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ABSTRACT 
 
 

This research paper delves into the realm of railway safety, presenting a novel 

application of artificial intelligence to enhance real-time detection and prevention of 

potential rail track incidents. The study primarily focuses on two critical areas of object 

detection - rail track detection and tactical small object detection. Our customized 

dataset is based on real-world 4K video footage, capturing smaller objects like humans 

and miscellaneous debris present on the rail tracks that could lead to catastrophic 

accidents or derailments. In this research, we propose an innovative approach by 

employing the YOLOv5 model for accurate rail track detection and the application of 

a Global-Local Self-Adaptive Network (GLSAN) for efficient tactical small object 

detection. GLSAN significantly leverages attention mechanisms and multi-scale 

feature fusion, thus providing superior detection performance for small objects. 

Further, this study introduces the concept of 'knowledge generation' in object 

detection, using the metadata generated during the detection process to anticipate 

potential safety threats and take proactive safety measures. The outcomes of this study 

emphasize the efficacy of the proposed method, reflecting impressive accuracy and 

precision-recall values. This work promises a substantial contribution to the railway 

industry's quest for incident-free operations by potentially mitigating risks and 

enhancing railway track safety. Future directions for this research include refining the 

system's real-time performance and integrating multi-modal sensor data to further 

improve system robustness.
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CHAPTER 1 

INTRODUCTION 

1.1 Background 
Artificial Intelligence (AI) and computer vision technologies are emerging fields that 

have revolutionized the way we understand and interact with the world around us. 

Spanning a wide array of applications, these technologies have permeated nearly every 

facet of our daily lives, significantly enhancing productivity, efficiency, and safety 

across various sectors. Despite the incredible progress, the full potential of AI and 

computer vision is still largely untapped, and many avenues for research and 

development remain unexplored. One such avenue that has witnessed increasing 

interest in recent years is railway transportation safety. As the backbone of various 

economies worldwide, the railway network plays a crucial role in transporting 

countless individuals and commodities across vast distances [15]. This infrastructure, 

which enables high transport capacity with minimal energy consumption and limited 

land usage, also connects communities and facilitates industrial growth [16]. However, 

despite its significant benefits, the railway system is not devoid of risks. Accidents 

associated with railway transportation often result in significant human loss and 

substantial economic damage, emphasizing the critical need for developing robust 

safety mechanisms to prevent potential threats on the railway tracks. 

Railway-related accidents can occur due to a multitude of reasons, including 

derailments, collisions, and track obstructions caused by unauthorized individuals or 

unintended objects [19,7]. Given the high speeds at which trains operate, these 

accidents often happen too quickly for manual intervention, leading to catastrophic 

consequences. Traditional safety measures in railways have depended heavily on 

human observers and trackside safety equipment to identify potential threats. 

However, this approach has several inherent weaknesses, such as potential human 

error, reduced effectiveness under adverse weather or lighting conditions, and the 

significant costs associated with installing and maintaining such systems [14,23]. With 

the technological advancements in AI and computer vision, there is an opportunity to 

create an alternative, more efficient approach for early and accurate hazard detection 

on railway tracks [20,28]. However, the task of automated object detection on railway 
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tracks brings its own set of unique challenges. Foremost among these is the complexity 

involved in detecting small or distant objects under suboptimal conditions, such as 

poor lighting or variable weather. Further, given the rapid pace at which trains operate, 

any hazard detection system must be able to identify threats in near real-time, 

providing sufficient warning to the train operators or automated control systems [6]. 

This real-time operation calls for the development of highly efficient models and 

systems that can swiftly analyze images without compromising detection accuracy. 

Beyond simply detecting the presence of an object, the system must also accurately 

classify it into various categories such as humans, animals, vehicles, or other potential 

hazards [8]. Having a nuanced understanding of the object on the tracks enables the 

generation of precise information, which can be promptly communicated to the driver 

or control system, facilitating an appropriate response. Recent advancements in AI and 

computer vision, particularly the advent of deep learning models such as YOLOv5 and 

the method proposed by Deng et al. [31], provide promising solutions to these 

challenges. These technologies have demonstrated high degrees of accuracy and 

efficiency in object detection tasks across different domains, signifying their potential 

for application in railway safety. Yet, the application of these methodologies for the 

detection of small objects on railway tracks remains a relatively untapped area of 

research [26]. 

Moreover, the challenge extends beyond mere detection of objects to generating 

knowledge about the identified objects and effectively communicating this 

information in time to avert potential accidents [5]. In response to these challenges, 

this thesis aims to develop a comprehensive system that can accurately detect small 

objects on the railway tracks, generate valuable insights about the detected objects, 

and communicate this information swiftly to prevent accidents. 

1.2 Thesis Objectives 
This Thesis has four main objectives, all aimed at preventing railway accidents by 

leveraging advanced machine learning and computer vision techniques. 

• Railway Track Detection: The first goal is to detect and track the railway line

reliably using machine learning techniques, particularly the YOLOv5 model

[10,29]. Accurate rail line detection forms the basis for subsequent analyses

and object detection [26,30].
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• Knowledge Generation: The second objective is to create a knowledge base

about objects near the tracks. This includes understanding an object's behavior,

size, appearance, color, and classifying it as a human, an animal, a harmless

object, or a potential threat [5,25].

• Small Object Detection: The third goal is to devise a method for detecting

small objects that are hard to see from a distance. This will involve a

combination of the YOLOv5 model and a method proposed by Global-Local

Self-Adaptive Network (GLSAN) Deng et al. [31] that effectively detects small

objects in drone-view images [29,31].

• Rapid Analysis and Alerting System: The final objective is to design a

system that can analyze the detected objects rapidly and send a warning

message to the train driver if a potential risk is detected. The system should be

able to make decisions swiftly due to the high speed of the trains [7,27].

1.3 Thesis Scope and Methodology 
The primary scope of this thesis revolves around enhancing railway safety mechanisms 

through the incorporation of machine learning and computer vision technologies. This 

research will involve the development of machine learning models for railway track 

detection and small object detection, including training, testing, and validating these 

models. The methodology for this study will comprise a systematic review of the 

literature, the application of YOLOv5, Global-local self-adaptive network (GLSAN) 

and other relevant machine learning models, data analysis, and simulations for testing 

and validation of the models. The objective is to develop a comprehensive system that 

integrates all these elements for an effective railway safety solution. 

1.4 Thesis Organization 
The dissertation is structured as follows: 

Chapter 2 presents a comprehensive literature review, detailing the current state of 

railway safety mechanisms, object detection techniques, and the utilization of machine 

learning in these contexts. This chapter will provide an in-depth understanding of the 

current research landscape, providing a foundation for the study. 



[4] 

Chapter 3 discusses the methodologies used for railway track detection and small 

object detection, focusing on the application of the YOLOv5 model and other relevant 

algorithms and techniques. This chapter will delve into the technical aspects of the 

proposed solution, offering insights into its operation and design. 

The subsequent chapters will present the results and discussions, providing an analysis 

of the findings and outlining their implications for railway safety. The final chapter 

will summarize the research, highlight its contributions, and suggest areas for future 

research. 

By following this structure, the dissertation will provide a comprehensive exploration 

of the application of AI and computer vision in enhancing railway safety, offering 

valuable insights to stakeholders in the field. 



[5] 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 
In a world where Artificial Intelligence (AI) and Machine Learning (ML) technologies 

have permeated various aspects of our lives, they continue to offer promising solutions 

for numerous industries, including the railway sector [1]. AI-based computer vision 

techniques, such as object detection, have already proven their worth in domains like 

autonomous driving, surveillance, and healthcare, leading to safer and more efficient 

systems [2]. The following literature review aims to provide an in-depth exploration 

of three significant topics related to railway safety: rail track detection, tactical small 

object detection, and knowledge generation in object detection. Each section will 

discuss the concept, examine the current techniques and challenges, and finally, offer 

insights into future directions and potential technologies that may play a vital role in 

shaping these areas. 

2.2 Rail Track Detection 
In this section we will discuss about existing method of the Rail track detection. 

2.2.1  Concept and Importance 
In a world where Artificial Intelligence (AI) and Machine Learning (ML) 

technologies have permeated various aspects of our lives, they continue to offer 

promising solutions for numerous industries, including the railway sector [1]. AI-

based computer vision techniques, such as object detection, have already proven 

their worth in domains like autonomous driving, surveillance, and healthcare, 

leading to safer and more efficient systems [2]. The following literature review 

aims to provide an in-depth exploration of three significant topics related to 

railway safety: rail track detection, tactical small object detection, and knowledge 

generation in object detection. Each section will discuss the concept, examine the 

current techniques and challenges, and finally, offer insights into future directions 

and potential technologies that may play a vital role in shaping these areas. 
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2.2.2 Existing Technologies and Challenges 
Several technologies have been employed in rail track detection, each with its 

strengths and limitations. Traditional image processing techniques use the 

geometric properties of railway tracks, mainly their parallel nature, to detect and 

trace their paths. For instance, edge detection algorithms such as Canny or Sobel 

filters have been commonly used due to their ability to highlight sharp intensity 

changes, which typically correspond to the edges of the tracks [36]. More 

advanced techniques include the use of Hough Transform, a feature extraction 

method effective for detecting simple shapes like lines, circles, or ellipses in an 

image [37]. This method has been widely used in rail track detection due to its 

ability to identify linear features, even in noisy images [38]. However, it may not 

accurately detect rail tracks when they are curved or intersect with other tracks. 

Some techniques leverage the power of Machine Learning (ML) for rail track 

detection. ML algorithms like Support Vector Machines (SVM) and Random 

Forests have been used to classify pixels in an image as either belonging to a rail 

track or not [39]. However, these algorithms often require manually extracted 

features, which can be time-consuming and error-prone. Deep learning 

techniques, specifically Convolutional Neural Networks (CNNs), have shown 

promise in detecting more complex features automatically and handling a variety 

of scenarios and conditions [40]. Networks like U-Net have been specifically 

designed for tasks like semantic segmentation, which can be used for rail track 

detection [41]. Despite their effectiveness, these deep learning models require 

large amounts of annotated data for training, which can be challenging to acquire 

for specific scenarios such as rail track images [42]. 

The accuracy and robustness of rail track detection can be influenced by numerous 

factors, including image resolution, lighting conditions, presence of obstacles, and 

the complexity of the track layout [43]. Even slight deviations in the detection can 

lead to significant errors in applications such as autonomous navigation, making 

it a challenging task [44]. 
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Table 2.1: Overview of Rail Track Detection Techniques 

Technique Description Pros Cons 

Edge Detection Uses sharp intensity 
changes in the image 
to highlight edges, 
common technique 
for detecting straight, 
clear rail tracks. 

Simple to implement, 
Effective on clear, 
straight tracks 

Struggles with curved 
or intersecting tracks, 
Sensitive to image 
noise 

Hough Transform Feature extraction 
method that's 
effective for 
detecting simple 
shapes like lines in an 
image, widely used 
for rail track 
detection 

Can handle noisy 
images, Effective for 
detecting linear 
features 

Not ideal for curved 
or intersecting tracks 

Machine Learning 
(e.g., SVM, Random 
Forest) 

Algorithms used to 
classify pixels in an 
image as either 
belonging to a rail 
track or not 

Capable of handling 
complex patterns, 
Can be tailored to 
specific tasks 

Requires manual 
feature extraction, 
Needs substantial 
computational 
resources 

Deep Learning (e.g., 
CNN, U-Net) 

Use of neural 
networks for 
automatic feature 
extraction and 
detection, promising 
technique for 
handling a variety of 
scenarios 

Capable of learning 
complex patterns, 
Automated feature 
extraction 

Requires large 
amounts of annotated 
data for training, 
Computationally 
intensive 

2.2.3  Future Directions and Potential Technologies 
The future of rail track detection likely lies in further advancing and refining the 

deep learning methodologies currently in use. As more annotated data becomes 

available and as new, more robust architectures are developed, the performance of 

these models is expected to improve significantly [45]. One approach that has 

garnered attention is the use of synthetic data to augment the training datasets. 

Synthetic data can be generated to cover a variety of scenarios and can be labeled 

automatically, thus providing ample data for training deep learning. 

2.3 Tactical Small Object Detection 
The Concept and Importance Tactical small object detection refers to the identification 

and localization of small-sized objects within a larger scene. In the context of railway 

safety, this might involve detecting obstacles such as rocks, animals, or other debris 

on the railway tracks [14]. Early detection of such small objects is crucial, as they pose 

a significant risk to the safety of trains, potentially leading to derailments or other 

accidents [15]. 
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2.3.1 Existing Techniques and Limitations 

Object detection has been a widely researched area in computer vision, with 

numerous techniques available. Traditional methods include template matching and 

feature-based methods such as Scale-Invariant Feature Transform (SIFT) and 

Speeded-Up Robust Features (SURF) [16]. However, these methods are typically 

ineffective for small object detection due to the low resolution and lack of distinctive 

features of small objects [17]. 

With the advent of deep learning, more effective methods have been developed for 

object detection. Popular architectures include Region-based Convolutional Neural 

Networks (R-CNN), You Only Look Once (YOLO), and Single Shot MultiBox 

Detector (SSD) [18]. However, while these models perform well on regular-sized 

objects, they often struggle to detect small objects due to the reduced spatial 

resolution of small objects in the feature maps of these networks [19]. 

Table 2.2 Summary of Techniques for Tactical Small Object Detection 

Technique Description Pros Cons 

Traditional 
Methods (SIFT, 
SURF) 

Techniques for 
feature extraction and 
matching, used for 
object detection 

Simplicity, Wide use 
in traditional image 
processing 

Not effective for 
small objects due to 
lack of distinctive 
features 

Deep Learning 
Methods (R-CNN, 
YOLO, SSD) 

Use of neural 
networks for 
automatic feature 
extraction and 
detection 

Effective for regular-
sized object 
detection, Automatic 
feature extraction 

Struggle with small 
object detection due 
to reduced spatial 
resolution 

Attention 
Mechanisms 

Techniques inspired 
by human visual 
perception allowing 
model to focus on 
specific image 
regions 

Enhances the 
detection of small 
objects, Adapts to 
different object sizes 

More complex to 
implement 

Multi-Scale Feature 
Fusion 

Techniques that 
combine features 
from different 
network levels to 
provide detailed 
representations 

Beneficial for small 
object detection, 
More comprehensive 
representation of 
objects 

Requires complex 
network architectures 

2.3.2 Promising Technologies and Directions 
Emerging technologies such as attention mechanisms and multi-scale feature fusion 

may offer better performance for small object detection [20]. Attention mechanisms, 

inspired by human visual perception, allow the model to focus on specific regions of 

the image, thus enhancing the detection of small objects [21]. Multi-scale feature 
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fusion techniques combine features from different levels of the network, providing 

more detailed representations that are beneficial for small object detection [22]. 

Furthermore, the integration of other sensors such as LiDAR and radar with vision-

based systems can improve small object detection performance, especially in 

challenging lighting and weather conditions [23]. These multi-modal systems offer 

robust and reliable solutions, making them a promising direction for future research. 

2.4 Knowledge Generation in Object Detection 

The Concept Knowledge generation in object detection refers to the process of 

extracting meaningful information from detected objects, such as their class, behavior, 

and characteristics [24]. This information is crucial in making informed decisions 

regarding potential threats and necessary actions in a railway safety context. 

2.4.1 Current Techniques and Challenges 

Current methods for knowledge generation mainly involve the application of 

classification algorithms on the detected objects. Techniques such as Support Vector 

Machines (SVM) and Decision Trees have been traditionally used for this task [25]. 

However, these methods often struggle to handle complex relationships and high-

dimensional data, leading to sub-optimal performance [26]. 

With the rise of deep learning, more advanced techniques such as CNNs and 

Recurrent Neural Networks (RNNs) have been utilized for knowledge generation in 

object detection. These models can handle high-dimensional data and learn complex 

patterns, thus providing more accurate classification and characterization of objects 

[27]. However, they require large annotated datasets for training and can be 

computationally intensive, which poses challenges for real-time applications. 

2.4.3 Future Trends and Potential Techniques The future of knowledge generation 

in object detection lies in the development of more efficient and interpretable deep 

learning models. Techniques such as Knowledge Distillation and Transfer Learning 

can help create compact yet effective models by leveraging pre-trained models or 

transferring knowledge from larger models [28]. 

Moreover, the development of Explainable AI (XAI) techniques can enhance the 

interpretability of deep learning models, providing insights into their decision-

making process [29]. These advancements can improve the trustworthiness and 
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reliability of AI-based railway safety systems. 

2.5 SUMMARY 

The literature review provides an overview of the existing methods and future 

directions in three significant aspects of railway safety: rail track detection, tactical 

small object detection, and knowledge generation in object detection. The rapid 

advancements in AI and machine learning technologies present exciting opportunities 

for enhancing railway safety, albeit with challenges that need to be addressed. The next 

chapters will delve into the application of these technologies in a railway safety 

context, aiming to design a comprehensive system that leverages these advancements 

to prevent railway accidents effectively 
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CHAPTER 3  

METHODOLOGY 

3.1 Introduction 
This chapter discusses the methodology used in the study to detect objects on rail 

tracks using video data. The key techniques utilized include YOLOv5 (You Only Look 

Once v5), an object detection model known for its high speed and accuracy, and 

GLSAN (Global-Local Self-Adaptive Network), a coarse-to-fine strategy that includes 

components such as Global-Local Detection Network (GLDN), Self-Adaptive Region 

Selecting Algorithm (SARSA), and Local Super-Resolution Network (LSRN). 

3.2 Data Collection and Preprocessing 
The dataset used in this project was derived from high-quality 4K videos recorded at 

30 frames per second (fps) using an iPhone 13. The video duration was 5.30 minutes, 

yielding a total of approximately 9,540 unique frames, each being an individual high-

resolution image. The scene captured in the footage is a railway track, with the primary 

objects of interest being small objects such as humans and details of the rail track. The 

video was taken in a steady position using a tripod to ensure the consistency and 

stability of the images. Given the high-resolution nature of the source material, each 

image was compressed to 50% of its original size as part of preprocessing. This step 

was taken to make the data manageable for the detection algorithm while retaining 

sufficient detail for accurate detection and identification. The resultant set of 

approximately 9,540 images was then split into training, validation, and testing sets. 

Specifically, the distribution was as follows: 

1. Training set: 70% of the images (approximately 6,678) were used to train the model,

teaching it to recognize and locate the objects of interest in the images.

2. Validation set: 20% of the images (around 1,908) were used for the validation phase

during the training process. This phase is crucial for tuning hyperparameters and

ensuring the model isn't overfitting to the training data.

3. Testing set: The remaining 10% of the images (roughly 954) were set aside for

testing the model's performance and its ability to generalize to new, unseen data.
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Through this division of data, the dataset enabled robust training and comprehensive 

validation of the model, leading to a reliable system for detecting small objects in 

similar rail track scenarios. 

Fig. 3.1. A sample of Image of Dataset 

The data preprocessing involves several steps. First, frames are extracted from the 

video. The frame extraction process could be represented mathematically as: 

𝐹𝐹 = 𝑓𝑓1, 𝑓𝑓2, . . . , 𝑓𝑓𝑛𝑛         (3.1)

in Eqn. 3.1, where F represents the set of frames, and fn  refers to the nth frame. This 

dataset was then labeled using Roboflow, an annotation tool that enables us to create 

bounding boxes around objects of interest.  

3.2.1 Attenuation 

In this research, we primarily focused on detecting small objects, namely, humans and 

elements of rail tracks in our dataset. The annotation process involved marking these 

objects in the images for the model to learn from. The annotation was performed using 

appropriate tools, ensuring that each object of interest within the images was precisely 

annotated. These annotations provide the ground truth for our model during the 

training process. 
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3.2.2 Leveled Images: 

The images used in this study were leveled to ensure a more robust model. The leveling 

process involved adjusting the brightness and contrast levels of the images to bring out 

the necessary details, specifically focusing on the small objects that our model is 

intended to detect. This process was crucial in ensuring the model's effectiveness 

because it enhanced the visibility of the small objects in the images, making them more 

recognizable during the training process.  

Fig 3.2. A Leveled person & Rail Track 

Fig 3.3. Leveled Layer Annotation and Leveled 

In Fig 3.2 and 3.2 are Following are examples from our dataset, showcasing the 

annotation and image leveling process. The images depict rail tracks with annotated 

small objects. By providing this visual insight, we aim to elaborate on the meticulous 

process of data preparation undertaken for this study.  
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3.3 Object Detection Techniques & Algorithms 
This research utilized two main object detection techniques: YOLOv5 and GLSAN. 

YOLOv5 is a deep learning model that takes an entire image in a single instance and 

divides it into multiple regions. Each of these regions is then used to predict bounding 

boxes and probabilities for every class directly, with the confidence scores indicating 

the probability that a bounding box contains an object. 𝐼𝐼𝑓𝑓  𝐵𝐵 = 𝑏𝑏1, 𝑏𝑏2, … . 𝑏𝑏𝑛𝑛 represents 

the bounding boxes, and 𝑃𝑃 = 𝑝𝑝1 ,𝑝𝑝2, . . . ,𝑝𝑝𝑛𝑛 represents the confidence scores, then the 

output of the YOLOv5 detection can be represented as: 

 𝑌𝑌 = 𝑦𝑦1 , 𝑦𝑦2 , . . . , 𝑦𝑦𝑛𝑛 where  𝑌𝑌 = 𝑦𝑦1,𝑦𝑦2, , . . . .𝑦𝑦𝑛𝑛 (3.2) 

where 𝑦𝑦𝑛𝑛 − (𝑏𝑏𝑛𝑛,𝑝𝑝𝑛𝑛) representing the nth bounding box and its corresponding 

confidence score. 

GLSAN, on the other hand, is a more complex and sophisticated model that includes 

several components like GLDN, SARSA, and LSRN, which function in a coarse-to-

fine manner. 

. 

3.3.1  YOLOv5 
YOLOv5 (You Only Look Once, version 5) is an object detection model that is 

known for its ability to recognize objects in real-time. It's an anchor-based 

approach that looks at an image only once, unlike other methods that scan an 

image multiple time. 

A key feature of the YOLOv5 model is the use of a convolutional neural network 

(CNN) to divide an image into a grid system. Each grid cell is responsible for 

predicting multiple bounding boxes. For example, an image might be divided into 

a 13x13 grid, and each cell in the grid might predict 3 bounding boxes, leading to 

507 total predictions (13 * 13 * 3). Mathematically, we can express this process 

as follows: 

An image I is divided into an SxS grid: 

𝐼𝐼 → [𝐶𝐶1,𝐶𝐶2, . . . ,𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠]    (3.3) 

In Eqn. 3.3, Each cell Ci predicts B bounding boxes and a confidence score for 

each box. The bounding box Bj is denoted as a 4-dimensional vector 

(𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 ,𝑤𝑤𝑗𝑗 ,ℎ𝑗𝑗), where (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗) are the coordinates of the center of the bounding box, 
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and w_j and h_j are the width and height of the bounding box, respectively. 

𝐶𝐶𝑖𝑖 → [𝐵𝐵1,𝐵𝐵2, . . . ,𝐵𝐵𝐵𝐵] (3.4) 

𝐵𝐵𝑗𝑗 → (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 ,𝑤𝑤𝑗𝑗 ,ℎ𝑗𝑗 ,𝐶𝐶𝑗𝑗) (3.5) 

The confidence score 𝐶𝐶𝑗𝑗 for each bounding box 𝐵𝐵𝑗𝑗  is computed. The confidence 

score represents the IoU (Intersection over Union) between the predicted 

bounding box and any ground truth box, multiplied by the objectness score (the 

probability that an object is contained within the box). 

𝐶𝐶𝑗𝑗  =  𝐼𝐼𝐼𝐼𝐼𝐼(𝐵𝐵𝑗𝑗 ,𝐺𝐺𝑗𝑗)  ∗  𝑃𝑃(𝑂𝑂𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 |𝐵𝐵𝑗𝑗) (3.6) 

Additionally, each bounding box Bj predicts a conditional class probability 

P(Classk | Object). This is the probability of the object in Bj belonging to class k, 

given that there is an object in Bj. 

Fig. 3.4.  YOLOv5 Structure 

The final output of the YOLOv5 model for each image is then a set of bounding 

boxes, each with a class prediction and a confidence score. Fig 3.4 is proposed in 

this way [48]. These can be further processed (e.g., by applying a threshold to the 

confidence score, or by using Non-Maximum Suppression) to produce the final 

set of predicted object locations and classes [28].  

The beauty of YOLOv5 lies in its simultaneous prediction of multiple bounding 

boxes and class probabilities directly from full images in one evaluation. This 

makes it incredibly fast, with real-time performance, and gives it the capacity to 



[16] 

recognize objects within an image with high accuracy. 

The selection of the YOLOv5 model for object detection, especially in the context 

of recognizing objects near rail tracks, is based on several key factors: 

I. Real-Time Processing: YOLOv5 is specifically designed for real-time

object detection, which is critical in the context of rail track monitoring.

Identifying potential hazards as quickly as possible can make a significant

difference in preventing accidents or mishaps.

II. Accuracy: Despite its speed, YOLOv5 doesn't compromise on accuracy.

It achieves comparable, and in many cases superior, results to other state-

of-the-art object detection models.

III. Simultaneous Detection: YOLOv5 detects objects in an image in a single

pass, which makes it computationally efficient and faster than other

methods that use a sliding window or region proposal approach.

IV. Robustness to Various Object Sizes: YOLOv5 uses multiple scales to

detect objects, making it robust to varying object sizes—a common

situation in rail track monitoring where objects can appear smaller or larger

depending on their distance from the camera.

V. Simplicity and Flexibility: YOLOv5's architecture is simpler and more

flexible than its predecessors, making it easier to train, modify, and deploy.

This can be crucial in applied contexts where model adaptation may be

necessary.

VI. Bounding Box Adjustments: Unlike other object detection methods that

might struggle with localizing objects accurately, YOLOv5 is capable of

adjusting the sizes of the bounding boxes it predicts to better fit the aspect

ratios of the objects. This can be particularly important when precise object

localization is required, such as identifying objects near rail tracks.

3.3.2 Global-Local Self-Adaptive Network (GLSAN) 
GLSAN, as illustrated in Fig.3.5, employs an input image of 2000*1500 pixels. 

The Global Coarse Detector (GCD) predicts coarse bounding boxes from the 
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original image which are used for subsequent region selection. Region selection 

is implemented through a self-adaptive region selecting algorithm based on the K-

means clustering method. This method adaptively classifies each bounding box 

into a certain category, framing the boundary of each category into sub-images. 

The sub-images are then subjected to a local super-resolution network for image 

augmentation [31]. Once the images are enlarged, they are fed into the local fine 

detector to generate refined bounding boxes. Bounding box fusion is employed 

through non-maximum suppression to obtain the final result. Enlarged images are 

also used for training data augmentation, improving the robustness of scale-variant 

detection. 

Fig. 3.5.  GLSN Method Structure  

In Fig 3.5 GLSAN Method Proposed [31] where GLDN, a key component of 

GLSAN, predicts object bounding boxes in two phases: global coarse detection 

on original images and local fine detection on the cropped sub-images. The global 

coarse detection provides a broad outline of objects on the down-sampled whole 

images. The local fine detection, conducted after cropping sub-images with 

SARSA and performing super-resolution with LSRN, predicts more accurate 

results for refinement. The two-stage detection results are merged by Non-

Maximum Suppression (NMS), achieving the final optimal results. 

Mathematically, the process of GLDN can be expressed as follows: 

The final detection bounding boxes are denoted as B_f = {(b_fk, p_fk)} , where b 

represents the detected bounding box expressed by the four parameters (x_1, y_1, 

x_2, y_2), p represents the probability of being the target object, k is the bounding 

box index, and f indicates the final result. The general process of GLDN can be 

expressed as. 
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𝐵𝐵𝑓𝑓 =  𝑚𝑚𝑂𝑂𝑚𝑚𝑚𝑚𝑂𝑂�𝑑𝑑(𝐼𝐼),𝑑𝑑(𝐼𝐼𝑐𝑐  𝐼𝐼 𝐼𝐼𝑠𝑠)�, (3.7) 

𝑂𝑂𝑂𝑂(𝑥𝑥, 𝑦𝑦) =  {∑ 𝑝𝑝𝑘𝑘𝑙𝑙𝑘𝑘  𝑖𝑖𝑓𝑓 (𝑥𝑥, 𝑦𝑦) 𝑖𝑖𝑛𝑛 𝛼𝛼𝑏𝑏𝑘𝑘𝑙𝑙 , 0 𝐼𝐼𝑂𝑂ℎ𝑂𝑂𝑚𝑚𝑤𝑤𝑖𝑖𝑒𝑒𝑂𝑂, (2) (3.8) 

𝑄𝑄 =  {(𝑥𝑥,𝑦𝑦)| 𝑓𝑓𝐼𝐼𝑚𝑚 𝛷𝛷�𝑂𝑂𝑂𝑂(𝑥𝑥, 𝑦𝑦)�  >  𝛩𝛩𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑠𝑠ℎ}, (3) (3.9) 

3.3.3  Self-Adaptive Region Selecting Algorithm (SARSA) 
SARSA is a lightweight and dynamic algorithm designed to detect images at a 

higher resolution with limited computational power [31]. It selects subregions 

based on a classical cluster method and refines the scale and ratio of subregions 

into acceptable ranges via a process called center padding. 

Mathematically, the center of a bounding box and its width and height can be 

computed as: 

(𝑥𝑥0,𝑦𝑦0)  =  (𝑥𝑥1 + 𝑠𝑠2
2

,𝑦𝑦1 + 𝑦𝑦2
2

) (3.10) 

𝑒𝑒 =  𝑒𝑒𝑠𝑠𝑚𝑚𝑂𝑂�(𝑥𝑥2 −  𝑥𝑥1) ∗ (𝑦𝑦2 −  𝑦𝑦1) � (3.11) 

𝑚𝑚 = 𝑦𝑦2− 𝑦𝑦1
𝑠𝑠2− 𝑠𝑠1

 (3.12) 

The height and width after center padding are computed as: 

ℎ𝑐𝑐  =  𝑚𝑚𝑚𝑚𝑥𝑥(𝑂𝑂𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑠𝑠ℎ, 𝑠𝑠2− 𝑠𝑠1
2

 ,𝑦𝑦2 −  𝑦𝑦1) 

𝑤𝑤𝑐𝑐  =  𝑚𝑚𝑚𝑚𝑥𝑥(𝑂𝑂𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑠𝑠ℎ, 𝑦𝑦2− 𝑦𝑦1
2

, 𝑥𝑥2 −  𝑥𝑥1) 

(𝑥𝑥1𝑐𝑐 ,𝑦𝑦1𝑐𝑐)  =  (𝑥𝑥0 −
𝑤𝑤𝑐𝑐

2
,𝑦𝑦0 −

ℎ𝑐𝑐

2
), 

(𝑥𝑥2𝑐𝑐 ,𝑦𝑦2𝑐𝑐)  =  (𝑥𝑥0  + 𝑤𝑤𝑐𝑐

2
,𝑦𝑦0 + ℎ𝑐𝑐

2
) (3.13) 

In Eqn 3.13, where hc and wc denote the final cropping height and width of the 

bounding box, Sthresh represents the scale thresh valued 300. Based on Equation 

3.13, the small subregions are padded into reasonable ranges. After cropping from 

original images, the cropped sub-images Ic are obtained. 

3.3.4  Local Super-Resolution Network (LSRN) 
LSRN is utilized to enhance the image resolution of small sub-images. Despite the 
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center padding processing in SARSA, the input size of some subregions is still too 

small. To acquire more semantic details from the subregions, we employ a super-

resolution network for image augmentation[31]. Mathematically, the process of 

super-resolution can be expressed as: 

𝐼𝐼𝑖𝑖𝑠𝑠  =  �
𝑒𝑒𝑠𝑠𝑝𝑝𝑂𝑂𝑚𝑚(𝐼𝐼𝑖𝑖𝑐𝑐) 𝑖𝑖𝑓𝑓 𝑒𝑒𝑖𝑖𝑐𝑐  ≤  𝑂𝑂𝑠𝑠𝑟𝑟 ,

 𝐼𝐼𝑖𝑖𝑐𝑐   𝐼𝐼𝑂𝑂ℎ𝑂𝑂𝑚𝑚𝑤𝑤𝑖𝑖𝑒𝑒𝑂𝑂 � (3.14) 

Where super () denotes the super-resolution function, 𝐼𝐼𝑖𝑖𝑐𝑐 and 𝐼𝐼𝑖𝑖𝑠𝑠 are the original 

and super-resolved images respectively, 𝑒𝑒𝑖𝑖𝑐𝑐 is the scale of the subregion, and Ssr is 

the scale threshold. 

In summary, the GLSAN approach, comprised of GLDN, SARSA, and LSRN, 

offers a powerful and flexible means to robustly detect objects of various scales, 

particularly small ones, in high-resolution images. This robustness is achieved 

through a combination of coarse-to-fine object detection, dynamic subregion 

selection, and local super-resolution techniques.  

3.4 Proposed Method  
The implementation of the object detection algorithms starts with the application of 

YOLOv5 on the dataset to carry out the initial detection. The output of this stage is a 

set of bounding boxes and their corresponding confidence scores. This set is then 

passed through the annotation process using Roboflow. 

Subsequently, the detected objects undergo a more accurate detection process through 

GLSAN (Global-Local Self-Adaptive Network). GLSAN makes use of a Global 

Context-aware Detection Network (GCDN) for initial coarse detection on down-

sampled low-resolution images, and then refines this detection on higher resolution 

images. Mathematically, this can be represented as: 

𝐵𝐵𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑙𝑙  =  𝑚𝑚𝑂𝑂𝑚𝑚𝑚𝑚𝑂𝑂�𝑑𝑑(𝐼𝐼),𝑑𝑑(𝐼𝐼𝑂𝑂𝐼𝐼𝐼𝐼𝑒𝑒)� (3.15) 

where Bfinal represents the final bounding boxes, d(I) is the coarse detection result, Ic 

represents the cropped sub-images, and Is represents the super-resolution images. 

Following this, the Self-Adaptive Region Selecting Algorithm (SARSA) is employed 

to identify crowded sub-regions. This involves subregion selection and center padding 

processing, which are mathematically represented as follows: 
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(𝑥𝑥0,𝑦𝑦0) =
𝑠𝑠1 +𝑥𝑥22 ,(𝑦𝑦1 + 𝑦𝑦2

2
 ) (3.16) 

𝑒𝑒 =  𝑒𝑒𝑠𝑠𝑚𝑚𝑂𝑂�(𝑥𝑥2  −  𝑥𝑥1) ∗  (𝑦𝑦2  −  𝑦𝑦1)� (3.17) 

𝑚𝑚 = 𝑠𝑠2 − 𝑠𝑠1
𝑦𝑦2 − 𝑦𝑦1

  (3.18) 

In Eqn 3.16. (x0, y0) represent the center coordinates of the selected sub-region, s 

represents the size of the sub-region, and r represents the aspect ratio of the sub-region. 

The Local Super-Resolution Network (LSRN) is then employed to enhance the 

resolution of small sub-images. This can be mathematically represented as: 

𝐼𝐼𝑠𝑠𝑖𝑖  =  {𝑒𝑒𝑠𝑠𝑝𝑝𝑂𝑂𝑚𝑚(𝐼𝐼𝑐𝑐𝑖𝑖) 𝑖𝑖𝑓𝑓 𝑒𝑒𝑖𝑖𝑐𝑐  ≤  𝑂𝑂_𝑒𝑒𝑚𝑚, 𝐼𝐼𝑂𝑂ℎ𝑂𝑂𝑚𝑚𝑤𝑤𝑖𝑖𝑒𝑒𝑂𝑂, 𝐼𝐼𝑐𝑐𝑖𝑖} (3.19) 

where Isi represents the super-resolution image, super(Ici) refers to the super-resolution 

process on the cropped image Ici, and s_ic≤ Ssr     is the condition for applying the 

super-resolution process. If the size of the cropped image is smaller than the threshold 

Ssr, the super-resolution process is applied. Otherwise, the original cropped image is 

used. 

Through the combined use of these algorithms, the system can detect objects in both a 

global and local context, ensuring no small details are overlooked, while still 

maintaining a broader perspective. This approach offers a comprehensive coverage of 

the image and a detailed focus on specific areas, enabling accurate object detection 

even in complex scenarios. 

3.4.1 Algorithm Flow Explanation 

Fig. 3.6. Block diagram of Proposed method 

1. Input Dataset (Rail track Videos): The input dataset is a collection of videos,

denoted as
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 𝑉𝑉 =  {𝑉𝑉1,𝑉𝑉2, … ,𝑉𝑉𝑚𝑚}   (3.20) 

Each video Vi is a sequence of frames captured over time t. Mathematically, each 

video Vi can be represented as: 

 𝑉𝑉𝑖𝑖 =  [𝐹𝐹1,𝐹𝐹2, . . . ,𝐹𝐹𝑛𝑛]   (3.21) 

where Fi denotes the ith frame. 

2. Frame Extraction & Preprocessing: Each video Vi is transformed into a set of n

frames. These frames undergo preprocessing, 𝑃𝑃(𝐹𝐹𝑖𝑖), to prepare them for the object

detection model. The transformation and preprocessing can be expressed as:

𝑉𝑉𝑖𝑖 →   [𝐹𝐹1,𝐹𝐹2, . . . ,𝐹𝐹𝑛𝑛] → [𝑃𝑃(𝐹𝐹1 ),𝑃𝑃(𝐹𝐹2), . . . ,𝑃𝑃(𝐹𝐹𝑛𝑛)]   (3.21)

3. Object Detection - YOLOv5 Detection: The preprocessed frames are subjected to

the YOLOv5 object detection model. The model predicts 𝑌𝑌�𝑃𝑃(𝐹𝐹𝑖𝑖)�, producing

bounding boxes 𝐵𝐵𝑘𝑘  =  (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘,𝑤𝑤𝑘𝑘,ℎ𝑘𝑘) for each detected object Ok. This is

represented as: Y(P(Fi)) = {Bk | for each detected object Ok in P(Fi)}

4. Bounding Box and Confidence Score Output: Each detected object Ok is associated

with a bounding box Bk and a confidence score Ck. The output can be mathematically

represented as: Y(P(Fi)) = {(Bk, Ck) | for each detected object Ok in P(Fi)}

5. Annotation using Roboflow: Frames are manually annotated using Roboflow to

create a set of ground truth bounding boxes Gk for each object. This annotation process

can be depicted as: A(Fi) = {Gk | for each object Ok in Fi}

6. Detection of Objects Near the Track: The objects near the rail track are identified

by applying a distance threshold d to the bounding boxes. If Dk is the distance of object

O_k from the rail track, the detected objects near the track are those for which Dk <=

d: N(Fi) = {Ok | for each Ok in Fi where Dk <= d}

7. GLSAN, Global and Local Feature Extraction: The GLSAN is utilized on frame Fi

and the detected objects N(Fi) to yield more precise bounding boxes B'k. The GLSAN

uses a Global Context-aware Detection Network (GCDN) to extract global features

Gk from each object Ok, and a Self-Adaptive Region Selecting Algorithm (SARSA)

to select regions Rk for local feature extraction: Gk = GCDN(B'k) RK = SARSA(B'k)

Afterward, a Local Fine-grained Detection Network (LFDN) is applied to each region

Rk to extract local features Lk, described in the following steps.
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8. Self-Adaptive Region Selecting Algorithm (SARSA): SARSA selects regions of

high significance from the frame based on a utility function U(R_k). Regions with

utility above a set threshold t are selected:

𝐼𝐼(𝑅𝑅𝑘𝑘) =  𝑓𝑓(𝑅𝑅𝑘𝑘)𝑂𝑂(𝐹𝐹𝑖𝑖) =  {𝑅𝑅𝑘𝑘 |𝐼𝐼(𝑅𝑅𝑘𝑘) ≥ 𝑂𝑂}     (3.22)

9. Local Fine-grained Detection Network (LFDN): LFDN applies to each selected

region Rk in S(Fi) to extract detailed local features Lk from the objects: Lk = LFDN(Rk)

10. YOLOv5 and GLSAN for Small Object Detection: Small objects are detected using

both YOLOv5 and GLSAN. The operation can be expressed mathematically as:

𝑂𝑂𝑂𝑂(𝐹𝐹𝑖𝑖)  =  𝑌𝑌�𝑃𝑃(𝐹𝐹𝑖𝑖)�  ∩  𝐺𝐺𝐺𝐺𝑂𝑂𝐺𝐺𝐺𝐺(𝐹𝐹𝑖𝑖 ,𝐺𝐺(𝐹𝐹𝑖𝑖))     (3.23)

11. Output and Evaluation for YOLOv5-GLSAN: The combined YOLOv5-GLSAN

methodology yields a set of bounding boxes B''_k for each detected small object

𝑂𝑂𝑘𝑘′′: 𝑌𝑌�𝑃𝑃(𝐹𝐹𝑖𝑖)� ∩ 𝐺𝐺𝐺𝐺𝑂𝑂𝐺𝐺𝐺𝐺�𝐹𝐹𝑖𝑖 ,𝐺𝐺(𝐹𝐹𝑖𝑖)�  =

{𝐵𝐵𝑘𝑘′′ | 𝑓𝑓𝐼𝐼𝑚𝑚 𝑂𝑂𝑚𝑚𝑂𝑂ℎ 𝑑𝑑𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑑𝑑 𝑒𝑒𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 𝐼𝐼𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑂𝑂𝑘𝑘′′ 𝑖𝑖𝑛𝑛 𝑃𝑃(𝐹𝐹𝑖𝑖)}     (3.24)

The performance of the model is evaluated by comparing the predicted bounding

boxes B''_k with the ground truth bounding boxes G_k. The Intersection Over Union

(IoU) metric is used:

𝐼𝐼𝐼𝐼𝐼𝐼(𝐵𝐵𝑘𝑘′′,𝐺𝐺𝑘𝑘) = 𝐴𝐴𝑟𝑟𝑟𝑟𝑓𝑓�𝐵𝐵𝑘𝑘
′′ ∩ 𝐺𝐺𝑘𝑘�

𝐴𝐴𝑟𝑟𝑟𝑟𝑓𝑓�𝐵𝐵𝑘𝑘
′′ ∪ 𝐺𝐺𝑘𝑘�

       (3.25)

In Eqn 3.25, The average IoU over all objects in all frames provides a quantitative

measure of the model's performance.

3.4.2 Parameter Choices and Tuning 

The implementation of the object detection algorithms starts with the application of 

YOLOv5 on the dataset to carry out the initial detection. The output of this stage is a 

set of bounding boxes and their corresponding confidence scores. This set is then 

passed through the annotation process using Roboflow. 

The effectiveness of the proposed methodology in detecting objects near the rail track 

depends on the optimal selection of parameters and their subsequent tuning. Here we 

discuss the rationale behind the selection of certain key parameters and their impact 
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on the system's performance. 

1. Distance Threshold (T)

One of the critical parameters in our methodology is the distance threshold (T), 

which is used to determine whether an object is dangerously close to the rail 

track. The selection of this threshold depends on the definition of "near" in the 

context of a railway system. 

d ≤ T (3.26) 

Where d represents the calculated distance between the detected object and the 

rail track. If d ≤ T, the object is considered to be "near" the rail track. 

In our study, we chose a threshold value of 1 meter, considering the average 

distance for a safety buffer around a railway track. However, this parameter is 

adjustable and can be set according to the specific requirements and 

environmental conditions of the railway system. 

2. Intersection Over Union (IoU) Threshold

Intersection over Union (IoU) is a measure of the overlap between two

bounding boxes. It is used in our methodology to determine the accuracy of

our object detection, particularly in comparing the bounding boxes predicted

by our model with the ground truth bounding boxes.

Mathematically, IoU can be expressed as: 
𝐼𝐼𝐼𝐼𝐼𝐼 =  𝐴𝐴𝑟𝑟𝑟𝑟𝑓𝑓 𝑜𝑜𝑓𝑓 𝑂𝑂𝑂𝑂𝑟𝑟𝑟𝑟𝑙𝑙𝑓𝑓𝑂𝑂

𝐴𝐴𝑟𝑟𝑟𝑟𝑓𝑓 𝑜𝑜𝑓𝑓 𝑈𝑈𝑛𝑛𝑖𝑖𝑜𝑜𝑛𝑛
(3.28) 

The IoU threshold is a parameter that sets a cut-off value, above which a 

detected bounding box is considered a 'true positive' detection. We empirically 

selected an IoU threshold of 0.5, which is commonly used in object detection 

tasks. This value ensures a good balance between precision and recall, 

allowing our system to accurately detect objects without generating an 

excessive number of false positives. 

3. Learning Rate

The learning rate is a hyperparameter that determines the step size at each 
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iteration while moving towards a minimum of a loss function. In the context 

of our methodology, it's crucial for training the YOLOv5 model and the 

Global-Local Self-Adaptive Network (GLSAN). 

Choosing the right learning rate is critical as a small value would slow down 

the learning process, whereas a large value might not converge or even 

diverge. After several experimental runs, we found a learning rate of 0.001 to 

be optimal for our specific problem. 

The fine-tuning of these parameters and their optimal selection played a crucial 

role in enhancing the performance of our methodology. Each parameter was 

selected considering the balance between the computational cost and the object 

detection performance. Further tuning of these parameters can potentially lead 

to even better performance, emphasizing the importance of this step in the 

process. 

3.5 Model Training 

In the model training phase, we leveraged the computational capabilities of our system 

environment and hardware to effectively train our integrated model. The combination 

of YOLOv5, GLSAN, SARSA, and LSRN algorithms were utilized for the purpose 

of identifying and localizing small and nearby objects. 

Firstly, YOLOv5, known for its superior performance in object detection tasks, was 

trained on the video frames. This training process involved iterative optimization of 

the model parameters to achieve the best possible prediction performance. The 

learning rate, batch size, and other hyperparameters were adjusted according to a 

cross-validation strategy, in order to avoid overfitting and ensure the generalization 

ability of the model. 

Subsequently, the other components of our system, namely the GLSAN, SARSA, and 

LSRN, were also trained. GLSAN and SARSA were responsible for adaptive region 

selection, contributing to accurate detection of nearby and small objects. LSRN, on 

the other hand, ensured that the resolution of the selected regions was sufficient for 

the detection process. 

The model training process was carried out over several epochs, with performance 

monitored on a validation dataset to prevent overfitting and ensure the model's ability 

to generalize to unseen data. Throughout the training phase, we meticulously logged 
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the model's performance metrics, including precision, recall, and F1-score, to evaluate 

its progress and make necessary adjustments. 

3.6 Evaluation Metrics 

The effectiveness of our methodology is assessed using a selection of standard 

evaluation metrics commonly utilized in object detection tasks. These metrics 

encompass: 

• Precision: Precision represents the proportion of true positives in the

predicted positive detections, thus expressing the model's correctness.

It's computed as follows:

𝑃𝑃𝑚𝑚𝑂𝑂𝑂𝑂𝑖𝑖𝑒𝑒𝑖𝑖𝐼𝐼𝑛𝑛 = 𝑇𝑇𝑂𝑂
𝑇𝑇𝑂𝑂 + 𝐹𝐹𝑂𝑂

3.29 

• Recall: Recall (or sensitivity) reveals the ratio of true positives the

model has correctly identified. It's formulated as:

 𝑅𝑅𝑂𝑂𝑂𝑂𝑚𝑚𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑂𝑂
(𝑇𝑇𝑂𝑂 + 𝐹𝐹𝑛𝑛) (3.30) 

• F1-score: The F1-score is the harmonic mean of precision and recall,

serving as a balanced metric between these two values. It is given by:

𝐹𝐹1 − 𝑒𝑒𝑂𝑂𝐼𝐼𝑚𝑚𝑂𝑂 =  2 ∗ (𝑃𝑃𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑛𝑛 ∗ 𝑅𝑅𝑟𝑟𝑐𝑐𝑓𝑓𝑙𝑙𝑙𝑙)
(𝑃𝑃𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑛𝑛 + 𝑅𝑅𝑟𝑟𝑐𝑐𝑓𝑓𝑙𝑙𝑙𝑙)

    (3.31)

• Intersection over Union (IoU): IoU, widely employed to assess the

accuracy of object detectors on specific datasets, is the area of overlap

between the predicted and the ground truth bounding box over their

union area. It's calculated as:

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐴𝐴𝑟𝑟𝑟𝑟𝑓𝑓 𝑜𝑜𝑓𝑓 𝑂𝑂𝑂𝑂𝑟𝑟𝑟𝑟𝑙𝑙𝑓𝑓𝑂𝑂
𝐴𝐴𝑟𝑟𝑟𝑟𝑓𝑓 𝑜𝑜𝑓𝑓 𝑈𝑈𝑛𝑛𝑖𝑖𝑜𝑜𝑛𝑛

     ( 3.32)
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CHAPTER 4  

RESULT AND DISCUSSION 

4.1  Introduction 
This chapter presents the experimental results obtained from our system and a 

discussion concerning the overall performance of our integrated model. It is critical to 

thoroughly evaluate and understand these results, as they serve as the primary 

indicators of our model's efficacy in real-world scenarios. 

We base our evaluation on key metrics such as accuracy, precision-recall, and the F1-

score. Through a combination of graphical visualizations and numerical data, we 

analyze the model's ability to detect and localize rail tracks and objects in proximity to 

them. 

4.2. Implementation Details  

4.2.1 Training and Validation Phase 

In the training phase, we used a combination of single-scale training and multi-scale 

training for different experiments. The Rail Track dataset and Human Proximity 

dataset were utilized for this purpose. The input size of single-scale training was set to 

600×1000, while the input sizes of multi-scale training ranged from 640 to 800. To 

augment the dataset for a more robust training, the Self-Adaptive Region Selecting 

Algorithm (SARSA) was implemented for uniformly cropping the images. This led to 

an increase in the total number of images, thereby providing a more substantial training 

set. YOLOv5, Global Local Self-adaptive Network (GLSAN), and Local Super-

Resolution Network (LSRN) models were trained using the parameters and 

specifications set out in their respective papers, with adjustments made to suit our 

specific use case. Our advanced hardware configuration, including an Intel Core i9 

9900K processor, an NVIDIA RTX 2070 Super graphics card, and 32GB of RAM, 

enabled efficient processing and handling of these computationally intensive training 

tasks. 
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Fig. 4.1. Training and Validation Losses 

Figure 4.1 illustrates the changes in loss during the training and validation stages for two main aspects: 
bounding box regression (Box_Loss) and object detection (Obj_Loss). For both the training and validation 
stages, we track the box loss and the object loss. 

• Train/Box_Loss: This represents the error between the predicted bounding boxes of the rail track and 
human objects and their actual locations in the training set. A lower value indicates that the model has 
become better at predicting the correct location and size of the bounding boxes during training.

• Train/Obj_Loss: This signifies the model's error in classifying whether a certain bounding box contains 
an object (in our case, the rail track or human) during the training phase. A decrease in this value 
implies that our model has become more proficient at recognizing and classifying objects over time.

• Val/Box_Loss: Analogous to Train/Box_Loss, this term refers to the error between the model's 
predicted bounding boxes and their true locations in the validation set. A diminishing trend in this 
value illustrates that the model generalizes well and is learning to correctly predict bounding boxes for
unseen data.

• Val/Obj_Loss: Similar to Train/Obj_Loss, this signifies the model's error in classifying whether a 
certain bounding box contains an object in the validation set. A decrease in this value demonstrates
that the model is improving in its classification ability for new data.

Fig 4.2 Confusion Matrices of the Train Track & Human Object 
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Figure 4.2, Confusion matrices are a critical tool in machine learning for visualizing 

the performance of an algorithm. Each row of the matrix represents the instances in a 

predicted class, while each column represents the instances in an actual class. 

• Train Track Confusion Matrix: This confusion matrix depicts the performance

of our model in classifying whether an object is a rail track. The four quadrants

of the confusion matrix represent true positives (actual rail track correctly

identified as rail track), false positives (non-rail track misidentified as rail

track), true negatives (non-rail track correctly identified as non-rail track), and

false negatives (actual rail track misidentified as non-rail track).

• Human Object Confusion Matrix: This matrix represents the performance of

our model in classifying whether an object is a human. The quadrants of this

confusion matrix denote true positives (actual human correctly identified as

human), false positives (non-human misidentified as human), true negatives

(non-human correctly identified as non-human), and false negatives (actual

human misidentified as non-human).

By analyzing these confusion matrices, we can understand the strengths and 

weaknesses of our model in object detection and localization, and identify areas for 

improvement. 

4.2.2 Testing Phase 

The testing phase parameters mirrored those in the training phase, ensuring consistent 

evaluation. Each image was cropped without filtering. Non-Maximum Suppression 

(NMS) threshold and detection number were set to 0.5 and 500, respectively.  

Throughout the training and testing phases, parameters such as the enlarged score 

threshold, scale thresholds for center padding processing, and super-resolution were 

maintained at {0.5, 300, 500} respectively. All experiments were conducted using the 

specified computer hardware, providing an optimal environment for implementing 

these advanced object detection algorithms. 

This version retains the key information from the original section, but it is now tailored 

to your specific rail track detection context and accounts for the machine learning 

models and hardware specifications you used. 
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  4.3 Presentation of Results 
In this section, we will present the results obtained from our experiments. They have 

been categorized into two main parts: rail track detection and object detection. Our 

proposed methodology demonstrated substantial effectiveness when applied to real-

world video data. We utilized the high-resolution videos, as mentioned in the dataset 

section, to rigorously evaluate our model's performance. The results were compelling 

and showcased the model's robustness and precision. Subsequent figures, specifically 

Figure 4.2 and 4.3, depict the performance of our model in different situations. In 

Figure 4.2, our model successfully detected the rail track, denoted by a red line. 

Furthermore, it accurately identified a human within 1 meter of the track, marked with 

an orange bounding box. This detection signifies a potential safety hazard and 

highlights the model's capability to recognize such situations in real-time. 

Fig. 4.3 Detection of Human in Proximity to Rail Track 

Figure 4.3, on the other hand, illustrates a situation where an individual is present but 

at a safe distance, more than 1 meter away from the rail track. According to our safety 

parameters, the model appropriately does not detect this individual, thereby 

demonstrating its compliance with the predefined safety threshold and its proficiency 

in correctly discerning safe distances. 
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Fig. 4.4. Non-Detection of Human Far Away from Rail Track 

Our model, built on the YOLOv5 framework and enhanced with the GLSAn 

mechanism, has demonstrated excellent performance in terms of accuracy, precision-

recall, and F1-score for both rail track and moving object detection tasks. We present 

the confidence curves for F1-score and Precision-Recall in Figure 4.5 (a) and (b), 

respectively. 

Fig. 4.5.  a)  F1 Confidence Curve, b) Precision Recall Curve 

Table 4.1 Result of The Experiment 
Rail Track Detection Object Detection 

ACCURACY 99% 97% 
PRECISION-Recall 97% 94% 

F1-SCORE 96.5% 95% 

The results were remarkable when compared to existing literature. A study [18] 

employed a Hough transform-based approach, reporting an accuracy of approximately 

92% for rail track detection. In another research [17], moving object detection with an 

accuracy around 90% was achieved using traditional image processing techniques. Our 

Not 
Detected 
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proposed method, employing YOLOv5, marks an accuracy improvement of around 

6% to 7% for both tasks, thus signifying the superior performance of our approach. 

The proposed method using YOLOv5, GLSAN, SARSA, and LSRN provided an 

accuracy of approximately 99% for rail track detection. The precision-recall score was 

97%, and the F1-score was an impressive 96.5%. These values exhibit the reliability 

and precision of our system in detecting rail tracks accurately. 

Figures 4.3, 4. and 4.5 visually represent the model's performance. Figure 4.5 (a) shows 

the F1 confidence curve, and Figure 4.5 (b) displays the Precision-Recall curve. 

4.4 Analysis of Results 

In this section, we analyze and interpret the results obtained from our experiment. Our 

system's performance was compared against existing literature to underline its 

superiority and the advancements it brings to the domain of rail safety. 

The high accuracy, precision-recall, and F1-scores of our model affirm its efficiency 

and effectiveness. When compared with the Hough transform-based approach from 

paper [18], which reported an accuracy of approximately 92% for rail track detection, 

our system demonstrates a significant improvement. Similarly, traditional image 

processing techniques used in paper [17] showed an accuracy of around 90% for 

moving object detection. Our proposed model using YOLOv5, GLSAN, SARSA, and 

LSRN provided an accuracy enhancement of around 6% to 7% for both tasks, 

underscoring its superior performance. 

The enhanced accuracy of our system can be attributed to the integrated model we 

have developed. None of the methodologies described in papers [18] and [17] 

attempted to integrate the power of YOLOv5 with GLSAN, SARSA, and LSRN, 

thereby highlighting the novelty of our approach. 
Table 4.2: Performance Comparison of Our Proposed Method with Existing Techniques 
METHOD TASK ACCURACY (AS 

PER LITERATURE) 
ACCURACY 
(OUR 
METHOD) 

HOUGH TRANSFORM-
BASED APPROACH [18] 

Rail Track 
Detection 

92% 99% 

TRADITIONAL IMAGE 
PROCESSING 
TECHNIQUES [17] 

Moving 
Object 
Detection 

90% 97% 



[32] 

4.5 Comparative Analysis 

The results obtained were compared with existing techniques in the field to validate 

the superiority of the proposed system. The key metrics for performance evaluation, 

including accuracy, precision-recall, and the F1-score, were all higher for our system 

than those reported in the current literature. 

The fact that our system's performance metrics surpassed those of the techniques 

reported in the papers [17] and [18] is noteworthy. The proposed method's remarkable 

accuracy and precision-recall values are indicative of its superior performance, which 

can be attributed to the integrated use of YOLOv5, GLSAN, SARSA, and LSRN, 

offering advanced detection capabilities. 

It is worth mentioning that while accuracy is a significant metric, it alone does not 

provide a holistic view of the system's performance. The precision-recall and F1-score 

are equally important, as they demonstrate the model's ability to maintain a balance 

between precision and recall, thus providing a more comprehensive overview of its 

performance. 

4.6 Discussion 

Our experimental results confirm the efficacy of the proposed system. The high 

accuracy and precision-recall values, as well as the high F1-scores, are evidence of the 

model's robustness and reliability in detecting and localizing rail tracks and moving 

objects in close proximity to them. 

The superior performance of our model can be attributed to the advanced deep learning 

algorithms employed, namely YOLOv5, GLSAN, SARSA, and LSRN, which, when 

combined, provide enhanced detection and localization capabilities. This integrated 

approach, which is a novel contribution to the field, has resulted in significant 

improvements in detection performance, as validated by the experimental results. 

The superior detection capabilities of our system have potential practical implications 

for enhancing safety measures in railway environments. By providing real-time and 

accurate detection of potential hazards, our system could play a pivotal role in 

preventing accidents, ensuring safer operations, and ultimately saving lives. 
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It should be noted that while our system has demonstrated promising results, further 

improvements and optimizations could be explored in future work. Some possible 

directions include the incorporation of more advanced deep learning models, more 

extensive training with larger datasets, and the integration of additional safety features, 

such as hazard prediction and automated alert systems. 

4.7 Summary 

This chapter has presented and discussed the experimental results obtained from our 

proposed system. The performance metrics of our model were evaluated and compared 

with those of existing techniques in the literature, revealing the superiority of our 

system in both rail track and moving object detection tasks. 

The high accuracy, precision-recall, and F1-scores achieved by our system underscore 

its effectiveness and reliability in real-world scenarios. The use of advanced deep 

learning algorithms, namely YOLOv5, GLSAN, SARSA, and LSRN, in an integrated 

approach has proven to be a novel and successful strategy in improving detection 

performance. 

Our system's superior performance holds promising potential for practical application 

in enhancing safety measures in railway environments. Despite its current efficacy, 

there are potential areas for future enhancements and optimization, suggesting exciting 

possibilities for the further development of this research. 
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CHAPTER 5  

CONCLUSION AND FUTRE SCOPE 

This paper has provided a comprehensive overview of an innovative methodology for 

rail track detection and moving object detection in real-world scenarios. Our approach 

utilizes the powerful YOLOv5 model for rail track detection and the GLSAN model 

augmented with a knowledge generation mechanism for discerning moving objects.  

Applied to high-resolution video data captured using an iPhone 13 at 30 FPS, 4K 

resolution, our method exhibited commendable performance with an accuracy of 99% 

in rail track detection and 97% in moving object detection. These metrics outperform 

earlier research efforts and validate the robustness of our method in handling intricate 

detection tasks. This progress in railway safety has significant real-world implications, 

paving the way for implementing these intelligent systems to actively prevent 

accidents and enhance overall operational safety. 

Despite these promising results, the scope for future research remains broad. Real-time 

data presents a significant challenge due to the rapid movement of trains, altering the 

scene's dynamics instantly. The existing model, while efficient, may need further 

improvements to adapt swiftly to such changing scenarios and ensure accurate 

detection. Therefore, a key focus area for future research will be to refine the model's 

speed and computational efficiency. This will enable the system to perform object 

detection in real-time while maintaining high accuracy. 

Additionally, another promising direction for future exploration would be to 

distinguish between static and dynamic objects more effectively. Differentiating the 

behavior of objects in various states could add a sophisticated layer to our detection 

mechanism and contribute to improved performance and safety outcomes. 

In the case of object classification, we may look into further subdivisions such as 

classifying objects based on their level of threat to railway safety. This nuanced 

approach could improve the system's effectiveness in distinguishing between critical 

and non-critical hazards. 
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Moreover, it could be beneficial to expand the method's capabilities to include 

detection of other potential hazards such as track obstructions, signal failures, etc. An 

all-encompassing detection system could provide comprehensive safety coverage, 

mitigating numerous possible risks associated with railway operations. 

In conclusion, while we have made substantial progress in the realm of rail track and 

moving object detection using YOLOv5 and GLSAN, there is still considerable 

potential for future enhancements. Our research provides a sturdy foundation upon 

which future studies can build and continue to innovate within this field. We eagerly 

anticipate the future developments in this exciting domain of research. 
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