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ABSTRACT 

Satellite data has proven beneficial in quick monitoring of large urban areas and its 

various features. Urban centres are heart of country and concentrates large population 

and development so there regular mapping is essential for various applications such as 

monitoring City’s growth, Urban climate, Hydrological changes, Pollution of water and 

air, Natural disasters, Socio-economic factors. So, satellite data and its products are 

actually used to make cities more liveable and advance towards sustainability.  

This study aims at monitoring some of those crucial urban parameters- Impervious 

surface area, Pervious surface area and Urban Green space in one of the largest and 

densely populated cities in the world, Delhi in India. It was done by creating a finer 

scale LULC generated from a high Spectral-Spatial resolution Hyperspectral Data from 

PRISMA sensor. The Hyperspectral data was hyper-sharped from 30 m to 5 m spatial 

resolution using CNMF algorithm. It was then classified into LULC classes Water, 

Vegetation, Buildings, Roads and Bare land using machine learning algorithm and 

extracted for the required Urban features for two areas of the city. The maps of 

Impervious-Pervious surface areas and Urban green space were also created. The Areas 

of these urban features was also measured. At last, the results were compared with 

validation samples and higher resolution datasets for the assessment of accuracy. The 

classification accuracy for this method for two areas in Delhi was observed as 87 and 

92%. The areal accuracies for urban features were found in range of 51.4 to 95.3 %. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 MOTIVATION 

Hyperspectral remote sensing is a recent and significant achievement in the 

remote sensing community. It offers valuable spectral information per pixel and 

overcomes the challenges of mixed pixels and spectral similarity often encountered in 

multispectral data [1]. With hundreds of contiguous bands, hyperspectral data provides 

rich information for discrimination studies and accurate classification mapping. High 

spatial spectral-resolution remote sensing data has the potential to produce detailed 

maps of urban materials and their condition, which is important since over two-thirds of 

the world's population now lives in urban areas. [2] Urbanization can result in social and 

environmental challenges such as loss of vegetation cover, poor air and water quality, 

microclimate changes, and thus deterioration of public health [3]. For urban planners 

and decision-makers, the built-up urban area is an important reference for assessing the 

city's level of development and planning future changes. Urban analysis is difficult due 

to the complexity and diversity of urban surfaces over a small area. Therefore, regular 

monitoring and updating of maps is essential in urban areas, where objects are mobile 

and infrastructure, vegetation, and construction are constantly changing [3,4] 

 

1.2 BACKGROUND TO REMOTE SENSING 

               

By monitoring the radiation reflected or emitted by the objects, remote sensing 

collects information about those objects. Image data is typically used to represent this 

information which is collected from far away [5]. For finding items above and below the 

Earth's surface, remote sensing has the potential to be an efficient technique. It typically 

entails the use of sensors mounted on aerial or space-based platforms to gather data 

about the Earth's surface and atmosphere utilising electromagnetic radiation as the data 

carrier. There are two different kinds of sensors: passive ones that pick up ambient 

radiation and active ones that emit their own electromagnetic radiation. There are two 
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subcategories of remote sensing: optical and microwave [6]. Through the use of sensors, 

optical remote sensing creates images that resemble photographs taken by a 

camera/sensor in space by detecting sun light at various wavelength areas [7]. 

Additionally, there are four different types of resolution: spatial, spectral, temporal, and 

radiometric. These categories describe, in turn, the size of each pixel within an image, a 

sensor's capacity to define precise wavelength intervals, the amount of time it takes a 

satellite to return to an observation area, and the quantity of bits used to represent the 

energy or information contained in each pixel [8]. 

 

1.3     URBAN FEATURE EXTRACTION 

 

               The technique of locating and extracting significant data or characteristics 

from satellite imagery of urban areas is known as "Urban feature extraction" [9].  

Roads, buildings, vegetation, bodies of water, and other man-made or natural 

objects are examples of these features. Various algorithms and approaches are used to 

analyse the satellite image data and extract pertinent features throughout the feature 

extraction process. Image segmentation, edge detection, and object recognition are a 

few typical methods used in satellite image feature extraction [10].  

The process of picture segmentation involves dividing up the satellite image into 

more manageable, smaller regions or portions. This may make it simpler to recognise 

and extract particular characteristics from the image, such as vegetation or buildings. 

Edge detection is a method for locating the borders or edges of objects in a 

picture. For locating things like highways, rivers, or other linear characteristics, this can 

be helpful. 

Utilising machine learning methods, object recognition identifies specific 

objects in the satellite image. This can be especially helpful for distinguishing objects 

like buildings, which may have recognisable shapes or patterns that a computer can 

recognise.  

These features can be utilised for a variety of purposes, such as urban planning, 

environmental monitoring, and disaster response, once they have been recognised and 

retrieved from the satellite image. For instance, the extraction of features from satellite 

images can be used to follow the spread of wildfires or other natural disasters, observe 

changes in land use patterns over time, or pinpoint regions that may be vulnerable to 

flooding or other dangers [11]. Overall, the ability to extract features from satellite 
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images is a strong tool that can offer insightful data and information for a variety of 

applications and sectors. 

 

1.4   ISSUES WITH URBAN FEATURE EXTRACTION 

 

              Urban feature extraction is a useful tool for managing urban environments, but 

there are a few problems that might occur throughout the process.    These problems are 

as follows [12]: 

Urban environments can be quite complex, with a variety of features and 

items that must be recognised and retrieved from satellite photos. The feature 

extraction procedure may become more difficult and time-consuming as a result. 

Scale: Because urban areas can be very big, it may be necessary to 

process a significant amount of satellite images in order to extract features from 

the entire region. This could be quite resource-intensive and computationally 

demanding. 

Data quality: The accuracy of feature extraction results might be affected 

by the quality of satellite imagery, which can vary. The quality of the data may 

be impacted by factors such as cloud cover, atmospheric conditions, and sensor 

calibration. 

Accuracy of classification: Depending on the chosen classification 

scheme, feature extraction methods' accuracy can change. The overall accuracy 

of the results may be impacted by the use of various classification systems that 

are better suited to various kinds of characteristics or objects. 

Even with sophisticated feature extraction techniques, deciphering the 

generated features might be difficult. For instance, it may be necessary to have 

additional information and skills in order to discern between various building or 

land use types beyond what can be learned from satellite imaging alone. 

Overall, even though urban feature extraction can offer insightful data and 

knowledge for a variety of applications, it is crucial to be aware of these problems and 

take action to resolve them in order to assure accurate and trustworthy findings [10,11]. 
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1.5   IMAGE FUSION 

 

To generate one image having more information than any of the individual 

images, two or more satellite images of the same geographic area captured by different 

sensors or modalities are combined in a process known as Satellite Image fusion [16]. 

Enhancing the quality of the images and offering a more thorough and accurate 

depiction of the geographic area are the two main objectives of satellite image fusion. 

Many methods, including pixel-based, feature-based, and decision-based fusion, can be 

used to combine satellite images. In pixel-based fusion, the different images' pixel 

values are combined to produce a single fused image. In feature-based fusion, features 

are extracted from the constituent images before they are combined to form a fused 

image. Making decisions based on the data in each separate image, followed by 

integrating the outcomes to produce a fused image, is known as decision-based 

fusion.[13] 

The importance of satellite image fusion can be attributed to a number of factors. 

One of the key benefits is that it can improve the image quality and resolution. Satellite 

image fusion can offer a more thorough and accurate depiction of the geographic area 

by integrating images from several sensors or modalities. This can aid with feature 

extraction and more precise image classification processes. [14,15] 

 

1.6     LITERATURE REVIEW     

 

1.6.1 Urban feature Extraction – Impervious Surface areas 

 

A novel method for identifying road networks in high resolution satellite 

imagery was proposed by Singh and Garg (2013) [17]. There are three main steps in 

the suggested procedure. In order to separate highways from the cropped image, they 

first perform adaptive global thresholding. Then, using morphological techniques, they 

remove brief non-road parts to extract the road network. The recovered road network 

and the region with similar pixel intensity values are then used to construct a spatial 

road matrix. The locations of potential non-road portions are shown by the road matrix. 

After extracting only, the road networks from the road matrix using a road tracking 

technique, certain additional morphological procedures are performed. The correctness 

and completeness criteria were employed to assess how accurate the road network 
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extraction is, and the results were 96.52 and 95.32, respectively. This showed a high 

level of accuracy in the road network extraction. 

 

An overview of mapping approaches for ISA mapping was presented by Lu et 

al. (2014) [18]. They talked about how scale affects remote sensing data and associated 

algorithms and emphasised the need for innovative approaches to boost ISA mapping 

and estimate performance. When choosing remote sensing data and associated factors 

and creating an ideal technique, scale is a crucial factor. Very high spatial resolution 

photos are necessary for ISA mapping at the local level, and segmenting or using 

textures to represent spatial information is a good technique to enhance ISA mapping 

performance. For ISA mapping of specific cities, many medium spatial resolution 

images were used, and merging multi-resolution/sensor data has proven useful in 

enhancing ISA spatial patterns. The ISA area estimates can be significantly improved by 

SMA-based techniques. The distinction between ISA and other land coverings must be 

strengthened using the appropriate data fusion techniques. It is also beneficial to post-

process data utilising auxiliary information like population density and land surface 

temperature. For study on population, economic, and environmental issues on a national 

and international scale, timely updating of ISA data sets is required. 

 

Aishwarya et al. (2017) [19] suggested a method for extracting water, land, and 

built-up urban characteristics from Enhanced Thematic Mapper Plus (ETM+) (Landsat 

7) imagery. The three indices used in the study were the Normalised Difference Water 

Index (NDWI), the Normalised Difference Vegetation Index (NDVI), and the 

Normalised Difference Built-up Index (NDBI), each of which represents one of the 

three main elements of Earth: an open water body, vegetation, or built-up land. From the 

seven original Landsat 7 image bands, these indices were utilised to produce three 

thematically focused bands, which were then combined to produce a new image. The 

accuracy ranged from 91.5 to 98.5 percent as a result of reducing data correlation and 

redundancy between the original multispectral bands. 

 

In order to make the process of extracting impervious surfaces easier while also 

disguising permeable surfaces like bare soil, Fang and colleagues (2019) [20] proposed 

a ratio-based impervious surface index (RISI) that makes use of Landsat 8 multispectral 

remote sensing images. The results were compared with those obtained from five other 
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methods for extracting the distribution of impervious surfaces, including the Normalised 

Difference Built-Up Index (NDBI), the Built-Up Index (IBI), the Normalised Difference 

Impervious Surface Index (NDISI), the Normalised Difference Infrared Index (NDII), 

and the Composite Burn Index (CBI). The researchers tested this index on three 

representative images of urban areas in China during both the winter and summer. The 

results suggested that RISI demonstrated good performance in differentiating 

impermeable surfaces from other ground objects, particularly bare soil, and showed a 

precision rate of 95%, 91%, and 93%, respectively. 

 

A method for extracting built-up area features from remote sensing images using 

the bat algorithm and normalised chromatic aberration was proposed by Xun et al. 

(2019) [21]. Prior to highlighting the colour features, the strategy first improved the 

contrast of remote sensing images. The features were then binarized after the colour of 

each feature was retrieved using normalised chromatic aberration. In comparison to 

CNN, the suggested method used less training sets and outperformed traditional image-

enhancing techniques. The ROI was extracted using the normalised method following 

the optimisation of the bat algorithm, yielding a high extraction rate of up to 96%. 

 

Using information from the Sentinel-2A and Landsat-8 satellites, Deliry et al. 

(2021) [22] evaluated and contrasted the efficacy of five classification algorithms in 

identifying urban impervious surfaces. The algorithms put to the test included the band 

ratioing normalised difference built-up index (NDBI), normalised difference impervious 

index (NDII), supervised object-based nearest neighbour (NN) classifier, supervised 

pixel-based maximum likelihood classifier (MLC), and supervised pixel-based spectral 

angle mapper (SAM). The outcomes demonstrated that, among the investigated 

methods, the supervised object-based NN strategy created the most precise and 

consistent map. For Sentinel-2 and Landsat-8 pictures, the algorithm achieved 

classification accuracy of 90.91% and 88.64%, as well as a Kappa coefficient of 0.82 

and 0.77, respectively. In comparison to the object-based NN approach, the supervised 

pixel-based MLC method created less homogeneous maps but still delivered satisfactory 

results. On the other hand, the semi-automatic NDBI and NDII methods as well as the 

SAM algorithm were unable to produce classification accuracy that was satisfactory. 
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For efficient feature extraction in complicated metropolitan environments using 

hyperspectral pictures impacted by cloud shadows, Ma et al. (2023) [23] suggested a 

unique 3D-1D-CNN model. The hyperspectral data was initially used to extract the 

spectral composition parameters, vegetation index, and texture features. Following the 

fusion and segmentation of these parameters into several patches, a 3D-CNN classifier 

was employed to extract features from complicated urban landscapes. For comparison 

reasons, a number of classifiers, including SVM, RF, 1D-CNN, 3D-CNN, and 3D-2D-

CNN, were also used. In order to assess the accuracy, a confusion matrix and Kappa 

coefficient were calculated. The accuracy of the proposed 3D-1D-CNN model was 

96.32% overall, outperforming SVM, RF, 1D-CNN, and 3D-CNN classifiers by 

23.96%, 11.02%, 5.22%, and 0.42%, respectively. According to these findings, the 3D-

1D-CNN model successfully extracts spatial-spectral information from hyperspectral 

data, particularly in cloud shadow areas where spectral information is lacking, such 

grass and motorways. In the future, the proposed concept might potentially be applied to 

the extraction of urban green areas. 

 

1.6.2 Urban feature Extraction – Urban Green Space 

 

               The effectiveness of land cover classification and data from the Normalized 

Difference Vegetation Index (NDVI) were compared in a study done by Li and 

colleagues in 2015 [24] to determine the economic worth of green urban areas in 

California. They discovered that high-resolution categorized land cover images are 

preferred over NDVI in hedonic models meant to evaluate the economic advantages of 

urban greening programmes, despite their higher cost, even if NDVI data with 

intermediate resolution may be sufficient for evaluating economic gains. 

 

Aram et al.'s [25] assessment of previous studies that looked at the cooling 

effects of urban green areas was published in 2019. Based on the methodologies utilized 

for evaluation, the study was split into three categories. The first category mostly used 

remote sensing and satellite maps to evaluate urban green spaces in one or more cities. 

The second group used on-the-ground observations to investigate city parks or several 

urban parks. The third category entailed simulating a part of urban land under various 

placement scenarios for green space. According to the analysis, huge urban parks with 
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an area larger than 10 hectares were areas where the greatest cooling impact distance 

and intensity were found to be present. 

 

Urban green spaces (UGS) were mapped in 1039 mid- and large-sized cities 

worldwide in 2015 using dense remote sensing data and the Google Earth Engine (GEE) 

platform. Hung et al. (2021) [26] also evaluated the spatial distribution and 

accessibility of UGS within the cities. To distinguish UGS from other vegetation, they 

combined the greenest pixel compositing method and the percentile-based image 

compositing method, which produced higher accuracy (89.26%). In contrast to cities in 

low- to lower-middle-income countries, they discovered that high-income cities had 

higher UGSC and UGSA values. 

 

1.6.3 Urban feature Extraction – LULC 

 

In an experiment, Jozdani and coworkers (2019) [27] compared a variety of 

deep neural network architectures (including regular deep multilayer perceptron, regular 

autoencoder, sparse autoencoder, variational autoencoder, and convolutional neural 

networks), ensemble algorithms (such as Random Forests, Bagging Trees, Gradient 

Boosting Trees, and Extreme Gradient Boosting), and Support Vector Machines (SVM) 

to assess their efficacy in urban mapping using GEOBIA. Two remote sensing images 

with resolutions of 30 cm and 50 cm were used to test the classifiers. They came at three 

key conclusions from their experiment: First, the most effective classifier was the MLP 

model. Second, utilizing autoencoders for unsupervised pretraining did not enhance 

classification outcomes. Thirdly, it was demonstrated that these cutting-edge machine 

learning classifiers are adaptable enough to handle the mapping of complicated 

landscapes by comparing the tiny changes in classification accuracy between MLP and 

other models like SVM, GB, and XGB. They discovered that combining CNN and 

GEOBIA did not yield in results that were more accurate than those produced by the 

other classifiers they had employed. 

 

By analyzing four key research studies, Moharram and Sundaram (2023) [28] 

completed a thorough and systematic study of land use and land cover (LULC) 

categorization using hyperspectral images. They first spoke about the essential elements 

of hyperspectral imaging, various hyperspectral imaging modes, data gathering 
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techniques, and important distinctions between hyperspectral and multispectral pictures. 

Second, they discussed a number of common deep learning techniques, including 

Convolutional Neural Network (CNN), Stacked Autoencoder (SAE), Deep Belief 

Network (DBN), Recurrent Neural Network (RNN), and Generative Adversarial 

Network (GAN). They also examined the role of machine learning in LULC 

classification. Thirdly, they examined common benchmark hyperspectral datasets and 

the standards for measuring the effectiveness of LULC classification techniques. 

 

In their 2011 study, Gamba and colleagues [29] attempted to simulate the 

urban environment at a low spatial resolution, comparable to the new hyperspectral 

sensor-ENMAP. The study's goal was to learn more about the new sensors' capabilities 

in a challenging environment such as in very mixed images, Low spatial resolution is a 

challenge for studying urban landscapes, according to experiments done on real 

datasets. The findings showed that defining urban regions is a very difficult assignment, 

in a scenario with a low spatial resolution. 

 

Dobhal's master's thesis from 2008 [30] focused on classifying and extracting 

features from Hyperion data. Gram-Schmidt, Principal Component, and Colour 

Normalized Transform were three fusion techniques that were utilized in the study to 

combine high-resolution IKONOS data with Hyperion data. For spectral assessment, 

which involved examining the spectral profiles of various land use and land cover 

(LULC) classes, the fused products were compared to Hyperion data. The different 

LULC classes in the original IKONOS and the three fused products were manually 

delineated in order to perform the spatial evaluation of the three merged products. The 

spectral evaluation's findings demonstrated that the CN spectral sharpening approach 

retained the spectral characteristics of the fused product more effectively. The three 

fused products' spatial quality significantly improved when compared to the Hyperion 

data, but not when compared to the IKONOS data, according to the qualitative 

evaluation of the different LULC classes. The separability research also revealed that 

the fusion improved some classes' separability, leading to greater classification 

accuracy. The highest classification accuracy that could be achieved was 80%. 
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1.6.4 Image Fusion Techniques  

In research done by Loncan et al. (2015) [31], they evaluated several pan-

sharpening methods for hyperspectral data with cutting-edge multispectral pan-

sharpening approaches that were modified for hyperspectral data. Eleven distinct 

approaches from diverse classifications, including component substitution, 

multiresolution analysis, hybrid, Bayesian, and matrix factorization, were assessed for 

their efficacy and resilience. Utilizing well-known performance measures, the 

approaches were applied to three separate datasets that represented various 

circumstances. They also developed a MATLAB toolbox that was made public and 

contains all the pan-sharpening methods. Based on their effectiveness, the study's 

findings divided the approaches into four categories. The first category included 

techniques like GFPCA and CS-based algorithms (GS and PCA) that produced subpar 

fusion outcomes. The second set of approaches (MRA methods, GSA, and Bayesian 

naive) are appropriate for fusing large-scale images, which is frequently the case for 

spaceborne hyperspectral imaging missions. These methods have strong fusion 

performances and cheap processing costs. Methods with slightly better fusion outcomes 

but higher computational costs (HySure and Bayesian Sparse) made up the fourth 

group, whereas those with slightly better fusion results but lower computational costs 

(CNMF) made up the third group. 

Through pan-sharpening and fusion strategies, Mookambiga and Gomathi 

(2016) [32] reviewed the different methods for improving the resolution of 

hyperspectral images (HSI). They divided the methods into two groups: hyperspectral 

image fusion with multispectral pictures and hyperspectral pan-sharpening (using PAN 

images). Most methods employed for multispectral pan-sharpening, they observed, 

could be adjusted for use in hyperspectral pan-sharpening. The study presents matrix 

factorization and Bayesian approaches created particularly for HS pan-sharpening and 

offers a review of traditional methods for HSI pan-sharpening, such as CS and MRA. 

The study also covered recommended performance evaluation metrics and datasets that 

were made accessible for the fusion process.  

"Hyper-sharpening" is a brand-new idea in remote sensing image fusion that 

Selva et al. (2015) [33] aimed to introduce. The old method of pan-sharpening, 

according to the authors, is constrained and insufficient, especially when new 
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instruments are created. In situations where multispectral or hyperspectral data is 

utilized to extract spatial information, the phrase "hyperspectral (HS) pan-sharpening" 

exists; however, it is not clearly defined. The authors suggested a hyper-sharpening 

framework and two hyper-sharpening techniques to solve this. Data from the improved 

SIM-GA imager, which comprises a panchromatic camera and two spectrometers in the 

VNIR and SWIR spectral regions, was used for the studies. Hyper-sharpening was used 

to fuse SWIR data to VNIR resolution by accounting for the various resolution variables 

across the data sets.  

A novel hyper-sharpening approach based on spectral modulation was presented 

by Lu et al. (2019) [34] with the goal of better preserving spectral information while 

merging MS data from a separate sensor with HS data. The framework tries to provide 

an adjusted MS picture that would have been taken under the identical imaging 

circumstances as the associated HS sensor. The authors introduced the high-pass details 

injection model and the band-dependent spatial-detail model, two methods derived from 

MS pan-sharpening. The suggested framework was put to the test on three HS and MS 

datasets gathered from various platforms, and the findings revealed that it was superior 

to existing hyper-sharpening strategies in terms of maintaining spectral integrity and 

increasing spatial details. In particular, when there are notable changes in acquisition 

dates and circumstances, the research emphasizes the significance of modulation 

processing for genuine HS and MS data. 

To create fused data with high spectral and spatial resolutions, Yokoya and 

colleagues (2011) [35] suggested a method for combining low-spatial-resolution 

hyperspectral and high-spatial-resolution multispectral data. Their technique, known as 

Coupled Nonnegative Matrix Factorization (CNMF), alternatively unmixed the 

hyperspectral and multispectral data into endmember and abundance matrices using a 

linear spectral mixing model. Each NMF unmixing procedure's initialization matrix 

included sensor observation models that connected the two sets of data. These two 

matrices might be used to provide fused data with high spectral and spatial resolutions. 

The CNMF technique was proved to be physically simple and simple to use, and by 

establishing a high number of endmembers, it could handle spectrally shifting scenes. 

The CNMF outperformed the MAP/SMM algorithm, one of the most cutting-edge 

algorithms currently in use, according to simulations. The CNMF approach's high-
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quality fused data might make it easier to correctly identify and categorize objects seen 

at a high spatial resolution. 

 

1.7      RESEARCH GAPS 

In reviewed literature, the following research gaps were observed:  

1. Data used for extracting urban features was usually multispectral. 

2. In case where Hyperspectral data is used, no recent data is used. Recent 

data can be better utilized for latest monitoring urban areas. 

3. Fewer studies were done in India and almost no study was found to be 

conducted in Indian national capital Delhi using hyperspectral data for 

mapping or extraction of urban features. 

4. Image Fusion or Hyper-sharpening techniques for improving the 

classification and feature extraction results over city Delhi was also not 

explored. 

 

1.8      RESEARCH OBJECTIVES 

Objective 1 – Hyper-Sharpening of satellite data over city Delhi. 

Objective 2 – Extraction of Urban Features using the Hyper-Sharped data. 

 

1.9    ORGANISATION OF THESIS 

    This thesis comprises five chapters. The first chapter describes the motivation for 

the study and introduces remote sensing, urban feature extraction, and image fusion. 

The chapter also highlights the challenges associated with urban feature extraction. It 

includes a literature review, identifies research gaps, and lists research objectives. The 

second chapter briefs about different urban features, their extraction methods and image 

sharpening techniques. The third chapter presents the study area, explains the resources 

used, outlines the methods followed. The fourth chapter reports the observations, 

obtained results and comments related to them. Finally, the fifth chapter provides 

concluding remarks on the study's findings and discusses this research’s contribution 

future directions.  
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CHAPTER 2 

DETAILED DEFINITIONS AND TECHNIQUES 

 

2.1   IMPERVIOUS SURFACE AREA 

               Impervious surface area (ISA) refers to the surfaces that do not allow the 

penetration of water into the soil, such as roofs, roads, pavements, and other similar 

surfaces. The increase in impervious surfaces has been identified one of the primary 

causes of environmental degradation in urban areas, as it alters the hydrological cycle 

and increases the risk of urban flooding, water pollution, and degradation of aquatic 

ecosystems. [17,20,22] 

 

Figure 2.1 Importance of Impervious Surface area (ISA) [17,18,20,22] 

Remote sensing, particularly satellite imagery, is widely used to extract ISA as it 

can provide a synoptic view of the Earth's surface, allowing for large-scale mapping and 

analysis. There are several methods [36,40,41] used to extract ISA from satellite 

images, which are classified into two categories: Spectral and Spatial methods. 

1. Spectral Methods 

Spectral techniques rely on impermeable surfaces' distinctive spectral signature, 

which may be separated from other forms of land cover. There are two popular 

spectral techniques: 
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o Spectral Indices 

The reflectance values of several satellite image bands are combined 

mathematically to create spectral indices, which emphasize particular land cover 

types. The Normalized Difference Built-up Index (NDBI) is the spectral index 

that is most frequently utilized for ISA extraction. NDBI is determined by: 

𝑁𝐷𝐵𝐼 =
(SWIR –  NIR) 

(SWIR + NIR) 
 

where NIR stands for near-infrared and SWIR for shortwave infrared.  

Impervious surfaces are indicated by NDBI values near to 1, whereas vegetated 

regions are indicated by values close to 0. 

o Classification Methods 

Classification methods use statistical algorithms to classify the diverse land 

cover types present in the satellite image. The most commonly used 

classification method for ISA extraction is the supervised classification method, 

where the user selects training samples of different land cover types, which are 

used to train the algorithm to classify the remaining pixels. The commonly used 

classifiers for ISA extraction are Support Vector Machines (SVM) and 

Maximum Likelihood (ML) [37,38]. 

2. Spatial Methods 

Spatial methods depend on the spatial properties of impervious surfaces, such as 

their shape, size, and texture. There are two commonly used spatial methods: 

o Object-Based Image Analysis (OBIA) 

OBIA is a process where the satellite image is segmented into objects created on 

their spectral, textural, and spatial properties. The objects are then classified 

based on their shape, size, and texture to distinguish impervious surfaces from 

other land cover types.[46] 

o Fractal Dimension 

Fractal dimension measures the complexity of the surface by analysing the 

spatial dispersal of pixels in the imagery. The fractal dimension of impervious 
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surfaces is higher than other land cover types due to their complex shape and 

texture. The commonly used method for fractal dimension analysis is the Box 

Counting method. [42,43,44,45] 

The accuracy of ISA extraction depends on several factors, including the size of the 

pixel in the satellite image, the accuracy of ground truth data, and the appropriateness of 

the method used. The accuracy of spectral methods is limited by the spectral resolution 

of the satellite image, while spatial methods can be affected by the segmentation and 

classification algorithms used. 

Thus, Remote sensing, particularly satellite imagery, provides a valuable tool for 

ISA extraction, allowing for large-scale mapping and analysis. The choice of method for 

ISA extraction depends on the specific characteristics of the satellite image and the 

research objectives. Spectral methods are suitable for large-scale mapping, while spatial 

methods are suitable for detailed analysis of individual objects. The accurateness of ISA 

extraction can be enhanced by merging multiple methods and ground truth data. 

 

2.2 URBAN GREEN SPACE 

 

   The UGS or Urban Green Spaces are zones in cities that are covered with 

vegetation, including street trees, parks, green roofs, gardens and other types of 

vegetation. UGS offers various environmental, social, and economic benefits to urban 

residents. These advantages include bettering the quality of the air and water, reducing 

the impact of the urban heat island, offering recreational possibilities, enhancing mental 

health and well-being, and increasing property values. With the increasing demand for 

UGS, it has become essential to monitor and assess the distribution and extent of green 

spaces in urban areas. Satellite imagery provides an efficient and cost-effective way to 

map and monitor UGS. Several techniques have been created recently to extract UGS 

from satellite images. One of the most commonly used methods for extracting UGS is 

object-based image analysis (OBIA). [47] 
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OBIA is a method that involves dividing an image into smaller segments or 

objects based on their spatial, spectral, and textual attributes. Once these objects are 

identified, they are classified into different land cover types, including UGS. The OBIA  

 

Figure 2.2 Importance of Urban Green Space (UGS). 

method requires the selection of appropriate segmentation parameters, such as object 

size, shape, and texture, which affect the accuracy of the results. To improve the 

accuracy of UGS extraction, various features, such as texture, shape, size, and 

vegetation indices, can be used as input parameters in the classification algorithm.[48] 

The Normalized Difference Vegetation Index (NDVI) is a different technique 

for UGS extraction. The difference between the reflectance of near-infrared and red 

light bands is measured by the vegetation index known as the NDVI. The NDVI values 

range from -1 to 1, with values closer to 1 denoting a higher vegetation density. The 

NDVI method has been used to map UGS by setting a threshold NDVI value above 

which the pixels are classified as UGS.[49] 

However, the NDVI method has limitations, such as its inability to differentiate 

between different types of vegetation and its sensitivity to atmospheric effects, which 

can affect the accuracy of the results. To overcome these limitations, various 

modifications of the NDVI, like the Soil-Adjusted Vegetation Index (SAVI) and 

Enhanced Vegetation Index (EVI) have been developed.[50] 
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Another approach for UGS extraction is machine learning algorithms. UGS has 

been categorized as a land cover type using machine learning methods like Random 

Forest and Support Vector Machines. Machine learning algorithms require a training 

dataset with labelled UGS and non-UGS pixels, which are used to develop a 

classification model. The classification model is then applied to the entire image to map 

the UGS. Machine learning algorithms have been shown to provide accurate results for 

UGS extraction, but they require a large training dataset and may not perform well when 

applied to different geographic locations or different seasons due to variations in the 

spectral properties of vegetation. 

In addition to the above methods, deep learning algorithms, such as 

Convolutional Neural Networks (CNN), have recently been used for UGS extraction. 

CNNs are a particular kind of machine learning algorithm that can automatically learn 

to recognize characteristics from visual data. CNNs have shown promising results for 

UGS extraction, but they require a large training dataset and significant computational 

resources. [47, 51] 

Thus, in the view of UGS importance to urban residents, and its extent and 

distribution need to be monitored and assessed regularly. Using satellite imaging, it is 

possible to monitor and map UGS effectively and economically. The level of accuracy 

needed, the kind of vegetation, the size of the region, and the available computational 

resources are only a few of the variables that influence the choice of an acceptable UGS 

extraction technique. 

 

2.3 LAND COVER AND LAND USE 

           The terms "land cover and land use" (LCLU) relate to both the physical covering 

of the land surface and the method in which it is used. The term "land use" refers to the 

various human activities that are carried out on the land, including forestry, mining, 

urbanization, agriculture, and recreation.[52] The physical characteristics of the land 

surface, such as forests, marshes, grasslands, aquatic bodies, and urban areas, are 

referred to as land cover. Changes in land use and land cover have a substantial impact 

on climate change, the preservation of biodiversity, the management of water resources, 

and sustainable development.[53] 
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Geographic information systems (GIS) and remote sensing both depend on the 

production of LULC maps. LULC maps offer useful data for planning land use, 

managing natural resources, and keeping an eye on the environment. Depending on the 

goals, spatial resolution, spectral and temporal properties of the satellite pictures, and 

the needed level of accuracy, there are many techniques for producing LULC maps.[54] 

A popular technique for producing LULC maps is supervised classification. For 

each land cover class in supervised classification, a collection of representative training 

samples is chosen. From the satellite pictures, these training samples are utilized to 

extract spectral signatures or features that are then used to categorize the pixels into 

various land cover classes. The quality and representativeness of the training samples, 

the land cover classes' spectral separability, and the classification algorithm's 

application all affect how accurate the classification is. Maximum Likelihood, Support 

Vector Machine, Decision Tree, and Artificial Neural Networks are a few of the 

frequently used supervised classification techniques.[54] 

Another method for creating LULC maps is unsupervised classification. In 

unsupervised classification, the satellite images are classified into clusters or groups 

based on their spectral similarity. The number and nature of the clusters depend on the 

clustering algorithm used and the similarity measures employed. The clusters are 

recognized, and then based on their spectral properties and visual interpretation, they are 

classified into several land cover groups. When the quantity and makeup of the land 

cover classes are unknown or when the spectral separability of the classes is poor, 

unsupervised classification might be helpful. However, unsupervised classification may 

lead to misclassification and confusion between similar land cover classes.[54] 

There are many algorithms that are used in supervised or unsupervised method 

of classification.: [57,58] 

1. Maximum Likelihood Classification: A popular approach for LULC 

classification is Maximum Likelihood Classification (MLC). The method 

determines the chance of a pixel belonging to each class based on the 

presumption that every pixel in an image belongs to a certain class. The pixel is 

given the class with the highest probability. 
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2. Support Vector Machine: A supervised learning method used for 

classification problems is called the Support Vector Machine (SVM). It operates 

by identifying the class border that optimizes the margin between them. Both 

binary and multiclass classification may be done using SVM. 

3. Random Forest: Multiple decision trees are used in the Random Forest 

(RF) ensemble learning process to build a classification model. Each decision 

tree is made by randomly choosing a subset of characteristics and a subset of 

data. The majority vote of all the decision trees is used to determine the final 

categorization. 

4. Artificial Neural Networks: Artificial Neural Networks (ANNs) are a 

group of methods that are designed to mimic the way the human brain works. 

They are used for classification tasks and can be trained using supervised or 

unsupervised learning methods. 

5. Decision Trees: A straightforward and efficient approach for LULC 

classification is called a decision tree (DT). Recursively dividing the data into 

subgroups according to the values of the characteristics, they then give each 

subset a class. 

6.     Spectral Angle Mapper: The spectral signature of each pixel in an image 

is compared to a collection of reference spectra using the spectral matching 

method known as Spectral Angle Mapper (SAM). The class whose spectral 

angle is most similar to the pixel's own spectral signature is given to it. 

Object-Based Image Analysis: Object-based image analysis (OBIA) is also a method 

for creating LULC maps. OBIA involves segmenting the satellite images into 

meaningful and homogeneous objects based on their spectral, spatial, and textual 

properties. The objects are then categorised into different land cover classes based on 

their physical and environmental characteristics, such as shape, size, texture, context, 

and location. OBIA is useful when the spatial resolution of the satellite images is high 

and when the land cover classes are complex and heterogeneous, such as urban areas, 

agricultural fields, and forests. OBIA has been successfully applied in various LULC 

mapping projects, such as land-use planning, forest inventory, and urban growth 

analysis. 
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The selection of algorithm will rely on the details of the data and the classification 

job at hand because each of these algorithms has strengths and drawbacks of its own. In 

practice, a combination of these algorithms may be used to create accurate and reliable 

LULC maps.[54] 

 

2.4 PANSHARPENING, IMAGE FUSION AND HYPER-SHARPENING 

                Two remote sensing techniques are used to increase the information content of 

satellite images: pan-sharpening and satellite image fusion. 

Pan-sharpening is a method of fusing a high-resolution (panchromatic) 

grayscale image with a less-resolution multispectral image to create a higher-resolution, 

multispectral image. The goal of pan-sharpening is to increase the spatial resolution of 

the multispectral data, while retaining its spectral information. This technique is 

particularly useful in various areas land cover classification, where high-spatial 

resolution is important for identifying small features, such as buildings or trees, while 

spectral information is necessary for distinguishing between different land cover 

types.[64] 

Satellite image fusion, on the other hand, involves combining two or more 

satellite images (can be radar and multispectral) of the same location, acquired at 

different times or using different sensors, to create a single composite image. The aim of 

image fusion is to create a more complete image with a higher level of detail than any of 

the individual images. This technique is particularly useful for monitoring land cover 

changes over time or detecting changes in the environment, such as flooding or forest 

fires. [60, 61] 

Hyper-sharpening is a technique used to decrease the size of the pixel of 

hyperspectral images by combining them with high-resolution panchromatic 

images.[72] The aim is to produce an imagery that combines the high spectral resolution 

part of hyperspectral image with the high spatial resolution part of panchromatic image. 

The key benefit of hyperspectral imagery is its capability to capture and distinguish 

spectral information for each pixel. However, hyperspectral imagery o spatial resolution 

is generally lower than that of panchromatic images. Hyper-sharpening overcomes this 

limitation by integrating the spectral and spatial information from both sources to 
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produce an image that has both high spectral and spatial resolution [71]. There are 

several techniques for hyper-sharpening [62, 65, 66, 67, 68, 69, 70]. Here are a few:  

Pixel Swapping: In this method, the relevant pixels in the lower resolution 

hyperspectral picture are swapped out for those in the high-resolution 

panchromatic image. While the spatial information is enhanced by adding the 

panchromatic image, the spectral information from the hyperspectral image is 

kept. This technique's drawback is that it could lead to spectrum distortion and 

noise amplification.   

Gram-Schmidt sharpening combines hyperspectral data with panchromatic 

imagery to enhance spatial resolution. It involves pre-processing, spectral 

adjustment, Gram-Schmidt transformation to decorrelate hyperspectral bands, 

fusion with panchromatic band, and an inverse transformation. By leveraging 

panchromatic data, it improves spatial details in hyperspectral data, resulting in a 

fused image that retains both spectral and spatial information. Its drawback is 

that it works well only with hyperspectral data spectral range overlapping pan’s 

spectral range, for other ranges of hyperspectral data, spectral information is 

deteriorated. 

Principal Component Analysis (PCA): PCA is a method used for reducing 

dimensionality in hyperspectral imagery. It involves transforming the 

hyperspectral image into a group of uncorrelated components. In hyper-

sharpening, PCA uses panchromatic image to extract the spatial information and 

then inject it into the hyperspectral image. The algorithm operates under the 

assumption that the spectral bands with less spatial resolution are related to the 

panchromatic band with higher spatial resolution. 

Intensity-Hue-Saturation (IHS) Transform: Another method for combining 

the spatial and spectral data from hyperspectral and panchromatic pictures is the 

IHS transform. The panchromatic picture is combined with the intensity, hue, 

and saturation components that were previously extracted from the hyperspectral 

image. While the hue and saturation components represent the spectral 

information, the intensity component represents the spatial information. 



22 

 

High-Pass Filtering: High-pass filtering is a technique used to remove the high-

frequency components from an image. In hyper-sharpening, the high-pass filter 

is used over the panchromatic image to extract the high-frequency details, which 

are then merged with the corresponding pixels in the hyperspectral image.  

Wavelet-Based Methods: Wavelet-based methods involve decomposing the 

hyperspectral and panchromatic images into wavelet coefficients. Extracted from 

the panchromatic picture, the high-frequency components are combined with the 

corresponding pixels in the hyperspectral image. 

Matrix Factorization: NMF unmixing is used alternatively to low-spatial-

resolution hyperspectral and high-spatial-resolution multispectral data in 

Coupled Nonnegative Matrix Factorization (CNMF), a method for collecting 

data with high spatial and spectral resolutions. As a consequence, high-spatial-

resolution abundance matrices and hyperspectral endmembers are obtained. 

These two matrices can be used to provide data with great spectral and spatial 

resolutions. 

Bayesian methods for hyperspectral sharpening use Bayesian inference 

principles to fuse low-resolution hyperspectral data with higher-resolution 

spatial information. They involve constructing a statistical model, specifying 

priors (to represent prior knowledge about the scene), estimating likelihood, 

performing Bayesian inference, and fusing the spatial image with high-

resolution hyperspectral image. These methods provide a probabilistic 

framework for incorporating prior knowledge and uncertainties, resulting in 

sharper and more accurate images. However, they require computational 

resources and careful parameter tuning. 

Hyper-sharpening, then, is a method that combines high-resolution panchromatic photos 

with hyperspectral images to enhance their spatial resolution. The particulars of the 

images being fused, as well as the required level of accuracy and processing efficiency, 

all influence the method that is selected. 
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CHAPTER 3 

DATA AND METHODOLOGY 

 

3.1   AREA OF STUDY 

             This research is located in Delhi, India (Fig. 3.1). Delhi, the nation's capital, is 

both a city and a union territory, and its official name is the National Capital Territory 

of Delhi (NCT). The NCT has a total size of 1,484 square kilometres. In 2011, the 

population of Delhi's core exceeded 11 million, making it India's second-largest 

metropolis after Mumbai. About 16.8 million people made up the NCT's whole 

population. 

 

Figure 3.1 Study Area in Delhi, India. Source- Google earth. 
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The metropolitan area of Delhi is increasingly seen to encompass surrounding 

satellite cities like Faridabad, Gurgaon, Ghaziabad, and Noida as well as areas beyond 

the NCT. According to the United Nations, this region, now known as the Central 

National Capital Region (CNCR), has approximately 26 million residents in 2016, 

making it the second-largest metropolitan area in the world [73]. 

In this study, two subsets are chosen (Fig. 3.1) within the urban setting of Delhi. 

The Subset 1 (Fig 3.3 (a,b)) mostly consists of well-built sectorial area which consist of 

sparse built-up with small region of dense built-up. It has parts of Rohini, Pitampura, 

Shalimar Bagh and Jhangirpuri etc. localities with total area of 43.5 sq. km. Subset 2 

(Fig,3.3 (c,d)) on other hand consist of mostly dense urban built-up to less dense built-

up of Tagore garden, Rajouri garden, Mayapuri, Ashok nagar etc. localities with total 

area of 38.14 sq. km. Both areas/subsets are chosen for comparing the performances of 

urban extraction and hyper-sharpening techniques on sparse to densely build/populated 

areas of the city. 
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3.2  DATA USED 

 

For this study, the PRISMA sensor’s hyperspectral and panchromatic data was 

used. The data was captured on 13 Dec 2022 over Delhi city. It had least cloud coverage 

of 0.39%. The Hyperspectral data was of 30 m spatial resolution with 234 bands and 

Panchromatic data was of 5 m spatial resolution with single band. 

  

Figure. 3.2 (a) TCC of hyperspectral image of PRISMA sensor. (b) Panchromatic 

image of PRISMA sensor. 

 

Both data were co-registered and covered 30×30 km2 area. The received data 

was pre-processed up to processing level 2D that means geolocated and geocoded on-

ground reflectance images. The data was further clipped to the extent of the two subsets 

of Delhi city. 

 

 

 

a.                                                                     b. 
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3.21   PRISMA 

            The HYC (Hyperspectral Camera) and PAN (Panchromatic Camera) are two 

sensor modules that are part of the PRISMA satellite, an Italian spacecraft that was 

launched on March 22, 2019. The 237 channels of the HYC sensor's medium-resolution 

hyperspectral data are collected in the visible/near-infrared and near-infrared/shortwave 

infrared bands. It focuses on coastal areas, vegetation, inner seas, and high-resolution 

hyperspectral imagery of the land [74].  

For fusion studies, the PAN module, a high-resolution optical imager, is co-

registered with HYC. PRISMA uses a push broom scanning technology, offering a 30 

km wide swath and a 1000 km wide field of sight on either side. Its Local Time on 

Descending Node (LTDN) is 10:30 a.m., and it is in a sun-synchronous orbit at a height 

of 614 km with an inclination of 98.19°. Its panchromatic camera has a wavelength 

range of 400–700 nm and a spatial resolution of one band of 5 m [74]. 

 
             a.                                                                         b. 
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Figure. 3.3 (a) Subset 1-Hyperspectral image with 234 bands. (b) Subset 1-

Panchromatic image of single band. (c) Subset 2-hyperspectral image of 234 bands. (d) 

Subset 2-Panchromatic image with single band. 

 

The continuous spectral bands in the 400–2500 nm range are captured by the 

hyperspectral sensor, which has a spatial resolution of 30 meters. The spectral resolution 

of this sensor and the spectral sampling interval widths are both 12 nm.  This sensor 

includes 66 bands in the visual near-infrared (VNIR) area of the light spectrum in the 

range of 400-1010 nm, and 173 bands in the short-wave infrared (SWIR) region 

between 920 and 2500 nm [75]. 

Numerous uses for PRISMA hyperspectral imagery (PHSI) have been 

discovered, including the mapping of forest fuels, the differentiation of different forest 

types, the mapping of burned areas, the prediction of methane emissions, agricultural 

use, the investigation of soil properties like moisture, organic matter, and carbon 

content, the assessment of water quality, and geological studies [75]. 

For the purpose of examining the accuracy of the areas extracted of different 

urban features the resultant areas were compared with high resolution multispectral 

                      c.                                                                          d. 
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data. The data used was from PlanetScope sensor. DOVE CubeSat uses a PlanetScope 

camera with a 3m spatial resolution that operates in eight bands: red edge, red, green, 

green I, yellow, blue, coastal blue, and near infrared. We utilized Level-3B data, which 

had radiometric and sensor adjustments made as well as orthorectification and UTM 

projection [76]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Revisit Time Daily at nadir 

 

Spectral Bands 

(nm) 

Coastal Blue: 431 - 452 

Blue: 465 – 515 

Green I: 513 - 549 

Green: 547 – 583 

Yellow: 600 - 620 

Red: 650 – 680 

Red Edge: 697 – 713 

NIR: 845 – 885 

Table 3.1 Details of PlanetScope data. [76] 



29 

 

3.3    METHODOLOGY 

 

 

 

 

3.3.1 Data Acquisition and Pre-processing. 

              The PRISMA data is owned by the Italian space agency ASI and can be 

accessed through their PRISMA portal. To obtain the data, registration and approval 

from ASI are required. The requested data was scheduled to be captured on December 

13, 2022, and processed up to level 2d. The downloaded data was in he5 format, which 

can be opened in ENVI using IDL commands or in QGIS using the ENMAP-BOX 

plugin. The latest versions of ENVI, like 5.6, have built-in support for opening 

PRISMA data. 

Figure 3.4   Flowchart of the adopted methodology 
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The data consisted of both panchromatic (PAN) and spectral images containing 

VNIR and SWIR bands. These images were exported to TIFF format. Two subsets 

named Subset 1 and Subset 2 were extracted over the city of Delhi. Both subsets 

exhibited a highly heterogeneous urban landscape with varying densities of buildings 

(high, medium, and low) of industrial, commercial, and residential nature. Additionally, 

there were wide to narrow roads, canals, lakes, parks, forests, croplands, and bare lands. 

Subset 1 had a size of 231×210 pixels, while Subset 2 had 215×197 pixels, both 

covering an area of 30m each. Since each subset contained 234 bands, dimensionality 

reduction was necessary for improved classification results. Therefore, the MNF 

(Minimum Noise Fraction) technique, suitable for hyperspectral data, was chosen to 

reduce the dimensionality of the data. 

 

3.3.1.1 Minimum Noise Fraction 

Minimum Noise Fraction (MNF) is a frequently used approach for decreasing 

noise and dimensionality in hyperspectral data processing. The MNF technique works 

by translating the original hyperspectral data into a collection of new orthogonal 

components called Minimum Noise Fraction components. The other components 

primarily represent noise, whereas these components are able to capture the majority of 

the signal information in the data. The dimensionality of the data can be decreased while 

still retaining the most crucial spectral information by choosing a subset of these 

components.[77] 

The following stages make up the MNF algorithm: [78,79] 

First, the mean of each spectral band is subtracted to center the data. The 

data is then whitened by being transformed to a new coordinate system where 

the covariance matrix is diagonal and the variance along each axis is equal to 

one, after the covariance matrix of the centered data has been determined. This 

step is essential because it removes correlations between spectral bands, which 

facilitates analysis of the data. 

The MNF components are then extracted from the whitened data using 

an eigenvalue decomposition process. The amount of signal or noise that each 

component has been able to capture is shown by its eigenvalues. Most of the 

signal information in the data is included in the first few MNF components, 

whereas the latter components primarily represent noise. The interpretability and 
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physical significance of the MNF components are enhanced by rotating them to 

a new coordinate system. 

         Target detection, classification, and anomaly detection are just a few of the 

applications of hyperspectral data analysis where MNF has proved to be an efficient 

pre-processing method. It maintains the spectral information that is crucial for further 

analysis while reducing noise and improving the signal-to-noise ratio. Hyperspectral 

data, which might include hundreds or thousands of spectral bands, can be reduced in 

dimension by using MNF. The dimensionality of the data can be decreased without 

losing crucial spectral information by choosing a subset of the MNF components. 

           MNF was applied to both the datasets in ENVI. Forward MNF was estimated for 

full dataset. The first 29 bands for inverse MNF were selected from the result statistics 

and eigenvalues plot, bands showing constant 1 value were discarded and rest were used 

in the classification of the data. 

 

3.3.2 Hyper-Sharpening 

For extracting the urban features at higher resolution with more preciseness, 

there was a need to increase the resolution of our hyperspectral data from 30 m to higher 

spatial range. 

Thus, the technique of Hyper-sharpening was employed. This technique fuses 

high resolution panchromatic image to low resolution hyperspectral image to provide a 

higher resolution hyperspectral image which can be used to better classify the data and 

extract required features. The hyper-sharpening algorithm that was used was easy to 

implement and most suited for hyper-sharpening hyperspectral data, called CNMF. 

 

3.3.2.1 Coupled Non-Negative Matrix Factorization (CNMF) 

Coupled Non-Negative Matrix Factorization (CNMF) is an advanced technique 

used for hyper-sharpening, which involves fusing hyperspectral and multispectral data 

to generate images with enhanced spatial and spectral resolution. It assumes that the two 

datasets being fused are captured under similar atmospheric and illumination conditions, 

as well as being geometrically co-registered and radiometrically corrected.[65] 

The CNMF algorithm operates through iterative steps to decompose the 

hyperspectral data into two nonnegative matrices: an endmember matrix and an 

abundance matrix. The endmember matrix captures the spectral signatures of the 
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materials present in the scene, while the abundance matrix represents the spatial details 

or the fraction of each material in each pixel.[65] 

To achieve unmixing, a widely used method is the linear spectral mixture model, 

known as NMF (Non-Negative Matrix Factorization). NMF attempts to decompose a 

nonnegative data matrix into a product of nonnegative matrices. The CNMF algorithm 

performs two NMF unmixing steps in an alternating manner until convergence is 

reached. 

During the iterations, CNMF capitalizes on the spectral information from the 

low-spatial-resolution hyperspectral data and the spatial information from the 

multispectral data. This approach helps to find an optimal initialization that leads to 

better local optima. Ultimately, the algorithm fuses the two matrices to generate a 

hyperspectral image with improved spectral-spatial resolution.[65] 

In summary, CNMF leverages the strengths of both hyperspectral and 

multispectral data by iteratively decomposing the hyperspectral data into endmember 

and abundance matrices, exploiting the spectral and spatial information, and finally 

combining the matrices to produce a high-resolution hyperspectral image with enhanced 

spectral and spatial details. CNMF is particularly well-suited for scenes with complex 

spectral signatures. However, CNMF can be computationally expensive to compute and 

can be sensitive to noise in the data.[65] 

In this thesis the PRISMA hyperspectral and Pan data of 30m and 5m resolution 

was used to hyper-sharp the spatial resolution of hyperspectral data from 30 m to 5m. It 

was done using MATLAB’s Hyperspectral Imaging Library; a few lines of code were 

required for the process which is readily available on MathWorks website. 

 

3.3.3 LULC Classification 

The Land use and Land cover classification was done on all the datasets, raw 

PRISMA subsets of 30m, MNF outputs of both subsets and hyper-sharped images of 

both subsets for comparison. The classification method was also used for extracting the 

required features- Impervious surface area, Pervious surface area and urban green space 

from the classified images. The details of the classification process are mentioned 

below. 
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3.3.3.1 Sample creation 

For Supervised classification of hyperspectral data, sample data of pixels 

representing different classes- Vegetation, Bare Land, Water, Roads, Buildings, need to 

be collected, these five classes of training samples were manually collected by 

observing the TCC (Bands: R=36, G=21, B=12) of hyperspectral image. Validation 

samples were collected by correlating the TCC image of PRISMA data to Google Earth 

imagery while collecting the samples. 

Total 508 training samples were created for both the subsets. For Validation 

purpose total 1000 random and labelled points were generated from both the subsets. 

The table below gives the no. of Training and Testing sample pixels chosen for different 

classes in the two of the data. The total no. of pixels in area 1 data was 1384*1257 = 

17,39,688 and for area 2 was 1286*1181 = 15,18,766. 

 

Table 3.2 Training and Testing sample pixels no. for different classes and both the areas 

CLASS No. of Sample Pixels - 1 No. of Sample Pixels - 2 

 Training Test Training Test 

1. Vegetation 7812 5830 2277 2999 

2. Bare-Land 5688 3569 725 157 

3. Water 4896 1188 2547 1561 

4. Roads 21744 4808 7139 687 

5. Buildings 18435 14238 7155 1397 

Total 58575 29633 19843 6801 

 

 

3.3.3.2 Classification algorithm - Support Vector Machine (SVM) 

The supervised machine learning approach known as Support Vector Machines 

(SVM) is frequently employed to address classification and regression issues. SVMs are 

quite good at handling difficult issues involving high-dimensional data. The SVM 

method searches for the best hyperplane that can most effectively split a set of labelled 

training data into distinct classes. The decision boundary dividing the data points is the 

hyperplane. [80] 
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The primary objective of the SVM method is to create a decision boundary that 

can accurately divide a multidimensional space into many categories. Hyperplanes are 

the limits of optimal decisions. The SVM approach selects the most crucial vectors or 

points, known as support vectors, that contribute to the hyperplane's creation. 

 

Figure 3.5 A Diagrammatic representation of SVM [82]. 

 

  The SVM method chooses the most important vectors or points, referred to as 

support vectors, that help create the hyperplane. The data points with the greatest 

influence on the location of the hyperplane are these support vectors since they are 

situated closest to it. [80] 

Finding the optimum hyperplane that optimizes the margin between the support 

vectors of various classes is the goal of linear SVM. The margin is the separation 

between the support vectors and the hyperplane along a perpendicular axis. The goal of 

SVM's formulation of this issue as an optimization problem is to maximize the margin 

while minimizing the classification error. Only linearly separable data may be handled 

by linear SVM. SVM uses the "kernel trick" to translate the input characteristics into a 

higher-dimensional space where linear separation is feasible when dealing with non-

linearly separable data. The polynomial kernel, radial basis function (RBF) kernel, and 

sigmoid kernel are frequently used kernel functions. SVM may automatically work in 

the higher-dimensional space thanks to the kernel function, which eliminates the need to 

manually calculate the converted feature vectors.[81] 
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In SVM training, the best hyperplane to divide the classes is sought for. Through 

an optimization process, the training data, which consists of labelled instances, is 

utilized to learn the model parameters (weights and bias). The margin and regularization 

terms are part of a cost function that must be minimized in the optimization issue. 

Numerous strategies, including the Sequential Minimal Optimization (SMO) algorithm 

and gradient descent, can be used to solve the optimization. SVM foretells the class 

labels of previously unobserved data points during the classification phase. In order to 

map each data point to the feature space, the same transformation used during training is 

used. Depending on which side of the hyperplane the data point is on, the anticipated 

class is decided.[81] 

The selection of the kernel function, regularization parameter (C), and kernel-

specific parameters are only a few of the tuning factors for SVM. The trade-off between 

margin maximization and the penalty for misclassifications is influenced by these 

variables. To obtain optimal performance and avoid overfitting or underfitting, proper 

parameter adjustment is crucial. [80,81] 

Due to its versatility in handling high-dimensional data, non-linear decision 

boundaries, and robustness against overfitting, SVMs have gained popularity across 

many industries. For big datasets, SVMs could be computationally costly. For SVM to 

work best, proper feature scale and parameter tweaking are essential. [81] 

 

SVM was applied on all the datasets of both the subsets- raw subsets, MNF 

applied data, and Hyper-sharped data. The kernel function used was Radial Basis 

Function. The process was done using ENVI software. 
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3.4  Accuracy Assessment 

Classification measures such as Precision, Recall, F-measure, Support, Confusion 

matrix and Cohen-kappa were used to find the accuracy of our classification and feature 

extraction outputs. Details about the measures being used is mentioned below [83]. 

 

3.4.1  Precision 

Precision is the classifier's capacity to avoid classifying samples from one class 

as belonging to another or as positive when they are actually negative. 

The ratio of the number of true positives to the number of false positives, or 

𝑡𝑝 𝑡𝑝 + 𝑓𝑝⁄   is used to measure accuracy. Intuitively, the classifier's precision is 

its capacity not to misclassify a negative sample as positive.  

 

3.4.2  F- Measure 

The accuracy and recall are the weighted harmonic means of the F-measure 

(𝐹𝛽 𝑎𝑛𝑑 𝐹1 measurements). A 𝐹𝛽 measure has a maximum value of 1 and a 

minimum value of 0. The recall and the accuracy are equally significant 

when  𝛽= 1, where are 𝐹1𝑎𝑛𝑑 𝐹𝛽  are equivalent. 

 

3.4.3 Recall 

The ratio of the number of true positives to the number of false negatives, 

𝑡𝑝 𝑡𝑝 + 𝑓𝑛⁄ , is known as the recall. The classifier's capacity to locate all of the 

correctly identified positive samples is known as recall. 

 

3.4.4 Support 

The amount of samples from each class in the validation samples constitutes the 

support. 

 

3.4.5 Confusion matrix 

By constructing the confusion matrix with each row representing the correct 

class, the confusion matrix function assesses classification accuracy.  

Entry i, j in a confusion matrix is, by definition, the quantity of observations that 

actually belong in group i but were predicted to be in group j. 

 



37 

 

 

Figure 3.6 An example depicting Confusion matrix [83].   

 

3.4.6   Cohen-kappa Score 

The cohen_kappa_score function is used to determine Cohen's kappa statistic. 

This measurement compares the annotations created by multiple human 

annotators, not a classifier to a ground truth. 

Cohen's kappa calculates the degree of agreement between two raters who each 

assign N items to C categories that are mutually exclusive. Cohen's Kappa, in its 

simplest form, is a numerical measure of dependability for two raters who are 

assigning the same object the same rating, adjusted for the probability that the 

raters would agree by chance. 

The kappa score is a value that ranges from -1 to 1. Good agreement is often 

defined as scores above 0.8, while zero or lower indicates no agreement 

(basically random labelling). 

Therefore, if the likelihood of an agreement is equal to, 

 

𝜅 =  
𝑝0 −  𝑝𝑒

𝑝0 − 𝑝𝑒
 

 

then 𝑝0 represents the model's overall accuracy and 𝑝𝑒 represents the measure of 

the agreement between the model's predictions and the actual class values as if it 

were a coincidence [83]. 

 

 

 



38 

 

CHAPTER 4 

OBSERVATIONS, RESULTS AND DISCUSSION 

 

4.1   OBSERVATIONS 

 

The steps of Data Acquisition, Pre-processing, Hyper-sharpening and 

Classification were followed using the data of two areas and following was observed: 

 

4.1.1 Hyper-Sharpening using CNMF 

 

The Hyper-sharpening of PRISMA hyperspectral image of 234 bands was done 

from 30 m to 5 m spatial resolution using coupled non negative factorization method, 

which resulted in a beautiful and detailed hyperspectral image at 5 m spatial resolution 

shown in the figure 4.1. For comparison, the raw subsets are kept along with the hyper-

sharped data in the figure. As spatial enhancement could be observed by visual 

observation, spectral characteristics of the hyper-sharped data were also visualized for 

comparison with raw data. The spectra of both the subsets for both the raw and hyper-

sharped data were visualized, vegetation spectra was chosen to find the effects of hyper-

sharpening on the PRISMA data.  

 

   

 a.                                                            b. 
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Figure 4.1 Hyper-Sharpening with CNMF results. (a) Raw 30m Subset 1 image. (b) 

Hyper-sharped 5m Subset1 image. (c) Raw 30m Subset 2 image. (d) Hyper-sharped 5m 

Subset2 image.  

The Spectra were smoothened in ENVI for better visualization and were 

observed in its spectral viewer. Both the sharpened and raw spectra were seen as similar 

indicating the preserveness of spectral information in the hyper-sharped image. The 

spectra were similar, they were not exactly same, as before the curve smoothening 

process was applied, there were very slight deviations in the spectral curves of 

sharpened data in comparison to raw data which were smoothened by the process. The 

smoothened spectra of all the data are shown in the figure 4.2. 

 

             

 a.                                                                   b. 

              c.                                                               d. 
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4.1.2   SVM Classification Outputs 

 

The SVM classification algorithm was applied on raw 30 m data, hyper-sharped 

5 m data and MNF outputs of both the areas of subset 1 and subset 2. The classification 

of MNF bands was poorer compared to raw subset and hyper-sharped data thus it was 

discarded and only raw data and hyper-sharped data was taken up to further processing. 

The Land cover and land use classification outputs are shown below in the figure 4.3. 

 

    
 

 

 

 

             c.                                                                        d.  

Figure 4.2   Spectral profile of a Vegetation pixel in (a) Raw 30m Subset 1 image. (b) 

Hyper-sharped 5m Subset1 image. (c) Raw 30m Subset 2 image. (d) Hyper-sharped 5m 

Subset2 image.  

 

                 a.                                                                   b. 
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Figure 4.3 LCLU Classification results. (a) Raw 30m Subset 1 image. (b) Hyper-

sharped 5m Subset1 image. (c) Raw 30m Subset 2 image. (d) Hyper-sharped 5m 

Subset2 image.  

 

All classes such Roads, Buildings, Vegetation, Bare land, Water are segregated 

in the both the subsets, but in hyper-sharped version, visually it is seen that these 

features are better being distinguished such as roads in hyper-sharped subset 1, on 

comparing hyper-sharped and raw subset images the difference in the classification can 

be clearly seen. The classification in hyper-sharped images has more enhanced and is 

more detailed, obviously due to increased spatial resolution. So clearly classifying 

higher resolution data give better classification results than coarser data. Also, the 

difference in classification of highly dense and less dense built-up areas is also clearly 

seen in subset 1 and subset 2 areas. Features are more clearly classified in subset 1 

urban area which has less dense built-up compared to denser built-up in area of subset 2. 

The limitation that was observed in the classification of hyper-sharped images 

was that many dark pixels belonging to built-up area or vegetation are classified into 

water class due to hyper-sharpening process modifying the certain pixel/reflectance 

value to be lowest same as water.  

 

 

 

 

 

                       c.                                                                     d. 
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4.2   RESULTS AND DISCUSSIONS 

 

4.2.1 Extraction of Impervious-Pervious surface cover and Urban green space. 

The classes that were selected for LULC classification were aimed at extracting 

features needed- Impervious area, Pervious area, and Urban green space. By combining 

binary rasters of road and building (outputs of classification) Impervious area map was 

created. By combining Bare land, Water and Vegetation’s binary rasters, Pervious area 

map and by using Vegetation class’s binary map created Urban Green space map was 

created. 

The figure 4.4 depicts the maps that were resulted by extracting the required 

features using the hyper-sharped data for both the areas. All the maps depict the features 

better and in higher resolution comparison to the raw PRISMA images. 

 

  

a.                                                                  b. 
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Figure 4.4 Features extracted maps from hyper-sharped images. (a) Impervious-

Pervious area map for subset 1. (b) Urban Green Space for subset 2. (c) Impervious-

Pervious area map for subset 2. (d) Urban Green Space for subset 2.  

 

The Maps were created in ArcMap software of ArcGIS suite. Further they were 

used to calculate the areas of each feature in the above provided maps. The resultant 

areas are shown in Table 4.1. The differences in the areas of 30 m PRISMA image and 5 

m hyper-sharper image even for same feature is clearly seen. 

 

 

 

 

 

 

 

 

              c.                                                                d. 
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Data Raw subset 1 

At 30 m 

Sharpened-

Subset 1 

At 5 m 

Raw Subset 2 

At 30 m 

Sharpened 

Subset 2 

At 5 m 

Impervious 

Surface Area 

km2 

35.518018 29.590837  32.199973  31.520831  

Pervious area 

km2 

8.141447 14.069816  5.919933  6.62021  

Urban Green 

Space km2 

5.462073 8.636579  4.050981  4.41699  

 

4.2.2 Classification Accuracy Assessment 

For finding how accurate is the LULC classification, Verification samples that 

were collected earlier were used. Accuracy assessment points were created using 

classified image and verification samples in ArcMap, and by using Scikit-learn library 

of Python created the classification report.  

The classification report talks about the accuracy of the SVM based LULC 

classification of hyper-sharped PRISMA data based on the parameters mentioned above. 

For Hyper-sharped image of Subset 1, it can be seen that the water pixels being most 

falsely classified and bare land most correctly based on their precision values. 

Similarly in another area of hyper-sharped subset 2, Vegetation is most correctly 

classified class and bare land most falsely. The overall accuracy of hyper-sharped 

classified images for subset 1 is 87 % and for subset 2 is 92 % 

Also, the Cohen kappa score for both classifications is above 0.8 which depicts 

good agreement. One thing to be noted here is that the verification of the images is done 

from the samples of same scale of 5 m as the hyper-sharped image. So, such accuracies 

could be produced. 

Table 4.1 Areas of extracted features from different datasets in Km2 

. 



45 

 

The confusion matrix for both the images is also shown in the figure 4.5 and 4.6. 

It clearly depicts which samples are correctly classified into their classes and which are 

misclassified. Similarly, classification reports with confusion matrices for both the raw 

30 m subsets are provided in Appendix 1 at the end of the report. 

 

 

 

 

 

 

 

 

Classes/Measures  PRECISION    RECALL F1 SCORE    SUPPORT 

Vegetation 0.83 1.00 0.91 202 

Bare-Land 1.00 1.00 1.00 68 

Water 0.55 0.20 0.30 54 

Roads 0.96 0.84 0.89 106 

Built-up 0.89 0.96 0.92 69 

Accuracy    0.87 

Cohen kappa 

score 

   0.8244184 

 

 

 

Table 4.2 Classification report Hyper-sharped Subset 1 Image 

 

Figure 4.5 Confusion matrix of Hyper-sharped Subset 1 

classified image.   
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Classes/Measures  PRECISION    RECALL F1 SCORE    SUPPORT 

Vegetation 0.99 0.90 0.95 220 

Bare-Land 0.44 1.00 0.62 12 

Water 0.99 0.99 0.99 115 

Roads 0.69 0.94 0.80 50 

Built-up 0.97 0.84 0.90 103 

Accuracy    0.92 

Cohen kappa 

score 

   0.8859723 

 

 

 

 

 

Table 4.3 Classification report Hyper-sharped Subset 2 Image  

 

Figure 4.6 Confusion matrix of Hyper-sharped Subset 2 

classified image.   
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4.2.3 Assessment of Extracted Areas. 

As the accuracies of the LULC classification has been accessed, now to assess 

that how much the areas of the Hyper-sharped image extracted Urban features were 

close or similar to reality or outputs from other finer datasets, a comparison of areas of 

interest (Impervious surface area, Pervious surface area, and Urban Green space) 

extracted from hyperspectral PRISMA data hyper-sharped from 30 m to 5m was done to 

a multispectral 3m spatial resolution data of PlanetScope.  

This high-resolution multispectral data for both subset regions was found up to 

an extent, so clipping of classified PRISMA data was done to that extent. The areas of 

required features were also noted. The PlanetScope data was also classified with SVM 

similar to hyper-sharped data to produce the required urban features and their areas. The 

result of the comparison is shown below in the able 4.4. 

 

 

 

 

 

Here in the table for subset 1, Impervious and Pervious surface areas are very 

close in no. and has accuracy of 95.3 and 93.7 percent depicting good results from 

sharpened data in respect to this feature in this area. For subset 2 the values differing 

Satellite data Prisma 

hyper-

sharpened-

5m  

PlanetScope 

Image-3m 

 

 

 Prisma 

hyper-

sharpened-

5m   

PlanetScope 

Image-3m 

 

 

 

Urban 
Feature 

Subset-1 Accuracy 

% 

Subset-2 Accuracy 

% 

Impervious 

Surface Area  

km2 

28.888961 27.591537 95.3 19.087423 16.933176 87.3 

Pervious 

area 

km2 

13.377477 14.277901 93.7 3.788518 5.87534 64.5 

Urban Green 

Space 

km2 

8.640845  12.195111 70.9 2.557938 4.984575 51.4 

Table 4.4 Comparison of Areas extracted from Hyper-sharped and PlanetScope Images 
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with accuracy of 87.3 and 64.5 percent, it seems like in less dense urban areas hyper-

sharpening is more effective than compared calculating areas in dense urban areas.  

In Urban Green space, the true values of areas are almost double with accuracies 

of this analysis being 70.9 and 51.4 percent, this large difference must be due to better 

spatial resolution of multispectral data which is better able to identify single trees or tree 

line as compared to the hyper-sharped PRISMA data. Also, along with the varying 

differences seen in areas of urban features, it should be noted that the hyper-sharped 

data was originally of 30 m spatial resolution and its hyper-sharped version is being 

compared to a multispectral 3 m data. 
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CHAPTER 5 

CONCLUSIONS, RESEARCH CONTRIBUTION AND FUTURE SCOPE 

 

 

5.1    CONCLUSION 

Hyperspectral satellite data is both large in size and in opportunities it provides. 

In this work its potential has been used for monitoring one of largest and most 

populated Urban metropolitan area, Delhi, capital city of India. Satellite monitoring of 

urbanization is crucial for various applications such as in environmental, climatic and 

social. But the are lot of challenges urban centres produce such as their high 

heterogeneity of objects in really small space, which must be precisely captured for 

solving issues of urban people. Different urban materials, roofs, roads, vegetation, bare 

land, and waterways need accurate monitoring of their type and extent that could benefit 

in relation to monitoring pollution, analysing urban heat island effect, hydrological 

changes, monitoring urban expansion, socio-economic parameters, and urban ecology 

and thus impacts of humans on environment. Regular and timely monitoring of urban 

features leverages many applications to humans.  

This study aimed on extracting features based on creating a high spectral- spatial 

resolution data’s LULC, using that Impervious-Pervious surface area and Urban Green 

space of a part of the city were extracted, the Goal was to do it as efficiently as it can be 

done by utilizing the high Spectral-spatial resolution hyperspectral data for the purpose. 

It is known that hyperspectral data has power to capture variety of materials and 

characterize them better using its continuous and large spectral range. The problem is its 

spatial resolution that is too coarse for required application.  

So, PRISMA hyperspectral data was Hyper-sharped from 30 m to 5 m using 

CNMF (Coupled Non-Negative Matrix Factorization) algorithm. It fuses spatial details 

from a high spatial resolution PAN data with spectral details from high spectral 

resolution hyperspectral data to create a High spatial-spectral resolution hyperspectral 

Image which now could be utilized for better extraction of the required urban features.    

SVM classification was applied to the hyper-sharped image to get the LCLU, 

further by segregating and merging different classes, Impervious-Pervious maps, and 

Urban Green space maps were produced, plus the areas of these features were also 
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determined and had varying accuracies of 51.4 to 95.3 %. These results were 

satisfactory for Impervious-Pervious areas but need more work in calculating Urban 

Green space more accurately. Still, it is believed that higher spectral resolution 

improves the discrimination of features in urban areas and thus this data was chosen to 

work upon.  

 

Thus, this study depicted that the methodology implemented here can be well 

utilized for extracting the urban features like Impervious-pervious areas in less dense 

cities at a good resolution of 5m. 

The study also showed that for more dense urban areas, the need would be of a        

large-scale data of more than 5m pixel size for more accurate classification and feature 

extraction. 

For Urban Green space, especially very high spatial resolution imageries that 

can capture signatures of single trees or tree lines will be required in urban areas for 

better calculation of vegetation. 

 

 

5.2 RESEARCH CONTRIBUTION 

 

The technique of Urban Feature extraction using Hyper-Sharpening could be 

employed anywhere in the world in any city for accessing latest variations in numbers 

of Impervious-Pervious area and Urban Green space at a good resolution of up to 5 m 

using freely available hyperspectral data.  

These features aid as inputs in studying and monitoring urban environment, its socio-

economic status and its climate. 

This study also depicts the potential of hyperspectral data in characterizing urban 

features and help in their retrieval. 

This Research also depicted one of the many urban applications of latest 

PRISMA data. 

The accuracies attained in this study suggested a huge scope of improvement for 

the process of hyper-sharpening and feature extraction process.  

 

 

 



51 

 

5.3    FUTURE SCOPE 

 

There is lot of work which can be done on using latest Hyper-sharpening 

algorithms and approaches to improve this study’s results as it was seen in using 

CNMF, many pixels of water class were misclassified due to deterioration of dark pixels 

values, this can be avoided by using better and latest algorithms of hyper-sharpening 

such as Bayesian methods. Improving the hyper-sharpening results can significantly 

improve classification and thus improve the extraction of features and their areas. It can 

definitely increase the computation of Feature’s areal accuracy.  

Using very high-resolution multispectral data or high spatial resolution airborne 

hyperspectral data for such an analysis can be an easy option but its availability is an 

issue, as these images are usually priced or have limited access. Therefore, sharpening 

available images is fruitful for extracting urban features.  

For improvement in the classification algorithm, SVM though is one the best 

ML algorithm for classifying hyperspectral data, techniques such as OBIA for high 

spatial resolution data can be used. Limitation is the requirement of high computational 

power to process high spatial resolution hyperspectral data for a regional scale and 

unavailability of open access software’s.  

Another group techniques that than can be used for improving hyperspectral 

sharpening or classification is Neural Networks and Deep learning. With more 

computational power, it can surely help in processing city scale data and extract their 

features. 

Thus, whichever way is used, studying and mapping of features in the cities is 

crucial and can really help people in many ways. It also aids in monitoring human’s 

impact over their environment and generate a balance between development and nature 

for a creating a better and sustainable future for all beings. 
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Appendix 1: 

➢ LULC Classification report for Raw 30 m PRISMA hyperspectral data 

1. Subset 1. 

 

 

2.   Subset 2 


