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Abstract

Clickbait is a type of providing false content, intentionally to gain a variety of users
and get engagement and monetary benefits. It makes users curious to click the link and
follow the content in various format like audio, video, text, images. As the online user
base is getting bigger and bigger and more and more users are coming online, the unusual
activities, scam and clickbait is becoming more common.These clickbait links will take
users to some random websites which will have irrelevant information and completely
exploits the user experience. The motive behind the clickbait links is to get more views
to generate more ad revenue. Clickbait De- tection is a crucial and difficult task to be
done. Many researchers have proposed various techniques using deep learning and machine
learning techniques like Logistic Regression, Linear Support Vector Machine, Adaboost,
Random Forest, Multilayer Perceptron, Convolution Neural Networks(CNN). To give the
clear overview about the efficient algorithms, we went through some existing studies over

the period of 2016-2022 which proposed various clickbait detection methods.
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CHAPTER 1

INTRODUCTION

1.1 Machine Learning

In the last few years, Internet has ruled the world, and the data flow through internet had
been increased significantly. The data is available in large chunk, containing organized data
as well as unorganized data. With the increase in data flow, maintaining the data as well
as collecting relevant information from the data becomes a challenging task. Data allows
several businesses to make decision using the data in such that can be conclude and
represent by companies.

It’s a very tedious task to find the useful information from the available data, it may be semi
organized or unorganized. If we organize data manually, it will take years to organize the
data, and that will be of no use, so we need machines to organize the data and they
should be smart enough to find out the relevant information from the chunk of data. We
need to train the machines, so that machines should keep learning from their past
experiences. In the recent years, Artificial Intelligence do- main has reach to the new
heights, especially machine learning, deep learning and natural language processing, have
gained a lot of popularity with the introduction of new fast and efficient algorithms with
high computation power.

Machine learning deals with the computers and machines and gives them the ability to learn
without being externally programmed to do so. ML algorithms use past data as an input
data to find out new output data. The idea is to make the systems learn from the previous
data, analyses the data, identify the patterns and take de- cisions without human

involvement.



1.2 Types of Machine Learning:

Different types of Machine learning algorithms are: Supervised learning, Unsupervised

Learning, Semi-Supervised Learning, Reinforcement Learning.

1.2.1  Supervised Learning:

It is a Supervised Learning Technique. Supervised Learning uses “labeled” dataset which
we use to train our machines and our machine predicts the output based on the learning
technique used. Labeled data here means that for input values in the dataset, we have
corresponding outputs for the particular input.

Some of the real-world applications of Supervised Learning are Market predic- tion,

Image Classification, spam Detection, Speech Recognition, Object-Recognition etc.

1.2.2  Unsupervised Learning

Unsupervised Learning needs no supervision. Unsupervised Learning uses “Unlabeled
dataset”, which we use to train our machines and the machine do prediction without any
supervision. Clustering is used in Unsupervised learning, which creates model based on
certain common properties and group them together in a cluster. For example, whether a
credit card should be given to the user or not is based on the properties of the users,

which matches the similar behavior of users with same characteristics past.



1.2.3  Semi-Supervised Learning

Semi-Supervised Learning works with both Labeled dataset as well as unlabeled
dataset. The unlabeled data set is in large amount than the labeled dataset. We use the
supervised learning to train the model and feed the labels to supervised learning.

For Example — It can be used in Image dataset, where we have only some part of

labeled dataset, e.g. Tiger, Cat, dog, etc have major part of unlabeled dataset.

1.2.4  Reinforcement Learning

Reinforcement Learning is a unexplored area of Machine Learning. It can be consider as close
to human in terms of learning. At every stage, it try to maximize the reward, by interacting
with the system and the environment. It tries to learn the behavior and pattern by regular

feedback.

1.3 Deep Learning

Deep learning methods eliminate the need for explicit feature engineering by auto-
matically discovering and extracting useful patterns and representations from un-
structured data. Deep neural networks, which include many interconnected layers of artificial
neurons or nodes, are used to achieve this. Each neuron generates an output by taking input
data, applying weights and biases, and then putting it through an activation function. It is
a powerful approach to solving complex problems by training deep neural networks.
Forward propagation and backpropagation are the two key processes in the training of a
deep learning model. Forward propagation involves feeding input data into the network so
it can generate predictions. Then, an error metric, such as mean squared error, is
calculated by comparing these predictions to the actual target values. The network’s
weights and biases are then iteratively adjusted via backpropagation to reduce the error.

Deep learning offers the advantage of automatically



learning hierarchical representations from data. As data flows through the layers of a
deep neural network, each layer learns to represent increasingly difficult and abstract

features.

Artificial
Intelligence

Machine
Learning

Deep
Learning

Figure 1.1: Artificial Intelligence vs Machine Learning vs Deep Learning

However, deep learning also presents challenges. Training deep neural networks
requires substantial labeled training data, which can be time-consuming and expensive to
obtain. Additionally, deep learning models can be computationally intensive, necessitating
powerful hardware like graphics processing units (GPUs) for efficient training.
Furthermore, issues such as overfitting and interpretability of deep learning models are still
areas of ongoing research.

In conclusion, deep learning is an influential and rapidly advancing field of artificial
intelligence that shows great potential in solving complex problems across various
domains. By leveraging large datasets and deep neural networks, Deep learning models
are capable of discovering patterns and representations from data on their own, which
enables them to perform well in tasks that were previously difficult for traditional

machine learning techniques.



1.3.1 Long Short-Term Memory

In many areas of artificial intelligence and machine learning, Long Short-Term Memory
(LSTM) has attracted substantial attention and success. The vanishing gradient problem,
which makes it difficult to detect long-term relationships in sequential data, was one of the
problems with classic RNNs that LSTM was created to solve.

Memory cells and gating mechanisms are specially incorporated into LSTM networks
to collect and model sequential patterns. The memory cells act as storage units, enabling
the network to retain and utilize important information even when there are long time gaps
between relevant events in the sequence. , LSTM has found extensive applications in various
domains and has demonstrated remarkable performance in tasks involving sequential data. In
natural language processing, LSTM has been successfully employed for tasks such as text
generation, sentiment analysis and machine translation. In time series analysis, LSTM has
shown promise in applications like weather forecasting, and energy load prediction. It has
also been utilized in speech recognition, handwriting recognition, and other areas where
sequential data analysis is crucial.

Capturing both short-term and long-term dependencies in data is one of the key
benefits of LSTM. The LSTM is very useful for modelling complex sequential patterns
because it has memory cells and gating features that allow it to selectively store and use
relevant information. LSTM networks are versatile and appropriate for jobs involving
inputs of varied durations because they can handle variable-length sequences.

However, We should keep in mind that LSTM models can be very expensive and
can cost a huge, when working with large datasets. Additionally, determining the
optimal architecture and hyperparameters for a specific task often requires careful
experimentation and tuning. By using the memory cells and gating mechanisms, LSTM

networks have demonstrated the ability to effectively model complex sequential patterns.



1.3.2  Bi-Directional Long Short Term Memory

The bidirectional processing used in Bi-LSTM allows it to capture both past and future
context in sequential input. It is an expansion of the conventional LSTM architecture.
Bi-LSTM networks have seen a lot of success and attention in a variety of sequential data
applications, including time series analysis, speech recognition, and natural language
processing.

Unlike traditional LSTMs that process sequences in a unidirectional manner,The input
sequence is processed by the Bi-LSTM simultaneously in forward and reverse. This is
achieved by using two sets of hidden states, with one set processing the sequence from
the beginning to the end, and the other set processing the sequence in the reverse order. By
considering information from both directions, Bi-LSTM can capture dependencies and
patterns that may exist in either the past or the future context of each time step.

Bi-LSTM combines the forward and backward hidden states at each time step, giving
the network access to data coming from both directions. This enables the model to make
more informed predictions or representations by considering a broader context compared to
traditional LSTMs.Bi-LSTM has demonstrated significant advantages in tasks where
context from both past and future time steps is crucial. By considering the context both
before and after a word, Bi-LSTM can better understand capture the nuanced meaning
and relationships in natural language.

In time series analysis, Bi-LSTM has also shown promising results. By leveraging
information from both earlier and future time points, Bi-LSTM can better capture
temporal dependencies and make more accurate predictions. This is particularly useful
in finding weather prediction, and anomaly detection.

One important consideration when using Bi-LSTM is the increased computational
complexity compared to traditional LSTMs due to the bidirectional processing. Training
Bi-LSTM models may require more computational resources and longer training times.

In conclusion, Bi-LSTM is an extension of the LSTM architecture that incorpo-



rates bidirectional processing to capture both past and future context in sequential data. By
considering information from both directions, Bi-LSTM can capture a broader context
and dependencies, leading to improved performance in tasks requiring a comprehensive

understanding of sequential data.

1.3.3 Gated Recurrent Unit

GRU is a kind of RNN architecture which addresses the limitations of traditional RNNs
in capturing long-term dependencies and mitigates the vanishing gradient problem. It
consists of two primary gates: the reset gate and the update gate. These gates enable
GRU to adaptively learn the importance of different inputs and the relevance of past
hidden states.

GRU has a simpler design, making it computationally efficient and easier to train. It
doesn’t utilize a separate memory cell but instead employs the hidden state to capture and
store information. GRU has shown promising results in various tasks involving sequential
data. In natural language processing, GRU has been successfully applied to translation and
modelling applications. In speech recognition, it has been utilized for converting speech to
text. In time series analysis, GRU has been employed for forecasting, anomaly detection,
and signal processing.

One of the advantages of GRU is its capability to capture dependencies over longer
sequences compared to traditional RNNs. By employing gating mechanisms, GRU can
selectively remember or forget information based on its relevance.

In conclusion, the GRU is a recurrent neural network architecture that overcomes some
limitations of traditional RNNs. With its gating mechanisms and simplified design, GRU
efficiently captures dependencies in sequential data, making it suitable for different

applications.



1.4 Introduction to Clickbait and fake news

In today’s world, with all the advancements in technology and a significant increase in the
number of users accessing the internet and online resources, there is also an increase in
vulnerable and clickbait data on the internet. Clickbait is simply poor content with no
meaning or value-added data, which is fed to the user by exciting them with catchy
textual and non-textual data. The purpose of clickbait is to get more views on their sites,
which will lead to more revenue via advertisements and other sources. These clickbait
articles or news feeds create an irrelevant experience for humans and sometimes distract
them to favour a particular agenda. Clickbaits can be categorized into eight types: teasing,
ambiguous, formatting, inflammatory, wrong, graphic, exaggeration, and bait and switch

[23].

Ashneer Grover on why he unfollowed all Shark Tank India judges,
being called ‘mote waale Shark' and more

‘Dirty Game...You Tried To Be Over-smart’, Shark Tank 2's
Pitchers Leave Anupam Mittal Fuming

Tech layoffs. Amazon to slash more than 18,000
jobs in escalation of cuts

Figure 1.2: Some News Headlines

In Fig. 1.2, some headlines were given, and they were taken from popular news
websites. As we can see, the headlines seem so promising and exciting that there is a
high probability of clicking the headlines to read the complete news. In recent years,
clickbait has become extremely popular. People in this domain want early success, and
for that, they do whatever they feel will increase their business. A lot of research has
been already done to detect clickbait, and Facebook in 2014 took action to remove the
clickbaits as per EIArini and Tang [24]. Reis et al. [25] took a dataset of 69,000 headlines
and observed the polarity of sentiments found in these headlines and extremities in the
gained popularity. Headlines are the first impressions of the news and decide whether the
user will read it or not, as per Digirolamo and Hintzman [26]. Loewenstein [27] also

explained the information gap



theory, according to him, what we know and what we wish to know vary, and this
difference has emotional consequences. Users become curious about these gaps. Not
knowing makes us uncomfortable. Natural Language Processing (NLP) has gained more
popularity to find context and is very frequently used in the below models. To
understand the context better, convolutional neural networks (CNN) have been used in
many models to improve accuracy, as per Kim [28].

Pothast et al. [29] were one of the first, to work on detecting clickbait on Twitter, but
the problem was not limited to Twitter, the same problem exists with other social media
platforms as well. Gianotto and Alison [30] came up with approaches like ”down-worthy,”
which transforms the headlines into something more garbageish after applying a predefined
set of words to identify clickbait. Using the dataset created by Chakraborty et al. [2],
recurrent neural networks were used in an experiment by Anand et al. [19] to recognise
clickbait news. They adopted a bi-directional RNN. Fig 1.3 depicts the model

architecture and the output of the model.
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Figure 1.3: Bi-Directional RNN architecture for clickbait detection

Rony et al. [31] analysed the millions of Facebook posts from several organi-
zations. Deep learning approaches have recently achieved success in text catego-
rization, so they built their algorithms utilising distributed subword embeddings rather
than bags of words and trained their systems using this dataset. They were

9



able to achieve 98.3% accuracy. Lie et al. [32] utilised Integer Linear Programming, the
addition of the relationship between the images and the text in the technique is what
distinguishes their study apart from the competition.

Clickbait is a form of providing false content, intentionally to attract a variety of users
and get engagement and monetary benefits. It makes users curious to click the link and
follow the content in various format like audio, video, text, images. As the online user
base is getting bigger and bigger and more and more users are coming online, the unusual
activities, scam and clickbait is becoming more common. Social media platforms like
Youtube, Facebook, Twitter gives user a freedom to post their content in text, pictures,

videos format.
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CHAPTER 2

LITERATURE REVIEW

To identify clickbait, Amol Agrawal [1] has presented a deep learning-based methodology.
He used Convolution Neural Networks(CNN) with one layer of convolution, the first layer
was used for word embedding, During his experiments, he used both word embeddings
created from scratch as well as word embeddings explored using an unsupervised neural model
[12][13]. Word Vectors were then trained on billion words of google * news[14].In the next
layer, convolutions over word vectors are produced using filters of various sizes (3, 4, and
5). A new feature is produced by each oper- ation. A feature map is created using all the
newly generated features. The feature map is subjected to a max-over-time pooling
process [15], and the feature chosen for that particular feature map is the one having the
highest value. These generated features from the filters constitute the subsequent layer,
which is the penultimate layer. After that, a fully linked softmax layer receives these
features and outputs the probability distribution over labels. He has used 5-fold cross-
validation in his experiments. He compares both the scratch and the non-static word2vec
models,and the click-word2vec beats the scratch model. He was able to get the highest F1-
Score of 0.86, with precision 0.85, 0.90 accuracy, and recall 0.88.

In [2], A. Chakraborty et al. proposed a method by selecting N-gram features, Word
Patterns, Sentence Structure, and Clickbait Languages. They used two approaches, one
based on topical similarity and another based on linguistic patterns. They have done
experiments using three prediction models - Decision Trees, Random Forests, and Support

Vector Machines. They have done 10-fold cross-validation, out

*https://code.google.com/p/word2vec/
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of all 3 prediction models, SVM performs the best, with the F1-score of 0.93, recall of

0.90, precision of 0.95, accuracy of 0.93, and ROC-AUC of 0.97 for all features.

Table 2.1: Performance of SVM classifer.

SVM
Features Used ROC- | Acc. F1- Prec. | Rec.
AUC Score
Sentence Structure 0.84 0.77 0.77 0.79 0.75
N-gram Features 0.9 0.89 0.89 0.92 0.85
Clickbait Language 088 |08 |08 |08 |0.82
Word Patterns 0.91 0.84 0.84 0.84 0.84
All features 0.97 |0.93 0.93 0.95 0.90

They performed pattern-based, topic-based, and hybrid blocking approaches, and
pattern-based approaches gave better results, so they implemented them into the browser
extension. They offered a feature where users could examine the websites that the extension
had blocked and provide feedback, whether it was clickbait or not. On average, around 89%

of the time, the extension correctly blocked the clickbait sites.

Table 2.2: Performance of blocking approaches.

Approach F1- Acc. Prec. | Rec.
Score

Topic Based 0.74 1075 |0.769 | 0.74

Pattern Based 079 | 081 0.834 | 0.76

Hybrid 072 | 0.72 | 0.766 | 0.682

In [3], A. Gecgkil et al. demonstrated the model by referencing the Potthast et al. [17]
model. In [17], the authors selected 215 elements from among three groups: meta
information, linked web pages, and teaser messages. Out of 215 features from the Potthast
etal. [17] model, the last four features related to the metadata and the first 19 features of the
teaser message were chosen. They classified the data according to the confidence index and
decided whether the given headline was clickbait or not. When compared to the non-
Clickbait word list, the frequency consistency of the news headline should be greater
than 0.08 and less than 0.02, then the headline is considered a Clickbait headline. Using
the TextRank algorithm, an unsupervised technique put forth by Rada Mihalcea and Paul

Tarau [18], a summary of the titles
12



has been generated. They were able to get a precision of 0.899, a F-Score of 0.920, a recall
of 0.941, and an accuracy of 0.865.

In [4], S. Chawda et al. utilized the context of the titles and preferred Recur- rent
Convolutional Neural Network (RCNN) for text classification. They further enhanced
the proposed model using LSTM and Gated Recurrent Unit (GRU) for better accuracy
than the previous models. They used the pre-trained word2vec and randomly initiated
word embeddings as input for RCNN. GRU and LSTM are further used to capture long-
term dependencies. SVM in [2] gives an accuracy of 0.93, whereas using RCNN, the
accuracy went to 0.950. Now, for further improvements, using LSTM with RCNN, the
accuracy increased a bit and reached 0.9586. RCNN, when used with GRU, gave an
accuracy of 0.9667, and finally, the proposed method of RCNN + GRU + Word2Vec gave
an optimum accuracy of 0.9776.

S. Kaur et al. [5] proposed a method for textual as well as non-textual texts. They
experimented using a two-phase hybrid CNN-LSTM biterm model and performed it on
three different datasets. The first dataset was obtained from A. Chakraborty et al. [2],
which contains 32,000 headlines from various news articles. The second dataset was
taken from Khater et al. [20], which contains 12,000 headlines. The third dataset was
created by the authors themselves and primarily contains the headlines from Reddit and
Facebook pages. Word embedding is done using GloVe and Word2Vec. LSTM was used
to capture the long-term sequences. CNN is used to extract high-level sequences of word
features. Data pre-processing is done on non-textual data, where the image is converted
into grayscale, noise removal, text extraction, and auto-correction are done, and the pre-
processed data is fed into the proposed model. The performance of the proposed model is
shown in Table 2.3

In [6], P. Rajapraksha et al. demonstrated a model using transfer learning models like
XLNET, BERT, and RoBERTa to detect clickbait. They have taken the training dataset

from Webis Clickbait Corpus 2017 ® and the testing dataset from Kaggle

*https://webis.de/data/webis-clickbait-17.html

13



Table 2.3: Performance of Applied Algorithms.

Approach Dataset ROC- | Acc | Prec. | F1- Rec.
AUC Score

Without Pre-trained Dataset 1 | 0.87 081 |0.82 0.81 0.79

vectors Dataset 2 | 0.81 0.78 0.80 0.79 0.78

Dataset 3 | 087 [ 084 |0.84 |0.82 |0.80
With Word2vec pre- Dataset 1| 097 |093 |092 |085 |0.80
trained vectors Dataset 2 | 0.89 0.84 0.90 0.85 0.81
Dataset 3 | 0.94 | 0.89 091 |0.88 0.85
With  GloVe pre- | Dataset 1| 099 | 0.95 091 | 0.88 0.85
trained vectors Dataset 2 | 0.94 0.89 0.95 0.92 0.89
Dataset 3 | 098 |[094 |095 |0.93 0.91

*Train a clickbait detector’ 2. They used these three models with different cases by fine-
tuning them to categorize whether it was clickbait or not. They used 3 fine tuning
strategies, model generalization, model expansion, and model compression. According to
their experiments, the results for ROBERTa were far better than BERT and XLNet in many
cases.

In [7], B. Gamage et al. used a combination of deep learning models. Their
approach is inspired by Zannettou et al. [21]. The idea of the authors is to use the
different features of a YouTube video to classify it, and Zannettou et al. [21] focused
more on user features such as titles, tags, statistics, and comments, whereas
B. Gamage et al. considered an audio transcript along with the above features for
evaluation. They used the same dataset as Zannettou et al. [21], which consists of 14000
videos, where 5,049 videos weren’t clickbait and 8,591 videos were clickbait. The division
of the dataset is done in 81% in training, 9% in validation, and 10% in testing. A multi-
model deep learning architecture is built to classify whether the video is clickbait or not.
An audio transcript is generated from the YouTube videos using the youtube-transcript
API[22]. A separate model is applied to each of the features (title, thumbnail, comments,
audio transcript, tags, statistics) and later combined into a single one. After combining,
transfer learning is applied to the model, where dense layers were trained and fine-tuning
was done throughout the entire model. Their model was successful in obtaining an

accuracy of 92.4%.

3https://www.tira.io/task/clickbait-detection/dataset/clickbait17-test-170720/
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but it cannot be considered the same with different datasets, as a result, the model was not
able to give more than 85% of accuracy for different datasets.

In [8], D. Varshney et al. proposed a similar method to B. Gamage et al. [7],
but they categorized the features into three categories — Video Content based features,
user-profile-based features, and human consensus-based features. Video based features
contain speech-title similarity, dislike-like ratio, number of likes, and number of dislikes. In
speech-to-title similarity, first, the audio is extracted from the video and an audio
transcript is generated, later, the audio transcript and the title are compared using the
cosine similarity formula, to find the similarity between them. Human consensus-based
features include the number of comments, positive polarity, negative polarity, Fake
comment count ratio, etc. User profile features consist of the total number of videos,
subscribers-to-age ratio, subscriber count, channel views, and registration age. Various
classifiers like SVM, Random Forest, Decision-Tree, SVM, and Logistic Regression
were used to experiment, and the Random Forest outperformed them all.

A. A. Balan et al. [9] presented a method using deep learning models, especially
recurrent neural networks like Long short-term memory (LSTM). They used 32,000
headlines, including clickbait as well as non-clickbait news. The data was taken from
popular websites like ’ViralNova’, ’BuzzFeed’, ’Scoopwhoop’, ’Thatscoop’ etc.
Preprocessing is done where text is converted to lowercase, punctuation is removed, and
stop words are removed. Word2vec word embedding was used to convert text into word
vectors. 20% of the dataset was used for testing, and the remaining 80% was used for
training. LSTM was trained multiple times to improve efficiency. The most accurate
LSTM units were 50 and 50. Different classifiers were compared with LSTM, like Naive
Bayes, and LSTM performed better than Naive Bayes.

In [10], S. Regina, K. Purwandari, et al used Natural Language Processing (NLP)
methods along with supervised-learning methods like K-Nearest Neighbor, Decision trees,
and Bidirectional Long Short-Term Memory.

The dataset was taken from DATA INDONESIA xlIsx. Text preprocessing is done,
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and steps like stemming, folding, and tokenization have been performed on the data.
Word2Vec is used for text embedding. The dataset was divided into 3:1:1 for training,
validation, and testing. When a word or phrase may have many interpretations, bi-LSTM is
more beneficial. The performance of Bi-LSTM, KNN, and decision trees is shown in Table

2.4. Out of all the classifiers, Bi-LSTM performed better than others.

Table 2.4: Comparison of Bi-LSTM with Machine Learning Algorithms.

Approach Acc. | F1- Prec. | Rec.
Score

Bi-LSTM 071 | 065 |0.67 0.69

KNN 0.577 | 0388 | 0.51 | 0.313

Decision Tree 056 |049 |049 | 049

In [11], Y.-W. Ma et al. proposed an approach based on feature engineering and
artificial intelligence. They had done data collection, feature extraction, text
preprocessing, feature evaluation, etc. Their model used 18 format-based or lexicon features
including title starts with-number, title of exclamation,Number of inputs, Number of tags,
etc. They have taken a dataset containing 6,000 non-clickbait and 6,000 clickbait
headlines. A hybrid model is built using a neural network schema. CNN and LSTM are
used to improve accuracy. Softmax activation function was used in the model, and an
input layer and 100-D vectors of the title text are used in the embedding process. ANOVA
is used for feature selection and extraction. They were able to get to a precision of

93.25% and an accuracy of 88.5%.
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Table 2.5: Summary of existing models

Author Approach Result
Name
Amol Word2vec and CNN with Accuracy = 0.90,
Agrawal one layer of convolution F1-Score = 0.86
etal. Recall = 0.88,
ROC-AUC = 0.90
Precision = 0.85,
A. Features Selected - Sentence Structure, Accuracy = 0.93,
Chakraborty et | Clickbait Language, N-gram features, Word | ROC-AUC = 0.97
al. Patterns, Models used - SVM, Decision Tree, | Precision = 0.92,
Random Forest F1-Score = 0.934
Recall = 0.95,
A. Geckil et | Features Selected - Meta Information, Teaser | F1-Score = 0.920
al. Message(N-grams,bag of words) Models Used | Precision = 0.899,
- Naive Bayes, Accuracy = 0.865,
Random Forest, Logistic Regression Recall = 0.941,
S. Chawda et | Recurrent Convolution Neural Network Accuracy = 0.9776
al. (RCNN) + Gated Recurrent Unit (GRU)
+ Word2Vec
S. Kaur et al. | A Hybrid CNN-LSTM Biterm Table - 2.3
model with Glove and Word2vec
pre-trained vectors and
also without pre-trained vectors
P. Rajapak- | Transfer Learning Models like BERT, Precision = 0.73,
sha et al. RoBERTa and XLNet Accuracy = 0.85,
with fine-tuning with different cases F1-Score = 0.69
Recall = 0.87,
B. Gamage et | Features selected - Title, comments, Accuracy = 0.85
al. audio transcript, Tags, Statistics Deep
Learning Models - LSTM, CNN
D. Varshney | Features selected - Title, comments, Precision = 0.84,
et al. audio transcript, Tags, Statistics Model F1-Score = 0.77
Used - SVM, Random Forest, Recall = 0.78,
Decision-Tree, logistic-Regression
A. A. Balan | Word Embedding using Word2Vec, Precision = 0.96,
etal. Model Used - LSTM, Naive Bayes Accuracy = 0.96,
F1-Score = 0.96
Recall = 0.96,
S. Regina et | Word Embedding using Word2Vec, Table - 2.4
al. Models Used- Bi-LSTM,
KNN, Decision Tree
Y.-W. Ma et | Lexicon and format-based features Model Accuracy = 0.88,
al. Used - CNN-LSTM F1-Score = 0.98
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CHAPTER 3

METHODOLOGY

The methodology for determining whether the headlines are clickbait or not consists of four
phases, firstly the dataset creation, secondly the data preprocessing, then text processing, and

applying our different machine learning and deep learning models, out of all Bi-LSTM
performed well.

y /*\ X //

: Clickbait \_- (Non-Clickbait)
Headlines “Headlines
\ /

[

| Dataset Creation ¢ convﬁ,mi;::} itp
’ remove
punctuation
remove stop words
remove question

| words remove
|Data Preprocessing ‘ numbers.

4

| Tokenization and
| Word Embeddings

|

Training data

| i ‘ Testing Data
Bo% 4—' Splitting i—'—) 20?%
Y
Proposed
Model
OUTPUT

Figure 3.1: Proposed Model Flow
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3.1 Dataset Creation

The Dataset contains almost 52000 headlines containing 27000 clickbait, whereas 25000
non-clickbait headlines are from multiple websites and the headlines are taken from 2007 till
March 2023. For the 2007-2016 timeline, the dataset is taken from Kaggle[18], the
Kaggle dataset contains almost 30,000 headlines both clickbait and non-clickbait.

For the 2019-2023 timeline, the headlines are scraped from multiple sources like Twitter
and other News publications. Clickbait headlines are scraped from Twitter handles like
Buzzfeed, ViralNova, Thatscoop, and The Odyssey. Non-Clickbait headlines are
scrapped from online news apis like The Guardian *, BBC News, Bloomberg, Reuters 2,

The Washington Post 3, NY Times *.

Clickbait vs Non-Clickbait

25000
20000

15000

# of Headlines

10000

5000

Non-Clickbait Clickbait
Type of Headline

Figure 3.2: Histogram of Created Dataset: Clickbait and Non-Clickbait Headlines

*https://open-platform.theguardian.com/
*https://newsapi.org/
3https://www.washingtonpost.com
*https://api.nytimes.com/
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Figure 3.3: Count of Number of Words in a Headline
3.2 Data Preprocessing

After collecting headlines from all the sources, we will merge all the headlines into one
CSV file, The dataset contains columns like text and labels. Preprocessing is done
before actually processing the data, so in preprocessing, we will convert the text into
lowercase, remove punctuation, remove words containing numbers, remove text in square

brackets, remove question words, remove stop words, and remove numbers.

#make text lowercase
df[ 'text']=df['text'].apply(lambda x: x.lower())

Figure 3.4: Converting Text into Lowercase
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#function to remove punctuation and non-alphabetical characters and links
import re
def clean text roundli{text):
Make text lowercase, remove text in square brackets, remove punctuation and remove wards containing numbers
text = text,lower()

#text = re.sub{ " \w*\diw*", ' ', text)
text = re, sub{'\n', . text)

text = re,sub({' ', , text)

toxt = re.sub{r ' *https?:\/\/.*INr\n]*', o text, flags=re MULTILINE)

text = re.sublr ' \we\/ (2 \EW- 1IN IN W30 (7 (7N /I0Ns/ )0, ', text)
text = re.sub('\[.*?\]", ', text)

text = re,subl' (%) N re.escape{string.punctuation), '', text)

text = re,sub{'"', ", text)

text = re,sub{'"'," " text)

text = re.sub(''","'", text)

text = re,sub{'~-", "' text)

text = re,sub(''", ", text)

return text

Figure 3.5: Data Preprocessing
3.3  Text Processing

In Text Processing, We have done tokenization of Data, where each word is represented
as a token and to perform Exploratory data analysis (EDA), we have done featured
engineering by finding the most clickbait words, most non-clickbait words, number of
unique words in each class, headlines start with a number or not, headlines contain
exclamation mark. For modeling, TFIDF scores were accessed for each unigram and
bigram.

Top 20 Clickbait Headline Words
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Figure 3.6: Top 20 Clickbait Headline Words
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Top 20 Non-Clickbait Headline Words
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Figure 3.7: Top 20 Non-Clickbait Headline Words

22




3.4

3.4.1 Naive Bayes

Bayes Classifier

nb classifier = MultinomialNB(alpha =

#Nalve
85)
nb_classifier.fit(X train, y train)

nb_train preds =
nb test preds =

print(train results(nb train preds))
print(test_results(nb test preds))

('Training Accuracy:', 0.9986699066376774,

Machine Learning Models

nb_classifier.predict(X train)
nb classifier.predict(X test)

' Training Recall:', 0.9992099155597255)

('Testing Accuracy:', 0,9300184162062615, ' Testing Recall:', ©.9416336706261915)

Figure 3.8: Naive Bayes Classifier

non-clickbait

predicted label

non-clickbait

clickbait

true label

Figure 3.9: Confusion Matrix of Naive Bayes Classifier
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3.4.2 Random Forest

#Random Forest
rf classifier = RandomForestClassifier(class weight = 'balanced’, n estimators=900,
rf_classifier.fit(X train, y train)

rf test preds = rf classifier.predict(X test)
rf train preds = rf classifier.predict(X train)

print(train results(rf train preds))
print(test results(rf test preds))

(*Training Accuracy:', 1.0, ' Training Recall:', 1.0)
("Testing Accuracy:', ©.9070748925721301, ' Testing Recall:', ©.9338612699809357)

Figure 3.10: Random Forest Classifier

non-clickbait

label

predicted

non-clickbait clickbait
true label

Figure 3.11: Confusion Matrix of Random Forest
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3.4.3  Support Vector Machine (SVM)

#SVM Model

svm_classifier = LinearSVC(class weight='balanced', C=10, max_iter = 1500 )
svm _classifier.fit(X train, y train)

svm_test preds = svm classifier.predict(X test)
svm_train preds = svm classifier.predict(X train)

print(train_results(svm train preds))
print(test results(svm_test preds))

('Training Accuracy:', 0.999872106407469, ' Training Recall:', 0.9997530986124142)
('Testing Accuracy:', 0.9323204419889503, ' Testing Recall:', 0.9260888693356797)

Figure 3.12: Support Vector Machine

non-clickbait

labe

predicted

non-clickbait clickbait
true label

Figure 3.13: Confusion Matrix of Support Vector Machine
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3.4.4

Logistic Regression

from sklearn.linear model import LogisticRegression

1lr = LogisticRegression(C=500, class_weight = 'balanced', solver = 'liblinear

1r.fit{X train,y train)

Lr train preds = lr.predict(X train)

Lr test preds = lr.predict(X test)

print{train results(lr train preds))

print{test results(lr test preds))

#olot confusion matrix on test set lr Classifie

sns.set()

cm dc = confusion matrix{y test, lr test preds)

sns.heatmap(cm dc.T, square=True, annot=True, fmt='d', cbar=False,cmap="cividis",
xticklabels=['non-clickbait', 'clickbait'],yticklabels=["non-clickbait',

)
plt.xlabel('true label')
plt.ylabel('predicted label');

plt.save

fig('lr_cm')

Figure 3.14: Logistic Regression

non-clickbait

d label

predicte

non-clickbait clickbait
true label

Figure 3.15: Confusion Matrix of Logistic Regression
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3.45 XGBoost

from xgboost import XGBClassifier

xgb clf = XGBClassifier()

xgb clf.fit(X train, y train)

xgb test preds = xgb clf.predict(X test)
xgb train preds = xgb clf,predict(X_train)

print{test_results(xgb _test preds))
print{train_results(xgb train preds))

#plot confusion matrix on test set xgboost Classifier

sns.set()

cm_dc = confusion matrix(y test, xgb test preds)

sns.heatmap(cm dc.T, square=True, annot=True, fmt='d’', cbar=False,cmap="cividis”,
xticklabels=[ 'non-clickbait', ‘clickbait’'],yticklabels=['non-clickbait', ‘clickbait’]
)

plt.xlabel{ true label’)
plt.ylabel( predicted label');

('Testing Accuracy:', 0.8566605279312461, ' Testing Recall:', 0.8558439653988197)
{'Training Accuracy:', 0.8834122010487274, ' Training Recall:', 0.8654387437657399)

Figure 3.16: XGBoost
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non-clickbait clickbanr
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Figure 3.17: Confusion Matrix of XGBoost
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3.5 Deep Learning Models

3.5.1 Dense Model

Clickbait
Headlines

. convert the text into
‘ Dataset Creation L_ lowercase,

S T, remove
punctuation
remove stop words
\ 4 remove question

) words remove

Data Preprocessing numbers.

\ 4

' Tokenization and
Word Embeddings

. ’; '—'x
Training data s Testing Data
Mgb H Splitting —_— 20%6

Dense
Model

# Define parameter
embedding dim = 16
drop value = 0.2

# Define Dense Model Architecture
model = Sequential()
model.add (Embedding(vocab size,
embedding_dim,
input length = max_len))
model.add(GlobalAveragePoolinglD())
model.add(Dense(24, activation='relu'))
model.add(Dropout(drop value))
model.add(Dense(1l, activation='sigmoid’))

Figure 3.18: Dense Model
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Layer (type) OQutput Shape Param #
embedding (Embedding) (None, 100, 16) 8000
global average poolingld (G (None, 16) 0
lobalAveragePoolinglD)
dense (Dense) (None, 24) 408
dropout (Dropout) (None, 24) 0
dense 1 (Dense) (None, 1) 25
Total params: 8,433
Trainable params: 8,433
Non-trainable params: 0
embedding_input | input:
[(None100)] | [(None,100)]
InputLayer output:
 J
embedding | input:
. (None,100) | (None,100, 16)
Embedding | output:

l

global_average poolingld | input:
- (None,100, 16) | (None, 16)
GlobalAveragePooling1D | output:
dense | input:
(None, 16) | (None, 24)
Dense | output:
dropout | input:
(None, 24) | (None, 24)
Dropout | output:
dense_1 | input:
(None, 24) | (None, 1)
Dense | output:

Figure 3.19: Summary of the Dense model

29




Training and Validation loss
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Figure 3.20: Training and Validation loss of Dense Model
Training and Validation accuracy
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Figure 3.21: Training and Validation accuracy of Dense Model

30



3.5.2 Long Short Term Memory

Clickbait

) ert the text int
Dataset Creation L_ convww;:e' =

remove
punctuation
remove stop words
Y remove question
words remove
Data Preprocessing numbers.
) 4 i
Tokenization and
Word Embeddings
Training data et Testing Data
sé; -— Splitting —_— 25&
\ 4
LSTM
Model

Figure 3.22: Long Short Term Memory Model Flow

# Define parameter

n lstm = 128

drop lstm = 0.2

# Define LSTM Model

modell = Sequential()

modell.add(Embedding(vocab size, embedding dim, input length=max len))
modell,add(SpatialDropoutlD(drop lstm))

modell,add(LSTM{n lstm, return_sequences=False))
modell.add(Dropout(drop lstm))

modell.add(Dense{(1, activation='sigmoid'))

Figure 3.23: Long Short Term Memory Model
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Model: "sequential 1"

Layer (type) Output Shape Param #
embedding 1 (Embedding) (None, 100, 16) 8000
spatial dropoutld (SpatialD (None, 100, 16) 0
ropoutl1D)

Lstm (LSTM) (None, 128) 74240
dropout 1 (Dropout) (None, 128) 0
dense 2 (Dense) (None, 1) 129

Total params: 82,369
Trainable params: 82,369
Non-trainable params: 0

embedding_2_input | input:

[(None,100)] | [(None,100)]
InputLayer output:

embedding_2 | input:
(None,100) | (None,100, 16)

Embedding | output:

spatial_dropoutld_1 | input:
SpatialDropoutlD | output:

(None,100, 16) | (None,100, 16)

Istm input:
LSTM | output:

(None,100, 16) | (None, 128)

dropout_1 | input:

(None, 128) | (None, 128)

l

(None, 128) | (None, 1)

Dropout | output:

dense_2 | input:

Dense | output:

Figure 3.24: Summary of the Long Short Term Memory Model
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Loss

Accuracy

Training and Validation loss

0.6938 1 —— Training loss
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Figure 3.25: Training and Validation loss of LSTM

Training and Validation accuracy
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Figure 3.26: Training and Validation accuracy of LSTM
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3.5.3  Gated Recurrent Unit
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Figure 3.27: Gated Recurrent Unit Model Flow

#GRU
model3 = Sequential()
model3.add (Embedding(vocab size,
embedding dim,
input_length = max_len))
model3.add(SpatialDropoutlD(0.2))
model3.add(GRU(128, return sequences = False))
model3.add (Dropout(0.2))
model3.add(Dense(1, activation = 'sigmoid'))

Figure 3.28: Gated Recurrent Unit Model
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Model: "sequential 10"

Layer (type) Output Shape Param #
embedding 10 (Embedding) (None, 100, 16) 8000
spatial dropoutld 2 (Spatia (None, 100, 16) 0
1Dropout1D)
gru_ 1 (GRU) (None, 128) 56064
dropout 10 (Dropout) (None, 128) 0
dense 11 (Dense) (None, 1) 129
Total params: 64,193
Trainable params: 64,193
Non-trainable params: 0
embedding_7_input | input:
[(None,100)] | [(None,100)]
InputLayer output:
embedding_7 | input:
(None100) | (None,100, 16)
Embedding | output:
spatial_dropoutld_4 | input:
- (None,100, 16) | (None100, 16)
SpatialDropoutlD | output:
gru_3 | input:
(Nonel00, 16) | (None, 128)
GRU | output:
dropout_6 | input:
(None, 128) | (None, 128)
Dropout | output:
dense_7 | input:
(None, 128) | (None, 1)
Dense | output:

Figure 3.29: Summary of the Gated Recurrent Unit Model
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Training and Validation loss
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Figure 3.30: Training and Validation loss of GRU
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Figure 3.31: Training and Validation accuracy of GRU
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3.5.4  Bidirectional Long Short Term Memory Model:

The Bi-LSTM Model consists of 4 layers: The embedding layer, which is the first layer
of the Bi-LSTM Model, takes a sentence as input and produces as output a vector
representation of the sentence where each word is replaced by a vector of numbers. This
vector of numbers indicates the context of the word and how closely it is related to or not
related to some other words. The Bi-LSTM layer, the second layer of the model, takes as
input a vector-of-vectors representation of a sentence and produces as output a vector of
numbers. The dropout layer, the third layer in the model, works towards reducing or
delaying overfitting in a neural network by randomly turning off some percentage of
units during the training phase of the deep learning model. The final layer of the neural
network is the dense layer which takes as input a vector of numbers and produces as

output the predicted class for the given input sentence.

Table 3.1: Implementation Details and Layer-wise Parameters of Bi-LSTM Model

Layer Parameter Parameter
Name Value

Embedding Vocab Size 500

Layer Max Length 100
Embedding Dim 16

Bi-LSTM Units 128

Layer

Dropout Drop Rate 20%

Layer

Dense Layer Units 1
Activation Function Sigmoid

In Table- 3.1, the Implementation details of Bi-LSTM are given, we have used

sigmoid as Activation Function.

In Table 3.2, all the parameters we have used while training is given with their values.

We are using Adam Optimizer. We are doing early stopping for validation loss.
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Figure 3.32: Bidirectional Long Short Term Memory Model Flow

#Bi-directional LSTM
model2 = Sequential()
model2.add (Embedding(vocab size,

embedding dim,

input length = max_len))
model2.add(Bidirectional (LSTM(n 1stm,

return_sequences = False)))

model2.add (Dropout(drop lstm))
model2.add(Dense(1, activation='sigmoid'))

Figure 3.33: Bidirectional Long Short Term Memory Model
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Model: "sequential 9"

Layer (type) Output Shape Param #
embedding 9 (Embedding) (None, 100, 16) 8000
bidirectional 6 (Bidirectio (None, 256) 148480
nal)
dropout 9 (Dropout) (None, 256) 0
dense 10 (Dense) (None, 1) 257
Total params: 156,737
Trainable params: 156,737
Non-trainable params: 0
embedding_3_input | input:
[(None,100)] | [(None, 100)]
InputLayer output:
embedding_3 | input:
- (None, 100) | (None,100, 16)
Embedding | output:
bidirectional(lstm_1) | input:
— (None,100, 16) | (None, 256)
Bidirectional(LSTM) | output:
dropout_2 | input:
(None, 256) | (None, 256)
Dropout | output:
dense_3 | input:
(None, 256) | (None, 1)
Dense | output:

Figure 3.34: Summary of the Bidirectional Long Short Term Memory Model
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Figure 3.36: Training and Validation accuracy of Bi-LSTM
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Table 3.2: Parameters used to Train the model

Parameter Name Parameter
Value
Loss Function Binary

Cross entrophy

Optimizer Adam
Metrics F1 Score, Precision
Recall, Accuracy

Number of Epochs 500
Early Stopping Pa- | 3
tience

In Table - 3.3, the parameters used for data processing are given. We are splitting the data

in 80:20, 80% for the training set, and 20% for testing.

Table 3.3: Parameters for Data Preprocessing

Parameter Name Parameter

Value
Train Test Split 80:20:00
Max Length 100
Padding Type Post
Truncation Type Post
Vocab Size 500
Number of Unique | 30757
Words
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Experimental Setup

The models are implemented in Python, codes are written in jupyter notebook and run on a
system having an Intel i5 11th gen processor with RAM of 16 GB and an operating

system of Red Hat Linux.

4.2 Evaluation Metrics

In machine learning, evaluation metrics are used to determine a model’s performance.
To determine the performance of our models, we utilize classification metrics like F1
score, recall, precision, and accuracy. We can measure the performance using a confusion

matrix. It is a matrix of 2 * 2 table, for 2 class classifiers.

Actual class
1 0
B 1
L True False
g Positive | Positive
(O]
S
©
et
a0 False True
Negative | Negative

Figure 4.1: Confusion Matrix
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 True Positive (TP): Our model predicted class ‘clickbait” and the actual class is

‘clickbait’.

e True Negative (TN): Our model predicted class ‘non-clickbait’ and the actual class

1s ‘non-clickbait’.

 False Positive (FP): Our model predicted class ‘clickbait’ but the actual class is

‘non-clickbait’.

» False Negative (FN): Our model predicted class ‘non-clickbait’, but the actual class

1s ‘clickbait’.

4.3  Training and Validation Performance Curves

We have plotted the curves of Training and Validation accuracy and loss of our Bi-
direction LSTM model. Training loss evaluates how well our model matches the
training set of data, and Validation loss evaluates how well it performs on the validation
set. The purpose of this curve is to understand, which part needs tuning, there can be
underfitting or overfitting problems, which can arise in our model. Usually in
Bidirectional LSTM, an Overfitting problem arises. In Overfitting, our models perform
better on training data but perform poorly on validation data, So validation loss starts

increasing.

4.4  Result Analysis

Our Model aims to classify the clickbait headlines using Bidirectional LSTM. The
results of BI-LSTM along with other Deep Learning Models like the Dense Model,
LSTM Model, and GRU is shown in Table 4.2, Out of all learning models applied BI-
LSTM outperforms with an accuracy of 93%. We have also applied machine learning
algorithms to our created dataset. In Machine Learning algorithms, SVM performed the

best with an accuracy of 93%, but the recall value of BI-LSTM is
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better than SVM.

Table 4.1: Performance of Machine Learning Approaches.

Approach Acc. | F1- Prec. | Rec.
Score

Naive Bayes 0.930 | 0.934 | 0926 | 0.942
Logistic Regression | 0.931 | 0.934 | 0.944 | 0.924
SVM 0.932 | 0935 | 0.944 | 0.926
Random Forest 0.906 | 0.912 | 0.893 | 0.933
XGBoost 0.857 | 0.862 | 0.868 | 0.856

0.94

0.92

gogo

b4

0.88 1

0.86 1
Naive Bayes Random Forest SVM Logistic Regression XGBOOST

Figure 4.2: Comparison of Machine Learning Models

As We can see in Table 4.1, SVM has a higher F1-score, precision, and accuracy than
other classifiers, and have an equivalent Recall value as others. Naive Bayes have
maximum recall and accuracy. Support Vector Machine (SVM) performs better than
Random Forest, the accuracy of SVM is slightly better than Naive Bayes but recall is
slightly worse. Random Forest overfitting with training dataset and recall and accuracy of
Random Forest were lower than Naive Bayes. The performance of Logistic Regression
is very close to SVM, but recall is slightly lower than SVM, and At last, XGBoost
Performs worst of all models. The accuracy of each machine learning model used is
represented by a bar graph in Figure 4.2,

In Table 4.2, We can observe the outcomes of using deep learning models, Dense Model

has good accuracy of 90%, and The binary cross-entropy has been utilized
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Table 4.2: Performance of Deep learning approaches.

Approach Acc. | F1- Prec. | Rec.
Score

Gated Recurrent Unit (GRU) 0.521 | 0.678 | 0.522 | 1
Long Short Term Memory 0.522 | 0.681 | 0522 | 1
Dense Model 0.908 | 0908 | 0926 | 1
Bidirectional Long Short 0931 | 0931 | 0942 | 1
Term Memory (Bi-LSTM)

1.0

094

08

g 0.6

054

044

03

Dense Model LSTM Bi-LSTM GRU

Figure 4.3: Comparison of Deep Learning Models

as a loss function. We have utilized Adam as an optimizer, which uses momentum to
prevent local minima. The F1-Score, recall, and precision of the Dense model was good.
The performance of LSTM was not good in our experiment, the accuracy of LSTM was
just 52%, and other metrics were also not up to the mark. GRU’s performance was not
good. Out of all deep learning models, BI-LSTM outperformed with an accuracy of 93%,

recall of 1, precision of 94%, and F1-score of 93%.

4.5 Handling Overfitting

There can be multiple ways to avoid Overfitting: increasing the training dataset, cross-
validation, Adding dropout layers, and early stopping. In this model, we have used early
stopping. Early stopping is a halt in the training of the data when it seems like the model
will not learn anything new. We have used validation loss as a parameter for early
stopping, and patience with the limit 3,i.e. it will continue until the next 3 epochs if the

validation loss stops decreasing.
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CHAPTER 5

CONCLUSION AND FUTURE SCOPE

Clickbait detection is a really difficult task, as in a world full of the internet, a lot of news
headlines float from here to there, and sometimes it’s very difficult to find the origin of the
news as it takes time to actually detect whether it is confirmed news or not. That’s why
there is no fixed dataset used in the various models included in our study because news and
headlines keep on changing, and publishers are getting more and more intelligent after every
such detection model, so we need to keep improvising our models with a different dataset. In
this study, we reviewed the existing models in the domain of clickbait detection and
observed that machine learning algorithms have a very significant role in clickbait
detection and that NLP tools are really important to understand the context of the data. In
the future, clickbait detection can be identified by browser extensions as well as mobile
applications. Until now, the experiment was performed on datasets with only a few
languages; in the future, larger datasets with multiple languages will be collected by news
websites and social media sites. Future work also includes (1) finding important features
that are more useful, (2) using the latest word embedding techniques, and (3) clickbait

detection for thumbnails and video frames for video clickbait detection.
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