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ABSTRACT 
 
 

 
Artificial intelligence (AI) and additive manufacturing (AM) are excellent and 

revolutionary technologies. The most recent technology for producing objects through 

layer-over-layer deposition is called additive manufacturing (AM). Based on the thermal 

analysis of bonding formation in the 3D printed parts, the mechanism model of surface 

roughness was established. Most of the printing parameters, including infill density (ID), 

printing speed (PS), nozzle temperature (NT), and layer height (LH), deposition road 

width, and printing platform temperature, were considered to ameliorate the surface 

morphology of printed parts. The main objective  of this research work is to predict 

surface roughness in additively manufactured processes in PLA+ polymer material by 

using different machine learning algorithms like linear regression, support vector 

machine (SVM), and two ensemble learning techniques: – Xtreme gradient boosting 

(XGBoost) and random forest regressor and also characterization of the material . 

Taguchi's Design of the Experiment was used to make L25 orthogonal array sample 

datasets, compare all the machine learning algorithms to see which one has the best 

model-fit accuracy. The machine model works on five key input parameters that 

influence layer geometries: layer height (LH), infill density (ID), printing speed (PS), 

and nozzle temperature (NT) with a 00 raster angle. By applying all ML algorithms, 

random forest regression is the best model, which gives 94.85% accurate results in the 

datasets with a minimum mean squared error of approx. 0.3756 and a maximum r2_score 

of approx. 0.92154. XRD shows the PLA+ material is semi crystalline material and the 

peak is about to 180 with 2𝜃. 

Keywords: Additive manufacturing, Polymers, PLA+ material, Machine learning, 

Fused deposition modeling, XRD. 
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CHAPTER 1 

 

INTRODUCTION  

 

1.1.BACKGROUND AND MOTIVATION 

Machine learning (ML) is a subgroup of artificial intelligence (AI) that has gained 

popularity in the field of additive manufacturing (AM) industrial research. AM, also 

referred to as 3D printing or rapid prototyping (RP), involves the creation of objects by 

layering materials on top of each other, controlled by a computer-aided design model.  

Machine learning, on the other hand, refers to computer programming techniques used 

to optimize performance based on experimental data or past experiences. 

In the context of additive manufacturing, machine learning goes beyond the conventional 

application of making predictions through data setup. The industrial research community 

is actively investigate innovative ideas to incorporate machine learning into AM 

processes. By leveraging machine learning techniques, researchers aim to enhance 

various aspects of additive manufacturing, such as improving print quality, optimizing 

process parameters, and enabling automated decision-making. AM is an advanced 

manufacturing technology that creates three-dimensional objects by joining materials 

together in a layer-by-layer manner. It relies on a computer-aided design (CAD) model 

to guide the fabrication process. This technology has gained significant attention due to 

its ability to produce complex geometries, customized designs, and rapid prototyping 

capabilities. By combining machine learning with additive manufacturing, researchers 

seek to unlock new possibilities and further enhance the capabilities and efficiency of 

this manufacturing technique [1]. 

The current state of additive manufacturing (AM) faces a significant challenge regarding 

the inconsistent quality of 3-D printed products, which heavily relies on various 

processing parameters like layer thickness and printing speed. To tackle this challenge, 

two approaches are commonly employed: conducting experiments or utilizing high-

fidelity simulations. However, both methods can be time-consuming, expensive [2]. 

Another approach to confirm sample quality and process reliability is the implementation 

of in situ monitoring systems. Nonetheless, an effective and efficient tool is needed for 
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error and defect detection using in situ data, like as images [3]. In both experimental and 

in situ monitoring approaches, there is a crucial need for a systematic tool for mining and 

data analysis. This requirement is being addressed by machine learning (ML). ML 

models learn from reliable training datasets and acquire knowledge that they utilize for 

making inferences and predictions. This capability enables trained ML models to 

efficiently determine optimal processing parameters and make predictions. Recent 

literature also reports various ML applications, including geometric deviation control, 

cost estimation, and quality assessment. The utilization of ML in these applications 

demonstrates its role as a vital component of Industry 4.0, as it empowers effective data 

manipulation and analysis. In [4] one of the most commonly utilized AM processes is 

FFF, which falls under the category of material extrusion. FFF involves the fabrication 

of objects by feeding a continuous filament of thermoplastic material into an extruder 

head. The filament is heated within the extruder head and then deposited onto a base 

build plate, allowing for the layer-by-layer construction of the desired object. In [5] 

Recent studies have suggested that the application of machine learning techniques holds 

the potential to enhance predictive performance and increase productivity in the 

industrial sector. AM is a promising technology for the production of components with 

intricate geometries. It offers advantages such as reduced costs, shorter lead times, and 

the ability to manufacture intricate parts without the demand for specialized tools as 

opposed to traditional manufacturing methods [6]. 

 

1.2.ADDITIVE MANUFACTURING  

Additive manufacturing, as a process, originated in the mid-1980s with the 

commercialization of an advanced version of stereolithography (SL). Over the years, 

additional techniques such as laminated object manufacturing, fused deposition 

modeling, and 3D printing have also been commercialized. The industrial applications of 

additive manufacturing parts have demonstrated its widespread recognition as a 

technology that addresses various challenges across diverse industries. Despite its 

advantages, the high cost of additive manufacturing machines makes them inaccessible 

to medium and small enterprises. To overcome this limitation, the implementation of 

web-based additive manufacturing systems can significantly enhance the productivity, 

manufacturing speed, and economic advantages for such firms [7]. By providing online 

access to additive manufacturing capabilities, these systems enable smaller enterprises to 
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leverage the benefits of the technology without the need for significant investments in 

expensive equipment. Traditionally, the manufacturing of three-dimensional (3D) solid 

parts concern the removal or shaping of material from a workpiece block to achieve the 

desired shape, using computer-aided design (CAD) files from software like SolidWorks, 

CATIA, Pro-E, UG, and AutoCAD. However, conventional machining processes have 

limitations when it comes to manufacturing complex components. In the case of molding 

processes, the cost of molds is typically high, and their accuracy decreases after 

producing batches of parts. Thermal molding techniques, such as injection molding, also 

require expensive molds and are more economically viable for large production runs that 

demand reproducibility. To streamline these manufacturing operations, computer-aided 

manufacturing (CAM) processes can be utilized, which enable automation. However, 

these processes are costly and time-consuming, often requiring repetitive iterations to 

achieve the desired final manufacturing outcome for a part, model, or prototype [8].  

Therefore, there is a clear requirement for a straightforward and efficient process and 

apparatus that allows designers to design and fabricate 3D objects at their office 

workstations with the same ease and clarity as using a printer and desktop computer. This 

should be accomplished in a cost-effective manner. With the development of desktop 

computers and subsequent advancements in CAM, CAD, and CNC, coupled with the 

growth and accessibility of materials and automotive industrial lasers, a new paradigm 

known as rapid prototyping (RP) has emerged to address the aforementioned need. Rapid 

prototyping (RP) is a broad term encompassing various technologies that enable the 

direct manufacture of physical product from computer-aided design data sources [9]. In 

RP, object is constructed by depositing layers in a two-dimensional plane (x-y). The third 

dimension (z) is achieved by stacking these layers on top of each other, although the z-

coordinate is not continuous [10]. Additive manufacturing methods share a common 

characteristic of building 3D objects by joining materials layer by layer, which stands in 

contrast to classical methods like milling and forging. While additive manufacturing 

involves the addition of material, classical methods involve removing material or 

applying mechanical forces to permanently deform it into the desired shape. Although 

the overall fabrication process is similar across different additive manufacturing 

methods, the specific system determines the mechanism by which different layers are 

created and bonded. Figure 1.1 illustrates the fundamental steps involved in the RP 

process. 
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Figure 1.1: Step by step procedure in Rapid Prototyping process 

 
The initial step in the additive manufacturing process involves creating a model using 

any solid modeling software. A suitable solid geometry is chosen to generate data that 

will effectively control the fabrication process. Typically, the part manufactured 

procedure is divided into two distinct steps. 

Step 1: During this stage, the CAD file is saved in .stl format and then being converted 

into a triangular meshing. The sliced triangular meshed file is then stored in standard file 

formats that can be interpreted by the additive manufacturing machines in the subsequent 

phase. Parameters such as layer thickness and part orientation play a crucial role in 

minimizing costs and build time. 

Step 2: This step varies across different additive manufacturing processes and depends 

on the specific fabrication mechanism of the respective machine. The machine's 

dedicated software guides the laser path or instructs the extrusion head, utilizing the 

instruction obtained from step 1. Additionally, process-related details such as allowances, 

tolerances, material specifications, and machining types are obtained to the machine's 

controller [11]. 

Additive manufacturing techniques can be broadly classified into five main categories: 

Selective Laser Sintering (SLS), Fused Deposition Modeling (FDM, Stereolithography 

(SL), Binder Jet and Laminated Object Manufacturing (LOM). Fused Deposition 

Modeling, (FDM), which belongs to the material extrusion process category, is widely 

recognized and employed in additive manufacturing. FDM manufactured objects by 
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using a layer by layer deposition of filament of thermoplastic material, which is heated 

in an extruder head and then stick onto a build plate [12]. 

 

1.2.1. Stereolithography(SL) 

Stereolithography was orginate by scientist Chuck Hull in year 1986 and also it was the 

first commercially available 3D printing technique. SL is an additive manufacturing 

technique that belongs to the category of vat photopolymerization. It was one of the first 

additive manufacturing processes to be orginate and commercialized. In SL, a liquid 

photopolymer resin is exposed to a specific pattern of ultraviolet (UV) light using a laser 

or other light source. The UV light causes the resin to solidify and form a layer of the 

desired object. The build platform is then lowered, and a new layer of liquid resin is fall 

over the previously solidified layer. This process is repeated layer by layer until the entire 

object is formed. Figure 1.2 illustrates the process of stereolithographic [13]. SL offers 

high precision and accuracy, making it suitable for producing intricate and complex 

geometries with smooth surface finishes. The ability to create parts with fine details 

makes SL popular in applications such as prototyping, product development, and rapid 

tooling. After the SL process is complete, the part may require post-processing, such as 

cleaning, curing, and surface finishing, to attain the desired final appearance and 

mechanical properties. 

 
Figure 1.2: Stereolithography 3D printing [13] 
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Stereolithography finds its application in various fields, including the creation of 

prototypes for products in the development stage, medical models, computer hardware, 

and numerous other applications. It offers a fast and versatile solution, capable of 

producing designs of nearly any complexity. However, it is important to note that 

stereolithography can be relatively expensive [14]. 

 

1.2.2. Laminated Object Manufacturing (LOM) 

The process involves placing a layer of material, coated with adherent on one side, onto 

a build platform with the sticking side facing down. A heated roller is then passed over 

the material, ensuring it adhesive to the platform securely. Next, laser beam follows 

profile of a specific slice of the desired part, cutting through the layer of material. The 

lasered beam also crosshatches the areas that do not form part of the current cross-section, 

cutting through the material again. 

After completing the slice, the platform is lowered by the thickness of one layer, and 

another layer of material is affixed on top of the previous layer. The procedure is then 

repeated for the next cross-section slice of the part. This layer-by-layer process continues 

until all the cross-section slices have been added. Once the entire part has been formed, 

it is removed as a solid block from the platform. The crosshatched areas within the block 

are subsequently broken away from the finished part, leaving behind the desired object. 

For a visual representation of this process, please refer to Figure 1.3 [15]. 

 

 

 

Figure 1.3: Laminated object manufacturing [15] 



7 
 

LOM combines both additive and subtractive manufacturing methods. The process 

begins by adhering a sheet of paper or artificial/synthetic polymer to a subtract using a 

laminated roller. When once the layer is in place on the building platform, a CO2 laser or 

blades joined to the print head follow the outline path of the layer based on the computer 

aided design file. The platform then goes down, allowing for a new sheet of building 

material to be added. This cutting process is repeated layer over layer. LOM offers a 

rapid solution for printing objects with greater dimensions and higher build speeds 

compared to other AM techniques. However, it's important to note that the material used 

within a given coat must be consistent. Since the build material remains fixed within the 

model contour during the lamination process, there is no need for a support material [16]. 

 

1.2.3. Selective Laser Sintering (SLS) 

SLS is an AM process that utilizes a powerful laser beam, such as CO2 or Nd: YAG, to 

soften, melt, and solidify a powder material. The process involves the following steps: A 

thin layer of powder material, which can be wood, acrylic, plastic, metal, protein, 

ceramic, or other suitable materials, is evenly spread onto a build stage using a roller. 

The powerful laser beam is then directed onto the powder layer, selectively fusing and 

solidifying the particles based on the cross-sectional design of the model. The laser 

focuses only on specific areas, allowing for precise control over the sintering process. 

Once a layer is complete, the build platform moves downward, and this process repeats 

layer over layer. Each subsequent layer is fused to the previous one, gradually building 

the desired object [16].  

One advantage of SLS is that the unsintered powder material surrounding the printed 

object can serve as support material. This not only reduces the need for additional support 

structures but also allows for the reuse or recycling of unused powder, minimizing 

material waste. Please refer to Figure 1.4 for a visual representation of the process. The 

surface roughness of the printed object are influenced by the size of the powder particles. 

Larger particle sizes result in higher roughness and lower spatial resolution, as they affect 

the level of detail and smoothness achievable in the final printed object [17]. SLS 

demonstrates its true excellence in the production of long-lasting plastic components. 

SLS parts are renowned for their strength and can match the quality of parts manufactured 

through conventional methods such as injection molding. SLS finds extensive application 
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in various industries, including automotive and aerospace, where it is utilized to create 

durable end use products. 

 
Figure 1.4: Selective laser sintering [18] 

 

1.2.4. Binder jet additive manufacturing(BJAM)  

BJAM is a process that involves the selective jetting of a fluid binder onto consecutive 

layers of powder material, typically at near-room temperature. This process enables the 

production of complex geometries according to the design specifications. The resulting 

parts, known as green parts, may require additional steps such as sintering and debinding 

to achieve the best dimensional accuracy, density, and mechanical properties [19].  

During the BJAM process, the powder bed serves as active support for the deposited 

binder. It ensures the stability of the printed structure and allows for the layer-by-layer 

construction. Importantly, there is no any type of direct physical contact between the 

jetting assembly and the deposited powder, as demonstrated in Figure 1.5. After the 

binder is applied to each layer, the green parts can undergo subsequent treatments, such 

as debinding, where the excess binder is removed from the printed object, and sintering, 

a high-temperature process that fuses the powder particles together to enhance their 

strength and durability. These post-processing steps are crucial for achieving the desired 

final dimensional accuracy, density, and mechanical properties of the printed parts [20]. 
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Figure 1.5: Detailed image of BJAM 
(1) Powder spreading variations and (2) powder-binder interactions during jetting [19] 

 

1.2.5. Fused Deposition Modelling 

FDM is a widely used and environmentally friendly AM process for creating highly 

intricate products in both domestic and industrial sectors. It operates by extruding a thin 

filament of molten material, typically a thermoplastic, through a heated nozzle [21]. This 

nozzle is attached to a movable arm that can traverse the X, Y, and Z axes according to 

the specifications of the 3D model. The FDM process start with a solid 3D model created 

using computer aided design software. The model is sliced into thin layers, and the FDM 

machine starts building the object layer by layer. The heated nozzle deposits the molten 

material onto the build platform, where it solidifies upon cooling and fuses with the 

previous layer. This layer-over-layer deposition continues until the whole object is 

formed. The components of FDM machines are designed to work together seamlessly, 

enabling efficient and precise part fabrication while minimizing material waste and the 

need for additional tooling. Figure 1.6 illustrates the integration of various components 

in FDM machines to facilitate the rapid and cost-effective production of parts. 

Fused Deposition Modeling (FDM) has become a popular choice for additive 

manufacturing due to its versatility, accuracy, and ability to produce complex geometries. 

It offers a practical and accessible solution for creating 3D printed objects, both for 

personal and industrial applications. 
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Figure 1.6: Schematic of detailed image of FDM [22] 

 
The FDM (Fused Deposition Modeling) process begins with the design and development 

of the desired model using CAD software. The CAD file is then converted into a readable 

format known as standard triangle language (STL) using specialized software packages 

that are compatible with FDM 3D printers. 

During printing, the FDM printer utilizes stepper motors to feed and push a solid filament 

of material through a nozzle [21]. The filament is melted at a specific temperature by the 

extruder and then deposited onto the building platform. The molten material rapidly 

solidifies and adheres to the platform to form each layer of the object. This layer-by-layer 

process is guided by numerical G-codes, which instruct the printer to repeat the 

deposition procedure until the complete object is formed. While a different range of 

materials, including low-temperature metal alloys and composites, can be used in FDM, 

thermoplastics and polymer-based composites are the primary materials employed. The 

quality of the printed product and its mechanical properties depend on various factors, 

such as the orientation of the build, nozzle temperature, infill density, infill pattern, 

nozzle diameter, layer thickness and printing speed [23]. 
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It is crucial to optimize these parameters to achieve a satisfactory product with desirable 

mechanical properties. Suboptimal conditions or inadequate temperature control can 

result in printing issues like warpage and shrinkage, which can affect the overall quality 

and accuracy of the printed object. 

 

1.3. MACHINE LEARNING  

ML, a component of AI, encompasses the creation of algorithms and statistical models 

that empower computers to acquire knowledge from data without explicit programming. 

Put simply, machine learning entails training computers to identify patterns within data, 

allowing them to generate predictions or decisions based on the information at hand [24]. 

Machine learning algorithms find utility across a broad spectrum of applications, 

spanning from speech recognition and image to fraud detection and recommendation 

systems. The ML process generally encompasses several stages, which include data 

preprocessing, model training, and model evaluation [25]. Throughout the training phase, 

the algorithm is exposed to an extensive dataset and adapts its internal parameters to 

identify patterns within the data. The model's effectiveness is subsequently assessed 

using a distinct dataset, and the algorithm is iteratively refined until it attains an 

acceptable level of accuracy. Various types of machine learning algorithms exist, as listed 

below [26]. 

1. Supervised learning  
2. Unsupervised learning 
3. Reinforcement learning 

 
1.3.1. Supervised Learning  

Supervised machine learning is a branch of ML where an algorithm learns to make 

predictions or decisions based on labeled training data. In this type of learning, the 

algorithm is provided with a dataset in which each example consists of input features and 

their corresponding known outputs or labels. The algorithm analyzes this labeled data to 

identify patterns, relationships, or statistical dependencies between the input variables 

and the output variables. It uses this information to create a model that can generalize its 

learning and make accurate predictions or decisions on new, unseen data. The main goal 

of supervised machine learning is to teach the algorithm to map inputs to outputs, 

allowing it to make reliable predictions on new, unlabeled data.  
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Supervised learning is highly versatile and applicable to various tasks, including 

classification and regression. In classification tasks, the algorithm acquires the capability 

to categorize inputs into distinct classes or categories. For instance, it can be trained to 

discern whether an image depicts a cat or a dog. In regression tasks, the algorithm learns 

to forecast a numerical value based on the given input. For instance, it can be train to 

estimate the price of house based on factors like its location and size. Supervised learning 

thus enables algorithms to discern patterns and make informed decisions or predictions 

across a wide range of problem domains [27]. 

 

1.3.2. Unsupervised learning 

Unsupervised machine learning involves an algorithm learning to uncover patterns in 

data without relying on labeled data or explicit feedback. In unsupervised learning, the 

algorithm works with an unlabeled dataset and seeks to identify inherent patterns, 

structures, or relationships within the data. The primary objective of unsupervised 

learning is typically to unveil hidden relationships, groupings, or anomalies present in 

the data. Unsupervised learning proves valuable for various tasks including anomaly 

detection, clustering, and dimensionality reduction. In clustering tasks, the algorithm 

group’s similar data points together, forming distinct clusters. For instance, it can be 

utilized to group customers based on their purchasing behaviors. In dimensionality 

reduction tasks, the algorithm reduces the number of variables or features in the data 

while retaining as much relevant information as possible. For example, it can be 

employed to decrease the dimensionality of an image dataset. In anomaly detection tasks, 

the algorithm identifies data points that significantly deviate from the rest of the data. For 

instance, it can be used to detect instances of credit card fraud. Overall, unsupervised 

learning enables algorithms to discover valuable insights and patterns in data without 

relying on predefined labels or feedback [27] - [28]. 

 

1.3.3. Reinforcement learning 

Reinforcement learning is a ML paradigm wherein an agent learns to make optimal 

decisions through feedback from its environment. In this learning approach, the agent 

actively engages with an environment and receives rewards or penalties based on its 

actions. The ultimate objective for the agent is to acquire a policy, which is essentially a 

mapping from states to actions that maximizes the cumulative reward over time. 
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Reinforcement learning finds wide application in diverse domains, including robotics, 

game playing, and control systems. For instance, a reinforcement learning algorithm can 

be employed to train a robot to navigate a maze or to teach an agent how to proficiently 

play games such as chess or go. By iteratively exploring the environment and optimizing 

its decision-making process, the agent gradually improves its performance and attains 

proficiency in complex tasks. The process of reinforcement learning typically involves 

several steps, including defining the state and action spaces, defining the reward function, 

and selecting an appropriate algorithm for learning the policy. The agent learns by 

exploring the environment and updating its policy based on the rewards it receives [27]–

[29] 

 

1.4. SURFACE ROUGHNESS  

Surface roughness in Fused Deposition Modeling (FDM) refers to the irregularities or 

rough texture observed on the outer surface of a 3D printed object. It is a measure of the 

deviation of the surface profile from its ideal or smooth form. Surface roughness is 

typically quantified using parameters such as Ra (arithmetical mean roughness) or Rz 

(maximum peak-to-valley height). The layer height, which determines the thickness of 

each printed layer, has a direct impact on surface roughness. Smaller layer heights result 

in finer steps between layers, leading to smoother surfaces [30] it is calculated by 

microns.   Surface roughness is commonly characterized using three key parameters: Ra, 

Rz, and Ry. These parameters provide insights into different aspects of the surface 

irregularities and their values are determined as follows: 

 

Arithmetical Mean Deviation of the Profile (Ra): Ra represents the average deviation 

of the profile from the mean line (see in figure 1.7). It is calculated by measuring the 

absolute values of the surface deviations from the mean line within a specified sampling 

length, L, and then computing their arithmetic mean. 

 

Point Height of Irregularities (Rz): Rz measures the maximum height of irregularities 

on the surface. It is determined by evaluating the average of the five largest peak heights 

and the average of the five largest valley depths within the sampling length. Rz provides 

information about the height variations of the surface. 
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Maximum Height of the Profile (Ry): Ry indicates the maximum height between peak 

contour lines and the contour line from the bottom. It represents the overall depth or 

height of the surface irregularities within the sampling length, L. 

 
 

Figure 1.7: Surface roughness 3d FDM sample Ra (µm) [30] 

 
𝑅𝑎 =  

ଵ


∑ 𝑦


ୀଵ         Eq. 1. 

Material Selection: Different filament materials have varying characteristics that can 

impact surface roughness. Some materials inherently exhibit smoother surfaces than 

others. Experimenting with different materials and selecting those with smoother surface 

finishes can help improve the final print's surface quality. Proper cooling during the 

printing process can help reduce surface roughness. Sufficient cooling time between 

layers allows the filament to solidify more effectively, minimizing sagging or warping. 

Adjusting fan settings and utilizing cooling mechanisms on the printer can aid in 

achieving smoother surfaces. 

To optimize surface roughness in FDM, it is advisable to experiment with different print 

settings, including layer height, nozzle diameter, print speed, and cooling parameters. 

Additionally, employing post-processing techniques tailored to the specific requirements 

of the print can further refine the surface quality. To assess the surface roughness of 

additive manufacturing (AM) parts, the usual method involves using a profilometer and 

Taylor Hobson equipment to calculate the arithmetical mean height of a line, known as 

Ra. However, it's important to note that the surface structure of AM parts is influenced 

by factors such as the overlap of hatches and the chosen hatch strategy. 

 

1.5. THE APPLICATION OF 3D PRINTING IN INDUSTRIAL SECTOR 

Just like any other manufacturing process, 3D printing requires the use of high-quality 

materials that adhere to consistent specifications in order to create consistent and high-
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quality devices. To ensure this, protocols, standards, and agreements regarding material 

controls are established between purchasers, suppliers, and end-users of the materials. 

3D printing manufacturing has the capability to produce fully functional parts using a 

diverse array of different materials, including metals, ceramics, polymers, as well as their 

combinations in the form of composites, hybrids, or functionally materials [31]. 

1.5.1. Aerospace industry  

 
 

Figure 1.8: Turbine with hub casing [32] 
 
3D printing technology offers unparalleled design freedom and production capabilities 

in the manufacturing of components. Particularly in the aerospace industry, 3D printing 

has the ability to create lightweight parts with improve and intricate geometries, leading 

to reduced energy consumption and resource utilization [33]. Additionally, the use of 3D 

printing can result in fuel savings as it minimizes the amount of material required for 

aerospace parts production. Furthermore, 3D printing has found extensive application in 

the production of spare parts for aerospace components like engines (see in figure 1.8). 

Given the susceptibility of engine parts to damage and the need for regular replacements, 

3D printing technology presents an effective solution for procuring such spare parts [34]. 

In the aerospace industry, nickel-based alloys are highly preferred due to their desirable 

tensile properties and resistance to corrosion, and ability to withstand damage.  
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1.5.2. Automotive industry 

 
 

Figure 1.9: Knuckle joint [35] 
 

In recent times, the advent of 3D printing technology has brought about rapid 

transformations in various industries, enabling them to revolutionize their approaches to 

design, development, and manufacturing. In the automotive industry specifically, the 

utilization of 3D printing techniques has ushered in remarkable advance, leading to the 

creation of lighter and more intricate structures within shorter timeframes (refer in figure 

1.9). Ford has emerged as a leader in employing 3D printing technology, utilizing it to 

produce prototypes and engine parts [36]. BMW leverages 3D printing technology to 

manufacture hand-tools for automotive testing and assembly, while AUDI collaborated 

with SLM Solution Group AG in 2017 to produce spare parts and prototypes [37].  

 

1.5.3. Healthcare and Medical Industry 

3D printing technology has the capability to fabricate cartilage and bone structures that 

can be used to replace voids resulting from trauma or disease [38]. It also holds potential 

for the replacement, restoration, maintenance, or improvement of tissue functionality. 

Tissues generated through 3D printing exhibit joins pore networks, biocompatibility, 

appropriate surface chemistry, and favorable mechanical properties [39].  
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Figure 1.10: Bone tissue engineering strategy [40] 

 

Moreover, 3D printing can be utilized to produce models simulating organ failures 

caused by critical conditions such as diseases, accidents, or birth defects (refer in figure 

1.10). These 3D-printed models can serve as valuable tools for neurosurgeons to practice 

surgical techniques, improving accuracy, reducing training time, and offering hands-on 

training opportunities that simulate real patient conditions. 

 

1.5.4. Architecture, building, and construction industry 

 
 

Figure 1.11: 3d printed site model [41] 
 
3D printing technology offers significant environmental benefits and enables the 

realization of highly complex geometries. In the construction industry, it has the potential 

to revolutionize the way buildings are created by allowing the printing of entire structures 
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or construction components (refer in figure 1.11). The integration of Building 

Information Modelling (BIM) further enhances the utilization of 3D printing technology. 

BIM provides a digital representation of a building's functional and physical 

characteristics, enabling the sharing of information and knowledge throughout its life 

cycle, from initial conception to demolition. This comprehensive and collaborative 

technology serves as a reliable source for decision-making during all stages of 

construction and design [42]. By leveraging 3D printing technology, companies can 

swiftly and cost-effectively design and visualize buildings, thereby avoiding delays and 

identifying potential problem areas. Moreover, it facilitates improved communication 

and understanding between construction engineers and their clients. Rather than relying 

on traditional methods like paper and pencil, 3D printing simplifies the process of 

transforming customer ideas into tangible representations [43].  

 

1.5.5. Electronic and electric industry 

 
 

Figure 1.12: 3d printing in electronic industry [44] 
 

The utilization of Fused Deposition Modeling in the 3D printing technique for the 

production of 3D electrodes offers a cost-effective and time-efficient approach for mass 

production of electrode materials. When compared to commercial electrodes like 

aluminum, copper, and carbon, the design and surface area of the 3D electrode can be 
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easily tailored to specific applications (refer in figure 1.12). Additionally, the 3D printing 

process for these electrodes is fully automated and provides a high level of precision, 

enabling the completion of printing for eight electrodes in just 30 minutes. There is a 

pressing need in today's society for the development of environmentally friendly 

electronic devices that possess low manufacturing costs, ensure safety, exhibit high 

reliability, and allow for rapid production. This highlights the significance and demand 

for the production of such devices [45]. 
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CHAPTER 2. 

LITERATURE REVIEW 

 

According to recent studies, the implementation of ML methods may provide both 

improved speculate performance and increased productivity in the industrial sector. AM 

is an auspicious technology to manufactured samples with intricate geometries. It can 

fabricate complex parts with minimum price and take time and without using special tool 

system like molds compared to traditional manufacturing technologies. 

D. Horvath et al [9], the DoE method was used to examine the impact of machine 

parameters on printed component surface roughness. The impact of model temperature, 

layer thickness, and part fill style on the surface roughness of FDM-built parts was 

studied that all factors were found to have a significant effect on surface roughness, with 

layer thickness having the greatest impact. Reducing the layer thickness resulted in 

decreased roughness.     

Wang et al. [23] discussed that due to the various types of 3D printers, materials, and 

slicing software available, experimental methods may not be able to produce consistent 

results that accurately reflect the material's behavior in reality. Additive manufacturing, 

also referred to as AM, is the method of joining the material (layer-by-layer deposition) 

with the help of 3D models. In comparison with subtractive manufacturing techniques, 

AM is defined by the ASTM as "a process of incorporating materials to create 3D objects 

from 3D model data, generally layer upon layer deposition [46].  

FDM is “a material extrusion process that is used to make polymer material parts by the 

heating of material filaments and the deposition of material layer by layer and make 3d 

objects”[47].The roughness of a surface plays a significant role in machining processes 

because it has a direct impact on the functional specifications of the machined parts [48]. 

According to a survey, FDM is the most frequently utilized AM technology at the present 

time. One of the main areas of focus for enhancing FDM part quality has been the 

development of predictive models that link process factors and material qualities with 

the printed part properties [49]. The investigation detailed in reference number [50] 

demonstrates how different machine configurations affect surface roughness. It was 

discovered that the height of the slice and the width of the raster have an impact on 

surface roughness.  
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Meanwhile, P.K. Rao et al. [51] conducted experiments to determine the machine settings 

that result in the smoothest surface finish, which is associated with high temperatures, 

thin layers, and a high feed/flow rate ratio.  

Similarly, R. Anitha et al. [52] reports on similar research where the thickness of the 

deposited filament, layer height, and extrusion speed were found to affect surface 

roughness. To address this issue, theoretical modeling and finite element analysis were 

used to connect the mechanical properties of 3D-printed samples with material and 

process parameters [53]. However, the complex microstructure of 3D-printed parts, such 

as irregular pores and surface interactions, make it difficult to accurately model and 

simulate. Therefore, the accuracy and reliability of these methods are uncertain. To 

overcome these challenges, ML techniques, as a form of AI, can learn patterns between 

input features and output results automatically based on training data, without explicit 

programming [54]. In the context of the AM process, the use of ML may provide 

effective solutions to the aforementioned issues [55]. The quality of parts produced by 

FFF can be impacted by variations in the thermal influence between layers during the 

layer-by-layer material deposition process. Such variations can cause issues like surface 

roughness, microstructural defects, and poor mechanical properties.  

To address this, Boschetto et al. [56] developed a predictive modeling strategy to evaluate 

the surface roughness of Fused Filament Fabrication-printed items, and this strategy was 

illustrate through a series of investigation.  

Boschetto and Bottini [57] also developed a model that can predict surface roughness of 

FFF-printed parts that underwent barrel finishing. Reeves and Cobb [58] created an 

analytical model that examined the effects of surface angle, layer thickness, layer 

composition and layer profile angle on the surface roughness of stereolithography-

printed parts.  

Ahn et al.[59] developed a technique for predicting the surface roughness of samples 

using geometric data from an STL file. They fabricated different specimens on an SLA 

3500 machine and measured their surface roughness with a profilometer. 

Mishra and colleagues [60], [61] conducted experiments to examine how six different 

process parameters affect the mechanical strength of samples manufactured by FDM). 

The parameters included layer thickness, part orientation, raster angle, air gap, raster 

width and contour number. The significance of each process parameter was determined 

using an analysis of variance. The study's findings revealed that air gap, contour number, 

and part orientation had the most substantial impact on the parts' strength.  
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Pandey et al. [62] introduced a semi-empirical model that aims to forecast the surface 

roughness of parts produced through Fused Deposition Modeling (FDM). Their study 

involved conducting experiments where they considered two important process 

variables: layer thickness and build orientation. By analyzing these variables, the 

researchers aimed to understand their impact on the resulting surface roughness of the 

printed parts.  

Daekeon et al. [63] presented a theoretical model that aims to explain surface roughness 

variations based on changes in surface angles and measured data. They successfully 

utilized interpolation techniques to predict surface roughness. This model provides a 

framework for understanding the relationship between surface angles and resulting 

surface roughness, offering insights into the factors influencing the quality of printed 

parts.  

Bellehumeur et al. [64], thermal analysis of the FDM process was conducted. The 

analysis focused on the heat transfer dynamics of the deposition filament with an 

elliptical cross-section shape. By studying the thermal behavior during the FDM process, 

the researchers gained a deeper understanding of the heat distribution and its impact on 

the final printed part. This thermal analysis contributes to improving the control and 

optimization of the FDM process parameters, ultimately enhancing the overall quality 

and performance of the printed parts. 

Bharat and colleagues [65] examined how various process parameters, such as air gap, 

build orientation, layer thickness, road width, and model temperature, affect the surface 

finish of FDM-built parts. The study employed a fractional factorial design with two 

levels for each factor. The results indicated that part orientation and layer height had the 

main impact on surface quality, with a part orientation of 70° and layer thickness of 

0.007" yielding the best surface finish. Model temperature, air gap, and road width had 

minimal effect on the surface finish of FDM parts. 

In a similar study, Garg et al. [65] investigated the effects of part orientation on the 

dimensional accuracy and surface finish of FDM ABS P430 parts at seven different 

angles (0°, 15°, 30°, 45°, 60°, 75°, and 90° about the Y-axis). They found that part 

orientation had a considerable influence on both dimensional accuracy and surface finish, 

with the most desirable outcomes obtained at a 45° angle.  

Peârez et al. [66] also investigated surface roughness and dimensional accuracy in ABS 

P400 parts, creating four prototypes with different slope variations. Past studies have 

primarily concentrated on creating different methods for estimating surface roughness. 
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Despite the growing popularity of additive manufacturing (AM), there has been little 

investigation into using a combination of different sensors and data-driven techniques to 

predict surface roughness. To address this gap in research, a novel data-driven predictive 

modeling technique has been developed using machine learning to predict the surface 

roughness of AM components specifically through the Fused Filament Fabrication (FFF) 

process. 

Scime & Beuth [67] carried out an extensive research investigation focused on defect 

detection in the laser powder bed fusion (LPBF) process. Their study involved exploring 

the application of various machine learning and deep learning methods for this purpose. 

By utilizing these advanced techniques, the researchers aimed to develop effective 

strategies for identifying and detecting defects in LPBF-printed parts. 

Harris at el in [68], [69] describe the predicting process parameters, machine learning 

techniques can help to circumvent the above-mentioned constraints for FEM. Although 

large volumes of data are typically needed for these strategies to be more accurate and 

generalizable. Combining FEM with machine learning can provide you the opportunity 

to simulate a process (using FEM), forecast or optimise process parameters to achieve 

desired mechanical qualities. On the one hand, finite element modeling (FEM) is in most 

cases used for numerical solutions of mathematical models and parameters’ optimization, 

but this process requires deep knowledge on physical properties of material and in-depth 

understanding of AM process. 
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Table 2.1: Literature review based on the material. 

S.NO. Author Material Process Parameters Prominent result 

1. Saty Dev, 

Rajeev 

Srivastav[12] 

ABS  

(Acrylonitrile 

Butadiene 

Styrene)

  

FDM Process, 

1. Layer thickness, 

2. Infill pattern,  

3. build Orientation 

 

Gyroid pattern, 80% infill,, and 

450 build orientation gives 

highest compressive strength 

all selected parameter of 

different variable. 

2. Qi feng, 

Walther,  

Hans Christian 

Maier,[70] 

PEEK  

(Poly-Ether-

ether-

Ketone) 

 

 

FDM Process, 

1. Extruder 

Temperature 

2. Bed Temperature 

3. Printing Speed 

4. Infill Rate 

1. Parameter optimization 

reducing the residual stress and 

minimize the warpage effect by 

the use of Machine learning. 

XGBoost model predicted that 

max. stress  was  86.7   

3. N. Ahmed, 

R.K. Abu Al-

Rub, I. 

Barsoum. [71] 

Stainless 

steel 316L 

LPBF Process, 

1. Laser power,  

2. Scanning speed,  

3. Hatching spacing, 

4. Layer thickness 

Primary process parameters 

including laser power, scanning 

speed, hatch spacing, layer 

thickness, give the ideal energy 

and achieve the highest build 

density 

4. Raj K. Ohdar,, 

Siba S. 

Mahapatra 

Anoop K. 

Sood, [72] 

ABSP400 FDM Process, 

1. Layer thickness,  

2. Part build 

orientation,  

3. Raster angle,        

4. Raster width. 

5. Air gap 

1. The reason of low strength is 

also due to anisotropy, create 

by the polymer molecules. 

2. Optimization is done by 

ANN gives the max, 

compressive stress of 17.4751 

MPa  

5.  Zhengkai Wu, 

Xin Peng, 

Hongyixi Bao, 

Shengchuan 

Wu, Guozheng 

Kang,*, [73] 

Ti-6Al-4 V SLM Process, 

1. porosity and  

2. LOF defects,  

3. No. of defects  

4. size of defect 

5. location, and 

morphology 

1. Use SVM and KNN 

machine learning algorithm  

and  predict the fatigue life  

2. SVM gives best accuracy 

between predicted and 

experimental results 

approximate 0.99. 
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6. Rishi Kumar, 

Rishi Ghosh, 

Kuldip Singh 

Sangwan[74] 

PLA, ABS , 

PETG 

FDM Process  

1. Preheating 

2. Printing 

3. Standby  

PETG  is good characterization 

of all the three material    

7. Ribin 

Varghese 

Pazhamannil, 

P. Govindan, 

P. Sooraj[75] 

PLA  FDM Process 

1. Layer thickness 

(mm) 

2. Infill speed (mm/s) 

3. Nozzle 

temperature 

1. Layer thickness decreases, 

the tensile strength  of the 

material 

2. Nozzle temperature 

increases, the tensile strength 

3. Infill speed does not 

influence the tensile strength. 

8. Aditya 

Pulipaka, Ali 

Beheshti,  Z. 

Shaghayegh 

Bag,  Kunal 

Manoj Gide, 

[76] 

PEEK  

(Poly Ether 

Ether 

Ketone) 

FFF Process 

1. Nozzle temp.  

2. Platform temp.  

3. Infill %,  

4. layer height,  

5. Print speed 

1. Nozzle temperature and 

layer height have significant 

effects on surface roughness  

2.  UTS was significantly 

influence by platform 

temperature, layer thickness 

and nozzle temperature. 

 

 

2.1. CONCULSION BASED ON THE LITERATURE REVIEW TABLE 

This literature review table gives enormous information to how to use machine learning 

in the additive manufacturing. This material based literature review give also information 

about the material selection. Machine learning techniques have been employed in various 

aspects of FDM process optimization, aiming to enhance print quality, reduce defects, 

and optimize process parameters. It has been utilized to identify the optimal values for 

FDM process parameters such as nozzle temperature, print speed, layer height, and infill 

density. By analyzing large datasets of process parameter variations and corresponding 

print outcomes, machine learning models can determine the combinations that result in 

improved print quality, reduced defects, and reduced printing time. It have been 

developed to detect defects and assess the quality of FDM-printed parts.  
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2.2.RESEARCH GAPS 

Based on the literature survey, it was discovered that the ensemble machine learning 

technique has not been used to predict the surface roughness in AM with advanced PLA+ 

material which has following benefits over standard PLA.  

1.  PLA+ has high strength, as compared to standard PLA polymers. Researchers have 

focused only on PLA, ABS, PEEK, and other polymer materials. 

2. PLA+ has higher heat resistance as compared to standard PLA polymers. 

3. Advanced polymers are used in the aerospace and automobile industries because of 

their high mechanical properties. 

 
2.3.RESEARCH OBJECTIVES 

This work has two distinct objectives. The first objective is to investigate the outcome of 

FDM process parameters on the surface roughness of PLA+ polymer. The second 

objective of this work is to predict the surface roughness of the samples by using machine 

learning.  

Based on the literature gap, some important research objectives have been identified that 

 To obtain better surface roughness by the FDM process in PLA+ polymer 

material. 

 To study the appropriate material characterization of the manufactured polymer 

material, is it amorphous or crystalline. 

 To develop better machine learning model to predict the surface roughness of the 

3D-printed samples  

 To analyze the behavior of surface roughness in nozzle temperature, printing 

speed, layer height, and infill density 

 To study the micro hardness of the material in different parameters 
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CHAPTER 3.  

 

RESEARCH METHODOLOGY 

 
Research methodology is the step by step procedure of the working plan to understand 

the whole research objective by the flow charts see in figure 3.1. 

 
Figure 3.1: Research methodology flowcharts 

 
3.1. MATERIAL  

PLA and PLA+ are two types of 3D printing filaments that are widely used. PLA is a 

biodegradable and environmentally friendly material that is typically derived from corn 

starch or sugarcane. On the other hand, PLA+ is an advanced version of PLA that boasts 

enhanced physical properties like increased strength, durability, and heat resistance. 

Numakers Company procures the PLA+ material for all experimental work. PLA is 

crafted from natural and renewable resources such as sugarcane or cornstarch. To 

enhance its strength and durability, PLA+ is created by adding substances like carbon 

Select the appropriate 
material which you 

have worked 

Taguchi DOE is used 
to make the design of 

experiment

Sample preperation 
through FDM process

Measurement of the 
printed samples using 

the Taylor Hobson 
talysurf instruments 

Analysis of the 
experimental datasets 

by using python 
programming langauge

Apply Reression 
machine learning 

model 

Evaluation of machine 
learning model 

Prediction of surface 
roughness by best 

suited model 

Characterization of 
PLA+ material 

1. XRD analysis 

2. Microhardness 
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fiber, metal particles, or other polymers see in figure 3.2. The result is a stronger and 

more durable material that can withstand higher stresses without breaking or cracking. 

Polylactic acid (PLA) is an environmentally friendly, thermoplastic aliphatic polyester 

that can be broken down by natural processes. It has the chemical formula (C3H4O2)n 

and is derived from renewable resources, specifically plant-based materials. On the other 

hand, reinforced polylactic acid (PLA+) is an enhanced and optimized thermoplastic 

filament material. It exhibits exceptional toughness, surpassing the strength of 

conventional PLA available in the market by a factor of ten. 

 PLA+ is particularly useful for printing objects that require more strength, durability, 

and resilience, and it retains its shape and physical properties even at temperatures up to 

90 degrees Celsius. Its improved adhesion properties make it less prone to warping and 

ideal for printing large objects. 

 

 
Figure 3.2: Geometry of material formation with 3d printing [77] 

 
Additionally, PLA+ has best layer sticking and less shrinkage with less warpage than 

PLA, which change to a printed object that is closer to the same size and shape, with less 

warping or distortion during the 3D printing. Finally, PLA+ has a matte finish due to the 

natural additives in the material [78]–[81]. Both PLA and PLA+ are great options for 3D 
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printing. PLA is suitable for general-purpose printing, whereas PLA+ is more appropriate 

for printing objects that require greater strength, durability, and resistance to heat. PLA+ 

has enhanced properties compared to PLA as (shown in table 3.1), such as improved 

strength, durability, and heat resistance, making it the preferred material for printing 

high-performance objects. However, it is slightly more difficult to print with than PLA, 

and it is also more expensive due to the added additives. 

 

Table 3.1: Comparison of mechanical property of PLA and PLA+ [82] - [83] . 
 
Property PLA PLA+ 

Tensile strength 40 – 60 MPa 60 – 80 MPa 

Elongation at Break 6 – 8% 4 -5 % 

Young’s Modulus 3 GPa 3.5 – 4 GPa  

Density 1.24 – 1.27 g/cm3 1.24 – 1.27 g/cm3 

Melting Point 160 – 180  oC 190 – 220  oC 

Glass Transition Temperature 60 – 65  oC 65 – 70 oC 

Heat Deflection temperature 50 – 60  oC 80 – 100   oC 

Print Bed Temperature range 20 – 60  oC 40 – 60  oC 

Print speed 50 -80 mm/s 40 – 60 mm/s 

Layer Height 0.1 – 0.3 mm 0.1 – 0.4 mm 

Shrinkage  Low Very Low 

Warping Low Very Low 

 

PLA+ is a thermoplastic polymer that is commonly utilized in fused deposition modeling. 

It is an eco-friendly material that is fully biodegradable and produced from renewable 

resources obtained from corn starch fermentation. Additionally, it is cost-effective and 

offered in a range of colors. References [79]–[81] provides information on the properties 

of PLA. In FDM, the print quality can be impacted by several process parameters, 

including layer thickness, nozzle temperature, ,print speed, infill density, print 

orientation, shell thickness, and printing pattern. Only the parameters that directly affect 

surface roughness and mechanical properties are considered, which includes layer 

thickness, infill density, and nozzle temperature. These parameters, along with their 

corresponding levels for an FDM 3D printer with a 0.4 mm nozzle diameter, are chosen 
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using trial-and-error models. Table 3.2 presents the selected process parameters which i 

have worked in the whole prediction of surface. 

 

 

 

Figure 3.3: Schematic Diagram 3D sample parts with Geometry 25x20x3.2 mm³. 
 

The experiment keeps all other parameters at a constant value while focusing on layer 

thickness, infill density, and nozzle temperature as the main process parameters. The 

printing speed, traveling speed, printing pattern, and shell thickness are also set to 

predetermined values. No supports are needed for printing the CAD models, so they are 

disabled. An orthogonal array (OA) is generated using MINITAB L25 software, which 

uses a 5-level Taguchi design with 5 factors. The L25 design is selected, resulting in a 

5x5 array presented in Table 3.2. The specimens developed in a SolidWorks CAD model 

have dimensions of 25*20*3.2 mm³. See in figure 3.3. 

 

3.2. TAGUCHI DESIGN OF EXPERIMENT 

Genichi Taguchi developed the Taguchi method, which aims to reduce process variation 

through a robust design of experiment and produce very high-quality products at a low 

cost for manufacturers. The method involves using a taguchi orthogonal array to organize 

the parameters that affect the process and the dimensions at which they are varied.  

The Taguchi method differs from the factorial design in that it only tests pairs of 

combinations, rather than all possible combinations. This approach is useful for 

identifying which factors have an impact on product quality while minimizing the amount 



31 
 

of experimentation required, thereby saving time and resources. The proposed 

experimental design by Taguchi is discussed in reference [84]. The Taguchi Orthogonal 

Array (OA) design is a fractional-factorial model that ensures all levels and factors are 

equally considered. This allows for independent evaluation of factors, despite the 

functionality of the design. The Taguchi orthogonal array design L25 chosen in [85]. 

 

Table 3.2: Control factors and different levels used for the Experiments  
 

Parameters  L1  L2 L3 L4 L5 

Printing Speed 50  60 70 80 90 

Nozzle Temperature 200 207.5 215 222.5 230 

Infill Density % 35 40 45 50 55 

Layer Height  0.12 0.14 0.16 0.18 0.20 

 

After applying the DOE these different levels and factors gives a table 3.3. The table is 

have 4 different parameters have printing speed, Infill density, and Nozzle temperature 

and layer height.  

 
3.3. SAMPLE PREPERATION THROUGH FDM PROCESS 

FDM is widely recognized as one of the most popular and extensively used additive AM 

techniques. It is a rapid prototyping (RP) technology that finds widespread industrial 

application due to its ability to construct complex functional parts efficiently. The FDM 

process involves the sequential deposition of thermoplastic filament, which is 

continuously supplied from a spool. 

In FDM, the thermoplastic filament passes through a heating element within the 

liquefying head. Once a continuous supply of filament is available, it is heated until it 

reaches a semi-liquid phase. The liquefied thermoplastic material is then extruded 

through an extrusion nozzle onto the printing bed or platform. The filament is heated to 

its melting point and gradually deposited in layers to form the desired 3D model. This 

process is illustrated in Figure 3.4. The advantage of FDM lies in its ability to create 

intricate geometries with functional features, all while minimizing production time. The 

versatility and relative simplicity of the FDM technique contribute to its popularity across 

various industries. It allows for the fabrication of parts using a wide range of 

thermoplastic materials, making it suitable for diverse applications. 
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Table 3.3: Taguchi L25 orthogonal array   
 

Exp No. PS NT ID LH 

1 50 200 35 0.12 

2 50 207.5 40 0.14 

3 50 215 45 0.16 

4 50 222.5 50 0.18 

5 50 230 55 0.2 

6 60 200 40 0.16 

7 60 207.5 45 0.18 

8 60 215 50 0.2 

9 60 222.5 55 0.12 

10 60 230 35 0.14 

11 70 200 45 0.2 

12 70 207.5 50 0.12 

13 70 215 55 0.14 

14 70 222.5 35 0.16 

15 70 230 40 0.18 

16 80 200 50 0.14 

17 80 207.5 55 0.16 

18 80 215 35 0.18 

19 80 222.5 40 0.2 

20 80 230 45 0.12 

21 90 200 55 0.18 

22 90 207.5 35 0.2 

23 90 215 40 0.12 

24 90 222.5 45 0.14 

25 90 230 50 0.16 
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Figure 3.4: General summary of FDM [86] 

 

The primary working principle of FDM is based on the behavior of semi-liquid 

thermoplastic filament materials when extruded from the printing nozzle. Instead of 

immediately solidifying upon extrusion, these semi-liquid thermoplastics fuse together 

to form a particular layer under construction. This fusion occurs before the material cures 

and solidifies into a stacked part composed of multiple layers, all at the ambient 

temperature surrounding the process. 

FDM offers several benefits, including its simplicity, high-speed printing capability, and 

low cost. However, there are certain drawbacks associated with the technique. These 

include process parameter-dependent mechanical properties, resulting in anisotropic 

characteristics of the printed parts. The surface finishing of FDM parts tends to be poor, 

and the layer-wise appearance of the part is noticeable. Furthermore, FDM is limited to 

using thermoplastic polymers as printing materials due to the requirement of 

thermoplasticity for successful 3D printing. Achieving optimal part quality and 

mechanical properties in FDM requires the proper selection and optimization of process 

parameters. This is crucial for making FDM suitable for mass production and gaining 

acceptance in industries. The key steps involved in the FDM process include creating a 

CAD model, converting it into STL format, slicing the STL into thin layers, layer-by-

layer construction of the part, and finally, cleaning and finishing. 
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For functional applications, important characteristics of FDM parts include dimensional 

accuracy, surface roughness, and strength. Manufacturing time is also a significant factor 

from an economic standpoint. However, achieving the desired characteristics in 

fabricated parts can be challenging without a thorough understanding of the impact of 

process variables. Therefore, optimizing process parameters becomes essential to achieve 

the desired quality characteristics in FDM-printed parts. 

In the context of metal polymer composites, recent research focuses on analyzing various 

FDM process parameters such as layer thickness, percentage infill, bed temperature, and 

others. These parameters have a significant influence on the mechanical characteristics 

of FDM-printed metal polymer composites. In this chapter, the analysis of important 

printing factors impacting the mechanical characteristics of such composites is based on 

recent references. Specifically, the layer height, printing speed, nozzle temperature, and 

infill density are among the four FDM process parameters examined in relation to their 

effects on the surface roughness. 

 

3.3.1. Layer height  

In Fused Deposition Modeling (FDM), layer height refers to the thickness of each 

individual layer of material that is deposited during the 3D printing process. It is one of 

the key parameters that can be adjusted when setting up a print job. When using an FDM 

3D printer, the printing nozzle moves along the X and Y axes, while the build platform 

moves down incrementally in the Z direction after each layer is deposited. The layer 

height determines the vertical distance between each layer. Choosing the appropriate 

layer height is important as it can affect the overall print quality and printing time. 

Nozzle Diameter: The layer height should be chosen in relation to the diameter of the 

printer's nozzle. As a general guideline, it is recommended to use a layer height that is 

equal to or slightly smaller than the nozzle diameter. For example, if you have a 0.4 mm 

nozzle, a layer height of 0.2-0.3 mm would be suitable. Thinner layer height adds to 

increased tensile strength owing to stronger adhesion between layers, according to the 

testing results.  

 

3.3.2. Printing speed 

Printing speed in FDM refers to the rate at which the 3D printer extrudes and deposits 

material to create the desired object. It is typically measured in millimeters per second 
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(mm/s) or millimeters per minute (mm/min). The printing speed affects the time it takes 

to complete a print job and can also impact the quality of the final object 

Print Quality vs. Speed: Increasing the printing speed can reduce the overall print time 

but may lead to compromises in print quality. High-speed printing can result in less 

precise details, increased vibrations, and potential issues like layer shifting or poor 

adhesion. It's crucial to find the right balance between speed and quality based on your 

specific requirements. 

 

3.3.3. Nozzle temperature 

In Fused Deposition Modeling (FDM), nozzle temperature refers to the temperature of 

the printing nozzle or extruder. It is a critical parameter in 3D printing as it directly affects 

the melting and flow characteristics of the filament material. The filament, typically made 

of thermoplastic material, is fed into the printer's extruder. The extruder contains a 

heating element that melts the filament, and the molten material is then deposited layer 

by layer to create the object. The nozzle temperature determines how hot the extruder 

needs to be to achieve proper melting and flow of the filament. Nozzle temperature can 

influence various aspects of the printed object, including layer adhesion, strength, and 

surface finish. Some materials require higher temperatures for proper bonding between 

layers, while others may have lower temperature requirements. Experimentation and 

adjusting the temperature within the recommended range can help optimize print quality. 

 
3.3.4. Infill Density 

Infill density, in the context of Fused Deposition Modeling (FDM) or 3D printing, refers 

to the amount of internal structure or material inside a printed object. It represents the 

density of the pattern or structure that is printed within the solid exterior shell of the 

object. When printing a 3D model, the software used to slice the model into printable 

layers allows for adjusting the infill density. The infill is typically represented as a pattern 

of lines, grids, or other geometric shapes that are printed within the walls of the object. 

Infill density affects the strength and durability of the printed object. Higher infill 

densities result in a more solid internal structure, increasing the strength of the object. 

However, higher infill densities also consume more material and can increase print time. 

Supports and Stability: Infill density plays a role in providing support and stability to the 

object. Higher infill densities can provide better support for overhanging or complex 
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geometries and reduce the likelihood of sagging or deformations during printing. It can 

also improve the overall stability and structural integrity of the object. 

A total of 25 samples were printed according to the Taguchi L25 orthogonal array, as 

illustrated in Figure 3.6. These samples were printed using an Ender 3 3D printer, which 

is identify in Figure 3.5. The specifications of this 3D printer are provided in Table 3.4. 

To test the surface roughness of the PLA+ material printed part, the Taylor Hobson 

surface roughness tester equipment was used. The components that were fabricated 

underwent testing using the Taylor Hobson machine shown in Figure 3.7, which has a 

range of approximately 0.05 to 12.25 um and is used in battery connectivity operations. 

Before testing the fabricated parts, it was necessary to check whether the diamond tip 

connected to the stylus was straight or not. Additionally, the surface roughness of the 

given sample base plate, which measured 6 um, was examined. Surface roughness was 

tested in three different positions of the sample parts, and the average of all three 

positions was taken to determine the final surface roughness (Avg), as shown in Table 

3.5. 

 

Table 3.4: Specification of Ender-3 3D printer. 

S.No. Parameter Type/Size 

1 Bed size 235 * 235 

2 Bed type Heated 

3 Max travel X= 235, Y = 235. Z = 250 

4 Nozzle size 0.4 mm 

5 File supported G code 

6 Material Supported PLA, PLA+, ABS 

7 Display size 2.5 Inch 

8 Max speed 120 mm/s 

9 Power supply 220 – volt AC, 240Watt 
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Figure 3.5: Ender-3 3D printer machine 

 

 

 

Figure 3.6: 3d Printed sample parts 
 

 
3.4. SURFACE ROUGHNESS MEASUREMENT BY TAYLOR HOBSON 

Taylor Hobson is a well-known manufacturer of precision metrology instruments, 

including surface roughness measurement devices. Modeling (FDM) samples, I can 

provide you with a general overview of how surface roughness data is typically generated 

using such instruments. The resulting surface of an FDM sample can exhibit varying 

levels of roughness due to factors such as layering, material properties, and process 

parameters. To quantify and characterize the surface roughness of an FDM sample, a 
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Taylor Hobson surface roughness measurement instrument can be used.  The TalySurf 

instrument has a resolution or least count of 0.1 nanometers (nm). This means that it can 

detect and display changes in surface roughness down to the nearest 0.1 nm increment. 

The resolution represents the smallest measurable unit of roughness that the instrument 

can reliably detect and quantify. These instruments typically employ a stylus-based 

measurement technique known as profilometry. Here are the general steps involved in 

generating surface roughness data using a Taylor Hobson instrument: 

3.4.1. Preparation  

The FDM sample is cleaned to remove any debris or contaminants that may affect the 

measurement. It is essential to ensure that the sample is stable and securely mounted to 

prevent any movement during measurement. 

3.4.2. Calibration  

The instrument needs to be calibrated before taking measurements. Calibration involves 

adjusting the instrument's settings, such as stylus force, scan length, and stylus radius, to 

ensure accurate and reliable measurements. 

3.4.3. Measurement setup  

The instrument is configured with appropriate measurement parameters based on the 

characteristics of the sample and the desired analysis. Parameters such as cutoff length, 

sampling length, and evaluation length are set to define the measurement area and 

determine the level of detail captured. 

3.4.4. Measurement process  

The instrument's stylus is brought into contact with the surface of the FDM sample. The 

stylus then traces across the sample surface, following a predetermined path or scanning 

pattern. As it moves, the stylus measures the vertical displacement of the surface, 

recording data points at regular intervals. 

3.4.5. Data acquisition  

The instrument captures the data points recorded by the stylus, which correspond to the 

height variations of the surface. The collected data is typically stored in a profile file or 

transferred to a computer for further analysis. 

Data analysis: The surface roughness data is analyzed to extract various parameters that 

quantify the surface texture. The surface roughness data, along with the calculated 

parameters, can be presented in a graphical format or as a numerical report. The data can 

be used to evaluate the quality of the FDM sample, compare different samples or 

processes, or ensure compliance with specific surface roughness requirements. 
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Table 3.5: Surface roughness result by Taylor Hobson  
 

Exp 

No. 

PS NT ID LH SR 

(Ra1) 

SR  

(Ra2) 

SR 

(Ra2) 

SR 

Average 

1 50 200 35 0.12 4.24 4.3 4.08 4.20 

2 50 207.5 40 0.14 5.72 5.86 5.25 5.61 

3 50 215 45 0.16 6.50 6.31 6.21 6.34 

4 50 222.5 50 0.18 7.21 7.88 7.46 7.51 

5 50 230 55 0.2 9.54 9.36 8.94 9.28 

6 60 200 40 0.16 6.44 7.1 6.32 6.62 

7 60 207.5 45 0.18 7.31 7.84 8.44 7.86 

8 60 215 50 0.2 8.41 8.19 8.75 8.45 

9 60 222.5 55 0.12 4.12 4.365 4.62 4.4 

10 60 230 35 0.14 5.84 5.7 5.81 5.78 

11 70 200 45 0.2 8.89 9.12 9.4 9.13 

12 70 207.5 50 0.12 4.14 4.68 4.84 4.55 

13 70 215 55 0.14 5.94 5.34 6.24 5.84 

14 70 222.5 35 0.16 6.34 6.84 6.94 6.70 

15 70 230 40 0.18 8.154 8.54 8.21 8.30 

16 80 200 50 0.14 6.25 6.32 6.05 6.20 

17 80 207.5 55 0.16 7.45 7.64 6.84 7.31 

18 80 215 35 0.18 8.54 8.89 8.24 8.55 

19 80 222.5 40 0.2 7.55 7.3 7.95 7.6 

20 80 230 45 0.12 5.15 5.89 5.25 5.43 

21 90 200 55 0.18 9.32 9.75 8.95 9.34 

22 90 207.5 35 0.2 10.25 9.98 9.84 10.02 

23 90 215 40 0.12 7.1 6.84 6.35 6.76 

24 90 222.5 45 0.14 6.65 6.9 6.25 6.6 

25 90 230 50 0.16 8.21 8.75 8.1 8.35 
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Figure 3.7: Taylor Hobson surface roughness tester with printed sample parts 

 
Surface roughness is measured by three points in the samples and after that taken the 

average of all the three surface roughness of the 3d printed samples parts which is shown 

in the table no. 3.5.  

 

3.5. DATA PREPROCESSING 

Preprocessing data in machine learning refers to the steps and techniques applied to the 

raw data before it is used to train a machine learning model. The purpose of data 

preprocessing is to transform and prepare the data in a format that is suitable for the 

machine learning algorithms, improving the accuracy and efficiency of the model. The 

implementation of various machine learning (ML) approaches typically follows a 

standard workflow, as depicted in Figure 3.8, comprising five steps to model a problem 

effectively. 

 

Step 1: Data Collection involves gathering a dataset consisting of samples. Each sample 

includes input variables that describe the problem being modeled, and in the case of 

supervised learning algorithms, corresponding numeric output target values for 

regression models. This step is crucial for providing the necessary data to train and 

evaluate ML models. 
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Step 2: Data Pre-processing focuses on preparing the dataset for ML algorithms. It 

involves tasks such as data cleansing and formatting. Data cleansing involves removing 

or repairing incorrect or missing data, reducing noise, and applying data augmentation 

techniques to create a more balanced dataset, especially for classification tasks. Feature 

selection, transformation, and extraction/engineering are applied to enhance the dataset. 

Unnecessary features may be removed, remaining features can be transformed through 

normalization or scaling, and new features can be extracted from the input data.  

 

Step 3: Model Training focuses on selecting suitable parameters for the learning 

algorithm and executing the training process. The algorithm analyzes the training data to 

discover patterns that map input features to the corresponding output target. Feature 

selection involves selecting a subset of relevant features from the dataset. This helps 

reduce the dimensionality of the data, removing irrelevant or redundant features, and 

improving the model's efficiency and interpretability. The output of this step is an ML 

model that captures the learned patterns and can generate accurate predictions when 

presented with new input samples. The dataset is typically split into training and testing 

sets. The training set is used to train the machine learning model, while the testing set is 

used to evaluate its performance. This helps assess the model's generalization ability and 

prevent overfitting. 

 

Step 4: Model Performance Evaluation involves assessing the generated model's 

performance. It is done by measuring its responses to the testing dataset using 

performance metrics specific to the problem at hand. This step helps determine the 

model's effectiveness and provides insights into its strengths and weaknesses. 

The specimens were manufactured with FDM 3D printing and tested for surface 

roughness on a Taylor Hobson surface roughness tester. Different machine learning is 

used to predict the surface roughness of the 3D printed parts, which show different results 

in the training and testing datasets. 
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Figure 3.8: Working procedure of different ML created by flow chart 
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3.6. MACHINE LEARNING ALGORITHM (REGRESSON ANALYSIS) 

Regression analysis is a set of statistical techniques used to determine the relationship 

between a response variable and one or more predictor variables 

 
3.6.1. Linear Regression 

The most commonly used type of regression analysis is linear regression. It involves 

selecting a line, or new complex linear combination, that best fits the experimental data 

based on a set of mathematical formula (illustrate in figure 3.9). Linear regression is the 

oldest and most widely used category of regression analysis [87]. In a linear regression 

model, there is a specific form that must be followed. The model is linear when it holds 

a constant and a parameter multiplied by each independent variable, which are used to 

predict the dependent variable. The equation for linear regression is shown below: 

 

 
Figure 3.9: Schematic diagram of linear regression  [88] 

𝑦 =  𝑎 + 𝑎ଵ𝑥ଵ + 𝑎ଶ𝑥ଶ … + 𝑎𝑥𝜖     Eq2 

Here, y is the dependent variable, x1...xm are the independent variables, a0 is the 

intercept of the line, and a1...am are the regression coefficients. The value of ε represents 

the random error. The training datasets for the linear regression model representation 
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include values for both the x and y variables. All the linear regression code is done in 

jupyter notebook and code snippet is shown in appendix I. 

 

3.6.2. Support Vector Regressor (SVR) 

Support Vector Machines (SVM) is a machine learning technique rooted in statistical 

learning theory and the principle of structural risk minimization. To classifying patterns 

and performing non-linear regression. SVR is the application of SVM to non-linear 

regression problems. Its main idea is to use a kernel function to map non-linear data 

points to a good-dimensional space and fit them to a hyperplane [28], [89]. By 

minimizing the error distance between data points and a hyperplane, Support Vector 

Machines (SVM) facilitate the description and prediction of non-linear relationships. (see 

in figure 3.10)  

 

 
Figure 3.10: Schematic diagram of svm [90] 

 

The algorithm achieves this by utilizing a kernel function that allows for the 

transformation of the original feature space into a higher-dimensional space. In this 

higher-dimensional space, the data points can be separated by a hyperplane, even if the 

original feature space is not linearly separable. [5]. All the support vector regression code 

is done in jupyter notebook and code snippet is shown in appendix II. 
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3.6.3.  Random Forest Repressor 

Random Forest (RF) is an ensemble learning algorithm introduced by Breiman in 2001, 

which has gained popularity in machine learning. This technique constructs a forest of 

decision trees by utilizing bootstrap sampling. Each decision tree in the ensemble is 

independent and contributes to the final prediction (refer in figure 3.11). Despite its 

simplicity, Random Forest has been widely acknowledged for its excellent performance 

across various types of tasks. Random Forest is particularly effective in regression tasks. 

To build a regression tree, two crucial criteria are employed: a splitting criterion, which 

determines how the tree branches based on input features, and a stopping criterion, which 

defines when the tree growth should stop. 

 

 

Figure 3.11: Schematic illustration of random forest regressor [91] 
 

The Random Forest algorithm leverages the concept of combining multiple decision trees 

to improve prediction accuracy and robustness. Each decision tree in the ensemble is 

trained on a different subset of the data, obtained through bootstrap sampling. This 

randomness in data sampling, combined with the independence of the trees, helps to 

reduce overfitting and improve the overall generalization performance of the model. The 

implementation of Random Forest can be done using various programming 

environments, such as Jupyter Notebook, where the code can be written and executed. 

(see in appendix III.) 

 



46 
 

3.6.4. Gradient Boosting Regression tree 

Gradient Boosting regression (GBR) is a ML algorithm that joins multiple decision trees 

to create a stronger model. The decision trees are the core models of the algorithm, and 

GBR uses a statistical technique called boosting to improve the performance of the 

decision tree models. The boosting approach involves incrementally building new 

decision trees by reducing the current residuals (refer in figure 3.12). In the original 

Boosting algorithm, each sample is assigned equal weight at the beginning of the 

algorithm, and all the base learners are equally important [92]. 

The Gradient Boosting regression (GBR) algorithm is an ensemble boosting method that 

uses decision trees as core models. Its goal is to joins a set of models to build a single 

strong machine model. In GBR, the technique of boosting incrementally constructs new 

decision trees by reducing the current residuals.  

 

 

Figure 3.12: Schematic diagram on boosting technique [93] 
 

Unlike the original Boosting algorithm, in GBRT, incorrectly predicted samples are 

given a higher weight in the next step, while correctly predicted samples are given a 

lower weight [94].  All the Gradient boosting regression code is done in jupyter notebook 

and code snippet is shown in appendix IV. 
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3.7. EVALUATION OF MACHINE MODEL  

Evaluating a regression machine learning model involves assessing how well the model 

performs in predicting continuous numeric values. There are several commonly used 

evaluation metrics to measure the act of regression models. Here are some key metrics: 

3.7.1. Mean Squared Error (MSE) 

The average of the squared variations between the predicted and actual values is 

computed by MSE. Lower values reflect greater performance because it calculates the 

average squared difference between the expected and true values. However, MSE is 

sensitive to outliers. 

𝑀𝑆𝐸 =  
ଵ


∑ (𝑌 − 𝑌∧

)ଶ
ୀଵ         Eq. 3  

MSE =mean squared error, n = number of data points, 𝑌 = observed values, 𝑌∧
= pred 

value 

 

3.7.2. Root Mean Squared Error (RMSE) 

RMSE is the square root of the MSE. It gives an accountable metric in the same size as 

the target variable, making it easier to understand the magnitude of the errors [95]. 

𝑅𝑆𝑀𝐸 =  ට
∑ ||௬()ି௬∧()||మಿ

సభ

ே
        Eq. 4 

Where N = number of data points, y(i) =  Ith measurement  and 𝑦∧(𝑖)  = corresponding  

prediction 

 

3.7.3. Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) is a metric used to evaluate the performance of a 

prediction model. It calculates the average absolute difference between the predicted 

values and the actual values. Unlike other metrics, such as Mean Squared Error (MSE), 

MAE focuses on the magnitude of errors rather than their squared values [95]. 

 

𝑀𝐴𝐸 =  
∑ |௬ି௫|

సభ


         Eq. 5 

MAE = mean absolute error, 

𝑦 = prediction, 

𝑥 = true value 

n = total number of data points 
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3.7.4. R-squared (R²) or Coefficient of Determination 

R-squared measures the proportion of the variance in the target variable that is forecasted 

from the independent variables used in the model. It ranges from 0 to 1, where 1 indicates 

that the model explains all the variability in the target variable. However, R-squared can 

be biased when adding more independent variables to the model [96]. 

𝑅ଶ = 1 −
ௌௌோ

ௌௌ்
= 1 −  

∑(௬ഢ ෞି௬ത)మ

∑(௬ି ௬ത)మ
       Eq. 6 

SSR = sum squared error, SST = total sum of squares, 

When evaluating a regression model, it's important to take the specific characteristics of 

the experimental problem, the distribution of the data, and the aim of the analysis. It's 

also useful to compare the model's performance with baseline models or other algorithms 

to determine its effectiveness in making accurate predictions. After the evaluation of the 

machine model a user interface (see in appindex V) is created by the tinkter library which 

predict the surface roughness by inputting the variable parameters. 

 

3.8. CHARACTERIZATION OF PLA+ MATERIAL 

3.8.1. X-ray Diffraction 

X-ray diffraction (XRD) is a technique used to analyse the crystal structure and molecular 

arrangement in a material.  When analyzing the XRD pattern of a PLA+ polymer, several 

factors can influence the results, including the specific composition of the polymer, 

processing conditions, and any additives used. XRD results typically show characteristic 

diffraction peaks that correspond to the arrangement of polymer chains or crystalline 

regions within the material. To obtain the XRD result of a specific PLA+ polymer, you 

would need to conduct the experiment by preparing a sample of the polymer which is 

shown in the figure 3.13, subjecting it to X-ray diffraction analysis, and interpreting the 

resulting diffraction pattern 

  

 

Figure 3.13: Schematic diagram of XRD samples in 18 mm diameter and 2.5 mm thickness 
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The samples used in this study were 3D printed using identical parameters, with a nozzle 

temperature of 220°C and a build platform temperature of 60°C. The printing process 

involved a 55% infill, where the interior of the printed object was filled with material, 

and a cubic fill pattern was used for each layer, aligning parallel to the axis of the object. 

To analyze the crystal structure of the printed samples, single crystal X-ray diffraction 

data was collected using a Bruker advanced D8 X-ray diffraction machine. The machine, 

depicted in (Figure 3.14) was operated at room temperature, scanning over a 2θ range 

from 2 to 70 with a step size of 0.05. The X-ray source employed in the machine was a 

graphite-monochromatic with a wavelength of λ=1.5406. To process the collected data, 

well-established computational procedures were utilized for data reduction. This 

involved performing corrections for Lorentz and polarization effects, followed by an 

empirical absorption correction based on a technique known as "multi-scan". These 

procedures helped obtain the structural factors necessary for further analysis and 

interpretation of the crystal structure of the printed samples. 

 

 

 

Figure 3.14: Bruker advanced D8 XRD testing machine 
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3.8.2. Microhardness of PLA+  polymer material 

Microhardness of PLA+ material involves evaluating the hardness characteristics of a 

specific type of PLA (Polylactic Acid) material that has been modified or enhanced with 

additives to improve its mechanical properties. Microhardness refers to the ability of a 

material to resist indentation or penetration by an indenter under a specific load.  To Set 

the test parameters, including the test load and dwell time, based on the characteristics of 

the PLA+ material and the desired level of precision.  Capture images or record the 

dimensions of the indents produced on the PLA+ material surface and measure the 

indentation. Calculate the microhardness values using the measured indentation 

dimensions and the test parameters. Microhardness is typically expressed in units of HV 

(Vickers hardness) or kg/mm². If conducting a comparative study or evaluating multiple 

samples, perform statistical analysis on the obtained microhardness data. 

The microhardness test is usually used to illustrate the hardness of different polymer 

materials at small applied loads like 0.5 kgf (4.903N) with static indentations. In this 

investigation, the microhardness was measured at 0.5 kgf (4.903325 N) with a dwell time 

of 10 s. The indenter type is the Vickers diamond pyramid, model Struers Duramin – 

40M (Delhi technological university). The Vickers hardness number (HV), is calculated 

according to the equation which is shown below [97]: 

 

𝐻𝑉 = 1.8544 


ௗమ          Eq. 7 

 

Where P = Applied load in kgf, d = an arithmetic mean of diagonals in mm and HV is 

the Vickers hardness number. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1. INTRODUCTION 

The generated machine learning model considers a total of four input parameters, with 

surface roughness measurement serving as the output. The input data or features consist 

of the following printing parameters: printing speed, Infill Pattern (IP), nozzle 

temperature, and Layer Thickness (LT), with a raster angle of 0 degrees. These 

parameters were obtained through the experimental procedure outlined in the 

experimental work, which was then used to calculate the surface roughness output of the 

3D printed sample parts. Figure 4.1, 4.2, 4.3 and 4.4 displays the correlation between the 

input and output variables of the experimental datasets, while Figure 4.5 shows the 

Heatmap correlation which is created using Python programming. After making the best 

fitted model also calculated the characterization of the PLA+ polymer material which 

check this polymer is amorphous or crystalline  

 
4.2. EFFECT OF PRINTING PARAMETERS IN SURFACE ROUGHNESS 

Layer height. Printing speed, nozzle temperature and Infill density all the four parameters 

shown different impact on the surface roughness which is shown in the figure 4.1, 4.2, 

4.3 and 4.4. All the variation of the process parameters with surface roughness are shown 

in the figure. The layer height determines the thickness of each printed layer. A smaller 

layer height generally results in finer surface details and smoother surfaces. However, 

using a smaller layer height can increase print time and may require a higher level of 

printer precision and larger layer height shows large surface roughness. The extrusion 

temperature of the filament affects its flow and bonding characteristics. The temperature 

should be set within the recommended range for the filament material being used. 

Incorrect temperature settings can lead to under or over-extrusion, which can impact 

surface quality. The speed at which the printer moves during the printing process can 

impact surface roughness. Higher printing speeds may lead to rougher surfaces due to 

less time for the material to cool and solidify. Slower printing speeds generally result in 

smoother surfaces but can increase overall print time. 
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Figure 4.1: Variation of Surface roughness vs infill density 

 

 
 

Figure 4.2: Variation of Surface roughness vs layer height 
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Figure 4.3: Variation of Surface roughness vs Nozzle temperature 

 
 

 
 

Figure 4.4: Variation of Surface roughness vs printing speed 
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Figure 4.5: Heatmap of correlation with surface roughness with other parameters 
 

 

This heatmap gives the percentage of correlation of input features to the output features 

(Surface Roughness). This heatmap gives the correlation in percentage which is given 

below 

1. Printing speed is 31% corr. With Ra  

2. Nozzle temperature is 2.7% corr. with Ra 

3. Infill density is 3.5% corr. with Ra 

4. Layer height is 89% corr. With Ra 
 

The correlation analysis reveals that layer height has a very strong correlation with 

surface roughness, at approximately 89%. Conversely, infill density and nozzle 

temperature have the least correlation with surface roughness. Infill density primarily 

affects tensile strength rather than surface roughness, as it fills the inside of the material 

in 3D printed parts. Nozzle temperature also has minimal correlation, as the melting 

temperature of the PLA+ polymer used in the experiment is around 200-230 degrees 

Celsius, as indicated on the filament coils purchased from the Numkers company. Given 



55 
 

these findings, we eliminated the two least correlated parameters, nozzle temperature and 

infill density, and focused on the highly correlated layer height parameter. The dataset 

was then split into training and testing sets, with 75% allocated for training and 25% for 

testing. The machine learning model was applied to the datasets. 

 

4.3. ANALYSIS OF MACHINE LEARNING IN THE EXPERIMENTAL 

DATASETS  

All the machine learning used one by one and check which one is best fitted results in 

my experimental datasets. And the result is shown in the table 4.1. Evaluation of machine 

learning also checked to identify which one’s better machine model 

 

Table 4.1: Training and testing result in different Ml algorithm 

Machine Learning algorithm Training score (%) Testing score 

Linear regression 85.0 84.29 

Support vector machine 3.08 -3.099 

Random forest repressor 94.45 95.45 

Gradient Boosting regression 98.871 36.67 

  

Random forest regression shows a better-fitted algorithm on training and testing datasets, 

which is shown in the above table 4.1 in all over the machine learning and also checking 

the evaluation of all 4 algorithms. To determine whether a machine learning regression 

model is good or not, you can use various evaluation metrics, such as MSE: which 

measures the average squared difference between the predicted and actual values. A 

lower value of MSE indicates a better model. R-squared (R2) score: It represents the 

proportion of variance in the target variable that is explained by the independent 

variables. A higher value of R2 indicates a better model. RMSE: It is the square root of 

MSE and represents the average distance between the predicted and actual values. A 

lower value of RMSE indicates a better model. 

Random forest regressor is minimum mse 0.1255 and maximum r2_Score with 0.9685 

as compared to the linear regression and the other two algorithms give more error as 

compared to the random forest, the overall best algorithm is random forest regressor 

because it has better training accuracy, testing accuracy, less mean squared error and also 

great r2_score of all the ML algorithm. After applying the best ML model make a user 

interface to predict the surface roughness by using the saved model.  
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All the actual and predicted data are shown by the graph in Figure 4.6 in different 

machine learning algorithms. This graph shows a graphical representation of all detailed 

understanding of the actual and predicted data. 

 

 
 
 
Figure 4.6: Graphical representation of actual data and predicted data of different machine 
learning algorithm 
 
 
Random forest regression algorithm gives the prediction result of the experimental data 

with minimize error, overall all the 4 machine learning algorithm. All the code of the 

machine learning is written in jupyter notebook and fig. 4.6 is coding generated graphical 

representation of all machine learning. Table 4.2 shows the actual and predicted results. 
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Table 4.2: Experimental and predicted value of surface roughness of samples through Random 
forest repressor model  
 
Experiment No. Actual SR (Ra)  Predicted SR (Ra) Absolute % error 

1 4.20 4.432 5.523 

2 5.61 5.364 4.38 

3 6.34 6.3307 0.14 

4 7.51 8.006 6.60 

5 9.28 8.89 4.20 

6 6.62 6.5178 1.54 

7 7.86 7.9154 0.70 

8 8.45 8.569 1.48 

9 4.4 4.738 7.68 

10 5.78 5.6902 1.55 

11 9.13 8.2075 10.104 

12 4.55 5.02 10.329 

13 5.84 5.84 0 

14 6.70 6.73 0.447 

15 8.30 8.11 2.289 

16 6.20 6.14 0.96 

17 7.31 7.059 3.433 

18 8.55 8.29 3.04 

19 7.6 8.28 8.947 

20 5.43 5.57 2.578 

21 9.34 9.123 2.3233 

22 10.02 9.446 5.72 

23 6.76 6.129 9.33 

24 6.6 6.55 0.75 

25 8.35 7.79 6.706 
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4.4. XRD ANALYSIS 

X-ray diffraction analysis was used to determine amorphous and crystalline structure 

with degree of crystallinity.  The XRD result of PLA+ polymer material is shown in 

figure 4.7 .Because PLA is a semi-crystalline polymer, it was expected to generate X-ray 

diffractometry peaks, [98] PLA+ (Polylactic Acid+ or advanced PLA) is also  a 

semicrystalline polymer . This means that it does contain both crystalline and amorphous 

regions, its overall structure exhibits a combination of crystallinity and amorphousness.  

The peak of 2theta is approx. on 18 degree approximate. 

 
Figure 4.7: XRD results of PLA+ material  

 

In its solid state, PLA forms crystalline regions where the polymer chains are arranged 

in an ordered and repeating pattern. These crystalline regions contribute to the material's 

stiffness and strength. However, PLA+ also contains amorphous regions where the 

polymer chains are randomly oriented, lacking a distinct pattern. The amorphous regions 

give PLA its transparency and flexibility. Peak positions are expressed in terms of the 

diffraction angle (2θ), which is related to the spacing between crystallographic planes in 

the material. The intensity of the peaks is proportional to the amount of scattering 

occurring from those planes. The shape and width of the peaks can provide insights into 

factors like crystallite size, strain, and crystal orientation. 

The degree of crystallinity in PLA can be influenced by various factors, including the 

processing conditions during manufacturing and the cooling rate of the material. 

Generally, PLA has a relatively low crystallinity compared to some other semicrystalline 
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polymers. It's worth noting that the presence of crystalline and amorphous regions in 

PLA+ affects its properties. For example, the crystalline regions contribute to its higher 

melting point and rigidity, while the amorphous regions contribute to its lower glass 

transition temperature and flexibility. 

 

 

4.5. Microhardness analysis  

Analyze the microhardness experimental data shows that the influence of infill density, 

printing speed, and nozzle temperature and layer height all parameters play a important 

role in the microhardness of the PLA+ polymer material which is shown in the figure 

4.8. The micro hardness values of the PLA+ material are higher compared to standard 

PLA, it can be concluded that the addition of additives or modifications have successfully 

improved the hardness properties of the material. This enhancement may be attributed to 

factors such as increased filler content, reinforcement materials, or changes in processing 

parameters.  

 
Figure 4.8. Microhardness in all samples 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORKS 

 
The surface roughness was measured and 3D samples were fabricated successfully using 

the L25 orthogonal array. The study proposed a data-driven framework that utilized 

machine learning to predict surface roughness and dimensional accuracy, and obtain 

optimal process parameters. Verification experiments showed that the optimized results 

were consistent with experimental results, indicating the effectiveness and feasibility of 

the proposed method. The study concluded that using machine learning to study process 

parameters and obtain optimal settings for surface roughness is a viable approach. 

1. Surface roughness is directly depend on the parameters of layer height and 

printing speed, With the increase of layer height, Printing speed, that directly 

effect to increase the surface roughness of the 3d printing parts. Layer height is 

89% positive correlation with the surface roughness and printing speed is 30% 

correlation with the surface roughness. Surface roughness is minimum gives less 

wear  with the meshing parts  

2. Infill density and nozzle temperature gives constant relation between the surface 

roughness’s does not gives any type of effect in the surface roughness. Its approx. 

0.030 % correlation with the surface roughness. 

3. An ensemble machine learning algorithm random forest repressor is less MSE 

approx. 0.1255 and maximum r2_Score approx. 0.9685 in all the used machine 

learning algorithm, with training accuracy is  94.45 and testing  accuracy 0.9685 

which is also shown in the visualization graph in the figure number 4.6. 

4. Increased the metal content in PLA+ polymer may increase the microhardness of 

the polymer  

5. It is a semi crystalline polymer material  

Upcoming work involves collecting more data to increase the robustness of the models. 

Furthermore, new input parameters such as nozzle diameter will be incorporated. 

Additionally, experimental data will also be utilized in conjunction with or in lieu of 

numerically generated data to enhance the predictive models.  Dynamic measure analysis 

is also done by the PLA+ material this is my next step work of my research. 
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Appendix 5 

 
User interface of surface roughness prediction 
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