complex and chaotic dynamics. 

The SEPIC converter can undergo bifurcations as the control parameters are varied. Bifurcations 

are points in the parameter space where the system's behavior changes qualitatively, leading to 

the onset of chaotic dynamics. Bifurcations can occur due to period doubling, fold bifurcations, 

or other nonlinear phenomena. Understanding and analyzing chaotic behavior in a SEPIC 

converter is important for system design, control, and stability techniques such as numerical 

simulations, bifurcation analysis, and Lyapunov exponent calculations to detect and analyze 

chaotic behavior in the converter. By studying the chaotic dynamics, we can design appropriate 

control strategies, parameter ranges, and stability measures to mitigate or avoid chaotic behavior 

and ensure reliable and predictable operation of the SEPIC converter. 

5.1 Operating Principle and Control Strategy: 

The SEPIC Converter is a type of DC-DC converter that allows both step-up and step-down 

voltage conversion. It is commonly used in power electronics applications where the input 

voltage may vary or needs to be regulated. The basic operation of a SEPIC converter involves 

the use of two inductors (L1 and L2), two capacitors (C1 and C2), and a switch (typically a 

MOSFET or a diode). The converter topology allows for the isolation of the input and output. 

When the switch is closed, current flows through inductor L1 storing energy in its magnetic field. 

At the same time, capacitor C1 charges building up voltage across it. When the switch opens, the 

energy stored in the inductor's magnetic field seeks a path to discharge. The diode connected in 

parallel with inductor L1 allows the current to circulate. The energy from the inductor is 

transferred to capacitor C2 and the load. 
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Average current mode control is a control method where the average inductor current is sensed 

and used as a feedback signal to regulate the converter's operation. At the start of each cycle, the 

switch S is activated (turned on). The current through the switch gradually increases until it 

reaches the specified reference current value (iref). Once the reference current is reached, the 

switch S is deactivated (turned off) and remains in the off state until the beginning of the next 

cycle. 

 

Fig.5.1- Current Mode Control Technique 

5.2 Mathematical Analysis of SEPIC Converter by Using Discrete Iterative Mapping 

The mathematical analysis of a SEPIC (Single-Ended Primary Inductor Converter) converter can 

be performed using discrete iterative mapping. This approach allows us to analyze the converter's 

behavior in discrete time steps, making it suitable for simulation and analysis purposes. Begin by 

writing down the circuit equations that describe the SEPIC converter, including the voltage and 

current relationships for the inductors, capacitors, and switches. Convert the continuous-time 

circuit equations into discrete-time equations by approximating derivatives as differences 

between consecutive time steps. This involves replacing differential equations with iterative 

update equations. Express the state variables (such as inductor currents and capacitor voltages) at 

time step [n+1] in terms of their values at time step [n] and other relevant parameters. This 

iterative mapping defines how the state variables evolve from one time step to the next. Start 

with initial conditions for the state variables and iteratively update their values using the iterative 

mapping equation. Repeat this process for multiple time steps to simulate the converter's 

behavior over time. 
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Examine the time-domain waveforms of the state variables and observe the converter's transient 

response, steady-state operation, and other characteristics of interest. Adjust the parameters of 

the converter, such as duty cycle, inductance, and capacitance, to achieve desired performance 

metrics. Iterate the analysis process to evaluate different operating conditions and optimize the 

converter's behavior. Discrete iterative mapping provides a mathematical framework to study the 

behavior of SEPIC converters in discrete time steps. It allows for simulation, analysis, and 

optimization of the converter's performance. By iteratively updating the state variables based on 

the mapping equation, you can gain insights into the converter's dynamics and make informed 

design decisions. 

The SEPIC converter’s state space equations can be stated as follows: 

 

Fig. 5.2 - Block Diagram of DC-DC SEPIC Converter  

.
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In above equation, ‘X’ represents the state vector of the system. It typically consists of various 

state variables that describe the system's behavior A1 and A2 is a square matrix representing the 

system's state transition matrix, which defines how the state variables change over time. B1 and 

B2 is a matrix that relates the system's input vector Vin to the state variables. 

In a SEPIC converter, there are typically two capacitors (C1 and C2), two inductors (L1 and L2), 

and a switch (usually a MOSFET or a diode). The input voltage is denoted as Vin, and the output 

voltage is denoted as Vout. 

The main objective is to create an iterative function that relates the state variables at a specific 

sampling instant to their values at a previous sampling instant. This discrete-time model allows 

for accurate analysis of system stability. Different methods, such as stroboscopic map, S-

switching map or A-switching map, can be employed to develop the discrete-time model. In this 

study, a stroboscopic map [58] is utilized to derive the discrete-time model for the SEPIC 

converter. The stroboscopic map involves uniformly sampling the system's state at the switching 

frequency. This approach provides a comprehensive understanding of how the SEPIC converter 

behaves in discrete time. 

The stroboscopic map [59] can be generated by if Ai (i=1, 2), the system matrix of the converter, 

is invertible. 

 



46 
 

1 2 1 1 1( )( ( ) ( )) ( )n n n n n nx T t t x t T t            (3) 

Where, 

1

1( ) ( ( ) )i i n iA t I B              (4) 

When the system matrix Ai (i=1, 2) of the converter is not invertible, the stroboscopic map can 

be expressed as follows:  

( 1)
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            (5)      

Where, the transition matrix ( )i   in equations (3), (4) and (5) corresponds to the system matrix 

Ai and is expressed by,      
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m m
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 
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
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The discrete iterative mapping equations for the SEPIC Converter can be expressed as follows: 

1 1 1 2

1

1
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C
            (7) 

1 1 1 1

1 1

1 1
( 1) ( ) *( )*( ( 1)) *( )*(1 )*( ( 1) )L L S in C S C Oi n i n T V V n T D V n V
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2 2 2

2
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C
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2 2 1 2

1 2
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( 1) ( ) *( )*( ( 1) ) *( )*(1 )*( ( 1) )L L S C O S C Oi n i n T V n V T D V n V

L L
           (10) 

The system matrix of the SEPIC converter is invertible has been taken into account. Therefore, 

using a truncated series for ( )i   , the mapping could be determined based on equation (1). The 

mapping fx obtained has the following format: 
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     (11) 

To find the Jacobian matrix, we differentiate above equations (7), (8), (9) and (10) with respect 

to the state variables: 
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5.3 Stability Analysis: 

To analyze the stability of the SEPIC converter, we utilize the Jacobian matrix derived from the 

discrete-time model. The Jacobian matrix is obtained by taking the derivatives of the mapping 

equations, as described in equation (9), with respect to the state variables. The stability of the 

converter is determined by examining the characteristic multipliers, which correspond to the 

eigen values of the Jacobian matrix Dfx. For the converter to be stable, it is necessary for the 

magnitude of all characteristic multipliers to be less than one. During the simulation, the specific 

component values mentioned in the appendix are utilized. 

The Jacobian matrix is derived by differentiating the discrete iterative mapping equations, as 

expressed in the following equation. 

.x x n
x

n n n

f f t
Df

x t x

  
 
  

          (28) 

By applying the implicit function theorem, the equation mentioned above can be transformed or 

expressed in the following form. 

1

x x
x

n n n n

f f
Df

x t t x

 


    
   
    

         (29) 

The given equation defines the switching function ( ), which is utilized to determine the 

operation of the circuit. 
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 1 1( , , ) ( ) ( )n n ref ref n n nx t i i k t x t            (30) 

From the circuit diagram, 
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The duty ratio can be obtained by solving the above equation. 
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          (32) 

5.4 Bifurcation Diagram of SEPIC Converter: 

When system parameters are changed, the behavior of the inductor current and load resistance 

can be plotted to create the bifurcation diagram of a SEPIC converter. The diagram displays the 

steady-state values or periodic orbits of various variables as a function of a control parameter. 

The resulting bifurcation diagram provides insight into the dynamic behavior of the SEPIC 

converter and demonstrates the existence of steady-state values, periodic orbits or any other 

interesting phenomena that appear as the control parameter evolves. 

 

Fig. 5.3- Bifurcation Diagram with respect to Reference Current (Iref) 
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Table 5.1 - Simulation Parameters of SEPIC Converter 

Switching Time Period (Ts) 2 sec 

Inductance (L1) 17.8  H 

Input Voltage (E) 24V 

Capacitance (C1) 0.4 F 

Load Resistance (R) 10  

Inductance (L2) 37 H 

Capacitance (C2) 47 F 

 

5.5 Results: 

      (i) Time Domain waveforms of SEPIC Converter: 

 

Fig.5.4-Fundamental waveforms (1T) of IL1 from the simulation at Iref=5Amps 

 

Fig.5.5-Two-Period waveform (2T) of IL1 from the simulation at Iref=6Amps 
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Fig.5.6-.Four-Period waveform (4T) of IL1 from the simulation at Iref=7Amps 

 

Fig.5.7-Chaotic waveform of IL1 from the simulation at Iref=8Amps 

 

Time domain waveforms can be used to confirm the bifurcation diagram. Here, the current 

waveform of the inductor has been recorded. The system shown in fig.4 operates in stable mode 

when the current waveform of inductor has been replicate or mirrors each other for every one 

time period. Moreover, fig.5 shows that the system contains period-doubling bifurcations of the 

current waveform of the inductor duplicates themselves for every two time periods. Figure 6 

show that the current waveforms of inductor time domain waveforms, which are similar in that 

they repeat for every four cycles. Hence, the system has four bifurcations in total. And finally in 

Fig. 7, the system has no repeating cycles, indicating that chaos has taken over. The bifurcation 

diagram's phase portraits are covered in more detail in the next section. 
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(ii) Phase Portrait Diagrams of SEPIC Converter: 

 

                       Fig .5.8- Diagram of Phase Portrait for Vc and IL1 at stable 1 period (1T) 

                        

                               Fig .5.9- Diagram of Phase portrait for Vc and IL1 at period 2 (2T) 

 

                           Fig .5.10- Diagram of Phase portrait for Vc and IL1 at period 4 (4T) 
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            Fig .5.11- Diagram of Phase portrait for Vc and IL1 at chaos 

Phase portrait diagrams of the Capacitor’s voltage (Vc) Vs Inductor’s current (IL) at various 

system stages (period-I, period-II (2T), period-IV (4T) and chaotic) are shown in Figures 8, 9, 

10, and 11. 
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CONCLUSION 

This study focuses on the nonlinear analytic approach based on discrete iterative mapping for the 

stability analysis and control of DC-DC converters. The generated matrix includes circuit 

characteristics and control coefficients, allowing system performance to be evaluated with a 

range of input and output parameters. Advanced control strategies are suggested to improve 

stability performance in DC-DC converters together with specific derivations of the Discrete 

Iterative Mapping. A wider variety of converters, such as interleaved or multiphase converters, 

can be converted using the techniques mentioned. A novel method of combining digital 

controllers with the suggested control system is also shown. The size of DC-DC converter 

inductors is also reduced with the help of the discrete iterative mapping. Simulators and 

experimental data are used to illustrate the theoretical analysis and effectiveness of the suggested 

methodologies. 

This study provides information on the chaotic behavior of Boost and SEPIC Converters. The 

analysis includes the examination of phase portraits, time-domain waveforms and bifurcation 

diagrams. Bifurcation analysis proves to be a robust method for understanding chaos in the 

system. The next voltage and current state is predicted using the discrete iterative mapping and 

analysis is done using numerical methods. A closed-loop converter with a voltage control loop 

and current control loop is subjected to input voltage and feedback gain variations and the 

resulting bifurcation diagram shows the behavior across various time periods, phase portrait and 

including chaos. The accuracy of the bifurcation diagram is verified by comparing it with time-

domain waveforms and phase portraits. The results provide valuable information on the 

boundary conditions and the maximum operating point. 
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FUTURE SCOPE 

The work presented in this thesis opens up potential areas for future research. Building upon the 

methods provided, nonlinear analysis can be extended to encompass other types of non-isolated 

or isolated converters with higher orders. For instance, exploring the creation of the Discrete 

Iterative Mapping matrix while considering transformer nonlinearities would be an interesting 

avenue of investigation. Additionally, the application of the proposed methods to develop new 

control techniques based on emerging control regulations warrants further exploration. 

Investigating the relationship between switching conditions and different control algorithms, 

along with their corresponding modifications in the Discrete Iterative Mapping matrix is another 

potential research direction. 

In terms of practical implementation, enhancing the existing platform to incorporate additional 

features and expand its universality for testing different types of converters at varying power 

ratings can be pursued. Lastly, constructing a representation of system stability that provides 

detailed information about all system parameters and external conditions can greatly assist in 

product design and development. 
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