DESIGN OF BAKER'S YEAST PLANT AND PROJECT ECONOMICS

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

[INDUSTRIAL BIOTECHNOLOGY]

Done at

PRAJ INDUSTRIES LTD, PUNE

Submitted by:

[TANYA SHRIVASTAVA]

2K21/IBT/20

Under supervision of

DR. JAI GOPAL SHARMA

DEPARTMENT OF BIOTECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

MAY, 2023

DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CANDIDATE'S DECLARATION

I, **Tanya Shrivastava**, Roll No. **2K21/IBT/20** of M.Tech (Industrial Biotechnology), hereby declare that the Project Dissertation titled **"Design of Baker's yeast Plant and Project Economics"** which is submitted by me to the Department of Biotechnology, Delhi Technological University, Delhi in partial fulfilment of the requirement for the award of the Degree of Master of Technology, is original and not copied from any source without proper citation. The work has not been previously formed the basis for award of any Degree, Diploma Associateship, Fellowship or other similar title or recognition.

(TANYA SHRIVASTAVA)

Place: Delhi

Date:

May 26, 2023

TO WHOMSOEVER IT MAY CONCERN

Subject: Internship Certificate

This is to certify that Ms. Tanya Shrivastava, has successfully completed her internship at Praj Ind. Ltd. from 3rd Jan. 2023 till 26th May 2023.

She has shown keen interest in all the work assigned to her and has taken initiative in various other developmental drives as well. Her performance throughout the internship period was excellent, we wish her all the best for her future endeavors.

For Praj Industries Limited

Milind Bava

Jt. General Manager, Human Capital

Yours sincerely

Praj Industries Limited

CERTIFICATE BY THE EXTERNAL SUPERVISOR

This is to certify that the dissertation report entitled "Design of Baker's yeast **Plant and Project Economics**" submitted by Ms. Tanya Shrivastava (2K21/IBT/20) to Delhi Technological University, New Delhi in partial fulfillment of the requirement for the award of the degree of M.Tech in Industrial Biotechnology is a record of bonafide work carried out by her under my guidance. The dissertation fulfills the requirements as per the regulations of this institute and in my opinion meets the necessary standards for submission. The contents of this report have not been submitted and will not be submitted either in part or in full, for the award of any other degree or diploma in this institute and the conduct of student is "Excellent".

Mr. SP Singh EXTERNAL SUPERVISOR Vice President Praj Industries Limited, Praj Tower, 274-275 Bhumkar Chowk-Hinjewadi Road, Hinjewadi Pune -411057 E-mail id: ssingh@praj.net, phone no. +91-020-71802000/ 22941000

DEPARTMENT OF BIOTECHNOLOGY DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled **"Design of Baker's yeast Plant and Project Economics"** which is submitted by Tanya Shrivastava, Roll no. 2K21/IBT/20 [Department of Biotechnology], Delhi Technological University, Delhi in partial fulfilment of requirement for the award of Degree of Master of Technology, is a record of the project work carried out by the student under my supervision. To the best of my knowledge this work has not been submitted in part of full for any Degree or diploma to this University or elsewhere.

Head of Department Department of Biotechnology Delhi Technological University

dei Gof

DR JAI GOPAL SHARMA Supervisor Professor

Department of Biotechnology

Delhi Technological University

ABSTRACT

The production of baker's yeast from cane molasses is an essential process in the baking industry. This thesis focuses on the optimization of yeast production from cane molasses and the evaluation of its economic feasibility. The study examines the fermentation process, including the optimization of fermentation parameters such as pH, temperature, and aeration rate to maximize yeast growth and productivity. Additionally, the project economics of the yeast production process are analyzed, including the capital and operating costs, revenue streams, and profitability. The feasibility study also evaluates the economic impact of varying input costs such as molasses, labor, and utilities on the production of baker's yeast from cane molasses, including strategies to reduce production costs, increase product quality, and expand market share. This thesis provides valuable insights into the technical and economic feasibility of baker's yeast production from cane molasses, offering a framework for the development of sustainable and profitable yeast production processes.

ACKNOWLEDGEMENT

I am deeply grateful to my supervisor **Mr SP Singh**, for his unwavering support and guidance throughout my internship. His expertise and patience have been invaluable to me and have played a crucial role in the success of this thesis. I am grateful to **Praj Industries**, **Pune** for providing me with the opportunity to conduct my dissertation and for all of the resources and support they provided. I would like to extend a special thanks to **Mr Milind Bava**, who went above and beyond to help me with my work. I am highly grateful to **Mr Sankhajeet Kole** of Praj HiPurity Systems, Mumbai for his inputs and contribution throughout my internship. I would also like to thank **Dr. Anand Ghosalkar** from Praj-Matrix, Research and development for his guidance and constructive criticism during my internship period. I am also grateful to the GETs of Matrix. I would like to thank **Ms Sapna Karoo** and **Ms Manjiri Joshi** from the brewery team for their guidance and inputs.

Lastly, I would like to thank my friends and family who believed in me and helped me throughout the internship by supporting me and being there for me.

TANYA SHRIVASTAVA

CONTENTS

CANDIDATE'S DECLARATION	i
CERTIFICATE	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
CONTENTS	V
LIST OF TABLES	vii
LIST OF FIGURES	viii
NOMENCLATURE	ix

CHAPTER

TITLE

PAGE NO

		110.
1.	INTRODUCTION	1
1.1.	CLASSIFICATION OF S. CEREVISIAE	5
1.2.	INDUSTRIAL BACKGROUND OF S. CEREVISIAE	5
1.2.1	INDUSTRIAL APPLICATION OF S. CEREVISIAE	6
2.	YEAST GROWTH	8
2.1.	SPECIFIC REQUIREMENTS FOR GROWTH OF YEAST	8
2.1.1.	VITAMINS	8
2.1.2.	WATER	9
2.1.3.	OXYGEN AND AERATION	10
2.1.4.	CARBON SOURCE	11
2.1.5.	MINERALS	12
2.1.6.	INORGANIC IONS	12
2.2.	YEAST REPRODUCTION	14
2.2.1.	BINARY FISSION	14
2.2.2.	BUDDING	15
2.3.	BATCH GROWTH OF YEAST	17
2.3.1.	LAG PHASE	17
2.3.2.	ACCELERATION PHASE	17
2.3.3.	LOG PHASE	18

2.3.4.	DECELERATION PHASE	18
2.3.5.	STATIONARY PHASE	18
2.3.6.	DECLINE PHASE	18
2.4.	PSYIOCHEMICAL ENVT. AND YEAST GROWTH	20
2.4.1.	TEMPERATURE	20
2.4.2.	рН	20
2.4.3.	OXYGEN AVAILABILITY	21
2.4.4.	OSMOTIC STRESS	21
3.	DESIGN BASIS AND PROCESS DESCRIPTION	
3.1.	DESIGN BASIS	22
3.2.	PROCESS DESCRIPTION	26
3.2.1.	MOLASSES HANDLING AND STORAGE	26
3.2.2.	MOLASSES PRE-CLARIFICATION	27
3.2.3.	FERMENTATION	28
3.2.4.	CENTRIFUGATION & WASHING OF YEAST CELLS	29
3.2.5.	FILTRATION BY ROTARY VACUUM FILTER	29
3.2.6.	EXTRUSION AND CAKE PACKAGING	30
3.2.6.1.	STABILITY OF COMPRESSED YEAST CAKE	30
3.2.7.	FLUIDIZED BED DRYER	31
3.2.7.1.	ACTIVE DRIED YEAST PACKAGING	31
4.	FERMENTOR DESIGN CRITERIA	32
4.1.	FERMENTOR DESIGN CRITERIA	32
4.1.1.	STERILIZABILITY	32
4.1.2.	CLEANABILITY	32
4.1.3.	CONTROLLABILITY	32
4.2.	INPUT PARAMETERS	34
4.3.	UTILITIES CLEAN LITHES	38
4.3.1.	CLEAN UTILITIES	39
4.3.2. 4.4	BLACK UTILTIES	41 42
4.4. 4.5.	CIP	
4.3.	SIP	43
5.	MATERIAL BALANCE	44
6.	ENERGY BALANCE	51
7.	DESIGN AND SIZING	58
8.	PIPING AND INSTRUMENTATION DIAGRAM	71
9.	PLANT LAYOUT AND LOCATION	73
10.	PROCESS DATA SHEET AND ENQUIRY SPEC.	74
11.	COSTING	82
12.	UTILITY SUMMARY	96
13.	CONCLUSION	105
	REFERENCES	107

LIST OF TABLES

CHAPTER	CHAPTER TITLE	
1.	INTRODUCTION	
1.1.	CLASSIFICATION OF S. CEREVISIAE	1
1.1.1.	CHEMICAL COMPOSITION OF S. CEREVISIAE	4
2.	YEAST GROWTH	
2.1.2.	PROCESS WATER PARAMTERS	9
2.1.4.	CHEMICAL COMPOSITION OF MOLASSES	11
2.1.7.	EFFECT OF METAL IONS ON YEAST VIABILITY & VITALITY	13
3.	DESIGN BASIS AND PROCESS DESCRIPTION	
3.1.	DESIGN BASIS	23
4.	FERMENTOR DESIGNING CRITERIA	
4.1.	PRELIMINARY DESIGN CRITERIA	33
4.2.	PARAMETERS AND CONTROL DEVICES	35
4.3.	SEQUENCES APPLICABLE FOR MICROBIAL	36
	FEREMENTOR	
4.3.1.	CLEAN UTILITY PARAMETERS	39
4.3.2.	BLACK UTILITY PARAMETERS	41
7.	DESIGN	
7.3.	EQUIPMENT LIST	63
11.	COSTING AND PAYBACK PERIOD	
11.1.	MOTOR LIST	83
11.2.	IN-HOUSE ITEMS	84
11.3.	VENDOR ITEMS	86
11.4.	PIPING, VALVES AND INSTRUMENTATION	89
11.5.	UTILITIES	89
11.6.	SUMMARY	90
11.8.	ESTIMATED PROJECT INVESTMENT	92

12.	UTILITY SUMMARY	
12.1.1.	QUANTITY OF PROCESS WATER REQUIRED	98
12.2.	STEAM	100
12.3.	INSTRUMENT AIR	101
12.4.	ELECTRICITY (POWER SUPPLY)	101
12.5.	COOLING WATER CAPACITY & COOLING WATER PUMP	102

LIST OF FIGURES

FIGURE	TITLE	PAGE
NO.		NO.
1.1.	YEAST	3
2.3.1.	BUDDING IN YEAST	14
2.3.2.	FISSION	15
3.1.1.	BLOCK DIAGRAM	25
3.2.1.	MOLASSES STORAGE TANK	26
4.1.	PRAJ HIPURITY FERMENTOR	37

NOMENCLATURE

μ: Maximum value of specific growth μ : Viscosity ρ : Liquid density in Kg/m3 CIP: Cleaning in place cP: centi-Poise Da²: Diameter of the agitator (m) Di: Diameter (m) dt: time period of growth of yeast dx: Growth of yeast G.V: Gross volume g: Gravitational constant H/D ratio: Height to diameter ratio hp: horse power Kg/hr.: Kilogram per hour L: Length (m) M³/hr.: Meter cube per hour MS: Mild steel MT: Metric tonne

N : revolution per second of the agitator

NRe: Reynold's no.

P:Power

Pa-S: Pascal-second

PBT: Pitch blade turbine

RPM: Rotation per minute

SIP: Sterilize in place

SS: Stainless steel

Tc: Torque on agitator shaft in Kg-m

Tm : Maximum torque on agitator

W.V.: Working volume

W/W: weight by weight

X_o: initial concentration

Zp: Polar modulus of section of shaft cross section (cm3)

CHAPTER -1

INTRODUCTION

1.1CLASSIFICATION OF SACCHAROMYCES CEREVISIAE

Kingdom	Fungi
Sub Kingdom	Dikarya
Division	Ascomycota
Sub –Division	Saccharomycotina
Class	<u>Saccharomycetes</u>
Sub-class	<u>Saccharomycetidae</u>
Order	<u>Saccharomycetales</u>
Family	<u>Saccharomycetaceae</u>
Genus	<u>Saccharomyces</u>
Species	Saccharomyces Cerevisiae

TABLE NO. 1.1

As members of the fungus kingdom, yeasts are classified as eukaryotic, single-celled microorganisms. Research indicates that yeast has been present for thousands of years, with current recognition of at least 1,500 species. It is estimated that they comprise 1% of all known fungal species.

Yeast's ability to switch from respiration to fermentation makes it a unique microorganism among living organisms. The Crabtree effect is a significant phenomenon to consider when studying yeast. It is observed that even in the presence of oxygen, yeast will opt for the fermentative pathway to metabolise glucose if the glucose concentration is high.

The morphology of yeast cells exhibits variations in shape and size, ranging from oval to round with lengths of approximately 5 to 10 μ m and a breadth of 5 to 7 μ m. The cell wall is a crucial component of cells as it provides structural support and stability, in addition to facilitating cell-to-cell recognition. The cell membrane functions as a permeability barrier for large solutes and regulates the influx of water into the cell. The protective function of the cell wall extends to safeguarding the yeast cell membrane.

The primary constituents of the yeast cell wall are mannan and glucan. The plasma membrane of a yeast cell is composed mainly of lipids and proteins, with a minor proportion of carbohydrates, and serves as a barrier separating the cytoplasm from the external environment. Cellular regulation is a crucial process as it governs the movement of substances into and out of cells. The cellular organelle known as the nucleus is predominantly composed of deoxyribonucleic acid (DNA) and protein, and is enveloped by a nuclear membrane. The visualisation of the nucleus is achievable through the utilisation of phase contrast microscopy. The periplasmic region denotes the interstitial compartment that exists between the cellular wall and the cellular membrane. The cellular membrane. Certain enzymes situated in this location facilitate the process of catalysing sugars, such as sucrose. The disaccharide sucrose undergoes hydrolysis in the periplasmic compartment catalysed by the enzyme invertase, yielding the monosaccharide; fructose and glucose.

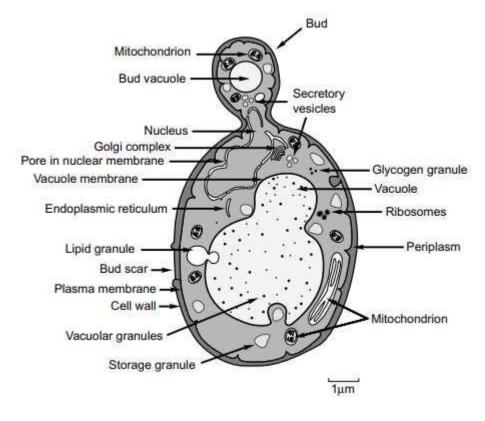


FIGURE NO.1.1.

The visualisation of mitochondria requires the use of electron microscopy. These organelles are composed of two distinct membranes, namely the outer and inner membranes. The inner membrane is folded to form cristae within the mitochondria. The significance of mitochondria lies in the fact that they house the enzymes responsible for the tricarboxylic acid (TCA or Krebs) cycle, electron transport, and oxidative phosphorylation. The presence of self-replicating DNA and protein synthesis systems has been observed in mitochondria. The cytoplasm is the location of ribosomes, which are responsible for protein synthesis. The intramembranous system comprises vacuoles and the endoplasmic reticulum. The morphology of vacuoles undergoes alterations throughout the cell cycle, and they represent the most conspicuous constituent of the cell when observed through a light microscope. Vacuoles are organelles that play a crucial role in storing nutrients and facilitating the breakdown of macromolecules, including proteins. High concentrations of glycogen under the light microscope can be achieved by staining the cells with iodine.

A yeast cell consists of 75% water and 25% dry matter.

The dry matter consists of:

Carbohydrates	18-44%
Proteins	36-60%
Nucleic acid	4-8%
Lipids	4-7%
Inorganic matter	6-10%
Phosphorous	1-3%
Potassium	1-3%
Sulphur	0.4%
Vitamins	Trace amounts

TABLE NO. 1.1.1. CHEMICAL COMPOSITON OF <u>S. CEREVISIAE</u>

Elemental analysis of 100g Baker's yeast would yield the following empirical formula:

 $C_{47}H_{6.3}O_{33}N_8P_{1.2}SALTS_{4.5}\\$

1.2. INDUSTRIAL BACKGROUND OF SACCHAROMYCES CEREVISIAE

The use of microorganisms in food processing has been a centuries-old practise, dating back to ancient times. This includes the use of microorganisms in winemaking, beer manufacturing, bread making, and food preservation, among other applications. Interestingly, these practises were implemented prior to the discovery of germs by civilization. The utilisation of yeast in bread-making dates back to approximately 4,000 years ago in Ancient Egypt. Baker's yeast is a widely used type of yeast that is utilised for the purpose of leavening bread on a global scale. Yeasts are a type of unicellular eukaryotic microorganisms that are classified within the kingdom of Fungi. Various applications of fungi are dependent on their origin of isolation. Various sources have been utilised to isolate them, including leaves, flowers, sweet fruits, fruit and berry peels (e.g. grapes, apples, or peaches), grains, fungi, trees, insect dung, and soil exudates. Saccharomyces cerevisiae is a commonly utilised strain of yeast in commercial baking for the production of bread. The yeast products analysed in this research contain approximately 5% lactic bacteria, which have a crucial function in the development of bread taste. Baker's yeast production has significantly increased in the first decade of the twenty-first century, with an annual output of 2.3 million metric tonnes, highlighting its substantial market share. The bioprocess of producing baker's yeast (Saccharomyces cerevisiae) has a long history in commercial production and remains a critical process for the bakery and alcohol industries. India is the second-largest sugarcane grower in the world, following Brazil. According to research, sugarcane production utilises 21% of India's agricultural land. India's top sugarcane and sugar producing states include Maharashtra, Bihar, Haryana, Gujarat, and Tamil Nadu. Sugar mills generate a significant amount of by-products, including cane molasses. Research has been conducted to explore ways of reducing manufacturing costs and utilising more affordable basic components in the formulation of growth media because of the expensive nature of yeast. Diluted cane molasses supplemented with ammonia and other nutrients was determined to be the most effective substrate for this particular application. The feedstock commonly used for bioethanol production has a total dissolved concentration of 80 BriX. Molasses is a viable raw material for ethanol production due to its affordability and accessibility. As a non-crystallisable residue resulting from sucrose purification, molasses does not necessitate starch hydrolysis.

Additionally, molasses is already used in ethanol production, further highlighting its potential as a valuable resource. The utilisation of yeast biomass is commonly observed in animal feed and human nutrition as a protein supplement for both humans and animals. Saccharomyces cerevisiae and S. uvarum are widely studied strains used as sources of single-cell protein. The process of producing yeast biomass for baker's yeast production involves propagating cells from pure culture agar slants to bioreactors of increasing capacity until the final bioreactor volume is achieved. This method is based on the industrial process concept. The primary objective of industrial production is to efficiently convert sugar input into yeast biomass, particularly during the later stages when the volume of biomass is substantial. This is a fundamental principle of the process.

1.2.1. INDUSTRIAL APPLICATION OF S. CEREVISIAE

1. Pharmaceutical industry: S. cerevisiae has become a popular model organism for pharmaceutical research and drug discovery. It is used in the development of vaccines, therapeutic proteins, and gene therapies.

2. Bio research: S. cerevisiae is extensively used in genetic research due to its wellcharacterized genome and ease of genetic manipulation. It is used in studies of gene expression, DNA repair mechanisms, and cell cycle regulation.

3. Environmental technologies: S. cerevisiae is used in environmental biotechnology for the treatment of wastewater, particularly for the removal of heavy metals and organic pollutants. It is also used in bioremediation processes to clean up contaminated soils and water bodies.

4. Biomedical research: S. cerevisiae is used as a model organism in biomedical research for the study of aging, neurodegenerative diseases, and cancer. It has been used to identify genes that affect lifespan, to investigate the mechanisms of Alzheimer's disease, and to screen for potential anticancer drugs.

5. Food industry: S. cerevisiae is used extensively in the food industry for the production of bread, beer, wine, and other fermented foods. It is used to leaven bread dough, to ferment beer and wine, and to produce cheese and other dairy products.

6. Beverage industry: S. cerevisiae is also used in the beverage industry for the production of non-alcoholic beverages such as kombucha and kefir. It is used to ferment the sugars in the beverage, producing a tangy, slightly effervescent drink.

7. Wastewater treatment: S. cerevisiae is used in the treatment of wastewater to remove nutrients such as nitrogen and phosphorus, which can lead to eutrophication and other environmental problems. It is also used to break down organic matter, reducing the biochemical oxygen demand (BOD) of the wastewater.

8. Production of Biofuels: S. cerevisiae can be used in the production of biofuels, such as ethanol and butanol, through fermentation of various carbon sources, including lignocellulosic biomass, agricultural residues, and food waste. This application is of particular interest due to the increasing demand for renewable energy sources and the need to reduce greenhouse gas emissions.

9. Nutritional Supplements: S. cerevisiae is used as a source of various vitamins and minerals, including B vitamins, iron, and zinc. It is commonly used in the production of nutritional supplements and functional foods, as it is a rich source of these essential nutrients.

10. Bioremediation: S. cerevisiae has the ability to remove heavy metals and other toxic pollutants from contaminated soil and water through a process known as bioremediation. This application has significant potential in cleaning up industrial and agricultural waste sites, as well as in mitigating the environmental impacts of mining and other extractive industries.

CHAPTER -2

YEAST GROWTH

2.1 Yeast is a unicellular organism that requires specific nutrients to support its growth and metabolism. These requirements include:

1. Water: Yeast cells need water to carry out their metabolic activities.

2. *Carbon source*: Yeast cells use fermentable carbohydrates as an energy source for growth and reproduction.

3. *Oxygen/Lipids:* Yeast cells require oxygen and lipids for membrane biosynthesis. If oxygen is present, yeast can synthesize its own lipids.

4. *Nitrogen source:* Yeast cells need a source of nitrogen, such as amino acids, peptides, or ammonia, for growth and enzyme synthesis.

5. *Vitamins:* Yeast cells require vitamins, including B-complex vitamins, for proper growth and metabolism.

6. *Minerals:* Yeast cells require minerals, such as magnesium, potassium, and zinc, for various metabolic processes.

7. *Inorganic ions:* Yeast cells require inorganic ions, such as phosphate and sulfate, for DNA synthesis and other essential cellular processes.

2.1.1 Vitamins:

Bakers' yeast requires biotin for growth, and compressed yeast contains about 0.75 to 2.5 ppm of this vitamin (dry weight basis). Cane molasses supplies ample amounts of biotin (0.5 to 0.8 ppm); beet molasses does not (0.01 to 0.02 ppm). Therefore, at least 20% of cane molasses has to be blended with beet molasses in the preparation of the feed wort, or the feed has to be supplemented with synthetic biotin.

8

At current prices for biotin such additions are economically feasible. If urea is used as a source of nitrogen, higher amounts of biotin are required.

Bakers' yeast will adapt to the absence or a deficiency of pantothenate and inositol, but these vitamins are required for optimum growth. They are generally present in sufficient quantities in molasses.

2.1.2. Water:

Yeast, like all living organisms, requires water for growth and development. Water is an essential component of the yeast's metabolic processes, as it is necessary for the proper dissolution of nutrients and sugars that yeast utilizes for energy. The quality of water used for yeast cultivation is critical to yeast growth and fermentation performance. Ideally, the water should be free from impurities, such as minerals, organic matter, and microbiological contaminants. Any impurities in the water can negatively affect the growth and reproduction of yeast, resulting in suboptimal fermentation performance and reduced product quality. In addition to water quality, the pH and temperature of the water are crucial factors that impact yeast growth. Most yeast strains thrive in an acidic environment, with an ideal pH range of 4.5-5.5. The temperature of the water is also important, with most yeast strains growing best at temperatures between 20-30°C (68-86°F).

2.1.3. Nitrogen :

Nitrogen is an essential macronutrient for yeast growth and metabolism. It is required for the synthesis of amino acids, nucleotides, and other important cellular components. Yeast can utilize a variety of nitrogen sources, including ammonium ions, amino acids, and peptides, which are transported into the cell by specialized transporters. The amount and quality of available nitrogen can significantly affect yeast growth and fermentation performance. Inadequate nitrogen levels can result in poor yeast growth, slow or incomplete fermentation, and the production of undesirable flavors and aromas, such as sulfur compounds, acetic acid, and ethyl acetate. Yeast strains can have different nitrogen requirements, with some requiring higher levels of nitrogen than others. Nitrogen requirements can also vary depending on the specific fermentation conditions, such as temperature, pH, and the presence of other nutrients.

To ensure optimal yeast growth and fermentation performance, it is important to provide adequate levels of nitrogen, either through the use of nitrogen-rich ingredients or by adding nitrogen supplements such as diammonium phosphate (DAP) or yeast extract. Diammonium phosphate (DAP) is a common nitrogen supplement used in winemaking and brewing. It provides both nitrogen and phosphorus, which are both essential nutrients for yeast growth. Yeast extract, on the other hand, is a complex mixture of nutrients, including nitrogen, vitamins, and minerals, and can be used to supplement nitrogen in yeast growth media. The nitrogen content of baker's yeast ranges from 6-9%. The optimal concentration is determined by an estimate of the desirable properties. Higher nitrogen levels usually result in more active but less stable yeast, which applies to both compressed and active dry yeasts. The anticipated total yield can be used to calculate the amount of nitrogen to be provided during yeast development.

2.1.4. Oxygen and aeration requirements:

The objective of a baker's yeast plant is to optimise yeast growth while minimising the occurrence of alcoholic fermentation. In order to optimise yeast production, a number of requirements must be fulfilled. Research suggests that in order to avoid catabolite repression, it is necessary to maintain low sugar levels in the fermentor during the fermentation process.

This can be achieved by implementing a carbohydrate-limiting approach. The formation of 1 g of dry yeast mass necessitates the use of 1 g of oxygen. Aeration is the process by which oxygen is introduced into the fermentor. The aeration rate used in this process range is commonly from 0.5VVM to 2VVM.

The role of oxygen as a crucial nutrient in aerobic fermentations has been extensively studied and documented. Compared to other nutrients, supplying it can be challenging due to its limited solubility in water. The provision of oxygen in small shake flasks can be achieved through mechanical agitation of the flask. However, in the case of large-scale commercial fermentors, the supply of oxygen must be facilitated by spargers operating under pressure. In some instances, mechanical stirrers may also be employed to supplement the oxygen supply. The efficiency of a system of transfer of O_2 from air into the fermentor is expressed as the volumetric oxygen transfer coefficient KLa (hr⁻¹), where KL is oxygen transfer coefficient (m/hr.) and 'a' is the interfacial area between the air bubbles and the liquid per unit volume of liquid.

In practice, the rate of oxygen transfer in a given fermentation system and with a given medium is expressed as the mill moles of O_2 transferred per liter per hour. Based on the knowledge it takes 2 g of O_2 to produce 1 g yeast solids. For fermentors without agitation, that is, for simple sparging with air, the rate of oxygen utilization may not exceed 20% of the oxygen.

2.1.5. Carbon source:

Molasses made from sugar cane are most commonly consumed in subtropical regions where sugar cane is cultivated or in locations to where it can be easily transported by sea to other sources of sugar. Molasses made from sugarcane are a common source of raw materials for fermentation in India. This is due to the vast quantities of sugarcane that are produced in the states of Maharashtra, Gujarat, Uttar Pradesh, Haryana, Bihar, Karnataka, and Tamil Nadu, as well as Andhra Pradesh and Andhra Pradesh.

Molasses' value as a food source is a significant factor in determining its market price. The most common application for it in the fermentation sector is in the manufacturing of baker's yeast. Molasses made from sugar cane is now the most cost-effective source of sugars that can be fermented.

Composition	Cane Molasses
Fermentable sugar % (w/w)	38-56
F/N ratio	0.8-2
Volatile acidity (ppm)	3500-7500
Caramel (OD @350nm)	0.25-0.5
Butyric acid (ppm)	10-400
F.A.N. (ppm)	500-1500
Sludge content (% w/w)	2-3
Total viable count (cfu/gm)	100-10,000

Composition of molasses (as percent of total solids)

TABLE NO.2.1.4

Cane molasses is shipped at 80-85 Brix. They have a sugar content that varies between 45% and 55% by weight. As a thumb rule, one can assume that 1000g of molasses will produce 250g of yeast solids.

2.1.6. Minerals:

Molasses is severely low in phosphorus, which is commonly represented as P_2O_5 . In general, the concentration of P_2O_5 should be one-third that of nitrogen, or between 2% and 3%. Phosphorus can be given as phosphoric acid or its salts, such as ammonium phosphate. Although molasses contains enough potassium, calcium, and sulphur, some magnesium must be added to the growth medium. The presence of several trace elements is required for yeast development. These have been challenging to establish. The existence of a trace metal in yeast does not prove that it is necessary.

2.1.7. Inorganic ions:

1. Yeast requires certain inorganic ions for its growth and fermentation processes.

2. The specific requirements for these ions can vary based on several factors, including the yeast strain being used, the composition of the growth media, and interactions with other constituents.

3. Among the important cations required by yeast are zinc, manganese, magnesium, calcium, copper, potassium, and iron. These cations play critical roles in enzyme function, DNA synthesis, and protein synthesis.

4. The availability and concentration of these cations can significantly impact yeast growth and fermentation. Zinc deficiency can lead to reduced yeast growth and ethanol production, while excess copper can be toxic to yeast cells.

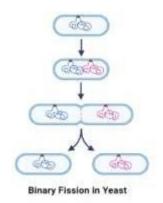
5. Interactions between different cations can affect their availability and uptake by yeast, further emphasizing the importance of maintaining a balanced composition of the growth media.

12

2.1.7. Effects of metal ions on yeast viability and vitality

Metal ion	Effect on yeast	
Calcium (Ca2+)	Amino acid uptake inhibition above 1 mM and growth	
	inhibition above 25 mM. Reduced rate of ethanol	
	production.	
Copper (Cu2+)	Causes changes in the yeast plasma membrane which can	
	lead to the leakage of low molecular weight compounds	
	and disturb the uptake of nutrients.	
Iron (Fe2+)	Fe lowers activity of malate, pyruvate and succinate	
	dehydrogenases.	
Potassium (K+)	Growth inhibition observed above 10 mM with total	
	inhibition at about 2 M.	
	Fermentation rate may be decreased above 4 – 10 mM	
Magnesium	Total inhibition of growth	
(Mg2+)		
Sodium (Na+)	No apparent metabolic role; at high concentrations, specific	
	growth rate is decreased due to the diversion of energy to	
	maintain an electrochemical gradient of Na+ against	
	passive diffusion or facilitated diffusion into the cell.	
Zinc (Zn2+)	Deprivation in S. cerevisiae prevents budding and arrests	
	cells in G1 phase of cell cycle. Excess Zn added to wort	
	inhibits fermentation and yeast growth.	
TABLE NO 217		

TABLE NO. 2.1.7.

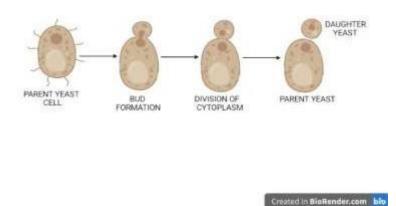

2.2. YEAST REPRODUCTION

Yeasts reproduce asexually either by fission or by budding. Depending on this character they are grouped as fission yeasts, Schizosaccharomyces and budding yeasts, Zygosaccharomyces.

2.2.1. Binary Fission:

Fission yeasts divide into two daughter cells while the parent cell elongates, the nucleus separates into two daughter nuclei, and eventually a transverse partition wall is put down fairly in the middle starting from the periphery to the centre.

After cell division, the resulting daughter cells have the potential to either remain in close proximity and undergo further division, or separate and divide independently.



Created in BioRender.com bio

FIGURE NO.2.3.1

2.2.2.Budding:

According to research, budding yeasts are more prevalent than fission yeasts. During the initial stages of budding, a minute section of the cell wall, typically located in close proximity to the end, undergoes a process of softening. According to some sources, the nucleus of a mother cell undergoes mitotic division. During cell division, one of the daughter nuclei moves into the growing bud, causing it to enlarge until it reaches the same size as the original mother cell. Following cell division, the daughter cell undergoes separation from the mother cell, allowing for the possibility of repeated replication without limit.

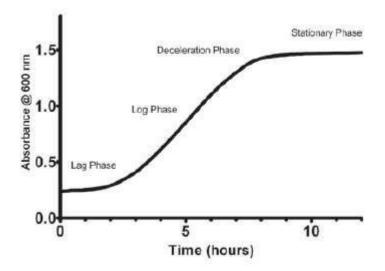
FIGURE NO.2.3.2.

The yeast cell requires energy for three main activities.

<u>1. Chemical energy:</u> to create additional yeast cell components and other complicated biological substances.

2. <u>Transport</u>: The movement of nutrients into and out of cells requires energy.

<u>3. Mechanical energy:</u> In order to move internal structures, cells need energy (such as from budding)


Life Span of Yeast:

The estimation of yeast cell lifespans can be conducted through either the assessment of their replicative potential or the determination of the maximal survival duration of non-dividing cells, also known as chronological lifespan. The study of ageing encompasses two distinct lifespans: the replicative lifespan, which is determined by the total number of cell divisions, and the chronological lifespan, which is determined by the passage of time. These two lifespans are commonly utilised in research to investigate various aspects of the ageing process. This chapter focuses solely on replicative lifespan as it pertains to the budding event and budding patterns. Asymmetric division is a well-documented phenomenon in yeast cells during the process of budding. This process results in the production of daughter cells that possess a full lifespan capacity, originating from mothers.

As a result of cell division, the age of the mother cell is incremented by one, whereas the daughter cell's initial age is established as zero. The replicative lifespan is commonly assessed in experiments by quantifying the total number of bud scars, with an average replicative age of around 30-50 cell divisions.

2.3. BATCH GROWTH OF YEAST

CELL GROWTH PHASES

2.3.1. Lag phase:

In this phase, the yeast undergoes adaptation to its environment and initiates its metabolic processes, including the synthesis of enzymes. During the period of zero growth, there is a significant increase in biochemical activity as the yeast cell adapts to the new environment in the fresh media, following the previous culture conditions. The initial stage leads to in the initial division of the cell.

2.3.2. Acceleration Phase:

During the growth of cells, there is a phase known as the lag phase, which is followed by the acceleration phase before exponential growth begins. The rate of division exhibits a continuous increase. Research indicates that in a brewery environment, the maximum amount of cell multiplication that can occur is typically between 15 to 10-fold, which equates to approximately three generations of cells. It is possible that a small percentage of cells may undergo a fourth generation.

The inability to obtain necessary membrane components is a limiting factor for potential growth. Research has shown that industrial baker's yeast can undergo a 20-fold multiplication when added to well-aerated wort under vigorous aerobic conditions. This is due to the excess of essential lipids generated during the process. The yeast can undergo slightly over four generations under these conditions.

2.3.3. Log phase (exponential growth):

During the log phase of growth, the rate of growth remains constant and reaches its maximum level. During this time, there is a rapid increase in the number of cells through logarithmic cell division. The generation time refers to the duration in which the quantity of cells in a population increases twofold. The generation time ranges from 90 to 120 minutes under ideal conditions. The log phase of yeast can be maintained through the utilisation of 'fed batch' culture conditions, which involves the gradual provision of nutrients in accordance with the yeast's growth. The production of baker's yeast involves the objective of optimising cell mass and minimising ethanol production.

2.3.4. Deceleration phase:

The research indicates that during this phase, the growth rate experiences a decline due to a decrease in nutrients such as carbohydrates and/or an increase in growth inhibitors such as ethanol.

2.3.5. Stationary phase:

During the stationary phase, the population of yeast cells remains stable, indicating a stationary state in terms of the number of viable yeast cells. The balance between the formation of new cells and cell death is a topic of research. During the stationary phase, yeasts are capable of enduring extended periods without any additional nutrients.

2.3.6. Declining phase:

During this phase the death rate of the yeast cells exceeds the birth rate and the total cell number decreases.

When the lag phase is ended the yeast cells propagate unhampered as long as the substrate contains sufficient amounts of all necessary nutrients and the incremental growth of yeast (dx) in the period (dt) can be expressed as:

$$dx = \mu x. dt$$

Here, μ is a constant, called the specific growth rate. As long as μ is constant the differential equation above can be integrated giving, with the initial concentration X_o

$$x = X_o^{ut}$$

In some cases the incremental growth factor H is used, being equal to the ratio between the yeast quantities after 1 h of growth divided by the yeast quantity at the start of the hour:

$$\frac{Kt+1}{Kt} = e^{u} = H$$

Another expression often used is the generation time, i.e. the time it takes for the yeast quantity to double. From the above equation, we get:

$$2 = e^{\mu T}$$
 or $T = (\ln 2)/\mu = 0.693/\mu$

For 'active' yeast production, μ is in the range 0.05-0.25 h⁻¹, and in this range the best yield is obtained as the total amount of carbohydrate in the substrate is used for yeast propagation.

The constant μ is substrate dependent and can be expressed by the Monod equation:

$$\mu = \mu m \frac{s}{K+S}$$

With μ being the maximum value for the specific growth rate, S is the concentration of the growth-inhibiting substrate and K is a constant.

2.4. PHYSIOCHEMICAL ENVIRONMENT AND YEAST GROWTH

2.4.1. Temperature

The impact of temperature on yeast growth is a crucial aspect to consider in research, as it is a significant physical parameter. According to research, industrial baker's yeasts exhibit optimal growth within the temperature range of 28-33°C. The temperature range specified is not suitable for industrial processes involving the production of alcoholic beverages and bio-ethanol. The fermentation processes of cider, beer, white and rosé wine are often conducted at temperatures below their optimal range, typically between 10 °C and 25 °C, in order to improve and maintain their flavour. Studies have shown that biofuel production processes are more effective when conducted at temperatures of 40°C or higher, particularly in cases where fermentation processes involve simultaneous saccharification of lignocellulosic feed stocks.

PHYSIOLOGICAL FUNCTION	EFFECT
Cell viability	At high growth temperature of many
	yeast cells, there is also higher cell death.
Cell morphology	Atypical budding, irregular cell growth
	& increased cell size.
Cell division & Growth	Growth of non-thermotolerant yeast
	inhibited at temperature above
	40°C.Actively dividing cells in S-phase
	are more thermo sensitive as compared to
	resting cells. Heat shock transiently
	arrests cells in G-1 phase of the cell
	cycle.
Plasma membrane	Increased fluidity & reduced
	permeability of essential nutrients.

Effect of high temperature on yeast growth

2.4.2. pH

Yeast has a preference for acidic conditions, with an optimal pH range of 5.0 to 5.2. However, strains used in brewing and distilling are adaptable to a wider pH range of 3.5 to 6.0. During fermentation, yeast releases H+ ions, leading to a decrease in pH of the surrounding medium. Bakers' yeast is capable of withstanding a relatively broad spectrum of hydrogen ion concentrations, and can grow within a pH range of 3.6 to 6, with the ideal range being 4.5 to 5. Maintaining a lower pH helps to minimize the risk of bacterial contamination.

2.4.3. Oxygen availability

Yeast is capable of growing in both aerobic and anaerobic environments, but the presence of oxygen can significantly impact growth rates and metabolism. In aerobic environments with sufficient oxygen, yeast can produce energy more efficiently through oxidative phosphorylation, resulting in faster growth rates and higher biomass yields. In contrast, in anaerobic environments with limited oxygen, yeast must rely on fermentation to generate energy, which can result in slower growth rates and lower biomass yields. Oxygen availability can also affect the production of secondary metabolites, such as ethanol, which is an important product of yeast fermentation.

2.4.4. Osmotic stress

Yeast is capable of growing in high-sugar environments due to its ability to regulate osmotic balance. However, excessive osmotic stress can lead to inhibition of yeast growth and cell death. Yeast cells can respond to osmotic stress by accumulating intracellular solutes, such as glycerol, to maintain osmotic balance. However, prolonged exposure to high-sugar environments can cause glycerol accumulation to plateau, leading to increased osmotic stress and decreased growth rates. Other factors, such as salt concentration, can also affect osmotic stress and impact yeast growth.

CHAPTER -3

DESIGN BASIS AND PROCESS DESCRIPTION

PROJECT	:	Baker's Yeast Plant
LOCATION	:	Pune

3.1. DESIGN BASIS

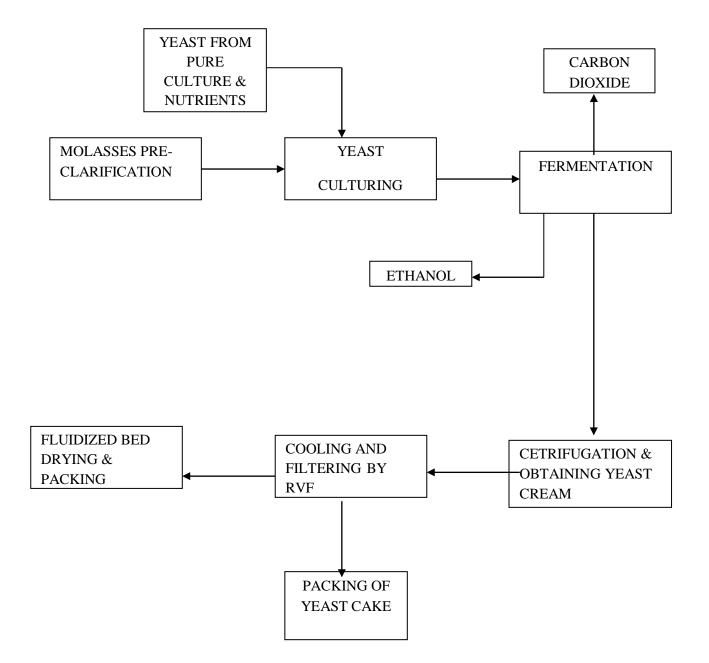
Project Design Basis (PDB) refers to the set of requirements, specifications, and criteria that define the objectives and scope of a project. The PDB is typically developed during the initial phases of project planning and serves as the foundation for the design and execution of the project.

The PDB outlines the key parameters that must be considered when designing and executing the project, including:

1. Technical requirements: This includes the specific goals of the project, the design specifications for the equipment and facilities, and the performance criteria that must be met.

2. Operating parameters: This includes the expected operating conditions, such as temperature, pressure, and flow rates, as well as the expected product quality and production capacity.

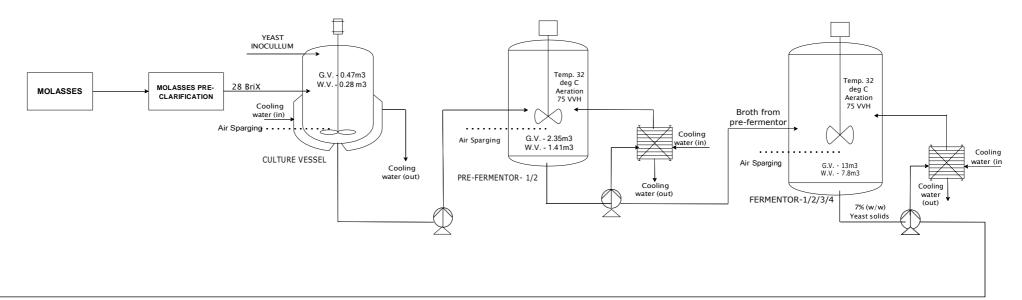
3. Safety and environmental considerations: This includes the safety and environmental requirements that must be met, such as the use of proper safety equipment and protocols, compliance with regulatory requirements, and the minimization of environmental impacts.

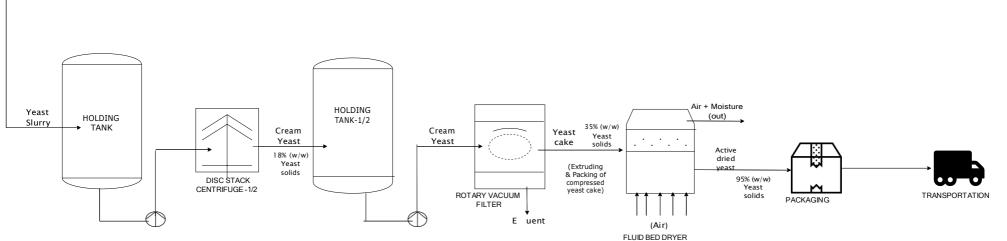

1	Plant Capacity Details	No. of working days- 300 (1410 TPA on compressed
		yeast basis)
		Production of compressed cake - 2MT/Day
		Production of active dried yeast - 1MT/Day
2	Input Specification	Molasses – 45% FS, Brix- 80
3	Output Specification	Compressed Yeast (Wet Cake)-Total Solids 35% w/w
		ADY-Total Solids 95% w/w
4	Yield	0.55 Kg of Yeast (Dry Basis) per kg of fermentable sugar
5	Sections	Molasses Pre-treatment System
		treated Molasses Storage System
		Seed Preparation Section
		Fermentation Section
		Centrifuge
		Filter Press
		Drying
		Wet Cake Storage Section
		ADY Storage Section
		CIP
		SIP

6	Molasses pre-	Sludge Content in molasses: 6% total w/w
	treatment	Sugar loss in molasses clarification system: 2.5%
		Dilution of molasses: Up to 28Brix
		pH Correction:4.5
		Heating of molasses: 75 °C
		Sterilization of molasses:
		Sterilization Temperature- 120 °C
		Flashing Temp90 Deg. C
7	Treated molasses	Molasses collection tank No1
	Storage System	Residence time- 3hrs.

8	Seed preparation	Fed Batch System Key Equipment: Broth Mixers, Culture Vessels, Seed		
		Preparation Tank, Plate heat exchanger coolers		
		Aeration Ratio: 75VVH		
9	Centrifuge	Continuous- Disc Stack		
		Yeast Centrifuge no. in series. – 2		
		Yeast Cream con. Outlet of centrifuge- 35% w/w total solids		
10	Fermentation Section	Fed batch System		
10	i officiation Section			
		Key Equipment: Slurry Tanks, Coolers, Fermentors		
		Aeration Ratio: 75VVH		
		Yeast conc. In fermented wash- 7% w/w		
		Pre-fermentor Cycle – 12 hrs.		
	Filter Press	12 hr./day Operation		
		Type: RVF (Rotary Vacuum Filter)		
		35% w/w compressed yeast cake		
	Drying	One extruder is present before drying		
		Dryer type:		
		Fluidized Bed Dryer		
		95% w/w active dried yeast		
	Compressed Yeast (Wet	4 Days Storage		
	Cake) Storage Section	Storage Temperature- 4 Deg. C		
		Yeast solid conc. in cake = 35% w/w		
	CIP	3 steps CIP		
	SIP	As and when required		

TABLE 3.1. DESIGN BASIS


BLOCK DIAGRAM



3.1.1.

PROCESS FLOW DIAGRAM

3.2. PROCESS DESCRIPTION

3.2.1. Molasses Handling and Storage

The raw molasses in yeast factories is stored in large storage tanks and no preservative is required due to higher solids concentration (80 BriX). It is common to have enough stock to cover several months of production. However, it is critical that the temperature of the molasses in the tanks not rise too high. Molasses have a typical viscosity of 40,000-50,000CP (centipoise). For such higher viscosity positive displacement pumps like gear type, screw type etc. are used.

Fig no. 3.2.1. Molasses Storage tank

3.2.2. Molasses pre-clarification

Raw molasses is pumped from collecting vessel via pump into heating vessel. Before entering heating vessel raw molasses is passing from a static mixer where it is diluted with hot sweet water from sludge preparation.

The mixture is heated up by live steam to about 90 degree C and is flowing into sedimentation vessel.

Most of the sludge is sedimented in this tank and extracted to sludge dilution tank. Sedimented molasses is flowing into intermediate tank and pumped through the plate cooler to fermentation. Hot water from distillation is fed with a pump into sludge dilution tank.

Also Diluted Sulphuric acid is fed into this tank. Sludge solution flows into sludge sedimentation vessel and sedimented sludge is extracted to drain.

Clear sweet water from sludge sedimentation vessel is flowing into intermediate tank and is pumped by pump into static mixer for molasses dilution.

BriX Concentration requirement for 7% (w/w) yeast solids;

If 2 kg Fermentable sugar yields 1 Kg Yeast,

Then in another words, for 1 kg Yeast production 2 Kg fermentable sugar (FS) will be required.

For 7 % (w/w) Yeast solids 14% (w/w) Fermentable sugar will be required.

 $\eta = 85\%$ (Pump efficiency)

$$7 \% (w/w) = \frac{14}{0.85}$$

= 16.47% FS

If molasses is of 80 BriX

And from 80 BriX 45% FS is being obtained.

$$=\frac{80}{45}$$
 * 16.47

= 28 BriX is required

3.2.3. Fermentation

Pure stock cultures are maintained in a laboratory, a small flask of sterile fresh culture is prepared after one or more sub cultivations. This sample is then inoculated into the first pure culture tank known as pure culture vessel.

The pure yeast culture is mixed with the clarified molasses in the culture vessel where mixing of the substrate is done. Large amount of heat is produced during aerobic fermentation of yeast so the culture vessel is jacketed to regulate the heat and temperature.

With the help of a gear pump the broth is transferred to the pre-fermentor, the temperature is regulated at 32 degree C and aeration is 75VVH. The pH is adjusted to 4.5 with automated supply of Diluted Sulphuric acid at regular intervals. The media is fermented for 12 hours.

The two tanks mentioned above (culture vessel and pre-fermentor) are normally placed in a separate room, where all precautions can be taken to avoid microbial contamination, and the substrates (i.e. the water and the air) can be sterilized before use.

The broth from pre-fermentor is then transported to the fermentor for 12 hours where substrate is being fed continuously. The heat generated from fermentation is removed by recirculating the fermented mash through external heat plate exchanger.

A major part of fermented mash leaving the main fermentor is fed to nozzle separators and the yeast is removed. 7% (w/w) yeast cell mass is being produced.

Baker's yeast fermentation produces 3.5–4.4 kcal/g of produced yeast solids, which is a lot of heat. In order to achieve the necessary extensive cooling, jacketed fermentors or plate heat exchangers are typically used. The stirring speed of Pitch blade turbine agitator is taken as 200rpm, aeration rate is 0.5-2 VVM.

3.2.4. Centrifugation and washing of yeast cells

After the yeast is fermented and 7% (w/w) yeast cell mass is produced, the broth is then pumped out to the holding tank where it is kept for 8 hours.

From holding tank the solid yeast cell mass is then transferred to Centrifuge -1 (Disc stack centrifuge) where centrifugation occurs and the yeast solid concentration is increased from 7 % (w/w) to 18% (w/w). It is then transferred to another holding tank.

The colour of yeast is still in dark brown colour. To make the colour lighter according to market standards, the yeast solid is diluted back to 7% (w/w) by adding potable water to it.

The yeast solid cell mass is again transferred to a centrifuge -2 where centrifugation occurs and the yeast solid concentration is increased from 7%(w/w) to 18% (w/w).

The colour obtained now is finally beige in colour.

3.2.5. Filtration (by Rotary Vacuum filter)

After centrifugation of yeast is done and cream is separated from water, the cream is passed through a Rotary vacuum filter with the help of a pump. The filter consists of a rotating, hollow, segmented drum covered with a fabric or metal filter which is partially immersed in a trough containing the broth to be filtered. The yeast slurry is fed on to the outside of the revolving drum and vacuum pressure is applied internally so that the filtrate is drawn through the filter, into the drum and finally to a collecting vessel. The filtrate (water) that passes through filter cloth is collected through collection pipes and sent to effluent treatment plant.

The final concentration of yeast solids present after filtration was 35% (w/w).

3.2.6. Extrusion and Cake packaging

After the Yeast is filtered, the shape is not defined and it is sloppy in nature. The yeast cake is mixed with oils, emulsifiers like Sorbitan Monostereate (SMS) in 1 %(w/v) ratio, and a small amount of water, then compressed and extruded into blocks and packed in 1kg- or 0.5-kg packages for bakers, or in smaller units of 50 g, 100 g or similar for home-baking and, eventually, the yeast may be granulated and packaged in 25-kg bags for large-scale consumers.

The compressed yeast cake is packed in bags which have doesn't have permeability to the carbon dioxide and air as yeast cake becomes foul on being exposed to air and its quality and taste will degrade. The yeast cake is stored at temperature ranging from 4-8 degree C. The compressed yeast must be kept cold during production, packaging, storage and shipping as it is highly perishable condiment and starts to spoil at high temperatures. The yeast count in the compressed yeast typically ranges from 6 to 13×10^9 cells/mL at 33% total solids.

It has a shelf life of about 4 to 6 weeks under storage conditions generally referred to as cool and dry.

<u>3.2.6.1.</u> Stability of Compressed yeast:

At 5° to 8°C in the refrigerator, compressed yeast has a good level of storage stability. Stability is somewhat influenced by processing conditions; for example, storage stability is favoured by yeast with low nitrogen contents and a low percentage of budding cells (less than 5 to 10%).

Over the course of a week, gassing activity typically declines by 3 to 5%. Moisture loss during storage is possible. A small rate of endogenous carbohydrate respiration results in a relative rise in the nitrogen content of stored yeast and a slight drop in this fraction.

Compared to yeast with nitrogen levels of 7% or below, compressed yeast with nitrogen concentrations exceeding 8% (based on solids) has a shorter shelf life. A liquid yeast cream could be successfully stored at 4 to 6 degrees Celsius for 10 days and at 20 degrees Celsius for one day. The activity of Finnish compressed yeast did not decrease during storage at 23°C, but it drastically decreased after two weeks.

Approximately one-third of the gassing activity was lost after two days of storage at 35°C. Maltose fermentations typically result in a larger loss of activity than those involving the fermentation of glucose, fructose, or sucrose.

3.2.7. Fluidized Bed dryer

After obtaining compressed yeast from centrifugation, the yeast cake blocks are then passed through an extruder and yeast 'noodles' are obtained. The noodles are then placed in a sieve, covered and shaken to break them.

The strained yeast obtained is in granular form. The drying process consists of three phases. In the first phase dryer is loaded with granulated material to be dried. Then drying temperature is increased to initiate constant drying phase.

3.2.7.1. Active Dried yeast packaging

The vast majority of batch ethanol plants rely on active dry yeast. Additionally, it is used to supplement fermentors and establish continuous plants. This yeast is dried at 45 to 55 °C in an environment of inert gas, often nitrogen, while under partial vacuum. The lengthy shelf life of dried yeast (92–96% dry weight) eliminates the need for cold storage, though it can be chilled for improved protection.

A viable cell density of 2.2×10^{10} cells/g is typical for active dry yeast.

The dry yeast is normally packaged in 10g, 50g, 100g, and 500g packs of laminated aluminium foil in vacuum or inert gas. If CO_2 is used this gas will be adsorbed to the yeast particles and thereby cause a vacuum.

The baker's active dried yeast, Saccharomyces cerevisiae is a granular product and the drying operation reduces the moisture content from 65–70% to 4–6%. The yeast has a shelf life of 1 year.

CHAPTER -4

4.1. FERMENTOR DESIGN CRITERIA

The basic design of any equipment in biopharmaceutical or pharmaceutical industry should be considered as below:

<u>4.1.1. Sterilizability</u> – To destroy live bacteria or microorganism present as contaminant in given equipment, it is done by bringing to a high temperature of steam, dry heat or boiling liquid and also ensuring that no microbes other the production organism is to enter the equipment after it has been sterilized. Generally, the shape of double mechanical seal present is similar to the petri plate structure, which resembles swan neck like structure, it seals the equipment in such a way that there is no outlet for the contaminating agents to enter.

<u>4.1.2. Cleanability-</u> It is the ability to be cleaned easily without damage. The process fluid present in the system cannot introduce any unacceptable material to any equipment.

<u>4.1.3.</u> <u>Controllability-</u> The vessels and the subsystem is designed in such in a way which makes it possible to control the environmental variables within operative range required. That means the mechanical harmony with control system.

<u>4.1.4.</u> <u>Typical Fermented Broth consists of the following:</u>

Cells (live and dead) Peptides Nucleic Acids Proteins Unutilized Carbon sources Cellular Enzymes Lipids etc.

General	Scope applies to components and systems that are in contact			
	with the product, raw materials or product intermediate			
	during manufacturing.			
Design	• Process compatibility, CIP,SIP, drain ability and dead leg			
Design				
	criteria			
	• Design Conformance testing to be performed during FAT			
	& SAT			
Materials	Materials Selection to maintain purity and integrity of the			
	product/process Materials fluid			
Dimension and tolerances	Pressure ratings, wall thickness, dimensions and tolerance			
	as per ASME BPE 2016 guideline.			
Process Instrumentation	• Accuracy and response time to be matched with the			
	process requirements.			
	• Designed in such a way that a failure will not cause			
	contamination hazards to the process and environment			
Sealing components	Design and construction to ensure process compatibility,			
	permeation resistance, surface finish, particle generation			
	and lubrication requirements.			
Process contact surface	All process contact surface to be electro polished and			
finishes	passivated. All SS 316L process contact surface shall be			
	electro polished to RA \leq 0.38 μ m.			
Certification	• MOC, Surface finish, sizing, calibration, performance,			
	drawings, catalogues. Vendor to submit QAP along with			
	DQ for approval			

TABLE NO. 4.1. PRELIMINARY DESIGN CRITERIA

A fermentor is a vessel that provides a controlled environment for the growth and maintenance of microorganisms or cells. This technology has been utilized in various fields, including pharmaceuticals, food and beverage production, bioremediation, and bioprocessing. Fermentors come in various sizes and designs, ranging from small laboratory-scale systems to large-scale industrial systems, and are typically constructed of stainless steel or glass. The key features of a fermentor include temperature and pH control systems, agitation systems, aeration and gas control systems, sampling ports, and monitoring and control systems. The temperature control system ensures that the temperature inside the fermentor is maintained at a specific level for optimal growth and metabolism of the microorganisms. Similarly, the pH control system maintains the pH level of the fermentation medium, which is critical for the growth and metabolism of microorganisms. The agitation system helps to distribute oxygen and nutrients evenly throughout the fermentation medium, and prevent the formation of dead zones. The aeration and gas control system ensures that oxygen is supplied to the microorganisms in the appropriate concentration. The sampling port and monitoring and control systems enable the measurement and adjustment of various parameters, such as cell density, product concentration, and nutrient levels, to ensure optimal fermentation conditions.

4.2. INPUT PARAMETERES:

- <u>Working Volume</u> It is defined as 75% of total amount of space occupied by the 3D Structure of the fermentor as determined by the principles of geometry and it is expressed in the terms of litres. The percentage of space is generally determined by the aeration rate and foaming tendency of the media. The working volume of yeast fermentor is generally in the ratio of 60:40, i.e. 60% space is occupied and rest 40% is left for aeration.
- 2. <u>Geometric Volume-</u> It is defined as total space occupied by 3D structure of the fermentor as expressed by principles of geometry and expressed in terms of litre.
- 3. <u>H/D ratio-</u> For a microbial fermentor general ratio of the fermentor is 2:1, 2.5:1 as aeration requirement is very high.
- 4. Other Parameters- Vessel Diameter, Tan height

FERMENTOR V/S FERMENTER

A fermentor is equipment in which fermentation takes place whereas; a fermenter is a catalyst which helps to initiate the fermentation process. A fermenter is generally of microbial origin like Saccharomyces cerevisiae etc.

PARAMETERS AND CONTROL DEVICES

PARAMETERS	CONTROL DEVICES	
Temperature	• Heat Exchangers (in some cases)	
	• Temperature sensor	
	• Circulation pump (in some cases)	
	• Valves	
рН	•pH sensor	
	• Acid & alkali dosing pump	
	Acid and alkali dosing bottle	
	• Valves	
Pressure	Pressure sensor	
	Gas Inlet & Outlet valves	
Conductivity	Conductivity sensor	
Level	• Level sensor (Load Cells, Differential Pressure Transmitter, Radar	
	Level sensor)	
	Transfer Out Valves & Transfer In Valves	
Agitator RPM /	• Motor	
Mixer RPM	Variable Frequency Drive	

TABLE NO. 4.2.

Sequences applicable for Microbial Fermentor

SEQUENCES	PURPOSE		
Valve Test	To ensure proper functioning of valves		
Pressure Hold Test	To ensure that fermentor is a leak-free device		
Mechanical Seal Sterilization	To sterilize mechanical seal and keep it pressurized for next		
	steps		
Inlet air filter sterilization	To sterilize inlet air filter and keep it ready for next steps		
Exhaust air filter sterilization	To sterilize exhaust air filter and keep it ready for next steps		
Empty Vessel Sterilization	To sterilize the fermentor in empty condition, by direct		
	passage of clean steam		
Full Vessel Sterilization	To sterilize the fermentor along with media, by indirect		
	passage of plant steam in jacket		
Independent Sterilization of	To ensure that all transfer lines have been sterilized and are		
transfer lines	ready for transfer		
Calibration	Calibration of sensors [pH, Level, DO]		
Inoculation	To inoculate seed culture		
Fermentation	Control of Temperature, pH, Dissolved oxygen, Agitator		
	RPM , Foam, Pressure , Gas flow rate, Level, such that it is		
	optimal for growth of microorganisms.		
Sampling	To sterilize sampling line and withdraw sample in sterile		
	condition		
Harvesting	To sterilize harvest line and withdraw broth in sterile		
	condition.		
Cleaning-In-Place (CIP)	To ensure proper cleaning of equipment and to avoid any		
	carryover of previous batch.		

TABLE NO. 4.3.

Fig 4.1. A typical 100 liter fermentor by Praj HiPurity Systems

UTILLITIES

In industrial processes, utilities refer to services or systems that support the operation of the plant or equipment. There are two main categories of utilities: clean utilities and black utilities.

Clean utilities are systems that come into direct contact with the product or process and must be free of any contamination. These utilities include purified water, steam, compressed air, nitrogen, and other gases used in the production process.

Black utilities, on the other hand, are systems that do not come into direct contact with the product or process and do not need to be free of contamination. These utilities include HVAC systems, electrical power, lighting, and wastewater treatment.

4.3.1. CLEAN UTILITIES

- Clean Steam (CS) Used for empty vessel sterilization (ESIP) and other online on line sterilization during the process like transfer line sterilization and sampling line sterilization.
- Water for injection (WFI) used during dilution of media and final rinse of Cleaning in place (CIP).
- Purified Water (PW) Used in different cycles of CIP.
- Filtered Process air Used for maintaining Dissolved Oxygen (DO) concentration in fermentor and pressurized vessels.
- Filtered Gases Used in fermentor of various operations like pH maintenance, DO calibration etc.

CLEAN UTILITY PARAMETERS

UTILITIES	PURPOSE	TEMP.	PRESSURE	VELOCITY
Pure Steam	ESIP / Independent SIP	133.54 ° C	2 bar (g)	24 to 30 m / sec
CIP Solution	Cleaning of equipment	80 ° C to 90 ° C	2 bar (g)	2 to 3 m / sec
Purified Water	Cleaning of equipment	30 ° C	2 bar (g)	2 to 3 m / sec
WFI (Water for Injection)	CIP / Batch preparation	85 ° C to 90 ° C	2 bar (g)	2 to 3 m / sec
Process Air	Aeration of batch / Pressurization / Drying / Bone drying	30 ° C	2 bar (g)	16 to 20 m / sec
Instrument Air	Operating pneumatic valves	30 ° C	6 bar (g)	16 to 20 m / sec
Nitrogen	Pressurization / Drying / Gassing	30 ° C	2 bar (g)	16 to 20 m / sec
Oxygen	Pressurization / Drying / Gassing	30 ° C	2 bar (g)	16 to 20 m / sec
Carbon Dioxide	Pressurization / Drying / Gassing	30 ° C	2 bar (g)	16 to 20 m / sec

TABLE NO. 4.3.1.

4.3.2. BLACK UTILITIES

- Plant Steam (PS) Used for full vessel Sterilization (FSIP) and temperature maintenance during process or CIP.
- Chilled Water (CHW) Used for cooling after ESIP or FSIP. These are also used for temperature maintenance purpose.
- Cooling water (COW) Used for cooling after ESIP or FSIP. These are also used for temperature maintenance purpose.
- Chilled glycol (CHG) Used for cooling after ESIP or FSIP. These are also used for temperature maintenance purpose.
- Chilled Brine (CHB) Used for cooling after ESIP or FSIP. These are also used for temperature maintenance purpose.
- Hot Water (HW) Used for temperature maintenance during the process.
- Superheated Water (SHW) Used for full vessel sterilization in case plant steam is not available. This can also be used as heating mediums in heat exchanger and maintaining the temperature of the vessel by passing through the jacket.
- Raw Water (RW) Used for generation of soft water and in kill tank systems for cooling after inactivation.
- Soft Water (SW) Used for purified water generation and for cleaning in kill tank systems.

BLACK UTILITY PARAMETERS

UTILITIES	PURPOSE	TEMP.	PRESSURE	VELOCITY
Plant Steam	FSIP / Process Temperature maintenance	143.63 ° C	3 bar (g)	24 to 30 m / sec
Chilled Water	Cooling after FSIP / Temp. maintenance	6 ° C to 10 ° C	3 bar (g)	2 to 3 m / sec
Cooling water	Cooling after FSIP / Temp. maintenance	20 to 30 ° C	3 bar (g)	2 to 3 m / sec
Warm Water	Temp. maintenance	35 ° C to 50 ° C	3 bar (g)	2 to 3 m / sec
Soft Water	Cooling after FSIP / Temp. maintenance	20 ° C to 30 ° C	3 bar (g)	2 to 3 m / sec
Brine	Cooling after FSIP / Temp. maintenance	- 10 ° C to 5 ° C	3 bar (g)	2 to 3 m / sec
Thermic Fluid	Cooling after FSIP / Temp. maintenance	Any temp.	3 bar (g)	2 to 3 m/ sec

TABLE NO. 4.3.2.

4.4. CIP - CLEANING IN PLACE

CIP is a method of cleaning the interior surfaces of process equipment and fittings, without disassembling them. Industries like Milk, Brewery, food, pharmaceutical, cosmetics etc. rely hugely on CIP for hygiene purposes. There are generally 3 step CIP process and 5 step CIP process. 3 Step CIP process is involved in food and brewery industry whereas, 5 step CIP is involved in pharmaceutical, cosmetic industry where sterility is required.

For Baker's yeast plant generally 3 Step CIP is considered:

Step 1: Pre-rinse

The first step in the CIP process is a pre-rinse, which involves flushing the equipment with water to remove any residual product or debris. This step aims to remove the bulk of the soil and prepare the surface for further cleaning. The water used in this step should be warm and have a pH level appropriate for the cleaning solution used in the subsequent steps. Typically, the pre-rinse is carried out for 5-10 minutes, depending on the nature and extent of the soiling.

Step 2: Cleaning

After the pre-rinse, the equipment is ready for the cleaning step, which involves the use of a cleaning solution. The cleaning solution is typically a mixture of water and cleaning agents such as caustic soda, acid, or a combination of both. The cleaning solution is circulated through the equipment for a specific period of time, usually 30-60 minutes, at a temperature and pH level suitable for the type of soiling and equipment being cleaned. The cleaning solution removes the remaining soil, including proteins, fats, and carbohydrates, from the equipment surfaces.

Step 3: Rinse

The final step in the CIP process is a post-rinse, which involves flushing the equipment with water to remove any residual cleaning solution. This step is important to ensure that no cleaning agent or residue remains on the equipment surface, which could contaminate the next batch of product. The post-rinse typically lasts for 10-15 minutes, and the water used should be at the same temperature and pH level as the pre-rinse.

4.5. SIP – STERILIZATION IN PLACE

It is a widely used process in various industries, particularly in the biopharmaceutical and food industries, for the sterilization of equipment and vessels. SIP refers to the sterilization of equipment and vessels in their installed location using high-temperature steam, without the need for disassembly or removal from the process line. This method is advantageous as it minimizes the risk of contamination, reduces downtime, and saves costs associated with disassembly and reassembly of equipment.

SIP typically involves these main steps: . Pre-SIP cleaning, SIP, and post-SIP verification. The pre-SIP cleaning step is crucial to remove any debris, product residues, or biofilms that may interfere with the sterilization process. The cleaning process is typically performed using a cleaning-in-place (CIP) system, which involves the circulation of cleaning solutions through the process equipment.

After the pre-SIP cleaning step, the equipment is ready for sterilization. The SIP process involves the introduction of high-temperature steam into the equipment, typically at a temperature of 121-122°C and a pressure of 1-3 bar, for a predetermined period of time. The exposure time required for complete sterilization depends on various factors, including the equipment design, size, and configuration, and the type and amount of microorganisms present. The equipment must be held at the sterilization temperature for a sufficient time to ensure complete kill of all microorganisms, including spores.

CHAPTER-5

5. MATERIAL BALANCE

The law of conservation of mass leads to what is called a mass or a material balance.

Mass In = Mass Out + Mass Stored

Basis: 1MT/day active dried yeast

2MT/day compressed yeast cake

Losses to be considered:

- 1. Pre-treatment = 1.5% loss of sugar
- 2. Fermentation efficiency = 85% efficient
- 3. Washing and centrifugation = 1% yeast loss
- 4. Process plant/ dryer = 1% yeast loss

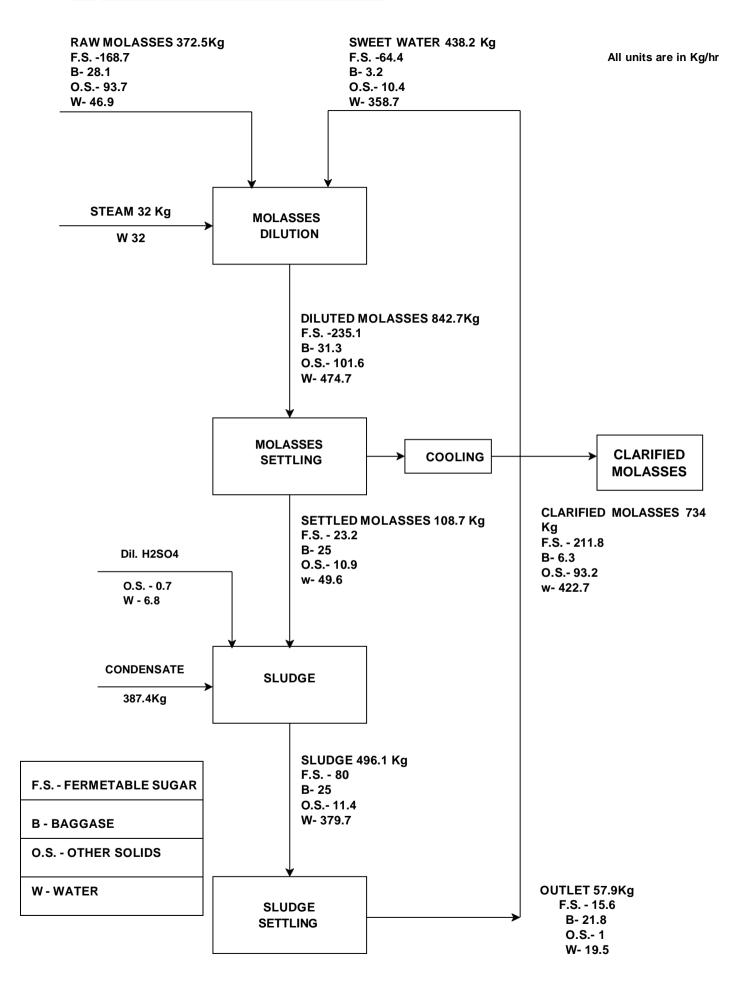
Considering moisture content of 5% in ADY (active dried yeast)

Moisture content in compressed yeast cake = 65%

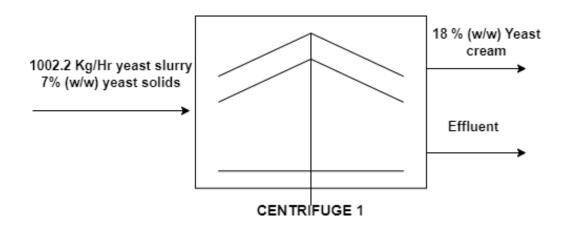
So, total yeast on dry basis will be;

 $= (1000 \ge 0.95) + (2000 \ge 0.65)$

=1650 kg yeast solids will be produced per day


Molasses required per day;

 $=\frac{1650}{0.5 \,x \, 0.45 \,x \, 0.85 \,x \, 0.985 \,x \, 0.98}$


= 8937.5 kg per day

Or we can say 372.5 kg/hr. molasses is required

5.1. MOLASSES - PRECLARIFICATION

5.2. CENTRIFUGATION

Fermented Wash = $\frac{1650}{24 x \ 0.07 x \ 0.98}$

= 1002 kg/ hr.

Kg/Hr. Yeast = Kg/Hr. Yeast cream + Kg/Hr. Effluent

905Kg/Hr. = Kg/Hr. Yeast cream + Kg/Hr. Effluent

1002.2 Kg/Hr. \times 0.07(yeast solids) \times 0.9950 (0.5% weight loss of yeast solid in centrifugation process) = 69.8Kg/Hr.

Now to find the concentration at 18% (W/W)

 $69.8 \div 0.18$

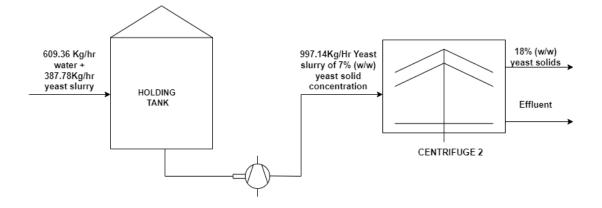
= 387.78 Kg/Hr.

To find amount of water needed to dilute the concentration of Yeast solids from 18 %(W/W) back to 7% (W/W)

First, Total Concentration is needed to be found.

C1V1 = C2V2

 $0.18 \times 387.38 = 0.07 \times V2$


V2 = 997.14Kg/Hr.

Water needed;

Total Concentration = Water + x

997.14- 387.78Kg. /Hr. = Water

= 609.36 Kg/Hr.

After the yeast is centrifuged to 18% (w/w) solid, the yeast is still dark in colour, to ensure the colour is beige; the yeast is diluted again to 7% (w/w) by adding water in it (609.36 Kg/Hr.)

The 7% (w/w) Yeast solid is then passed through the Centrifuge-2 which is placed in parallel to Centrifuge-1. The effluent generated is discarded.

Kg/Hr. Yeast = Kg/Hr. Yeast cream + Kg/Hr. Effluent

997.14Kg/Hr. = Kg/Hr. Yeast cream + Kg/Hr. Effluent

997.14 kg/Hr. \times 0.07(yeast solids) \times 0.9950 (0.5% weight loss of yeast solid in centrifugation process) = 69.4Kg/Hr.

Now to dilute the concentration to 18% (w/w)

 $69.4{\div}\,0.18$

= 385.5Kg/Hr.

5.3. ROTARY VACCUM FILTER

Total Yeast in Kg/hr. = Yeast Cake in Kg/hr. + Effluent

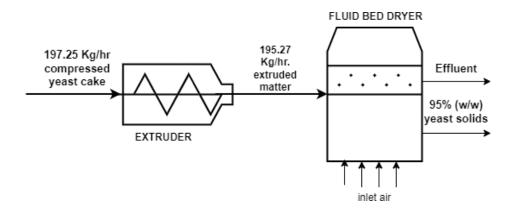
385.5 Kg/hr. = Cake + Effluent

Considering, 0.5% yeast solids loss;

385.5 x 0.18 x 0.9550

= 69.04 Kg/hr.

For 35% (w/w) solid yeast cake production;


 $= 69.04 \div 0.35$

= 197.25 Kg/hr. compressed yeast cake

Effluent = 385.5-197.25 Kg/hr.

Effluent = 188.25 Kg/hr.

5.4. FLUIDIZED BED DRYER

Assuming 1% loss of product in extruder and 0.5% loss of yeast solids;

197.25 x 0.99 x 0.9950 x 0.35 = 68 Kg/hr.

For 95% ADY = 68/0.95

= 71.5 kg/hr. ADY

Feed – **Product** = **Evaporation**

=197.25-71.5

= 125.75 Kg/hr.

If, 1kg Air can dry up 0.0261 kg moisture (from psychometric chart)

So, air required to dry up 125.7 Kg moisture

= 125.75/0.0261

= 4818 kg/hr.

Steam required;

= 125.75/0.7 (70% efficiency)

=179.64 kg/hr. steam is required

CHAPTER -6

ENERGY BALANCE

1 Kg molasses contains 450g sucrose and yields 250g yeast dry matter and evolves 950 Kcal heat as it is an exothermic reaction.

Reaction:

$$0.674C_{12}H_{22}O_{11} + 0.43NH_3 + 3.82O_2 + 0.015P_2O_5$$

 $C_{4.02}H6.5O_{2.11}N_{0.43}P_{0.03} + 4.81H_2O + 4.07CO_2$

Or,

 $1\ kg\ molasses + 15.2g\ NH_3 + 254g\ O_2$

 $\sqrt[4]{250g Yeast + 180g O_2 + 372g CO_2 + 950Kcal}$

For 1000 g of dry yeast,

Heat evolved (Kcal/g) = 4611Kcal/Kg

Avg. rate of Heat Load = (Working volume of reactor) \times (Heat evolved per unit weight of dry yeast) \times (Concentration) / Reaction time

6.1. Culture Vessel;

Heat Load,

$$Q = \frac{0.282 \times 4611 \times 1.2}{24}$$

= 65.3 kcal/hr

Cooling water required;

Cooling water is usually at 30 °C temperature and the normal working temperature of the bioreactor is 32 °C. Thus, the temperature difference will be 2 °C.

Also, the specific heat of water is 1 kcal-kg⁻¹K⁻¹. Thus, the rate of cooling water required will be:

$$Q = \mathbf{m} \times \mathbf{C}_p \times \Delta \mathbf{T}$$
$$\therefore \mathbf{m} = \frac{\mathbf{Q}}{\mathbf{C}_p \times \Delta \mathbf{T}}$$
$$= \frac{65.3}{1 \times 2}$$
$$= 32.6 \text{ litre/hr}$$

6.2. Pre-fermentor;

Heat load,

$$Q = \frac{1.41 \times 4611 \times 1.2}{24}$$

= 325.07kcal/hr

Cooling water required for Pre-fermentor;

$$Q = \mathbf{m} \times \mathbf{C}_p \times \Delta \mathbf{T}$$
$$\therefore \mathbf{m} = \frac{\mathbf{Q}}{\mathbf{C}_p \times \Delta \mathbf{T}}$$
$$= \frac{325.07}{1 \times 2}$$
$$= 162.5 \text{ litre/hr}$$

6.3. Fermentor;

Heat load,

$$Q = \frac{7.8 \times 4611 \times 1.2}{24}$$
$$= 1798.29 \text{ kcal/hr}$$

Cooling water required;

$$Q = m \times C_p \times \Delta T$$

$$\therefore m = \frac{Q}{C_p \times \Delta T}$$

$$= \frac{1798.2}{1 \times 2}$$

$$= 899.1 \text{ litre/hr}$$

THERMODYNAMICS AND KINETICS

$$0.674C_{12}H_{22}O_{11} + 0.43NH_3 + 3.82O_2 + 0.015P_2O_5$$

$$\label{eq:c4.02} \bigcup_{4.02} H_{6.5}O_{2.11}N_{0.43}P_{0.03} + 4.81H_2O + 4.07CO_2$$

OR

 $\begin{array}{l} 1 kg \ molasses + 15.2g \ NH_3 + 254g \ O_2 + 4.43g \ P_2O_5 \!\!= 208g \ yeast \ dry \\ matter + 180g \ H_2O + 370g \ CO_2 + 950 \ kcal \end{array}$

Conversion Equation in Batch Reactors

For any reactant A of the reaction, conversion of A is defined as:

$$X_A = \frac{\text{moles of A reacted}}{\text{moles of A fed}}$$

And the initial concentration of A in batch be N_{A0} .

$$\begin{pmatrix} \text{Moles of A reacted} \\ \text{(consumed)} \end{pmatrix} = \left(\text{Initial moles of A fed} \right) \times \left(\frac{\text{Moles of A reacted}}{\text{Moles of A fed}} \right)$$
$$= N_{A0} \times X_{A}$$

The number of moles of 'A' that remains in the reactor after time, t, N_A is:

$$\begin{pmatrix} \text{Moles of A in} \\ \text{reactor at t} \end{pmatrix} = \begin{pmatrix} \text{Initial moles of A fed} \\ \text{to reactor} \end{pmatrix} - \begin{pmatrix} \text{Moles of A consumed} \\ \text{by reactor} \end{pmatrix}$$
$$N_{A} = N_{A0} \times N_{A0} X_{A}$$
$$N_{A} = N_{A0} (1 - X_{A})$$

which can be rearranged to give;

$$\mathbf{X}_A = \frac{\mathbf{N}_{A0} - \mathbf{N}_A}{\mathbf{N}_{A0}}$$

Taking an infinitesimally small change in N_A (i.e. $N_{A0} - N_A \rightarrow 0$), then we can say,

$$d\mathbf{X}_A = -\frac{d\mathbf{N}_A}{\mathbf{N}_A}$$

As this is a batch fermentor volume (V) is constant with time, we have:

$$X_A = \frac{C_{A0} - G}{C_{A0}}$$
So, $dX_A = -\frac{dC_A}{C_{A0}}$

Above equation can be differentiated with respect to t to give,

$$\frac{dN_A}{dt} = \frac{d}{dt} [N_{A0} (1 - X_A)]$$
$$= \frac{dN_{A0}}{dt} - N_{A0} \frac{dX}{dt}$$
$$= -N_{A0} \frac{dX}{dt}$$

The mole balance rate of reaction for batch fermenter is:

$$\mathbf{r}_A V = \frac{d\mathbf{N}_A}{d\mathbf{t}}$$

Thus, combining above two equations, we get,

$$-N_{A0}\frac{dX}{dt} = r_A V$$
$$\therefore -C_{A0}\frac{dX}{dt} = r_A$$

It's a first order reaction, thus:

$$-\mathbf{r}_A = \mathbf{k} \times \mathbf{C}_A = \mathbf{k} \times \mathbf{C}_{A0} \times (1 - \mathbf{X}_A)$$

So,

$$C_{A0} \frac{dX}{dt} = kC_{A0}(1 - X_A)$$

$$\therefore dt = \frac{dX}{k(1 - X_A)}$$

$$\therefore t = \int_0^{X_A} \frac{dX}{k(1 - X_A)}$$

$$\therefore kt = -\ln(1 - X_A)$$

$$\therefore k = -\frac{1}{t}\ln(1 - X_A)$$

The raw material involved in this process is Sucrose, NH_3 , O_2 and P_2O_5 . So, for 1kg of molasses 480g fermentable sugar, 15.2g ammonia, 254g oxygen gas and 4.43g Phosphorous Pentoxide Summing up to to 753.63g.

And its volume (V) can be calculated from density as:

$$V = \left(\frac{480}{1.588} + \frac{15.2}{0.597} + \frac{254}{1.2121} + \frac{4.43}{0.34}\right)$$
$$= 550.31 \text{ cm}^3$$

Similarly, total number of moles (n) of reactant will be:

n =
$$(\frac{480}{+342} \frac{15.2}{17} + \frac{254}{32} + \frac{4.43}{142})$$

= 10.329 mol

Thus, initial concentration will be:

$$C_{A0} = \frac{n}{V} = \frac{10.329}{550.31}$$
$$= 0.0188 \text{ mol/cm}^3$$

From reaction, after 12 hours, the conversion (X_A) is 20%.

Thus, rate constant for this reaction will be,

$$k = -\frac{\ln(1 - 0.2)}{12}$$
$$= 0.018 \text{ hr}^{-1}$$

The rate constant of reaction is 0.018hr⁻¹.

CHAPTER -7 DESIGNING AND SIZING

7.1 DESIGN OF FED-BATCH AGITATED BIO REACTOR

Basis: 1 MT/day Active dried yeast and 2 MT/day compressed yeast cake on dry basis

7 %(w/w) yeast cell mass

7.1.1. FERMENTOR

Fermented Wash = $\frac{1650}{24 \ x \ 0.07 \ x \ 0.98}$

$$= 1002 \text{ kg/ hr.}$$

Specific gravity = $1 + \frac{7 x 4}{1000}$

= 1.028

 $\frac{1002}{1.028}$ Kg/ hr.

= 974.98 lph

 $= 0.97498 \text{ m}^3/\text{hr.}$

Reactor volume = $0.97498 \text{ m}^3/\text{hr. x } 32 \text{ hr.}$

=31.19 m³ (working volume)

Gross volume (0.6 ratio) = $\frac{31.19}{0.6}$ = 51.98 Or, 52m³ Reactor volume = $52m^3$ $52 = \frac{\pi}{4} \times Di^2 \times 1.2 \times Di$ (H/D = 1.2) = $52 \times 4 / (3.14 \times 1.2) = Di^3$ Di = 3.8m L= 4.56m Considering 4 fermentors of volume; $52/4 = 13m^3$ Di = 2.3m L = 2.76m

7.1.1 PITCH BLADE TURBINE AGITATOR DESIGN

Reactor volume = 13 m^3

Working volume/ Gross volume $(0.6) = 7.8 \text{ m}^3$

Viscosity of liquid (Yeast slurry) = 200cP

Specific gravity = 1.2

Diameter (W.V.) = 2.02m

Length (W.V.) = 2.42m

Average power no. for PBT: 1.4

RPM = 200

No. of impellers = Max liquid height x average specific gravity/ tank diameter.

= 2.42 x 1.32/2.02

= 1.5 or 1 impeller.

Diameter of agitator = $0.3 \times 2.02 = 0.60$ m (The diameter of impeller / agitator varies between 0.3 to 0.5 times of tank diameter.)

Power required for agitator:

Agitator's Reynolds No. NRe = ρ N Da2/ μ , ρ = Liquid density Kg/m3, N = rps of agitator, Da = Diameter of agitator (m), μ = Viscosity in Pa-s (1 Pa-s = 1000 cP)

 $=(1100*(200/60)*(0.60)^2)/(20/1000)$

Reynolds's no. = 67532.5

Power (P) in hp = Np ρ N³ Da⁵/ (g x 75), Gland loss 10% = 0.1 P, Power input = P + 0.1 P = P', Transmission loss: 20 %, hence motor hp = P' + 0.2 P' = 1.2 P'

Power (P) = $(1.4*1100*(200/60)^3*(0.6)^5)/(9.8*75)$

= 6.03

Power (P') = 6.63 + 0.1(6.63)

=6.63

Horse Power (hp) = 1.2×6.63

= 7.9 hp

Shaft diameter calculation:

Torque on agitator shaft: kg-m: Tc = hp x 75 x60 / ($2\pi N'$), N' in rpm

=7.9x75x60/ (2x3.14x200)

Tc= 28.53 kg-m

Maximum torque Kg-m (Tm) = 2.5 Tc

= 71.3 kg-m

Polar modulus of section of shaft cross-section (cm3) = Zp = Tm/550, where 550 value is maximum shear stress of solid shaft in Kg/cm2

= 71.3/550

 $= 0.129 \text{ cm}^3$

 $Zp = \pi d^3/16$, d= diameter of shaft in cm

= 0.871 cm

=1.1x0.87

= 0.95

Selected shaft diameter =1cm

7.1.2. PRE-FERMENTOR

It is 20% of fermentor

i.e., 2.6m³

 $2.6 = \frac{\pi}{4} \text{ x Di}^2 \text{ x } 1.2 \text{ x Di}$ (H/D = 1.2)

Di =1.4m, L=1.68m

7.1.3. CULTURE VESSEL

It is 20% of pre-fermentor

i.e., 0.52m³

 $0.52 = \frac{\pi}{4} \times \text{Di}^2 \times 1.2 \times \text{Di}$ (H/D = 1.2)

Di= 0.81m, L=0.97m

7.2. MOLASSES STORAGE TANK

Total yeast solids on dry basis production per day = 1650 kg

Molasses requirement per day;

 $= \frac{1650}{(0.5)x (0.45)x (0.85)x (0.985)x (0.98)}$ = 8940 kg/day Specific gravity of molasses = $1 + \frac{80 x 4}{1000} = 1.32$ = 8940/1.32 = 6772.7 lpd For 30 days storage of molasses; = 6772.7 x 30 = 203181.8 liter per month

Or, 203.18m³

Gross volume considering 10% head space;

= 203.18/0.9

 $=225.7 \text{ m}^3$

EQUIPMENT LIST

MOLASSES STORAGE SECTION

S.	Description	Technical Specification	Qty.		MOC
No.			Opr.	Standb y	
1.	Raw Molasses Storage tank	Type: Conical Top Sloping bottom Volume - 112 m ³ Diameter – 4.9mm Length- 5.9mm	2		CS
2.	Raw Molasses Transfer Pump	Type : Screw Capacity – 0.33 m ³ /hr.	1	1	CS
3.	Weighed Molasses Transfer Pump	Type : Screw Capacity – 0.33m ³ /hr.	1	1	CS
4.	Molasses Weighing system	Standard	1		SS

63

7.3.

MOLASSES PRE-CLARIFICATION SECTION

S.	Description	Technical Specification	Qty.		MOC
No.			Opr.	Stand by	
1.	Dilute Molasses Tank (T-101)	Type: Dished roof conical bottom Volume : 5m ³ Diameter: 1740mm Length : 2080mm	1	0	SS
2.	Sludge Collection Tank (T-103)	Type : Rectangular Volume: 0.5m ³ Length: 790mm Width : 790mm Height : 948mm	1	0	SS
3.	Settling tank (T-102)	Type : Rectangular Volume : 3.5m ³ Diameter: 1500mm Length : 1800mm	1	0	SS
4.	Clarified Molasses Tank (T-105)	Type: Conical Top Sloping bottom Volume : 5m ³ Diameter: 1740mm Length : 2080mm	1	0	SS

5.	Sweet Water	Type : Dished End Top &	1	0	SS
	Collection Tank	Bottom			
	(T-104)	Volume : 1m ³			
		Diameter: 1020 mm			
		Length : 1224mm			
6.	Broth Mixer for	Type : Static Mixer	1	0	SS
	Molasses Pre-				
	Clarification				
	(BM-01)				

7.	Agitator for Sludge Collection Tank	Type: Top Entry	1	0	SS
8.	Dilute Molasses Feed pump	Type : Centrifugal Capacity : 638.4 lph	1	1	CS
9.	Sludge Transfer pump	Type : Centrifugal Capacity : 450lph	1	1	CS
10.	Sweet water transfer pump	Type : Centrifugal Capacity : 450lph	1	1	CS
11.	Clarified Molasses transfer pump to fermenter	Type : Centrifugal Capacity :660lph	1	1	

FERMENTATION SECTION

S.	Description	Technical Specification	Qty.		MOC
No.			Opr.	Stand by	
1.	Culture Vessel	Type: Conical bottom flat top Volume : 0.47m ³ Diameter: 810mm Length : 972mm	1	0	SS
2.	Pre- fermentor	Type : Torispherical top and bottom Volume: 2.35m ³ Diameter: 1400mm Length: 1680mm	2	0	SS
3.	Fermentor	Type : Torispherical top and bottom Volume: 13m ³ Diameter: 2300 mm Length: 2760mm	4	0	SS
4.	Blower	Air flow rate – 1056 m ³ /hr.	2	1	SS
5.	Holding tank	Type: Torispherical top and bottom Volume : 5m ³ Diameter: 1740mm Length : 2090mm	2	0	SS

6.	Nutrient dosing tank (urea)	Torispherical top and bottom Volume : 0.1m ³ Diameter: 460mm Length : 550mm	1	0	SS
7.	Salt Dissolving tank	Torispherical top and bottom Volume : 0.1m ³ Diameter: 460mm Length : 550mm	1	0	SS

CENTRIFUGATION SECTION

S. No.	Description	Technical Specification	Qty.		MOC
			Opr	Std by	
1.	Centrifuge-1	Type : Disc Type Capacity – 934.8lph	1	0	SS
2.	Holding tank - 1	Type: Conical top flat bottom Volume : 5m ³ Diameter: 1740mm Length : 2080mm	1	0	SS
3.	Centrifuge-2	Type : Disc Type Capacity – 930.11ph	1	0	SS
4.	Holding tank- 2	Type: Conical top flat bottom Volume : 5m ³ Diameter: 1740mm Length :2080 mm	1	0	SS

FILTER PRESS

S. No.	No. Description Technical Specification		Qty.		MOC
			Opr.	Std by	
1.	Filter Press	Type : RVF	1	0	
		Inlet : 18% (w/w)			
		Outlet : 35 % (w/w)			
		(2 MT Compressed yeast cake per day)			

FLUIDIZED BED SECTION

S.	Description	Technical Specification	Qty.		MOC
No.			Opr.	Stand by	_
1.	Dryer Package including extruder	Type : Fluidized Bed dryer Inlet : 35% (w/w) Outlet : 95 % (w/w) (1 MT ADY per day)	1	0	

WET CAKE STORAGE SECTION

S. No.	Description	Technical Specification	Qty.		MOC
			Opr.	Stand by	
1.	Wet Cake Storage Section to be maintained at 4 Deg. C	Type : RCC Structure Length : 15m Height : 2.5 m Width : 13.5m	1	0	
2.	Extruder before product going to stored	Std	1	0	

ACTIVE DRIED YEAST STORAGE SECTION

S. No.	Description	Technical Specification	Qty.		MOC
INU.			Opr.	Stand by	
1.	ADY Storage Section to be maintained at 25 Deg. C (Air conditioned room)	Type : RCC Structure Length : 4.5m Height : 2.5 m Width : 4.5m	1		

<u>CIP AND SIP SECTION</u>

S. No.	Description	Technical specification	Qty.		MOC	
			Opr.	Stand by		
1.	Hot Water Tank	Torispherical ends Volume: 6.87 m ³ Diameter : 1900mm Height: 2320mm	2		SS	
2.	Hot Recovered Water tank	Torispherical ends Volume: 6.87m ³ Diameter : 1900mm Height: 2320mm	2		SS	
3.	Hot Caustic Tank	Torispherical ends Volume: 6.87 m ³ Diameter : 1900mm Height: 2320mm	2		SS	

CHAPTER-8

PIPING AND INSTRUMENTATION DIAGRAMS (P&IDS)

In the field of process engineering, a piping and instrumentation diagram, often known as a P&ID or PID, is a detailed diagram that displays the pipe and process equipment in addition to the instrumentation and control devices.

The following are the typical steps involved in the creation of a P&ID:

1. An initial block flow diagram is drawn.

2. An initial process flow diagram (PFD) is drawn up.

3. Detailed descriptions of the high-level controls are written.

4. Draught P&IDs are generated with the help of process flow diagrams serving as backdrops.

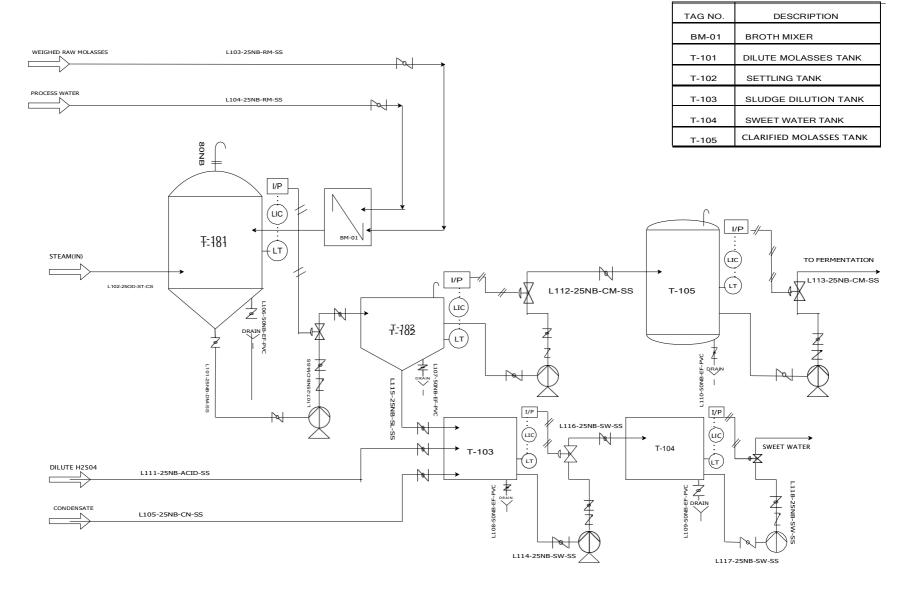
5. Areas for controllers, MCCs (motor control centres), and/or SCADA (supervisory control and data acquisition) are drawn at the top of the P&IDs.

6. The P&IDs will then have control feature symbols and labels added to them.

7. The wiring diagrams for connecting the electrical devices with the controllers, MCCs, and/or SCADA are drawn on the P&IDs.

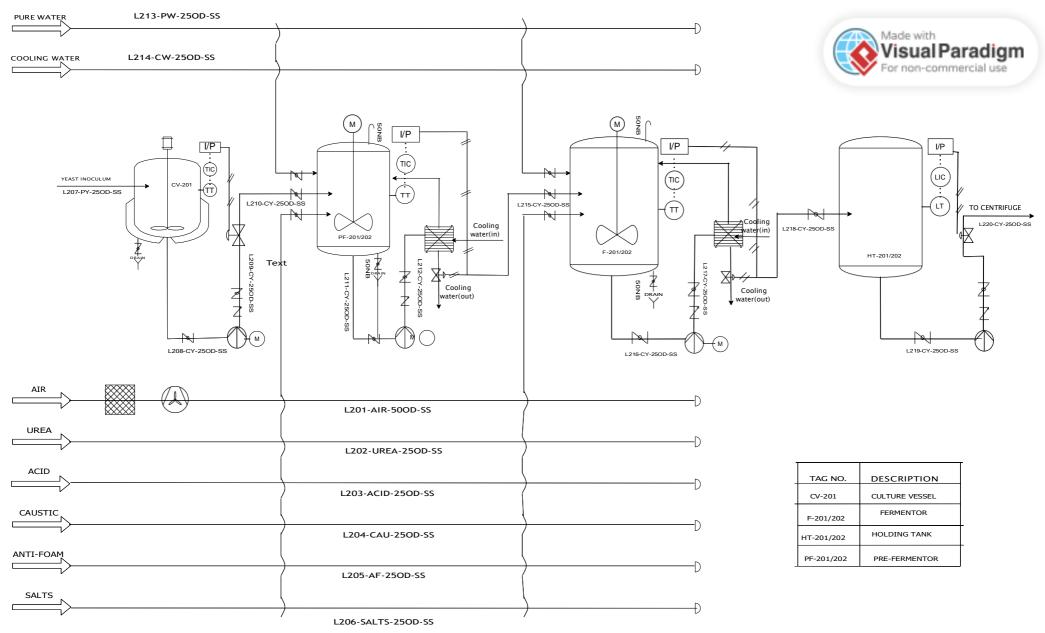
8. The comprehensive control descriptions have been finished.

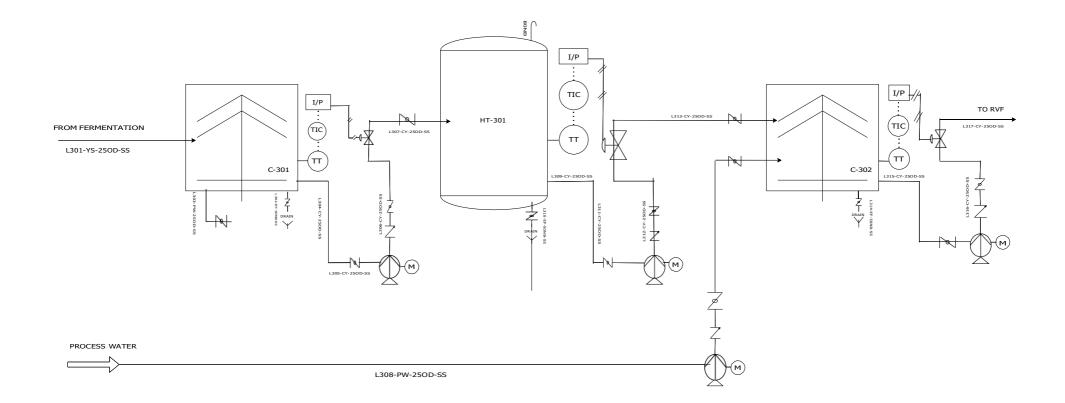
9. The control loops are specified, most frequently using a table-based structure.


10. The identification numbers listed on P&IDs are linked with the corresponding control descriptions and control loops.

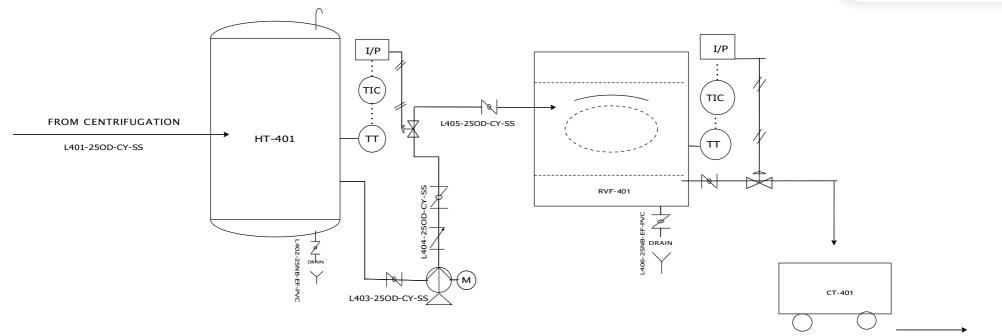
8.1. FLUID LIST

SNO.	FLUID NAME	FLUID	MOC	MATERIAL
		CODE		CODE
1.	DILUTE MOLASSES	DM	STAINLESS	SS
			STEEL	
2.	CLARIFIED	СМ	STAINLESS	SS
	MOLASSES		STEEL	
3.	PROCESS WATER	PW	CARBON	CS
			STEEL	
4.	STEAM	ST	STAINLESS	SS
			STEEL	
5.	EFFLUENT	EF	STAINLESS	SS
			STEEL	
6.	CREAM YEAST	CY	STAINLESS	SS
			STEEL	
7.	CHILLED WATER	CHW	CARBON	CS
			STEEL	
8.	COOLING WATER	CW	CARBON	CS
			STEEL	
9.	AIR	AIR	STAINLESS	SS
			STEEL	
10.	UREA	UR	STAINLESS	SS
			STEEL	
11.	ACID	ACID	STAINLESS	SS
			STEEL	
12.	BASE	BASE	STAINLESS	SS
			STEEL	
13.	PURE YEAST	PY	STAINLESS	SS
			STEEL	
L		1		


Table 8.	1.
----------	----


5/3/23, 12:42 PM

F3 (2).svg



TAG NO.	DESCRIPTION
C-301	DISC STACK CENTRIFUGE
C-302	DISC STACK CENTRIFUGE
HT-301	HOLDING TANK

TROLLEY TOWARDS FLUID BED DRYER

TAG NO.	DESCRIPTION
HT-401	HOLDING TANK
RVF-401	ROTARY VACUUM FILTER
CT-401	CAKE TROLLEY

CHAPTER -9

PLANT LAYOUT AND LOCATION

Here are some key parameters to consider for plant layout and location in the production of baker's yeast:

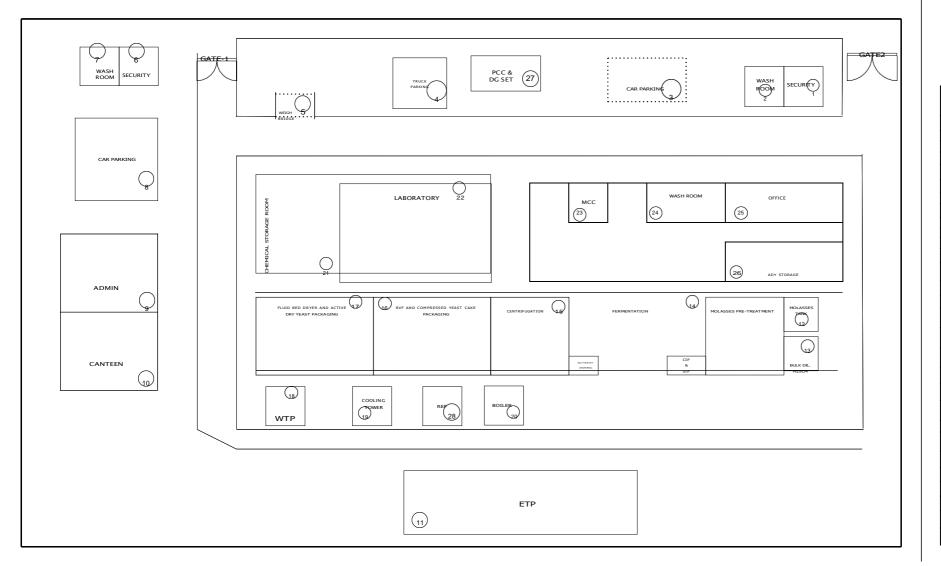
1. Accessibility: The plant should be easily accessible by road, rail, or sea to ensure efficient transportation of raw materials and finished products.

2. Availability of raw materials: The plant should be located near the source of raw materials such as molasses, sugar cane, or beet juice to reduce transportation costs and ensure a steady supply.

3. Water supply: The plant requires a reliable and sufficient water supply for the production process, cleaning, and sanitation.

4. Power supply: The plant should have access to a reliable power supply for the operation of equipment and machinery.

5. Waste management: The plant should have a system for the proper disposal of waste and effluent.


6. Environmental regulations: The plant should comply with all local and national environmental regulations regarding emissions, waste disposal, and water usage.

7. Size and capacity: The plant layout should be designed to optimize the flow of materials and personnel to increase productivity and efficiency. The size and capacity of the plant should also be based on the projected demand for baker's yeast.

8. Safety and security: The plant should be designed to ensure the safety of workers and the security of the facility and its products.

9. Proximity to market: The plant should be located near the target market to reduce transportation costs and ensure timely delivery of products.

10. Climate: The plant should be located in an area with a suitable climate to ensure proper temperature and humidity control during the fermentation process.

TAG NO.	DESCRIPTION	SIZE (mxm)
1	SECURITY	-
2	WASHROOM	-
3	CAR PARKING	-
4	TRUCK PARKING	-
5	WEIGH BRIDGE	-
6	SECURITY	-
7	WASHROOM	-
8	CAR PARKING	-
9	ADMIN OFFICE	
10	CANTEEN	-
11	ETP	-
12	MOLASSES TANK	-
13	BULK DIL. H2SO4	-
14	FERMENTATION	-
15	CENTRIFUGATION	-
16	RVF AND COMPRESSED YEAST CAKE PACKAGING	-
17	FLUID BED DRYER AND ACTIVE DRY YEAST PACKAGING	-
18	WATER TREATMENT PLANT	-
19	COOLING TOWER	-
20	BOILER	-
21	CHEMICAL STORAGE ROOM	-
22	LABORATORY	-
23	MCC- MOTOR CONTROL CENTER	-
24	WASH ROOM	-
25	OFFICE	-
26	ADY STORAGE	-
27	PCC & DG SET	-
28	REFRIFERATION	-
29	TOTAL AREA	200M*150M

CHAPTER- 10

PROCESS DATA SHEET/ ENQUIRY SPECIFICATION OF KEY EQUIPMENT

10.1. PROCESS DATA SHEET FOR FERMENTOR

PROCESS DATA SHEET FOR YEAST FERMENTOR										
Pr	ocess 8	b Desig	n Data							
Contents FLOUR SLURRY										
Content Density	Kg/C	u. M	1400	Pres	sure (S	hell)	Kg/	Sq.Cm	.(A)	
Capacity (Gross)	m	13	13.00	Desig	Design #		Normal Oper.		ATM.	
Capacity (Net)	m	13	7.8	Max.	Oper.	1.1	Min. O	per.	ATM.	
Shell Inside Diameter	m	m	3350		mperat (Shell)			Deg. C	1	
Shell Ht (T/L to T/L)	m	m	3750	Design #		#	Norma Oper.	1	65	
Corrosion Allowance	m	m	Nil	Max.	Oper.	100*	Min. Oper.		5	
Configuration	Vertical- Cylindrical		Design		NA	Normal Oper.		NA		
Support Type		Lugs		Max. Oper.		NA	Min. Oper.		NA	
Support Resting	Or	n Struct	ture	Temperature		Deg. C		2		
Type Of Sparger	Not	Applic	cable	Design		NA	Normal Oper.		NA	
Sparger Pipe	Dia.	NA	mm	Max.	Oper.	NA	Min. Oper.		NA	
Holes on Pipe	Dia.	NA	mm	Nos.	NA	Min.	Pitch	NA	mm	
H.T.A	m2		-	Insula	tion Ty	vpe		Hot		
				Insula Thick			50	n	nm	
	Ba	sic Ma	terials (Of Cons	structi	on				
Shell	1	AISI 30)4	Nozzl	e Pipes		A	AISI 30	4	
Top Head	1	AISI 30)4	Nozzl	Nozzle Flanges		Ca	rbon St	teel	
Bottom Head	1	AISI 30)4	Gaskets		EPDM				
Jacket		NA		Interna	als			AISI 30	4	
Sparger Pipe		NA		Insulation		Glasswool-Al Cladding				

THICKNESS										
Shell	-	mm	Top Head	-	mm	Bottom Head	-	mm		
Jacket	-	mm	-	-	mm	-	-	mm		
NOTES										
1) All dimensions are in "mm" unless otherwise specified.										
2) Equipment to	be prov	vided w	ith suitable ear	thing						
3) Nozzle stando	uts sha	ll be ke	pt as minimum	as poss	sible.					
4) NA.: Not App	licable									
5) Chloride conte	ent of te	est fluid	should not exe	ceed mo	ore than	25 PPM				
6) * - Subjected t	o this t	empera	ture for 30 min	utes du	ring ste	rilisation				
7) # - To be final	ised aft	er deta	iled engineering	g.						
8) Surface should	l be gro	ound sm	nooth with hygi	ienic fin	ish.					
9) Baffle dimens	ions ai	nd qua	ntity to be pro	vided b	y Agit	ator Supplier.				
				Clie	ent					
				Job	No.					
				Pla	int	BAKER'S YEAST PLANT				
				Tag	No.	F-	201			
				Equip Na		t YEAST FERMENTOR				

10.2. ENQUIRY SPECIFICATION FOR CENTRIFUGATION

	Equipment : Yeast Separator with Hydro-cyclone			
	SCOPE OF WORK			
	The scope of work for the equipment listed above shall include	e design, manu	ifacture,	
	Supply of material and engineering work as detailed below.			
	Description	Purch	laser	Manufacturer
1	Centrifuge Unit			
2	Motor			
3	Gear box with transmission devices			/
4	Frame			<u>/</u>
5	Fixing bolts			NA
6	Base plate / Skid Frame			1
7	Safety instruments			1
8	Instrument panel			\checkmark
9	Tools and Spare parts (as per list attached)			\checkmark
10	Painting			✓
11	Drawings and documents			1
12	Hydro-cyclone			1
	Butterfly valve (1 No.) and three-way valve (1 No.) with			
13	actuators			\checkmark
14	S.S. flexible hose (1 No.)			
15	Paddle type flow switch (1 No.)			
16	S.S. Yeast cream and De-yeasted wash funnel (1 No. each)			
17	Inlet and Outlet Bends			
18	Nozzles (1 Set)		·	
	SCOPE OF INSPECTION (PURCHASER TO TICK			
	WHEREVER APPLICABLE)			
	The following inspection and test shall be carried out at manuf	acturer's s site	and / or rec	ords
	to be submitted by manufacturer			
	Description	Inspection		
		Required		
1	Visual inspection of Equipment	YES		
2	Appearance and Dimensional inspection	YES		
3	Material test and Chemical analysis	YES		
-	SCOPE OF TEST	~		
	Description		Witness	
		Required	Required	
1	Performance test	YES	YES	
2	Sound level test	YES	YES	

				SPECIFICATION OF	1			
	CENTRIFUGE-1							
Title : Yeast Centrifuge								
Manufacturer : .A.L.	Model :	DISC STACK						
Qty.: Operating + Stand By	1	+		Nil	Duty :	Batch		
Electric Supply : 415V +/- 10%,	50Hz +/- 5%, 3	Phase, 4 W	ire					
		OPERATI	NG	CONDITIONS				
Fluid	Yeas		10	Capacity	kg/hr	1002		
Inlet Solids concentration	%	7		Operating Temperature	Deg C	4		
outlet solids concentration	%	18			Deg C	+		
outlet solids concentration			TT	ION FEATURES				
Disc caulks		*	/11					
Inlet Connection size	mm	*						
Concentrate outlet size	mm	*						
Liquid outlet size	mm	*						
MAIN MOTOR	mm							
Motor rating	KW / rpm	*		Degree of protection		IP 54		
· · · · ·	Weather-		Insulation class Class F					
Туре				CONSTRUCTION		Class r		
Casing	SS-316	I EKIAL U	7	CONSTRUCTION				
Decanter Frame	Mild steel							
Decanter Frame	wind steel							
Title : Hydrocyclone								
Equipment code : -					+			
Manufacturer : Cel**** *	Model :							
		1.		NT'1		D (1		
Qty. : Operating + Stand By	ONE	+		Nil	Duty :	Batch		
Mfg.Std. :		Perf. Std.			Location	Indoor		
Electric Supply : 415V +/- 10%,	50Hz / 50/ 3				•	IIIuooi		
				CONDITIONS				
Fluid	1		10		m ³ /hr	0.88		
	Yeast Sl	-		Capacity-Maximum				
Specific gravity	-	1.028		Operating Temperature	Deg C	32		
Pressure drop	Kpa *		Reject flow	lpm	*			
Elutriation water lpm * Elutriation pressure Kpa						*		
CONNECTION SIZES								
Inlet	mm	*			<u> </u>			
Reject	mm				<u> </u>			
Liquid outlet	mm	*						

	TECHNICAL SPECIFICATION OF CENTRIFUGE-2					
 Title :	Yeast Sepa	rator	•		-	
Manufacturer : A.L.	Model :					
Qty.: Operating + Stand By 1	1+0			Nil	Duty :	Batch
Electric Supply : 415V +/-	10%, 50Hz -	+/- 5%	6,3	3 Phase, 4 Wire		
	OPERAT	ING	C	ONDITIONS		
Fluid	Yeast			Capacity	kg/hr	997
Inlet Solids concentration	%	7		Operating Temperature	Deg C	4
outlet solids concentration	%	18				
	CONSTRU	JCTI	10	N FEATURES		
Disc caulks	mm	*				
Inlet Connection size	mm	*				
Concentrate outlet size	mm	*				
Liquid outlet size	mm	*				
MAIN MOTOR						
Motor rating	KW / rpm	*		Degree of protection		IP 54
Туре	Weatherp	coof		Insulation class		Class F
Ν						
Casing	SS-316					
Decanter Frame	Mild steel					

10.3. ENQUIRY SPECIFICATION OF ROTARY VACUUM FILTER

	-		CHNICAL SPECI FARY VACUUM			
Title : RVF						
Manufacturer :		Model :				
Qty. : Operating +	Stand					
Ву		1	+0	Nil	Duty :	Continuous
Electric Supply : 4 Wire	15V +/- 10	0%, 50Hz +/	- 5%, 3 Phase, 4			
			OPERATING (CONDITIONS		
Fluid		Ye	east Cream	Capacity	kg/hr	385.5
Inlet Solids concen	tration	%	18	Operating Temperature	Deg C	4
outlet solids concer	ntration	%	35	Pressure	*	
				· · · ·		·
Type of Solid		YES	NO			
Compressible		YES				
Oily		·	NO			
Slimy			NO			
fibrous			NO			
	_					
PROCESS						
GOALS	-					
Filtrate	YES		Discharge to drain	Recycle		
Cake	-		Landfill	Recycle		
Cake	1125					
	-		_			
MAIN MOTOR	-		_			
		KW /				
Motor rating		rpm	*	Degree of protection Insulation class		IP 54
Type W			ather-proof		Class F	
		N	IATERIAL OF C	ONSTRUCTION		
Casing		SS-316				

10.4. ENQUIRY SPECIFICATION OF FLUID BED DRYER

	DDVING		IONNAIR EL LUD I	E BED DRYER		
		5 S Y S I E M	- FLUID F	SED DRYER		
Ref. No.	00					
Company	N/A					
Type Of Industry	BIOTECH		_			
Represented by	N/A					
Address						
Telephones	0			Mobile		
Project						
Material	Compressed yea	ist cake		_Process utilised	1	
Upstream Eqpt.		Centrifuge		RVF	1	
Downstream Eqpt.	Conveyor		Bagging S	ystem	1	
Type of Dryer	Fluidized bed	1	CT-FBD		Paddle	Spray
		Rotary		Combination		
Capacity :	Dry Product :	197.2	Kg/hr.		_ tonnes/day	
	Wet Product :	125.7	Kg/hr.		_ Tonnes/day	
Feed Moisture	95%			_	Product Moistur	e 5%
Bulk Density	*		Kg/m/3		_	
Particle Size	1-2mm	_				
Heat sensitive	YES				_	
Typical Product Characteristics :		Hazardous		NO	Toxic	NO
Material of construction :			SS-304	✓	SS-316	
Dust Collection System :			Bag Filter		Cyclone	YES
			Max. dust	loading in exhau	st	
Heat Source :	YES		-			
Steam :	*	Pressure	*	kg /cm ² (g)	Temp	*

Thermic Fluid :	*	Pressure	*	kg /cm ² (g)	Temp	*
	Other Details	**		_		
Instruments & Controls :	*		Central DCS		Local C.P.	
Site Data :	Ambient temp. N	Iax		°C	Min.	
	Humidity		less	_	Elevation	
Space Available in m2				-		
Is pilot plant test required :		Yes	No			
Special Features Reqd. :	I					
Offer Required :	Firm					
Project Schedule :	Project Completi	on by		Equipment su	pplied by	KILBURN
	Firm Enquiry by					

CHAPTER -11 COSTING AND PAYBACK PERIOD

COST ESTIMATION

11.1. COSTING OF FERMENTOR

Shell thickness = 4mm

Dish end thickness =5mm

Density of stainless steel, $SS = 8000 \text{ kg/m}^3$

Steel Cost = Steel weight in Kg x [Material + Labour]

Material Cost for stainless steel, SS per Kg (INR) = 250

Labour cost for stainless steel, SS per kg (INR) = 60

Density of Mild Steel, $MS = 7750 \text{ kg/m}^3$

Material Cost for mild steel, MS per Kg (INR) = 80

Labour cost for mild steel, MS per kg (INR) = 15

1. Shell Cost

Shell cost = Surface Area x Thickness = $\pi dLT x Density of Steel x Steel cost$ = 3.14 x 2.3 x 2.7 x 8000 x 0.004 x 310 = ₹193434

2. Dish end cost

Blank diameter of dish end =1.2 x Shell diameter = 1.2 x 2.3 = 2.76m =2 x $(\pi d^2/4)$ x thickness x Steel density x labour cost = 2x $(3.14x2.3^2/4)$ x 0.005 x 8000 x 310 = ₹148299

3. Miscellaneous cost

= 0.15 (Shell cost + Dish end cost) = ₹51260

4. Total cost = Shell cost + dish end cost + miscellaneous costs

= 193434+148299+51260

= ₹3, 92,993/-

	MOTOR LIST			
S.NO.	DESCRIPTION	OPERATIONAL	QUAN	TITY
		(KW)	OPR	STD. BY
1	MPC-01	3.3	1	1
2	MPC-02	3.2	1	1
3	MPC-03	3.2	1	1
4	MPC-04	3.2	1	1
5	MPC-05	3.2	1	1
6	F-01	8.7	1	1
7	F-02	8.7	1	1
8	PF-01	6.5	1	1
9	CV-01	4.3	1	1
10	CF-01	25	1	1
11	CF-02	25	1	1
12	RVF-01	50	1	1
13	FBD-01	100	1	1

MOTOR LIST

TABLE NO. 11.1.

11.2. IN- HOUSE ITEMS

11.2.1. MOLASSES PRE-TREATMENT SECTION

SNO	EQUIPMENT	TECH SPEC.	Q T Y	UNIT COST	PURC HASE COST	PAC KING at 3%	GST 18%	TOTAL PURCHA SE COST	FINAL COST
1	Broth Mixer	Std, SS	1	50,000	50,000	1500	9270	60,770	51,500
2	Dilute Molasses tank	5m3 ,SS	1	2,14,96 2	214962	6448. 86	39853.95 48	261264.81 48	221410.8 6
3	Sludge collection tank	0.5m3, SS	1	38,364	38364	1150. 92	13811.04	53325.96	39514.92
4	Clarified molasses tank	5m3 , SS	1	2,14,96 2	214962	6448. 86	39853.95 48	261264.81 48	221410.8 6
5	Sweet water tank	1m3,SS	1	75,224	75224	2256. 72	13946.52 96	91427.249 6	77480.72
6	H2SO4, Bulk storage tank	5m3, MS	1	65,964	65964	1978. 92	12229.72 56	80172.645 6	67942.92
7	Molasses storage tank	149m3, MS TOTA L	2	847857 .7 15,07,3 34	169571 5.4 23,55,1 91	50871 .462 70655 .742	314385.6 352 443350.8 4	2060972.4 97 28,69,198	1746586. 862 24,25,847

11.2.2. FERMENTATION SECTION

SN O.	EQUIPM ENT	TECH. SPEC.	Q T Y.	UNI T COS T	PURCH ASE COST	PACK ING at 3%	GST 18%	TOTAL PURCHASE COST	FINAL COST
	Culture	0.47M3,		4642		1392.7	8607.00		47816.
1	Vessel	SS	1	4	46424	2	96	56423.7296	72
2	Pre- fermentor	2.35M3, SS	2	1,43, 427	286854	8605.6 2	53182.7 316	348642.3516	295459 .62
3	Fermento r	13M3,S S	4	3,92, 993	1571972	47159. 16	291443. 6088	1910574.769	161913 1.16
4	Holding tank	13M3,S S	1	3,92, 993	392993	11789. 79	72860.9 022	477643.6922	404782 .79
				9758		68947.	426094.		236719
		TOTAL		37	2298243	29	2522	2793284.542	0.3

11.2.3. CENTRIFUGATION

SN O.	EQUIPM ENT	TEC H. SPE C.	QT Y	UNI T COS T	PURCH ASE COST	PACKI NG at 3%	GST 18%	TOTAL PURCHASE COST	FINA L COST
1	Holding tank	5M3, SS	1	2,14, 962	214962	6448.86	39853.9 548	261264.8148	221410 .86

11.2.4. CIP

SN O.	EQUIP MENT	ТЕСН	Q TY	UNIT	PURCH ASE	PACK ING	GST	TOTAL PURCHASE	FINA L
		SPEC.		COS T	COST	at 3%	18%	COST	COST
1	Hot water tank	6.87m ³ ,SS	1	3,53,0 52	353052	10591. 56	65455.8 408	429099.4008	36364 3.56
2	caustic tank	6.87m ³ , SS	1	3,53,0 52	353052	10591. 56	65455.8 408	429099.4008	36364 3.56
3	water tank	6.87m ³ , SS	1	3,53,0 52	353052	10591. 56	65455.8 408	429099.4008	36364 3.56
		TOTAL		10,59, 156	1059156	31774. 68	196367. 5224	1287298.202	10909 30.7

11.3. VENDOR ITEMS

SECTION – MOLASSES PRE-TREATMENT

SN O.	EQUIPME NT	TEC H SPE C	QT Y.	UNIT COS T	PURCH ASE COST	PACKI NG 3%	GST 18%	TOTAL PURCHASE COST	FIN AL COS T
1	Process water heater	PHE	1	1,50,0 00	150000	4500	2781 0	182310	1545 00
2	Clarified molasses cooler	PHE	1	1,50,0 00	150000	4500	2781 0	182310	1545 00
3	Centrifugal pumps	2.5m ³ /h	10	50,00 0	500000	15000	9270 0	607700	5150 00
		TOT AL		3,50,0 00	800000	24000	1483 20	972320	8240 00

TABLE 11.3.1.

SECTION – FERMENTATION

SN O.	EQUIPMENT	TEC H. SPE	QT Y.	UNI T COS	PURCH ASE	PACKI NG	GST	TOTAL PURCHA SE	FINAL
		С.		Т	COST	3%	18%	COST	COST
1	Centrifugal pumps (Fermentor)		8	1,00, 000	800000	24000	1483 20	972320	824000
2	Pumps for pre- fermentor		4	50,00 0	200000	6000	3708 0	243080	206000
3	Pump for Culture vessel		2	25,00 0	50000	1500	9270	60770	51500
4	PHE- Pre fermentor	STD	2	1,50, 000	300000	9000	5562 0	364620	309000
5	PHE- fermentor	STD	4	3,00, 000	1200000	36000	2224 80	1458480	1236000
6	Agitator	STD	6	2,50, 000	1500000	45000	2781 00	1823100	1545000
		TOT AL		8,75, 000	4050000 BLE 11.3.2.	121500	7508 70	4922370	4171500

TABLE 11.3.2.

SECTION- CENTRIFUGATION

SN O.	EQUIPM ENT	TEC H. SPE C.	QT Y.	UNIT COST	PURCH ASE COST	PACKI NG 3%	GST 18%	TOTAL PURCHASE COST	FINA L COS T
1	Disc Stack Centrifuge	3.9m ³/h	2	11,90, 000	2380000	71400	4412 52	2892652	24514 00

TABLE 11.3.3.

SECTION- FILTER PRESS

SN	EQUIPMEN	TEC	QT		PURCH	PACKI		TOTAL	FINA
0.	Т	H.	Y.	UNIT	ASE	NG	GST	PURCHASE	L
		SPE		COCT	COST	20/	100/	COST	COS
		С		COST	COST	3%	18%	COST	Т
1	DUE			26,75,	0 (75000	00250	4959	2251105	2755
I	RVF	STD	1	000	2675000	80250	45	3251195	250
				1 50 0			55(2)		2000
2	Extruder	STD	2	1,50,0 00	300000	9000	5562 0	364620	3090 00
Z	Extruder	51D	Z	00	300000	9000	0	504020	00
	Packaging			3,50,0			6489		3605
3	machine		1	00	350000	10500	0	425390	00
		TOT		31,75,			6164		3424
		AL		000	3325000	99750	55	4041205	750
				TA	ABLE 11.3.4				

SECTION- FLUID BED DRYER

SN O.	EQUIPMEN T	TE CH SPE C.	QT Y.	UNIT COST	PURCH ASE COST	PACKI NG 3%	GST 18%	TOTAL PURCHASE COST	FINA L COS T
1	Fluid bed dryer	STD	1	90,00, 000	9000000	270000	1668 600	10938600	9270 000
2	Packaging machine	STD	1	6,00,0 00	600000	18000	1112 40	729240	6180 00

TABLE 11.3.5.

SN O.	EQUIPME NT	TEC H	QT Y	UNIT	PURCH ASE	PACKIN G	GST	TOT AL	FINAL
0.			-			-	AT	COS	
		SPEC		COST	COST	AT 3%	18%	Т	COST
				4029754.	4029754.	120892.6	747116	48977	4150646
1	Piping and	lots	1	346	346	304	.46	63	.98
	valves								
	Instrumenta			2686502.	2686502.	80595.08	498077	32651	2767097
2	tion	STD	1	897	897	692	.64	76	.98
				1343251.	1343251.	40297.54	249038	16325	1383548
3	Electrical	STD	1	449	449	346	.82	88	.99
		ТОТ			8059508.	241785.2	149423	97955	
		AL			69	607	3	27	8301294

11.4. PIPING, VALVES AND INSTRUMENTATION

TABLE 11.4.

11.5. UTILITES

S.N O.	EQUIPME NT	ТЕСН	QT Y	UNIT	PURCHA SE	PACKI NG	GST	TOTA L	FINA L
		SPEC		COST	COST	3%	18%	COST	COST
1	Boiler	0.5MTH at 3.5bar (g)	1	10,00,0 00	1000000	30000	1854 00	12154 00	10300 00
2	Cooling tower	STD	1	35,00,0 00	3500000	105000	6489 00	42539 00	36050 00
3	Refrigeratio n	STD	1	15,00,0 00	1500000	45000	2781 00	18231 00	15450 00

TABLE 11.5

11.6. SUMMARY

SUMMARY		
Technology offered :	BAKER'S YEAST PLANT	
Material rates:		
SS 304/INR per Kg	250+60 (Mtl + Labour)	
MS/INR per Kg	65+32 (Mtl + Labour)	
SS 316/INR per Kg	340+60 (Mtl + Labour)	
	PRICE IN LAC	
In house Fabricated Items	61.05378972	
Bought out Items	207.5965	
Piping & Valves	41.50646976	
Utilities	61.8	
Instrumentation	27.67097984	
ЕТР	187	
Electricals	13.83548992	
TOTAL	600.4632292	
Man-hour Cost @Rs.400/ man-hr.	5	
Contingency@ 3%	18.16389688	
FINAL COST (INR)	623.6271261	
Price @ 30 % Contribution	890.8958945	
Erection @12 % of Price	106.9075073	
Project Related Expenses @ 5% of Price	44.54479472	
Civil , Structural & Shed @ 20% of Price	178.1791789	
Transportation @ 5% of Price	44.54479472	
Gross Total	1265.07217	
GST	62.25396481	
GRAND TOTAL	1327.326135	

11.7. FEATURES OF PROJECT IDENTIFICATION

Following are the important features of project identification:

- 1. Market and sales justification of project
- 2. Methods of Production
 - (a) Process flow diagrams
 - (b) Chemical reactions
- 3. Chemical Engineering problems
 - (a) Manufacturing
 - (b) Economics
- 4. Land requirement and Land Development
- 5. Raw material storage and handling system
- 6. Utility sources etc.

The most important aspect of any project is the identification of the business need not necessarily anything related to engineering or construction. This is the conclusion of studies by various organizations. This documented business need is commonly called the business case, the project charter or the business statement. The business case must relate to the end result and be based on the business expectations. The overall Return on Investment (ROD, a key decision parameter, is defined by determining the capital cost, and the time-to-market. A well-developed business case should also identify the risk posture of the. Business, the required economic return and other business-oriented parameters; the longer the construction time, the lower is the rate of return.

11.8. PAYBACK PERIOD

Payback period is a widely utilized financial metric to evaluate the financial viability of an investment. It signifies the duration required for an investment to generate adequate cash flow to recover its initial cost. This metric is straightforward and extensively used in the investment community to assess the potential risks and returns of an investment. To calculate the payback period, the initial cost of the investment is divided by the annual cash inflow generated by the investment; resulting in the number of years it will take for the investment to recuperate its initial cost. A shorter payback period is generally perceived as more attractive, indicating lower risk and faster recovery of the initial investment. However, the payback period has limitations and may not consider certain factors such as inflation and the opportunity cost of investing the money elsewhere. Despite its limitations, payback period remains a valuable tool to provide valuable insights into the financial performance of an investment.

S.NO.	PARAMETER	PRICE IN
		LACS(INR)
1	Land and land development	100
2	Civil and structure	122.5
	transportation and project related	
3	expenses	62
4	Cost of Equipment	889.9
5	Contingencies	12.5
6	Erection	73.7
7	ETP	187
8	Laboratory set up	25
9	Misc.	70
	TOTAL	1542.6

11.8.1. ESTIMATED PROJECT INVESTMENT

TABLE 11.8.1.

11.8.2. SALES REVENUE

SNO.	TYPE OF	QTY	RATE	RATE	SALES/ANNUM
	PRODUCT	MT/ANNUM	Rs./KG	Rs./MT	(INR IN LACS)
1.	Active dried yeast	300	350	3,50,000	1050
	Compressed yeast cake	600	120	1,20,000	360
		TOTAL			1410

TABLE 11.8.2.

11.8.3. VARIABLE EXPENSES (IN LACS PER ANNUM)

S NO	ТҮРЕ	QUANTITY	PRICE	PRICE IN LACS (INR)
1	Molasses 1410MT at Rs.10,000 per MT	1410	15,000	211.5
2	Steam	1524	4000	60.96
3	Electricity	14,95,116	8	119.60928
4	Chemicals			10
5	Packing bags (500g ADY, 1KG CY)	12,00,000	8	96
	TOTAL			498.06928

TABLE 11.8.3.

FIXED EXPENSES	PRICE IN LACS (INR)
Total Investment	1542.6
Equity (40%)	617.04
Term Loan (60%)	925.56

Working capital:

Molasses: 5 days stock

211.5/300 x 5 = 3.5 lac

Packing material: 5 days stock

96/300 x 5 = 1.6 lac

Misc. = 5 lac

Total = 10.1 lac

FIXED EXPENSES	IN LACS
Interest on term loan	138.834
Interest on working capital	1.51875
Administrative expenses	20
Sales expense(3% of sales)	42.3
Salary and wages	20
Total	222.65275
TOTAL EXPENSES (FIXED + VARIABLE)	720.72203

Contribution: Sales revenue – expenses

=689.2lac

Depreciation: 20% of interest

=308.5lac

Gross Profit: Contribution – Depreciation

=380.7lac

TAX: 22% on gross profit

=83.7lac

Profit after Tax: Gross Profit –Tax

=296.9lac

Money Generated: Profit after tax + Depreciation

=605.5lac

Payback period:

= Investment/ Money generated

= 1542.6/605.5

=2.54

= 2.5 years

Or 2 years 6months

CHAPTER -12

UTILITY SUMMARY

PROJECT TITLE	:	BAKER'S YEAST PLANT
PLANT CAPACITY	:	1MT/DAY – ACTIVE DRIED YEAST
		2 MT/DAY – COMPRESSED YEAST CAKE
LOCATION	:	PUNE
SCOPE	:	UTILITY SUMMARY

CONTENTS

S. No.	DESCRIPTION
12.1	PROCESS WATER (RO QUALITY)
12.2	STEAM
12.3	INSTRUMENT AIR
12.4	ELECTRICAL POWER
12.5	COOLING TOWER
12.6	EFFLUENT TREATMENT PLANT

12. UTILITY CONSUMPTION:

12. 1. PROCESS WATER - (REVERSE OSMOSIS i.e. RO WATER QUALITY)

Process Water is required for the baker's yeast plant purpose in Baker's yeast flame proof and non-flame proof section during reaction process, Plant upset condition, Chemical and enzyme Preparation, Pump Sealing, Centrifuge Sealing, Centrifuge cleaning, Hot water tank make up

The Quality and Quantity of process water required are as below:

12.1.1. QUANTITY OF PROCESS WATER REQUIRED:

PROCESS WATER FOR PROCESS CONSUMPTION				
(SI	(Specification –A)			
Description	Unit	Value		
Continuous Water Requirement	m ³ /day	33.84		
Pressure of Process Water	Bar (g)	4		
Temperature of the Process Water	Deg.C	28 to 30		

12.1.1.1. Specification A – Process Water (RO Water) Quality

Unit	Value
Nos./ml	60 CFU
Nos./ml	Nil
Nos./ml	Nil
PPM	< 1
PPM	Nil
PPM	NIL
PPM	200
-	6-8
PPM	Nil
PPM	<11
PPM	< 30
PPM	0.1 Max
PPM	Nil
PPM	<5
NTU	Nil
	Nos./ml Nos./ml Nos./ml Nos./ml PPM PPM PPM PPM PPM PPM PPM PPM PPM PP

12.1.1.2. Specification B – Cooling Tower makeup water (RO water) Quality

Parameter	Unit	Value
Total germs	Nos./ml	60 CFU
Coliform Bacteria	Nos./ml	Nil
E. Coli	Nos./ml	Nil
Residual free chlorine	PPM	< 1
H ₂ S	PPM	Nil
Chlorides (Cl ⁻)	PPM	NIL
TDS	PPM	200
рН	-	6 - 8
Suspended Solids	PPM	Nil
Hardness as CaCO3	PPM	<10
Silica (SIO2)	PPM	< 30
Dissolved O2	PPM	0.1 Max
Free CO2	PPM	Nil
Bound CO2	PPM	<5
Turbidity	NTU	Nil

12.2. STEAM:

Quality of Steam Required:

Steam should be dry (dryness fraction =1.0), saturated at 3.5 bar (g) constant pressure, provided at the inlet of Header provided in the bio diesel process plant for flameproof and non-flameproof sections.

Quantity of Steam Required:

The steam consumption at steady state of operation is:

DRY SATURATED STEAM FOR PROCESS PLANT			
Description	Units	Value	
Normal Load	MT/hr.	2	
Peak Load	MT/hr.	3 (F&A 100 Capacity)	
Steam Pressure at the Inlet of Steam Header	Bar (g)	3.5	
Steam Temperature	°C	148	

Note:

- 1. Steam consumption is at steady state conditions and at uninterrupted utility supply.
- 2. The maximum variation in the steam pressure shall not be more than ± 0.05 kg/cm2.
- 3. Steam consumption mentioned above is net consumption excluding heat Losses.
- 4. At turn down capacity of plant steam consumption is not linear & will be higher.
- 5. Maximum Steam consumption is based on the upset operation in the plant. Steam system shall be designed for the Maximum Load.

12.3. INSTRUMENT AIR:

Sr. No.	Description	Unit	Value
1.	Normal Load	Nm ³ /hr	6.3
2.	Peak Load	Nm ³ /hr	6.5
3.	Pressure at inlet of the Instrument air Header	Bar (g)	6

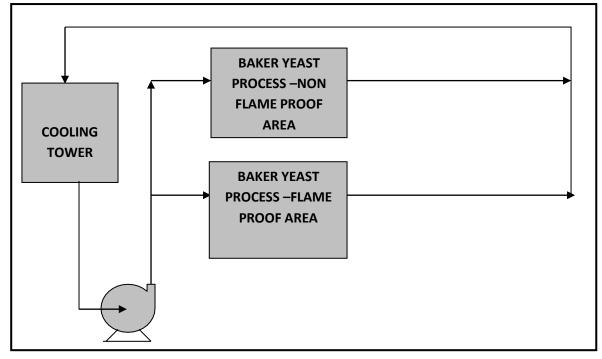
Note:

1. Instrument air should be Clean, dry and Oil free with dew point of (-) 40° C.

12.4. ELECTRICITY (POWER SUPPLY):

Sr. No.	Description	Unit	Normal Load
1.	Electrical Power –Connected	KW	340
2	Voltage	V	415 VAC +/- 10 %
3	Frequency	Hz	50 Hz +/- 5 %
4	Phase	-	3 Phase
5	Supply	-	4 Wire Supply

12.5. COOLING WATER CAPACITY & COOLING WATER PUMP:


11.5.1 Cooling Water Recirculation Rate:

Sr. No.	Section	Inlet Temp ⁰ C	Outlet Temp ⁰ C	Recirculation Rate
				(design) m ³ /hr. (**)
1.	Baker's yeast Process	28 to 30	33 to 35	180-200

12.5.2. Cooling Water Recirculation Pump:

Section	Quantity	Flow rate/Each	Head (m)
	(Op+ std.by)	(m3/hr)	
Cooling Water Recirculation Pump	2+1	100	20

12.5.3. Schematic Cooling Water Circuit:

Note:

- Mentioned quantities are based on maximum cooling water supply temperature of 28-30°C.
- Cooling water Recirculation Pump (2 Operating + 1 Standby) is considered for design.
- 3. (**) All above Cooling water Requirement are with 10 % Margin.

Specification C – Cooling Water recirculation

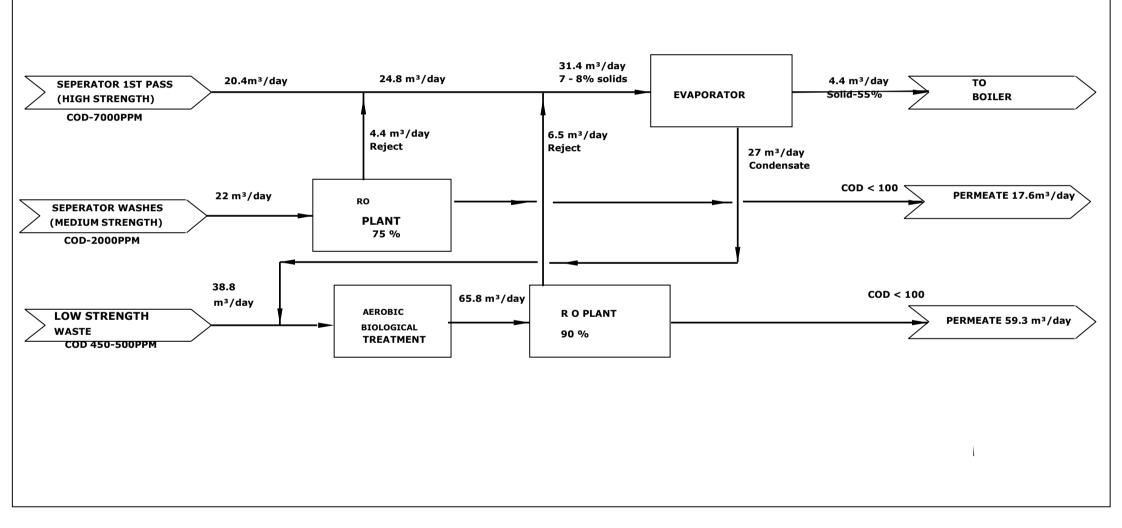
Parameter	Unit	Permissible Limits
рН	-	7-9
H ₂ S	mg/l	Nil
Residual Free Chlorine	mg/l	< 1
Total Hardness(Expressed as CaCO ₃)	mg/l	<300
Total Dissolved Solids	mg/l	<3500
Silica (SiO ₂)	mg/l	<100
Chloride	mg/l	<300
Sulphate	mg/l	<600
Turbidity	NTU	<10
Total Suspended Solids	Mg / Lit	< 20

Note:

mg/lit – Parts per Million (PPM).

1. Complete draining of the cooling water from the equipment needs to be ensured during Shut-down.

2. Cooling Water Recirculation quality should be filtered, potable, and free from algae and Suspended solid- like sand, sludge etc.


12.6.ETP – EFFLUENT TREATMENT PLANT

Basis: 2MT Compressed yeast per day
1 MT Active dried yeast per day
Considering compressed yeast as a basis for yeast generation per day = 4.7MT
No. of working days = 300
So, total yeast production per annum = 300 x 4.7 =1410
=<u>1410 TPA BAKER'S YEAST</u>

Effluent generation is a common by-product of the production of baker's yeast. The effluent from a baker's yeast plant is typically classified as organic wastewater, characterized by high concentrations of organic matter, such as carbohydrates, proteins, and lipids. The effluent also contains nutrients such as nitrogen and phosphorus, as well as residual yeast cells, cleaning agents, and disinfectants used in plant sanitation.

The high organic load of baker's yeast plant effluent can make it challenging to treat and dispose of. However, there are several treatment options available, including aerobic and anaerobic biological treatment, physical-chemical treatment, and membrane filtration. The choice of treatment method will depend on factors such as the volume and composition of the effluent, as well as local regulations and environmental considerations. Effective treatment of baker's yeast plant effluent is crucial for ensuring compliance with environmental regulations and minimizing the plant's impact on the surrounding ecosystem. Proper treatment and management of effluent can also help to minimize the plant's operating costs and improve its overall sustainability performance.

EFFLUENT GENERATION FOR 1410 TPA BAKER'S YEAST

CONCLUSION

Saccharomyces cerevisiae is a versatile microorganism with numerous applications in different industrial sectors, including food, beverage, pharmaceutical, and environmental industries. Its wide range of metabolic capabilities and its ability to tolerate harsh conditions make it an attractive microorganism for various biotechnological applications. Through years of research and development, the use of S. cerevisiae has grown tremendously, and its industrial significance cannot be overstated.

In the food and beverage industry, S. cerevisiae plays a crucial role in the production of fermented foods and beverages such as bread, beer, wine, and cheese. The unique aroma, flavour, and texture of these products are attributed to the metabolic activities of S. cerevisiae during fermentation. In the pharmaceutical industry, S. cerevisiae has been used as a model organism for studying the genetic and metabolic pathways of eukaryotic cells. It has also been employed in the production of recombinant proteins, vaccines, and therapeutic agents.

The design of a baker's yeast production plant from cane molasses involves various parameters, such as reactor type, fermentation conditions, and downstream processing methods. The use of a fed-batch reactor with optimal fermentation parameters, such as pH, temperature, and aeration rate, is crucial in achieving maximum yeast growth and productivity. The implementation of downstream processing methods, including centrifugation, fluid bed drying, and packaging, also plays a vital role in ensuring the quality and shelf-life of the final product.

The project economics of the proposed baker's yeast production plant also highlights the importance of a thorough feasibility study, including capital and operating costs, revenue streams, and profitability analysis. The payback period of 2.5 years for the proposed plant is promising and indicates that the project is financially viable. The sensitivity analysis also highlights the impact of varying input costs on the production of baker's yeast and suggests strategies to mitigate these risks.

105

Overall, the design of a sustainable and profitable baker's yeast production plant from cane molasses is feasible and can contribute to the food industry's growth and development. The implementation of novel technologies and techniques, such as genetic engineering and continuous fermentation, can further enhance the process efficiency and product quality. Further research and development are needed to explore the full potential of S. cerevisiae in various industries, including pharmaceutical, bio-research, and environmental technologies

S. cerevisiae has also found applications in environmental biotechnology, such as in the treatment of wastewater and the production of biofuels. Its ability to tolerate various environmental stresses, including high salinity, temperature, and pH, makes it an ideal candidate for these applications.

Despite the numerous applications of S. cerevisiae, there is still room for further research and development. The understanding of its genetic and metabolic pathways continues to evolve, opening up new possibilities for its use in various biotechnological applications. Moreover, the development of advanced bioprocess engineering techniques such as metabolic engineering and systems biology has the potential to improve the yield and efficiency of S. cerevisiae-based bioprocesses.

REFERENCES

- Meignen, B., Onno, B., Gélinas, P., Infantes, M., Guilois, S., & Cahagnier, B. (2001). Optimization of sourdough fermentation with Lactobacillus brevis and baker's yeast. *Food microbiology*, 18(3), 239-245.
- Van Hoek, P. I. M., Van Dijken, J. P., & Pronk, J. T. (1998). Effect of specific growth rate on fermentative capacity of baker's yeast. *Applied and environmental microbiology*, 64(11), 4226-4233.
- Hartwell, L. H. (1974). Saccharomyces cerevisiae cell cycle. *Bacteriological reviews*, 38(2), 164-198.
- Vieira, É. D., Andrietta, M. D. G. S., & Andrietta, S. R. (2013). Yeast biomass production: a new approach in glucose-limited feeding strategy. *Brazilian Journal of Microbiology*, 44, 551-558.
- Bai, F. Y., Han, D. Y., Duan, S. F., & Wang, Q. M. (2022). The ecology and evolution of the Baker's yeast Saccharomyces cerevisiae. *Genes*, 13(2), 230.
- Trivedi, N. B., Jacobson, G. K., Tesch, W., & Friend, J. P. (1986). Bakers' yeast. *Critical Reviews in Biotechnology*, 4(1), 75-109.
- Reed, G., Nagodawithana, T. W., Reed, G., & Nagodawithana, T. W. (1990). Baker's yeast production. *Yeast technology*, 261-314.
- Patrick K. Mwesigye, John P. Barford, Transport of sucrose by Saccharomyces cerevisiae, Journal of Fermentation and Bioengineering, Volume 77, Issue 6,1994, Pages 687-690
- Kennedy, E. K., Gable, K., Niewola-Staszkowska, K., Abreu, S., Johnston, A., Harris, B. M., ... & Bankaitis, V. A. (2019). Yeast as a tool for studying sphingolipid metabolism: From yeast to mammals. FEBS letters, 593(18), 2364-2387.
- 10. Liu, Y., Chen, C., Liu, B., & Wu, Z. (2019). Yeast as a tool for studying DNA replication and repair. Microbial Cell, 6(11), 516-526.
- Blázquez, B., & Borrero-López, O. (2017). Saccharomyces cerevisiae: a versatile biocatalyst for the environmentally-friendly synthesis of organic compounds. Journal of Industrial Microbiology & Biotechnology, 44(8), 1163-1174.

- Papanikolaou, S., & Aggelis, G. (2011). Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 113(8), 1031-1051.
- Gibson, B. R., Lawrence, S. J., Leclaire, J. P. R., Powell, C. D., & Smart, K. A. (2007). Yeast responses to stresses associated with industrial brewery handling. FEMS microbiology reviews, 31(5), 535-569.
- Arslan, T., Aydogan, M. N., & Aydogan, A. (2010). The use of Saccharomyces cerevisiae in the production of fermented beverages. Scientific Research and Essays, 5(22), 3569-3576.
- Birch, A. N., Petersen, M. A., Arneborg, N., & Hansen, A. S. (2013). Influence of commercial baker's yeasts on bread aroma profiles. *Food Research International*, 52(1), 160-166.
- Verstrepen, K. J., Iserentant, D., Malcorps, P., Derdelinckx, G., Van Dijck, P., Winderickx, J., Delvaux, F. R. (2004). Glucose and sucrose: hazardous fast-food for industrial yeast? *Trends in biotechnology*, 22(10), 531-537.
- 17. Attfield, P. V. (1997). Stress tolerance: the key to effective strains of industrial baker's yeast. *Nature biotechnology*, *15*(13), 1351-1357.
- 18. Europe patent no. EP0821057B1- Baker's yeast -1997.
- Alves-Araújo, C., Pacheco, A., Almeida, M. J., Spencer-Martins, I., Leão, C., & Sousa, M. J. (2007). Sugar utilization patterns and respiro-fermentative metabolism in the baker's yeast Torulaspora delbrueckii. *Microbiology*, 153(3), 898-904.
- George, S., Larsson, G., Olsson, K., & Enfors, S. O. (1998). Comparison of the Baker's yeast process performance in laboratory and production scale. *Bioprocess Engineering*, 18, 135-142.
- 21. Van Hoek, P., de Hulster, E., van Dijken, J. P., & Pronk, J. T. (2000). Fermentative capacity in high-cell-density fed-batch cultures of baker's yeast. *Biotechnology and bioengineering*, 68(5), 517-523.
- 22. Karki, T. B., Timilsina, P. M., Yadav, A., Pandey, G. R., Joshi, Y., Bhujel, S., & Neupane, K. (2017). Selection and Characterization of Potential Baker's Yeast from Indigenous Resources of Nepal. *Biotechnology research international*, 2017.

- 23. Kundu, S., Panda, T., Majumdar, S. K., Guha, B., & Bandyopadhyay, K. K. (1984). Pretreatment of Indian cane molasses for increased production of citric acid. *Biotechnology and bioengineering*, 26(9), 1114-1121.
- Struyf, N., Van der Maelen, E., Hemdane, S., Verspreet, J., Verstrepen, K. J., & Courtin, C. M. (2017). Bread dough and baker's yeast: An uplifting synergy. *Comprehensive Reviews in Food Science and Food Safety*, 16(5), 850-867.
- 25. Mamun-Or-Rashid, A. N. M., Lucy, T. T., & Pramanik, M. K. (2022). Isolation, Identification, Optimization of Baker's Yeast from Natural Sources, Scale-Up Production Using Molasses as a Cheap Carbohydrate Source, and Evaluation for Bread Production. *Applied Microbiology*, 2(3), 516-533.
- 26. Bose, K., and T. K. Ghose. "Studies on continuous fermentation of Indian cane sugar molasses by yeast." *Process Biochem.* ;(*United Kingdom*) 8, no. 2 (1973).
- Brejning, J., & Jespersen, L. (2002). Protein expression during lag phase and growth initiation in Saccharomyces cerevisiae. *International journal of food microbiology*, 75(1-2), 27-38.
- 28. Medawar, W., Strehaiano, P., & Délia, M. L. (2003). Yeast growth: lag phase modelling in alcoholic media. *Food Microbiology*, 20(5), 527-532.
- 29. Gélinas, P. (2017). Compressed baker's yeast: Mapping patents on post-fermentation processes. *Comprehensive Reviews in Food Science and Food Safety*, *16*(3), 456-476.
- 30. Wang, H. Y., Cooney, C. L., & Wang, D. I. (1977). Computer-aided baker's yeast fermentations. *Biotechnology and bioengineering*, *19*(1), 69-86
- 31. Kunitz, M. (1952). Crystalline inorganic pyro phosphatase isolated from baker's yeast. *The Journal of General Physiology*, *35*(3), 423-450.
- 32. Sweere, A. P. J. (1990). Response of bakers' yeast to transient environmental conditions relevant to large-scale fermentation processes.
- 33. Lejeune, A., Delvigne, F., & Thonart, P. (2010). Trehalose as a stress marker of the physiological impact of mixing on yeast production: scale-down reactors and minibioreactors investigations. *BASE*.
- Volkova, G. A., and L M. Roiter. 1973. Changes in the quality of yeast cream during storage (in Russian). Khlebopek. Konditer Prom. 11:13-16.

- 35. Wang, H. y, C. L. Cooney, and D. I. C. Wang. 1977. Computer aided baker's yeast fermentation. Biotechnol. Bioeng. 19:69-86.
- 36. Computer control of baker's yeast production. Biotechnol. Bioeng. 21:975-995.
- Whaite, P., S. Aborhey, E. Hong, and P. L. Rogers. 1978. Microprocessor control of respiratory quotient. Biotechnol. Bioeng. 20: 1459-1463.
- 38. Whaite, J. 1954. Yeast Technology. Chapman and Hall, London.
- 39. Williams, D., P. Yousefpour, and E. M. H. Wellington. 1986. On-line adaptive control of a fed-batch fermentation of Saccharomyces cerevisiae. Biotechnol. Bioeng. 28:631-645.
- 40. Woehrer, w., and M. Roehr. 1981. Regulatory aspects of baker's yeast in aerobic fedbatch cultures. Biotechnol. Bioeng. 23:567-581
- 41. Zikmanis, P. B., S. L Auzane, R. V. Kruce, L. P. Auzina, and M. J. Beker. 1983. Interrelationship between the fatty acid composition and metabolic pathways upon dehydrationrehydration of the yeast Saccharomyces cerevisiae. Eur. 1. Appl. Microbiol. Biotechnol. 18:298-302
- 42. Kulp, K. (2003). Baker's yeast and sourdough technologies in the production of US bread products. In *Handbook of dough fermentations* (pp. 121-168). CRC Press.
- 43. Zikmanis, P. B., S. L Auzane, L. P. Auzina, M. V. Margevicha, and MJ. Beker. 1985. Changes of ergosterol content and resistance of population upon drying-rehydration of the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 22:265-267.
- 44. Yeh, L. T., Charles, A. L., Ho, C. T., & Huang, T. C. (2009). A novel bread making process using salt-stressed baker's yeast. *Journal of food science*, 74(9), S399-S402.
- Shima, J., Hino, A., Yamada-Iyo, C., Suzuki, Y., Nakajima, R., Watanabe, H., & Takano, H. (1999). Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial baker's yeast. *Applied and environmental microbiology*, 65(7), 2841-2846.
- 46. Takagi, H., & Shima, J. (2015). Stress tolerance of baker's yeast during bread-making processes. *Stress Biology of Yeasts and Fungi: Applications for Industrial Brewing and Fermentation*, 23-42.
- 47. Gélinas, P. (2016). Aeration and foam control in baker's yeast production: mapping patents. *Comprehensive Reviews in Food Science and Food Safety*, *15*(2), 371-391.
- 48. Blanco, C. A., Rayo, J., & Giralda, J. M. (2008). Improving industrial full-scale production of baker's yeast by optimizing aeration control. *Journal of AOAC International*, 91(3), 607-613.

- 49. Halász, A., & Lásztity, R. (2017). Use of yeast biomass in food production. Routledge.
- 50. Pankaj, K. Khandelwal, How to make a better P&ID, Chemical industry, Digest special issue- Consultancy & engineering (1997
- 51. Junker, B. H. (2004). Scale-up methodologies for Escherichia coli and yeast fermentation processes. *Journal of bioscience and bioengineering*, 97(6), 347-364.
- 52. Soni, A. C., More, S. V., & Badgujar, M. D. (2019). U.S. Patent No. 10,428,396. Washington, DC: U.S. Patent and Trademark Office.
- 53. Jain, R., Mahajan, D. M., Mistry, S. R., Jagtap, R. S., Bilaiya, M. S., Singh, R. K., ... & Kumbhar, P. S. (2021). U.S. Patent Application No. 16/772,297.
- 54. S.P. Singh, Praj Industries Pune, Identification & feasibility report, Process Economics & Process Engineering, Nirali Prakashan, Pune, Oct 2002.
- 55. Hansen, J. Ø., Lagos, L., Lei, P., Reveco-Urzua, F. E., Morales-Lange, B., Hansen, L. D. & Øverland, M. (2021). Down-stream processing of baker's yeast (Saccharomyces cerevisiae)–Effect on nutrient digestibility and immune response in Atlantic salmon (Salmo salar). *Aquaculture*, 530, 735707.
- 56. Pejin, D. J., Grujić, O. S., Pejin, J. D., & Kocić-Tanackov, S. D. (2009). Effect of yeast storage temperature and flour composition on fermentative activities of baker's yeast. *Zbornik Matice srpske za prirodne nauke*, (116), 305-313.
- 57. Woehrer, W., & Roehr, M. (1981). Regulatory aspects of bakers' yeast metabolism in aerobic fed-batch cultures. *Biotechnology and Bioengineering*, 23(3), 567-581.
- 58. Takagi, H., & Shima, J. (2015). Stress tolerance of baker's yeast during bread-making processes. *Stress Biology of Yeasts and Fungi: Applications for Industrial Brewing and Fermentation*, 23-42.
- 59. El-Helow, E. R., Elbahloul, Y., El-Sharouny, E. E., Ali, S. R., & Ali, A. A. M. (2015). Economic production of baker's yeast using a new Saccharomyces cerevisiae isolate. *Biotechnology & Biotechnological Equipment*, 29(4), 705-713.
- 60. Langejan, A. (1974). U.S. Patent No. 3,843,800. Washington, DC: U.S. Patent and Trademark Office.
- Stear, C. A. (1990). Industrial Propagation and Production of Yeast for the Baking Industry. In *Handbook of Breadmaking Technology* (pp. 469-478). Boston, MA: Springer US.
- 62. United States patent no. 4,405,650- process for preparing com pressed yeast and the product of that process.

- 63. US Patent no. 3,089,77-METHOD OF PRODUCING BAKERS YEAST-1963
- 64. JP5285987B2-Japan: MC Food Specialties Inc- Baker's yeast-2008
- 65. Van Hoek, P., de Hulster, E., van Dijken, J. P., & Pronk, J. T. (2000). Fermentative capacity in high-cell-density fed-batch cultures of baker's yeast. *Biotechnology and bioengineering*, 68(5), 517-523.
- 66. El-Enshasy, H., Abul-Hamd, A., El-Sehrawi, M., Sidkey, N., & Azazzy, A. (2007). Improvement of cell mass production of thermotolerant Baker's yeast Saccharomyces cerevisiae using sugar cane molasses based medium in stirred tank bioreactor in batch and fed-batch cultures. *Deutsche Lebensmittel-Rundschau*, 103(6), 273-278.
- Snoep, J. L., Mrwebi, M., Schuurmans, J. M., Rohwer, J. M., & Teixeira de Mattos, M. J. (2009). Control of specific growth rate in Saccharomyces cerevisiae. *Microbiology*, 155(5), 1699-1707.
- 68. Soares, E. V. (2011). Flocculation in Saccharomyces cerevisiae: a review. *Journal of applied microbiology*, *110*(1), 1-18.
- 69. Toghraei, M. (2015). Plot Plan Design: Process Requirements. *Chemical Engineering*, 122(1), 52.
- 70. US Patent No. 4,973,560-YEAST STRANS, METHOD OF PRODUCTION AND USE IN BAKING-1990
- 71. Chlup, P. H., Bernard, D., & Stewart, G. G. (2008). Disc stack centrifuge operating parameters and their impact on yeast physiology. *Journal of the Institute of Brewing*, 114(1), 45-61.
- 72. Mannweiler, K., & Hoare, M. (1992). The scale-down of an industrial disc stack centrifuge. *Bioprocess engineering*, *8*, 19-25.
- 73. Bayrock, D., & Ingledew, W. M. (1997). Fluidized bed drying of baker's yeast: moisture levels, drying rates, and viability changes during drying. *Food research international*, 30(6), 407-415.
- 74. Türker, M., Kanarya, A., Yüzgeç, U., Kapucu, H., & Şenalp, Z. (2006). Drying of baker's yeast in batch fluidized bed. *Chemical Engineering and Processing: Process Intensification*, 45(12), 1019-1028.

PAPER NAME

FINAL -Tanya Shrivastava.docx

WORD COUNT	CHARACTER COUNT
16360 Words	85123 Characters
PAGE COUNT	FILE SIZE
107 Pages	1018.3KB
SUBMISSION DATE	REPORT DATE
May 21, 2023 12:03 PM GMT+5:30	May 21, 2023 12:04 PM GMT+5:30

• 13% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

- 7% Internet database
- Crossref database
- 6% Submitted Works database

Excluded from Similarity Report

- Bibliographic material
- Small Matches (Less then 8 words)

- 7% Publications database
- Crossref Posted Content database

Summary

• 13% Overall Similarity

Top sources found in the following databases:

- 7% Internet database
- Crossref database

- 7% Publications database
- Crossref Posted Content database
- 6% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1	"Yeast Biotechnology", Springer Science and Business Media LLC, 1987 Crossref	2%
2	Gerald Reed, Tilak W. Nagodawithana. "Yeast Technology", Springer Sc Crossref	2%
3	docu.tips Internet	1%
4	epdf.tips Internet	<1%
5	docplayer.net Internet	<1%
6	Israel Goldberg. "Single Cell Protein", Springer Nature, 1985 Crossref	<1%
7	Florida State University on 2020-09-22 Submitted works	<1%
8	"YEASTS", Encyclopedia of Food Sciences and Nutrition, 2003 Crossref	<1%