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ABSTRACT 
 

 

The aim of the study is to develop a predictive model for Tuberculosis (Tb), a serious 

chronic infectious disease. Tb (caused by a bacterial Mycobacterium tuberculosis) 

causes enormous global health issues, and early detection is critical for initiating 

treatment on time. Leveraging the power of Convolutional Neural Networks (CNN), 

a deep learning model, a robust system was constructed to predict Tb status based on 

chest X-ray images. Traditional diagnostic methods often involve time-consuming 

laboratory tests, necessitating the need for more efficient and accessible approaches. 

The proposed CNN model was trained using a large dataset of annotated chest X-ray 

images, enabling it to learn relevant features indicative of Tb infection. Extensive 

evaluation and validation confirmed the model's high accuracy and reliability in 

diagnosing Tb, thereby providing a valuable tool for healthcare professionals. By 

revolutionizing medical image analysis, these models have the power to transform 

healthcare delivery, leading to better patient outcomes, optimized resource allocation, 

and significant advancements in the field. Continued research, collaboration, and 

implementation are crucial to fully harness the future potential of deep learning models 

in clinical practice. 
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CHAPTER 1 

 

INTRODUCTION 

 
 

 

 
Tuberculosis (Tb) is an infectious respiratory disease caused by Mycobacterium 

tuberculosis (MTb) [1]. It is a global health concern, significantly impacting morbidity 

and mortality worldwide [1][2]. Tb is primarily transmitted through inhaling respiratory 

droplets containing MTb, allowing the bacteria to enter the lungs and initiate infection 

[2]. Once inside the host, MTb faces a complex interplay with the immune system, 

leading to diverse clinical outcomes and disease manifestations. MTb infection begins 

when the inhaled bacteria reach the alveolar spaces of the lungs. The bacteria are taken 

up by resident alveolar macrophages, the primary immune cells in the lungs, triggering 

the initial immune response [2]. Alveolar macrophages recognize MTb and attempt to 

eliminate the pathogen through various defense mechanisms. However, MTb has 

evolved several strategies to evade and manipulate the immune system, allowing it to 

establish infection and persist within host cells [3]. 

 

According to the WHO Global Tuberculosis Report 2022, there has been a 

concerning global increase in tuberculosis (Tb) cases in 2021, with 10.6 million new 

cases reported, marking a 4.5% rise compared to the previous year. This reversal of 

the long-standing decline in Tb cases is attributed to the disruptions caused by the 

COVID-19 pandemic. The India Tb Report 2022, released in mid-May 2023, reveals 

similar stats in India; the incidence rate of all forms of Tb in 2020 was 188 per 100,000 

population, ranging from 129 to 257 per 100,000 population. Moreover, the report 

highlights a 19% increase in the total number of newly notified Tb cases in 2021 

(1,933,381) compared to 2020 (1,628,161). Although drugs such as Bedaquiline and 

Delamanid have demonstrated effectiveness, there are various limitations associated 

with their use. These limitations include the need for prolonged treatment duration, 

potential drug toxicity, and the emergence of drug-resistant strains [5]. The existing Tb 

treatment regimens are characterized by their long duration and the requirement for 
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strict adherence, which can pose challenges for patients to sustain [6]. Despite a 

relatively low proportion of delay compared to previous studies, enhancing strategies 

for early detection, diagnosis, and treatment of tuberculosis (Tb) infection remains 

crucial. Strengthening these measures is necessary to minimize complications 

associated with Tb and prevent further spread of the disease [4]. 

 

Traditional methods of tuberculosis (Tb) diagnosis, such as sputum 

microscopy and culture, have limitations in accuracy, speed, and accessibility [7]. 

These methods often require specialized laboratories, skilled technicians, and time-

consuming procedures, leading to delays in diagnosis and treatment initiation; due to 

their low sensitivity, false-negative results might also be generated, resulting in 

delayed response [8]. In recent years, machine learning techniques have shown promise 

in improving tuberculosis (Tb) detection accuracy and efficiency. By utilizing large 

datasets encompassing clinical data, laboratory findings, and imaging data like chest 

X-rays, researchers have successfully trained machine learning models to identify Tb 

cases with high precision. 

 

 

  FIGURE 1: Basic steps involved in Machine Learning 
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The objective of this project is to utilize machine learning tool and techniques for the 

detection of Primary Tuberculosis (Tb) using X-ray images. The goal is to develop a 

predictive model that can accurately identify Tb cases, enabling healthcare 

professionals to efficiently predict Tb and deliver improved patient care. The project 

aims to find the most efficient and accurate Machine Learning algorithm with the help 

of Orange Data mining tool and then building the model using Python as coding. The 

predictive model build will enhance the efficiency and effectiveness of Tb detection, 

ultimately contributing to early diagnosis, timely treatment initiation, and better health 

outcomes for individuals affected by Tb. 
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CHAPTER 2 

 

 

REVIEW OF LITERATURE 

 

 
 

2.1 Tuberculosis 

 
Tuberculosis (Tb) is an infectious disease caused by the bacteria Mycobacterium 

tuberculosis which primarily affects the lungs but can infect other regions of the body 

as well [1]. It is a leading cause of illness and mortality worldwide, ranking among the 

most common ten leading causes of death. Tb is very contagious because it is 

transmitted by the inhalation of aerosols produced by people with pulmonary Tb [1][2]. 

The result of tuberculosis infection can range from quick clearance by innate immunity 

to the development of active disease or the development of latent infection that can 

later reactivate [3]. The global impact of tuberculosis (Tb) is significant, with millions 

of new cases recorded each year. According to the World Health Organization's Global 

Tuberculosis Report 2022, there was a concerning increase in Tb infections worldwide 

in 2021, with 10.6 million new cases registered, a 4.5% increase compared to the 

previous year. The disruptions produced by the COVID-19 epidemic have had a 

negative impact on Tb control efforts. Africa and Asia, in particular, face a tremendous 

burden of tuberculosis, with a high concentration of patients. India, Indonesia, and 

China all contribute considerably to the worldwide Tb caseload, highlighting the 

critical need for tailored interventions in these areas. Additionally, the emergence of 

drug-resistant variants of tuberculosis (Tb), particularly multidrug-resistant (MDR) 

and extensively drug-resistant (XDR) Tb, offers a major challenge to tuberculosis 

control. These drug-resistant pathogens complicate treatment regimens and demand 

specialised management approaches. It is critical for worldwide Tb control efforts to 

ensure robust solutions to address the surge in Tb cases and treatment resistance. 
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With a large number of cases and a high prevalence of the disease, tuberculosis 

is a major public health concern in India. According to the India Tb Report 2022, by 

Central Tb division, published in mid-May 2023, the incidence rate of all kinds of Tb 

in 2020 was 188 per 100,000 population, with rates ranging by location. India is 

expected to have one-third of the global population with latent tuberculosis infection. 

However, the country has a number of problems in the fight against tuberculosis, 

including the growth of drug-resistant strains, the complexity and length of treatment 

regimens, and the co-occurrence of Tb and HIV. The direct observed treatment short-

course (DOTS) technique has produced encouraging results, with high percentages of 

treatment success reported. Nonetheless, prolonged therapy, adherence to treatment 

protocols, and fair access to healthcare services are essential barriers to effectively 

combating tuberculosis in India.Because of its distinct properties that set it apart from 

other bacterial infections, Mycobacterium tuberculosis (MTb) infection is a prominent 

cause of sickness. One notable distinction is its ability to develop long-term infections 

within host cells [9]. Unlike many other bacteria that are eliminated by the immune 

system or respond effectively to typical antibiotic treatments, MTb has evolved 

sophisticated methods to avoid detection by the immune system and persist within the 

host for extended periods [10]. This propensity to endure contributes to the chronic 

nature of tuberculosis (Tb) and the difficulties in completely eradicating the infection. 

Another distinctive feature of MTb is its complex cell wall composition, characterized 

by lipid-rich acids known as mycolic acids [11]. This distinct cell wall structure protects 

against host immune defences and prevents antibiotic penetration. As a result, typical 

antibiotic medications against other bacteria may not be effective against MTb, 

involving longer treatment durations and numerous drug combinations [12]. 

 

Furthermore, MTb has high genetic variability, resulting in strains with varying 

levels of virulence and drug resistance. This genetic heterogeneity helps MTb adapt to 

varied conditions and improves its ability to survive and spread within populations [13]. 

Drug-resistant strains hinder treatment efforts and demand the development of novel 

therapeutic techniques. The immune response to MTb infection differs from the 

immunological response to other bacterial infections. MTb can disrupt phagocytic 

signaling pathways, block phagosome-lysosome fusion, and disrupt immunological 

responses within the phagosome. These mechanisms allow MTb to elude immune 

surveillance and develop a niche for survival within host cells [9][12]. 
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2.2 Mechanisms of Host Immune System Manipulation by Mycobacterium 

tuberculosis 

 

Mycobacterium tuberculosis which belongs to the "Actinomycetales" order, is a slow-

going bacteria; it has complicated strategies for manipulating the host immune system 

and delaying the immune response, which adds to the difficulties in treating this 

disease. A complete understanding of MTb's different strategies for evading immune 

responses is essential for creating successful treatments [13]. MTb uses a variety of 

strategies to ensure its survival and resistance to medicines. It inhibits phagosome-

lysosome fusion, preventing acidification and destruction of the bacterium [14]. MTb 

can establish multi-drug resistant colonies and remain within the host in this manner. 

MTb enters the body predominantly by inhaling aerosolized droplets containing the 

bacteria [15]. MTb enters the lungs and comes into contact with the alveolar lining fluid, 

which contains surfactant proteins and hydrolases that can aid in the pathogen's uptake 

and degradation by immune cells. When MTb enters the alveoli, it is quickly engulfed 

by alveolar macrophages, the principal phagocytic cells. In most situations, these 

macrophages can eliminate germs via the innate immune response [15]. If MTb survives 

this first defense, it begins to multiply within the macrophages. It can migrate to 

neighboring epithelial and endothelial cells, resulting in exponential growth and a large 

bacterial burden. MTb can spread to other organs via lymphatic and circulatory 

pathways during the early stages of illness. MTb can establish long-term persistence 

in extrapulmonary locations such as lymph nodes, adipose tissue, and bone marrow by 

modifying the local tissue environment [16]. 
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FIGURE 2.2.1: The schematic diagram illustration of Mycobacterium tuberculosis 

(MTb) infection cycle 

 

2.3 Transmission of Tuberculosis  

 

Transmission takes place when an infected individual coughs or sneezes and releases 

Tb bacteria into the air [17]. In some situations, individuals exposed to Tb may develop 

an active infection later in life. It is critical to distinguish between being infected with 

tuberculosis germs and having active tuberculosis disease because they reflect 

different stages of the infection. 

The first stage is exposure, which occurs when someone comes into touch with 

someone who has active tuberculosis. During this stage, the exposed person often 

exhibits no signs or symptoms of the disease, and testing such as skin tests or chest X-

rays may appear normal [18]. Latent tuberculosis infection is the second stage, at this 

stage, the person has tuberculosis germs in their body but is asymptomatic. The germs 

are effectively contained by the immune system, resulting in inactivity. Skin or blood 

tests for tuberculosis infection may be positive, although chest X-rays are usually 

normal or reveal merely prior scarring. Other regions of the body usually show no 

evidence of current illness. The third stage is tuberculosis, which shows aggressive 

symptoms and infection indicators. At this stage, the individual may have positive Tb 

infection tests, such as skin or blood testing, and imaging examinations, such as chest 

X-rays, may indicate abnormalities indicative of an active infection [19]. Additional 

diagnostic techniques, such as biopsies, may be used to establish the presence of active 
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tuberculosis illness [20]. 

 

Healthcare practitioners can accurately identify and manage tuberculosis by 

recognising the various stages of the infection [21]. Early detection and treatment are 

critical for limiting the spread of tuberculosis and reducing consequences. 

 

Tb Stage Signs and Symptoms Key Differences and Tests 

Exposure Typically, no signs or 

symptoms 

Negative skin test, normal chest X-ray 

Latent Tb 

Infection 

No symptoms Positive skin or blood test for Tb, 

normal chest X-ray 

Tb Disease Cough, fatigue, weight loss, 

night sweats, fever, Hemoptysis 

(coughing up blood), chest 

pain, Shortness of breath, chest 

tightness 

Positive or negative skin/blood test, 

positive chest X-ray, Sputum culture, 

nucleic acid amplification test 

(NAAT), Chest CT scan, 

bronchoscopy, biopsy 

 

Table 1: The table summarises the stages of tuberculosis, signs and symptoms, and 

essential diagnostic tests. 

 

2.4 Role of X-ray in Tb detection 

 

The chest X-ray is critical in the diagnosis and therapy of tuberculosis (Tb) [22]. It is 

one of the most common imaging modalities used to detect lung abnormalities 

associated with tuberculosis infection [23]. Here are some essential elements showing 

the importance of X-ray in the detection of tuberculosis: 

 

a) Chest X-rays are routinely used for initial screening and diagnosis of 

tuberculosis [22]. They aid in the identification of pulmonary anomalies that 

may suggest tuberculosis infection, such as infiltrates, nodules, or cavities. X-

rays can identify both active and latent tuberculosis [23]. 



9 
 

b) Active Tuberculosis: Chest X-rays can reveal certain patterns that indicate 

active tuberculosis [24]. Consolidation (areas of lung tissue filled with fluid or 

cellular debris), cavitation (development of cavities within the lung), and 

lymphadenopathy (enlarged lymph nodes in the chest) are examples of these 

patterns [25]. These findings can help healthcare providers make an accurate 

diagnosis and choose the best treatment options. 

c) Assessing illness Severity: X-rays can tell you a lot about the breadth and 

severity of Tb illness in your lungs [25]. They aid in determining the spread of 

lesions and the involvement of various lung segments. This data assists in 

selecting the best treatment plan and tracking the disease's progression over 

time [26]. 

d) Chest X-rays are used to check the success of Tb treatment. Serial X-rays can 

detect changes in the lungs, such as infiltrate clearing or cavity size reduction, 

indicating a beneficial response to treatment [24]. They are critical for 

monitoring treatment progress, recognising potential problems, and changing 

therapy as necessary [27]. 

e) Differentiating Tuberculosis from Other Lung illnesses: Chest X-rays can 

assist in distinguishing tuberculosis from other lung illnesses that may present 

with similar symptoms [28]. Healthcare providers can distinguish Tb from 

illnesses such as pneumonia, lung cancer, or other respiratory infections by 

analysing the typical characteristics associated with the disease [29]. 

 

Early diagnosis of active tuberculosis (Tb) with the help of machine learning (ML) 

techniques can greatly benefit in disease treatment and management [30]. Large 

volumes of patient data, including clinical, radiographic, and laboratory information, 

can be analyzed by ML algorithms to find patterns and signs of active tuberculosis 

infection [24]. Using ML algorithms, healthcare providers can create prediction models 

that can help identify people who are at high risk of getting active Tb or who may 

already have the disease. ML algorithms can also help improve the accuracy and 

efficiency of tuberculosis tests [30]. For example, machine learning (ML) approaches 

can be used to improve the interpretation of radiological images like chest X-rays or 

computed tomography (CT) scans, allowing for more exact diagnosis of Tb-related 

anomalies [31]. This can help radiologists make more accurate diagnosis, which can 
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lead to earlier intervention and treatment. On top of that, machine learning can aid in 

the creation of point-of-care diagnostic instruments that are inexpensive, portable, and 

appropriate for resource-limited situations [32]. These techniques can identify 

tuberculosis quickly and accurately, even in places with limited access to advanced 

laboratory infrastructure.  

 

2.5 Machine Learning and steps of building a machine learning model 

 

Machine learning encompasses two primary categories, namely supervised and 

unsupervised learning. Both categories make use of mathematical models in order to 

provide computers the capacity to learn and carry out particular tasks.  

Supervised Learning: Supervised learning makes use of labelled training data, which 

consists of inputs and associated "labelled" outputs. These labelled outcomes are used 

by models during training to evaluate and enhance their prediction abilities for brand-

new, untainted data [33]. Classification and regression methods are frequently the focus 

of supervised learning. Doctors sometimes make diagnoses of illnesses based on a 

group of symptoms, which is a problem known as classification. The focus of 

regression issues, on the other hand, is on making numerical predictions, such as 

determining how long a patient would stay in the hospital based on vital signs, medical 

history, and weight. Random forests (RF), decision trees (DT), Naive Bayes models, 

linear and logistic regression, support vector machines (SVM), and even neural 

networks are some of the algorithms that fall under the umbrella of supervised 

learning. An ensemble of independently trained decision trees makes up random 

forests, a subtype of decision tree. To get a better end result, these trees' projections 

are blended [34]. A random sampling of the data and a random collection of features 

are used to construct each tree at each candidate split. As a result, predictive traits that 

are unique to the training set but might not be transferable to fresh data are not 

overemphasised. Even with noisy data, random forests are reliable and perform well. 

 

A common machine learning algorithm for classification and regression tasks 

is the decision tree. It is a tree-like model where each leaf node represents the outcome 

or prediction, each internal node represents a decision based on that feature, and each 

branch represents a feature.The Decision Tree algorithm creates a collection of 

decision rules that direct the classification or prediction process by recursively 
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partitioning the data according to various criteria. Finding the optimal splits at each 

node that provide the most homogeneous subsets of data is the goal.Popular machine 

learning method Random Forest falls within the umbrella of supervised learning, more 

precisely, ensemble learning. It has a solid reputation for being adaptable, durable, and 

efficient for dealing with complicated data and high-dimensional feature spaces. 

Decision trees are the foundation of the Random Forest algorithm. To reach a forecast, 

decision trees partition the data into subsets based on feature values. They resemble 

trees. Individual decision trees, on the other hand, frequently experience overfitting, 

which occurs when the model is too tailored to the training data and struggles to 

generalise successfully to new, unforeseen data [35]. 

 

Naive Bayes models are a family of probabilistic classifiers based on Bayes' 

theorem with an assumption of independence between the features. Despite their 

simplistic assumptions, Naive Bayes classifiers are widely used in various machine 

learning tasks, particularly in text classification and spam filtering. The Naive Bayes 

algorithm calculates the probability of a data point belonging to a particular class based 

on the probabilities of the individual features given that class. It assumes that the 

features are conditionally independent, meaning that the presence or absence of one 

feature does not affect the presence or absence of another feature. This assumption 

simplifies the computations and makes Naive Bayes models computationally efficient 

[36]. To train a Naive Bayes classifier, the algorithm estimates the prior probabilities of 

each class and the likelihood probabilities of the features given each class using a 

training dataset. The prior probability represents the probability of each class occurring 

in the dataset, while the likelihood probability represents the probability of observing 

a particular feature given a class.During the prediction phase, the Naive Bayes 

classifier calculates the posterior probability of each class for a given data point. It 

selects the class with the highest posterior probability as the predicted class for that 

data point. The calculation of the posterior probability involves multiplying the prior 

probability with the likelihood probabilities of the features. 

 

Basic Steps involved in building a Machine Learning Model are [37]: 

i. Data Collection: Relevant data is gathered from various sources for use in the 

machine learning process. The collected data is aimed to be comprehensive and 

representative of the problem domain. 
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ii. Data Pre-processing: The collected data is cleaned, transformed, and prepared 

to ensure its quality and compatibility with machine learning algorithms. 

Techniques such as handling missing values, dealing with outliers, and 

normalizing or scaling features are applied to enhance the data. 

iii. Model Selection: The appropriate machine learning algorithm or model 

architecture is chosen that best suits the problem at hand. Consideration is 

given to factors such as the nature of the problem, availability of labeled data, 

dataset size, and complexity. 

iv. Model Training: The selected model is trained using the prepared data to learn 

patterns and relationships within the data. The model's internal parameters are 

adjusted based on the provided inputs and corresponding outputs, optimizing 

its performance. 

v. Evaluation: The performance of the trained model is assessed using appropriate 

metrics to measure its effectiveness. Metrics such as accuracy, precision, recall, 

or mean squared error are used to evaluate the model's ability to make accurate 

predictions. 

vi. Performance Tuning: The model's hyperparameters and configuration settings 

are fine-tuned to optimize its performance. Techniques like grid search, random 

search, or Bayesian optimization are employed to systematically explore the 

hyperparameter space and find the optimal combination. 

vii. Do Predictions: The trained model is deployed to make predictions on new, 

unseen data in real-world applications. The model utilizes its learned patterns 

and relationships to generate predictions or classifications for the given input 

data. 

 

A branch of machine learning called deep learning is concerned with the creation and 

use of artificial neural networks, particularly deep neural networks. While both 

machine learning and deep learning are subfields of artificial intelligence, their 

methods and capabilities vary. Typically, features for machine learning algorithms 

must be manually extracted from the input data. These characteristics constitute the 

foundation for the learning process, in which the algorithm discovers patterns and 

relationships in the data to execute tasks or make predictions. The excellence and 

applicability of these hand-crafted features strongly influence the performance of 
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machine learning models. On the other hand, deep learning algorithms use numerous 

layers of interconnected neurons to automatically learn hierarchical representations of 

the input. Since these deep neural networks may learn directly from unprocessed data, 

explicit feature engineering is not necessary. In order to create more adaptable and 

potent models, the network learns to extract significant features and representations 

from the data itself [38]. 

 

The volume of data needed is another difference between deep learning and 

conventional machine learning. When given a significant amount of labelled training 

data, deep learning algorithms frequently perform better. Deep neural networks are 

capable of efficiently capturing complex patterns and producing reliable predictions 

when given a large number of parameters to optimise. Deep learning has also achieved 

outstanding results in fields including speech recognition, natural language processing, 

and computer vision [39]. Recurrent neural networks (RNNs) have made substantial 

progress in language comprehension and sequence modelling, while convolutional 

neural networks (CNNs) have made breakthroughs in object detection and image 

classification [40][46]. 

 

Deep learning does, however, present some difficulties. Deep neural network 

training can be computationally expensive and calls for a lot of resources, such strong 

GPUs or specialised hardware [40]. Furthermore, deep learning models are frequently 

referred to as "black boxes," as they are more difficult to interpret than typical machine 

learning models, which makes it difficult to comprehend how decisions are made. 

 

Property Machine Learning Deep Learning 

Model Various algorithms (e.g., 

decision trees, SVM) 

Artificial neural networks 

Data Size Works well with small to 

medium-sized datasets 

Excels with large-scale 

datasets 

Training Computationally efficient Computationally 

expensive 

 

TABLE 2: This table summarizes the differences between Machine Learning (ML) and Deep Learning 

(DL) in terms of the model, data size, and training process 
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Deep learning methods, particularly convolutional neural networks (CNNs), are used 

to recognise and identify objects or features in images. This process is known as image 

detection using deep learning. By enabling very precise and automated detection 

methods, deep learning has revolutionised image detection.A deep neural network is 

trained using a sizable dataset of labelled images. By changing its internal parameters 

during the training phase, the network gains the ability to recognise patterns, features, 

and representations in the images. CNNs are neural networks with numerous layers 

that work together to execute convolution, pooling, and nonlinear activation 

operations. They were created primarily for image processing. The network gains the 

ability to recognise visual patterns and characteristics that are connected to particular 

objects or classes throughout training. This is accomplished by applying optimisation 

techniques like gradient descent to reduce the discrepancy between the network's 

anticipated outputs and the ground truth labels of the training images. 

 

By feeding the network with fresh, undiscovered photos after it has been trained, it can 

be used for image detection. Utilising its previously learned representations, the 

network analyses the incoming image and outputs the identified objects or features 

together with the matching class labels or bounding boxes. 

 

                FIGURE 2.5.1: Schematic representation of Neural Network 
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2.6 Image detection and analysis 

 

Convolutional Neural Networks (CNNs) have revolutionized the field of computer 

vision by introducing powerful techniques for extracting meaningful features from 

visual data. They have shown exceptional performance in a wide range of applications, 

enabling computers to understand and interpret images with remarkable accuracy [42]. 

One key aspect of CNNs is their ability to automatically learn and extract hierarchical 

representations of visual features. The network comprises multiple layers, including 

convolutional layers, pooling layers, and fully connected layers [43][45]. Each layer 

performs a specific operation on the input data, allowing the network to progressively 

learn and capture increasingly complex and abstract features [44]. The convolutional 

layers are responsible for applying convolutional filters to the input image. These 

filters are small matrices that scan the image and perform element-wise multiplications 

and summations. By sliding these filters across the input image, the network can detect 

local patterns and features, such as edges, corners, and textures [42]. These features are 

essential building blocks for recognizing more complex structures in the image. 

Pooling layers, such as max pooling or average pooling, are employed to down sample 

the feature maps obtained from the convolutional layers. Pooling reduces the spatial 

dimensions of the features while preserving their essential information. This down 

sampling operation helps in achieving translation invariance and enables the network 

to focus on the most salient features. The fully connected layers at the end of the 

network combine the extracted features and perform classification or regression tasks. 

These layers have connections to all the neurons in the previous layer, allowing the 

network to learn complex relationships and make predictions based on the extracted 

features. One significant advantage of CNNs is their ability to learn hierarchical 

representations of visual data. Lower layers in the network learn simple and low-level 

features, such as edges and textures, while deeper layers capture more abstract and 

high-level concepts, such as shapes and objects. This hierarchical representation 

enables the network to understand the visual data at different levels of abstraction, 

leading to superior performance in recognizing and interpreting complex images. 

Moreover, CNNs can be trained on large-scale datasets, such as ImageNet, which 

contain millions of labeled images. Pre-training on such datasets allows the network 

to learn generic features that are applicable across a wide range of visual recognition 

tasks. This pre-trained model can then be fine-tuned on a smaller dataset specific to 
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the target task, enabling faster convergence and improved performance [41]. In recent 

years, CNNs have demonstrated remarkable success in various applications. They 

have achieved state-of-the-art performance in image classification challenges, 

surpassing human-level accuracy in many cases. CNNs are also widely used in object 

detection, where they can localize and identify multiple objects within an image. 

Additionally, CNNs play a crucial role in semantic segmentation, where they assign 

class labels to each pixel, enabling detailed understanding and analysis of complex 

scenes [47]. 

FIGURE 2.6.1: Schematic representation of a CNN with two hidden layers 

 

 

2.7 Orange Data Mining tool 

 

Orange is a C++ based core model & routines library that supports a wide range of 

machine learning and data mining methods, both standard and non-standard. It's a free 

and open-source application for data visualisation, data mining, and machine learning. 

Orange is a fully programmable system that allows you to quickly prototype new 

algorithms and test patterns [48]. It's a collection of python-based modules found in the 

main libraries. It uses Python to provide some functionality for which runtime is not 

critical [49]. An orange is a component-based technique for machine learning and data 

mining that combines all of these features. Orange is aimed at both advanced users and 

experts in data mining and machine learning who wish to design and test their own 

strategies while reusing the same or more code as possible, and newcomers who can 

either write short python contents for data analysis [48]. Orange's goal is to serve as a 
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medium for experiment-based selection, prediction, and reinforcement learning. It's 

mostly utilised in bioinformatics, genomics, healthcare, and education. It is utilised in 

education to provide improved teaching techniques for artificial intelligence and 

machine learning to biology, biomedical, and informatics students [50]. 

 

 2.7.1 Orange Widgets 

 

Orange widgets are the cells that provide a graphical interface for mining the data and 

machine learning used by Orange. They include widget for entering data and 

processing, classifications, prediction, association rules, and clustering, as well as a 

collection of widgets for model assessment and display of evaluation outcomes, and 

widgets for transferring models to tool [48]. Keys are passed from the sender to the 

recipient widget when data is exchanged across widgets. A directory widget, for 

instance, can create data objects which a widget classifier learning widget can accept. 

The classification tree creates a classification model and provides the data to a widget 

that displays the tree graphically. The file widgets and objects can provide a data set 

to an evaluation widget [50]. 

                                          

FIGURE 2.7.1: Orange workflow and widgets  

 

 Early identification of active tuberculosis allows for the rapid beginning of effective 

treatment, which is critical for improving patient outcomes and reducing transmission 

to others. By analyzing diverse data sources and offering automated decision support 

to healthcare practitioners, ML-based techniques can speed up the diagnosis of active 

Tb patients. This can help healthcare systems prioritize resources, distribute 

appropriate interventions, and guarantee that individuals in need receive treatment on 

time. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

 
3.1 Data Collection 

 

• The data was collected from three primary sources: Sarojini Naidu Medical 

College (Agra), NSCB Medical College (Jabalpur), and Kaggle. 

• The X-ray images were collected from patients who had been diagnosed with 

tuberculosis as well as those without tuberculosis. This ensured a diverse 

dataset representing different conditions and demographics. 

• The X-ray images were accompanied by accurate labels indicating the presence 

or absence of tuberculosis for each image. 

            

 (a)     (b) 

FIGURE 3.1.1: An X-ray visualization of (a) Normal Patient (Tb negative) 

(b) Tuberculosis Patient (Tb Positive) 

 

 

   



19 
 

 

3.2 Data Validation and Cleaning 

  

• The collected dataset underwent a thorough validation process to ensure data 

quality and integrity. 

• Images with poor quality, artifacts, or significant noise were excluded from the 

dataset to maintain the accuracy and reliability of the analysis. 

• The dataset was carefully checked for any duplicates or inconsistencies, and 

any identified issues were resolved to ensure data consistency and reliability. 

 

3.3 Orange Data Mining Tool for the prediction of best algorithm  

 

• The data was loaded in Orange tool and the best algorithm was detected  

• Based on the result Neural Network was found to be most accurate 

 

3.4 Uploading the Data on Google Colab 

 

• After data validation and cleaning, the dataset was prepared for analysis in 

Google Colab ( a cloud-based Jupyter notebook environment). 

• For the X-ray images obtained from Sarojini Naidu Medical College Agra and 

NSCB Medical College Jabalpur, the images were uploaded from the local 

desktop to the Google Colab environment. 

 

         

FIGURE 3.4.1: Uploaded X-Ray images from desktop for training the Model 

 

• The Kaggle data, being publicly available, was imported directly into Google 



20 
 

Colab using Kaggle's API 

 

 

    FIGURE 3.4.2: Uploaded X-Ray images from Kaggle for training the Model 

 

3.5 Further data pre-processing and splitting of data into test and train datasets: 

 

• To prepare the data for training the predictive model, additional preprocessing 

steps were performed. Firstly, the X-ray images obtained from the hospitals 

were processed to ensure they had the same dimensions. This step involved 

resizing all images to a uniform width and height. 

• Next, the data was split into training and testing datasets. For this purpose, an 

image data generator provided by the Keras library was utilized. The images 

were rescaled by dividing their pixel values by 255.0 to bring them within the 

range of 0 to 1. 

• The training data was generated using the flow_from_directory method from 

the image data generator. The directory specified was 

'/content/OutputData/train', and the target size for the images was set to (150, 

150). The class_mode was defined as 'sparse' to handle the categorical labels 

associated with the images. 

• Similarly, the testing data was generated using the flow_from_directory 

method. The directory specified was '/content/OutputData/test', and the target 

size was set to (150, 150). Again, the class_mode was set to 'sparse' to align 

with the categorical labels 
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FIGURE 3.5.1: Data pre-processing and splitting the data into train and test 

 

3.6 Deep Learning Model Training: 

 

• A sequential model was created using the Keras library to implement the deep 

learning model for tuberculosis detection. The model consisted of multiple 

convolutional layers followed by max pooling layers to extract relevant 

features from the input images. 

• The model architecture included four sets of convolutional layers, each 

followed by a max pooling layer. The convolutional layers had 32, 64, 128, 

and 192 filters, respectively, with a kernel size of (3,3). The 'relu' activation 

function was applied to introduce non-linearity. 

• The flattened output from the convolutional layers was passed through dense 

layers for further feature extraction. The dense layers had 128, 228, and 270 

units, respectively, with 'relu' activation functions. Dropout regularization was 

applied with a rate of 0.4 for the first dropout layer and 0.3 for the subsequent 

two dropout layers. 

• The final dense layer consisted of a single unit with 'sigmoid' activation, 

representing the output for tuberculosis classification. 

• The model was compiled using the 'Adam' optimizer and 'binary_crossentropy' 

loss function. Accuracy was chosen as the evaluation metric. 
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FIGURE 3.6.1: Code for building Convolutional layers   

 

3.7 Performance Evaluation: 

 

• The training data generated from the image data generator was used to fit the 

model. The model was trained for 20 epochs with the specified number of steps 

per epoch. 

• The validation data generated from the image data generator was used for 

evaluating the model's performance during training. 

• The loss and accuracy metrics were recorded during training to monitor the 

model's learning progress. 

• The training and validation loss were plotted to visualize the model's 

performance over epochs. 

• Similarly, the training and validation accuracy were plotted to observe the 

model's learning and generalization capabilities. 
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              FIGURE 3.7.1: This section of code evaluates the built Model   

 

3.8 Model Deployment and Integration: 

 

• The trained model was saved in the '.h5' format for future use. 

• To facilitate model deployment, the saved model was converted to the 

TensorFlow Lite format ('.tflite') using the TFLite Converter. 

• The TensorFlow Lite model was then loaded, and an Interpreter was created 

to perform inference on new data. 

• An image was loaded, pre-processed, and fed into the TensorFlow Lite 

model for inference. The output probabilities were obtained. 

• A threshold of 0.5 was set for classification, where probabilities above the 

threshold indicated tuberculosis presence. 

• The model deployment process enabled integration into various applications 

and systems, allowing healthcare professionals to utilize the model for 

tuberculosis detection efficiently. 
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FIGURE 3.8.1: The section of code shown in the picture is to save the model in tflite 

format and further testing it using a picture which was not used to train the model 

 

3.9 Prediction and threshold setting for classification: 

 

• A threshold value of 0.5 was chosen as a reference point to classify the 

predicted probabilities into two categories: "Tb Negative" and "Tb Positive” 

• If the predicted probability was above the threshold (greater than 0.5), the 

person was classified as having tuberculosis. Otherwise, if the predicted 

probability was below or equal to the threshold, the person was classified as 

Tb negative. 

 

FIGURE 3.9.1: The section of code shown in the picture is to predict if new the test image is 

Tb Positive or Tb negative 

       

 

  *(for the complete code, please refer to the Appendix A) 
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CHAPTER 4 

 

 

RESULT AND DISCUSSION 

 

 
 

4.1 Data Collection, Pre-processing and Model building 
 

The deep learning model for tuberculosis detection was trained and evaluated using a 

dataset collected from Sarojini Naidu Medical College Agra, NSCB Medical College 

Jabalpur, and Kaggle. The dataset comprised a collection of X-ray images obtained 

from individuals, with each image annotated to indicate the presence or absence of 

tuberculosis. The dataset was carefully curated and labelled by medical professionals 

to ensure accuracy and reliability. To determine the optimal model for tuberculosis 

detection, various machine learning algorithms, including Support Vector Machines 

(SVM), K-Nearest Neighbors (KNN), CN2 Rule Induction, and Neural Network, were 

employed. These algorithms were implemented using the Orange Data Mining tool. 

 

 
FIGURE 4.1.1: A schematic workflow built on  Orange Data mining tool for find the best 

model for this study 
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Based on the Literature Reviews and results of Confusion Matrix of each algorithm, 

Neural Network was observed to show the best result. 

 

 

 
 

FIGURE 4.1.2: The confusion matrix of CN2 rule inducer, SVM, kNN and Neural Network 

 

It exhibited the ability to effectively learn and recognize patterns within the X-ray 

images, enabling accurate tuberculosis detection. The Neural Network algorithm was, 

therefore, chosen to build the model for further development and evaluation. The 

model was fed the pre-processed dataset, which underwent data cleaning, resizing of 

images to a consistent dimension, and appropriate normalization .Once the model was 

trained, it was evaluated using a separate test dataset. This dataset consisted of X-ray 

images that were not included in the training process. The performance of the model 

was evaluated by percentage accuracy which provided insights into the model's ability 

to correctly classify tuberculosis cases and distinguish them from Tb negative images. 

 

4.2 Model Evaluation Results 

 

During the experimentation phase, it was observed that the size of the dataset had a 

significant impact on the accuracy of the model for tuberculosis detection. Initially, 

smaller amount of data (662 X-Ray images) was used for training and evaluation. 
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FIGURE 4.2.1: The picture shows that  662 files were uploaded 

  

The accuracy of this model was 78.36% 

 
  FIGURE 4.2.2: The accuracy of this model was 78.36% 

 

To increase the accuracy, a larger and more diverse dataset was employed (3168 X-

Ray images).  
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FIGURE 4.2.3: The picture shows that 3168 files were uploaded  

 

The accuracy of the model significantly improved to 96.11%. 

 
     FIGURE 4.2.4:  The accuracy of the model significantly improved to 96.11%. 

 

This improvement in accuracy can be attributed to the increased volume of data 

available for the model to learn from. With a larger dataset, the model had access to a 

wider range of tuberculosis cases and non-tuberculosis cases, allowing it to better 

capture the complex patterns and features indicative of the disease. The increased 

diversity in the dataset also helped the model generalize better to unseen instances, 

making it more robust and reliable in real-world scenarios. 
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4.3 Result and Validation of Model performance by testing it with 

help of the Data which was not used to train the model 

 

COUNT of Image Number Model Prediction   

Actual Result Healthy TB Grand Total 

Healthy 206 2 208 

TB 15 139 154 

Grand Total 221 141 362 

% of result predicted correct 95.3038674   

  
TABLE 3: The table displays the model predictions for a dataset. The rows are the actual findings, 

while the columns are the model projections. 

 

The table displays the count of images and the corresponding model predictions for a 

given dataset. The dataset consists of two classes: "Healthy" and "Tb" (Tuberculosis). 

The rows represent the actual results of the images, while the columns represent the 

model predictions. According to the table, the algorithm correctly predicted 206 of the 

208 healthy images. However, it misidentified two healthy images as Tb. Similarly, 

out of 154 Tb images, the algorithm correctly predicted 139 as Tb but incorrectly 

labelled 15 as healthy. 

The sample included 221 Tb negative X ray images and 141 Tb positive X ray images. 

The percentage of accurately anticipated results can be used to assess the model's 

overall performance. In this case, the model predicted the class labels with an accuracy 

of roughly 95.30%. 
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CHAPTER 5 

 

 

CONCLUSION 

 
 

The project focused on using machine learning techniques, specifically deep learning 

models, for tuberculosis (Tb) detection using X-ray images. The study successfully 

developed and trained a deep learning model using a dataset collected from Sarojini 

Naidu Medical College Agra, NSCB Medical College Jabalpur, and Kaggle. The 

model exhibited high accuracy, with a significant improvement observed when a larger 

and more diverse dataset was used. The model predicted class labels with 

high accuracy, obtaining an overall accuracy of 95.30%. The majority of healthy 

images were accurately identified, with only a few mislabelled as TB. Similarly, the 

model performed well in recognising tuberculosis cases, correctly identifying the 

majority while misclassifying a few as healthy. 

The results demonstrate the potential of machine learning, particularly deep 

learning, in enhancing the accuracy and efficiency of Tb detection. By leveraging the 

power of neural networks and image analysis, the developed model showed promising 

performance in distinguishing between Tb and non-Tb cases based on X-ray images. 

This has important implications for early detection and prompt initiation of treatment, 

ultimately improving patient outcomes and reducing the spread of the disease. The 

future potential of this research lies in further exploration and development of machine 

learning techniques for tuberculosis (Tb) detection. Areas of potential include 

incorporating additional data modalities, such as clinical data and demographics, 

exploring transfer learning and model optimization techniques, addressing class 

imbalance in datasets, conducting external validation and clinical integration, and 

considering ethical considerations and fairness in model deployment. These 

advancements have the potential to enhance the accuracy, efficiency, and real-world 

impact of Tb detection, ultimately leading to better patient care and control of the 

disease. 
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Appendix A 
 

The code presented in the following pages corresponds to the 

implementation of a project titled "Convolutional Neural Network-

assisted detection of primary tuberculosis for improved diagnosis." 

 

 

# Dataset Download 

""" 

 

!pip install -U -q kaggle 

!mkdir -p ~/.kaggle 

 

#Download your api kaggle.jdon from kaggle and upload it here 

from google.colab import files 

files.upload() 

 

! mkdir ~/.kaggle 

! cp kaggle.json ~/.kaggle/ 

 

! chmod 600 ~/.kaggle/kaggle.json 

! kaggle datasets download -d raddar/tuberculosis-chest-xrays-shenzhen 

 

#unziping the file 

from zipfile import ZipFile 

file_name = '/content/tuberculosis-chest-xrays-shenzhen.zip' 

 

with ZipFile(file_name, 'r') as zip: 

  zip.extractall() 

  print('Done') 

 

"""# Libraries  

 

""" 

 

! pip install split-folders 

 

import tensorflow as tf 

from tensorflow.keras import Sequential 

from tensorflow.keras.layers import Dense, Flatten, Conv2D, BatchNormalization, MaxPool2D, 

Dropout 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

from tensorflow.keras.preprocessing import image 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 
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import cv2 

import splitfolders  

from glob import glob 

 

"""# Preprocessing""" 

 

datainfo = pd.read_csv('/content/shenzhen_metadata.csv') 

 

datainfo.head() 

 

normal = [] 

positive =  [] 

 

def extract_target(x): 

  for i in range(len(x['study_id'])): 

    if x['findings'][i] == 'normal': 

      normal.append(x['study_id'][i]) 

    else: 

      positive.append(x['study_id'][i]) 

 

extract_target(datainfo) 

 

len(normal) 

 

len(positive) 

 

"""# Creating Directories  

 

""" 

 

!mkdir data 

 

!mkdir data/normal 

!mkdir data/positive 

 

for i in range(len(normal)): 

  path = '/content/images/images/' + normal[i] 

  !mv $path /content/data/normal 

 

for i in range(len(positive)): 

  path = '/content/images/images/' + positive[i] 

  !mv $path /content/data/positive 

 

input_folder = "/content/data" 

output = "/content/dataset 

 

splitfolders.ratio(input_folder, output=output, seed=42, ratio=(.8, .0, 0.2)) 

"""# Data Visualization """ 
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tuberculosis  = glob('/content/dataset/test/positive/*.png') 

normal = glob('/content/dataset/test/normal/*.png') 

 

plt.title('Normal') 

plt.imshow(image.load_img(np.random.choice(normal))) 

plt.show() 

 

plt.title('Tuberculosis') 

plt.imshow(image.load_img(np.random.choice(tuberculosis))) 

plt.show() 

 

"""# Image Processing and Data Partition into Train and Test""" 

 

img_width = 150 

img_height = 150 

 

datagen = ImageDataGenerator(rescale=1/255.0) 

 

train_data_gen = datagen.flow_from_directory(directory='/content/dataset/train', 

                                             target_size = (img_width, img_height), 

                                             class_mode = 'sparse') 

test_data_gen = datagen.flow_from_directory(directory='/content/dataset/test', 

                                            target_size = (img_width, img_height), 

                                             class_mode = 'sparse',) 

 

"""# Deep Learning Model""" 

 

model = Sequential() 

 

#convolution  

model.add(Conv2D(32, (3,3), input_shape = (img_width, img_height, 3), activation='relu', 

padding='same')) 

model.add(MaxPool2D(2,2)) 

 

model.add(Conv2D(64, (3,3), activation='relu', padding='same')) 

model.add(MaxPool2D(2,2)) 

 

model.add(Conv2D(128, (3,3), activation='relu', padding='same')) 

model.add(MaxPool2D(2,2)) 

 

model.add(Conv2D(192, (3,3), activation='relu', padding='same')) 

model.add(MaxPool2D(2,2)) 

 

#Dense  

model.add(Flatten()) 

 

model.add(Dense(128, activation='relu')) 

model.add(Dropout(0.4)) 
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model.add(Dense(228, activation='relu')) 

model.add(Dropout(0.3)) 

 

model.add(Dense(270, activation='relu')) 

model.add(Dropout(0.3)) 

 

 

model.add(Dense(1, activation='sigmoid')) 

 

model.compile(optimizer='Adam', loss='binary_crossentropy', metrics=['accuracy']) 

 

r = model.fit_generator(generator=train_data_gen,  

                              steps_per_epoch=len(train_data_gen), 

                              epochs=20,  

                              validation_data= test_data_gen,  

                              validation_steps = len(test_data_gen)) 

 

"""# Analysis/Evaluation """ 

 

plt.title('Loss') 

plt.plot(r.history['loss'], label='loss') 

plt.plot(r.history['val_loss'], label='val_loss') 

plt.legend() 

 

plt.plot('Accuracy') 

plt.plot(r.history['accuracy'], label='acc') 

plt.plot(r.history['val_accuracy'], label='val_acc') 

plt.legend() 

 

"""# Saving the Model 

 

""" 

 

model.save('Tuberculosis.h5') 

 

model = tf.keras.models.load_model("Tuberculosis.h5") 

converter = tf.lite.TFLiteConverter.from_keras_model(model) 

tflite_model = converter.convert() 

open('Tuberculosis.tflite', 'wb').write(tflite_model) 

 

import tensorflow as tf 

import numpy as np 

from PIL import Image 

 

# Load the TFLite model 

interpreter = tf.lite.Interpreter(model_path="Tuberculosis.tflite") 

interpreter.allocate_tensors() 
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# Get input and output details 

input_details = interpreter.get_input_details() 

output_details = interpreter.get_output_details() 

 

# Load and preprocess the image 

image_path = "/content/test.jpg" 

image = Image.open(image_path).resize((150, 150)) 

image = np.array(image) / 255.0  # Normalize pixel values to [0, 1] 

image = image.astype(np.float32)  # Convert to float32 

image = np.expand_dims(image, axis=0)  # Add batch dimension 

 

# Set the image as the input to the model 

interpreter.set_tensor(input_details[0]['index'], image) 

 

# Run the inference 

interpreter.invoke() 

 

# Get the predicted probabilities 

output = interpreter.get_tensor(output_details[0]['index']) 

predicted_probability = output[0][0]  # Assuming single output node 

 

# Define the threshold for classification 

threshold = 0.5 

 

# Make the prediction 

if predicted_probability > threshold: 

    prediction = "Tuberculosis" 

else: 

    prediction = "Healthy" 

 

print("Prediction:", prediction) 

print("Probability:", predicted_probability) 
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