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ABSTRACT 

The reinforcement using single-layer geogrid on a confined geomaterial is an effective 

way of solving practical problems. With the use of multi-layered reinforcement, this study 

aims to offer a superior alternative design for supporting heavy loads on geomaterial. The 

location of reinforcement plays a crucial role in the overall strength. The experimental 

investigations were conducted on poorly graded sand (SP) whose angle of internal friction 

and cohesion are 36.6º and 4.4 kPa, respectively. The effect of single-layer geogrid 

reinforcement placed at different depths of the geomaterial was evaluated. Further, the 

bearing capacity of the geomaterial was compared for single, double and triple-layered 

geogrid reinforcement. A laboratory Digital Static Cone Penetration Test (DSCP) was 

performed to assess the load-displacement behaviour of unreinforced and reinforced 

geomaterial. The result shows that reinforced geomaterial achieved higher resistance 

compared to unreinforced systems. An optimum combination of placement depths of 

double-layered reinforcement is proposed.  

Additionally, the dynamic response of the confined geomaterial subjected to vibratory 

load has been investigated using a numerical program supported by experimental 

findings. An accelerometer has been used to report the acceleration, velocity, and 

displacement of confined geomaterial fill along the depth at varied frequencies of 

vibratory load. Further, the experimental findings were used in the numerical program to 

obtain the shear modulus and damping of confined geomaterial. The stress-strain response 

shows compounded effects with an increase in frequency and modulus of elasticity. It has 

been observed that displacement is amplified by 10-90 % for a frequency range of 5-75 
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Hz. The shear stress-strain results showed that the shear modulus is magnified by 50 % 

for varied input parameters considered in the study. The damping of the confined 

geomaterial has been found to be 0.5-5 % for varied unit weight inputs (16 - 22 kN/m3). 

The results are compared with the outputs obtained by numerical simulation and 

experimental analysis for estimating the dynamic properties of the confined geomaterial 

subjected to vibratory load. 

Further, the study utilized various numerical simulation and experimental data to train 

and evaluate different models to generate predictions. These predictions were essential 

for the research. The models employed included ensemble boosted tree, squared 

exponential Gaussian Process Regression (GPR), Matern 5/2 GPR, exponential GPR, and 

decision tree architectures (fine and medium). These models greatly facilitated the 

analysis of the collected data and enabled accurate result predictions. Among the 

examined models, the Matern 5/2 GPR model exhibited exceptional accuracy with an R2 

value of 0.99, demonstrating its remarkable predictive capability. The outcomes highlight 

the proficiency of the Matern 5/2 GPR and Boosted Tree models in forecasting 

displacement patterns and enhancing the comprehension of the relationship between 

displacement and depth. The outcomes of the present study can effectively be adopted by 

engineers and partitioners for estimating the dynamic properties of the confined 

geomaterial in construction practices.  
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CHAPTER 1 

INTRODUCTION 

The following chapter will help understand the response of confined geomaterial, which 

is stabilized by reinforcing with the geosynthetic material. A numerical program has been 

adopted to analyze the behavior of confined geomaterial.  

1.1 GENERAL INTRODUCTION 

The vibrations developed by dynamic load of earthquakes, machine foundations, wind, 

and pavements are very crucial while determining the strength of the geomaterials 

supporting these structures (Bourdeau et al., 2002). The shear stiffness (G) and dissipation 

of energy by calculating damping ratio (D) are the key dynamic parameters in the sand at 

low strain levels. The equation to determine the damping ratio is given by, 

 𝐷 =
𝑊𝐷

4𝜋𝑊𝑠
 (1) 

 

WD is the energy dissipated and WS is the strain energy. The shear stress-strain hysteresis 

loop can also be used to compute the damping ratio by calculating the area under it. Soil 

research is conducted on geomaterial to estimate its dynamic properties. Dynamically 

loaded soil experiences cyclic stresses with varying amplitudes and frequencies. 

Various kinds of research are focused on sand to propose relationships of shear stiffness, 

damping ratio, and stiffness (Iwasaki and Tatsuoka, 1978, Seed et al., 1986, Ishibashi and 

Zhang, 1993, Rollins et al., 1998, Gupta and Trivedi, 2009, and Ojha and Trivedi, 2013). 

The shaking table test is the most common among them (Brennan et al., 2005, Yang et 

al., 2011, Yoo et al., 2013, Conti et al., 2014, Maze, 2017, Price et al., 2017, Fathi et al., 

2020, Reddy and Krishna, 2021, and Alshawmar and Fall , 2022). The dynamic properties 

are significantly influenced by a number of variables, including number of cycles (N), 

type of soil, composition of the soil, frequency of loading cycle (f), over-consolidation 

ratio (OCR), relative density (Dr), effective confining pressure (σ'c), plasticity index, and 

shear strain amplitude (γ). It has been demonstrated that the void ratio, shear strain 

amplitude, and effective stress level have the most effects on shear modulus in clean 
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sands. (Wichtmann and Triantafyllidis, 2004, Zhang et al., 2005, and Zeghal et al., 1995) 

These were also thought to have an impact on damping to have an impact on damping as 

well, with the number of loading cycles serving as another important consideration. For 

clays, the number of loading cycles has been linked to a drop in shear modulus and an 

increase in pore pressure. In addition, the over-consolidation ratio and plasticity index 

have an effect on how clay behaves. The main input variables for dynamic evaluations in 

numerical soil models are shear stiffness and damping with strain level fluctuations, 

sometimes referred to as shear stiffness - shear strain amplitude and damping ratio - shear 

strain amplitude curves. It is critical to comprehend how soils behave under cyclic shear 

stress-shear strain in order to forecast how sites will respond to applied shear loads. 

Determining the dynamic properties of pure sand is the major objective of the study. 

Stress analysis and displacement are the two main components of the dynamic analysis 

technique. These are carried out using the finite element programme Abaqus 2017, and 

the findings are validated using an experimental setup. An accelerometer was used to 

determine acceleration, velocity, and displacement, over a range of distances. 

Accelerometers are electromechanical sensors that produce electrical charges 

proportional to the force exerted upon them. 

1.2 CONE PENETRATION TEST 

Cone penetration testing is critical in geotechnical engineering, particularly in the 

building of pavements and other civil constructions. Cone Penetration Tests (CPT) are 

required for transportation (Kumar et al., 2020) related projects, including subsurface 

investigation for new structure building and restoration work. The widely used techniques 

for soil exploration include in-situ, dynamic cone penetration tests (DCPT), standard 

penetration tests (SPT), and plate load tests (Kumari and Trivedi, 2022). 

The CPT can be used in dry, saturated or wet sand (Kluger et al., 2021, Bonita, 2020, 

Miller et al., 2018, Pournaghiazar et al., 2013, Shaqour et al. 2007, Baldi et al., 1982, and 

Almeida et al., 1991). A comparison study on the suction profiles, tip resistance and skin 

friction tells us how CPT parameters are influenced by moisture content and soil suction 

(Collins and Miller, 2020). CPT measurements can be beneficial to determine initial 

horizontal stress and relative density (Ahmadi and Dariani, 2017). CPT done on carbonate 
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fill which was undertaken in the centrifuge showed that the empirical relationship set for 

silica sand should not be used for carbonate sands (Giretti et al., 2018).   

The usage of geogrid under static or cyclic load to improve settlement behaviour has 

gained significant attention. In the road building sector, the usage of geosynthetics, or as 

it was known then, "geotechnical fabrics," was growing in popularity by 1980. Roadway 

subgrades with poor or weak soil are routinely improved using geosynthetic layers as 

reinforcement (Cuelho and Perkins 2017, Sigurdsson, 1993, Singh et al., 2022).  This 

study aims to determine the influence while placing geomaterial at various intervals 

within the subgrade using the Digital Static Cone Penetration Lab Test. Pure-cleaned 

Yamuna sand is tested as the soft subgrade, in which single, double and triple-layered 

geogrid reinforcement is used to enhance the strength. The study finds out the optimum 

depth at which we have to place the geogrid and the optimum number of layers. 

1.3 MACHINE LEARNING TECHNIQUES 

Machine learning is a powerful and rapidly evolving field of artificial intelligence that 

focuses on developing algorithms and models that enable computers to learn and make 

predictions or decisions without explicit programming. It revolves around the idea of 

training computers to recognize patterns and extract meaningful insights from large and 

complex datasets. By employing statistical techniques, ML algorithms iteratively learn 

from data, improving their performance over time. This technology has revolutionized 

various industries, including finance, healthcare, marketing, and more, by enabling 

advanced data analysis, automation, and prediction capabilities. With its ability to handle 

massive amounts of information and adapt to changing conditions, machine learning 

holds immense potential for solving complex problems and driving innovation across 

numerous domains. 

Predicting soil displacement caused by vibratory stress using machine learning (ML) 

poses several challenges. One major issue is the scarcity of high-quality datasets that 

encompass a wide range of soil qualities, input parameters, and corresponding 

displacement measurements under vibratory loading conditions. Acquiring such datasets 

is crucial for effectively training and validating ML models. Moreover, the understanding 

and interpretation of ML models in the field of geotechnical engineering remain complex. 

The development of interpretable ML models would significantly enhance the acceptance 
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and utilization of ML techniques within the geotechnical engineering community, 

providing valuable insights into the underlying behaviour of soil.  

In this study, the data collected from numerical and experimental simulations underwent 

a series of processing steps. Models were carefully selected to capture the underlying 

patterns in the data, and then they were trained and evaluated using appropriate 

techniques. The predictions generated by these models were of particular interest in this 

study. The models employed included fine and medium decision tree structures, as well 

as the Matern 5/2 Gaussian Process Regression (GPR), Rational Quadratic GPR, Squared 

Exponential GPR, Exponential GPR, and Boosted Tree models. These models were 

chosen based on their suitability for the specific task at hand and their potential to provide 

accurate predictions. 

1.4 ORGANISATION OF CHAPTERS 

This project report includes the following chapters: 

The project title has been thoroughly introduced in Chapter 1. The major objectives and 

general framework of the work have been described. 

The analysis of the research articles and their findings are discussed in Chapter 2. There 

have been established and noted study gaps after reading several research articles and 

books. 

The materials utilised in this project and the methods employed have both been explained 

in Chapter 3. 

The findings of this study have been listed and extensively discussed in Chapter 4.  

The conclusions from the research are outlined in Chapter 5 along with suggestions for 

future investigation. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Numerous dynamic stresses, including as traffic or seismic loads, machine foundations, 

and piling, may be applied to clay or sandy soils (Koga and Matsuo, 1990, Okur and 

Ansal, 2007, Vucetic and Mortezaic, 2015). Depending on their purposes, dynamic loads 

in soil dynamics can be applied at different frequencies. In this regard, damping ratio, 

denoted by D, and shear modulus, indicated by G, are two of the dynamic parameters 

used in geotechnical analysis and design the most often. Different testing techniques, such 

as the piezoelectric bender element test, the cyclic simple shear test, the resonant column 

test, and the cyclic triaxial test, have been used by many studies to determine the dynamic 

characteristics of different soils at different strain levels. 

2.2 REVIEWS OF LITERATURE 

• Kluger et al. (2021) found that there was little variation in cone resistance between 

samples that were soaked and those that were dry. Dry samples typically displayed 

somewhat greater consolidation stresses than saturated samples at the lower cone 

resistance, but at the higher consolidation stress, there was no obvious difference 

between the dry and saturated conditions. 

• Molina-Gómez et al. (2020) focused on the small-strain response and investigated 

the effects of mean effective stress on the soil stiffness and void ratio.  The 

Resonant Column findings demonstrated that, for sand strain levels range greater 

than 105, the damping ratio rises. Results also indicated that when σ`c grows, D 

declines. 

• According to Singh et al. (2020), the depth and profile of the test section allowed 

DCPT to detect important variations in the strength and stiffness of the base and 

subgrade layers. It can also be used to indicate where the base layer and subgrade 

layer meet. However, because the device was unable to penetrate up to the depth 

of the reinforcing layer with the application of stress, the DSCPT data did not 

reveal changes in the layer. 
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• According to Miller et al. (2018), compared to non-plastic soils, soils with 

significant plasticity have a greater dependency on suction for tip resistance. 

Given that the range of matric suction is much wider and, hence, has a far greater 

influence on the shear strength of clayey soils, this is to be anticipated. 

• To assess the dynamic characteristics across a broad range of shear strain, 

saturated Brahmaputra sand was subjected to strain-controlled cyclic triaxial 

testing by Kumar et al. (2020).  Hysteresis loops during various loading cycles 

showed the dynamic behaviour of the soil and had a pronounced asymmetry, 

especially at higher strain levels. Variations in σ`c and Dr are seen to have a 

considerable impact on the shear modulus (G) of soil. 

• According to Ahmadi and Dariani (2017), physical model tests of the CPT 

(calibration chamber) in sand have sufficiently demonstrated that the cone tip 

resistance is mostly influenced by in-situ horizontal tension and relative density. 

• Amir-Fayer et al. (2017) employed a number of model forms to forecast the 

dynamic behaviours of soils, concentrating especially on the shear modulus and 

material damping, given that the majority of the models currently in use were 

constructed experimentally for specific soil types, strain ranges, etc. A process of 

model selection and application was carried out on soils, polypropylene fibrillated 

fibre, and clay composites in order to best match empirical data. A shear modulus 

form and a typical damping model form were developed to connect the dynamic 

properties of soil materials to shear strain. The proposed functions could replicate 

shear modulus and damping behaviour within the strain amplitude range of typical 

earthquakes. According on the results of the mathematical modelling, the 

suggested model functions may be used to simulate a range of soil types and fiber-

soil composites. 

• Gomes et al. (2016) discovered that in sands, the damping factor may be 

effectively reduced, and the stiffness and damping curves for hysteretic loops and 

strain-dependent systems exhibit good agreement. Although it also significantly 

affects the soil stiffness, clays also achieve the reduction in damping for big 

stresses.  Due to the maximum shear strain level reached in sands, numerical 

simulations revealed that the new parameter has no discernible impact on the 

seismic soil response, whereas clays experience a drop in both damping and 

stiffness. 
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• In their study, Wichtmann and Triantafyllidis (2013) examined the impact of grain 

size distribution on G and D at various strain levels, including the extremely tiny 

to medium strain range.  It was shown that the G/Gmax and damping ratio are 

related to the uniformity coefficient (Cu), with a rise in Cu causing a significant 

decline in the modulus ratio and a rise in the damping ratio. 

• In a database of different sands created by Oztoprak and Bolton (2013), the shear 

modulus degradation curves from 454 experiments that were mentioned in the 

literature were included. They suggested a hyperbolic equation as the best-fit 

functional relationship for the deterioration of the shear modulus of granular soils 

based on this data. 

• According to Trivedi and Singh (2004), the relationship between shear strength 

and penetration resistance is established using data on relative density, peak 

friction angle, and mean confining pressure in relation to the relative dilatancy of 

the ash. For the relative density of the ash fill and the depth of cone penetration, 

they suggested altering the bearing capacity factor. 

• Darendeli (2001), Hardin and Black (1968), and Vucetic and Dobry (1991) have 

studied the dynamic behaviour in both over and normal -consolidated clays. They 

found that the plasticity index (PI) had a substantial effect on each strain amplitude 

and came to the conclusion that as PI increases, while the damping ratio falls, the 

ratio of the shear modulus to the maximum shear modulus increases. 

• Assimaki et al. (2000) provided a simple four-parameter model to describe the 

shear stiffness factors and damping coefficients for a granular soil exposed to 

horizontal shear pressures brought on by vertically propagating shear waves. The 

simulations demonstrate that, when confining pressure is taken into account, soil 

elasticity increases gradually increasing depth.  One of the alleged shortcomings 

of the standard equivalent-linear model, that it unrealistically wipes out the high 

frequency components of motion when used for moderately deep to very deep soil 

profiles, is significantly reduced by the refinement brought about by the pressure-

dependent characterization of the soil. 

• Hardin and Drnevich (1972) found that with increasing strain amplitude, the shear 

modulus declines and the damping ratio drastically rises based on extensive 

experiments on a range of disturbed and undisturbed soils. Clean sands are not 

influenced the same way as cohesive soils.  Additionally, they included formulas 
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and diagrams for estimating the soil shear modulus and damping, which may be 

used to design issues requiring repetitive loading or soil vibration. 

• A recent study by Baghbani et al. (2023) utilized machine learning techniques, 

specifically Classification and Regression Random Forests (CRRF) and Artificial 

Neural Networks (ANN), to predict the secant shear modulus and damping ratio 

of sand. The models demonstrated high accuracy, with correlation coefficients 

(R2) of 0.998 and 0.995 for ANN and CRRF, respectively. The study highlighted 

the significance of relative density, vertical stress, and cyclic stress ratio as 

influential factors in forecasting the damping ratio and secant shear modulus. 

Compared to other models in the literature, the ANN and CRRF models 

outperformed in terms of forecasting and assessing the dynamic characteristics of 

sand and the impact of input factors. These findings underscore the potential of 

machine learning in accurately predicting and understanding the behaviour of 

sand. 

• Akbulut et al. (2004) conducted a study comparing the performance of different 

training methods for parameter estimation in the Adaptive Network-based Fuzzy 

Inference System (ANFIS) model. The results indicated that the improved hybrid 

training method used in ANFIS outperformed traditional back-propagation 

techniques such as Multiple Regression Analysis Method (MRM) and Multi-layer 

Perceptrons (MLP). The ANFIS model was trained to forecast the shear modulus 

and damping coefficient of sand samples as an alternative to laboratory testing. 

When compared to MLP and MRM, the ANFIS model exhibited superior 

performance in modeling complex soil parameters, demonstrating its efficacy in 

accurate parameter estimation. 

• Hasthi et al. (2022) proposed a novel hybrid approach called ANN-DFO 

(Artificial Neural Network-Dragonfly Optimizer) to evaluate the displacement 

amplitude of footings on geocell-reinforced beds subjected to vibration loading. 

The model was trained and tested using extensive field vibration test data, 

ensuring its reliability. Compared to other machine learning models like Random 

Forest (RF), Gaussian Process Regression (GPR), and M-5 rules, the ANN-DFO 

model exhibited superior performance in forecasting displacement amplitude. 

Additionally, a sensitivity analysis was conducted to identify the key input factors 

that significantly influenced the estimation. 



9 

 

• Sharma et al. (2019) employed genetic programming and Artificial Neural 

Network (ANN) techniques to develop predictive formulas for estimating 

displacement amplitude, taking into account multiple input factors. The genetic 

programming model exhibited superior performance compared to the ANN model 

in predicting the system's reaction. Both models showed strong agreement with 

the results obtained from field tests. The analysis revealed that the operating 

frequency had the most significant impact on displacement amplitude. 

• Farfani et al. (2015) conducted a study on the seismic analysis of soil-pile-

structure (SPS) systems, employing data-based approaches to develop a 

mathematical model. They compared the performance of their neural network 

model with the finite element technique and found that the neural network model, 

with two hidden layers, effectively predicted the dynamic properties and seismic 

response of the SPS system. The study highlights the importance of generating 

more experimental data and utilizing data-based techniques to overcome the 

limitations of traditional analytical methods in addressing complex dynamic 

analysis problems in SPS systems. 

2.3 RESEARCH GAP 

The following study gaps were revealed by reading through several research articles, 

books, and codal provisions. 

• There are limited number of researches on digital static cone penetration test for 

the optimum number of layers and the optimum combination of double-layer of 

geogrid reinforcement in confined geomaterial. 

• There is a lack of agreement about the validity and accuracy of displacements 

derived from accelerations. The accurate estimates of permanent displacements 

from recorded accelerograms are required. 

• There is a lack of statistical comparison and verification between the expected 

findings and experimental data to find out the dynamic property of confined 

geomaterial when subjected to vibratory loading. 

• While ML applications in geotechnical engineering have been extensively 

explored for various geotechnical problems, such as slope stability and settlement 

prediction, there has been limited research specifically dedicated to predicting soil 

displacement under vibratory stresses using ML techniques. 
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2.4 OBJECTIVES OF THE STUDY 

• To find out the optimum number of layers of geogrid reinforcement in confined 

geomaterial using cone penetration test. 

• To figure out the optimum combination of double-layered geogrid reinforcement 

in confined geomaterial using a digital static cone penetration test. 

• To conduct Acceleration, Velocity, and Displacement (AVD) analysis of the 

confined geomaterial using a dynamic shaking unit. 

• To compare the numerical and experimental findings. 

• To determine the dynamic properties of confined geomaterial. 

• To process the collected values and select, train, and evaluate models for making 

predictions. 

• To assess the performance of different models, including fine and medium 

decision tree structures, matern 5/2 GPR, rational quadratic GPR, squared 

exponential GPR, exponential GPR, and boosted tree, in predicting soil 

displacement. 

• To investigate the suitability of ML models for predicting soil displacement under 

vibratory stresses. 

  



11 

 

(b) 

 

CHAPTER 3 

MATERIALS AND METHODS 

The most common rivers in India are the Ganga, Yamuna, Brahmaputra, Godavari, 

Kaveri, and Indus. Sand is most commonly found on the banks of the river. The Yamuna 

River provided the geomaterial that was employed for this investigation. To get rid of any 

impurities, it was carefully cleansed. Sieve analysis was conducted on the geomaterial to 

find out the gradation. In addition to this test, the Direct shear test, standard proctor test 

and Pycnometer tests were conducted. The sections that follow will provide a description 

of the tests.  

3.1 PREPARATION OF THE SAMPLE 

The geomaterial collected was found to have impurities, hence it was cleaned thoroughly. 

The cleaning was done through a 75 μm IS sieve. Any particles below 75 μm were 

removed through washing. The clean sample was air-dried for 24 – 48 hours according 

to the weather condition. Hence clean and dry sand was used for the experiment. Fig. 1 

shows the cleaned sample before and after drying.  

 

Fig. 1. Sand used for experiments (a) before and (b) after air-drying 

3.2 SIEVE ANALYSIS 

As per IS:2720 (Part 4) – 1985 sieve analysis was conducted before and after the cleaning. 

A portion of geomaterial was taken to pass through 4.75, 2, 1.18, 0.6, 0.3, 0.15, and 0.075-

(a) 
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mm sieve as shown in Fig. 2. The mass of geomaterial retained on each sieve was weighed 

to calculate the percentage finer. Table 1 shows sieve sizes and percentage finer for before 

and after cleaning. Fig. 3 shows the gradation curve before and after cleaning.  

 

Fig. 2. Grain-size distribution by sieve analysis 

Table 1. Table showing sieve sizes and percentage finer for before and after cleaning 

Sieve sizes (mm) % Finer (Before cleaning) %Finer (After cleaning) 

4.75 99.9 99.6 

2 99.7 99.2 

1.18 99.2 98.8 

0.6 98.6 98 

0.3 49.7 53.6 

0.15 13.6 11.2 

0.075 4 0 

Pan 0 0 

 

The curve in fig. 3(a) gives the values of D10, D30, and D60 before cleaning which are 

0.123, 0.215, and 0.352 respectively. The computed values for uniformity (Cu) and 

curvature (Cc) coefficients are 2.86 and 1.07 respectively. The curve in Fig. 3(b) was used 

to compute the values of D10, D30, and D60 after cleaning; the results were 0.145, 0.214, 

and 0.335, respectively. Estimates for the uniformity (Cu) and curvature (Cc) coefficients 

were also provided, and they were 2.31 and 0.94, respectively. As a result, the geomaterial 

is categorised as poorly graded sand (SP) according to IS:2720 (Part 4) – 1985. 

4.75 mm 

2.36 mm 1.18 mm 

600 μm 

300 μm 152 μm 

75 μm Pan 
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Fig. 3. Grain-size distribution curve (a) before and (b) after cleaning. The circled portion in in (b) 

indicates the removal of fines 

3.3 SPECIFIC GRAVITY TEST 

Calculating soil parameters like void ratio and saturation level requires an understanding 

of specific gravity. This dimensionless unit is the ratio of material density to the density 

of water. A specific gravity test was conducted confirming to IS:2720 (Part 3) – 1980. 

Pycnometer is used for the test is shown in Fig. 4. The pycnometer is a 1 litre glass jar 

with a brass conical lid attached to the top. At the top, there is a 6 mm-diameter hole. By 

placing a washer between the cap and the jar, the leak is stopped. To ensure that the 

volume of the pycnometer remains constant during the computation, the jar is screwed 

shut all the way. To the nearest 0.001 g, the entire pycnometer with a conical top is 

weighed.  Weigh the bottle, 50 g of oven-dried sample, conical top, and other components 

to the closest 0.001 g. To ensure that the soil in the bottle is barely covered, enough air-

free distilled water must be added. The bottle containing the sample and water must be 

put into the vacuum desiccator, which must then gradually expel the air.  

 

Fig. 4. Specific gravity determination by Pycnometer 
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With the spatula, carefully swirl the sample in the bottle.  The bottle and its contents must 

then be taken out of the desiccator and filled with more air-free distilled water. After that, 

the conical top should be put in. Drying off the pycnometer, the entire apparatus is then 

weighed to the closest 0.001 g. The container must next be thoroughly cleaned, entirely 

filled with distilled water without any air pockets, dried, and weighed to the closest 0.001 

g. 

 Specific Gravity =
𝑚2 − 𝑚1

(𝑚4 − 𝑚1) − (𝑚3 − 𝑚2)
 (2) 

 

where,  

m1 = Weight of the bottle (g) 

m2 = Weight of bottle and the soil sample (g) 

m3 = Weight of bottle, soil sample, and water (g) 

m4 = Weight of bottle and water (g) 

The value of specific gravity is obtained using the equation (2) is: 

Specific gravity = 2.74 before cleaning 

Specific gravity = 2.68 after cleaning 

3.4 STANDARD PROCTOR TEST 

Compaction makes soil more compact by removing air gaps, which densifies the soil. The 

dry density of a particular soil may be used to determine how compacted it is. The dry 

density is maximum when the water content is ideal. A 5 kg oven-dried geomaterial was 

collected in accordance with IS:2720 (Part 7) - 1980. The geomaterial was thoroughly 

mixed after the appropriate amount of water was introduced. As illustrated in Fig. 5, 25 

blows with a 2.6 kg hammer dropped freely from a height of 310 mm above the ground 

compacted three layers of the moist material into the mould. The compressed 

geomaterial's weight inside the mould is calculated. 
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Fig. 5. Figures showing soil sample (a) before compaction (b) while compacting (c) after compaction 

using standard proctor test 

Table 2 provides the determined dry density and moisture content before and after the 

sand was cleaned. To find the optimum moisture content (OMC) and maximum dry 

density (MDD), which are found in Fig. 6(a) to be 4.9 % and 16.56 kN/m3 respectively 

for sand before cleaning. The MDD and OMC from Fig. 6(b) are 10.4 % and 17 kN/m3 

respectively for sand after cleaning. These are the values when the experiment was 

repeated with various moisture values. 

Table 2. Table showing moisture content and dry density obtained from standard proctor test 

Moisture content 

(%) (before 

cleaning) 

Dry density 

(kN/m3) (before 

cleaning) 

Moisture content 

(%) (after 

cleaning) 

Dry density 

(kN/m3) (after 

cleaning) 

2.29 16.19238 3.2 16.127 

3.27 16.194 5.5 16.385 

4.7 16.5598 7.8 16.7852 

6.92 16.423 9.9 16.986 

8.92 16.324 11.7 16.921 

  13.9 16.654 

  15.5 16.459 
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Fig. 6. Standard proctor compaction curve (a) before cleaning and (b) after cleaning 

3.5 DIRECT SHEAR TEST 

For the direct shear test, the IS:2720 (Part 13) - 1986 standard was adhered to. The 

geomaterial is tamped into the shear box, which has a porous stone at the bottom and a 

base plate, grid plate, and other supporting plates. Grid plates are affixed to the top, and 

it is then placed into place on the loading frame. A standard loading of 0.5 kg/cm2 is 

applied from the top, normal of the specimen. Shear was applied horizontally until failure 

or when longitudinal displacement reached 20 % during the test. The computer 

automatically logs the data of shear force and horizontal displacement in order to calculate 

the cohesiveness and angle of internal friction of the geomaterial. It was conducted again 

with a typical loading of 1 and 1.5 kg/cm2.  Table 3 is a list of the findings before and 

after the sand was cleaned. The cohesion and angle of internal friction are shown in Fig. 

8(a) as 9.47 kPa and 34.27º, respectively before the sand was cleaned. The cohesion and 

angle of internal friction are shown in Fig. 8(b) as 4.4 kPa and 36.6º, respectively after 

the sand was cleaned. The digital direct shear test device is depicted in Fig. 7. 
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Fig. 7. Direct shear test apparatus 

Table 3 Table showing the values of normal stress and Shear stress from direct shear test 

Normal stress (kPa) 
Shear stress (kPa) 

(Before cleaning) 

Shear stress (kPa) 

(After cleaning) 

50 38.307 41.36 

100 70.7849 78.96 

150 130.1498 115.6 
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Fig. 8. Normal stress vs shear stress graph from direct shear test 

3.6 ANALYSIS OF SAND PARTICLES 

Sand is a typical material that has a wide range of uses in several sectors of the economy, 

including geotechnical engineering, manufacturing, and building. For operations to be 

optimised and product quality to be maintained, it is essential to understand the properties 

and makeup of sand particles. By determining the microstructure of sand particles, the 
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Brinell microscope, a tool that combines microscopy with indentation testing, offers a 

novel method of analysing sand particles. Typically, Brinell microscopes include 

adjustable magnification capabilities so that the sand particles may be precisely seen. 

They frequently provide a range of magnification choices to fit different particle sizes and 

measuring needs. The sand particles of the present paper were studied under a Brinell 

microscope. Pictures were captured to find out the size and were analysed. The length 

and angles have been found using OriginPro software. The findings of the analysis have 

been listed in Table 4. It shows that the sand particles used here are angular. Hence, the 

Direct shear test shows a high value of cohesion. The angular particles shows interlocking 

characteristics. 

Table 4. Analysis of sand particles for length and angle 

Grain 

No. 
Image Lengths (mm) Angles 

1 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.05

0.04

0.03

0.02

0.01

0.00

Y
 (

m
m

)

X (mm)  

0.0142, 0.00572, 

0.0218, 0.0155 

61.21º, 

118.79º, 

126.6º, 

53.4º 

2 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Y
 (

m
m

)

X (mm)  

0.0187,0.0099, 

0.0167, 0.0187 

87.29º, 

92.72º, 

115.62º, 

64.38º 
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3 

 

0.00678, 0.0127, 

0.0134, 0.018 

61.35º, 

118.65º, 

112.19º, 

67.83º 

4 

 

0.00697, 0.0139, 

0.0133 

70.43º, 

79.98º, 

29.59º 

5 

 

0.00804, 0.01, 

0.0103, 0.00574 

47.23º, 

132.77º, 

70.11º, 

109.89º 
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6 

 

0.00432, 0.004, 

0.00221, 0.00343 

89.14º, 

90.86º, 

120.97º, 

59.03º 

7 

 

0.0262, 0.0221, 

0.0141, 0.013 

66.22º, 

113.78º, 

83º, 97.01º 

8 

 

0.00854, 0.0102, 

0.0103, 0.00434 

56.77º, 

123.23º, 

92.49º, 

87.52º 
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9 

 

0.00296, 

0.00351, 

0.00362, 0.00211 

51.55º, 

128.45º, 

73.29º, 

106.71º 

10 

 

0.00221,0.0045, 

0.00275, 

0.00329, 

0.00397, 0.00437 

84.24º, 

138.26º, 

147.6º, 

75.76º, 

136.64º, 

137.5º 

 

3.7 DIGITAL STATIC CONE PENETRATION TEST  

During site inspection and laboratory study, a digital static cone penetrometer test 

(DSCPT) is an inexpensive way to assess the penetration resistance of granular materials. 

The cone tip was hydraulically driven at a steady rate of penetration into the ground at a 

DSCPT location. Both the resistance to sleeve friction and the resistance at the cone tip 
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were measured. The friction in the sleeve and the resistance at the cone tip were measured. 

The two push handles on the DSCPT, which is employed in the current investigation, are 

used to manually push the cone into the ground. As shown in Fig. 9, the assembly is made 

up of a load cell with a 300 kg weight capacity, an LVDT with a 0-20 cm range, a driving 

rod (1.6 cm in diameter and 49.8 cm long), a cone (60º) at the bottom of the drive rod, 

and a data-collecting system. Additionally, it shows how the geomaterial and 

geosynthetics are organised in the steel tank. The top 150 mm of the geomaterial is 

considered as the subgrade, hence geosynthetics are placed within the subgrade. The 200 

mm of geomaterial below is considered as the natural soil.  

 

Fig. 9. Figure showing (a) digital static cone penetration test assembly including the steel tank, push 

handle, 60º cone, drive rod, load cell, LVDT and data acquisition system (Singh et al., 2020) and (b) steel 

tank filled with geomaterials showing soft subgrade and natural soil.  

Body weight exerts a steady strain on the grips, pushing the cone further into the ground. 

Throughout the tests, the LVDT and load cell were both functional. The load cell assists 

in monitoring the applied load as the LVDT detects DSCPT penetration. Both deliver the 

electrical signal, which converts the analogue signal to a digital one, to the data 

acquisition system. The DSCPT was set up vertically on the granular soil's surface. Since 

they had an impact on the output data, jerks were to be avoided when pressing the handles 

of the DSCPT. 

The load and displacement data from the load cell and LVDT were automatically stored 

in a tabular manner in the USB output device. Once the cone stops penetrating into the 

soil even if the load is increased then the test is completed. The test was conducted on the 
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sample kept inside a steel tank. The locations at which the test was conducted are shown 

in Fig. 10. The test was repeated for different layers of reinforcement. The placement of 

the 50, 100, and 150 mm geogrid reinforcement in every feasible combination has been 

evaluated. 

 

Fig. 10. Layout of locations where digital static cone penetration test was conducted 

3.8 GEOSYNTHETIC REINFORCEMENT 

Geogrid is used as reinforcement in different layers such as single, double and triple 

layers. The geogrid is a perforated polypropylene sheet with ribs. It limits the horizontal 

mobility of the geomaterial which is governed by the coefficient of interface friction. 

Table 5 is a list of properties of the geogrid that was employed in this investigation. At 

0.5 % strain, the geogrid's rigidity, which has a 30 × 30 mm aperture, is 550 kN/m in the 

machine direction and 350 kN/m in the cross-machine direction. If the interface friction 

coefficient between the geomaterial and geosynthetics is high enough, geogrid can stop 

geomaterial from migrating horizontally when installed at the interface of the subgrade 

and aggregate layer. The force required to entirely remove a geogrid from the appropriate 

standard soil was provided by the manufacturer, and it was found to be 1.78 which is the 

coefficient of interface friction. The geogrid employed in this investigation is depicted in 

Fig. 11. 
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Fig. 11. Geogrid used in the study (Aperture size – 30×30 mm) 

Table 5. Properties of geogrid used in the present study (Singh et al., 2020) 

Characteristics Property Specifications/Magnitude 

Physical 

characteristics 

Structure Bi-axial geogrid 

Colour Black 

Shape Quadrangular 

Polymer Polypropylene 

Technical 

characteristics 

Aperture size (mm) 30×30 (MDa×CMDb) 

Stiffness at 0.5 % strain (kN/m) 550×350 (MDa×CMDb) 

Transversal rib width (mm) 2.6 

Longitudinal rib thickness (mm) 3.8 

Junction thickness (mm) 6 

Performance 

characteristics 

Aperture coefficient of friction 1.78c and 1.14d 

Installation damage factor 1 

a machine direction 
b cross-machine direction 
c10kPa  
d20 kPa 

3.9 NUMERICAL SIMULATION 

A numerical strategy that provides approximate answers to problems in the field is the 

finite element technique. Partial differential equations with solutions that satisfy the 

boundary conditions are used to solve issues. Finite element analysis, on the other hand, 

merely seeks to approximate the field quantity by piecewise interpolation. To mimic the 

behaviour of geomaterial under dynamic loading, the finite element technique 
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methodology should be used. Software called Abaqus has been used to carry out 

numerical analysis. 

3.9.1 Modeling Assembly 

Abaqus 2017 was used to model a 600 × 350 mm confined tank filled with geomaterial 

in 2D as shown in Fig 12.  

 

Fig. 12. Model of a confined tank filled with geomaterial. 

The Poisson's ratio, Young’s modulus, dilation angle, friction angle, and the unit weight 

of the geomaterial are the input properties adopted in the present study as listed in Table 

6. 

Table 6. Properties of geomaterial adopted in the present study for performing the finite element 

simulations 

Property Magnitude  

Poisson's ratio, μ 0.45 

Young’s modulus, E (MPa) 30 - 50  

Dilation angle, ψ 1º 

Friction angle, ϕ 35º 

Unit weight, γ (kN/m3) 16 - 22  
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3.9.2 Loading Module 

Load Application: A vibratory load is applied on the confined tank with geomaterial. 

The loading is applied according to the load applied by the armature of the electro-

dynamic shaking unit used for the experiment. The pressure of the load applied was 30 

kPa. The dynamic load was applied at different frequencies such as 5, 10, 15, 20 and 25 

Hz as dynamic implicit loads. Fig 13 shows the loading condition on the confined tank 

filled with geomaterial. 

 

Fig. 13. Loading condition on the model 

Boundary Conditions: The fundamental values of variables like velocity, displacement, 

rotation, etc. at model nodes are specified using the boundary conditions in the numerical 

model. Additionally, it has been applied to limit the mobility of boundary faces. For the 

present study, a displacement boundary condition was provided. A displacement/rotation 

boundary condition specifies the displacement or rotation for each specified degree of 

freedom or limits the movement of the selected degrees of freedom to zero. Here three 

such boundary conditions are used to provide confinement to the geomaterials, which are 

as follows:  

1. The bottom of the geomaterial is confined against the vertical motion, U2 = 0 as 

shown in Fig. 14 (a). 

2. The partition where pressure is applied is restricted to move in the vertical 

direction, U2 = 0 as shown in Fig. 14 (b). 

3. Both sides of the geomaterial are confined against the horizontal movement, U1 

= 0 as shown in Fig. 14 (c). The pink dots indicate that the selected points are 

excluded from the applied boundary condition 
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Fig. 14. Boundary conditions of the model (a) U2 = 0, (b) U2 = 0, and (c) U1 = 0 

3.9.3 Meshing Module 

A key component of Finite Element Analysis (FEA) is meshing, which is the 

discretization of huge, complicated geometries into a collection of simple, linked 

elements. Simply said, finite elements are used to break down complicated structures into 

smaller, simpler shapes. It is crucial to understand how to produce an adequate mesh since 

mesh size, element type, and element quality all have a direct impact on the accuracy and 

dependability of an FEA simulation. The different meshing procedures provide varying 

degrees of automation and user control are: 

1. Structured meshing 

2. Free meshing 

3. Swept meshing 

The meshing technique used in the present study is global meshing. The 600 × 350 mm 

confined geomaterial is divided into 2100 elements. The size of each element is 10 × 10 

mm as shown in Fig. 15.  
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Fig. 15. The meshing of the model 

3.9.4 Step Module 

Within a model, the sequencing of one or more analytical stages is described. The step 

sequence provides a simple method for documenting adjustments to the loading of the 

model and boundary conditions, adjustments to how its constituent parts interact with one 

another, removal or addition of constituent parts, and any other adjustments that could be 

made throughout the study. Additionally, it can offer the choice to change the analysis 

procedure, the data output, and a variety of settings. The present model, which consists 

of direct integration dynamic analysis for the nonlinear behaviour of the geomaterial, has 

been simulated using a dynamic implicit scheme as shown in Fig. 16. The D'Alembert 

principle has been used to measure the displacement, and the motion equation is 

 mẍ + cẋ + kx = P(t) (3) 

where P(t) is the loading excitation, m is the system's mass, c and k are the geomaterial's 

damping coefficient and stiffness constant, and ẍ, ẋ  and x are the acceleration, velocity 

and displacement.  
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Fig. 16. Steps used in the model 

3.10 EXPERIMENTAL SETUP 

A steel tank measuring 600 × 460 × 400 mm was filled with geomaterial to verify the 

depth and displacement change with the frequency that had been anticipated analytically. 

A steel cylinder, granular substance, dynamic vibrator, data recorder, and accelerometer 

were all included in the testing configuration. Accelerometers are electromechanical 

sensors that produce electrical charges proportional to the force exerted upon them. They 

can be mounted on any surface at any orientation. When the vibrator strikes the tank, the 

accelerometer (NP-3412) measures the displacement, velocity, and acceleration of sand. 

It was positioned inside the tank at various depths of 50 - 200 mm from the shaking device 

and was mounted on a steel plate using petro wax adhesive (Model 080A109). 

Accelerometer signals are measured using a data acquisition system that logs the static 

and dynamic activities. While the accelerometer collects the data, the vibrator was excited 

at 5 - 25 Hz. 

Vibrations were produced using an MEV-0020 electro-dynamic vibrator and an MPA-

0500 Power amplifier cum signal generator. The electrodynamic vibrator consists of a 

moving platform which was positioned to hit the steel tank with the geomaterial from the 

sides as depicted in Fig 17. The accelerometers are positioned at different depths away 

from the vibrating plate, which will collect the necessary data from the locations. The 

displacement data was logged by an MVM-555 digital vibration meter. 
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Fig. 17. Diagrammatic representation of the experimental setup showing the arrangement of 

accelerometer along with power amplifier cum signal generator, electrodynamic vibratory shaker, a steel 

tank filled with geomaterial, and digital vibration meter. 

 

3.11 MACHINE LEARNING APPROACH 

Data Collection - Gather data related to confined geomaterial, such as tank width, D50, 

density, armature-applied pressure, loading frequency, and displacement. Ensure that the 

data contains multiple input variables. 

Data Pre-processing - Normalize the input variables to clean the dataset, making it 

suitable for training a machine learning model. 

Feature Selection - Determine the input variables that have an impact on the displacement 

of confined geomaterial under vibratory load. These variables may include tank width, 

D50, density, armature-applied pressure, and loading frequency. 

Model Selection - Choose a machine learning algorithm based on the characteristics of 

the input parameters and their connection to the target variable. 

Model Training - Divide the dataset into a training set and a testing set. Train the selected 

machine learning model using the input and target variables from the training set. This 

process enhances the model's ability to identify correlations and patterns within the data. 

Model Evaluation - he trained model is evaluated using the testing set. The accuracy of 

displacement prediction by the models can be measured using various metrics, including 

mean squared error (MSE), root mean squared error (RMSE), mean absolute error 
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(MAE), and coefficient of determination (R2). These metrics, R2, RMSE, MAE, and 

MSE, are calculated using equations (4-7) (Ahmad et al., 2018; Younas et al., 2022; 

Ibrahim et al., 2022). 

 𝑅 =
𝑛 ∑(𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)

√(𝑛 ∑ 𝑥2 − (∑ 𝑥)2)(𝑛 ∑ 𝑦2 − (∑ 𝑦)2)
 (4) 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖=1

𝑛
 (5) 

 𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖̂ − 𝑦𝑖|

𝑛

𝑖=1

 (6) 

 𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 (7) 

the variables x and y represent the input and output parameters, respectively, for a dataset 

consisting of n sample points. The predicted values of the output parameter are denoted 

as 𝑦𝑖̂, while the actual values are represented by 𝑦𝑖. 

Prediction - Once the model has been trained and evaluated, it can be employed to predict 

or forecast displacement for untested samples. By providing the relevant sand parameters 

as input to the trained model, it will generate estimates of displacement. These estimates 

serve as predictions for the unknown samples based on the patterns and correlations 

learned during the training process. 

3.11.1 Machine Learning Models 

Decision Tree 

The Decision Tree (DT) classifier categorizes an unknown sample by iteratively applying 

one or more decision functions, as described by Swain and Hauska (1977). It takes the 

form of a tree structure, where the leaf nodes indicate classification outcomes, and the 

internal nodes represent dataset features, branching, and decision-making processes. By 

utilizing dataset features, the DT approach determines the appropriate test or decision at 

each step. This methodology effectively breaks down complex problems into simpler 

ones, providing a solution that is easily comprehensible, as highlighted by Xu et al. 

(2005). 
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Let 𝑋 represent the pattern or feature vector, and Y represent the class label that has been 

assigned to 𝑋. 𝑋 takes values from the real-valued space Rq, whereas Y takes integer 

values. The d(.) decision rule function is in charge of mapping the elements in Rq to the 

matching class label Y (Safavian and Landgrebe, 1991). true misclassification rate of d is 

 𝑅∗(𝑑) = 𝑝(𝑑(𝑋) ≠ 𝑌) (8) 

To train a Decision Tree (DT) model, the process involves utilizing recursive partitioning 

and multiple regressions on the training dataset. This approach initiates at the root node 

and continues by iteratively dividing the data at each internal node based on a predefined 

rule. This splitting process is repeated until specific stopping criteria are met, as described 

by Rodriguez-Galiano et al. (2015). 

Two commonly used scoring criteria for determining the best split at each node are 

Information Gain (InfoGain) (Quinlan, 1993) and Gini Index (Gini) (Breiman, 1984). 

These criteria evaluate the impurity or uncertainty of the data at each potential split point 

and aid in selecting the most informative and discriminative features for decision-making 

within the DT model. 

 𝐼𝑛𝑓𝑜 = − ∑ (
𝑁𝑗(𝑡)

𝑁(𝑡)
)

𝑗

log2 (
𝑁𝑗(𝑡)

𝑁(𝑡)
) (9) 

Where Nj is the number of samples belonging to class j, N(t) is the number of samples in 

node t, and Nj(t) is the number of class j samples in node t. 

 𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛 = 𝐼𝑛𝑓𝑜(𝑝𝑎𝑟𝑒𝑛𝑡) − ∑(𝑝𝑘)𝐼𝑛𝑓𝑜(𝑐ℎ𝑖𝑙𝑑𝑘)

𝑘

 (10) 

where Info (q) is the information of the feature subspace q, and pk is the proportion of 

samples passed to the kth subspace. 

 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 − ∑‖𝑝(𝑗)𝑁𝑗(𝑡)/𝑁(𝑡)‖
2

𝑗

 
(11) 

 𝐺𝑖𝑛𝑖 = 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑝𝑎𝑟𝑒𝑛𝑡) − ∑(𝑝𝑘)𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑐ℎ𝑖𝑙𝑑𝑘)

𝑘

 
(12) 
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In the given context, P(j) represents the prior probability that a sample belongs to class j 

within a set of training samples. The notation ||g|| signifies the normalization of the vector 

g to unit length. 

To align with the default configuration in the Matlab decision tree code for the micro-

array example, proportional priors are utilized. This means that the prior probability p(j) 

for class j is calculated based on the relative frequency of samples belonging to class j 

(Nj) compared to the total number of samples in class 1 (N (1)). This normalization helps 

ensure that the prior probabilities sum up to 1 and provides a consistent reference point 

for making classification decisions (Myles et al., 2004). 

Three alternative DT topologies are accessible in this situation. The first architecture is 

made up of "Fine" DT, the most sophisticated of the three. The second architecture is 

called "Medium," while the third is called "Coarse." 

Gaussian Process Regression 

The vector D = {y(xi): I = 1...n} represents a collection of data points, where x ∈ χ is an 

arbitrary input variable. Given a test input x*, our goal is to estimate the expected value  

𝔼 [y(x*) | x*, D] and the covariance cov[y(x*) | x*, D]. The correlations between the 

components of y(x) can vary as x changes, encompassing both signal and noise. 

If we assume x = t, one component of the p-dimensional vector y(t) may indicate the 

expression level of a particular gene at time t. The remaining components, (t), would 

reflect the variances and correlations among these genes at time t. Rather than assuming 

temporal dependence, we model the entire vector y(x) to capture its interactions and 

dependencies, considering the correlations and interactions among all its components 

(Wilson et al., 2011). 

 𝑦(𝑥) = 𝑊(𝑥)[𝑓(𝑥) + 𝜎𝑓 ∈] + 𝜎𝑦𝑧 (13) 

∈ represents a random variable, and z represents independent and identically distributed 

white noise that follows a Gaussian distribution with a mean of 0 and an identity 

covariance matrix, denoted as N(0, I). 

The matrix W(x) is a p×q matrix composed of independent Gaussian processes (GPs). 

Each element of W(x) is a GP, and they are mutually independent. On the other hand, the 
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vector f(x) = (f1(x), ..., fq(x))T is a q×1 vector composed of independent GPs. Similarly, 

each element of the vector f(x) is a GP, and they are also mutually independent 

(Quinonero-Candela and Rasmussen, 2005). 

A Gaussian Process (GP) refers to a collection of random variables that have joint 

Gaussian distributions, and this property holds for any finite number of variables. Various 

types of Gaussian Process Regression (GPR) models exist, including the Matérn 5/2 GPR, 

rational quadratic GPR, squared exponential GPR, and exponential GPR. 

The rational quadratic GPR kernel is particularly useful when dealing with data that 

exhibits fluctuations at different scales. This method finds applications in image analysis, 

machine learning, geostatistics, spatial statistics, and multivariate statistical analysis in 

metric spaces. 

In the context of function space, the squared exponential GPR represents a regression 

model with an infinite number of basis functions, similar to a radial basis function 

regression model. The squared Euclidean distance is used to distinguish it from the 

exponential GPR. One notable characteristic of the squared exponential GPR is the use 

of kernels to replace inner products of basis functions. 

The Matérn 5/2 kernel is derived by taking Fourier transforms of the Radial Basis 

Function (RBF) kernel using spectral densities of the stationary kernel. The Matérn 5/2 

kernel addresses the issue of high-dimensional concentration of measure and is suitable 

for modeling data in such spaces. 

The exponential GPR employs kernels instead of basis function inner products. While it 

accurately approximates smooth functions, it may struggle to detect abrupt discontinuities 

in data. 

These descriptions highlight the characteristics and applications of different GPR models, 

based on their respective kernel functions. 

Ensemble  

Ensemble machine learning is a technique that combines multiple basic models to create 

a more accurate prediction model. Ensemble classifiers classify new data points by 

aggregating the predictions of individual models, either through voting with or without 
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weights, as described by Dietterich (2000). Ensemble methods address various machine 

learning problems by training multiple models and integrating their predictions to 

improve overall predictive performance, as highlighted by Sagi and Rokach (2018). 

These ensemble techniques leverage the diversity and expertise of multiple models to 

handle complex patterns, mitigate overfitting, and enhance generalization, making them 

essential in modern machine learning across diverse domains.  

Bagging is an ensemble technique that involves averaging the predictions of multiple 

decision trees, each trained on different subsamples of the same dataset. This approach 

aims to improve prediction accuracy by reducing variance through the combination of 

multiple models. 

Boosting, on the other hand, focuses on sequentially adding ensemble members that 

correct the predictions made by previous models. It produces a weighted average of the 

predictions and emphasizes the samples that were incorrectly classified by adjusting 

sample weights. By iteratively updating the sample weights and integrating the outputs 

of multiple models, boosting enhances the classification capabilities of the basic models, 

as explained by Dong et al. (2020). 

In the specific experiment mentioned, the Classification Toolbox in MATLAB was used. 

The study involved constructing decision tree structures of different sizes, namely fine 

and medium, as well as utilizing the Matérn 5/2 GPR, rational quadratic GPR, squared 

exponential GPR, exponential GPR, and boosted tree models. These models were 

employed to predict soil displacement when subjected to vibratory pressure. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 BASIC PROPERTIES OF SOIL 

The geomaterial is sand that has been poorly graded (SP), according to the grain size 

distribution curve. There are values for the uniformity (Cu) and curvature (Cc) coefficients 

are 2.86 and 1.07, respectively (before cleaning) and 2.31 and 0.9423, respectively (after 

cleaning). The shear stress vs. normal stress graph displays cohesiveness and the angle of 

internal friction. The compaction curve gives the optimum moisture content and 

maximum dry density. Table 7 displays the basic properties of geomaterial before and 

after cleaning. 

Table 7. Basic properties of the geomaterial 

Properties Magnitude (Before 

cleaning) 

Magnitude (After 

cleaning) 

Material Poorly graded sand 

(SP) 

Poorly graded sand 

(SP) 

Specific gravity 2.74 2.68 

Optimum moisture content, OMC 

(%) 

4.9 10.4 

Maximum dry density, MDD 

(kN/m³) 

16.56 17 

Cohesion, c (kPa) 9.47 4.4 

Friction angle, ϕ 34.27 36.59º 

 

4.2 DIGITAL STATIC CONE PENETRATION LAB TEST 

DSCPT was conducted on geomaterial at five test locations namely A, B, C, D and E. 

When the driving rod is positioned near the top of the geomaterial, the cone has been 



37 

 

shown to penetrate quite a distance on its own. Since the geomaterial is soft, it did not 

resist the cone against penetration. As we can see from the graph that the cone penetrated 

up to 87 and 89 mm at test locations A and B respectively without the application of load 

for unreinforced subgrade. There are four cases in which DSCPT was conducted. They 

are as follows: 

i. Without reinforcement 

ii. Single layer of reinforcement 

iii. Double layer of reinforcement 

iv. Triple layer of reinforcement 

When no reinforcement was placed the cone sinks into the geomaterial without any 

resistance due to its self-weight. After a certain depth, the densification of soil due to 

overburden pressure made the geomaterial achieve a certain amount of strength. The load-

displacement curves show that geogrid reinforcement offers higher resistance against 

penetration in the geomaterial. Using this device, a penetration depth of 180 mm 

corresponding resistance has been increased. The curve for locations B, C, D and E are 

in conjunction, hence only one location (B) is represented in the Fig. 19, 21, 23, and 25.  

4.3 INFLUENCE OF GEOGRID REINFORCEMENT 

The characteristics of geogrid reinforcement, the thickness of subgrade, the performance 

of geogrid at its interface with the geomaterial, the location of the geogrid, the number of 

geogrid layers, etc., are taken into consideration in the present study for analysing the 

effectiveness of geogrid-reinforced unpaved roads. The presence of geogrid 

reinforcement has had an impact on the strengthening of the geomaterial. This study has 

been conducted for obtaining optimum the number of layers and the location of the 

geogrid.   

4.2.1 Single-layer Geogrid Reinforcement 

When only one reinforcement layer is taken into account, the geogrid reinforcement 

installed at 50 mm from the surface of the geomaterial performed better than that placed 

at 100 and 150 mm from the surface. While considering the load-displacement behaviour 

at test location A as shown in Fig. 18, the cone is penetrating up to a depth of 57 mm 
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without any load. This is due to the densification of geomaterial beneath the geogrid 

reinforcement. After this point, the geogrid reinforcement provides a reinforcement effect 

by providing additional strength to the geomaterial. When test location B as shown in Fig. 

19 is considered, the cone is penetrating without any load up to a depth of 66 mm. Here 

boundary effect is predominant, due to which a slight change in the behaviour compared 

to location A is taking place. 
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Fig. 18. Load-displacement curve for single layer geogrid-reinforced and unreinforced systems derived 

from DSCPT data at test location A 
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Fig. 19. Load-displacement curve for single layer geogrid-reinforced and unreinforced systems derived 

from DSCPT data at test location B 

4.2.2 Double-layered Geogrid Reinforcement 

The double layered is the most efficient among all the cases for location A as shown in 

Fig. 20. When reinforcement is placed at 50 and 100 mm from the top of the geomaterial, 

the minimum penetration is obtained compared to all the other combinations. The cone 

penetrates up to 60 mm without resistance because of the densification effect. After this 

point reinforcement effect develops which gives strength to the geomaterial. For B, C, D 

and E locations as shown in Fig. 21 for double-layered geogrid reinforcement, when they 

are placed at 50 and 150 mm from the top is found to be the most efficient. In this case, 

the densification effect has been observed upto a depth of 62 mm. 
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Fig. 20. Load-displacement curve for double layer geogrid-reinforced and unreinforced systems derived 

from DSCPT data at test location A  
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Fig. 21 . Load-displacement curve for double layer geogrid-reinforced and unreinforced systems derived 

from DSCPT data at test location B 
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4.2.3 Triple-layered Geogrid Reinforcement  

The triple-layered is the optimum among all the cases when test locations B, C, D and E 

are considered as shown in Fig. 23. For these locations, the densification effect has been 

observed upto 62 mm. For location A as shown in Fig. 22, the reinforcement effect has 

been initialised at 68 mm. After this point, a reinforcement effect develops which gives 

strength to the geomaterial. 
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Fig. 22. Load-displacement curve for triple layer geogrid-reinforced and unreinforced systems derived 

from DSCPT data at test location A 
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Fig. 23. Load-displacement curve for triple layer geogrid-reinforced and unreinforced systems derived 

from DSCPT data at test location B 

Because of the boundary effect caused by the confinement from the steel tank, the 

outcomes of locations A as shown in Fig. 24 and B as shown in Fig. 25 are different. The 

side walls of the steel tank prevent the geomaterial from moving laterally. The boundary 

effect has been given due consideration while conducting the DSCPT for locations B, C, 

D and E. For situations where the boundary effect is significant, triple-layered geogrid 

reinforcement can be used. The kerbs used in paved roads can act as boundaries and for 

other situations like unpaved roads, double layered reinforcement. 
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Fig. 24. Load-displacement curve for single, double, and triple layer geogrid-reinforced and unreinforced 

systems derived from DSCPT data at test location A 
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Fig. 25. Load-displacement curve for single, double, and triple layer geogrid-reinforced and unreinforced 

systems derived from DSCPT data at test location B 
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4.3 NUMERICAL SIMULATION AND EXPERIMENTAL SETUP 

The outcomes of the experiment and the numerical forecast are contrasted for varied input 

parameters considered in the study. To record the dynamic reaction of the geomaterial, 

the accelerometers are positioned at various distances from the shaking equipment. As 

the waves move away from the vibratory source, the displacement should be decreasing. 

The test findings produced an outcome that was acceptable when compared to the 

numerical modelling. The findings are displayed in the figures below as shown in Fig. 

27. 

When densities are examined, the geomaterial does not exhibit a significant variation in 

displacement because of compression. The geomaterial is unable to move easily with the 

armature frequency that it strikes the tank due to containment and compaction. The 

change of displacement at different frequencies spanning from 5 to 25 Hz is depicted in 

the accompanying figure as shown in Fig. 28. As frequency rises, the displacement tends 

to grow, and as depth rises, it tends to diminish. The deformed soil mesh after the 

application of excitation load is shown in Fig. 26. 

 

Fig. 26.  Deformed soil mesh near the applied excitation, in total displacement direction 
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Fig. 27. Comparison of experimental and numerical results on displacement variation along depth ratio at 

frequencies of (a) 5 Hz, (b) 10 Hz, (c) 15 Hz, (d) 20 Hz, and (e) 25 Hz 
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Fig. 28. The variation of displacement along the depth ratio for the 5 to 25 Hz frequency range at (a) γ= 

16 kN/m3, (b) γ = 18 kN/m3, (c) γ = 20 kN/m3, and (d) γ = 22 kN/m3 

The numerical and experimental findings are in great conjunction for confined 

geomaterial subjected to vibratory load for various input parameters considered in the 

study. When the frequency is increased the values move apart from each other. 

The shear stress (τ) which is a function of depth (z) may be calculated using an equation: 

 𝜏 = ∫ 𝜌𝑢̈𝑑𝑧
𝑧

0

 (14) 

 

Here ρ is the density and 𝑢̈ is the acceleration. 

Also, shear strain can be calculated as: 
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 𝛾(𝑧𝑖) = [(𝑢𝑖+1 − 𝑢𝑖)
(𝑧𝑖 − 𝑧𝑖−1)

(𝑧𝑖+1 − 𝑧𝑖)
+ (𝑢𝑖 − 𝑢𝑖−1)

(𝑧𝑖+1 − 𝑧𝑖)

(𝑧𝑖 − 𝑧𝑖−1)
] (𝑧𝑖+1 − 𝑧𝑖−1)⁄  (15) 

 

where z is depth and u are the displacement.  

Further explaination of the equation (4) and (5) is available in Zeghal and Elgamal (1994). 

Shear modulus can be calculated by showing shear stress and strain after they have been 

acquired. The slope of the loop gives the shear modulus (G). Fig. 29 and 30 depict the 

fluctuation of the shear stress-strain hysteresis loop at various frequencies (50 and 75 Hz) 

and different Young's moduli (30- 50 MPa). 
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Figure 29. Shear stress-strain hysteresis loop at 50 Hz frequency when (a) E = 30 MPa, (b) E = 40 MPa, 

and (c) E = 50 MPa 
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Fig. 30. Shear stress-strain hysteresis loop at 75 Hz frequency when (a) E = 30 MPa, (b) E = 40 MPa, and 

(c) E = 50 MPa 

 

The shear stiffness of the geomaterial was calculated by determining the slope of the 

curve from the shear stress-strain hysteresis loop. The shear modulus value stays constant 

since the loops are so close to one another. Additionally, it was shown that it does not 

alter often with frequency variation. But there is a change while varying Young`s 

modulus. Young's moduli of 30, 40, and 50 MPa, respectively, correspond to shear moduli 

of 9, 10, and 20 MPa. 

The damping can be calculated using the logarithmic decrement method. It is known that 

the effect of damping decreases the amplitude of vibration with time. If 𝑥𝑛 and 𝑥𝑛+1 are 

the two successive peak displacements then,  

 𝛿 = 𝑙𝑛 (
𝑥𝑛

𝑥𝑛+1
) =

2𝜋𝐷

√1 − 𝐷2
 (16) 
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where 𝛿 is the logarithmic decrement and D is the damping ratio as given in Das and Luo 

(2016). The damping ratio's relationship to shear strain at various densities and 

frequencies is shown in Fig. 31. 
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Fig. 31. Damping ratio-shear strain variation at various frequencies between 5 and 25 Hz when (a) γ = 16 

kN/m3, (b) γ = 18 kN/m3, (c) γ = 20 kN/m3, and (d) γ = 22 kN/m3 

The overall damping ratio vs. shear strain trend is close to the normalised damping ratio 

shear strain curve. As shear pressure increases, the damping ratio also rises. The damping 

ratio falls between 0.5 and 5 %. It may be said that the damping ratio declined as density 

grew. It is difficult to foresee a broad pattern when there is a change in frequency. It is 

resulting in a cumulative effect. 

4.4 MACHINE LEARNING APPROACH 

The obtained numerical findings, which demonstrate good agreement with experimental 

results, can be utilized for estimating displacement. The analysis of the data involves 

employing fine and medium decision tree (DT) topologies, as well as the Matérn 5/2 GPR, 
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rational quadratic GPR, squared exponential GPR, exponential GPR, and boosted tree 

models. Once the regression model is trained, a response plot is generated to visualize the 

predicted response relative to the recorded values. To make each prediction, a model 

trained without using the corresponding observation is used, typically through the 

application of holdout or cross-validation techniques. 

In this particular study, a two-fold cross-validation approach is employed. A feedforward 

backpropagation network is trained using a backpropagation training algorithm. The input 

variables considered in the analysis consist of tank width ranging from 0 to 0.6 meters, 

frequency ranging from 5 to 25 Hz, a fixed D50 value of 0.285, unit weight of 18 kN/m3, 

optimum moisture content (OMC) of the geomaterial at 10.4%, and amateur pressure of 

30 kPa. The target data for the regression model is the displacement of the geomaterial. 

The predicted vs. true response plot is a valuable tool for assessing the performance of a 

regression model after training. This graph allows us to visualize how well the model 

predicts different response values. In an ideal scenario, all data points would fall precisely 

along a diagonal line, indicating that the predicted response matches the actual response. 

Fig. 32 displays the predicted vs. true response plots for the fine and medium decision 

tree architectures, Matérn 5/2 GPR, rational quadratic GPR, squared exponential GPR, 

exponential GPR, and boosted tree models. By examining this plot, we can evaluate the 

performance of each model and compare their ability to accurately predict the response 

values. Ideally, we would observe a tight cluster of points along the diagonal line, 

indicating strong predictive accuracy. 

The residuals plot is another method for assessing model performance after training. 

Residuals represent the discrepancy between the predicted and actual response values. In 

a successful model, the residuals would typically exhibit a symmetrical distribution 

around zero. This suggests that the model's predictions are unbiased and have a consistent 

level of accuracy. 

Fig. 33 illustrates the residual vs. true response plot for the fine and medium decision tree 

architectures, Matérn 5/2 GPR, rational quadratic GPR, squared exponential GPR, 

exponential GPR, and boosted tree models. By analyzing this plot, we can assess the 

model's performance in terms of the magnitude and distribution of the residuals. A 
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symmetrical distribution of residuals around zero would indicate a well-performing 

model with minimal bias. 

By examining both the predicted vs. true response plot and the residuals plot, we can gain 

insights into the accuracy and reliability of the regression models across different 

architectures and approaches. 

   

(a) (b) (c) 

   

(d) (e) (f) 

 

(g) 
 

Fig. 32. Predicted vs true response plot of (a) fine tree, (b) medium tree, (c) matern 5/2 GPR, (d) squared 

exponential GPR (e) the rational quadratic GPR, (f) exponential GPR, and (g) boosted tree 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

 

Fig. 33. Residual vs true response plot of (a) fine tree, (b) medium tree, (c) matern 5/2 GPR, (d) squared 

exponential GPR, (e) the rational quadratic GPR, (f) exponential GPR, and (g) boosted tree 

Model parameters play a crucial role in evaluating the efficacy of a model. After training 

the network, it is important to assess the performance of each method based on specific 

metrics. In Table 8, the performance of each method is likely summarized, providing 

valuable insights into their effectiveness. 
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Table 8. Comparison of performance of models 

Model RSME R2 MSE MAE Train time 

(s) 

Fine Tree 0.031891 0.98 0.0010171 0.019795 0.39606 

Medium 

Tree 

0.071315 0.91 0.0050858 0.036892 0.077911 

Rational 

Quadratic 

GPR 

0.030544 0.98 0.00093291 .010344 0.99513 

Square 

Exponential 

GPR 

0.032592 0.98 0.0010622 0.011338 0.24763 

Matern 5/2 

GPR 

0.028357 0.99 0.00080412 0.0091226 0.23602 

Exponential 

GPR 

0.039679 0.97 0.0015745 0.011376 0.20824 

Boosted 

Tree 

1.32 × 10-6 0.94 1.7424 × 10-

12 

5.07 × 10-

12 

0.92155 

 

The RMSE (root mean squared error) is always positive because it represents the square 

root of the average of the squared differences between the actual and forecasted values in 

a regression model. As the name suggests, it measures the average size of the errors, and 

therefore, it cannot be negative. 

Similarly, the R2 (coefficient of determination) is a metric that quantifies the proportion 

of variance in the dependent variable that can be explained by the independent variables 

in a regression model. The R2 value ranges from 0 to 1, where 0 indicates that the model 

explains none of the variance, and 1 indicates that the model explains all of the variance. 

The R2 value cannot exceed 1 since it represents the maximum amount of variance that 

can be explained by the model. 

The MAE (mean absolute error) is also a positive metric and is less sensitive to outliers 

compared to RMSE. It measures the average absolute difference between the actual and 

forecasted values, providing a more robust measure of prediction accuracy. 

Fig. 34 presents a comparison of the numerical and machine learning model's 

displacement projections. Each model is tested across a range of frequencies from 5 to 25 

Hz. This figure can be used to visually assess the performance and agreement between 

the numerical and machine learning models in predicting the displacements at different 

frequencies. 
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Fig. 34. Comparison of experimental and ML model results on displacement variation along depth ratio at 

(a) 5 Hz, (b) 10 Hz, (c) 15 Hz, (d) 20 Hz, and (e) 25 Hz  
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

5.1 CONCLUSIONS 

This study was conducted on poorly graded (SP) clean sand obtained from the banks of 

Yamuna River. Geogrid was placed in the geomaterial to investigate the strength 

improvement as reinforcement for confined geomaterial. The unreinforced geomaterial 

in confined state is compared with geogrid reinforced to find the optimum number of 

layers and the location of placement. A numerical study along with experimental 

investigation has showed significance of displacement, stress-strain, and damping of 

confined geomaterial subjected to vibratory loads for varied engineering applications. 

Additionally, the study utilized a machine learning model and examined various 

forecasting models to assess their efficiency. Further, the following conclusions can be 

drawn as: 

• The geogrid reinforced section shows better performance than the unreinforced 

section in terms of strength and stiffness.  

• In the single-layer reinforcement, it is observed that the maximum strength is 

achieved when the geogrid is placed at a depth of 50 mm from the surface.  

• In the double-layered reinforced sections, the combination of geogrid placed at 50 

and 100 mm from the top gives the optimum results compared to the other 

combinations in location A. However, at locations B, C, D and E (corners), the 

reinforcement at depths 50 and 150 mm shows better resistance to penetration. 

The reinforcement effect started after the initial settlement of geogrids from 50 

mm to 60 and 62 mm for locations A and B, respectively.  

• From the results obtained for location A double layer reinforcement at 50 and 100 

mm and for locations B, C, D and E triple layered reinforcement is the most 

efficient.  
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• The displacement-depth ratio showed that changes in displacement along the 

depth are not significant. The displacement-depth ratio increases up to 80 % for a 

frequency range of 5 - 25 Hz.  

• The displacement-depth ratio of numerical findings showed a departure of 4 - 41.4 

% from experimental findings for varied input frequencies.  

• The damping ratio of the confined granular fill has been found in the range of 0.5 

- 50 % for various input parameters considered in the study.  

• The percentage change in damping ratio from 5 - 25 Hz has been found in the 

range of 1 - 50 %. Further, the increase in unit weight (16 – 22 kN/m3) showed a 

compounded variation in the percentage change of damping ratio (9 – 80 %).  

• The matern 5/2 GPR model demonstrates the highest level of accuracy, as 

evidenced by its impressive R2 value of 0.99. This R2 value indicates a strong 

correlation between the predictions of the matern 5/2 GPR model and the actual 

outcomes, suggesting that it is the most reliable model for accurate predictions. 

• In this analysis, the mean squared error (MSE) is utilized as a performance metric 

to evaluate the models. A smaller MSE value indicates a better-performing model. 

Among the models, the boosted tree model achieved the lowest MSE with a value 

of 1.7424 × 10-12. This exceedingly low value indicates that the boosted tree 

model exhibits the smallest overall prediction error. 

• When considering the mean absolute error (MAE) as a measure of model 

performance, the boosted tree model also attains the lowest value of 5.07 × 10-12. 

This implies that the boosted tree model displays the smallest average absolute 

difference between its predictions and the actual values. 

Thus, in unpaved roads where the surrounding material is the locally available soil, the 

double-layered reinforcements optimize the overall strength. However, kerbs in paved 

roads induce a boundary effect. The triple-layered reinforcement is efficient on such sites. 

Further, it can be generalized that the frequency of excitation, unit weight, young’s 

modulus are key parameters while examining the dynamic behaviour of the confined 

geomaterial. The research conducted in the present study can be adopted by engineers 

and practitioners for estimating the dynamic properties of the confined geomaterial in 

construction practices. 
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5.2 RECOMMENDATIONS FOR FUTURE WORK 

The relevance of displacement, stress-strain, and damping are examined in the findings 

of the numerical analysis coupled with experimental modelling of confined geomaterial 

subjected to vibratory stresses. Based on the results of the current study, it may be possible 

to suggest the following recommendations for further research. 

• The investigation was conducted on poorly graded sand (SP). The properties 

of other types of geomaterial may be established by using a similar simulation 

approach which can be expanded upon for future research. 

• For the study, the geogrids were inserted into the geomaterial up to a maximum 

depth of 150 mm; however, this depth may be extended, and future work may 

combine single, double, and triple layered geogrid reinforcement at various depths 

greater than 150 mm. 

• The research may be expanded to examine the effects of additional variables 

besides frequency, elastic modulus, and density, which are considered in the 

present study. 

  



58 

 

 

REFERENCES 

1. Ahmad, M. W., Reynolds, J., & Rezgui, Y. (2018). Predictive modelling for solar 

thermal energy systems: A comparison of support vector regression, random 

forest, extra trees and regression trees. Journal of cleaner production, 203, 810-

821. 

2. Ahmadi, M. M., & Dariani, A. G. (2017). Cone penetration test in sand: A 

numerical-analytical approach. Computers and Geotechnics, 90, 176-189. 

3. Akbulut, S., Hasiloglu, A. S., & Pamukcu, S. (2004). Data generation for shear 

modulus and damping ratio in reinforced sands using adaptive neuro-fuzzy 

inference system. Soil Dynamics and Earthquake Engineering, 24(11), 805-814. 

4. Alidoust, P., Keramati, M., Hamidian, P., Amlashi, A. T., Gharehveran, M. M., 

& Behnood, A. (2021). Prediction of the shear modulus of municipal solid waste 

(MSW): An application of machine learning techniques. Journal of Cleaner 

Production, 303, 127053. 

5. Almeida, M. S. S., Jamiolkowski, M., & Peterson, R. W. (1991). Preliminary 

result of CPT tests in calcareous Quiou sand. In Proceedings of the First 

International Symposium on Calibration Chamber Testing/ISOCCTI, Potsdam, 

Germany. Elsevier Science Publishing Co, New York, 41-53.  

6. Alshawmar, F., & Fall, M. (2022). Geotechnical behaviour of layered paste 

tailings in shaking table testing. International Journal of Mining, Reclamation and 

Environment, 36(3), 174-195. 

7. Amir-Faryar, B., Aggour, M. S., & McCuen, R. H. (2017). Universal model forms 

for predicting the shear modulus and material damping of soils. Geomechanics 

and Geoengineering, 12(1), 60-71. 

8. Assimaki, D., Kausel, E., & Whittle, A. (2000). Model for dynamic shear modulus 

and damping for granular soils. Journal of Geotechnical and Geoenvironmental 

Engineering, 126(10), 859-869. 

9. Baghbani, A., Choudhury, T., Samui, P., & Costa, S. (2023). Prediction of secant 

shear modulus and damping ratio for an extremely dilative silica sand based on 

machine learning techniques. Soil Dynamics and Earthquake Engineering, 165, 

107708. 

10. Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowski, M., & Pasqualine, E. (1982). 

Design parameters for sands from CPT. In Proceedings of the Second European 

Symposium on Penetration Testing. Balkema, Amsterdam, 425–432. 



59 

 

11. Bonita, J. A. (2000). The effects of vibration on the penetration resistance and 

pore water pressure in sands. Virginia Polytechnic Institute and State University. 

12. Bourdeau, P. L., & Ashmawy, A. K. (2002). Unpaved roads. In Geosynthetics and 

their applications. Thomas Telford Publishing. 165-183. 

13. Breiman, F. (1984). Olshen, and Stone. Classification and Regression trees. 

14. Brennan, A. J., Thusyanthan, N. I., & Madabhushi, S. P. (2005). Evaluation of 

shear modulus and damping in dynamic centrifuge tests. Journal of Geotechnical 

and Geoenvironmental Engineering, 131(12), 1488-1497. 

15. Collins, R., & Miller, G. A. (2020). Cone penetration testing in unsaturated soils 

at two Instrumented test sites. In Unsaturated Soils: Research & Applications. 

CRC Press. 1489-1494.  

16. Conti, R., Viggiani, G. M., & Perugini, F. (2014). Numerical modelling of 

centrifuge dynamic tests of circular tunnels in dry sand. Acta Geotechnica, 9(4), 

597–612. 

17. Cuelho, E. V., & Perkins, S. W. (2017). Geosynthetic subgrade stabilization–Field 

testing and design method calibration. Transportation Geotechnics, 10, 22-34. 

18. Darendeli, M. B. (2001). Development of a new family of normalized modulus 

reduction and material damping curves. The university of Texas at Austin. 

19. Das, B. M., & Luo, Z. (2016). Principles of soil dynamics. Cengage Learning. 

20. Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple 

Classifier Systems: First International Workshop, MCS 2000 Cagliari, Italy, June 

21–23, 2000 Proceedings 1 (pp. 1-15). Springer Berlin Heidelberg. 

21. Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble 

learning. Frontiers of Computer Science, 14, 241-258. 

22. Farfani, H. A., Behnamfar, F., & Fathollahi, A. (2015). Dynamic analysis of soil-

structure interaction using the neural networks and the support vector 

machines. Expert Systems with Applications, 42(22), 8971-8981. 

23. Fathi, H., Jamshidi Chenari, R., & Vafaeian, M. (2019). Shaking Table Study on 

PET Strips-Sand Mixtures Using Laminar Box Modelling. Geotechnical and 

Geological Engineering, 38(1), 683–694. 

24. Giretti, D., Been, K., Fioravante, V., & Dickenson, S. (2018). CPT calibration and 

analysis for a carbonate sand. Géotechnique, 68(4), 345-357. 

25. Gomes, R. C., Santos, J. A., Modaressi-Farahmand Razavi, A., & Lopez-

Caballero, F. (2015). Validation of a strategy to predict secant shear modulus and 

damping of soils with an elastoplastic model. KSCE Journal of Civil Engineering, 

20(2), 609–622. 



60 

 

26. Gupta, R., & Trivedi, A. (2011). Effect of non-plastic fines on the behavior of 

loose sand—an experimental study. Electron J Geotech Eng 14, 1–15. 

27. Hardin, B. O., & Black, W. L. (1968). Vibration modulus of normally 

consolidated clay. Journal of the Soil Mechanics and Foundations Division, 94(2), 

353-369. 

28. Hardin, B. O., & Drnevich, V. P. (1972). Shear modulus and damping in soils: 

measurement and parameter effects (terzaghi leture). Journal of the soil mechanics 

and foundations division, 98(6), 603-624. 

29. Hasthi, V., Raja, M. N. A., Hegde, A., & Shukla, S. K. (2022). Experimental and 

intelligent modelling for predicting the amplitude of footing resting on geocell-

reinforced soil bed under vibratory load. Transportation Geotechnics, 35, 100783. 

30. Ibrahim, A. F., Abdelaal, A., & Elkatatny, S. (2022). Formation resistivity 

prediction using decision tree and random forest. Arabian Journal for Science and 

Engineering, 47(9), 12183-12191. 

31. IS 2720, Part – 4 (1985). Methods of test for soils: grain size analysis. New Delhi: 

Bureau of Indian Standards. 

32. IS 2720, Part – 7 (1980). Methods of test for soils: determination of water content-

dry density relation using light compaction. New Delhi: Bureau of Indian 

Standards. 

33. IS 4968, Part – 3 (1976) Method for Subsurface Sounding for Soils Part 3 Static 

Cone Penetration Test. New Delhi: Bureau of Indian Standards (Reaffirmed 

1987). 

34. IS: 2720, Part – 13 (1986). Methods of tests for soils: direct shear test. New Delhi: 

Bureau of Indian Standards. 

35. Ishibashi, I., & Zhang, X. (1993). Unified Dynamic Shear Moduli and Damping 

Ratios of Sand and Clay. Soils and Foundations, 33(1), 182–191.  

36. Iwasaki, T., Tatsuoka, F., & Takagi, Y. (1978). Shear moduli of sands under cyclic 

torsional shear loading. Soils and Foundations, 18(1), 39-56. 

37. Kluger, M. O., Kreiter, S., Stähler, F. T., Goodarzi, M., Stanski, T., & Mörz, T. 

(2021). Cone penetration tests in dry and saturated Ticino sand. Bulletin of 

Engineering Geology and the Environment, 80(5), 4079–4088. 

38. Koga, Y., & Matsuo, O. (1990). Shaking table tests of embankments resting on 

liquefiable sandy ground. Soils and Foundations, 30(4), 162-174. 

39. Kumar, A., Kumar, A., Jha, A. K., & Trivedi, A. (2020). Crack Detection of 

Structures using Deep Learning Framework. 2020 3rd International Conference 

on Intelligent Sustainable Systems (ICISS), 526-533.  



61 

 

40. Kumar, Y., Trivedi, A., Shukla, S.K.: Damage Evaluation in Pavement-

Geomaterial System Using Finite Element-Scaled Accelerated Pavement Testing. 

Transp. Infrastruct. Geotech. (2023).  https://doi.org/10.1007/s40515-023-00309-

y 

41. Kumari, N., & Trivedi, A. (2022). The Effect of Confined Granular Soil on 

Embedded PZT Patches Using FFT and Digital Static Cone Penetrometer 

(DSCP). Applied Sciences, 12(19), 9711. 

42. Mase, L. Z. (2017). Shaking table test of soil liquefaction in Southern Yogyakarta. 

International Journal of Technology, 8(4), 747-760. 

43. Miller, G. A., Tan, N. K., Collins, R. W., & Muraleetharan, K. K. (2018). Cone 

penetration testing in unsaturated soils. Transportation Geotechnics, 17, 85-99. 

44. Molina-Gómez, F., da Fonseca, A. V., Ferreira, C., & Camacho-Tauta, J. (2020). 

Dynamic properties of two historically liquefiable sands in the Lisbon area. Soil 

Dynamics and Earthquake Engineering, 132, 106101. 

45. Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., & Brown, S. D. (2004). An 

introduction to decision tree modeling. Journal of Chemometrics: A Journal of the 

Chemometrics Society, 18(6), 275-285. 

46. Ojha, S., & Trivedi, A. (2013). Shear strength parameters for silty-sand using 

relative compaction. Electronic Journal of Geotechnical Engineering, 18(1), 81-

99. 

47. Okur, D. V., & Ansal, A. (2007). Stiffness degradation of natural fine grained 

soils during cyclic loading. Soil Dynamics and Earthquake Engineering, 27(9), 

843-854. 

48. Oztoprak, S., & Bolton, M. D. (2013). Stiffness of sands through a laboratory test 

database. Géotechnique, 63(1), 54-70. 

49. Pournaghiazar, M., Russell, A. R., & Khalili, N. (2013). The cone penetration test 

in unsaturated sands. Geotechnique, 63(14), 1209-1220. 

50. Price, A. B., DeJong, J. T., & Boulanger, R. W. (2017). Cyclic loading response 

of silt with multiple loading events. Journal of geotechnical and geoenvironmental 

engineering, 143(10), 04017080. 

51. Quinlan, J. R. (1993). C4. 5 Programs for Machine Learning. Morgan Kaufmann, 

San Mateo, California. 

52. Quinonero-Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse 

approximate Gaussian process regression. The Journal of Machine Learning 

Research, 6, 1939-1959. 



62 

 

53. Reddy, S. B., & Krishna, A. M. (2021). Sand–scrap tyre chip mixtures for 

improving the dynamic behaviour of retaining walls. International Journal of 

Geotechnical Engineering, 15(9), 1093-1105. 

54. Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, 

M. J. O. G. R. (2015). Machine learning predictive models for mineral 

prospectivity: An evaluation of neural networks, random forest, regression trees 

and support vector machines. Ore Geology Reviews, 71, 804-818. 

55. Rollins, K. M., Evans, M. D., Diehl, N. B., & III, W. D. D. (1998). Shear modulus 

and damping relationships for gravels. Journal of geotechnical and 

Geoenvironmental Engineering, 124(5), 396-405. 

56. Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier 

methodology. IEEE transactions on systems, man, and cybernetics, 21(3), 660-

674. 

57. Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley 

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1249. 

58. Seed, H. B., Wong, R. T., Idriss, I. M., & Tokimatsu, K. (1986). Moduli and 

damping factors for dynamic analyses of cohesionless soils. Journal of 

geotechnical engineering, 112(11), 1016-1032. 

59. Shaqour, F. M. (2007). Cone penetration resistance of calcareous sand. Bulletin 

of Engineering Geology and the Environment, 66(1), 59-70. 

60. Sharma, S., Venkateswarlu, H., & Hegde, A. (2019). Application of machine 

learning techniques for predicting the dynamic response of geogrid reinforced 

foundation beds. Geotechnical and Geological Engineering, 37, 4845-4864. 

61. Sigurdsson, O. (1993). Geosynthetic stabilization of unpaved roads on soft 

ground: A field evaluation (Doctoral dissertation, University of British 

Columbia). 

62. Singh, M., Trivedi, A., & Shukla, S. K. (2020). Influence of geosynthetic 

reinforcement on unpaved roads based on CBR, and static and dynamic cone 

penetration tests. International Journal of Geosynthetics and Ground Engineering, 

6(2), 13. 

63. Singh, M., Trivedi, A., & Shukla, S. K. (2022). Evaluation of geosynthetic 

reinforcement in unpaved road using moving wheel load test. Geotextiles and 

Geomembranes, 50(4), 581-589. 

64. Singh, M., Trivedi, A., Shukla, S.K.: Effect of geosynthetic reinforcement on 

strength behaviour of sub- grade-aggregate composite system. In: Sustainable 

Civil Engineering Practices. pp. 61-70 (2020a). https://doi.org/10.1007/978-981-

15-3677-9_7 



63 

 

65. Singh, M., Trivedi, A., Shukla, S.K.: Evaluation of geosynthetic reinforcement in 

unpaved road using moving wheel load test. Geotext. Geomembr. (2022). 

https://doi.org/10.1016/j.geotexmem.2022.02.005 

66. Singh, M., Trivedi, A., Shukla, S.K.: Fuzzy-based model for predicting strength 

of geogrid-reinforced subgrade soil with optimal depth of geogrid reinforcement. 

Transp. Infrastruct. Geotechnol. 7(4), 664–683 (2020c). 

https://doi.org/10.1007/s40515-020-00113-y 

67. Singh, M., Trivedi, A., Shukla, S.K.: Influence of geosynthetic reinforcement on 

unpaved roads based on CBR, and static and dynamic cone penetration tests. Int 

J. Geosynth. Ground Eng. 6(2), 1–13 (2020b). https://doi.org/10.1007/s40891-

020-00196-0 

68. Swain, P. H., & Hauska, H. (1977). The decision tree classifier: Design and 

potential. IEEE Transactions on Geoscience Electronics, 15(3), 142-147. 

69. Trivedi, A., & Singh, S. (2004). Cone resistance of compacted ash fill. Journal of 

Testing and Evaluation, 32(6), 429-437. 

70. Vucetic, M., & Dobry, R. (1991). Effect of soil plasticity on cyclic response. 

Journal of geotechnical engineering, 117(1), 89-107. 

71. Vucetic, M., & Mortezaie, A. (2015). Cyclic secant shear modulus versus pore 

water pressure in sands at small cyclic strains. Soil Dynamics and Earthquake 

Engineering, 70, 60-72. 

72. Wichtmann, T., & Triantafyllidis, T. (2004). Influence of a cyclic and dynamic 

loading history on dynamic properties of dry sand, part I: cyclic and dynamic 

torsional prestraining. Soil Dynamics and Earthquake Engineering, 24(2), 127-

147. 

73. Wichtmann, T., & Triantafyllidis, T. (2004). Influence of a cyclic and dynamic 

loading history on dynamic properties of dry sand, part II: cyclic axial preloading. 

Soil Dynamics and Earthquake Engineering, 24(11), 789-803. 

74. Wichtmann, T., & Triantafyllidis, T. (2013). Effect of uniformity coefficient on 

G/G max and damping ratio of uniform to well-graded quartz sands. Journal of 

geotechnical and geoenvironmental engineering, 139(1), 59-72. 

75. Wilson, A. G., Knowles, D. A., & Ghahramani, Z. (2011). Gaussian process 

regression networks. arXiv preprint arXiv:1110.4411. 

76. Xu, Min, Pakorn Watanachaturaporn, Pramod K. Varshney, and Manoj K. Arora. 

"Decision tree regression for soft classification of remote sensing data." Remote 

Sensing of Environment 97, no. 3 (2005): 322-336. 

77. Yang, E.-K., Choi, J.-I., Kwon, S.-Y., & Kim, M.-M. (2011). Development of 

dynamic p-y backbone curves for a single pile in dense sand by 1g shaking table 

tests. KSCE Journal of Civil Engineering, 15(5), 813–821. 



64 

 

78. Yoo, M. T., Choi, J. I., Han, J. T., & Kim, M. M. (2013). Dynamic py curves for 

dry sand from centrifuge tests. Journal of earthquake engineering, 17(7), 1082-

1102. 

79. Younas, N., Ali, A., Hina, H., Hamraz, M., Khan, Z., & Aldahmani, S. (2022). 

Optimal causal decision trees ensemble for improved prediction and causal 

inference. IEEE Access, 10, 13000-13011. 

80. Zeghal, M., & Elgamal, A. W. (1994). Analysis of site liquefaction using 

earthquake records. Journal of geotechnical engineering, 120(6), 996-1017. 

81. Zeghal, M., Elgamal, A. W., Tang, H. T., & Stepp, J. C. (1995). Lotung downhole 

array. II: Evaluation of soil nonlinear properties. Journal of geotechnical 

engineering, 121(4), 363-378. 

82. Zhang, J., Andrus, R. D., & Juang, C. H. (2005). Normalized shear modulus and 

material damping ratio relationships. Journal of geotechnical and 

geoenvironmental engineering, 131(4), 453-464. 

 

  



65 

 

LIST OF PUBLICATIONS 

 

1. Boban, A., Kumar, Y., and Trivedi, A. (2023). “Numerical and Experimental 

Investigation of Confined Geomaterial Subjected to Vibratory Loading”. 

Sustainable Infrastructure: Innovation, Opportunities, and Challenges (SIIOC-

2023). 

2. Boban, A., Gaur, K., and Trivedi, A. (2023). “Placement Depth and Layering 

Effect of Geogrid Reinforcement in Soft Subgrade Using Digital Static Cone 

Penetration Lab Test”. Sustainable Infrastructure: Innovation, Opportunities, and 

Challenges (SIIOC-2023). 



66 

 

 




