
DESIGNING OF RISC V ARCHITECTURE

A DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR

THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

VLSI DESIGN & EMBEDDED SYSTEMS

Submitted By:

VANSHIKA KUMAWAT (2K21/VLS/22)

Under The Supervision Of:

PROF. O.P. VERMA

(PROFESSOR & HOD, ECE, DTU) &

DR. ROHIT KUMAR

(ASSISTANT PROFESSOR, ECE, DTU)

DEPARTMENT OF ELECTRONICS & COMMUNICATION

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY, DELHI

(Formerly Delhi College of Engineering)

Bawana Road, Delhi- 110042

MAY 2023

i

DEPARTMENT OF ELECTRONICS &

COMMUNICATION ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi- 110042

UNDERTAKING

I, Vanshika Kumawat, Roll No. 2K21/VLS/22 student of MTech (VLSI Design &

Embedded Systems), hereby declare that the project Dissertation titled “Designing of RISC

V Architecture”, that is submitted by me to the Department of Electronics &

Communication Engineering, Delhi Technological University, Delhi in the partial

fulfillment of the requirement for award of the degree of Master of Technology is my original

work. I have not plagiarized or submitted the work for the award of any other course. In case

this undertaking is found incorrect, I accept that my degree may be unconditionally

withdrawn.

Date: Vanshika Kumawat

Place: Delhi (2K21/VLS/22)

ii

DEPARTMENT OF ELECTRONICS &

COMMUNICATION ENGINEERING

Delhi Technological University, Delhi

(Formerly Delhi College of Engineering)

Delhi- 110042

CERTIFICATE

I hereby certify that the work contained in the project Dissertation titled “Designing of RISC

V Architecture”, submitted by Vanshika Kumawat, Roll No. 2K21/VLS/22 in the partial

fulfilment of the requirement for awarding degree of Master of Technology in VLSI Design

and Embedded System to the Department of Electronics and Communication

Engineering, Delhi Technological University, Delhi, is a record of project work done by the

student under my supervision. To the best of my knowledge the work has not been presented

in part or full for other Degree of Diploma in this university or anywhere else.

Prof. O.P. Verma Dr. Rohit Kumar

(Professor & HOD) (Assistant Professor)
ECE Department ECE Department
DTU, Delhi DTU, Delhi

Date:

Place: Delhi

iii

ABSTRACT

The University of California, Berkeley created instruction set architecture known as RISC V.

Because the majority of CPU instructions were not used by most computer programmes, the RISC

architecture was developed. The RISC V processor was introduced to reduce instruction set

increase registers resource investment. Due to its total open source and free nature, this technology

caught the attention of numerous IT conglomerates and start-ups. The word "RISC" refers to the

"reduced instruction set computer” in the RISC V Processor. which only executes a small number

of computer instructions, and "V" refers to the fifth generation. It is an ISA (instruction set

architecture) for hardware that is open- source and is based on the well-established RISC idea. We

designed processor that supports instructions each of 32 bit that propagate via five stages of

pipelined registers for fetch, decoding, execution, memory access, and writeback. We have also

demonstrated how instruction and data memory interconnected with the CPU core forming a whole

processor. Pipeline facilitates simultaneous execution of many instructions and displays the

working of an instruction within processor using data from the source and destination registers.

Further, overcoming data hazard issue while executing instruction as upcoming instructions need

updated value of register from previous one’s destination register through stalling by giving an

extra cycle to wait and Forwarding unit where we can pass the data directly to next instructions in

sequence without taking pause for a cycle to fasten the process and get correct values. Additionally,

we used the Fibonacci program to evaluate the functioning of our processor and confirmed it by

successfully having this series into memory. As a result, Various manufacturing firms have

announced also offered RISC-V with open-source operating systems. This is a brand-new

architecture that is offered under open, liberal, and cost-free licences. The chip and device

manufacturing industries provided this CPU with marked support. Therefore, primarily made to be

flexibly expandable and configurable for variety of applications. Professor David Patterson at the

University of California, Berkeley created the RISC sometime in the 1980s. In two volumes titled

"Computer Organization and Design" and "Computer Architecture at Stanford University,"

professors John Hennessy and David contributed their work. As a result, theywere giventhe ACM

A.M. Turing Prize in 2017.

iv

ACKNOWLEDGEMENT

It gives me immense pleasure to present this project work for partial fulfillment for awarding

degree of Master of Technology in the VLSI Design . I owe special gratitude to my supervisor

Prof. OP Verma, Professor & HOD and Dr. Rohit Kumar, Assistant Professor in

Department of Electronics & Communication Engineering, Delhi Technological University,

Delhi for their constant support and continuous guidance throughout course of my work.

Their sincerity, and perseverance has been a constant source ofinspiration for me in this work.

I would also like to thank all other faculty members of Electronics and Communication

Engineering Department, DTU for their valuable suggestions and co-operation at every step

in this project. I would like to thank you my parents and batchmates for their motivation

throughout the work. Last but not the least I like to thank Almighty god for invisible presence

and constant support.

Date: Vanshika Kumawat

Place: Delhi (2K21/VLS/22)

v

TABLE OF CONTENT

UNDERTAKING ... i

CERTIFICATE .. ii

ABSTRACT .. iii

ACKNOWLEDGEMENT ... iv

LIST OF TABLES ... vii

LIST OF FIGURES ... viii-x

CHAPTER 1: INTRODUCTION ..1

CHAPTER 2: LITERATURE REVIEW… ...3

CHAPTER 3: RISC V ARCHITECTURE ..5

3.1 BUILDING DATAPATH .. 5

3.2 STAGES OF OPERATION .. 12

CHAPTER 4: INTRODUCTION ABOUT PIPELINING .. 18

4.1 PIPELINED DATAPATH .. 21

4,2 PIPELINE CONTROL ... 26

vi

4.2 PIPELINE HAZARDS ... 28

CHAPTER 5 : IMPLEMENTED RESULTS .. 35

5.1 ARCHITECTURE SCHEMATICS….. 38

5.2 SIMULATIONS ... 46

CHAPTER 6: CONCLUSION AND FUTURE SCOPE .. 54

REFERENCES.. 55

v

vii

LIST OF TABLES

Table
no.

Name Page
no.

3.1 Instruction sets 12

4.1 Totaltime calculated from individual component 20

4.2 Depicting Running Mechanism 31

4.3 Data dependency relationship 33

5.1 ALU depend on op bits 36

5.2 Simulated Reg values 53

viii

LIST OF FIGURES

Figure no. Title Page no.

1.1 Components of a computer 2

2.1 System Overview 4

3.1 abstract view of RISC-V Implementation 5

3.2 RISCV Execution including mux and control lines 6

3.3 Elements need to store and retrieve instructions 7

3.4 Features implementing R- Format ALU operations 8

3.5 Data Path for I-Type Instructions 8

3.6 Section for Branching 9

3.7 cumulative datapaths 10

3.8 The components needed by various instruction classes are combined in
the straightforward datapath for the RISC-V core architecture

11

3.9 Format of instructions 13

3.10 Internal Architecture 13

3.11 Fetching and updating program counter 14

3.12 Instruction Decoding 15

3.13 Execution Stage 15

3.14 Access of Memory stage 16

3.15 writes back stages 16

3.16 Enhanced stages of instruction set 17

3.17 Interconnection of processor 17

4.1 The laundryexample 19

4.2 Layout of Datapath 21

4.3 Execution Stages 21

4.4 Instruction fetch/ First pipelining stages 22

4.5 Instruction decode/ Second pipeline stage 23

4.6 Instruction Execution/ Third pipeline stage 24

4.7 Memoryaccess/ Forth pipeline stage 24

4.8 Write back/ Fifth pipeline stage 25

4.9 Corrected pipelining datapaths to handle load instructions 25

4.10 Controlling of stages 26

4.11 Process of Instruction format 27

ix

Figure. no. Title Page no.

4.12 Pipelined dependencies in a five-instruction sequences using simplifying

datapaths to show dependencies

29

4.13 Dependency between pipelines registers and inputs to ALU 29

4.14 Forwarding way 30

4.15 sequence of instructions 32

4.16 Stalls are inserted 32

4.17 Controloverviews muxes in continuation with unit of forwarding 33

4.18 The states in 2-bit scheme of prediction 34

4.19 2 bit branch prediction scheme 34

5.1 correlation moduling 35

5.2 Basic Units of Processor 37

5.3 Interconnection between different units 38

5.4 Integrated CPU Schematic 38

5.5 Schematic of instruction memory 39

5.6 Schematic of Program Counter 39

5.7 Schematic of IF-ID 40

5.8 Schematic of ID -Ex 40

5.9 Schematic of Ex-Mem 41

5.10 Schematic of Mem-Wb 41

5.11 Schematic of Register File 42

5.12 Schematic of ALU Control 42

5.13 Schematic of ALU Module 43

5.14 Schematic of ALU 43

5.15 Schematic of Control unit 44

5.16 Schematic of Stalling Unit 45

5.17 Schematic of Forwarding 45

5.18 Pipelined instructions 46

5.19 Waveform 46

x

5.20 Stall Operation 47

5.21 Stall Waveforms 47

5.22 Operation during data forward 48

5.23 forwards Waveform 48

5.24 Initial registers Values 49

5.25 Executing Register Value 49

5.26 operations chart 50

5.27 Snippet showing way of fibonacci 50

5.28 Instructions in fibonacci 51

5.29 Fibo Waveform 51

5.30 Initial Memory data 52

5.31 Updated Memory 52

1

CHAPTER 1

INTRODUCTION

In electronics hardware that comprises a processor uses either architecture of RISC. It contains

instructions that vary from more superficial to elaborate and take a shorter execution time. It has a

shorter length of codes, so it doesn’t require larger memory space for storing. RISC (Reduced

Instruction Set Computing Architecture) processors have an elementary addressing mode, so the

fixed-in length instructions are simpler to implement and have a very customized set. The execution

speed of the RISC processors is much higher due to their limited and simplified instruction sets .

Instructions in the RISC has a fetching, decoding, and execution unit. RISC architecture comprises

main memory supported by two small cache memory (instruction cache and data cache). It has a

hardwired control unit to control the processor’s components with the data and address bus. The

instruction set architecture (ISA) is core technology on which chip is built, and chip is cornerstone of

the information industry. x86 and ARM ISAs gradually gained market share and taken the lead inthe

growth of chip industryover the past decades. However, x86 and ARM has expensive licence feesand

are not open source. Due to its advantages of no license charge, flexibility, scalability, RISC-V anopen

source ISA that expanded rapidly since inception. Over time, it has become one of the main forces

behind global innovation of chips. For instance, European country started Processor Initiativewith the

goal of creating high-performance CPUs based on RISC-V architecture. The Performance ofRISC

architecture depends and varies according to the code being executed because any instruction that is

executed presently may relyon previous instructions.

2

RISC is a microprocessor that improves performance by parallelizing the instructions. That means the

speed of the machine is much more or faster by increasing a million instructions per second, or the

known name is MIPS. If a million instructions per second are much more, the system’s performance

is very high. It doesn’t imply that the processor is fast if a million instructions per second are high. So a

million instructions per second are not the sole variable that decides the processor’s speed, and it is

not a good practice to use this as a parameter to distinguish between processors. Many known

processors use this RISC architecture to make the system work fast. Some improvements can be made

apart from improving a million instructions per second.

Figure 1.1: Components of computer [1]

3

CHAPTER 2

LITERATURE REVIEW

The term "reduced instruction set computer" (RISC) refers to a microprocessor design philosophy that

favours a more manageable and straightforward set of instructions that all execute fairly quickly. Here

we construct datapath of RISCV Instruction set[1]. Researchers from the University of California,

Berkeley, created an open ISA based on Reduced Instruction Set Computer (RISC) principles to

address the requirements of backward compatibility of previous extensions[2] and Instruction Set

Architectures (ISA)s. This architecture, known as RISC-V, aims to help software engineers with a

compact and reliable ISA by offering a base ISA and optional application-specific extensions [3]. Using

pipelined stages to execute instructions in parallel will increase the processor's total throughput With

help of clock we ensure stages are inline properly and used to ensure even if variable delays come our

processor should be fully functional and data access performed smoothly[4]. Based on the pipeline

schedule, pipeline registers are then inserted between the functional units and produced instruction set

to make it work [5]. The load-store concept uses a separate unit that is tailored to handling relatively

simple types of data, as opposed to the CPU supporting a range of addressing patterns[6].As there are

different instruction with binary code for identification that we got to know from the format of that

particular instruction and afterwards our processor process it [7]. After being fetched from memory and

passed through pipeline stages, it is then passed on to the decoder unit, execution unit, register unit.

The outcome will then be stored by outcome to destination unit[8]. This is the main characteristic, some

people have started to call RISC processors "load-store" processors. a crucial element in all such

designs and developing techniques for removing hazards and providing improved performance.

4

Figure 2.1: System Overview [3]

A comprehensive study on hazard and thus developing technique of Forwarding is quite helpful as we

get data in intermediate stages[9].when a pipeline of subsequent instructions contains data

dependencies and the succeeding instruction does not receive the desired value. Since the general

purpose register set has not yet been updated and the value required by the following instruction is

being evaluated in the preceding instruction[10]. Five Stages Pipelining is adopted for the purpose of

executing processor working. Branch instructions, memory-reference instructions, and integer

arithmetic-logical instructions[11]. Thus, Whole design of RISCV has been developed along with

different units in the CPU Core[13]and thus synthesized it whole together handles interconnections

between CPU Core and Peripherals, We developed various modules in processor through high

description language[14] Utilizing information particular to the instruction set, datapath synthesis

populates the combinational functional units that have been pre-defined.

5

CHAPTER 3

RISC V ARCHITECTURE

The RISC architecture uses a technique called the pipeline to improve processor speed by

slightly reducing execution time by retrieving, decoding, and executing instructions in

parallel without changing the logic of the instructions code, leading to a lower CPI (number

of clocks per instruction). The combinational circuit follows each segment of the pipeline

design, which is made up of flip flops that store or hold the data. When the flip-flop is

triggered by the clock, the flip-flops send the data to the combinational circuit to conduct

operations. When the processor is able to separate the processes of one stage from another

and allow for the independent operation of another stage, it is done at each pipeline level.

Consequently, it enables the simultaneous execution of several instructions.

3.1 BUILDING DATAPATH: -

Figure3.1: Abstract view of RISC-V Implementation [1]

6

Each instruction begins from sending address of instruction to memories using programs counter.

The fields included an instruction specifying operand registers that would be in use after instruction

has been fetched. Once the register operand been fetched, they will be used to perform an equality

check, compute arithmetic result of integer arithmetics logical instruction , or computememory

address (for load or storing) (for branch).

Figure 3.2: Execution including mux and control lines [1]

7

Every instruction starts by using a programme counter to send the instruction address proximity to

instruction memory. The register operands that we will be using once instruction is fetched are

specified in an instruction's fields. Post fetching register operands , they possibly be usedfor

computing an integer arithmetic-logical instruction's arithmetic result, execute an equality check,

compute address related to memory (for loading and storing) (for a branch).

Figure 3.3: Elements need tostoreand retrieve instructions [1]

The first thing we require is a memory unit that can store programme instructions and deliver

instructions in response to an address. also displays the PC, or counter, a register contains the address

of current instructions. Last but not least, we require an adder for raising the PC to address the

following instruction. The combinational ladder would be constructed using the ALU. The 32 registers

general purposes of processor within building known as register file. We can write any register or read

by specifying its numbers in a register files, which is the collection of register.

8

from registers file and enter data word by one per instruction into register file. We needed an input

for register file which specify register to read from it and will convey value that is read from registers

for single data words to be read from registers.To write a data word, you need two inputs: the data

to write inside the register, and the register number to write it.

Figure 3.4: Features implementing R- Format ALU Operations [7]

Figure 3.5: Data Path for I-Type Instructions [7]

9

Arising need of three inputs (double for register number and single for the data) along two outputs .

The number of inputs of registers are 5 bit wide to tell one among 32 registers , wherein input at data

with two output ofdata bus will be 32 bit wide. Take into account the general structure of the RISC-

V load teamup with store registre value, which are x1, offsets (x2). These instructions add base

register to 12-bit signed offset field to get the memory address. The value would be stored, if the

instruction is a store, must also read from reg files where it is located in register x1. Thevalues reading

from memory should written in the register file to designated register. So, the register file and ALU

from figure 3.4 are both necessary. We must decide whether the instruction at target branch location

or instruction that follows sequentiallybefore we cancompute the address oftarget branch. The branch

is said to be takenwhen the condition ismet, which iswhen two operands will be equal and the address

of target becomes new PC. As with any other regular instruction. Whether the operand is not zero,

increased PC should be in place of Current PC; Under these circumstance, we say that branch wont’t

be take. We can consolidate the datapathes elements required for each kind of instruction into a single

path of data, then add control to finish our implementation. Theaimofthis straightforward datapath is

to complete each instruction ina single clock.

Figure.3.6 : Section for Branching [7]

10

Based on the ALU's Zero output, control logic determines whether the branch target or increased PC

should take the placeof the PC.

We may need to permit severalconnections to an element's input in order to share element of datapaths

between two separateclasses of instruction. We would then use a multiplexers and signal of control to

select one of the numerous inputs.We needto enable two separate sources for the second Arithmetic

unit of logical input along with two different source forthe information stored in the File of registers

in order to build a datapath. As aresult, one plus one multiplexors are installed—one will be at data

input and other at the ALU input.

Figure 3.7: Cumulative Datapaths [7]

11

The fundamental instructions (loading and store type register, ALU operations, and branching) can

be completed by this datapaths in an individual clock cycle. To merge branches, needed one more

multiplexor is required.

Figure3.8: The components needed by various instruction classes are combined in the straightforward datapath RISC-V

cores architecture [1]

The datapaths into memory instructions and arithmetic-logical (or R-type) instructions both perform

comparable tasks. The following are the main variations:

The ALU is used by the arithmetic-logical instructions, and the two registers serve as its inputs.

Although the extended sign 12-bit offsets field from instruction serves as the second input, the

memory instructions can still calculate addressesusing unit of arithmetic logic.

12

3.2 STAGES OF OPERATION:

Before going through stages of operation that a particular instruction goes through, we should

aboutvarious instructions used in RISC V processor.

Table 3.1: Instruction sets

Pipelined stages for parallel instruction processing will boost the processor's overall throughput but come with

some functional hazards. Data risks are those dangers that are created as a result of sharing source and

destination resources in later instructions when source for one instruction also the destination of an earlier

instruction. The preventive method is by forwarding. Structural risks are created when programme and data

memory often use. By structuring the queue within the processor, risks could eliminated.

13

Fig 3.9. Format of instructions [5]

3.2.1 Instruction Fetch

Instruction from memory is retrieved from the location where the PC points. If there is a branch

instruction, store the current PC to another NPC and increment the program counter value. The

staging processor extracts the instructions from the instruction memory in the fetch. And after

pulling instructions, the program counter increment byfour as the processor is 32 bits.

Fig 3.10 :Internal Architecture [8]

14

Figure 3.11: Fetching and updating programcounter[4]

3.2.2 Instruction Decode

In this stage, instruction decode and register read were performed. Instruction fetched from

IF is in the instruction register, which is decoded. According to the instruction format,

reading register operands is done in parallel to decode. The values of load/store and

arithmetic units in this stage might be skipped to utilize them in the following step. The

instruction decoder decodes the instructions whichare fetched. It solves the destination

register, source register, and associated paths. They are transmitted to the execution stage

to execute.

15

Figure3.12: Instruction Decoding [4]

3.2.3 Instruction Execute:

All instructions are executed in this stage. When required, an effective address for memory access

is also calculated here. It is usually using an ALU here. The new program counter value is checked

and updated for the branch instruction. The data decoded at the decode stage is received at the

execution stage, and at this stage, the data processing takes place. At the execution stage, there are

different modules such as arithmetic logic unit, adder, multiplier, etc.

Figure3.13: Execution Stage[4]

16

3.2.4 Instruction Memory:

This step is not used for most of the instructions as it requires memory access, which is used

by load/store instructions. For the Branch, the program counter has two addresses. When the

flag is one, the program counter jumps that address. Otherwise, the following address is given

for decoding.

Fig.3.14: Access of Memory stage [4]

3.2.5 Instruction Writeback:

The output after this stage goes into the register file updating the value of the register in the

Writeback stage. The position of the destination register depends on the instruction, which is

known after the decoding has been done.

Fig. 3.15: Writes back stages [4]

17

The most important characteristic of a pipeline technique is that several computations can be in

progress in distinct segments .The structure of a pipeline organization can be represented simply by

including an input register for each segment followed by a combinational circuit. The pipelined

stages used in this processor are fetched, decoded, executed, memory, and written back. Now, if

the one instruction reaches the solve step after being brought, the other instruction is available and

continues.

Figure 3.16: Enhanced stages of instruction set [8]

Figure.3.17: Interconnection of processor [3]

18

CHAPTER 4

INTRODUCTION ABOUT PIPELINING

Pipelining is a method of implementation where several instructions are executed simultaneously.

Pipelining is almost always used today.

Anyone who performed lot of laundry have employed pipelining instinctively. Laundry would notbe

pipelined in this way, which would be as follows:

1. Fill the washer with one filthy load of laundry.

2. After the washer has completed its cycle, put the wet clothes into drier.

3. After the drier has completed, lay folded dried load out on table.

4. Once the garments have been folded, ask your partner to put them away.

Start a new with the next dirty load once this one is finished. Figure 4.1 illustrates how much faster

the pipelined technique is. You put the second filthy load in the washer as soon first load is finished

in the washer and put in to dryer. The load accompanied by wet clothes is moved to dryer, the first

batch of cloth is placed ontable to begin fold process, and the second filthy cloth of load is placed in

washer. The second load of cloth is folded, third is in the dryer, and the fourth is placed in the washing

after having your roommate put first pack of cloth away. All steps, or stages as they are known in

pipelining, are currentlytaking place simultaneously.

We can pipeline the jobs as long we having different resource for everystage. The pipelining states that

while pipelining is faster for many loads since everything is operating in parallel, loads would be

completed each hour, time taken by putting dirty cloth within washer till dry, folded.

19

Figure 4.1: The laundry Example[1]

Our washing system's throughput is increased by pipelining. Thus, pipelining will not reduce time

needed to doone pack of cloth related to laundry, but we are have several loads there to finish, the

increase in throughputs reduces the overall time required finish operation.

20

Number of steps within pipelines if all stage take roughly the similar amount of the time and there

is sufficient work to be done. There are four steps in this instance: washing, dry, folding, and keep

away. Laundrythat is pipelined could be 4 time as quick as laundry that is not pipelined. While one

load of laundrywould take aroundfive times as long as twenty, twenty loads of laundrywould take

twentytimes as long. Only2.3 times as fast.

On processors where we pipeline instruction execution, the same rules apply. Traditionally, RISC-V

instructions gothrough these steps:

First, get the instruction from memory.

Decode the instruction by reading

registers.

3. Carryout the operation or determine the address.

4. Use a data memoryoperand .

5. Enter the outcome in a register .

Table 4.1: Total time calculated fromindividual component [1]

21

4.1 PIPELINED DATAPATH:

Taking a load instruction execution as an example (because it is active in all five stages). Here we

have shownthe instruction “lw” , over the five stages that activates . The five stages are :

Figure.4.2: Layout of Datapath[11]

Figure.4.3: Execution Stages[11]

22

4.1.1 Instruction fetch:

This demonstrates how the instruction keep put in the IF/ID pipelining register afterread from

memories using PC's addresses. In order to prepare for the subsequent clock cycle, the address

of PC keep increased by4, then write it back into PC. In case it becomes necessaryat a later time

for an instruction like beq, this PC also preserving in the IF/ID pipelines registers. Since the

computer will not determining the type of instruction we are fetching, it should be be ready for

anykind of instruction and pass any informations that maybe requiredalong the pipeline.

Figure 4.4: Instruction fetch/ First pipelining stages[1]

23

4.1.2 Instructions decoding and register files:

The fig.4.5 displays the register numbers to be read from two registers as well as their

instruction section of IF ID register of pipeline supply field of immediate data 32 bits.

Along with PC address, allvalue kept in the ID/EX pipelining register.We once more

transfer all that a future clock cycle's worthof instructions might require.

Figure 4.5: Instruction decode/ Second pipeline stage[1]

4.1.3 Execute or address calculation:

Fig 4.6 demonstrates how the load instruction uses the ALU to add the content of register

and the sign-extension immediate from the ID/EX pipelining registers. A register for the

EX/MEM pipeline contains

24

Fig 4.6 : Instruction Execution/ Third pipelinestage[1]

4.1.4 Memory access

The portion at top in Fig 4.7 demonstrates how the load instruction loads data into MEMWb

register of pipelining by accessing memory owned by data using address from EXMem

register for pipelining.

Figure 4.7 Memory access/ Forth pipeline stage[1]

25

4.1.5 Write-back : The Fig 4.8 depicts the last action: inserting the data in the registerfiles

in the centre of figure after reading it from MemWb pipelines register.

Fig 4.8: Write back/ Fifth pipeline stage[1]

Fig 4.9: Corrected pipelining datapaths tohandle load instructions [1]

26

4.2 PIPELINED CONTROL:

We just need to set the control settings during each pipeline stage to specify controls for

pipeline stage. We may categorise control lines into five groups based on the stage of

pipelining because each line of control is linked to component that is only activate during one

stageofthe pipeline.Instruction fetch: There is nothing unusual to regulate at this pipeline level

because signals of control to read the instruction from memory and write it back to PC will

always beasserted. Instruction decoding/register files read, Dual Source registers willalways be

in exact location inside RISC-V formatting of instruction,

Fig 4.10: Controlling of stages [4]

27

Execution/calculation ofaddress: ALUOp and ALUSrc are the signals that need to be set.

The signals decide which ALU operationto use and which inputs to give the ALU—Read dataor

a sign-extended immediately. Memory access: Branch, MemRead, and MemWrite are the

control lines that have been set at this point. These signals will be activated by branch if equal,

load, and storing instructions executing, respectively. Until control asserts Branch and

Arithmetic unit result was 0, PCSrcchooses following sequential address. Write-back: Mem to

Reg and Reg Write are the two control lines that determine whether ALU result or memory

values .

Fig 4.11: Process of Instruction format [5]

28

4.3 PIPELINE HAZARDS:

In pipelining, there are times when subsequent instructions cannot be executed in subsequent clock

cycle.There are tridifferent categories ofthese occurrences, or dangers.

4.3.1 DATA HAZARDS :

The RISC-V instructions are sometime dependent i.e use the results calculated by any of the others.

In such cases data hazards obstacle to pipelined executions. Let’s look at procedure along many

dependencies:subs x2, x1, x3 // Register z2 written sub

AND x12, x2, x5 // 1st operand of (x2) depending the subOR

x13, x6, x2

add x14, x2, x2

SW X15, 100 (x2) // Base (X2)

The outputs of the first instruction in register x2 is a prerequisite for the last four instructions. It

displays the value of register x2, which is updated when the subtraction instruction writing its result

in middle of clockcycle 5. It demonstrates that reading values for the registers x not having obtained

by instruction without the read. occurring at or after clock cycle of 5. Consequently, the instructions

would providing proper value.

When the pipeline must stop while waiting for another step to finish, data dangers occur. Imagine

discovering asock at the folding station that had no match. Chase down to room to verifying nearest

match.

29

Fig 4.12: Pipelined dependencies in a five-instruction sequences using simplifying datapaths to show dependencies[9]

Fig 4.13: Dependency between pipelines registers and inputs to ALU [9]

30

Instead of waiting for writeback stage to write register file, reliance now starts from a pipeline

register. The pipelining registers will hold the data that has transmitted, ensuring that the necessary

data is available in timefor subsequent instructions. We can forward the right data if we can feed

the inputs from any of given registerrather then simply ID/EX. I can execute the pipelining at full

speed even in face of data dangers by attaching multiplexers to the ALU's input and using the

appropriate controls.

Fig 4.14: Forwarding [9]

31

Table 4.2: depicting running mechanism[1]

4.3.2 Data Hazards and Stalls :

When instructions trying to reading register after load which consequently writing to

sameregister, that is a situation when forwarding will not save your day. The issue is

demonstrated in Fig.4.15. During clock cycle 4, the ALU is operating on the next instruction

while we are reading data from memory. must cause something to halt the pipeline.

We therefore require detection unit for hazard in addition to forwarding .That depends upon

it, it acts during the ID stage. The hazard detectingunit's control is this solitary requirement,

which is to check for load instructions. The software technique is dependent on the compiler

to rearrange the user code or add a delay slot to resolve the combinations of instructions that

could generate data hazard, which highly based on how reliable the compiler technology is.

Using software to address data hazards is a less sophisticated method. Rearranging the code

could not be effective because it depends on how the programme flows. On the other hand,

the processor throughput is unaffected by the hardware method based on the forwarding

scheme.

32

Fig 4.15: Sequence of instructions[9]

Fig 4.16: Stalls are inserted [9]

33

Table 4.3 : Data Dependency relationship[9]

Fig 4.17 : Control overviews muxes in continuation with unit of forwarding [9]

34

4.3.3 CONTROL HAZARDS:

These conditional branch pipeline hazards exist. In our system, the choice to branch is made

only after the MEMpipeline step. Control hazards or branch hazards .Introduced a new 2 bit

branch prediction technique that alters its flow only after two consecutively incorrect

predictions. This plan's accuracy ranges from 85% to 90%. These duo bit values saved for

branch and used to make predictions.

Fig 4.18: The states in 2-bit scheme of prediction[10]

Fig. 4.19 : 2 bit branch prediction scheme [10]

35

CHAPTER 5

IMPLEMENTED RESULTS

Utilizing the datapath from the previous part and a straightforward control function, we create

this straightforward implementation. The load word (lw), store word (Sw), branching if equal

(BEQ), and arithmetic commands addition , subtract, AND, and doing OR are all covered by

this straightforward implementation.

Fig 5.1: Correlation moduling [13]

The funct7 and function3 field as well as a 2 bit controlling field can be used as inputs to a

small unit of controlthat we refer to as ALUOp in order to generate the 4 bits logicalarithmetic

unit of control input. ALUOp specifies whether the operation is carried out should beaddition

(00) for loading and storeing, a subtraction and a test of zero (01), or it should be determined

by operation encoding. A four bit signal that directly controlling ALU producing single handed

previously illustrated 4-bit combinationes is result of controlunit by ALU.

36

employing a tiny control unit, or ALUOp, that takes the function 7,3 fields for instruction asinputs

along two bit control field. ALU Operation specifies whether operation to be carried out should an

addition (00) in load and stores, a subtraction a test of zero (01) else it should be determining by

the operations encoded in designated place.

Table 5.1: ALU depend on op bits[1]

By producing the output of the ALU unit of control. Based on the 2-bit ALUOp control.we

demonstrate how to setup ALU controls. The size of primary controlunits can be decreasedbyusing

numerous levels of control. Using a number of minor controls.

37

The mapping from 2-bit ALUOps. And the function fields to four ALU operations control bit will

be implemented in number of ways. Because only a small subset of the possible values for funct

fields are of interest and because they are only used when the ALUOps bit equals 10.

Fig 5.2: Basic Units of Processor [1]

38

5.1 Architecture Schematics

This Design showing communication between Core CPU, Instruction memory and data

Memory accessing instructions from Instruction memory and approaching towards CPU

for efficient execution through pipelined registers.

Fig 5.3: Interconnection between different units

Fig 5.4: Integrated CPU Schematic

39

A. Instruction Memory:

Instruction memory used in fetch stage to store the instructions to be executed. It has single read

port which take instruction address input as instraddr, and read data from that address and give

output as instrdata.

Fig 5.5: Schematic of instruction memory

B. Program Counter

Program Counter is a register in computer processor that store the address of the instruction that

is being executed at present. And as the instruction being fetched the program counter store the

the next address of instruction in the sequence.

Fig 5.6: Schematic of Program Counter

40

C. IF-ID

We need program counter to fetch the instruction and this register stores about kind of instruction

need to be executed given into it in the form of binary number each of which is 32bits.It is helpful

in fetching multiple instructions.

Fig.5.7: Schematic of IF-ID

D. ID-EX

This decodes the instruction as per binary format afterwards we got to what kind of instructions

whether arithmetic or shift instructions need to be performed and also get to know from which source

registers to read and write to destination Register. Thus, Parallel register reading are performed.

Fig. 5.8: Schematic of ID -Ex

41

E. EX-Mem

As per the input from decoding stage we do the execution of instruction and it is majorly done in

ALU modules and as per execution we forward data onto registers else it passes on to memory.

Fig.5.9: Schematic of Ex-Mem

F. Mem-Wb:

Now as per the need and operation of instruction we load data address into the memory and stores the

respective on to it especially if it is load /store type instructions.

Fig.5.10: Schematic of Mem-Wb

42

G. REGISTER FILE

There are two source registers rs1 and rs2 to evaluate data as per your instruction format

and storing its value into respective destination register rd.

Fig.5.11: Schematic of Register File

H. ALU Control

As per opcode of the instruction you get knowledge about alu, load/word or branch type of instructions

to perform within the processing units.

Fig.5.12: Schematic of ALU Control

43

I. ALU

ALU (Arithmetic logic unit) is a combinational circuit which takes two 32 bit data words

A and B as input and perform logical and arithmetic operation on A and B and generate 32

bit output. Execution of add, sub type instructions take place in it.

Fig.5.13: ALU Module

Fig.5.14: Schematic of ALU

44

J. Control Unit

A control unit functions by accepting input data, processing it into control signals, and sending

those signals to the central processor. The attached Unit is subsequently instructed to conduct

certain tasks by the computer's processor. It enables the logic unit, memory, and input and

output devices of the computer to understand how to react to commands received from a

programme.

Fig.5.15: Schematic of Control unit

45

K. Stalling

This unit developed as per the need to resolve conflict of data hazard as when register data needed

from Previous instruction.So, there is requirement of stalling a cycle by giving stall signal for

efficient operation.

Fig 5.16: Schematic of Stalling Unit

L. FORWARDING

This module is developed to avoid the cycle stall and save your time to execute further

instruction executions by temporarily storing data into some temporary block and thus

forwarding it whenever needed.

Fig 5.17: Schematic of Forwarding

46

5.2 A. SIMULATIONS:

These are the generalized testcases for instructions that we have shown below and they arefollowing pipeline

execution.

Fig.5.18 : Pipelined instructions

Below waveforms shows that as program counter keep on updating, we get new instruction and that

too passing through multiple pipelining registers thereby performing operation.

Fig 5.19: Waveform

47

B. STALLING:

Stalling is used to prevent data risks brought on by pipelining. However, using the stall mechanism

lengthens the processor's latency; as a result, we use bypassing/forwarding to prevent stalling as

much as possible. Highlighted part shows for getting correct value for R3 we need to wait for a cycle

from back instruction as once it writes data on to memory then only, we can have correct output.

Fig. 5.20 : Stall Operation

Below Part Showing as ADDI instruction having code 00A18F13 comes in, we take no operation for a

cycle so by that time back instruction can properly load data into memory and now the data that our

present instruction need can be properly estimated and then get executed normally.

Fig. 5.21: Stall Waveforms

48

C. FORWARDING:

When the outcome is computed in the Execute stage of an instruction, forwarding is sufficient to address

RAW data dangers since its result can then be transmitted to the Execute stage of the following instruction.

Fig. 5.22 : Operation during data forward

It is showing as your ADDI instruction comes it needs data from previous instruction’s register. So, as

per above way there is no need to take break and we can directly forward this data further as instruction

result, we are getting within same stage. So, it continuously propagates across pipelined registers.

Fig.5.23: Forwards Waveform

49

D. Register Values before simulation

This Shows the fact that as per sequence of instructions that we are executing initially we don’t observe

any working of instruction and techniques to improve data accuracy.

Fig. 5.24: Initial registers Values

E. Register Values after simulation

It depicts that as our processor runs, the above sequence of instructions are working and

Register values getting updated showing correct functionality of processor.

Figure 5.25: Executed Register Value

50

F. Fibonacci Run

This shows the sequence of instructions needed for Fibonacci series program to run on our processor

with their respective binary format and thereby showing processing through pipelined stages.

Figure 5.26: Operations chart

Figure 5.27: Snippet showing way of Fibonacci

51

Below waveforms shows that our Fibonacci program adapted itself according to processor and

smoothly passing each instruction through various stages.

Figure 5.28: Instructions in fibonacci

This simulation as branch is taken on instruction ‘02700063’ after having no operation for two

cycles we finally got the next required value as per program.

Figure 5.29: Fibo Waveform

52

G. Memory Values

These are initial memory values within processor before running Fibonacci programme as all are

Having its resetted values.

Figure 5.30: Initial Memory data

Below Result showing that after we successfully run program, we are successful in getting a series

of Fibonacci till 5 digit as desired in which to get present value we need addition of previous two

values.

Figure 5.31: Updated Memory

53

H. Tabular Depictation:

This table shows that a clear idea on working of instructions in the processor and updating registers

Data verifying that processor is in running stage.

Table 5.2: Simulated Reg values

54

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

 The RISC-V ISA stands out from other ISAs for its easy to understand and use qualities, as well

as the fact that all of the instructions are simple to schedule and implement hazard detection.

 The main goal is to contrast the machine's performance when running the application with and

without bypassing. Imagine that the same line of code is run without being bypassed. The

number of clocks needed for each instruction will then be higher since the stall will last for a

few cycles and wait for the execution of the preceding instructions to be finished before writing

the instruction back to the register file.

 Bypassing directly from the execute stage or the memory stage for arithmetic bypassing or

memory bypassing is possible with the forwarding logic. As a result, fewer clock cycles are

needed, which accelerates the execution ofthe instruction onour system.

 We are Successful in developing a whole Schematic designing with interconnections

between varietyof domains.

 Today's world requires high-speed processors that can carry out our commands with the least

amount of Cycles per instructions, therefore bypassing offers a substantial advantage to meet

that need.

 As it is open source, anyone can create original designs and work as a developer. In addition,

IIT Madras launched the SHAKTI Processor effort to improve its utility.

55

REFRENCES

[1] Computer Organization and Design, The Hardware and software interface (RISC-V edition) by

David A. Patterson, John L. Hennessy, The Morgan Kaufmann Series in Computer Architecture And

Design , UC Berkeley,2020.

[2] E. Cui, T. Li and Q. Wei, "RISC-V Instruction Set Architecture Extensions: A Survey," in IEEE

Access, vol. 11, pp. 24696-24711, 2023.

[3] B. W. Mezger, D. A. Santos, L. Dilillo, C. A. Zeferino and D. R. Melo, "A Survey of the RISC-

V Architecture Software Support," in IEEE Access, vol.10, pp. 51394-51411, 2022.

[4] S. Prabhakaran, M. N and V. Vedanarayanan, "Design and Analysis of a Multi Clocked Pipelined

Processor Based on RISC-V,"International Conference on Communication, Computing and

Internetof Things (IC3IoT), Chennai, India, 2022, pp. 1-5.

[5] Zhang, Yunrui, Zichao Guo, Jian Li, Fan Cai, and Jianyang Zhou. "AnnikaCore: RISC-V

Architecture Processor Design and Implementation for IoT." 15th International Conference on Anti-

counterfeiting, Security, and Identification (ASID), pp. 200-203. IEEE, 2021.

[6] A. Dörflinger, M. Albers, B. Kleinbeck, Y. Guan, H. Michalik, R. Klink, C. Blochwitz, A. Nechi,

and M. Berekovic, ‘‘A comparative survey of open-source application-class RISC-V processor

implementations,’’ in Proc. 18th ACM International Conference on computing Frontiers, pp. 12–20,

May 2021.

[7] M. N. Topiwala and N. Saraswathi, "Implementation of a 32-bit MIPS based RISC processor

using Cadence,"IEEE International Conference on Advanced Communications, Control and

Computing Technologies, Ramanathapuram, India, pp. 979-983,2014.

[8] S. P. Ritpurkar, M. N. Thakare and G. D. Korde, "Design and simulation of 32-Bit RISC

architecture based on MIPS using VHDL," International Conference on Advanced Computing and

Communication Systems, Coimbatore, India, pp. 1-6,2015.

56

[9] W. P. Kiat, K. M. Mok, W. K. Lee, H. G. Goh and I. Andonovic, "A Comprehensive Analysis on

Data Hazard for RISC32 5-Stage Pipeline Processor,"IEEE, 31st International Conference on

Advanced Information Networking and Applications Workshops (WAINA), Taipei, Taiwan, 2017,

pp. 154-159,2017.

[10] A. Pandey, "Study of data hazard and control hazard resolution techniques in a simulated five

stage pipelined RISC processor," International Conference on Inventive Computation Technologies

(ICICT), Coimbatore, India, pp. 1-4,2016.

[11] Miyazaki, H., Kanamori, T., Islam, M.A. and Kise, K., RVCoreP: An optimized RISC-V soft

processor of five-stage pipelining. IEICE TRANSACTIONS on Information and Systems, 103(12),

pp.2494-2503,2020.

[12] R. Höller, D. Haselberger, D. Ballek, P. Rössler, M. Krapfenbauer and M. Linauer, "Open-

Source RISC-V Processor IP Cores for FPGAs — Overview and Evaluation," 8th Mediterranean

Conference on EmbeddedComputing (MECO), Budva, Montenegro, pp. 1-6, 2019.

[13] G. Liu, J. Primmer, and Z. Zhang, “Rapid Generation of High-Quality RISC-V Processors from

Functional Instruction Set Specifications,” in Proceedings of the 56th Annual Design Automation

Conference, pp. 1–6,Jun 2019..

[14] C. Palmiero, G. Di Guglielmo, L. Lavagno and L. P. Carloni, "Design and Implementation of a

Dynamic Information Flow Tracking Architecture to Secure a RISC-V Core for IoT

Applications," IEEE High Performance extreme Computing Conference (HPEC), Waltham, MA,

USA, pp. 1-7,2018.

oid:27535:36494262Similarity Report ID:

PAPER NAME

FINAL_REPORT-12-65.pdf

WORD COUNT

5763 Words
CHARACTER COUNT

30264 Characters

PAGE COUNT

54 Pages
FILE SIZE

3.1MB

SUBMISSION DATE

May 30, 2023 12:24 PM GMT+5:30
REPORT DATE

May 30, 2023 12:24 PM GMT+5:30

6% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

1% Internet database 1% Publications database

Crossref database Crossref Posted Content database

5% Submitted Works database

Summary

oid:27535:36494262Similarity Report ID:

6% Overall Similarity
Top sources found in the following databases:

1% Internet database 1% Publications database

Crossref database Crossref Posted Content database

5% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be
displayed.

1
Texas A&M University, College Station on 2022-09-13 2%
Submitted works

2
Chaithanya D J, Ibrahim Rashad, Mohammed Thouqeer, Mohd Taha W... <1%
Crossref

3
Technological Institute of the Philippines on 2022-10-06 <1%
Submitted works

4
Manipal University on 2021-08-18 <1%
Submitted works

5
CSU, San Jose State University on 2014-03-09 <1%
Submitted works

6
Coventry University on 2022-04-19 <1%
Submitted works

7
Virginia Commonwealth University on 2021-12-14 <1%
Submitted works

8
University of Wales Institute, Cardiff on 2022-09-04 <1%
Submitted works

Sources overview

https://doi.org/10.1109/ICIDCA56705.2023.10099615

oid:27535:36494262Similarity Report ID:

9
coursehero.com <1%
Internet

10
projects.tuni.fi <1%
Internet

11
University of London External System on 2020-09-16 <1%
Submitted works

Sources overview

https://www.coursehero.com/file/128612526/Pipelinedocx/
https://projects.tuni.fi/apropos/event/hipeac2022/

	MASTER OF TECHNOLOGY
	VLSI DESIGN & EMBEDDED SYSTEMS
	VANSHIKA KUMAWAT (2K21/VLS/22)
	PROF. O.P. VERMA (PROFESSOR & HOD, ECE, DTU) & DR. ROHIT KUMAR
	DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING
	UNDERTAKING
	DEPARTMENT OF ELECTRONICS &
	CERTIFICATE
	Prof. O.P. Verma Dr. Rohit Kumar

	ABSTRACT
	ACKNOWLEDGEMENT
	TABLE OF CONTENT
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 LITERATURE REVIEW
	CHAPTER 3
	3.1 BUILDING DATAPATH: -
	3.2.1 Instruction Fetch
	3.2.2 Instruction Decode
	3.2.3 Instruction Execute:
	3.2.4 Instruction Memory:
	3.2.5 Instruction Writeback:

	CHAPTER 4 INTRODUCTION ABOUT PIPELINING
	4.1 PIPELINED DATAPATH:
	4.1.1 Instruction fetch:
	4.1.2 Instructions decoding and register files:

	4.1.3 Execute or address calculation:
	4.1.4 Memory access
	4.2 PIPELINED CONTROL:
	4.3 PIPELINE HAZARDS:
	4.3.1 DATA HAZARDS :
	4.3.2 Data Hazards and Stalls :
	4.3.3 CONTROL HAZARDS:

	CHAPTER 5 IMPLEMENTED RESULTS
	5.1 Architecture Schematics
	A. Instruction Memory:
	B. Program Counter
	C. IF-ID
	D. ID-EX
	E. EX-Mem
	F. Mem-Wb:
	G. REGISTER FILE
	H. ALU Control
	I. ALU
	J. Control Unit
	K. Stalling

	C. FORWARDING:
	D. Register Values before simulation
	E. Register Values after simulation
	F. Fibonacci Run
	G. Memory Values
	H. Tabular Depictation:

	CHAPTER 6
	REFRENCES

