

PERFORMANCE ENHANCEMENT IN ANDROID MALWARE

DETECTION USING DIMENTIONALITY REDUCTION

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

INFORMATION SYSTEMS

Submitted by

SHAURYA SINGH

2K21/ISY/22

Under the supervision of

MR. RAHUL GUPTA

(Assistant Professor)

INFORMATION TECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana load, Delhi-110042

JUNE, 2023

 DELHI TECHNOLOGICAL UNIVERSITY
 (Formerly Delhi College of Engineering)

 Bawana Road, Delhi-110042

 CANDIDATE'S DECLARATION

I/We, SHAURYA SINGH, Roll No(s). 2K21/ISY/22 student of M.Tech.

INFORMATION SYSTEMS, hereby declare that the project report titled "Performance

Enhancement in Android Malware Detection using Dimensionality Reduction" which

is submitted by me/us to the Department of INFORMATION TECHNOLOGY, Delhi

Technological University, Delhi in partial fulfillment of the requirement for the award of

the degree of Master of Technology, is original and not copied from any source without

proper citation. This work has not previously formed the basis for the award of any Degree,

Diploma Associate ship, Fellowship or other similar title or recognition.

Place: Delhi SHAURYA SINGH

Date: 27th May, 2023

INFORMATION TECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project report titled " Performance Enhancement in Android

Malware Detection using Dimensionality Reduction " which is submitted by SHAURYA

SINGH, 2K21/ISY/22, INFORMATION TECHNOLOGY, Delhi Technological

University, Delhi in partial fulfillment of the requirement for the award of the degree of

Master of Technology, is a record of the project work carried out by the students under my

supervision. To the best of my knowledge this work has not been submitted in part or full

for any Degree or Diploma to this University or elsewhere.

Place: Delhi MR. RAHUL GUPTA

Date: 27th May, 2023 SUPERVISOR

 (Asst. Professor)

ABSTRACT

Android is one of the most common operating systems in smart phones in current

scenario. People are investing in smart phones and which in turn is leading to an exponential

increase in android users worldwide. As the number of android users are increasing day by

day, there is a wide range of target audience for malicious applications and related issues.

By using Android Malware detection, I can detect such malicious applications and prevent

the users from becoming the target of such malicious applications.

There are various strategies that have been already proposed for detecting Android

malware have been proposed in the literature, there is still a need for attribute selection

methods to be employed in Android malware detection systems. A machine learning-based

malware detection method is suggested in this work to differentiate Android malware from

benign apps. As the dimensionality reduction stage is introduced in this study to reduce the

dimensions in a dataset and to decrease the time of training phase. When the results are

obtained, it is observed that the accuracy of the mode is also improved by using

dimensionality reduction.

ACKNOWLEDGEMENT

I want to offer my thanks to my mentor Mr. Rahul Gupta for his constant support,

patience and for making a very positive atmosphere for finishing my report. His motivation

and help contributed tremendously to the successful completion of the report. He

additionally assisted me with lot of Research, and I came to know about such countless new

things. Last but not the least, I want to express my gratitude towards him for monitoring the

progress and giving me significant feedback.

CONTENTS

Cover Page & Title Page

Candidate's Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Contents v

List of Figures vii

List of Tables viii

 CHAPTER 1 INTRODUCTION…………………………………..…………1

1.1 General………………………………………………………………………..1

1.2 Types of attacks…………………………………………………………….....4

1.3 Objective……………………………………………………………………..5

1.4 Structure ………………………………………………………………………....6

CHAPTER 2 LITERATURE SURVEY..…………………………………….....7

2.1 Android Platform Application Components and Security ………………………....8

2.2 Introduction to application analysis techniques ……………………………..12

2.3 Static Analysis Based Malware Detection…………………………………...13

2.3 Dynamic Analysis Based Malware Detection………………………………..16

2.4 Hybrid Analysis Based Malware Detection …………………………………18

CHAPTER 3 PROPOSED METHODOLOGY……………………………..21

3.1 Overview………………………………………………………………………..21

3.2 Feature Extraction …………………………………………………………..23

 3.3 Dataset……………………………………………………………………….24

 3.4 Dimensionality Reduction…………………………………………………...25

3.4.1 Feature Selection…………………………………………………………..25

3.4.2 PCA…………………………………………………………………….....26

3.4.3 LDA………………………………………………………………………...27

 3.4.4 t-SNE……………………………………………………………………..28

 3.5 Classification Algorithm…………………………………………………...29

 3.5.1 Xgboost…………………………………………………………………..29

 3.5.2 SVM……………………………………………………………………...31

 3.5.3 Decision Tree…………………………………………………………….32

 3.5.4 MLP……………………………………………………………………...33

 CHAPTER 4 IMPLEMENTATION AND RESULT…………………....36

4.1 Algorithms used and Performance measure……………………………….....36

 4.2 Result Evaluation and Conclusion…………………………………………...38

 4.3 Future Work………………………………………………………………....41

 REFERENCES………………………………………………………………...42

LIST OF FIGURES

1. Global Android Malware Statistics 2020……………………………………………………..3

2. Malware attacks by industries………………………………………………………………..5

3. Android application package contents……………………………………………………....10

4. Android platform main components………………………………………………………...11

5. Behavior-Based Malware Detection Framework………………...……………………….….12

6. Proposed Methodology flow chart……………………………………………………………21

7. Feature Extraction……………………………………………………………………….…...22

8. Data Distribution……………………………………………………………………………23

9. Dataset: Missing Values vs Column name………………………………………………….24

10. Dataset Description after preprocessing…………………………………………………….25

11. Principal Component Analysis……………………………………………………………...27

12. t-SNE data Visualization……………………………………………………………………29

13. SVM classification using boundary decision or hyperplane………………………………...32

14. Decision Tree………………………………………………………………………………..33

15. Multilayer Perception……………………………………………………………………….35

16. 2- dimensional t-SNE projection of dataset (benign and malware)…………………………39

17. 2-dimentional t-SNE projection of benign applications from dataset……………………….39

18. 3-dimensional t-SNE projection of dataset (benign and malware) ………………………….40

LIST OF TABLES

1. Worldwide Smartphone Operating System Market Share 2020…………………2

2. Result and Comparison table………………………………………………...…41

1

CHAPTER 1

INTRODUCTION

1.1 GENERAL

 Since the first known computer virus was discovered in 1970, albeit an experimental

one, malicious software, often known as malware, has been a component of computing.

Since then, malware has developed both in terms of diversity and the necessity to categorize

its applications according to how they spread and/or how they harm their victims. The

ongoing conflict between malware developers, who continuously innovate by finding new

attack vectors and techniques, and security professionals, who are continually developing

new kinds of malware defense and prevention. The public's ability to access the Internet

increased its importance as a tool for a range of distant jobs, notably communication

through electronic mail and social networking sites, personal banking, and other activities

. For attackers, these jobs are particularly alluring since they include sensitive information.

Additionally, virus creators can distribute harmful software very effectively on the Internet

to gather the information [3].

 Despite the fact that most attacks focus on laptops and desktops, the growing

number of smartphones and resulting increase in their popularity made these mobile

devices an interesting attack vector for malware makers [3]. In fact, Statista predicts that

by 2023, there will be 7.33 billion mobile and smartphone users worldwide, up from 3.8

billion in 2016 [4]. This is a result of their portability, high computational power, capacity

to connect to the Internet everywhere, and ability to extend functionality by downloading

software applications from application stores.

One of the fastest growing smart phone operating systems is android which has

2

occupied around more than 80% of the shares in market due to its open-source approach,

providing a free Integrated Development Environment (IDE). Unlike its primary rival iOS,

which is extremely rigid and thorough, Android has no hardware constraints and a more

flexible procedure for app approval. Additionally, publishing iOS programs requires paying

a yearly subscription fee, providing another barrier to entry that provides insight into why

Android is more popular. The operating system for Android also permits the installation of

programs from unreliable sources and third-party application providers. There are many

services and millions of applications for android operating systems with various

functionalities like messaging, callings, applications based on locations, payment services,

shopping applications and gaming etc. As a result, malware detection techniques of Android

application stores are less effective since they are unable to keep up with the rate of malware

development.

 As the number of android users are increasing every coming day, it attracts the

cybercriminals to a large extent. Cyber criminals develop malicious applications, or they

perform activities that violates cyber security. According to the studies in 2017 malware

count in android operating systems reaches around 20 lakhs.

Table 1: Worldwide Smartphone Operating System Market Share 2020

 To decide if a submitted application will be granted admission into the store, these

businesses typically have an application screening procedure. For instance, the Google Play

Store's application screening procedure involves examining to determine if it adheres to

3

Android base-level security, then going through an automated review and a manual review.

Developers must also abide by the developer policies for their applications to be distributed.

If these rules are broken, the developer gets notified that the application is not

published, and once it fixes the problems, it can be resubmitted for evaluation. In addition,

violations of the developer policies may result in the suspension of the application.

Malware or other persistent violations may also result in the deactivation of developer-

owned accounts. When an application is approved for review and added to the Google Play

Store, Google Play Protect continuously monitors it to ensure it is secure for Android

devices and uses machine learning to determine malicious software and activities like fraud

and impersonating someone else.

 There are different ways in which malicious applications are being developed.

Based on the studies on how attacks are performed in current scenarios and present

literature information.

Fig. 1: Global Android Malware Statistics 2020

4

1.1 TYPES OF ATTACKS

Following lists the types of malwares commonly used for criminal attacks:

Trojan:

Trojan is malicious set of code of software that appears to be authentic and safe but have

harmful intensions to control the system activities.

Worms:

Another type of malware is warms. Worms replicates itself and then it spreads over the

system of networks.

Backdoor:

Backdoors are the part of programs of software that are hidden. Upon installing the

software, such programs takes unauthorized access to the system and controls the

system remotely by the attackers.

Botnets: Botnets are the network of infected or malicious systems or computers which is

controlled by the master attacking party.

Covert channel:

The vulnerable devices that allow the contained information to leak between the

operations or processes.

Automatic Calls and SMS:

There are few special numbers available which upon calling does criminal activities like

increasing the users bill etc.

5

There are around 50+ variants of malwares present of each type of malware.

Fig.2: Malware attacks by industries

To help reduce the spread of Android malwares, several machine learning algorithms that

are provided with characteristics that are extracted through application of static analysis to

a significant number of Android applications offered will be tested in this thesis.

1.2 OBJECTIVES

 Unlike the majority of machine learning-based Android malware detection

algorithms described in the literature, this research is conducted using real, up-to-date data

on a large scale. In order to improve Android malware detection, the main objective of this

thesis is to discover whether using machine learning techniques may be a successful

strategy.

 Additionally, the application of LDA, PCA, and t-SNE dimensionality reduction

algorithms is demonstrated. The accuracy of the model's classification of the programs into

legitimate software and malicious software is then evaluated by applying the reduced

6

dataset to machine learning methods. To comprehend and evaluate the effectiveness of the

algorithms, a thorough comparison of the findings has been made after applying the

machine learning models to the dataset.

1.4 STRUCTURE

 This thesis' remaining sections are organized as follows: An overview of the mobile

malware detection architecture, with a focus on the Android platform, will be presented in

Chapter 2. This will be followed by an overview of the security and application components

of the Android platform, and finally a review of the literature on static, dynamic, and

hybrid-analysis-based machine learning detection approaches.

 In Chapter 3, the technique suggested for the experimental procedures in this thesis,

the justification for its acceptance, and the results are all explained. The outcomes of each

experimental procedure will be presented and discussed in Chapter 4. At the end, of thesis,

some topics for more research has been proposed.

7

CHAPTER 2

LITERATURE SURVEY

 Mobile computing technology has been advancing quickly due to how desirable

these features are to end users, and with the introduction of smartphones, this trend is

continuing due to smartphones' ability to perform data processing tasks usually carried out

by desktop computers while also offering a mobile platform [4]. Mobile applications

provide a wide range of services, including trade, personal banking, health and fitness,

messaging, and payment gateways. Device stores are primarily responsible for managing

these software programs. Mobile devices are a great target for malware writers because of

the enormous amount of data they hold, most of it is private and sensitive data. The most

common threats from which Android platforms suffer include SMS trojans, spyware,

botnets, aggressive adware, and ransomware. It is as a result of the fact that, out of the two

operating system platforms that are most frequently used, iOS and Android, Android

platforms are the most generally utilized. In the current market, Android makes up to 76.4

percent of all mobile operating systems. This is due to Android OS's open-source

philosophy, which permits mobile industry manufacturers to use Android OS as the

foundation for their individual OS versions. Various alternatives exist to Google Play. This

gives malware attackers various places to propagate malicious software, especially for

those that tend to be a benign program. For instance, third party stores or it may also be

downloaded directly from the websites. Due to the convergence of these variables, there

has been a huge increase in Android malware, making it impossible for conventional

signature-based detection techniques to handle the growing volume. On order to stop the

spread of malware in Android, it is crucial to build automatic and sophisticated methods of

detection. By utilizing their potential for efficient malware identification and prevention on

Android, machine learning techniques present a possible path toward achieving this goal.

8

2.1 ANDROID PLATFORM APPLICATION COMPONENTS AND

SECURITY

Android is a mobile operating system that runs on an open-source Linux platform. It

includes a number of crucial elements. Additionally, Android provides an application

environment where programmers can set up their original applications. The

AndroidManifest.xml file, activities, services, and broadcast receivers are the four main

parts of these applications. These programs are created and then assembled into an Android

application package (APK) file. Resources, assets, the AndroidManifest.xml file, and files

with a.dex extension are all included in the APK file.

The AndroidManifest.xml file fulfils a significant function by supplying essential data

about an application to numerous entities, including the Android operating system, Google

Play, and the Android build tools. It is essential for guiding the system in its use of the

activities, services, and content providers available within the application. The necessary

permissions needed for the application to run are also specified [14].

Activities within an application can be thought of as discrete screens that act as

windows for the application's User Interface (UI). Depending on its requirements, an

application could include a number of different activities. In order to enable user interaction

with the program, activities are therefore essential.

Services are parts of a program that can do actions like network operations in the

background without being explicitly apparent to the user. They are capable of operating

continuously for a long time. Services, however, can also carry out foreground duties, such

playing music while a user uses another application. In these circumstances, it is crucial for

the service to alert the user when it is in use [19]. Applications use receivers as a way to

access the messages or events that interest them for use in later actions. For instance, the

application that started an event might send out a broadcast message when that event

occurs, such as when a file download is finished. All applications that have indicated a wish

to receive such notifications are informed by this broadcast message. As a result, using the

9

broadcast message that was received, the recipient programs can do their intended tasks.

From a security standpoint, the Android platform makes sure that users are protected by

giving each application a distinct User ID (UID) and requiring that they run in separate

processes. Additionally, apps run in their own application sandboxes that limit their ability

to interact with other applications and provide them only a limited amount of access to the

operating system. This security feature protects the operating system against potentially

harmful programs while also protecting apps [21]. As a result, applications need to

consciously share resources and data. This is made possible by the use of permissions,

where an application expressly states that it needs a certain set of rights in order to access

resources and device features outside of its sandbox [22]. Additionally, Android uses a

technology called secure inter-process communication that enables applications that are

executing in different processes to safely communicate with one another.

 The security and privacy of Android users are crucially dependent on permissions.

They are in charge of regulating how Android applications can access and make use of user

data (including contacts and emails) and system features (like the camera and Near Field

Communication). The fact that no application is by default given permission to carry out

actions that could possibly harm the user, other applications, or the operating system

highlights the importance of permissions in ensuring the security of the Android platform.

10

Fig 3 Android application package contents.

11

Fig. 4 Android platform main components.

 The analysis of recent developments in machine learning-driven Android malware

detection is covered in the parts that follow. Based on the methods used to extract features

from software for teaching the machine learning algorithms, these approaches can be

divided into three groups: static analysis-based, dynamic analysis-based, and hybrid

12

analysis-based methods.

2.2 INTRODUCTION TO APPLICATION ANALYSIS TECHNIQUES

 The Android operating systems provide a variety of security features. These

safeguards make an effort to restrict such dangerous activity in the system. The Android

permission control system is one of the key security measures offered by Android

platforms. In this system, the user must explicitly grant each application's request for each

permission. A few permissions include having access to contacts, files, and other sensitive

data stored on the device, such as email passwords and security questions. With such a

system, both the user and the developer must exercise greater caution when granting such

permissions.

Android platform is vulnerable to malicious applications. Various studies have been

carried out to develop the method to detect such malwares in android platforms. Based on

the features that can be extracted from the applications and then performing the analysis,

these analysis techniques are mainly categorized in two different types, namely static

analysis and dynamic analysis.

Fig.5 Behavior-Based Malware Detection Framework

13

Above information clearly concludes that there is an urgent need of an effective

android malware detection method to prevent the android users from malicious attacks. In

this report, various methodologies and implementations have been discussed and analyzed

in the literature review. To detect the malwares various features, have to be extracted from

the android applications. These features are basically categorized by analyzing them using

any of the three different analysis techniques named:

• Static

• Dynamic

• Hybrid

 The features are separated from the applications by static means in static analysis, for

example without running or executing the application. Although static analysis if quite

effective in detecting the existing malicious code but it may be challenging when malware

uses self- decrypting code or naive code. In dynamic analysis features are extracted from the

applications by executing it in run time environment. It is more capable of detecting the

harmful applications with obfuscated codes and encrypted codes. Dynamic analysis on

extracting the features in run time such as getting the network information, system calls, IP

addresses etc. Static analysis fails when the codes are downloaded dynamically during

execution. Hybrid analysis uses a combination of both the static and dynamic analysis

techniques.

2.3 STATIC ANALYSIS BASED MALWARE DETECTION

 A novel malware detection framework created by Peiravian and Zhu [15] uses

permissions and Application Programming Interface (API) calls as features. They used the

app Apktool to reverse engineer a specific APK and extract its AndroidManifest.xml file

and class files in order to gather this information. A binary vector representing the

permissions was created by extracting them from the AndroidManifest.xml file. The

appropriate entry in the vector was set to 1 if the any permission was requested in the

AndroidManifest.xml file; otherwise, it was put to 0. Similar to how API calls were

extracted from the class files, each application was given a binary vector representation and

14

a class label indicating whether it was benign or malware.

 To train their framework utilizing these attributes, the researchers used the Support

Vector Machine (SVM), Decision Tree (DT), and Bagging methods. They used 1250

benign samples and 610 malware samples in their dataset. Three different feature

combinations were used in the studies. The Bagging algorithm produced the greatest results

when just employing permissions, with an AUC (specified in Chapter 3.4) of 0.956. SVM

had the best performance when using simply API calls, with an AUC of 0.957. Finally, the

best method attained an AUC of 0.991 when combining permissions and API calls.

 An Android application that is installed on cellphones was created by D. Arp, M.

Spreitzenbarth, M. Hübner, and others [16] as a lightweight malware detection technique.

The malware detection procedure takes place immediately on the device, necessitating

effective static feature extraction for machine learning algorithm training. In order to

accomplish this, the researchers took features from two distinct sources: the

AndroidManifest.xml file using AAPT and the Dalvik bytecode using a specially created

disassembler to cut down on extraction time. Eight sets of features were the result of this.

 Four feature sets were extracted from the AndroidManifest.xml file, including

requested hardware components (e.g., GPS, camera access), requested permissions,

application components (activities, services, content providers, and broadcast receivers),

and filtered intents. The remaining four feature sets were extracted from the disassembled

Dalvik bytecode, namely restricted API calls, used permissions, suspicious API calls, and

network addresses.

 The Android permission system restricts a group of sensitive API calls known as

restricted API calls. Because illegal use without the appropriate permission could signify

privilege escalation attacks, these API methods are useful as features. In order to determine

which permissions are both requested and used, the used permissions set is produced by

comparing the restricted API calls with the requested permissions. The suspicious API call

set contains API calls that allow access to private information or resources, which could

potentially result in harmful action. The network address set also records the network

addresses that the application uses.

15

 These feature sets are combined into a single, binary-dimensional vector with about

545,000 features, which is then used to represent the data. If a feature is present in the

application, a value of 1 is assigned to each dimension in the vector; otherwise, a value of

0 is assigned. Every sample in the dataset, which consists of 131,611 samples from different

Android application stores, including the Android Malware Genome Project, is subjected

to this method.

 The explanation of the detection findings that the malware detection tool Drebin

generates is one of its supplementary features [16]. Drebin displays a screen with the top

features indexed by their weights together with a detection score showing the confidence

in the classification when an application is scanned. Along with descriptions of their

functionality, these top features highlight the elements that have the greatest influence on

determining whether an application is malicious or benign.

 The explanation of the detection findings that the malware detection tool Drebin

generates is one of its supplementary features. Drebin displays a screen with the top features

indexed by their weights together with a detection score showing the confidence in the

classification when an application is scanned. Along with descriptions of their

functionality, these top features highlight the elements that have the greatest influence on

determining whether an application is malicious or benign.

 Using a dataset of 500 malicious applications and 500 benign applications, these

attributes are used to train various machine learning algorithms. The training procedure

makes use of cross-validation 10 times. Linear Discriminant (LD), Cubic SVM, Weighted

K-NN, Complex Tree (DT), Linear SVM, and Course K-NN are among the methods that

were examined in the study. The algorithm with the highest accuracy, 91.7 percent, was

Cubic SVM. Additionally, the study found that using only intent filters as features produced

subpar classification results, but combining permissions and intent filters produced the

better results.

 In a study on Android malware detection, C. Zhao, W. Zheng, L. Gong, and others

16

used a subset of API calls as features [18]. A subset of API calls was produced by using a

regular expression pattern to retrieve the methods from each application's class.dex file

using Androguard. Each API request received a sensitivity score that indicated its

relationship to its recurrence in harmful programs. Tests were carried out, resulting in the

top 20 most sensitive API calls being chosen in order to identify the ideal amount of API

calls to be used as features.

 Decision Tree (DT) and k-Nearest Neighbors (K-NN) classifiers were used for the

ensemble model. A variety of performance indicators were assessed by the researchers,

including accuracy, false positive rate (FPR), and true positive rate (TPR). They found that

employing an ensemble model enhanced accuracy and FPR, resulting in an accuracy of

over 90% on average. Regarding accuracy and TPR, the K-NN and DT classifier

combination produced the best outcomes. The study also investigated the effects of various

weights given to the classifiers in the ensemble. It was determined that the ensemble

attained the maximum accuracy when giving K-NN and DT weights of 0.4 and 0.6,

respectively, yielding an accuracy of about 90%.

2.4 DYNAMIC ANALYSIS-BASED MALWARE DETECTION

 In contrast to static analysis, dynamic analysis involves running an application in a

sandbox environment to watch how it behaves. Real-time monitoring and analysis of the

operations of the program are made possible by this method. However, compared to static

analysis, dynamic analysis approaches typically take longer.

 System calls with zero variance are removed from the feature set to improve it,

leaving a final feature vector with 43 attributes (excluding the class label). These features

are used to train DT, RF, GBT, K-NN, SVM, ANN, and DL, among other machine learning

algorithms. Before retraining and testing the algorithms, three feature weighting

techniques—Information Gain (IG), Chi-square statistic, and correlation—are used to

improve algorithm performance.

 The frequency of system calls is used as a characteristic in Singh and Hofmann's

17

[19] suggested malware detection method. The Monkey tool is used to run each application

in an emulator during the initial stage. Clicks, touches, gestures, and system-level events

are all generated at random by Monkey. A feature vector with 337 items is produced as a

result of monitoring 337 different Linux system calls during execution. The count of a

particular system call's runtime invocations is represented by each element.

 System calls with zero variance are removed from the feature set to improve it,

leaving a final feature vector with 43 attributes (excluding the class label). These features

are used to train DT, RF, GBT, K-NN, SVM, ANN, and DL, among other machine learning

algorithms. Before retraining and testing the algorithms, three feature weighting

techniques—Information Gain (IG), Chi-square statistic, and correlation—are used to

improve algorithm performance.

 In their study [20] on malware identification, Bhatia and Kaushal used the frequency

of runtime system call invocations as characteristics. 50 harmful and 50 benign samples

made up their collection. The Monkey tool was used to run each application in the dataset

for a full minute inside of an Android Virtual Machine (VM). 500 gestures were produced

throughout this run, each with a 500 millisecond delay. To extract the frequency of the

called system calls during the execution time, the Linux command strace was

simultaneously run.

 A matrix was created from the retrieved data, with each row representing the

frequency of system calls for a single application and each column representing the

frequency of a specific system call across all apps. The classification job was chosen for

the J48 and RF algorithms.

 A malware detection method was created by Afonso, de Amorim, Grégio, Junquera,

and de Geus [21] that makes use of the frequency of API and system calls made at runtime.

They used the APIMonitor tool, which was run for five minutes on an emulator using

MonkeyRunner, to extract the API calls. Additionally, they added additional monitoring of

API requests relating to network access, process execution, string and file manipulation,

18

and information reading to the file used by APIMonitor to collect API calls. During this

time, system calls were extracted using the Linux program trace.

 The gathered data was combined into a feature vector with 74 API calls and 90

system calls, yielding 164 features in total. Each characteristic indicated how frequently a

particular API or system call was used. A dataset with 2,295 harmful samples and 1,485

benign samples was used for training and evaluation. To find the best algorithm for the

suggested method, a number of machines learning algorithms, including RF, J48, LR, NB,

BN, SMO, and IBk, were trained on this dataset. Using the aforementioned dataset, RF had

the greatest performance with an F1-score of 0.96. Then, RF was tested on a different

dataset made up of 1,483 benign samples and 2,257 malware samples.

2.5 HYBRID ANALYSIS BASED MALWARE DETECTION

 In their method to categorize apps, Zhao, Xu, and Zhang [22] combined static and

dynamic analysis techniques to extract permissions, API calls, and runtime behaviors as

static features and runtime behaviors as dynamic features. They used the Androguard

program to retrieve permissions from the AndroidManifest.xml file during the static

analysis phase. A binary permission feature vector with 45 dimensions representing the

presence of each permission in an application was created by optimizing the permission

feature set by deleting features that were infrequently used.

 They examined the classes.dex files using Androguard and the reverse-engineering

program baksmali to extract API calls. Using the Relief filter feature selection technique,

the acquired API feature vector was further refined to produce a final API call feature set

with 22 dimensions, each of which represents an API call.

Each program was installed and run on an emulator during the dynamic analysis

phase. The DroidBox tool monitored and picked up on harmful behaviors like automatic

network connections, malicious SMS sending, and private information logging while the

Monkey tool generated runtime behaviors. Each instance of each behavior was noted, then

19

the Relief algorithm was used to remove extraneous features. The approach produced a

final feature vector with 20 dimensions that included information on battery life, user

activity, network features, and other factors.

87 dimensions were added to the feature vector created from the retrieved static and

dynamic features. Randomly chosen subsets of 150 harmful and 150 benign samples were

utilized for training and testing on a dataset made up of 359 malware samples and 500

benign samples. The performance of many machines learning algorithms, including SVM,

K-NN, NB, DT, and RF, was assessed by the authors. The best method when static analysis

features were taken into account was RF, which had an accuracy of 92.07 percent. The

maximum accuracy, however, was attained by RF when using both static and dynamic

analytic characteristics, which resulted in a 94.89 percent accuracy.

Based on the results of the APK extraction procedure, Liu, Zhang, Li, and Chen [23]

suggested a novel approach that combines static and dynamic analysis. Static analysis is

performed on the application if Apktool can successfully decompile it. However, dynamic

analysis is used if the decomplication process fails to produce pertinent data, indicating the

employment of code obfuscation techniques. Each application's AndroidManifest.xml file

is extracted during the static analysis stage, and the permissions are then extracted and

mapped to a feature vector of 151 dimensions. Additionally, baksmali is used to extract

API calls, which are then mapped to a feature vector with 3262 dimensions. The final

feature vector, which has 3413 dimensions, is created by merging these two feature vectors.

A system call feature vector of 345 dimensions is constructed during the dynamic

analysis phase, and each dimension corresponds to the frequency of system calls that were

invoked. To extract these features, the ADB (Android Debug Bridge) program is used. The

Monkey tool is then used to run the application, and the Linux command trace is used to

track the called system calls.

The authors trained the K-NN, SVM, and NB algorithms using a dataset that included

500 malicious samples and 500 benign ones. When permissions were used as the feature

20

set, SVM had the highest accuracy (96.53%). SVM also performed best with an accuracy

of 99.07 percent when using API calls as features. SVM beat other methods, obtaining an

accuracy of 99.28% when permissions and API calls were combined. Finally, the best

algorithm was NB, which had a 90% accuracy when system calls were utilized as features.

21

CHAPTER 3

PROPOSED METHODOLOGY

3.1 OVERVIEW

Despite the growing number of malware applications, there is still no effective and

reliable approach for detecting them. We believe that the issue of identifying malware can

be handled using Machine Learning approaches, given the rising application of Machine

Learning in numerous fields.

Fig.6 Proposed Methodology flow chart

Our project intends to conduct a thorough and systematic investigation into malware

detection using machine learning techniques, as well as develop an effective ML model that

can classify applications into benign (0) and malicious (1) categories depending on the

requested app permissions. This research proposes:

22

• A technique which is available publicly and a metadata-based machine learning malware

detection strategy.

• Because feature selection is crucial in malware detection systems for Android, this research

includes permissions that are most distinctive. This phase has a great impact on the

enhancement of the detection model.

• Based on the permissions, design a model that can properly anticipate the Malicious

Application.

3.2 FEATURE EXTRACTION

Fig.7 Feature Extraction.

23

 3.3 DATASET

Dataset has 30,000 applications. It contains permissions of of all the applications in

the form of vectors (explained in feature extraction). 183 features have been extracted from

the feature extraction phase. It contains all permissions which includes dangerous

permissions, default permissions, administrative permissions etc. The last column is labeled

as class, where the benign applications are labeled ‘0’ and malicious applications are

labeled as ‘1’. Out of 30,000, there are 20,000 malwares and 9999 benign applications.

Fig.8 Dataset Distribution

24

Fig.9 Dataset: Missing Values vs Column name

Missing values in dataset is taken care by filling them with the mean of the remaining

values and then ignoring the NA values in the Application column.

25

Fig.10 Dataset Description after preprocessing

3.4 DIMENTIONALITY REDUCTION

3.4.1 FEATURE SELECTION

 Feature selection plays the most crucial role in machine learning methods. There are

various elements inside an application file(apk). It includes permissions, Java code,

certification, behavior of the application on the device and its behavior on the network. The

outcome of the experiment gets enhanced when the most helpful subset of features is

chosen from many options. There are various benefits of deploying feature selection phase:

• The dimensions of the dataset can be reduced by using feature selection methods

since you can quickly visualize the trend in data with fewer data.

• While analyzing the datasets it involves a large amount of data to be processed, so

by applying feature selection the dimension of the dataset reduces which in turn

reduces the time required for actual implementation. The training time of machine

learning algorithms is significantly reduced when a meaningful subset of features

26

is selected.

• Feature selection helps machine learning algorithms provide more accurate results

by removing noisy and irrelevant data from datasets.

3.4.2 Principal Component Analysis (PCA)

Columns in a dataset are converted into a new set of features called Principal

Components using the Principal Components Analysis (PCA) technique. With this method,

a significant amount of the data in the entire dataset is successfully condensed into fewer

feature columns. This enables the visualization of any class or cluster separation as well as

dimensionality reduction. The information contained in a column is the variance that is

included in it. Using the fewest number of columns feasible to convey data is the

fundamental goal of principal components analysis.

There are two main reasons for which PCA is used:

• Dimensionality Reduction: The data from a large number of columns is transformed

into principal components (PC) so that the first few PCs can explain a significant

portion of the overall data (variance). In Machine Learning models, these PCs can

be utilized as explanatory variables.

• Visualize Classes: For data with more than three dimensions, visualizing the

separation of classes (or clusters) is difficult (features). It’s frequently feasible to

notice a definite separation between the first two PCs.

 PCA has many uses, including data compression, feature selection, and data

visualization. In terms of data visualization, PCA makes it possible to portray high-

dimensional data in two or three more manageable dimensions, improving interpretability.

Another use of PCA is feature selection, which enables the discovery of important variables

in a dataset. Last but not least, PCA helps with data compression by lowering the

dimensionality of a dataset while maintaining important information.

27

Fig.11 Principal Component Analysis

3.4.3 Linear Discriminant Analysis (LDA)

 LDA is a further method for dimensionality reduction. LDA is typically used to

categorize supervised issues. This approach projects the features of a higher dimensional

space into a lower dimensional space. It is used to model distinctions between groups when

dividing two or more classes.

 Let's look at an example where two classes are shown on a 2-D plane with an x-axis

and a y-axis. LDA develops a new axis or straight line that successfully divides the data

points of the classes on a plane in order to efficiently categorizes between the classes. LDA

lowers a two-dimensional plane to a one-dimensional plane while maximizing class

separation.

28

3.4.4 t-SNE (t-distributed Stochastic Neighbor Embedding)

 T-distributed stochastic neighbor embedding (t-SNE) is a statistical technique for

displaying high-dimensional data by allocating a location on a two- or three-dimensional

map to each datapoint. The Stochastic Neighbor Embedding algorithm was developed by

Sam Roweis and Geoffrey Hinton in the beginning, and Laurens van der Maten gave the t-

distributed variant for it. This nonlinear dimensionality reduction method visualizes high-

dimensional data in a low-dimensional space of two or three dimensions. The unsupervised

non-linear dimensionality reduction method t-SNE (t-distributed Stochastic Neighbor

Embedding) is useful for data exploration and high-dimensional data visualization. It is

possible to use the approach to separate data that cannot be separated linearly because it

separates data in a non-linear manner.

 A good tool for understanding how data is organized and structured in higher

dimensions is t-SNE. Its main use is to convert complicated information into two- or three-

dimensional representations, which makes it easier to understand the data's underlying

relationships and patterns. The similarity measure between pairs of instances in both higher

and lower dimensions spaces is determined by the t-SNE technique. Then, two similarity

measures are optimized. Three distinct steps are taken to complete these operations.

• Points can have neighbors in both higher and lower dimensions according to the t-

SNE algorithm. A Gaussian kernel is first used to assess the pairwise similarity

between each data point in the high-dimensional space. The chance of choosing

points as neighbors is affected by their proximity, favoring closer points over those

that are farther apart.

• The suggested approach seeks to decrease the data's dimensionality while

preserving the relative similarity of the data points.

29

• The algorithm's goal is to reduce the difference in probability distributions between

the original high-dimensional data and its corresponding lower-dimensional

embedding. The lower-dimensional embedding is gradually changed until it

converges to a stable state in an iterative process employing gradient descent.

The development of clusters and sub-clusters of related data points in the lower-

dimensional space is made possible by the optimization process. This enables the

visualization of the higher-dimensional data's structure and linkages, giving insights into

its underlying patterns.

Fig.12 t-SNE Data Visualization

3.5 CLASSIFICATION ALGORITHMS

3.5.1 XG BOOST

 Machine learning models are frequently trained using the highly optimized and

scalable gradient boosting library known as XGBoost. It uses an ensemble learning

30

strategy, integrating the results of various weak models to produce a single, stronger

prediction. Extreme Gradient Boosting (XGBoost), sometimes known as "Extreme

Gradient Boosting," has become extremely popular because of its prowess in handling

massive datasets and delivering cutting-edge results in a variety of machine learning

applications, including regression and classification. Researchers and practitioners in the

field like it because of its effective use and excellent results.

 To handle enormous datasets and real-world data effectively, XGBoost has some

noteworthy features. Its capability to handle missing values well, which prevents the need

for labor-intensive data preprocessing, is one of its main advantages. With the aid of this

capability, XGBoost is able to handle missing value datasets from the real world with ease.

Additionally, XGBoost has built-in support for parallel processing, making it possible to

train models on huge datasets quickly. Because of its enhanced scalability and efficiency

due to parallelization, XGBoost is a strong option for machine learning applications.

 Due to its adaptability, it may be used for many different jobs. Additionally,

XGBoost provides significant levels of customizability, enabling users to adjust model

parameters in accordance with their own needs. Users can improve performance and

provide better results in their apps because to this flexibility. Extreme Gradient Boosting,

or XGBoost, is a machine learning package that has been enhanced and was developed by

academics at the University of Washington. It was created in C++ and was created primarily

to improve Gradient Boosting training, leading to better performance and efficiency.

 The XGBoost algorithm constructs decision trees in a sequential manner. Each

independent variable is given a weight, and the decision tree uses these weighted variables

as input to produce predictions. If the tree incorrectly predicts a variable, its weight is

increased, and the new variables are used in the subsequent tree. Each new tree in this

iterative process gets better than the one before it. These distinct predictors are used to

make the final forecast, creating a strong and reliable model. Regression, classification,

ranking, and custom prediction issues can all be solved using XGBoost.

31

3.5.2 SVM (Support Vector Machine)

 The Support Vector Machine (SVM) is a supervised learning technique used in

machine learning for both classification and regression tasks. SVM is mostly renowned for

its success in resolving classification issues, even though it may also be used to solve

regression problems.

 The SVM algorithm's fundamental goal is to locate the ideal decision boundary, or

hyperplane, that can successfully divide data points in an n-dimensional space into different

classes. Future data points can be accurately categorized using this hyperplane based on

how they are situated in relation to the decision boundary.

 The Support Vector Machine (SVM) technique creates a hyperplane that

distinguishes between various categories by using support vectors, which are extreme

points or vectors. These key cases are chosen by the SVM approach in order to precisely

define the decision boundary. SVM successfully divides data into distinct groups by

concentrating on the support vectors, which is how it derives its name. In an n-dimensional

space, a hyperplane represents the ideal decision border that can distinguish between

classes. The objective is to determine the border that will classify data points most

accurately, although there may be several lines or decision boundaries to divide the classes.

In SVM, the hyperplane is the name of this ideal decision boundary.

 The features included in the dataset determine the hyperplane's dimensionality. For

instance, the hyperplane will be a straight line in the case of two features (as seen in the

image). On the other hand, the hyperplane will be a two-dimensional plane if the dataset

comprises three features. The maximizing of margin is a guide while creating the SVM

hyperplane. One must select a hyperplane that maximizes the distance between the data

points in order to achieve the greatest separation between the classes. Support vectors are

the nearest data points or vectors that significantly affect the position of the hyperplane.

Because they support the hyperplane, they are referred to as support vectors.

32

Fig.13 SVM classification using boundary decision or hyperplane

3.5.3 DECISION TREE

 Although it is most frequently used for classification tasks, Decision Tree is a

supervised learning technique that may be used to solve both regression and classification

issues. It functions as a tree-like structure where the internal nodes stand in for a dataset's

features, the branches for the decision-making processes, and each leaf node for the

associated result.

 Decision Nodes and Leaf Nodes are the two different sorts of nodes that make up a

decision tree. While Leaf Nodes reflect the outcomes and have no further branches,

Decision Nodes are in charge of making decisions and have several branches. Based on the

features included in the submitted dataset, decisions or tests are carried out.

 By taking into account multiple factors and their accompanying outcomes, a

decision tree serves as a visual representation that presents viable solutions to a problem or

choice. The phrase "decision tree" refers to a process that follows a structure resembling a

tree, starting at the root node and branching out to form a tree-like arrangement. The CART

33

(Classification and Regression Tree) technique is used to create decision trees. A decision

tree basically asks a question, and depending on the response (Yes/No), divides the tree

into subtrees. Up until the leaf nodes, which stand in for the final results, this iterative

process continues.

Fig.14 Decision Tree

3.5.4 MLP (Multilayer Perceptron)

 Through the use of machine learning, computers can learn from data without explicit

programming. It has numerous uses in many different fields, such as predicting, speech

recognition, and picture recognition. The MLP classifier, or multi-layer perceptron, is a

widely used machine learning technique. An artificial neural network, or ANN, is a sort of

computer system created to simulate how the human brain works. The MLP classifier is

one such ANN.

 A training dataset is necessary for the MLP classifier to learn, making it a

supervised learning method. The input data (x) and associated output labels are included in

this dataset (y). The MLP classifier gains knowledge about how to map inputs to output

34

labels by utilizing the input data. The MLP classifier may make predictions on new data

once it has successfully mastered this mapping. The MLP classifier can forecast an output

label for a new data point (x) when it is entered (y).

 A flexible machine learning technique appropriate for both classification and

regression task is the MLP classifier. It is extensively used in a variety of fields, including

as voice and picture recognition. It has an input layer, a hidden layer, and an output layer

and is a member of the neural network family. The data are received by the input layer,

they are processed by the hidden layer, and the classification results are produced by the

output layer. It is a type of neural network that is distinguished by having numerous layers

of neurons or nodes. The first layer, also referred to as the input layer, is in charge of taking

in data. Information is saved and processed on the next layer, which is referred to as the

hidden layer. The third layer, which is the output layer, produces the categorization results

last.

 A set of weights that define a decision boundary between numerous classes must be

learned in order for the MLP Classifier to work. After the classifier has been trained using

a particular dataset that includes data points from each class, these weights are acquired.

After being trained, the classifier can be used to predict the class of new data points.

 A training dataset made up of data points corresponding to each class to be classified

is necessary in order to train an MLP Classifier. Each data point needs to have class-specific

labels and descriptive features or attributes. From the training data, the classifier derives a

set of weights that it uses to determine the distinction between classes. By computing the

distance between the new data point and the decision boundary established by the weights,

the classifier may then predict the class of new data points.

35

Fig.15 Multilayer Perceptron

36

CHAPTER 4

 IMPLEMENTATION AND RESULTS

4.1 ALGORITHMS USED AND PERFORMANCE MEASURE

 There are few classification algorithms applied in this study namely SVM,

XGboost, MLP and decision tree. Support Vector Machine is a classification-based

technology that uses a classifier algorithm. If the data size is small, it is quite handy. For

huge datasets, this approach is ineffective. Decision tree is another technique for supervised

learning. It can be implemented for both regression and classification problems. MLP

stands for Multi-Layer Perceptron, is a neural network that consists of multiple layers for

input and out and also there are some hidden layers between them. An application of

gradient-boosting decision trees is XGboost. On large datasets, XGboost performs quickly,

is simple to use, and is effective. Prior to the application of above algorithms, PCA and

LDA is applied to reduce the dimensions of the dataset and time of processing.

 This nonlinear dimensionality reduction method visualizes high-dimensional data in

a low-dimensional space of two or three dimensions. The unsupervised non-linear

dimensionality reduction method t-SNE (t-distributed Stochastic Neighbor Embedding) is

useful for data exploration and high-dimensional data visualization. It is possible to use the

approach to separate data that cannot be separated linearly because it separates data in a

non-linear manner. It is a good tool for understanding how data is organized and structured

in higher dimensions is t-SNE. Its main use is to convert complicated information into two-

or three-dimensional representations, which makes it easier to understand the data's

underlying relationships and patterns.

37

38

4.2 RESULT EVALUATION AND CONCLUSION

 A statistical method called PCA (Principal Component Analysis) is used for

multivariate analysis with the aim of lowering the dimensionality of a dataset. This is done

by creating new, uncorrelated variables by computing linear combinations of the original

variables. With the first main component having the highest variance, the second holding

the second-highest variance, and so on, the objective is to keep as much variance as

possible. The dataset can be reduced to any number of dimensions the user chooses.

 To effectively describe high-dimensional datasets in 2D and 3D space, the t-SNE (t-

distributed Stochastic Neighbor Embedding) dimensionality reduction approach was

developed [24]. It is noteworthy that the t-perplexity SNE's adjustable parameter roughly

estimates the number of close neighbors that each data point has. Additionally, it has a

parameter for learning rate that may be altered to accelerate the process. When utilizing t-

SNE, it is customary to select a perplexity number between 5 and 50. The graphical

representation was obtained by combining many t-SNE projections with different learning

rate and perplexity settings. The results in the representation, is graphically shown below.

Fig.16: 2- dimensional t-SNE projection of dataset (benign and malware)

39

Fig.17: 2-dimentional t-SNE projection of benign applications from dataset

Fig. 18: 3-dimensional t-SNE projection of dataset (benign and malware)

 The dataset used in this study was subjected to dimensionality reduction using the

PCA and LDA methods. The accuracy of the suggested model is deteriorating as the

dataset's number of columns increases. Now, PCA is applied to further decrease the

dimensionality of the dataset and to improve accuracy (Principal component Analysis).

After PCA is applied to the supplied dataset, the dimension is reduced from 173 to 10.

40

 The same dataset is also subjected to LDA in a similar manner. By using such

dimensionality reduction techniques, the processing time of the model is reduced, and its

accuracy has increased noticeably. Following this, a few machine learning methods have

been employed to categorize apps into malicious and benign ones.

Table 2: Result Comparison Table

 Above are the results obtained by using LDA and PCA algorithms and then

examining the accuracy by applying classification algorithms.

 By observing the above table, it can be concluded that algorithms like SVM and MLP

obtain better accuracy as compared to other algorithms like xgboost and Decision tree when

PCA is used in dimensionality reduction phase. Similarly, xgboost yields better results

when applied with LDA.

Dimensionality

Reduction

Algorithm Accuracy

obtained

PCA

Xgboost 76%

SVM 85%

Decision Tree 79%

MLP 85%

LDA

Xgboost 76%

SVM 69%

Decision Tree 69%

MLP 69%

41

4.2 FUTURE WORK

In this study, malware detection techniques and its proposed methodology has been

discussed. An additional phase named dimensionality reduction has been introduced and

the results obtained with and without this phase is observed and compared. This phase has

a great impact in the performance and accuracy of the model. The future work will be

focused in further more improving the accuracy of the model and also applying new

techniques of dimensionality reduction. Comparative study of various algorithms would be

done to ensure that the better results.

42

REFERENCES

[1] Şahin, Durmuş Özkan, Oğuz Emre Kural, Sedat Akleylek, and Erdal Kılıç. "A novel

permission-based Android malware detection system using feature selection based on linear

regression." Neural Computing and Applications (2021): 1-16.

[2] ARSLAN, Recep Sinan. "FG-Droid: Grouping Based Feature Size Reduction for Android

Malware Detection through Machine Learning." (2021).

[3] Feizollah, Ali, Nor Badrul Anuar, Rosli Salleh, and Ainuddin Wahid Abdul Wahab. "A

review on feature selection in mobile malware detection." Digital investigation 13 (2015): 22-

37.

[4 Li, Jin, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-An, and Heng Ye. "Significant

permission identification for machine-learning-based android malware detection." IEEE

Transactions on Industrial Informatics 14, no. 7 (2018): 3216-3225.

[5] Pan, Ya, Xiuting Ge, Chunrong Fang, and Yong Fan. "A systematic literature review of

android malware detection using static analysis." IEEE Access 8 (2020): 116363-116379.

[6] Pehlivan, Uğur, Nuray Baltaci, Cengiz Acartürk, and Nazife Baykal. "The analysis of

feature selection methods and classification algorithms in permission based Android malware

detection." In 2014 IEEE symposium on computational intelligence in cyber security (CICS),

pp. 1-8. IEEE, 2014.

[7] Kouliaridis, Vasileios, Nektaria Potha, and Georgios Kambourakis. "Improving android

malware detection through dimensionality reduction techniques." In International Conference

on Machine Learning for Networking, pp. 57-72. Springer, Cham, 2020.

[8] Şahin, Durmuş Özkan, Oğuz Emre Kural, Sedat Akleylek, and Erdal Kılıç. "Permission-

based Android malware analysis by using dimension reduction with PCA and LDA." Journal

of Information Security and Applications 63 (2021): 102995.

43

[9] Vega Vega, Rafael, Héctor Quintián, José Luís Calvo-Rolle, Álvaro Herrero, and Emilio

Corchado. "Gaining deep knowledge of Android malware families through dimensionality

reduction techniques." Logic Journal of the IGPL 27, no. 2 (2019): 160-176.

[10] Sangal, Aviral, and Harsh Kumar Verma. "A static feature selection-based android

malware detection using machine learning techniques." In 2020 International conference on

smart electronics and communication (ICOSEC), pp. 48-51. IEEE, 2020.

[11] Fatima, Anam, Ritesh Maurya, Malay Kishore Dutta, Radim Burget, and Jan Masek.

"Android malware detection using genetic algorithm based optimized feature selection and

machine learning." In 2019 42nd International conference on telecommunications and signal

processing (TSP), pp. 220-223. IEEE, 2019.

[12] Chakravarty, Sujata. "Feature selection and evaluation of permission-based Android

malware detection." In 2020 4th International Conference on Trends in Electronics and

Informatics (ICOEI)(48184), pp. 795-799. IEEE, 2020.

 [13] Zarni Aung, Win Zaw. "Permission-based android malware detection." International

Journal of Scientific & Technology Research 2, no. 3 (2013): 228-234.

[14] Talha, Kabakus Abdullah, Dogru Ibrahim Alper, and Cetin Aydin. "APK Auditor:

Permission-based Android malware detection system." Digital Investigation 13 (2015): 1-14.

[15] Peiravian, Naser, and Xingquan Zhu. "Machine learning for android malware detection

using permission and api calls." In 2013 IEEE 25th international conference on tools with

artificial intelligence, pp. 300-305. IEEE, 2013.

[16] Arp, Daniel, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and C.

E. R. T. Siemens. "Drebin: Effective and explainable detection of android malware in your

pocket." In Ndss, vol. 14, pp. 23-26. 2014.

[17] Kumaran, Monica, and Wenjia Li. "Lightweight malware detection based on machine

learning algorithms and the android manifest file." In 2016 IEEE MIT Undergraduate Research

Technology Conference (URTC), pp. 1-3. IEEE, 2016.

[18] Zhao, Chunlei, Wenbai Zheng, Liangyi Gong, Mengzhe Zhang, and Chundong Wang.

"Quick and accurate android malware detection based on sensitive APIs." In 2018 IEEE

international conference on smart internet of things (SmartIoT), pp. 143-148. IEEE, 2018.

[19] Singh, Latika, and Markus Hofmann. "Dynamic behavior analysis of android applications

for malware detection." In 2017 International Conference on Intelligent Communication and

Computational Techniques (ICCT), pp. 1-7. IEEE, 2017.

[20] Bhatia, Taniya, and Rishabh Kaushal. "Malware detection in android based on dynamic

analysis." In 2017 International conference on cyber security and protection of digital services

(Cyber security), pp. 1-6. IEEE, 2017.

44

[21] Afonso, Vitor Monte, Matheus Favero de Amorim, André Ricardo Abed Grégio, Glauco

Barroso Junquera, and Paulo Lício de Geus. "Identifying Android malware using dynamically

obtained features." Journal of Computer Virology and Hacking Techniques 11 (2015): 9-17.

[22] Zhao, Yang, Guangquan Xu, and Yao Zhang. "HFA-MD: An efficient hybrid features

analysis based Android Malware Detection Method." In Quality, Reliability, Security and

Robustness in Heterogeneous Systems: 13th International Conference, QShine 2017, Dalian,

China, December 16-17, 2017, Proceedings 13, pp. 248-257. Springer International Publishing,

2018.

[23] Liu, Yu, Yichi Zhang, Haibin Li, and Xu Chen. "A hybrid malware detecting scheme for

mobile Android applications." In 2016 IEEE International Conference on Consumer

Electronics (ICCE), pp. 155-156. IEEE, 2016.

[24] Van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing data using t-SNE." Journal

of machine learning research 9, no. 11 (2008).

45

46

47

