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ABSTRACT 

The assessment of the river quality is a tedious task and takes a long time to calculate the river 

quality via the traditional methods. There is a chance of inaccuracy in the results due to several 

factors. With the use of satellite imaging methods, we can conveniently monitor and assess the 

river water quality and can easily cover the whole river in a single day. This study was made 

to calculate different water quality parameters in the Yamuna River. 

 27 different locations starting from Hathnikund Barrage to Hathi Ghat were covered. The 

parameters such as land surface temperature, pH, salinity, turbidity, chlorophyll, suspended 

matters, dissolved oxygen (DO), dissolved organic matter (DOM), etc were calculated using 

different satellite data and integrated with the ground-based data using the ArcGIS. 

Considering the Landsat satellite data to process the visualization of the area using the False 

Colour (Vegetative Analysis) and the Natural Colour composite using the combination of 6,5,4 

and 4,3,2 respectively. The Sentinel-2 satellite data is also considered for visualization of the 

area using the False Colour and the Natural Colour composite using the combination of 8,4,3 

and 4,3,2 respectively and the calculation of some specific parameters’ formulas using the 

raster calculator in the ArcGIS software. 

The integration of satellite and ground-based data using ArcGIS provides a comprehensive 

understanding of water quality parameters and helps identify areas that require attention for 

water quality management. The study emphasizes the importance of collaboration and data 

sharing among researchers to promote the development of more robust models for estimating 

water quality parameters. 
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CHAPTER 1 

INTRODUCTION 

1.1 MOTIVATION 

The motivation for conducting research on the assessment of river water quality 

parameters using satellite data lies in the potential to move forward with a new, advanced, cost-

effective, and efficient solution for continuous monitoring and detection of pollution sources, 

identify spatial and temporal trends in water quality, and evaluate the health of rivers. 

Traditional methods of water quality assessment rely on in-situ measurements, which are often 

limited in spatial coverage, costly, and time-consuming. The recent advancements in satellite 

remote sensing present a unique opportunity to overcome these limitations, revolutionize the 

field of water quality assessment, and contribute to the sustainable management of water 

resources. By utilizing satellite imagery and advanced remote sensing techniques, we can 

obtain comprehensive and frequent information on key water quality indicators, such as 

turbidity, chlorophyll-a concentration, and temperature, over large-scale river bodies. The 

integration of satellite-derived water quality data with existing monitoring networks and 

models can lead to more accurate predictions and early warning systems for potential water 

quality issues. 
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1.2 PROBLEM STATEMENT 

Water quality monitoring done via the in-situ measurement which is a time 

consuming and tedious process often leads to disadvantage of the emerging water quality 

problems like in obtaining or collecting the necessary information about water salinity, 

dissolved organic matter, coloured dissolved organic matter, dissolved oxygen, algal bloom 

detection. Poor water quality poses serious health risks to humans and animals that encounter 

contaminated water.  

Monitoring water quality measures are essential for locating causes of pollution 

and implementing solutions. Traditional methods of monitoring can often be pricy, time-

consuming, and restricted to a particular place. Therefore, methods for monitoring water 

quality parameters over wider areas must be implemented that are both cost-effective and 

economical.  

Satellite imagery is an alternative method for monitoring water quality. Recent 

advancements in satellite technology have enable the detection of water quality parameters 

from space, offering an alternative to ground-based monitoring methods. The use of satellite 

data can provide wider coverage of water bodies, real-time monitoring, and cost savings 

compared to traditional methods. However, satellite data also have limitations, such as the need 

for accurate calibration and validation, atmospheric and cloud interference, and limited spatial 

resolution. This study explores Landsat 8/9 and Sentinel 2 satellite imagery for water quality 

monitoring. 

Water quality monitoring is essential for protecting public health, ensuring 

sustainable use of resources, and mitigating negative impacts of human activities on aquatic 

ecosystems. However, traditional methods of water quality monitoring can be limited in their 

scope and accuracy, particularly in large or inaccessible water bodies. The use of satellite data 

has the potential to provide a more comprehensive and cost-effective approach to water quality 

monitoring. Despite the potential advantages, there are drawbacks to using satellite data. These 

drawbacks include the requirement for precise ground-truth data, restrictions on satellite data 

resolution, and difficulties in interpreting the data. Therefore, the problem statement is to assess 

the accuracy and reliability of using satellite data for monitoring river water quality parameters 

and to develop strategies for addressing the challenges associated with the approach. 
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1.3 LITERATURE REVIEW 

Different methods either using in-situ measurements, remote sensing using models, 

spectral indexes, using ML approaches have been used to find different parameters which 

provide accurate results but validation via the in-situ measurement has been a factor to consider 

in many studies. 

Abhishek Kumar Chaurasia, et al. (2018) [1] in the Varanasi district used the 

weighted arithmetic index method to determine the groundwater quality and the results showed 

that ~20% area ground water was non-suitable for drinking water as per the WQI classification. 

A. K. M. Azad Hossain, et al. (2021) [2] used Landsat 8 OLI satellite imagery for 

determining the turbidity in the Tennessee River, U.S.A. They constructed a numerical 

turbidity estimation model by using the satellite photography and in-situ measurements. 

Mohammad Haji Gholizadeh, et al. (2016) [3] suggested that different satellite 

sensors can be used for monitoring water quality parameters in various water bodies and 

concluded that remote sensing and GIS approaches combined with conventional in-situ 

sampling were the most efficient, least expensive, and most dependable technologies. 

Min Wu, et al. (2009) [4] employed MODIS satellite data to monitor various water 

quality parameters such as Chl-a, SDD, TN, and TP. The findings of their study revealed that 

a straightforward, effective, and satisfactory model could be developed using multivariate 

regression analysis. However, it was noted that the precision of the model was relatively low. 

Blake A. Schaeffer, et al. (2013) [5] reviewed different satellites like Sentinel-3, 

MODIS, MERIS, etc. and suggested that the emerging satellite technologies have the potential 

over traditional field sampling. 

J. B. Alam, et al. (2007) [6] calculated water quality using the standard methods. 

Various water quality parameters such as APHA, AWWA, WPCF, etc. were discussed as part 

of the analytical approach. The results showcased that there were incidents where it was found 

that the water was certainly unfit for drinking purposes, that too without any form of treatment. 

High level of turbidity was identified in the water quality of the river stream during the 

monsoon season. Contrarily, higher concentration of BOD as well as faecal coliform was found 

during the dry season. 



4 

 

Osvaldo J. R. Pereira, et al. (2020) [7] estimated the ph using the Landsat 5 TM, 

Landsat 7 ETM+, and Landsat 8 OLI  in the Nhecolândia Lakes (Brazilian Pantanal). For time-

series data from 2002 to 2017, the model accurately predicted pH values using Landsat and 

synthetic bands, with an R2 correlation of more than 85%. 

Xiaoyan Wang & Wu Yang (2019) [8] did a systematic review on Water quality 

monitoring and evaluation using remote sensing techniques in China and suggested 

applications towards the sea areas than inland water resources as China have made 

commendable progresses in the water quality monitoring and evaluating using the remote 

sensing techniques, especially in inland lake.  

D. Doxaran N, et al. (2004) [9] in the Tamar estuary (south-west UK) used the in-

situ Hyperspectral Remote-Sensing Reflectance (Rrs) measurements to calculate TSM and 

CDOM. This resulted in obtaining linear relationships alongside a high correlation between the 

Rrs (850 nm)/Rrs (550 nm) ratio. Total suspended matter concentration and inorganic 

suspended matter concentration were discussed. 

K.P. Sudheer, et al (2006) [10] used Landsat TM data with ANN model to calculate 

the suspended sediments and Chl-a. in the Beaver Reservoir in Northwest Arkansas. The study 

suggested that using derivative indices as input to develop ANN models was not an appropriate 

approach, as the performance of models developed based on the indices did not show good 

performance. Due to limitations of linear regression methods, applying ANN approach could 

significantly reduce the effort and computational time. 

Shivangi Somvanshi, et al (2011) [11] estimated turbidity using NDTI and classify 

into low, moderate, and high classes of water turbidity for Gomti river of Lucknow using the 

Google Earth’s Quick-bird satellite imagery. 

Somvanshi.S, et al.  (2012) [12] used the IRS LISS III satellite for water analysis 

of TH, SS, DS, TS, pH, DO, Cl −, BOD, COD and TH. The acceptable results were obtained 

considered for multiple linear regression analysis through 9 Variables except SS.  
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1.4 RESEARCH GAPS 

The reviewed studies mainly focus on a relatively smaller part of the areas majorly 

the lakes and generally do not cover any state entirely. Also, these studies usually focus on the 

district as the smallest individual unit while neglecting the variation at even smaller 

administrative units. The parameters used are not consistent with all the studies as major 

researchers were considered either using 8 or 10 parameters. 

The availability of satellite data is limited, particularly in developing countries. 

This can make it challenging to monitor water quality parameters consistently and across large 

geographic areas. The accuracy of satellite-derived water quality parameters needs to be 

validated with ground-based measurements. However, ground-based measurements are often 

limited, particularly in remote areas, making it challenging to validate the satellite data. A lack 

of standardization in the collection and processing of satellite data can lead to variations in the 

data, making it difficult to compare and analyse the results. There is a need to develop better 

models that can accurately estimate water quality parameters from satellite data. However, 

these models can be complex and may contain uncertainties, which can affect the accuracy of 

the estimates. The temporal coverage of satellite data can be limited due to cloud cover and 

other atmospheric conditions. This can make it challenging to capture the temporal variability 

of water quality parameters accurately. 

According to the machine learning method used to evaluate the parameters 

affecting water quality using various methodologies, such as multivariate regression analysis, 

linear regression is the most straightforward but least accurate method. Multivariate regression 

offers a little boost to precision, but the use of neural networks can significantly increase 

retrieval performance. Most studies on machine learning for water quality prediction have 

focused on a single region or water body, making it difficult to assess the transferability of the 

models to other regions. Although machine learning algorithms have shown promise in 

improving water quality monitoring, there is limited research on how these algorithms can be 

integrated with traditional water quality monitoring methods to improve their accuracy and 

reliability. 
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1.5 OBJECTIVES 

Considering the research gaps, this work has been based on the following 

objectives. 

Objective 1. Detailed Review of Various Water Quality Parameters, Extraction of these 

Parameters Using Lab Experiments.                                                                                       

Objective 2. Detailed Review of Existing Literature on Extraction of Water Quality Parameters 

Using Satellite Data 

Objective 3. To Assess a Relationship between the Ground-based Data and the DN Value 

Available from Satellite Data for Yamuna River. 

Objective 4. To obtain a Water Quality Index Map. 

1.6 THESIS OVERVIEW 

This manuscript provides an introduction of the subject field in Chapter 2, then 

goes on to detail the resources used and the methods followed in Chapter 3, then goes to apply 

different approaches and validated the obtained result in Chapter 4 and conclude the notes on 

the study's effort as well as its findings. 
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CHAPTER 2 

 DETAILED REVIEW OF VARIOUS WATER QUALITY PARAMETERS, 

EXTRACTION OF THESE PARAMETERS USING LAB EXPERIMENTS 

2.1 WATER QUALITY 

Water quality is “the physical, chemical, and biological characteristics of water. 

Safe drinking water quality criteria were set forth by the Bureau of Indian Standards (BIS) (IS 

10500:2012) [13]. In the absence of a different source, this standard provides the acceptable 

limits and the permissible limits. If any parameter such as a chemical or biological exceeds the 

allowable limit, a proper investigation ought to be carried out, and, if required, corrective 

measures ought to be carried out, or the use of the water supply for drinking needs to cease 

until the water quality is considered acceptable. 

2.2 WATER QUALITY PARAMETERS 

The parameters are broadly divided into three types namely physical, chemical, and 

biological but nowadays some parameters are further divided into heavy metals, pesticides, 

radioactive materials, etc. 

Table 2.1: Different Parameters 

Physical 

Parameters 

Taste, Colour, Odour, Turbidity, pH, Temperature 

Chemical 

Parameters 

Silica, Potassium, Boron, Calcium (as Ca), Magnesium (as Mg), Total 

Hardness, Sulphide, Chloramines (as Cl2), TDS/Elect. Conductivity, 

Total Alkalinity, Chloride, Fluoride, Ammonia, Nitrate, Nitrite, 

Sulphate,  

Biological 

Parameters 

Viruses (V. cholera, S. typhi, S. dysentrae, F. streptococci, 

Staphiloccocus, G. lamblia), Total coliform bacteria, E. coli/ 

Thermotolerant coliform bacteria 

Heavy Metals Mercury, Barium, Zinc, Aluminium, Selenium, Silver, Molybdenum 

(as Mo), Iron, Manganese, Copper, Total Chromium (as Cr), 

Cadmium, Lead, Nickel, Total Arsenic (as As),  

 

  



8 

 

Table 2.1: Different Parameters (Continued) 

Pesticides Dichlorodiphenytri- chloroethane (DDT), Aldrin/Dieldrin, Alpha 

HCH, Beta HCH, Chloropyriphos, Endosulfan (alpha, beta, and 

sulphate), Ethion, Alachlor, Atrazine, Butachlor, Delta HCH, 2,4-

Dichlorophenoxyacetic acid 

Specific 

Parameters 

Dissolved Oxygen (DO), Mineral oil , Free Residual Chlorine, 

Biochemical Oxygen Demand (BOD), Total Pesticide Residue, 

Radio-active elements, Cyanide, Poly Aromatic Hydrocarbons 

(PAH), Total Organic Carbon (TOC), Chemical Oxygen Demand 

(COD), Polychlorinated Biphenyls, N-Nitro-sodi-methylamine 

(NDMA), Anionic Detergents (as MBAS), Oils & Grease, , Phenolic 

Compound (asC6H5OH), Trihalomethanes (Bromoform, Dibromo-

methane, Bromodichloromethane, Chloroform), Methyl parathion, 

Gamma–HCH (Lindane), Phorate, Isoproturon, Malathion, 

Monocrotophos, Uranium 

 

The major works on calculating or finding the water quality is done by laboratory 

methods and the parameters which are used are pH, DO, Turbidity, Nitrate, Phosphorous, 

Hardness, Faecal Pollution, Temperature, Residual Chlorine, Chloride, Fluoride, Iron, 

Ammonia, Alkalinity, etc. 

2.3 SELECTION OF WATER QUALITY PARAMETERS 

The selection of variables to be included in a water quality assessment must be 

related to the objectives of the water quality assessment program and the factors that depend 

on it. The parameters that are considered in the present study with a brief description for each 

one are listed below: 

A. pH 

The pH scale is a logarithmic scale with a range of 0 to 14, with 7 being regarded 

as neutral. Alkalinity is represented by numbers above 7, whereas acidity is represented by 

values below 7. The appropriate pH range for drinking water in India is normally between 6.5 

and 8.5, as per BIS regulations. This range guarantees that the water is neither acidic nor 

alkaline. 

B. Turbidity 

Turbidity is the cloudiness of water. It is a measure of the ability of light to pass 

through water. The permissible limit for turbidity in water intended for domestic supplies is 5 
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nephelometric turbidity units (NTU). This limit ensures that the water is visually clear and free 

from suspended particles that can affect its aesthetic quality and potentially indicate 

contamination. 

NTU is a unit of measurement commonly used to quantify the turbidity of water. 

It is based on the scattering of light by suspended particles in the water, with higher turbidity 

values indicating a greater concentration of particles.  

C. Temperature 

Temperature refers to the physical property that measures the degree of heat or 

coldness of water. It is typically measured in degrees Celsius (°C) and is an important 

parameter to consider in evaluating the suitability and comfort of water for consumption. The 

temperature is measured in situ, using a thermometer or thermistor. The acceptable temperature 

range for drinking water in India is typically between 10°C and 25°C. This range ensures that 

the water is within a comfortable and safe temperature for consumption. 

D. Dissolved Oxygen (DO) 

Dissolved oxygen (DO) plays a crucial role in assessing the quality of water in 

streams, rivers, and lakes. It serves as a vital indicator of water pollution, with higher 

concentrations of dissolved oxygen indicating better water quality. The acceptable level of 

dissolved oxygen should be adequate to sustain the aquatic life inhabiting the water body. 

In general, for healthy aquatic ecosystems, the dissolved oxygen level should be 

above 4-5 mg/L (milligrams per liter). This range ensures that there is enough oxygen available 

to support the survival of aquatic organisms. 

E. Total Suspended Solid (TSS) 

Total Suspended Solids (TSS) refers to the concentration of solid particles that are 

suspended in water and are larger than 2 micrometers in size. These particles can include 

sediment, organic matter, and other materials that are not dissolved in the water. The 

permissible limit for Total Suspended Solids in drinking water is 10 mg/L (milligrams per 

liter). This limit ensures that the water is visually clear and free from excessive suspended 

particles, which can affect the aesthetic quality of the water and potentially indicate 

contamination. 



10 

 

F. Chlorophyll or Algae 

Chlorophyll is a pigment found in plants and algae, and its presence in water is 

typically associated with the presence of algae or other photosynthetic organisms. The Central 

Pollution Control Board (CPCB) uses either visual observation of the algae or using Most 

Probable Number (MPN/ 100 ml). It should be less than 50. 

G. Salinity 

Salinity refers to the amount of dissolved salts present in a water body. High salt 

levels can be detrimental to freshwater plants and animals, rendering the water unsuitable for 

drinking, irrigation, and livestock. According to BIS 2009, the acceptable limit of salinity is 

100 PPT. [14] 

H. Coloured Dissolved Organic Matter 

Coloured dissolved organic matter (CDOM) is the optically measurable component 

of the dissolved organic matter in water. CDOM naturally occurs in aquatic environments, 

mainly as a result of tannins generated through rotting waste. As CDOM increases, the hue of 

the water will shift from green to yellow-green to brown.  The traditional method used are 

absorption (colour) and fluorescence. Aquatic biological activity may be severely influenced 

by CDOM. 
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2.4 LIMITATIONS 

The present limitations of the impact of water quality are majorly focused on the 

reliability and accuracy of laboratory testing and instruments. Recent years saw the use of the 

standards set by WHO.  

The COD and BOD calculations many times are inaccurate as different researchers 

use different empirical formulas and not following a standard process or guidelines.  

With advancements in instrumentation that incorporate digital technologies to 

test water quality, different laboratories must procure equipments that can perform water 

quality testing for multiple parameters. These equipments would not only reduce the turn-

around time for delivery of test results but also significantly increase the number of tests that can 

be done by the laboratory as well as bring down the human intervention. But procuring these 

instruments not only includes the purchase price of the instrument but also additional expenses 

such as installation, training, calibration, and maintenance. Limited budgetary resources may 

restrict the procurement of the desired instruments. 

It is important to carefully select sampling locations to represent the study area 

adequately, but it may not be possible to capture all the spatial variability present. So, the spatial 

coverage of laboratory-based assessments is restricted by the use of discrete sampling spots 

thereby increasing the possibility of missing specific variations in water quality.  

Single-time-point observations are sometimes unable to detect irregular or 

momentary shifts in the water quality metrics. 

Sample collection, transport, processing, and data analysis are essential for 

laboratory analyses, and these procedures can be time and resource intensive. These are tedious 

processes and there is a chance of leakage of the stored sample containers which can seriously 

halt the extend the experiments. Along with the exposure to air, temperature fluctuations, or 

light exposure can cause chemical reactions or microbial growth, affecting the accuracy of the 

measurements. 

Many laboratories test only the samples acquired by government agencies and some 

independent researchers or the general public have limited access to these laboratories for 

checking their area samples.  
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CHAPTER 3 

DETAILED REVIEW OF EXISTING LITERATURE ON EXTRACTION OF 

WATER QUALITY PARAMETERS USING SATELLITE DATA 

3.1 OVERVIEW 

The assessment of the water quality is majorly done using specialized laboratory 

methods which are dependent on the collection of samples, a process that covers a smaller area 

and is costly & time-consuming. With the advancement in research works, the use of remote 

sensing particularly satellite plays a significant role in making it possible to conduct repeated, 

frequent observations throughout a wide study area or over a large water body, thereby making 

it feasible to recognize temporal and spatial alterations in indicators of water quality. 

Researchers can identify changes in the quality of water patterns, comprehend the effects of 

changes in land use, and evaluate the effectiveness of pollution control measures via the 

analysis of long-term satellite data. Water agencies are strongly urged to improve their on-site 

functioning along with the creation of geographically distributed maps of some metrics related 

to water quality, given the low operational costs associated with the use of freely available data 

from satellites. The estimation of the chlorophyll and the water surface temperature was the 

first motivation to determine if using the techniques of remotely estimating these variables can 

be determined or not. Recent research has demonstrated how to estimate several water quality 

indices using remote sensing techniques and has attempted to link those estimations to potential 

climate change implications. 

Fig. 3.1: A Diagram on Applications of Remote Sensing for Water  
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3.2 WORKS RELATED TO SATELLITE DATA IN WATER QUALITY 

Different works using models, spectral indexes, using ML approaches have been 

used to find different parameters which provide accurate results but validation via the in-situ 

measurement has been a factor to consider in many studies.  

Jerry C. Ritchie, et al. (2003) [15] used Landsat TMI data to find the aquatic 

vascular plants, suspended sediments (turbidity), algae/ chlorophyll. The research suggested 

the new satellites like EOS, Sea-WiFS, MOS, Ikonos and high spatial resolution hyperspectral 

sensors in the future will provide improvement to monitor water quality. 

Zhubin Zheng, et al. (2015) [16] in Dongting Lake, China used different 

specifications of Landsat like MSS, TM, ETM+, and OLI to find TSM with good results and 

suggested the approach can be used in other similar environments and ecological locations to 

explore their changes in patterns. 

Jiang Chen, et al. (2017) [17] conducted a study in the Lake Huron areas where 

they employed OLI Landsat 8 to identify favorable distributions and changes in CDOM 

(Colored Dissolved Organic Matter). They made noteworthy observations, revealing the 

model's capacity to effectively utilize Landsat-8 for monitoring water quality on a significant 

regional level, offering detailed spatial information and frequent updates over time.  

E. Terrence Slonecker, et al. (2015) [18] in New York and New Jersey Bays used 

the Landsat 8 for detection of the CDOM, DOM, Fluorescence post hurricane sandy. The 

research showed that the increased spectral resolution and synoptic coverage provided a means 

to detect and quantify changes to water quality parameters in major rivers and waterways more 

accurately. Also, suggested needs to establish the fundamental equations linking the remotely 

sensed data to the in-situ measurements. 

Deeksha Katyal, et al. (2012) [19] used IRS LISS IV satellite of 2008 imagery and 

assess the Yamuna river with GIS integration to find pH, Turbidity, Temperature, Hardness, 

TDS, DO, BOD, OIP and recommend the use of OIP to illustrate the need for preventative 

measures and to increase the understanding of general water quality issues.  

Abdelmalik K. W, (2018) [20] used ASTER terra data of the Qaroun Lake situated 

in the north eastern part of the Western Desert of Egypt. Using 18 samples out of which 15 

used for model construction and 3 for obtaining model to calculate temperature, turbidity, 

Hydrogen ion concentration (pH), salinity, TDS, EC, Total alkalinity, TOC and Ortho-
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phosphorus. He illustrated and proved the presence of significant empirical relations between 

ASTER data and observed water quality parameters. The calculated parameters obtained from 

ASTER reflectance bands enabled an accurate prediction for the parameters based on the 

mathematical equations derived through regression analysis. 

Ahmed El-Zeiny and Sameh El-Kafrawy (2016) [21] conducted a study in Burullus 

Lake, which is one of the largest lakes in northern Egypt. They utilized Landsat 8 OLI and a 

model generated through GIS to determine the levels of BOD, TN, and TP in the lake. The 

researchers applied previously developed empirical models for water quality analysis. Their 

findings demonstrated the significant contribution of remote sensing and GIS technologies in 

studying water quality, particularly the use of water quality empirical equations and GIS 

cartographic models. These tools play a crucial role in environmental management and 

assessment.  

Vassiliki Markogianni, et al. (2018) [22] applied Landsat 8 OLI of 2014 along with 

the in-situ measurements in Trichonis Lake, Greece for estimating Chlorophyll-a, 

Ammonium Concentrations, and Total Phosphorous. The results showed a relatively variable 

statistical relationship between the in-situ and reflectance. 

Ilhomjon Aslanov, et al. (2021) [23] calculated the soil salinity in the Fergana 

valley eastern part of Uzbekistan using Landsat 8 OLI. They conclude that using GIS and RS 

for soil salinity mapping provide higher degree of spatial accuracy and is extremely cost-

effective. 

Kaire Toming, et al. (2017) [24] used Sentinel-3 OLCI to calculate the CDOM, 

TSM and Chl-a at the Baltic Sea near Sweden. They advised Intercalibration of laboratory 

methods between different institutions to ensure validation of satellite products against data 

with well-characterized accuracy. 

Wilaiporn Pimwiset, et al. (2022) [25] used mathematical equations along with the 

sentinel-2 to determine the water turbidity in the Chao Phraya River, Thailand. The estimation 

via the remotely sensed data has significant benefits for mapping and monitoring entire rivers 

by reducing the traditional process’s which are labour-intensive and time-consuming. 

Muchlisin Arief (2015) [26] utilized Landsat-7 ETM+ to create models for 

assessing dissolved oxygen and temperature. The author's suggested approach of employing 

remote sensing satellites, particularly Landsat, offers significant potential for monitoring and 
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mapping water quality in coastal areas. This method demonstrates notable efficiency when 

compared to conventional monitoring techniques. 

A. KC, A. Chalise, et al, (2019) [27] conducted a water quality assessment of the 

Bijayapur River in Pokhara, Nepal, utilizing data from Landsat OLI/TIRS. Various correlation 

techniques were employed to establish the connection between optical and non-optical 

parameters. Additionally, regression techniques were utilized to determine the suitable 

relationship between band imagery and surface water quality parameters. 

E. E. Cruz-Montes, et al. (2023) [28] applied remote sensing and multiple linear 

regression methods for water quality estimation for the DO, ph, turbidity and temperature using 

Landsat 8 OLI/TIRS data. The estimation through statistical models was a useful monitoring 

method and presented a good correlation between the in-situ values and those estimated for 

each water quality parameter for the field data collection date. 

Linda Theres B, et al. (2022) [29] used Landsat 7 ETM+ and ASTER data in the 

Cauvery delta of Tamil Nadu to monitor water quality parameters like temperature, pH, Chi-

square test, etc. They suggested that the hyperspectral imaging can be used to monitor and 

forecast water quality in the future through the development of a more precise mathematical 

relationship. 

Nimisha Wagle, et al. (2019) [30] used Landsat 8 OLI along with the machine 

learning approach to estimate the DO and Chl-a for the Phewa Lake, located in the Kaski 

district of Nepal. They concluded that the machine learning techniques are better than the other 

regression analysis techniques as they used multiple variables to construct the best-fitting 

model.  

Vaibhav Garga, et al. (2020) [31] used Sentinel-2 MSI to check the turbidity level 

in Ganga River at different locations during the covid-19 period and found different stretches 

of the river were having reduced levels of turbidity. 

T. Seleem, et al. (2022) [32] used Landsat-8 OLI and Sentinel-2 TSM to monitor 

water quality in the Timsah Lake, Ismailia district, Egypt by using two approaches; semi-

analytical and empirical modelling but there was a lack of ground truth for validation. 

Fernanda M. C.et al. (2020) [33] in the Três Marias Reservoir of Brazil used 

Sentinel-2 MSI and Landsat-8 OLI to compare the performance of Sentinel-2’s MSI and 
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Landsat-8’s OLI sensors for estimating water quality parameters through empirical statistical 

inference using regression. 

N. Hussain, et al. (2017) [34] used Landsat 8 OLI to calculate the water quality in 

different sampling locations in Dhaka, Bangladesh. The research suggested some parameters 

of water quality were highly interrelated with the reflected sensors of the satellite and there was 

an interrelation between pH and Temperature.  

3.3 APPLICATIONS, CHALLENGES, AND LIMITATIONS 

This section focuses on the challenges, applications, and limitations associated with 

the use of satellite remote sensing for water quality measurements. 

3.3.1 Applications  

The major applications of satellite remote sensing in relation to water quality are as follows: 

• Prediction of Water Quality Parameters 

• Assessment of Water Pollution by Necessary Spectral Study in Rivers, Lakes, and 

Water Bodies 

• Flood Mapping & Management 

• Observation of Coastal Water Along the Rivers 

• Detection of Total Dissolved Solids in Coastal Areas 

• Assessment of Temporal Changes in Water Quality 

• Water Quality Monitoring and Estimation 

• Algal-bloom Detection 

• Estimation of Bio-Physiological Parameters 

• Estimation of Coloured Dissolved Organic Matter for Complex Inland Water 

3.3.2 Challenges 

• By analysing the electromagnetic energy that is reflected or transmitted from the Earth's 

surface, satellite sensors may identify water quality indicators due to atmospheric 

interference. Measurement precision, however, might be influenced by air interference, 

such as scattering and absorption. To reduce these errors, specialized atmospheric 

correction techniques are used. 

• Satellite sensors have limitations in terms of their spatial and temporal resolution. 

While the time resolution might not be frequent enough to track quickly changing 
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conditions, the geographical resolution could not be sufficient to detect small-scale 

fluctuations in water quality. 

• The accuracy and applicability of measurements of water quality might be impacted by 

the spectral capabilities and restrictions of various satellite sensors. Sensor calibration, 

spectral band selection, and sensor fusion techniques are used to overcome these 

difficulties. 

3.3.3 Limitations 

1. Ground Truth Validation: Water quality measurements taken directly from the water 

bodies must be compared with satellite-derived data. However, acquiring significant 

ground truth data can be expensive and logistically difficult, prompting challenges 

regarding the accuracy of satellite-based measurements. 

2. Impossible to Calculate All Parameters: Although satellites can estimate several 

types of water quality parameters, some, including contaminants aren't easily 

measurable via remote sensing. A full assessment of water quality often necessitates 

additional in-situ observation and testing in the laboratory. 

3. Data Availability: The availability of satellite data may be limited by issues including 

data costs, data scarcity, and distribution limitations. This might render it more difficult 

to use and apply satellite remote sensing for water quality monitoring, especially in 

places with poor infrastructure or resources. 

4. Weather Limitations: Cloud cover, significant precipitation, and other extreme 

weather conditions might obscure satellite observations and reduce the availability of 

continuous water quality data. This may compromise the accuracy of long-term 

monitoring and obstruct real-time evaluations during urgent situations. 
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CHAPTER 4 

TO ASSESS A RELATIONSHIP BETWEEN THE GROUND-BASED DATA AND 

THE DN VALUE AVAILABLE FROM SATELLITE DATA FOR YAMUNA RIVER 

4.1 OVERVIEW 

 This study intends to examine the relationship between ground-based data and the 

Digital Number (DN) values for the Yamuna River, which are obtained through satellite 

photography. By building a connection between these two data sources, we may learn more 

about the viability of integrating satellite data as a reliable source for tracking certain features 

of the Yamuna River. Landsat 8/9 and Sentinel-2 satellite are in consideration as the majority 

of the studies are conducted using these two satellites globally. With the freely available data 

at 30 M resolution, these two satellites are considered for the present study.  

4.2 STUDY AREA 

The Ganga River's greatest tributary, the Yamuna River, is 1376 km long. It begins 

at the Yamunotri glacier, which is located close to the Banderpunch peaks of the lower 

Himalayas (38o 59' N and 78o 27' E) in the Mussoorie range, at an elevation of around 6387 

meters above mean sea level in the Uttarkashi district of Uttarakhand. The river then travels 

through seven states. According to CPCB (2006), the overall catchment basin area of the river 

is 3, 66,223 km2 (including the area of the Yamuna River itself, which is 20,375 km2), or 42.5% 

of the Ganga basin and 10.7% of the country's total geographical landmass.  

Several locations have been selected along the coast of the Yamuna River for the 

collection of water samples after a thorough analysis of satellite images and Google Earth 

Observations. The 27 different locations covered in this study commence at Hathnikund 

Barrage and ends at Hathi Ghat. Landsat 8/9 OLI data path 145, 146 & 147 rows 039, 040, and 

041 are used to define the study area. The Sentinel-2 satellites 14 different tiles of the same 

locations as the Landsat are also used. Table 4.3 and 4.4 below shows the location of the 

satellite images along with their acquisition time: 
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Table 4.1: Reference of Locations 

ID Locations Longitude Latitude 

1 Hathnikund Barrage 77°34'59.52"E 30°18'48.30"N 

2 Yamuna Ghat near Samalkha Bridge Sonipat 77° 7'58.18"E 29°15'1.29"N 

3 Yamuna Ghat, Hathwala Gav, Panipat (HR) 77° 8'6.67"E 29°13'27.02"N 

4 

Signature Bridge 1 Km Downstream 

Wazirabad Bridge 77°13'50.57"E 28°42'24.99"N 

5 Majnu ka Tilla Near Gurudwara 77°13'45.17"E 28°41'46.11"N 

6 DC Boat Club near Chandigram Akhada 77°13'53.36"E 28°40'44.18"N 

7 Pillar No 6 ISBT Bridge Delhi 77°14'2.91"E 28°40'16.37"N 

8 Balaknath Mandir near Ganesh Ghat no 24 77°14'19.92"E 28°39'58.26"N 

9 

Old Iron Bridge New Delhi (near CWC 

Tower) 77°14'45.53"E 28°39'44.52"N 

10 Geeta Colony Bridge 77°15'43.27"E 28°39'5.92"N 

11 Gorakhnath Dhuna Ashram 77°15'52.76"E 28°38'35.25"N 

12 

Delhi Sachivalaya Upstream of ITO Bridge 

700m 77°15'27.02"E 28°38'1.08"N 

13 Kailash Nagar Bhimdal Akhada 77°15'5.96"E 28°39'43.66"N 

14 Chhath Ghat Downstream Old Bridge 77°15'11.98"E 28°37'35.50"N 

15 

Kalindi Kunj 500m Upstream Biodiversity 

Park 77°17'34.37"E 28°34'22.82"N 

16 Midstream Kalindi Kunj Biodiversity Park 77°17'40.39"E 28°34'10.45"N 

17 

Downstream 600m of Kalindi Kunj 

Biodiversity Park 77°17'47.37"E 28°33'49.75"N 

18 

Cheer Ghat neat Banke Bihari Temple 

Mathura 77°41'46.97"E 27°35'10.16"N 

19 Vishram Ghat near Kans Qila Mathura 77°41'21.43"E 27°30'9.00"N 

20 

Brahmand Ghat Mathura Downstream of 

Refinery Mathura 77°44'40.84"E 27°25'1.17"N 

21 Downstream of Barrage Ghat 77°42'49.47"E 27°26'33.35"N 

22 Gokul Ghat Mathura Cantt. 77°42'48.77"E 27°27'31.62"N 

23 Poiya Ghat, Sikandra, Agra 78° 1'19.03"E 27°15'17.05"N 

24 Balkeshwar Ghat, Agra 78° 1'53.23"E 27°13'21.38"N 

25 Water Works Ghat Agra 78° 2'3.97"E 27°12'16.52"N 

26 Itmad-du-Daula Ghat, near Bridge Agra 78° 1'48.64"E 27°11'35.80"N 

27 Hathi Ghat Near Agra Fort 78° 1'42.69"E 27°11'6.39"N 
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Table 4.2: Reference of Ground Truth for Validation 

ID Longitude Latitude pH Turbidity DO TDS Temperature 

1 77°34'59.52"E 30°18'48.30"N 9.4 0 11.1 224 24.5 °C 

2 77° 7'58.18"E 29°15'1.29"N 9.1 35 5.4 669 25.8 °C 

3 77° 8'6.67"E 29°13'27.02"N 8.8 30 2.6 798 28 °C 

4 77°13'50.57"E 28°42'24.99"N 7.8 70 0.2 1470 24.5 °C 

5 77°13'45.17"E 28°41'46.11"N 7.8 65 0.4 1480 24.6 °C 

6 77°13'53.36"E 28°40'44.18"N 7.7 95 0.2 1500 24.8 °C 

7 77°14'2.91"E 28°40'16.37"N 7.8 70 0.2 1590 24.5 °C 

8 77°14'19.92"E 28°39'58.26"N 7.8 60 0.1 1510 24.8 °C 

9 77°14'45.53"E 28°39'44.52"N 7.7 80 0.1 1530 24.9 °C 

10 77°15'43.27"E 28°39'5.92"N 7.8 65 0.3 1530 25.8 °C 

11 77°15'52.76"E 28°38'35.25"N 7.8 60 0.1 1440 25.8 °C 

12 77°15'27.02"E 28°38'1.08"N 7.9 60 0 1530 36.8 °C 

13 77°15'5.96"E 28°39'43.66"N 8 85 0.1 1330 26.9 °C 

14 77°15'11.98"E 28°37'35.50"N 7.7 50 0.3 1500 26.2 °C 

15 77°17'34.37"E 28°34'22.82"N 7.8 60 0.2 1610 28.5 °C 

16 77°17'40.39"E 28°34'10.45"N 7.9 28 0.2 777 27.2 °C 

17 77°17'47.37"E 28°33'49.75"N 7.9 30 0.8 494 26.2 °C 

18 77°41'46.97"E 27°35'10.16"N 8.5 15 1.5 1220 28.8 °C 

19 77°41'21.43"E 27°30'9.00"N 8.3 22 2.3 1220 26 °C 

20 77°44'40.84"E 27°25'1.17"N 8.4 22 2.8 1220 28.5 °C 

21 77°42'49.47"E 27°26'33.35"N 8.4 22 1.8 1500 26.1 °C 

22 77°42'48.77"E 27°27'31.62"N 8.4 35 1.9 1390 27.9 °C 

23 78° 1'19.03"E 27°15'17.05"N 8.5 60 6.3 1410 28.1 °C 

24 78° 1'53.23"E 27°13'21.38"N 8.3 115 0 1632 30.5 °C 

25 78° 2'3.97"E 27°12'16.52"N 8.7 95 5.1 1400 28.3 °C 

26 78° 1'48.64"E 27°11'35.80"N 2.6 100 3.7 1400 28.1 °C 

27 78° 1'42.69"E 27°11'6.39"N 8.5 100 2.4 1330 28.5 °C 
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Fig. 4.1: Study Area Map  
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4.3 DATA USED 

Landsat 8/9 OLI data path 145, 146 & 147 rows 039, 040, and 041 are used to 

define the study area. The table below shows the Landsat satellite image along with their 

acquisition time. Using standard band detection and the NDWI (Normalised Difference Water 

Index) methodology, the Landsat OLI's DN (digital number) value was determined. The 

reflection and absorption properties of water have an impact on the DN values of Landsat OLI. 

The NIR (near-infrared) spectrum is more readily absorbed by water and dissolved materials, 

while water and dissolved materials exhibit increased reflection in the green band. The NDWI 

model was used to evaluate the water quality.  

𝑁𝐷𝑊𝐼 = (𝐺𝑅𝐸𝐸𝑁−𝑁𝐼𝑅)/(𝐺𝑅𝐸𝐸𝑁+𝑁𝐼𝑅)        -Eq. (4.1) 

Table 4.3: Reference of Landsat Satellite Image 

ID Satellite Image Date of Acquisition 

1 LC08_L2SP_146039_20230218_20230223_02_T1 18-02-2023 

2 LC09_L2SP_146040_20230314_20230316_02_T1 14-03-2023 

3 LC09_L2SP_146041_20230314_20230316_02_T1 16-03-2023 

4 LC08_L2SP_145041_20230315_20230321_02_T1 15-03-2023 

5 LC09_L2SP_147039_20230305_20230308_02_T1 08-03-2023 

6 LC09_L2SP_147040_20230305_20230308_02_T1 05-03-2023 

 

Table 4.4: Reference of Sentinel-2 Satellite Image 

ID Satellite Image 

Date of 

Acquisition 

1 S2A_MSIL2A_20230310T052641_N0509_R105_T43RFM_20230310T093103.SAFE 10-03-2023 

2 S2A_MSIL2A_20230310T052641_N0509_R105_T43RFN_20230310T093103.SAFE 10-03-2023 

3 S2A_MSIL2A_20230310T052641_N0509_R105_T43RFP_20230310T093103.SAFE 10-03-2023 

4 S2A_MSIL2A_20230310T052641_N0509_R105_T43RFQ_20230310T093103.SAFE 10-03-2023 

5 S2A_MSIL2A_20230310T052641_N0509_R105_T43RGK_20230310T093103.SAFE 10-03-2023 

6 S2A_MSIL2A_20230310T052641_N0509_R105_T43RGL_20230310T093103.SAFE 10-03-2023 

7 S2A_MSIL2A_20230310T052641_N0509_R105_T43RGM_20230310T093103.SAFE 10-03-2023 

8 S2A_MSIL2A_20230310T052641_N0509_R105_T43RGN_20230310T093103.SAFE 10-03-2023 

9 S2A_MSIL2A_20230310T052641_N0509_R105_T43RGP_20230310T093103.SAFE 10-03-2023 

10 S2A_MSIL2A_20230310T052641_N0509_R105_T43RGQ_20230310T093103.SAFE 10-03-2023 

11 S2A_MSIL2A_20230310T052641_N0509_R105_T44RKU_20230310T093103.SAFE 10-03-2023 

12 S2B_MSIL2A_20230312T051659_N0509_R062_T44RKQ_20230312T084709.SAFE 12-03-2023 

13 S2B_MSIL2A_20230312T051659_N0509_R062_T44RKR_20230312T084709.SAFE 12-03-2023 

14 S2B_MSIL2A_20230312T051659_N0509_R062_T44RKS_20230312T084709.SAFE 12-03-2023 
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Fig. 4.2: Landsat tiles opened in ArcMap along with the boundaries and 

river shapefile 

 

Fig. 4.3: NDWI Methodology 
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Fig. 4.4: NDWI Map  
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The Survey of India's Online Maps Portal supplied the necessary shapefile 

containing administrative boundaries for various states across the entire country, including 

districts, at a high-quality scale of 1:1M. This dataset serves as a comprehensive database 

encompassing administrative boundaries at the district level, including state and district 

boundaries, for the entire country.  

Fig. 4.5: Online Maps Portal 

The Open Government Data Portal developed and hosted by the National 

Informatics Centre (NIC) provided the required digitized shapefile of the Yamuna River for 

reference. 

The ArcMap 10.8 was used for the pre-and post-processing of the datasets along 

with the use of different model algorithms in the raster calculator function to calculate the 

desired results. 
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4.4 METHODOLOGY 

After the selection of the parameters to calculate, different approaches for different 

parameters were applied after a thorough review of different publications. The reviewed studies 

mainly focus on some specific parameters in a relatively smaller part of the areas majorly the 

lakes and generally do not cover any state entirely. The parameters used are not consistent with 

all the studies as major researchers were considered either using 8 or 10 parameters. 

The approaches used for the different parameters are listed below: 

Table 4.5: Algorithms Used for Model Builder 

S. No PARAMETER MODEL ALGORITHM 

1 pH [33] 9.9977 + (-110.1097 * B1) + (17.4231 * B3) + (49.6782 * B5) 

2 Salinity [23] (Green - SWIR)/ (Green + SWIR) 

3 Turbidity [33] 0.2294 + (-59.2739 * B1) + (48.0012 * B3) 

4 Land Surface 

Temperature 

[35] 

TOA = ML * Qcal + AL 

BT = (K2 / (ln (K1 / L) + 1)) − 273.15 

𝑁𝐷𝑉𝐼 = (NIR -R)/(NIR+R) 

PV = Square ((NDVI – NDVImin) / (NDVImax – NDVImin)) 

ε = 0.004 * Pv + 0.986 

LST = (BT / (1 + (0.00115 * BT / 1.4388) * Ln(ε))) 

5 Chlorophyll 

[27] 

(NIR− red)/ (NIR + red) 

6 Suspended 

Matters or Total 

Dissolved 

Solids [37] 

-3311.4364+41.3237*B4-

0.0779*B3*B4+0.00006353*B2*B3*B4 

7 Dissolved 

Organic Matter 

or Coloured 

Dissolved 

Organic Matter 

[36] 

23.65- (0.3528*band 1) - (0.657*band 2) 

8 Dissolved 

Oxygen [33] 

9.2505 + (-171.0251 * B2) + (236.9708 * B4) + (76.8288 * B6) 

+ (-150.7815 * B11) 
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Using the model builder and the raster calculator function in the ArcMap Software, the tile-by-

tile sections of the satellite are processed and then mosaiced to form a new raster file. After 

that the state boundary shapefile is used to extracted the desired area parallel to the flowing 

river using the river shapefile for reference. Using the KML to layer function in the ArcMap, 

the 27 locations are changed to a layer shapefile to extract the values of the pixel for the 

processing. The location layer file is automatically georeferenced using the Google Earth Pro 

software as the conversion tool function process the file in the same coordinate system as the 

satellite dataset. Finally, using the multi value extraction tool the values are obtained and 

different graphs and results are generated.  

 

Fig. 4.6: General Methodology Applied for Maps Generation 
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4.5 RESULTS 

A. pH 

The model builder function is used to calculate ph. The combination of the Coastal/Aerosol, 

Green and Near Infrared bands in Landsat are used and the tile-by-tile process is applied 

by the model algorithm and then mosaiced and equalized to generate better results. The 

manual reclassification is used to normalize the pixel values accordingly and then the graph 

is generated and map is exported.   

 

Fig. 4.7: Model Generated Map 
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Fig. 4.8: Generated pH Graph 

Fig. 4.9: pH (in-situ) vs pH (sat) 
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B. Salinity 

The combination of the Green and SWIR band in landsat are used and the tile-by-tile 

process is applied by the model algorithm and then mosaiced and equalized to generate 

better results for the NDSI or Normalized Difference Soil Index. The manual 

reclassification is used to normalize the pixel values accordingly and then the graph is 

generated and map is exported. The NDSI is divided into 4 classes to better understand the 

results. 

Table 4.6: Range of NDSI Classes 

Classes Level of Salinization 

< 0.16 Low 

0.16 – 0.50 Medium 

0.50 – 1.50 High 

1.50 – 3.00  Very High 
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Fig. 4.10: Salinity Map 

Fig. 4.11: Salinity Graph 
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C. Turbidity 

The combination of the Coastal/Aerosol and Green band in landsat are used and the tile-

by-tile process is applied by the model algorithm equation mentioned below and then 

mosaiced and equalized to generate better results for the turbidity map. The manual 

reclassification is used to normalize the pixel values accordingly to the mentioned ranges 

in the Indian IS Code for turbidity and then the graph is generated and map is exported. 

Range in NTU for turbidity is divided into 7 classes accordingly for understanding. 

Table 4.7: Range of Turbidity in NTU 

Range Nearest Recorded 

0 – 1 0.05 

1 – 10 0.1 

10 – 40 1 

40 – 100 5 

100 – 400 10 

400 – 1000 50 

Greater than 1000 100 
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Fig. 4.12: Turbidity Map 

Fig. 4.13: Turbidity Graph 
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Fig. 4.14: Turbidity (in-situ) vs Turbidity (sat) 
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D. Land Surface Temperature 

 Specific bands from Landsat 8 can be used to calculate the land surface temperature (LST). 

In particular, band 10's thermal function is used for this, while bands 4 and 5 are used to 

calculate the Normal Difference Vegetation Index (NDVI). However, the LST computation 

only uses the dataset that is currently available when a section or tile of data for the same 

date is absent. The methodology explains how to use ArcMap's Raster Calculator tool for 

this operation. 

 

Fig. 4.15: Land Surface Temperature Methodology 
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• Calculation of TOA (Top of Atmospheric) spectral radiance: 

• Convert TOA values to Brightness Temperature (BT): 

To obtain the results in Celsius, the radiant temperature is adjusted by adding the 

absolute zero (approx. -273.15°C). 

• Calculating NDVI: 

• Calculate the proportion of vegetation (PV): 

• Calculate Emissivity (ε): 

The value of 0.986 corresponds to a correction value of the equation. 

• Calculate the Land Surface Temperature (LST): 
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Fig. 4.16: Land Surface Temperature Map 

Fig. 4.17: Land Surface Temperature Graph 
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Fig. 4.18: Temperature (in-situ) vs Temperature Calculated 
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E. Chlorophyll 

The Chlorophyll can be calculated using the Landsat 8 bands. In particular, bands 4 and 5 

which are the RED and NIR bands respectively are used to calculate the NDVI which in 

turn is used to calculate the chlorophyll. 

Fig. 4.19: Chlorophyll Map 
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Fig. 4.20: Chlorophyll Graph 

 

F. Total Dissolved Solids 

To calculate the total dissolved solids first by using the NDWI we need to located the 

locations of the water bodies and then apply the algorithm in the model builder to process 

and get the desired results. There is a range of TDS in mg/L for the reference. 

Table 4.8: Range of Total Dissolved Solids 

Range (mg/L) Nearest Recorded 

Less than 300 Excellent 

300 – 600 Good 

600 – 900 Fair 

900 – 1200 Poor 

Above 1200 Unacceptable 
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Fig. 4.21: Total Dissolved Solids Map 

Fig. 4.22: Total Dissolved Solids Graph 
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Fig. 4.23: TDS (in-situ) vs TDS (sat) 
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Fig. 4.24: Coloured Dissolved Organic Matter Map 

Fig. 4.25: Coloured Dissolved Organic Matter Graph 
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H. Dissolved Oxygen 

The combination of the Blue, Red, Visible and Near Infrared (VNIR) and Short-Wave 

Infrared (SWIR) bands of 20 m resolution of the sentinel-2 satellite which are Band 2, 4, 6 

and 11 respectively are used and the tile-by-tile process is applied by the model algorithm 

equation mentioned below and then mosaiced and equalized to generate better results for 

the dissolved oxygen map. The manual reclassification is used to normalize the pixel values 

accordingly to the universal ranges dissolved oxygen and then the graph is generated and 

map is exported. For dissolved oxygen the range tends to from 1 to 10 in p.p.m. 

Table 4.10: Range of Dissolved Oxygen in p.p.m 

Range Tolerance 

< 3  Too low for fish populations 

3 – 5  12 – 24-hour range of tolerance/ stressful conditions 

6 Supports spawning 

> 7 Supports growth/activity 

>9 Supports abundant fish populations 
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Fig. 4.26: Dissolved Oxygen Map 

Fig. 4.27: Dissolved Oxygen Graph 
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 Fig. 4.28: DO (in-situ) vs DO (sat) 
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4.6 CONCLUSION 

The use of remote sensing satellites like the Landsat and Sentinel-2 for the 

calculation of the water quality is very helpful as they can cover a wide area and routine 

observation of the water quality using remote sensing can be considered by different 

organizations as an alternative method to field surveys for recording and processing water 

quality information for various works. The results obtained help us to better understand how 

much the river has been polluted and the need to take some measures which can help us in the 

rejuvenation of the Yamuna River. 

The in-situ measurements for validations shows a strong corelation for the pH, 

TDS, Turbidity and DO. The thermal bands of Landsat satellite also have a strong corelation 

with the calculated temperature. The other parameters validation can only be done via the visual 

interpretation classes after the reclassified processing. The reclassified process is manually 

done to generate the results required according to the spectral library already given.  

The spectral band corresponds to a specific characteristic of the water or the 

substances within it. By analyzing the spectral signatures, it was possible to derive quantitative 

estimates of water quality parameters. For instance, certain bands can be used to estimate 

chlorophyll-a concentration, turbidity, or the presence of harmful algal blooms. Compared to 

traditional field sampling or in-situ measurements, remote sensing can be a more cost-effective 

method for water quality assessment, especially when considering large-scale monitoring 

programs. By using satellite data, it is possible to gather information over extensive areas 

without the need for extensive ground-based monitoring networks. This approach can 

significantly reduce costs associated with fieldwork and personnel.  



48 

 

REFERENCES 

 

[1] A. K. Chaurasia, H. K. Pandey, S. K. Tiwari, R. Prakash, P. Pandey, and A. Ram, 

"Groundwater quality assessment using water quality index (WQI) in parts of Varanasi 

District, Uttar Pradesh, India," Journal of the Geological Society of India, vol. 92, pp. 76-82, 

2018. 

[2] A. K. M. A. Hossain, C. Mathias, and R. Blanton, "Remote Sensing of Turbidity in the 

Tennessee River Using Landsat 8 Satellite," Remote Sensing, vol. 13, no. 18, p. 3785, Sep. 

2021, doi: 10.3390/rs13183785. [Online]. Available: http://dx.doi.org/10.3390/rs13183785. 

[3] M. Gholizadeh, A. Melesse, and L. Reddi, "A Comprehensive Review on Water Quality 

Parameters Estimation Using Remote Sensing Techniques," Sensors, vol. 16, no. 8, p. 1298, 

Aug. 2016, doi: 10.3390/s16081298. [Online]. Available: 

http://dx.doi.org/10.3390/s16081298. 

[4] M. Wu, W. Zhang, X. Wang, and D. Luo, "Application of MODIS satellite data in 

monitoring water quality parameters of Chaohu Lake in China," Environmental Monitoring 

and Assessment, vol. 148, pp. 255-264, 2009. 

[5] B. A. Schaeffer, K. G. Schaeffer, D. Keith, R. S. Lunetta, R. Conmy, and R. W. Gould, 

"Barriers to adopting satellite remote sensing for water quality management," International 

Journal of Remote Sensing, vol. 34, no. 21, pp. 7534-7544, 2013. 

[6] M. J. Alam, M. R. Islam, Z. Muyen, M. Mamun, and S. Islam, "Water quality parameters 

along rivers," International Journal of Environmental Science & Technology, vol. 4, pp. 159-

167, 2007. 

[7] O. J. R. Pereira et al., "Estimating Water pH Using Cloud-Based Landsat Images for a 

New Classification of the Nhecolândia Lakes (Brazilian Pantanal)," Remote Sensing, vol. 12, 

no. 7, p. 1090, Mar. 2020, doi: 10.3390/rs12071090. [Online]. Available: 

http://dx.doi.org/10.3390/rs12071090. 

[8] X. Wang and W. Yang, "Water quality monitoring and evaluation using remote sensing 

techniques in China: a systematic review," Ecosystem Health and Sustainability, DOI: 

10.1080/20964129.2019.1571443, 2019. 

[9] D. Doxaran, R. C. N. Cherukuru, and S. J. Lavender, "Use of reflectance band ratios to 

estimate suspended and dissolved matter concentrations in estuarine waters," International 

Journal of Remote Sensing, vol. 26, no. 8, pp. 1763-1769, 2005. 

[10] K. P. Sudheer, I. Chaubey, and V. Garg, "Lake water quality assessment from Landsat 

Thematic Mapper data using neural network: an approach to optimal band combination 

selection," JAWRA Journal of the American Water Resources Association, vol. 42, no. 6, pp. 

1683-1695, 2006. 

 



49 

 

[11] S. Somvanshi, P. Kunwar, N. B. Singh, and T. S. Kachhwaha, "Water turbidity 

assessment in part of Gomti River using high-resolution Google Earth’s Quickbird satellite 

data," in Geospatial World Forum, 2011, pp. 18-21. 

[12] S. Somvanshi, P. Kunwar, N. B. Singh, S. P. Shukla, and V. Pathak, "Integrated remote 

sensing and GIS approach for water quality analysis of Gomti river, Uttar Pradesh," 

International Journal of Environmental Sciences, vol. 3, no. 1, pp. 62-74, 2012. 

[13] "DRINKING WATER — SPECIFICATION (Second Revision)," IS 10500, 2012. 

[14] P. K. Meher, P. Sharma, Y. P. Gautam, A. Kumar, and K. P. Mishra, "Evaluation of 

Water Quality of Ganges River Using Water Quality Index Tool," Environment Asia, vol. 8, 

no. 1. 

[15] J. C. Ritchie, P. V. Zimba, and J. H. Everitt, "Remote sensing techniques to assess water 

quality," Photogrammetric engineering & remote sensing, vol. 69, no. 6, pp. 695-704, 2003. 

[16] Z. Zheng, Y. Li, Y. Guo, Y. Xu, G. Liu, and C. Du, "Landsat-Based Long-Term 

Monitoring of Total Suspended Matter Concentration Pattern Change in the Wet Season for 

Dongting Lake, China," Remote Sensing, vol. 7, no. 10, pp. 13975-13999, Oct. 2015, doi: 

10.3390/rs71013975. 

[17] J. Chen, W. N. Zhu, Y. Q. Tian, and Q. Yu, "Estimation of colored dissolved organic 

matter from Landsat-8 imagery for complex inland water: case study of Lake Huron," IEEE 

Transactions on Geoscience and Remote Sensing, vol. 55, no. 4, pp. 2201-2212, Apr. 2017. 

[18] E. T. Slonecker, D. K. Jones, and B. A. Pellerin, "The new Landsat 8 potential for 

remote sensing of colored dissolved organic matter (CDOM)," Marine Pollution Bulletin, vol. 

107, no. 2, pp. 518-527, 2016. 

[19] D. Katyal, A. Qader, A. H. Ismail, and K. Sarma, "Water quality assessment of Yamuna 

River in Delhi region using index mapping," Interdisciplinary Environmental Review, vol. 

13, no. 2-3, pp. 170-186, 2012. 

[20] K. W. Abdelmalik, "Role of statistical remote sensing for Inland water quality 

parameters prediction," The Egyptian Journal of Remote Sensing and Space Science, vol. 21, 

no. 2, pp. 193-200, 2018. 

[21] A. El-Zeiny and S. El-Kafrawy, "Assessment of water pollution induced by human 

activities in Burullus Lake using Landsat 8 operational land imager and GIS," The Egyptian 

Journal of Remote Sensing and Space Science, vol. 20, pp. S49-S56, 2017. 

[22] V. Markogianni, D. Kalivas, G. Petropoulos, and E. Dimitriou, "An Appraisal of the 

Potential of Landsat 8 in Estimating Chlorophyll-a, Ammonium Concentrations and Other 

Water Quality Indicators," Remote Sensing, vol. 10, no. 7, p. 1018, Jun. 2018, doi: 

10.3390/rs10071018. 

[23] I. Aslanov, S. Kholdorov, S. Ochilov, A. Jumanov, Z. Jabbarov, I. Jumaniyazov, and N. 

Namozov, "Evaluation of soil salinity level through using Landsat-8 OLI in Central Fergana 

valley, Uzbekistan," in E3S Web of Conferences, vol. 258, p. 03012, EDP Sciences, 2021. 



50 

 

[24] K. Toming, T. Kutser, R. Uiboupin, A. Arikas, K. Vahter, and B. Paavel, "Mapping 

Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the 

Baltic Sea," Remote Sensing, vol. 9, no. 10, p. 1070, Oct. 2017, doi: 10.3390/rs9101070. 

[25] W. Pimwiset, K. Tungkananuruk, T. Rungratanaubon, P. Kullavanijaya, and C. V. 

Sillberg, "Water Turbidity Determination by a Satellite Imagery-Based Mathematical 

Equation for the Chao Phraya River: 10.32526/ennrj/20/202100237," Environment and 

Natural Resources Journal, vol. 20, no. 3, pp. 297-309, 2022. 

[26] M. Arief, "Development of dissolved oxygen concentration extraction model using 

Landsat data case study: Ringgung coastal waters," International Journal of Remote Sensing 

and Earth Sciences (IJReSES), vol. 12, no. 1, pp. 1-12, 2017. 

[27] A. KC, A. Chalise, D. Parajuli, N. Dhital, S. Shrestha, and T. Kandel, "Surface water 

quality assessment using remote sensing, GIS and artificial intelligence," Technical Journal, 

vol. 1, no. 1, pp. 113-122, 2019. 

[28] E. E. Cruz-Montes, M. M. Durango-Banquett, F. M. Torres-Bejarano, G. A. Campo-

Daza, and C. Padilla-Mendoza, "Remote sensing application using Landsat 8 images for 

water quality assessments," in Journal of Physics: Conference Series, vol. 2475, no. 1, p. 

012007, IOP Publishing, Apr. 2023. 

[29] M. C, Mamathi, Aduri Jogendra, Sridhar Pechetty, and R. Selvakumar, "Monitoring 

Water Quality Parameters Using Satellite Based Remote Sensing Data," 9, pp. 59-71, 2022. 

[30] N. Wagle, T. D. Acharya, and D. H. Lee, "Estimating Chlorophyll-a and Dissolved 

Oxygen Based on Landsat 8 Bands Using Support Vector Machine and Recursive 

Partitioning Tree Regressions," in The 6th International Electronic Conference on Sensors 

and Applications, Nov. 2019, doi: 10.3390/ecsa-6-06573. 

[31] V. Garg, S. P. Aggarwal, and P. Chauhan, "Changes in turbidity along Ganga River 

using Sentinel-2 satellite data during lockdown associated with COVID-19," Geomatics, 

Natural Hazards and Risk, vol. 11, no. 1, pp. 1175-1195, 2020. 

[32] T. Seleem, D. Bafi, M. Karantzia, and I. Parcharidis, "Water Quality Monitoring Using 

Landsat 8 and Sentinel-2 Satellite Data (2014–2020) in Timsah Lake, Ismailia, Suez Canal 

Region (Egypt)," Journal of the Indian Society of Remote Sensing, vol. 50, no. 12, pp. 2411-

2428, 2022. 

[33] F. M. Pizani, P. Maillard, A. F. Ferreira, and C. C. de Amorim, "Estimation of water 

quality in a reservoir from sentinel-2 msi and landsat-8 oli sensors," ISPRS Annals of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 3, pp. 401-408, 

2020. 

[34] N. Hussain, M. H. Islam, R. Khanam, and M. Iqbal, "Water Quality in Landsat OLI 

Images," in International Conference on Engineering Research and Practice, 2017, pp. 19-23. 

[35] D. Anandababu, B. M. Purushothaman, and B. S. Suresh, "Estimation of land surface 

temperature using Landsat 8 data," International Journal of Advance Research, vol. 4, no. 2, 

pp. 177-186, 2018. 

[36] A. A. Shopan, G. T. Islam, A. S. Islam, and M. M. Rahman, "Assessment of Water 

Quality Parameters in the Ganges Delta Using Remote Sensing Techniques," in International 



51 

 

Conference on Climate Change in Relation to Water and Environment (I3CWE-2015), 2015, 

pp. 1-7. 

[37] J. Ferdous, M. T. U. Rahman, and S. K. Ghosh, "Detection of total dissolved solids from 

Landsat 8 OLI image in coastal Bangladesh," in The Proceedings of The International 

Conference on Climate Change, vol. 3, no. 1, 2019, pp. 35-44. 

 


