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Abstract 

Worldwide, lung cancer is the second most commonly diagnosed cancer. NSCLC is the most 

common type of lung cancer in the United States, accounting for 85% of all lung cancer 

diagnoses. The purpose of this study was to find potential diagnostic biomarkers for NSCLC 

by application of eXplainable Artificial Intelligence (XAI) on XGBoost machine learning (ML) 

models trained on binary classification datasets comprising the expression data of 60 non-small 

cell lung cancer tissue samples and 60 normal healthy tissue samples. After successfully 

incorporating SHAP values into the ML models, 20 significant genes were identified and were 

found to be associated with the progression of NSCLC. These identified genes may serve as 

diagnostic and prognostic biomarkers in patients with NSCLC. 
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CHAPTER 1 

INTRODUCTION 

Currently, machine learning and deep learning algorithms are at the forefront of technological 

advancements. The application of deep neural networks (DNNs) and machine learning (ML) 

algorithms in artificial intelligence (AI) systems has become prevalent in addressing significant 

issues in the fields of bioinformatics, biomedical informatics, and precision medicine. These 

algorithms not only yield remarkable results but also eliminate the need for human intervention 

in the handling, storage, and processing of data. The primary objective of these models is to 

enhance accuracy, expedite processes, and execute decision-making tasks, thereby augmenting 

the reliance of individuals on them [1]. 

However, the intricate nature of Deep Neural Networks (DNNs) or Machine Learning (ML) 

models can pose a challenge in comprehending the rationale behind their decision-making 

process, as they are frequently regarded as obscure and enigmatic. It has been noted that these 

models lack transparency, impartiality, and explanation, rendering them inadequate for 

practical problem-solving applications. The absence of transparency poses a difficulty for end-

users, decision-makers, and AI developers alike. In domains that are sensitive such as 

healthcare, AI systems that can have a substantial influence on human lives are mandated by 

law to possess not only desirability but also explainability and accountability [2]. Explainable 

Artificial Intelligence (XAI) offers a solution to enable transparency and comprehensibility of 

the internal mechanisms of the layers within these models, thereby enhancing their reliability 

[3]. Explainable Artificial Intelligence (XAI) is engineered to furnish substantiated evidence 

that corroborates its output and identifies salient features that may influence the ultimate 

decision. 

 

Moreover, the issue of fairness is increasingly becoming a matter of concern, given that 

algorithmic decision-making ought to be devoid of any form of partiality or prejudicial 

treatment towards specific groups or individuals on the basis of sensitive attributes. The 

objective of explainable artificial intelligence (XAI) is to address the lack of transparency in 

black-box models and enable elucidation of the decision-making process of AI systems. 

Machine learning models that are interpretable possess the ability to elucidate the reasoning 

behind their predictions and the variables that impact their results. However, the majority of 
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current interpretable machine learning techniques are not tailored to specific domains and have 

originated from fields such as computer vision, automated reasoning, and statistics. This can 

pose difficulties when attempting to directly apply these methods to bioinformatics unsolved 

questions without altering processes and ‘scientific body’-specific adjustment. Therefore, 

further exploration is warranted across various domains, such as forecasting, healthcare, and 

industry, to fully realize the potential applications of explainable AI [4]. 

 

To examine the significance of explainability within the realm of bioinformatics, a 

comprehensive report of interpretable machine learning (ML) techniques and tools specific to 

certain models or model-agnostic is being presented. The aim is to highlight the potential 

limitations and disadvantages of these methods while exploring the process of adapting 

interpretable machine learning techniques to address bioinformatics challenges [5]. It is crucial 

to recognize the vast potential of XAI techniques in enhancing transparency in various domains 

such as bioimaging, cancer genomics, and text mining through the use of illustrative case 

studies. By incorporating explainable AI in bioinformatics, we can not only improve the 

reliability of AI systems but also ensure their fairness and accountability, leading to more 

trustworthy and effective solutions the objective if this in-silico analysis to identify potential 

biomarkers for NSCLC with the application of SHAP tool. 
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CHAPTER 2 

XAI TAXONOMY 

The reviewed research articles establish that procedures under XAI can be classified on the 

following bases: (i) Global Interpretability versus Local Interpretability, (ii) Post-hoc versus 

Intrinsic and (iii) Model-Agnostic versus Model-Specific. 

 

Fig.1 Classification methods of XAI 

2.1 GLOBAL AND LOCAL EXPLAINABILITY 

The incorporation of explainability in AI models can be beneficial as it facilitates the disclosure 

of the underlying cognitive mechanisms employed by such models. Apart from being perceived 

from the standpoint of the end user, the local interpretability of models encompasses the 

provision of exhaustive justifications for the acquisition of a specific decision. Local 

explainability is a technique that aims to address the issue of explainability in machine learning 

models [6]. This is achieved by dividing the feature subset into smaller subsets and providing 

explanations for these simpler subsets that are crucial to the development of an accurate model. 

The utilisation of techniques that distinguish the functioning of a specific component of a 

model while elucidating only a portion of the system's comprehensive operation is referred to 

as a local explanation.  

The utilisation of a global model improves the determination of the overall distribution of the 

intended outcome. The initial step in understanding the classification of "good" or "bad" in a 

multiclass model involves the utilisation of the partial dependence model [7]. It is imperative 
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to comprehend the methodology and data when utilising the real-time explainable global model 

for training purposes. The degree of interpretability that facilitates comprehension of the model 

is achieved by considering the model's choices in a holistic manner, encompassing the feature 

set and each learned element such as weights, biases, parameters, and structures. 

2.2 INTRINSIC AND POST-HOC EXPLAINABILITY 

The distinction between intrinsic and post-hoc explainable artificial intelligence (AI) pertains 

to the temporal and integrative aspects of the explainability techniques employed in the AI 

system. The term "intrinsic explainable AI" pertains to the process of creating and constructing 

AI models that possess inherent interpretability and transparency. The models are designed in 

a manner that facilitates comprehension and explanation of their decision-making procedures 

and underlying mechanisms. The concept of intrinsically explainable artificial intelligence (AI) 

places emphasis on the clarity and comprehensibility of the model right from the beginning. 

This approach guarantees that the rationale behind the model's predictions or decisions can be 

easily accessed and scrutinised [8]. 

 

The achievement of intrinsic explainability necessitates meticulous model design and feature 

selection to guarantee lucidity. The representatives of intrinsically explainable models are 

linear regression, logistic regression, and decision tree models. 

 

Conversely, post-hoc explainable AI centres on furnishing justifications for the determinations 

rendered by opaque models subsequent to the generation of their results. The explanations are 

produced extrinsically to the AI system, utilising methodologies and approaches that endeavour 

to elucidate the inner mechanisms of the model. Retrospective post-hoc explainability 

techniques are utilised to interpret the results of the artificial intelligence model and reveal the 

factors or characteristics that impacted its decision-making process. This involves 

approximating deep-learning black-box models with more straightforward, interpretable 

models that can be scrutinised to provide explanations for the black-box models [9].  

Post-hoc explainability entails the utilisation of methodologies such as feature importance 

analysis, rule extraction, or surrogate models to acquire comprehension of the decision-making 

mechanism. 
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Some examples of AI models that can be made post-hoc explainable include Deep Neural 

Networks (DNNs), Random Forests, Support Vector Machines (SVM) and Gradient Boosting 

Machines (GBMs) [10]. 

2.3 MODEL-SPECIFIC AND MODEL-AGNOSTIC MODELS 

The comparison between model-agnostic and model-specific approach is critical to present a 

more adaptable technology, allowing the implementation of explainability methodologies to a 

diverse array of pre-existing models. One key aspect that sets apart interpretability 

methodologies is their level of inclusivity with respect to the range of models to which they 

can be employed. Model-agnostic techniques have the ability to provide explanations for 

models without being constrained by a particular model structure. In contrast, techniques that 

are specific to a particular model are limited to a particular model structure, necessitating access 

to the model's internal data [11]. 
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CHAPTER 3 

METHODS OF INTERPRETIBILTY 

Interpretable machine learning (ML) helps troubleshoot, discover new insights, and build 

confidence in ML model predictions. Latter aids in comprehending the model's forecasting 

abilities, discover errors or predisposed notions, and identify structurally impacting imagery 

[12]. Influence of explainable methods is not be undermined when it comes to ML algorithms’ 

outputs. Probing, perturbing, and surrogate methods help in elaborating machine learning 

models [13]. Probing the model's internal representations discloses its extraction of 

information. Perturbation techniques manipulate input data to discover model output 

fluctuations, highlighting salient features which makes it more reliable. Surrogate techniques 

reform a simpler model to approximately evaluate the rendition of the convoluted machine 

learning model belonging to the black-box list. Interpretable machine learning uses correlation 

rather than causality. These procedures should be used to create experimental hypotheses. 

These methods may reveal the opaque mechanics of machine learning models and exploit their 

power while retaining transparency and dependability. 

3.1 PROBING METHODS 

Training machine learning (ML) models requires finding the optimum label prediction 

parameters. Probe the parameters after training to see what the model learns. Although limited, 

probing techniques enable global interpretations of ML models. Probing tactics vary per ML 

algorithm. 

SVM models may be investigated by obtaining the hyperplane coefficient weights. Higher 

absolute weights suggest stronger label links and higher prediction significance. Linear SVM 

model probing is simple. Nonlinear SVM models employ the "kernel trick" to project data into 

higher dimensions, necessitating kernel-specific probing procedures [14]. These methods 

examine label-sequence motif relationships. 

Random Forest and gradient tree boosting models are hierarchical. These models are probed 

by assessing feature significance in labelling instances [15]. Decision tree true/false questions' 

informativeness is measured by the mean reduction in node impurity. Ensemble decision-tree 

models reveal intricate feature interactions. 
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However, probing findings must be interpreted with caution. Correlated traits may dilute their 

relevance. Continuous and categorical qualities with more categories or a greater numeric range 

may score higher [16]. Interpreting non-uniform feature spaces requires care. 

Succinctly put, probing strategies partially disintegrate them to comprehend the interior 

framework of ML models by extracting important parameters or evaluating the significance of 

features and their interrelationships. They provide insights into what the model has learned and 

help understand the reasoning behind its predictions. 

3.2 PERTURBING METHODS 

Perturbing techniques adjust input data and observe model output to comprehend machine 

learning (ML) models. These model-agnostic methodologies use sensitivity analysis and what-

if approaches. 

Sensitivity analysis includes changing one feature and assessing the model's performance. 

When features are eliminated or permuted, model performance decreases, indicating feature 

relevance. If correlations exist, sensitivity analysis may overlook crucial characteristics. 

Permutation-based methods assess the ML model's performance after randomizing features. 

This computation-efficient method calculates feature significance repeatedly. Genetics and 

image analysis use it [17, 18]. 

What-if analysis examines how feature input values affect predictions [19]. It localizes ML 

models. PDPs demonstrate how altering one feature's value affects others. Individual 

conditional expectation (ICE) plots reveal interactions and group-specific effects. These 

approaches read deep learning models effectively [20]. 

PDPs and ICE graphs reveal feature-model output connections. They are only visualized for a 

few characteristics and may need domain expertise or other interpretation procedures to 

discover relevant elements [21]. Perturbing tactics help comprehend ML models and learn how 

characteristics affect predictions. 
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3.3 SURROGATE MODELS 

Surrogate techniques may understand machine learning (ML) models. Consider an opaque 

machine learning model that resists probing and perturbation methods that fail to give 

significant insights. To approximate the black box model, train a more interpretable model 

[22]. Linear models, where coefficients reflect feature relevance, and decision trees, where 

node impurity may be determined, are examples of interpretable models. 

Surrogate models are interpretable. For instance, to create a surrogate model for a black box 

model that predicts gene upregulation using regulatory elements as characteristics, apply the 

model to a collection of genes, G. The black box model's projected label (up- or down-

regulated) for those genes was retrieved [23]. The same set of genes, G, would be used as 

examples, and the black box's anticipated labels would be surrogate training labels. 

Black box models often have considerable nonlinearity and many higher-order interactions, 

which limits surrogate models. Interpretable surrogates cannot grasp such models. A surrogate 

model that learns a piece of the opaque model may solve this problem. LIMEs are local, 

interpretable, model-agnostic explanations [24]. The logic for a single occurrence or a cluster 

of like occurrences (such as co-expressed genes) may be simple enough for a surrogate model 

to absorb. LIME was used to explain how a black box model that predicts cardiac arrest survival 

rates misclassified certain individuals [25]. A LIME model applied to a patient who was 

incorrectly projected to live showed that the model was too influenced by neurological health 

and the lack of chronic respiratory diseases. The model neglected important factors like high 

creatinine levels and old age. 
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CHAPTER 4 

XAI FRAMEWORK 

 

Fig. 2 XAI Workflow 

4.1 SHAP  

Explainable AI relies heavily on the SHAP (SHapley Additive exPlanations) framework. This 

technique uses each feature's estimated evaluation to explain machine learning model 

outcomes. Shapley values and SHAP tool are based on underlying theory called game theory. 

Quantification of each feature's prediction contribution is carried out [26]. 

The SHAP tool helps users determine which forecasting characteristics have the most impact 

on model output by computing their importance. The data above helps understand the model's 

behaviour and its decision-making factors. 

By unifying feature contributions across instances, SHAP provides an elaborative and curated 

understanding of the model's performance. This method allows global model interpretation. 

The tool helps understand complex models by examining variable patterns and relationships. 
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Model-agnostic SHAP may be used with a variety of machine learning models, including 

opaque ones. Its independence from model structures and assumptions makes this method 

suitable for many fields [27]. 

By giving characteristics importance, the SHAP technique helps identify model biases in 

decision-making. Allows fairness analysis. This method helps identify factors that may be 

disproportionately affecting forecasts and evaluate fairness and equality issues [28]. 

The SHAP tool promotes consistency and coherence. The tool's feature importance values are 

trustworthy and significant. Users trust and verify the tool's reasons using this functionality. 

SHAP improves machine learning models' interpretability and transparency. It helps 

consumers understand forecasts, identify biases, and make educated choices based on model 

outputs [29]. 

4.2 LIME 

The LIME framework, a popular explainable AI tool, aims to provide local interpretability for 

machine learning models. LIME estimates the decision limits of complex models using 

interpretable surrogate models to explain unique predictions. 

LIME helps consumers understand the reasoning behind single forecasts by providing local 

explanations. In scenarios where specific cases need explanations rather than model 

performance, thorough interpretability is beneficial. 

Like SHAP, LIME is model-agnostic and is to be operated and executed with numerous 

machine learning models. This technique is independent of the model architecture, making it 

versatile and applicable without previous knowledge [30]. 

LIME uses surrogate models to approximate the decision limits of complicated models, 

creating interpretable, simpler, and more transparent models. Surrogate models thoroughly 

reflect the black-box model's behaviours to provide local explanations [31]. LIME weights 

features based on their local prediction contributions. Weights indicate each feature's 

importance in the model's decision-making process, helping users identify key aspects that 

influence predictions. 
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Supportive text and images have helped LIME forecast textual and visual data. Highlighting 

key terms or areas in a text or picture might reveal the model output's influences [32]. LIME's 

explanatory visualisations highlight an instance's most important traits and places that affect 

prediction. Visualisations enhance explanations and help explain the model's decision-making 

process. 

LIME helps users understand predictions and identify the elements that affect complex model 

outputs. Local explanations and surrogate models increase machine learning model 

transparency and interpretability using LIME. This tactic cultivates trust and educated 

decision-making. 
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CHAPTER 5 

CHALLENGES IN XAI 

The protection of data privacy and security- The analysis of both public and private data can 

offer significant insights for decision-making purposes. However, in certain cases, the use of 

sensitive data may be necessary to elucidate particular decisions. The utilisation of the 

aforementioned data necessitates meticulous management to preclude its exposure to potential 

vulnerabilities and malicious actors. Inadequate management of confidential information poses 

a potential threat to the confidentiality and integrity of both individuals and entities, thereby 

resulting in grave ramifications. Hence, it is imperative to establish unambiguous guidelines 

and protocols for the management and safeguarding of data in XAI systems [33]. 

The intricacy of artificial intelligence models- Artificial intelligence models undergo 

evolutionary changes over time to cater to the requirements of various organisations. The 

pursuit of enhanced decision-making capabilities may prompt the utilisation of progressively 

intricate artificial intelligence (AI) models that pose challenges in terms of interpretability. The 

need for ongoing enhancement of eXplainable Artificial Intelligence (XAI) systems is 

imperative in order to remain current with evolving circumstances and to uphold the capacity 

to furnish significant justifications for the decisions made by artificial intelligence. Sustained 

research and development efforts are necessary to ascertain the efficacy of XAI methodologies 

in tackling the intricacies and dynamic nature of contemporary AI models [34]. 

The phenomenon of human bias- Although XAI prioritises transparency over conventional AI 

models, it remains susceptible to biases in both the data and algorithms employed for analysis. 

The dependence of XAI systems' training and operation data on parameters established by 

human agents is the underlying cause of this phenomenon. The mitigation of human bias in 

explainable artificial intelligence (XAI) necessitates meticulous examination of the data 

sources and algorithms employed in such systems, alongside persistent endeavours to foster 

diversity and inclusivity in the creation of AI technologies [35]. 

The user's comprehension- Despite the objective of explainable artificial intelligence (XAI) to 

enhance the comprehensibility of AI models, certain users may lack the requisite foundational 

knowledge to fully grasp the elucidations presented. It is imperative that XAI systems are 

developed in a manner that facilitates the provision of explanations that are customised to meet 
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the requirements and comprehension levels of diverse user cohorts. This may involve the use 

of visual aids, interactive interfaces, or other supplementary mechanisms to aid users in 

comprehending the rationale behind AI-based determinations [36].  

Biomedical data science comprises of and regularly produces a large and varied scope of large-

sized data, spread across different subdomains ranging from sequencing data, multidimensional 

omics data, text input, EMRs, to bioimage data. The challenges highlighted by this big-data, 

nonlinear, and convoluted category of biological data, combined with the non-homogenous 

nature of disease-related issues, mostly push AI algorithms to adjust a balance between high-

achieving performance and interpretability. High chances are that this high-level performance 

cannot be successfully accomplished across numerous biomedical data science applications. 

Henceforth, putting explainability above accurate performance results may not be the foremost 

concern when approaching problem-solving. There is a possibility that certain AI techniques 

may possess desired explainability but present us with inhibited performance. However, 

biomedical data scientists are unlikely to choose such methods since they give precedence to 

higher efficiency [37].  

The focus primarily revolves around the customization of AI methods, handling nonlinear data, 

addressing complex problem-solving scenarios, and analysing learning biases. Currently, there 

is a lack of developed techniques for analysing biomedical data. Rather than having a single 

source, these concepts can be traced back to various fields such as automated reasoning, 

computer vision, image recognition, cognition, and statistical methods [38]. 

The task of implementing AI techniques in the field of biomedical data science while ensuring 

interpretability can present difficulties. It is recommended that AI methodologies be tailored 

or adapted to specific datasets in order to achieve optimal performance and facilitate accurate 

interpretation, as opposed to employing a one-size-fits-all approach [39]. The process of 

customization may prove challenging to accomplish with limited time being devoted, as there 

is presently a lack of successful and entrenched AI theory to provide further clear path. 

Additionally, the level of explainability required may differ depending on the specific 

application domain.   

The use of AI or machine learning techniques in biomedical data science may result in learning 

biases that hinder the provision of basic interpretations by the AI methods. The matter of 

learning bias pertains to the potential for artificial intelligence outcomes to exhibit bias or 
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inaccuracies [40]. The kind of learning bias that arises due to uncoordinated interactions 

between certain AI techniques and specific data types can be due to incorrect parameter 

configuration or tuning, imbalanced data sets, or other dormant factors. However, detecting 

such biases may pose a challenge for biomedical data scientists. Bias can be regarded as a 

learning security issue that generates unpredictable outcomes due to the presence of artefacts 

in the AI models. The development of explainable AI should be predicated on the premise that 

AI techniques are capable of producing favourable outcomes and are devoid of any 

shortcomings related to training. Numerous AI models, including kernel-based learning, 

ensemble learning, and deep learning, are commonly employed in the biomedical field. 

However, some of these models may possess or have the potential to possess security issues in 

terms of learning certain types of biomedical data. In certain application domains, such as 

translational bioinformatics for disease diagnosis, addressing the security concerns of AI 

learning or rectifying its learning deficiencies may hold greater significance than ensuring AI 

explainability. This assertion is supported by existing literature [41]. 
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CHAPTER 6 

APPLICATIONS OF XAI 

Finance- Artificial intelligence is well applied in the field of finance. AI algorithms are 

employed to operate different functions, including investment strategies, credit scoring and 

fraud detection. The allowances of transparency open the door for comprehension of the thesis 

strengthening crucial financial calculations by customers, auditors, and regulators. XAI 

smoothens the way for explanation of the variable considered by AI models when catching 

sight of duplicitous behaviour in the field of finance [42]. 

Healthcare- In the healthcare domain, execution of XAI is crucial. It eases the job of 

comprehending and the reliability of AI models’ decisions by clinicians and other healthcare 

professionals. The application of AI-based tools for diagnosis warrants medical professionals 

to make well versed decisions. In context with medical diagnosis, XAI can come up with the 

justification for the prognosis of a particular disease or the benefaction of specific symptoms 

[43].  

Customer service- Grasping the theory behind the propositions can help increasing users’ faith 

in the system thereby resulting in the betterment of customer experience. Improvement in 

customer service can be carried out by the execution of AI bots and virtual assistants by helping 

in the recommendations to customers and explanations for their responses [44].  

Autonomous vehicles- AI plays a major role in the working and implementation of autonomous 

vehicles and self-driving cars. It helps in ensuring safety and helps in withstanding public’s 

faith. The decisions taken by the autonomous vehicles can be controlled by XAI like the 

classifying pedestrians or selecting the driving custom. The data ensures accountability, is 

debugged, and enhances the overall safety of autonomous system [45]. 

Legal applications- AI plays a vital role in changing the ways of providing information to the 

lawyers and helping bring justice in the fairest means possible. The advancement in legal affairs 

is brought mostly by the AI systems and XAI is aiding by smoothening the process of rendering 

determinations. AI helps in referring and providing explanations in context of legal documents, 

legal precedents, particular cases. This saves time for the lawyers and the justice system to 
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come up with the decision and the assessment of potential legal consequences and helps in the 

construction of arguments [46]. 

Human Resources- Humans tend to make prejudicial judgements and decisions. XAI promotes 

unity and takes decisions keeping all the discriminatory and prejudicial factors aside, that a 

human may have difficulty in doing. It is applied in human resource management for the 

reasons discussed above. In the professional field AI is used in making decisions during 

employment and employee evaluation procedures. It is best used during the candidate selection 

and providing best options for the selected field of work.  It helps in withholding the 

discriminatory practices and helps in ensuring fair conduct in the professional work 

environment [47]. 
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CHAPTER 7 

LITERATURE REVIEW 

Non-Small Cell Lung Cancer (NSCLC) is the predominant histological subtype of lung cancer, 

representing a substantial proportion of lung cancer diagnoses, with an estimated incidence of 

85% [48]. Considerable investigation has been carried out to comprehend the biology, 

molecular pathways, diagnostic approaches, and therapeutic modalities for non-small cell lung 

cancer (NSCLC).  

Various investigations have recognised genetic modifications and molecular pathways that are 

associated with Non-Small Cell Lung Cancer (NSCLC). These include mutations in genes such 

as EGFR, ALK, ROS1, KRAS, and BRAF [49]. 

The scientific inquiry has been directed towards comprehending the function of oncogenic 

drivers, tumour suppressor genes, and their subsequent signalling pathways in the 

advancement, progression, and metastasis of non-small cell lung cancer (NSCLC). Studies on 

the discovery of biomarkers have revealed several potential prognostic and predictive markers, 

including but not limited to PD-L1 expression, tumour mutational burden, and specific gene 

alterations, which can be utilised to inform treatment decisions [50]. 

The accuracy of NSCLC diagnosis and staging has been enhanced by the implementation of 

advanced imaging techniques such as computed tomography (CT), positron emission 

tomography (PET), and magnetic resonance imaging (MRI). The utilisation of liquid biopsies 

and analysis of circulating tumour DNA (ctDNA) has surfaced as a potentially effective 

approach for identifying genetic mutations and tracking the efficacy of treatment in individuals 

with non-small cell lung cancer (NSCLC). This method is non-invasive and shows great 

potential. 

The treatment of non-small cell lung cancer (NSCLC) has been significantly transformed by 

the advent of targeted therapies that are designed to specifically target genetic mutations. The 

administration of EGFR tyrosine kinase inhibitors (TKIs) and ALK inhibitors has 

demonstrated notable effectiveness in individuals with corresponding mutations [51]. 

Immune checkpoint inhibitors (ICIs) are a class of drugs that have been developed to enhance 

the immune system's ability to fight cancer [52]. The clinical benefits of immune checkpoint 
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inhibitors, specifically anti-PD-1/PD-L1 antibodies, have been demonstrated to be remarkable 

in patients with non-small cell lung cancer (NSCLC) by stimulating the immune system's anti-

tumour response.  

Biomarkers, including but not limited to PD-L1 expression, tumour mutational burden, and 

immune gene signatures, are currently under investigation for their potential to forecast the 

response to ICIs and facilitate the selection of patients [53].  

In context of personalised medicine, the combined effect of immunotherapies, targeted 

therapies and chemotherapy is testing the efficacy of the results of the treatment. The 

personalised medicine strategies are examined by conducting the processes like liquid biopsies 

and genomic profiling, and are on their way to favour the selection of options for treatment 

procedures which are on the basis of the uniqueness of different tumours. 
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CHAPTER 8 

METHODOLOGY 

8.1 DATA RETRIEVAL 

The data has been acquired from the GEO Datasets database available at NCBI. The dataset 

chosen after using the terms non-small cell lung cancer and non-smokers was GSE19804. This 

data was downloaded in the form of full SoFT file. In the dataset, there were 60 samples each 

of healthy control tissue and of primary tumour. 

8.2 DATA PRE-PROCESSING 

This process includes removal of gene expression entries with null values and entries having 

no gene IDs. After pre-processing, 20000 genes remained for a total of 120 samples. This 

dataset was subjected to PCA using the scikit-learn package of python to assess whether or not 

the sample groups separated based on the variance of gene expression in two major 

components, hence determining the dataset’s quality [54]. 

8.3 MACHINE LEARNING ON THE DATASETS 

The allocation of datasets followed a random process, resulting in an 80:20 split between 

training and testing sets. Machine learning techniques, including Support Vector Machines 

(SVMs), K-Nearest Neighbours (KNNs), and Deep Learning, have become increasingly 

popular in various fields such as omics data analysis, sequence data analysis, biomedical 

imaging, and signal processing [55]. Therefore, we opted to employ machine learning methods 

for our datasets. This decision was based on the aforementioned popularity of these techniques 

in relevant disciplines [56]. The XGBoost model was trained for classification on the 80 percent 

of the datasets using training sets. The XGBoost algorithm, also referred to as Extreme 

Gradient Boosting, is a machine learning methodology that utilises decision trees to enhance 

performance through a technique called boosting [57]. From its inception, this method has 

demonstrated a consistent superiority over a majority of other machine learning techniques, 

such as logistic regression, the random forest model, and traditional decision trees. 

The XGBoost frameworks have been developed for multiple programming languages, with 

Python being a prominent example. Additionally, it exhibits seamless compatibility with the 
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widely utilised scikit-learn machine learning framework employed by data scientists in Python. 

Following the utilisation of the XGBoost machine learning classifier through the Scikit-learn 

library on the given datasets, the models' efficacy was assessed through the application of the 

testing dataset which accounted for 20 percent of the whole dataset. 

The models underwent evaluation through the utilisation of a confusion matrix, and the 

accuracy of said models was determined by means of the test set. 

8.4 XAI ON THE TRAINED ML MODELS 

SHAP package in Python was used to carry out the XAI analysis on the previously performed 

XGBoost models. XAI (Explainable Artificial Intelligence) analysis delves into the decision-

making process of machine learning models and aids in the identification of features that hold 

significant contributions. 

The level of confidence in the prediction is made by the model. The analysis of Explainable 

Artificial Intelligence (XAI) will facilitate the identification of pertinent genes that can be 

utilised by trained models for the purpose of phenotype/condition identification and 

classification such as Healthy or Lung_Cancer. Fig 7 shows a SHAP summary plots indicating 

contribution of the values to the decision confidence. Also, GEO2R tool was used to identify 

and highlight the statistical significance of the genes which were found to be key after XAI 

analysis [58]. In this process, genes with p<0.05 are considered to be significant. Also, the 

logFC value is considered to classify up and down-regulated genes. Genes with logFC <-1 are 

down regulated whereas those with logFC > 1 are up-regulated. 

The genes that are significant after Machine Learning of 20000 genes are then fed into another 

XGBoost model which is new and is to be trained. Finally, the performance (in terms of 

accuracy and confusion matrix) of newly trained ML model is compared to the prior one which 

was initially fed with 20000 genes. 

Additionally, a literature survey is done of the key genes given as output by the SHAP tool to 

examine their roles in progression of lung cancer from healthy tissue. 
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CHAPTER 9 

RESULTS 

 

 

Fig.3: Principal Component Analysis plots for (a) Healthy vs NSCLC dataset of all 20,000 

genes (b) Healthy vs NSCLC dataset of 20 key genes. Segregation was observed for both. 
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Scatter plots were created using the data gathered from the PCA analysis as shown in (Fig. 3) 

in order to test the quality of the data and make sure that our data is well sorted on the basis of 

variance among the features. PCA was used to combine highly linked factors into a more 

manageable group of variables that explain the majority of the data variation. 

The outcomes of the PC scatter plots here describe the classes as being neatly organised, and 

machine learning can be used to classify the data. 

Fig. 3b shows the PCA scatter plot of 20 key genes across 120 samples. It can be seen there is 

greater and clearer separation of healthy and diseased principal components when compared to 

the PCA plot before SHAP application. 

After training the ML model on 80% of the dataset (training set), the model’s performance is 

evaluated on the basis of results obtained using the testing set, i.e., 20% of whole dataset. 

Accuracy is the KPI (Key Performance Indicator) used for ML classifier’s performance 

assessment. Since this is a case of binary classification, accuracy is stated in terms of positives 

and negatives obtained in confusion matrix results. Accuracy = [(TP + TN)/ (TP + TN + FP + 

FN)].

 

 

Fig 4: Confusion matrix for Healthy vs NSCLC dataset of (a) 20000 initial genes (b) 20 key 

genes. Grey squares in the matrix indicate the number of True positive instances (TP), Black 

squares indicate the number of False positive (FP) and False negative (FN) instances while 

white squares indicate the number of True negative (TN) instances. 
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Fig 5: (a) shows the accuracy of 91.67% in which the first model selected the key genes 

(before SHAP), whereas (b) shows the high accuracy of 95.83% when the key genes are 

again fed to the model as input. 
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Fig 6: SHAP Barplot depicting the genes of highest relevance on top for Healthy vs NSCLC 

dataset 

 

 



25 
 

 

Fig 7: SHAP Bar plot depicting 20 key genes for Healthy vs NSCLC dataset 

 

The bar plot as shown in Fig. 6, depicts the genes of utmost importance placed on the top and 

the genes of least significance at the bottom. DDOST, COL10A1 and EFNA4 are the genes of 

high predictive value and are most significant in our ML prediction model. 
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Fig. 7 shows the bar plot of all key genes which have high predictive value after analysing 

under new ML model (i.e., after SHAP application). 

 

 

Fig 8: SHAP Summary plot depicting the most important genes and their impact in Healthy 

vs NSCLC dataset. Identified genes are ranked descendingly according to their feature 

importance on y-axis. On the x-axis, it is indicated if a gene’s effect is associated with greater 

or reduced prediction, demonstrating the gene’s impact on the model output. The colour 

represents whether the effect of a specific gene is statistically significant (in red) or minimal 

(in blue) for that observation.  

 

In Fig. 8, the SHAP summary plot illustrates the following points: Genes are ranked 

descendingly according to their feature importance; the horizontal location indicates whether 
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the effect of a gene is related with greater or reduced prediction, indicating its impact on the 

model output; the colour indicates whether the effect of a particular gene is significant (in red) 

or minimal (in blue) for that observation; a high level of ‘DDOST’ has a strong positive impact 

on the quality rating, indicating the correlatedness of that particular gene. The “high” is shown 

by the red colour, while the “positive” influence is indicated by the X-axis. Similarly, we would 

state that the “GRK5” is inversely connected to the target variable. From the following SHAP 

summary plots, we have inferred that DDOST, COL10A1, EFNA4, TOX3, JTB and H2AFV 

are the most significant genes in all the datasets and have a high and positive impact on models’ 

predictions. While GRK5 and FAM65A are negatively correlated with models’ predictions. 

 

We employed the GEO2R computational tool to characterise the relevance of important genes 

that were differentially expressed during NSCLC development. P-values < 0.05 were 

considered statistically significant for the identified genes ANO10, A1BG, CCSER1, ACYP1, 

JTB, DDOST, H2AFV, ACP6, ADORA3, EFNA4, TOX3 and COL10A1 were found to be 

down-regulated while A1BG-AS1, ABCG1, FAM65A, IFNK, MYH2, GRK5, RELA and 

TBC1D13 were found to be up-regulated in NSCLC progression (Table 1). 
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Table 1- Statistical analysis results for identified key genes in the dataset. 

S. No Genes P-value logFC 

1.  A1BG 3.03E-01 0.070087 

2.  A1BG-AS1 7.26E-01 -0.01394 

3.  ABCG1 6.13E-11 -0.85556 

4.  ACP6 1.76E-15 0.908593 

5.  ACYP1 3.38E-02 0.218101 

6.  ADORA3 3.18E-08 1.06179 

7.  ANO10 4.04E-01 0.047119 

8.  CCSER1 9.90E-04 0.111623 

9.  COL10A1 3.01E-34 3.798228 

10.  DDOST 3.15E-25 0.717216 

11.  EFNA4 3.70E-31 1.610928 

12.  FAM65A 7.05E-21 -0.91652 

13.  GRK5 7.70E-36 -1.77003 

14.  H2AFV 4.55E-19 0.879407 

15.  IFNK 3.54E-01 -0.01945 

16.  JTB 5.44E-24 0.507355 

17.  MYH2 4.63E-10 -0.4146 

18.  RELA 1.89E-04 -0.19373 

19.  TBC1D13 2.44E-02 -0.14988 

20.  TOX3 2.54E-22 3.195963 
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CHAPTER 10  

DISCUSSION AND CONCLUSION 

A literature survey of the high impact genes identified after SHAP application was done in 

order to analyze their functionality and significance. 

The membrane proteins called as GPCRs are concerned with the physiological pathways which 

belong to the subclass of neurotransmission signalling and balancing of hormones. GRK5 

regulates pathways mediated by GPCRs. When NSCLC is talked about, the up-regulation of 

this gene presents an inferior survival rate as well as the fact that deteriorating expression of 

GRK5 weakens the propagation of lung cancerous tissue is crucial in pointing the coherence 

of its up-regulation as NSCLC progresses [59]. 

A1BG-AS1 is primarily related to hepatocellular carcinoma. When this gene is deliberately 

expressed and forced on to the cancer tissue then this results in stifling of hallmark mechanisms 

of any cancer which are invading the healthy cells and the movement into them and their 

tumorous propagation. The up-regulation of A1BG-AS1 in NSCLC progression is logical as 

increase in cancerous tissue warrants the need for the same [60]. 

RELA up-regulation in case of cancer occurs as it acts as gene regulator for the ones 

participating in tissue propagation and survival. RELA’s higher expression in lung cancer leads 

to incitement of NF-kB signalling. The latter propagates apoptosis defiance, survival and 

growth in tumorous tissue [61]. 

DDOST gene has a crucial role in glycosylation processing in proteins. The down regulation 

of DDOST gene in lung cancer is coherent with the fact that this may result in improper folding 

of proteins and their transfer. This transfer can be hindered if anomalous glycosylation 

adversely affects molecular pathways [62]. 

EFNA4 has action in cellular signalling specially at development. It denotes Ephrin A-4 and is 

crucial for homeostasis of healthy tissue. This in-silico analysis showed downregulation of this 

gene in NSCLC progression. Latter suggests that abnormal tissue propagation occurs as a result 

of EFNA4’s reduced expression. Presently, the role of EFNA4 dysregulation in lung cancer is 

unclear [63]. 

COL10A1 symbolizes Collagen α-1 chain and has an important role in maintenance and 

creation of bone tissue. Its product, Type X collagen is one of the main parts of extracellular 
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matrix (ECM). Therefore, its mostly associated with ailments involving maturation of cartilage 

and bone. COL10A1 is an interesting gene in the sense that, although it has a very contained 

expression in majority of healthy samples of varies diversity, it is downregulated at a large 

magnitude in case of NSCLC [64]. 

As a part of the ATP-binding transporter class, ABCG1 regulates lipid homeostasis and efflux. 

Henceforth, it has critical association with cardiovascular ailments. Comparably, TOX3 

regulates gene expression mainly in breast cancer [65, 66]. 

Further examination of these genes within the context of lung cancer, especially NSCLC, might 

lead to exploration and ultimately disclosure of some of the genes as markers of therapy and 

treatment. 

CONCLUSION 

NSCLC represents around 85% of the total cases of lung cancer. Non-small cell lung cancer 

(NSCLC) is classified into three major subtypes based on histology: adenocarcinoma, 

squamous cell carcinoma (SCC), and large cell carcinoma. In this study, we tried the 

applicability of XAI on transcriptomics data to identify candidate genes namely DDOST, 

COL10A1, EFNA4, TOX3, GRK5, JTB, FAM65A, H2AFV, MYH2, RELA, ACP6, A1BG, 

ADORA3, CCSER1, ACYP1, TBC1D13, ABCG1, IFNK, ANO10 and A1BG-AS1 that may 

be highly associated with the occurrence and progression of NSCLC. However, because these 

conclusions are based on bioinformatics research, they may require confirmation through wet-

lab experiments. This article supports for the use of XAI on ML models to quantify and 

thoroughly assessing the prediction results specially in the field of biomedicine for discovery 

of biomarkers relevant in predictive and prognostic purposes. 
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