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ABSTRACT 

Polymeric materials that respond quickly chemically and/or physically to changes in their 

surroundings are known as stimuli-responsive polymeric materials. The action should 

ideally be reversible, meaning that if the stimulus is removed, the sensitive polymeric 

material goes back to its original state. These smart materials are able to self-control the 

communication with their environment or stimuli; thus, they might be key devices for 

various biomedical applications in the upcoming century with new modification for 

biosensing, Smart Polymeric materials offer new possibilities to incorporate biological 

sensing elements. The creation of nanocomposite material and polymer-based composites 

to enhance their qualities, including improved mechanical strength, toughness, electrical 

conductivity, and others. A broad variety of uses for these materials are possible, 

including biomimetic materials and technologies, intelligent materials, renewable energy 

sources, packaging, etc. This article examines how polymer-based composites are used 

in biosensing. We outlined the status, benefits of particular polymer-based sensors, and 

future prospects in this article.  
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Stimuli-responsive material, conducting polymers, Biosensors, Polymer-based 
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CHAPTER 1 

INTRODUCTION 

1.1 Biosensors 

The field of sensing exemplifies a new technology with great capacities and 

adaptability to identify distinct analytes in varied matrices and plays a vital role in 

performance detection in numerous fundamental processes in many systems (1-3). The 

role of nature for inspiration when thinking about new sensory technologies has always 

helped this field. The living things have created the most sophisticated chemical sensors. 

Many insects have extraordinary sensitivity and excellent specificity for chemical signals. 

Mammalian olfaction uses a variety of less discriminating sensors and a learned response 

pattern to recognize a particular smell. It is crucial to understand that biological systems 

do not rely on a single component to produce their exceptional sensory abilities. Actually, 

the analyte transport and removal processes serve the receptor, receptors provide 

selectivity, and analyte-triggered biochemical cascades provide sensitivity, resulting from 

a completely interacting system (4). Natural identifying components have a strong 

attraction for their targets, but given their low endurance under high pressure, 

temperature, and in organic solvents, as well as their low viability in buffers with high 

and/or low pH, they cannot be used in real applications. So, devices have been fabricated 

of materials which can be used in a physiological environment and which responds to the 

change in stimuli. Fig. 1.1 shows a schematic of a sensor system, illustrating the three 

main elements, the sample (or analyte), transduction/platform, and signal-processing step.   

 

  

Figure 1.1: Principal steps in a sensor's functioning. 
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In order to mimic natural sense systems, polymers have received astounding 

acclaim over the past ten years in the area of synthetic sensors. By substituting 

conventional sensing materials with polymers utilizing nanotechnology and utilizing 

either the intrinsic or extrinsic functions, improved selectivity and quick readings (5). The 

two crucial parts of analytical devices, known as sensors, are a transducer and recognition 

elements. Transducers are used to detect analytes for the purpose of evaluating their 

structural properties, and recognition elements perform this task by converting responses 

into signals. Optical sensors (6-8), electrochemical sensors (9-11), piezoelectric sensors 

(12,13), magnetic sensors (14), micromechanical sensors (15), and temperature sensors 

are among the many types of sensors that use detecting polymers (16,17). Polymeric 

materials have expanded in academic curiosity and actual application in sensor 

technology with the passage of time (18). Molecularly imprinted polymer-based sensors, 

poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANI) and polypyrrole (PPy) 

as transducer materials for biosensor applications, as well as the improved characteristics 

and parameters for analysis of a biosensor created using these polymer-based 

nanocomposites, are all thoroughly reviewed in this article.  

 

1.2 Classification of Biosensors 

 

  
Figure 1.2: Classification of biosensors 

1.2.1 Affinity Biosensor 

A receptor is loosely attached to an indicative analog fixed on a transducer 

surface in bio-affinity sensors (19). By using biomolecules like antibodies (Ab), 

membrane receptors, or oligonucleotides, specifically and strongly attached to a target 

analyte, affinity sensors can generate a quantifiable electrical signal (20). The main 

factors of molecular recognition in affinity biosensors are the corresponding size and 
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structure of the binding region with respect to target analyte (20). Since the biomolecule's 

strong affinity and selectivity for its ligand, these sensors are both extremely sensitive 

and discriminating. Antibody-based affinity biosensors known as immunosensors can 

recognize analytes like antigens or haptens by attaching to particular Ab regions (21). 

Complementary portions of the Ab bind with great specificity and affinity to an antigen 

(Ag) that was utilized to fabricate the antibodies in a host organism. 

  

 

1.2.2 Catalytic Biosensor  

The catalytic biosensors make use of biocomponents that can recognize 

biochemical species and use a chemical reaction to transform them into a finished product 

(22). Enzymes are commonly utilized in electrochemical biosensors because of their both 

high biocatalytic sensitivity and activity (23), even though a variety of biological 

recognition components have been used in biosensing devices. However, other factors, 

such as activators and inhibitors, typically control enzyme activity (24). Biocatalytic 

sensors through detection of target analyte, produce functionalized species or additional 

observable outputs by using biological components as enzymes, entire cells, or tissues 

(20). Enzymes, which are globular proteins consisting mostly of the 20 naturally 

occurring amino acids that catalyze biological activities, are the earliest and still most 

extensively employed biorecognition component in biosensors (20,24). Many 

biochemical analytes of interest cannot be detected by enzyme electrodes because there 

are insufficient enzymes that are suitably selective for the analyte or the analyte is 

infrequently present in biological systems (1,25). Then, affinity biosensors are taken into 

account as a different approach.  
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CHAPTER 2 

POLYMER BASED BIOSENSORS 

There are many different types of biosensors, but they lack separation 

capabilities unless they are connected to the appropriate extra devices, which complicates 

the system and increases the amount of energy it uses (26) This prevents sensing from 

being integrated with imaging. Hence, the sole basis for specificity might be selective 

biomolecular identification. Use of more or less specialized biorecognition components, 

like antibodies, enzymes, oligonucleotides, and even cells and tissues, is made to 

accomplish this purpose (22). To find biomolecules for the diagnosing various illnesses, 

sensors are now widely employed in clinical chemistry, agriculture, pharmaceutical 

research, and biomedical research. To actualize the notion of entire polymer based 

biosensors that are independent of standard nanocatalysts such as metal, metal oxides, 

dyes, or carbon materials, conduction polymers must have strong nanostructured 

morphology, electrochemical attributes, and capabilities for bioconjugation (26).  

 

The usage of polymers offers special opportunities for the expansion and 

improvement of global health. Targeted therapies, bioimaging, drugs delivery, and cancer 

therapies are just a few of the medical applications where polymers are excelling (27). 

Conducting polymers (CPs) offer a variety of opportunities for coupling targeted and 

nonspecific interactions with analyte receptors into perceptible (transducible) reactions 

(28). The creation of polythiazyl signaled the beginning of the CP period, then came the 

polyheterocyclic substances with an S or N group and polyaniline (PANI). A major 

advantage of CP-based sensors over those that employ small molecule (chemosensor) 

components is the ability for the CP to express collective properties that are susceptible 

to incredibly minute disturbances. The electrical conductivity, rate of energy movement, 

or transport properties of the CP are especially important in providing increased 

sensitivity (29). In many biological and medical uses, including tissue engineering and 

biosensors, CPs have surfaced as among the most proclaiming materials (30). The
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biocompatibility and distinctive electrical features of the CPs, which may translate the 

biological detailed information into electrical signals, are what account for their broad 

range of applications. A well-organized scaffold biosensor might also be made since CPs 

include a range of diverse functional groups that come into contact with the functional 

groups of polymers for enhancement in enzyme loading (31). As the enzyme and 

electrode effectively "interacted," the greatest sensing efficacy was given by biosensors 

built on nanocomposites of π–π conjugated polymers. Additionally, such forms of 

biosensors are more resilient with several interfering elements (32-35). Fig. 2.1 illustrates 

the phases and parts of a typical sensor schematically. Transducers in this case are 

biosensors based on conducting polymers. A transducer is a device that changes the form 

of energy. Here, PEDOT, polyaniline, and conducting polypyrrole may all function as 

biosensors. Electrochemical, optical, and piezoelectric transducers are the three main 

types of transducing processes. 

 

 

Figure 2.1: Basic components and steps involved in a sensor. 

 

2.1 Polyaniline (PANI) 

PANI, a CP belonging to the family of semi-flexible polymers, was identified 

more than 150 years ago. The scientific community has taken notice of PANI because of 

its excellent conductivity and inexpensive cost. PANI is a good candidate to be employed 

in a variety of applications since it is also renowned to have a wide range of controllable 

characteristics due to its flexibility, which has led to numerous uses across a variety of 

fields (26). PANI has been shown to be an exciting substance for sensor and biosensor 

junctions because it works as an effective facilitator for electron transfer in redox or 

enzymatic reactions and may be employed as an ideal ground substance for biomolecule 

incapacitation (36). It is made up of alternate repeated structural units of benzenoid amine 
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(reduced form) and quinoid imine (oxidized form), which demonstrate distinct redox 

forms of PANI (Fig. 2.2). While pernigraniline (PG) is totally oxidized and has an imine 

group rather than amine group, leucoemeraldine (LE) is fully reduced. PANI is either 

neutral or imine nitrogen-doped when it is in its emeraldine base (EB). Owing to its high 

thermal stability, EB is thought to be the most beneficial form of PANI. It is thought of 

as an appealing polymer because it has both redox pairs in the right potential range to aid 

in charge transfer between enzymes and polymers and works as an independent electron 

transfer intermediary. PANI provides a wide range of possibilities for coupling specific 

and non-specific analyte receptor affinity towards perceptible responses. Particularly 

enhanced sensitivity is provided by PANI's electrical conductivity, transport 

characteristics, or pace of energy flow. It has both structural and chemical flexibility 

around its amine nitrogen connections enabling effective immobilization and binding of 

biomolecules. Being immobilized on a ground substance, which restricts the 

biomolecule's overall movement and retains it in a reasonably restricted area of space, 

can make a biological component more stable and recyclable (37).  
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 (37) 

 

Devices based on graphene and PANI nanocomposites with sensitivity 16.5% 

toward 1% of H2 gas were developed by Al-Mashat et al., in contrast to the responsivity 

demonstrated by graphene and PANI alone (38). Due to its carboxyl groups' negative 

charges, graphene oxide (GO) serves like a potential dopant. GO is initially an insulator, 

but when it is exposed to powerful reducing reagents like hydrazine (NH2NH2) or sodium 

tetrahydroborate (NaBH4), it reduces itself into graphene and acquires electrical 
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 conductivity (39). For the purpose of achieving applications that are likely to be 

successful in the realm of sensing, conducting polymers are combined with metal 

nanoparticles (MNPs) to improve the resultant nanocomposites' unique physical and 

chemical characteristics. Platinum nanoparticle matrix is thought to be very effective at 

identifying macro- and biomolecules, such as antibodies, DNA, and enzymes (40). 

Conducting polymers like PANI in Pt nanocomposites, are typically produced in both 

nanofibers and nanotubes. It has been found that Pt nanoparticles can more easily disperse 

into polymeric matrices due to the numerous heterogeneous nucleating sites that 

nanofibers offer. Pt/PANI hydrogel heterostructures were created by Zhai et al. and 

utilized to detect glucose enzymatically. There has been evidence of a detection limit of 

0.7 μM and broad linear calibration range of 0.01–8 mM (41). Chowdhury et al. explored 

the creation of biosensing AuNPs/PANI nanowires for the detection of Lamin A protein, 

complementary DNA, and glucose using three distinct biomolecules, including Lamin A 

antibody, single-stranded DNA, and glucose oxidase. It was shown that the glucose 

sensor is more sensitive having a sensitivity of 14.63 μA mM−1cm−2, outstanding stability 

and specificity, and a detection limit of 1 μM (42). Another three component system of 

nanocomposites, namely NiOCuO/PANI, has been created using an electrochemical 

approach to create inexpensive, enzyme-free glucose sensors. The non-enzymatic 

recognition of glucose in a basic electrolyte using the NiO-CuO/PANI-based 

amperometric sensor demonstrated excellent sensitivity, decent selectivity, and quick 

reaction with a detection limit of 2.0 μM. Human blood samples have also shown 

impressive outcomes in addition to the existence of undesired interferences compared to 

what was exhibited by two component systems of CuO/PANI and NiO/PANI separately 

(43). There have been reports of taking advantage of the benefits of CPNs by the 

modification of glassy carbon electrodes using TiO2/PANI nanocomposites. In this 

sensor, hydrothermal transformation of TiO2 nanoparticles into TiO2 nanotubes (TNTs) 

was followed by ozone-induced polymerization of aniline forming uniform TNT/PANI 

composites. Then, to create an electrochemical biosensor, glucose oxidase (GOD) was 

adsorbed on the altered surface, resulting in a measurement of glucose with a sensitivity 

of 11.4 μA and a detection limit of 0.5 μM (44).  

 

2.2 Polypyrrole (PPy): 

It is simple to form polypyrrole, a conjugated heterocyclic ring containing 

conductive polymer possessing outstanding processability, chemical stability, and 
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electroconductivity by the Pyrrole monomer polymerization in different organic analytes. 

Contrary to classical PPy, which exhibits high stiffness, low mechanical durability, poor 

solubility in typical organic solvents, and shortcomings in its biological, electrical, and 

optical capabilities, nanostructured PPy has optimized bioactivity, electrochemical 

activity and higher electrical conductivity, superior mechanical properties, improved 

optical qualities and is easy to process due to the increased surface area and nanostructure. 

Since polypyrrole is compatible with biological systems (Fig. 2.3), it has been extensively 

researched for the immobilization of enzymes, antibodies, and nucleic acids (45,46). The 

polypyrrole is an excellent conducting polymer in the presence of protons, which restricts 

its use as a biosensor in a neutral environment (47). As a result, this is frequently used in 

medical applications (48,49). Electropolymerization was used to create ZnO/PPy 

nanocomposites films on the Pt electrode. Additionally, physisorption has immobilized 

Xanthine Oxidase (XOD) on its surface. A biosensor which is amperometric was created 

at pH 7.0 and 35°C using the produced electrode XOD/ZnO/PPy, with a 5s ideal response 

time. The detection limit of xanthine has been observed to be linear from 0.8 μM to 40 

μM (50). 

 

 
 

Through the use of the Plasmon resonance technique and chemical 

polymerisation, MWCNTs (Multi-walled carbon nanotubes) combined with PPy have 

been used to detect lead (Pb), mercury (Hg) and, iron (Fe) in trace amounts (51). Teh et 
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al. studied an MWCNTs/PPy-based biosensing device for the measurement of glucose 

with a 20 nM detection limit range, an anatomical significant value for the assessment of 

diabetics (52). It has also been discussed how encapsulating enzymes in the synthesized 

nanocomposite could create new sensing platforms to diagnose hormones, metabolites, 

biotoxins and others. Dopamine, serotonin, glucose, uric acid, and ascorbic acid are 

among the many substances that can be detected using nanocomposites made of gold 

nanoparticles and conducting PPy. Pt NPs and polypyrrole film have been combined to 

produce a novel biosensor for human C-reactive protein (CRP) detection. The space 

between the transducer and the biomolecules is provided by the long PPy chain. Pt 

nanoparticles lessen steric resistance and maintain inhabitant conformation, which aid in 

improved probe direction and biomolecule approachability to the analyte. These created 

nanocomposites have demonstrated large surface area and excellent functionality (53). 

 

2.3 Poly(3,4-ethylene dioxythiophene) (PEDOT) 

Poly(3,4-ethylene dioxythiophene), often known as PEDOT, is a highly 

resilient conductive polymer with several uses in lighting, photovoltaics, 

thermoelectricity, sensing analytes, coatings, bioelectronics transparent electrodes, and 

other domains, has attracted a lot of attention (54). PEDOT is a suitable active material 

for sensor development and selective drug delivery systems because of its polymeric 

structure, which enables electrostatic interaction with ions in the environment (55,56). In 

vitro and in vivo electronic device-biomaterial interfaces are possible with PEDOT-based 

nanofilms, nanoparticles, and nanocomposites (57,58). Only a few tens of monomer units 

can make up a PEDOT chain (59,60). Doping causes the aromatic state of neutral PEDOT 

to transition to a quinoid state. Here’s Fig. 2.4 showing the structure of PEDOT in 

different state: 
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Because of their attractive catalytic, optical, and electronic properties, 

palladium nanoparticles are essential in many organic and inorganic reactions (61,62). A 

glucose sensor built on Pd/PEDOT nanofibers and using the chronoamperometric method 

has been developed which has a 1.6 µM detection limit for glucose (63). The 

electrochemical reduction method used to create GO/PEDOT nanocomposites, which 

were later accumulated on glassy carbon electrodes (GCE), can be used to detect 

dopamine when uric acid and ascorbic acid are present (64).  The porous surface that 

graphene offers allows for better adsorption and detection. 
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CHAPTER 3 

CURRENT DEVELOPMENT IN MOLECULAR IMPRINTED POLYMER 

BASED SENSORS (MIPs) 

The development of molecularly imprinted polymer (MIP) based sensors, a 

significant subset of affinity sensors, is a marvel of technique that allows molecular 

affinity sites into homogeneous polymeric matrices (65). It has been used to successfully 

prepare selective polymeric matrices for a range of samples, from viruses to 

biomolecules, irrespective of size (66). MIPs are multifunctional porous substances that 

provide high-affinity sites for binding to facilitate analyte-based attack that can be tailored 

to their dimensions, functionality, and function. Natural antibody-antigen (Ab-Ag) and 

enzyme-substrate (E-S) systems have analogues in MIPs. So, to selectively recognize the 

target molecule, during the synthesis stage, a "key-lock" mechanism is imitated (67). The 

MIP-based biosensors have been discussed in the following sections:  

 

3.1 Optical biosensors 

Throughout the past three decades, research into optical biosensors has 

expanded. Experts in the subject have released a variety of books and review papers that 

highlight the benefits of optical sensing over other transduction techniques (68-70). 

 

 
Figure 3.1: Cross section of a fiber-optic enzymatic biosensor 
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Cross section of the typical Fiber-optic enzymatic biosensor is depicted in 

Fig. 3.1 above. A polyester film-based transparent inert support is covered with an 

indicator layer. An indicator dye is either physically adsorbed or covalently immobilised 

on the surface of microbeads, which are subsequently distributed in the matrix polymer, 

or it is directly dissolved in the polymer matrix. The cosubstrates consumed or the 

products created during the enzymatic reaction are sensed by the indicator layer. On the 

surface of a polymer membrane, enzymes can be chemically immobilised. This sensor's 

"sandwich" is installed on the end of an optical fiber, which transmits light from a light 

source to the sensor foil for excitation and light from the sensor foil for emission 

(reflection) back to a photodetector for detection.  The analyte (substrate) moves into the 

enzyme layer, where it undergoes product synthesis. The indicator (sensor) layer is made 

up of an indicator dye encapsulated in a polymer layer and it tracks the production of 

reaction products as well as the consumption of reactants like oxygen. The transparent 

support serves merely as a manufacturing aid and is inert. It could as well not exist. Exc 

and Em represent, respectively, the excited and emitted light pathways (22). When a 

complex is produced by the interaction of the target and recognition constituent, optical 

sensors concentrate on sensing the optical properties alteration of the transducer surface 

(71). There are two groups of these sensors. The complex formation on the transducer's 

surface serves as the foundation for signal generation in direct optical sensors. The 

unintended optical sensors are frequently constructed with a number of labels in order to 

detect binding events and amplify the signal (72). Time-resolved fluorescence, optode-

based fiber, evanescent wave fiber, interferometric, surface plasmon and resonant mirror 

resonance are a few examples of optical sensors that are available in the literature and on 

the market (73-76). They can recognize many different biomolecules in biological and 

physiological samples due to their broad detection window (77). Research on a surface 

plasmon resonance (SPR) sensor system based on an imprinted nanoparticles for uric acid 

recognition was published by Göçenolu et al. Uric acid is a byproduct of purine 

biosynthesis in humans and is associated with a variety of diseases, including 

hypouricemia and hyperuricemia (78). Emulsion polymerization is used to create 

nanoparticles with uric acid imprints that were later described using various techniques. 

The SPR sensor was made by modifying the nanoparticles that had been imprinted with 

uric acid. They tested various uric acid solutions with varying concentrations to ascertain 

the sensing capacity of the uric acid imprinted SPR sensor. Finally, they arrived at 0.825 

mg/L and 0.247 mg/L as the measurement values and limit of detection (78). Dopamine 
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is a neurotransmitter that is important in the central nervous system and is involved in 

cellular metabolism and hormonal systems. Zhou et al. promoted a fluorescence sensor 

to detect dopamine that uses graphene quantum dots and a composite material. They 

discovered that adding dopamine to the sensing device induces fluorescence quenching 

owing to covalent binding. They computed the limit of detection to be 2.5 × 10-9 M with 

a dopamine concentration range of 5 × 10-9-1.2 × 10-6 M. Lysozyme levels in serum and 

bodily fluids are aberrant in many disorders, including leukemia, renal diseases, 

conjunctivitis, and meningitis. Zhang et al. developed a fluorescent membrane employing 

manganese-doped quantum dots to detect lysozyme (79). Dibekkaya et al. developed a 

cyclic citrullinated peptide antibody-imprinted SPR sensor for antibody detection. Cyclic 

citrullinated peptide antibodies aid in the diagnosis of rheumatoid arthritis, which is an 

autoimmune disease with common chronic joint inflammation. To do this, they first 

created a pre-complex by combining acrylamide monomer and cyclic citrullinated peptide 

antibody, and then created an antibody-imprinted SPR sensor by reacting with this 

precomplex, crosslinker, and initiator/activator pair (80). Microfluidic sensors based on 

polymers imprinted with ions for the detection of mercury and copper ions were suggested 

by Qi et al. Mercury is an extremely harmful heavy metal pollutant that can result in 

coronary heart disease and mobility issues. Copper, a crucial trace element that is also 

closely related to human health, puts a strain on the liver and other organs, which can 

result in liver cirrhosis, metabolic disorders and other diseases.   

  

3.2 Electrochemical biosensors 

Inherently bioselective biological elements are combined with the sensitivity 

of electroanalytical techniques in electrochemical biosensors. The biological element of 

the sensing device recognizes its analyte, causing a catalytic or binding event that finally 

results in an electrical signal that is regulated by a transducer and is analogous to analyte 

concentration. Few of these sensing device technologies have passed the prototype step 

and are currently being used in industrial, commercial, and farming settings (81). Due to 

their accessibility, portability, affordability, and convenience of use, electrochemical 

detection is the transducer of choice for the majority of biosensors (20). These 

characteristics make the electrochemical sensors ideal for sensing applications and allow 

patients to use them as point-of-care devices at house or in a clinic (82). An 

electrochemical monitor for myoglobin detection was constructed on an imprinted 

polymer by Wang et al. A biomarker called myoglobin, an oxygen-binding heme protein, 
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is utilized to detect acute myocardial ischemia. According to their findings, the 

electrochemical monitor exhibited a high level of selectivity and sensitivity. They were 

able to acquire an oxidation peak current with a 9.7 nM detection limit that varied in 

relation to myoglobin concentration (60.0 nM-6.0 M) at a potential of 0.3 V. They used 

this electrochemical sensor to measure the quantity of myoglobin in plasma that had been 

spiked, and it showed average recoveries of 96.5%. Medical medication treatment, which 

seeks to ensure the efficacy of drugs while avoiding their side effects, requires therapeutic 

drug monitoring. Naloxone, a particular opioid antagonist and a morphine derivative, has 

a strong interaction towards opiate receptors without triggering them. For increased 

sensitivity, they added multi-walled carbon nanotubes to the carbon anode. With limits 

of detection and measurement of 0.20 M and 0.67 M, respectively, they showed that the 

relationship between peak intensity and naloxone concentration (0.25-10.0 M) for the 

electrochemical sensor was continuous. Additionally, they confirmed the electrochemical 

sensor's usefulness in human serum and urine (83). A research about the sensing of 

sarcosine was released by Nguy et al. Urine sediments from males with metastatic 

prostate cancer have higher levels of Sarcosine, a modified glycine amino acid compound. 

They achieved the limit of detection below 1 nM by electropolymerization the poly-

aminothiophenol layers atop screen-printed gold electrodes that are imprinted with 

sarcosine. High repeatability, impressive stability, and minimal cross-selectivity were all 

characteristics of their sensor system (84). For cocaine detection A potentiometric sensing 

device based on imprinted nanoparticles was presented by Smolinska-Kempisty et al. 

With millions of users across all age groups, we know cocaine is the most often used drug 

globally. They used two protocols and four compositions. Dissociation constants between 

0.6 nM and 5.3 nM were observed, demonstrating a high affinity for cocaine. They looked 

at the various forms of cocaine in the human body and revealed that blood samples with 

cocaine concentrations between 1 nM and 1 mM could be detected by the sensor (85).  
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Figure 3.2: Schematic of a biosensor with an electrochemical transducer 

 

 

3.3 Piezoelectric biosensors 

These transducers are thought to be very sensitive to use in biosensing. The 

fundamental concept behind the functioning of these biosensors is the linkage of a 

molecular species to the surface of the crystal, which causes a variation in mass and, 

ultimately, a change in crystal frequency (19,86). One of the varieties of piezoelectric 

sensors is the QCM sensor, which stands for quartz crystal microbalance, attracting 

researchers' attention due to its portability, high specificity, stability, and simplicity. The 

interactions are observed by the QCM sensors using an oscillating crystal with 

incapacitated biomolecules on its surface. As a result of the binding reaction, the mass 

increases, and the oscillating frequency decreases. Affinity for the sample, the utmost 

selective binding sites, and extremely sensitive sensing systems based on uniformity in a 

large number of recognition sites are brought about by the coupling of quartz crystal 

microbalance sensors with sample molecule memory comprising molecularly imprinted 

polymers (87-90). 

 

A QCM monitor for cytochrome c identification was recently developed by 

Ma et al. The mitochondrial respiratory chain's heme-containing electron carrier is called 

cytochrome c. The LOD value for real-time cytochrome c was established to be 3.6 ng/mL 

with a zone of 5 mg/mL to 50 mg/mL. The sensor with cytochrome c imprinting, 

according to their findings, exhibited high selectivity and sensitivity towards cytochrome 

c and could be used for real sample studies with high accuracy and reproducibility. They 

claimed that the novel sensor construction procedure based on polymers with epitope 

imprints enables new ways for selective biomolecule detection (91). Kartal et al. proposed 
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a QCM monitor for insulin detection in both aqueous and synthesized plasma fluids. A 

crucial polypeptide hormone and a key controllable factor in the metabolism of blood 

sugar, insulin is secreted by pancreatic cells. They obtained the kinetic parameters using 

affinity studies after adding an amino-acid monomer to the sensor's gold surface. 

Additionally, they tested the repeatability of sensors imprinted with insulin over four 

binding cycles. The LOD value was determined to be 1.58× 10−9 mg/mL. A QCM sensor 

imprinted with amantadine was created by Yun et al. using reduced gold nanoparticles 

and graphene oxide. In the clinical treatment of both animals and people, amantadine, a 

tricyclic amine having a stable structure, is typically utilized to cure both Parkinson's 

disease and influenza. They improved various remodeling steps in the sensor 

manufacturing process before characterizing the sensor using different techniques. With 

a small LOD of 5.4×10-6 mmol/L, they were able to obtain a continuous relationship with 

the amantadine concentration (1.0×10-5-1.0×10-3 mmol/L). They also determined that 

amantadine's imprinting factor was 7.1 (92). Qiu et al. created an imprinted QCM sensor 

to detect sialic acid in urine samples. Sialic acid, a negatively charged monosaccharide, 

is widely known as a blood serum marker that is expressed less frequently in diabetes 

patients than in the general population. Total sialic acid levels can represent human body 

malfunction and even an early stage of various malignancies or cardiovascular disease. 

Following the characterisation investigations, they used recognition studies to evaluate 

the sensor's selectivity performance. They got a linear response in the range of 0.025-0.50 

µmol/L and determined the detection limit for sialic acid as 1.0 nmol/L for urine samples 

with high recovery values (87.6-108.5%) (93). 

 

Table 3.1: Summarized list of Conducting Polymer (CP) based nanocomposite 

accompanied by their analyte and detection limit. 

 

Sr. 

No. 

CP based 

nanocomposites 

Target analyte Detection limit Ref. 

1. TNT/PANI Glucose 0.5 μM (44) 

2.  ZnO/PPy Xanthine 0.8 μM (50) 

3. Pt NPs/PPy  human C-reactive 

protein (αCRP) 

NA (53) 

4. Pd/PEDOT Glucose 1.6 μM (63) 

5. G/PANI Dopamine 0.00198 nM (94) 

6. GO/PANI DNA 20.8 fM (95) 

7. MWCNTs/PPy 6-mercaptopurine 

Magnolol 

0.08 μM 

3 nM 

(96) 

(97) 
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8. CNTs/PEDOT Dopamine 

Mycobacterium 

tuberculosis 

20 nM 

0.5 fg/ml 

(98) 

(99) 

9. GO/PEDOT Dopamine 90 nM (100) 

10. RGO/PEDOT Dopamine 78 fM 

39 nM 

(101) 

(102) 

11. Au/PANI Dopamine 

Melamine 

0.1 μM 

1.39 × 10−6 μM 

(103) 

(104) 

12. Pt/PANI Uric acid 

Cholesterol 

Triglyceride 

10-5 M 

0.3 ×10-3 M 

0.2 ×10-3 M 

(105) 

13. Au/PPy Dopamine 

Serotonin 

DNA 

0.15 × 10−9 M 

10−9 M 

0.84 × 10−13 M 

(106) 

 

(107) 

14. Au/PEDOT Triglyceride 89 μM (108) 

15. NiO/PPy Glucose 0.33 μM (109) 

16. NiCo2O4/PANI Glucose 0.38 μM (110) 

17. TiO2/PPy Ascorbic acid 

Diclofenac 

20 nM 

30 nM 

(111) 

18. ZrO2/PEDOT Vitamin B2 

Vitamin B6 

Vitamin C 

0.012 μM 

0.2 μM 

0.45 μM 

(112) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 (continued) 
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CHAPTER 4 

CONCLUSION 

Although much effort has been done to produce effective sensors, the need to 

build effective composites for sensing combined with high selectivity, sensitivity, and 

superior detection limit is still required selectively for various pharmaceutical 

medications. Three major conducting polymers such as PANI, PPy, PEDOT based 

nanocomposites and medical use of sensors manufactured by molecularly imprinted 

polymers were discussed in the current review paper. Besides, nanocomposites based on 

metal oxide nanoparticles or CP have not been studied much. Due to their visible-color 

alteration effects, nanocomposites, particularly those made of transition metals, can 

contribute more to biosensors than other composites. Sensor systems based on 

molecularly imprinted polymers are expected to quickly and endlessly proliferate in 

biomedical applications. The capabilities described in this analysis, gained by CP-based 

sensors, will similarly alter the healthcare sector by reducing treatment costs and 

improving clinical outcomes when these sensors are developed in the future as portable 

devices that people may use to check and analyze the data without medical help. 
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