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ABSTRACT

Machine health monitoring plays an increasingly crucial role in automated
industries, particularly in the context of meeting Industry 4.0 standards. One significant
aspect is the detection and diagnosis of faults in rotating machines by implementing
continuous machine health monitoring systems. These systems can proactively detect
and classify issues related to rotating elements in real-time, allowing for timely

maintenance and repairs.

Bearing faults and shaft imbalances are common problems that accounts for
50% of motor failures. This can significantly impact machine performance and lead to
premature failures. Through continuous monitoring and analysis of vibration patterns,
temperature fluctuations, stator current, acoustic noise or any other relevant parameters,
an early sign of bearing faults and shaft imbalances can be identified. This will enable
timely corrective actions to prevent catastrophic assembly line failures. Integrating
machine health monitoring with advanced analytics and predictive maintenance
algorithms, can help achieve higher levels of efficiency, productivity, and cost savings

by minimizing unplanned downtime and extending the lifespan of critical machinery.

There has been significant contribution in this field but a major challenge
remains in terms of fault detection and severity identification under varying load and
rotational speed. The changing speed impacts frequency content and pattern changing
the fault characteristic frequency which hinders consistent fault detection. To overcome
this challenge robust algorithm incorporating speed information or extracting features

which are independent of speed is essentially an area of research. This thesis presents a



comprehensive investigation of the rolling bearing faults and shaft unbalance faults,

including their characteristics and fault signatures in the vibrational signals.

The presented work proposes two methods based on non-stationary signal
decomposition to tackle variational speed problem. The first work introduces an
intelligent framework for fault detection using a single sensor. It utilizes Gramian-
multi-resolution dynamic mode decomposition to process vibration signals. Initially, the
vibration signals are transformed using a gram matrix, which converts the one-
dimensional data into a snapshot matrix that evolves with time, preserving the temporal
variation. This transformed data is then subjected to spatial temporal decomposition
through multi-resolution dynamic mode decomposition (MrDMD). It decomposes the
system dynamics into hierarchically evolving fast and slow modes, enabling the
identification of transient fault characteristics. To handle noise from sensors and the
environment, a robust least square dynamic mode decomposition algorithm is applied at
each level of MrDMD. The resulting mode matrix is further processed by colour coding,

effectively converting it into an image format for analysis and classification.

The second work fuses vibration signals from sensors placed at three different
locations in the frequency domain. This fusion process ensures that maximum spectral
information is retained, enabling a more comprehensive analysis. The fused signal is
then subjected to decomposition using an energy-preserving maximum overlap discrete
wavelet transform, resulting in a multi-scale matrix. Further, to evaluate the severity of
the shaft unbalance the decomposed scale matrix is encoded into a contour plot, using
the mean absolute deviation of individual scales as iso-reference lines. Finally, the
images generated from both the methods are used for classification using different

convolutional neural networks. The proposed methodology is evaluated on publicly
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available datasets, from University of Ottawa for bearing fault identification and
Fraunhofer Institute for Integrated Circuits for shaft unbalance and severity detection.
The results show an overall classification accuracy of 96.83% for bearing fault

characteristic and accuracy of 97.05% for unbalance severity detection.

The effectiveness of the method is evaluated by comparing the accuracy of fault
detection and analysing the performance metrics such as sensitivity and specificity. The
finding and result demonstrates the potential of the proposed methodology in improving
the reliability and maintenance practices of rotating machinery systems, ultimately
leading to enhanced operational efficiency and reduced downtime. The performance
surpasses the results achieved by previous studies in terms of adaptability of real-time

operation and accuracy.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

The reliable functioning of rotating machine is of paramount importance
across industries such as manufacturing, construction, power plants and also in the
drivetrains of electric vehicles. In the context of this thesis is a motor is being referred
as rotating machine. Among the crucial components of motor, bearings and shafts
assume a pivotal role in supporting and transferring power to rotating elements.
Nevertheless, faults in these components can lead to significant ramifications, including
diminished performance, extended downtime, and potential safety hazards. Hence, the
implementation of a condition monitoring system for rotating machine elements like

bearings and shafts holds great significance across diverse industries.

The industrial advancement and the need for health monitoring of rotating
elements go hand in hand. The foundation of Industry 4.0 revolves around automating
processes and remotely monitoring the condition of systems in large-scale factories [1].
It encompasses the integration of digital technologies and automation in manufacturing,
leveraging concepts from artificial intelligence (Al) and the Internet of Things [2].
Similarly, a real-time monitoring and alert system is designed to continuously monitor
and track the status of machine components, and promptly alerting operators of any

anomalies or deviations from standard operation.

Precise identification and detection of faults in these elements are crucial to
avoid catastrophic failures and promote optimal performance and durability of
machinery. Over time, mechanical fault analysis and detection techniques have
experienced substantial advancements, incorporating sophisticated methodologies and
technologies such as vibration analysis, acoustic emission, temperature monitoring,
along with advanced signal processing algorithms and data-driven decompositions [3].
By utilizing advanced technologies and methodologies, the system continuously
monitors the condition of bearings and shafts, promptly identifying early indicators of
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wear, misalignment, lubrication problems, and abnormal vibrations. The information
about the health of these components is delivered in real-time, enabling the condition

monitoring system to proactively raise alarms for maintenance measures.
1.2 MOTOR COMPONENTS: SIGNIFICANCE AND RELIABILITY
1.2.1 Overview

Motors are widely used in various sectors due to their cost-effective and
energy-efficient design for converting electrical energy into mechanical power. They
consist of stationary and rotating parts, with crucial elements such as bearings and
shafts as shown in Figure 1.1 supporting their proper functioning. These components
form the foundation of the motor's mechanical system [4], ensuring smooth rotation and
proper alignment. Understanding their significance is essential for optimizing motor
performance, reliability, and longevity. However, these components are subjected to
various stress profiles, leading to non-deterministic abrasions and the emergence of
different faults within the motor. This study focuses on the development of fault
diagnosis methods for bearings and shafts. The operational importance of these

components is outlined below.

BEARING

SHAFT

Bearing2 Rotor Bearing 1

Figure 1.1 Components of motor.

1. Bearings: Bearings facilitate smooth rotational movement in motors by
reducing friction by supporting axial and radial loads. They guide and support
rotating shafts, allowing them to rotate with minimal resistance. By distributing
the load evenly, bearings prevent wear and damage to the shaft and other
components [5]. Proper selection, lubrication, and maintenance of bearings are
essential to minimize friction, extend the motor's lifespan, and ensure efficient

operation.
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2. Shafts: Shafts are essential components that transmit power from the motor to
connected machinery or devices. In motors, the shaft connects the rotating part,
known as the rotor, to the driven load. It transfers torque [6] and rotational
motion, enabling the motor to fulfil its intended function. Achieving optimal
performance and reliability requires careful consideration of shaft design and
construction, including factors such as material selection, diameter, length, and

shaft alignment.

The reliable functioning of bearings, shafts, and rotating parts is crucial for
the performance of motors in diverse industries. Any issues or failures in these
components can result in reduced efficiency, increased energy consumption, or
mechanical damage. Therefore, proactive monitoring and timely replacement of these
critical components are essential to ensure optimal motor reliability and minimize

downtime.

1.2.2 Types of Faults

Electric motors can encounter various faults [7] that have the potential to
affect their performance and reliability. These faults can be broadly classified based on
the nature into two groups namely electrical fault or mechanical fault as shown in
Figure 1.2. Electrical faults primarily involve problems related to the electrical
components and systems within the motor. These include issues with the electrical
wiring, insulation breakdown, short circuits, open circuits, electrical overloads, voltage
fluctuations, and component failures such as capacitors, or switches. While mechanical
faults, on the other hand, pertain to issues concerning the mechanical components and
systems of the machinery. These faults can involve problems with bearings, gears,
shafts, belts, lubrication, misalignment, unbalance, resonance, structural defects, and

wear and tear of mechanical parts.

Electrical faults can arise from various factors, including insulation
degradation, moisture or contamination, overheating, electrical surges, overloading,
poor wiring or connection quality, aging of electrical components, and inadequate
maintenance. To detect these faults in motors, a range of electrical measurements and
monitoring techniques are employed [8]. These methods involve analysing parameters

such as voltage, current, power factor, harmonic distortion, insulation resistance, and
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thermal imaging to identify any abnormalities or deviations from normal electrical
behaviour. Electrical faults in motors can have significant repercussions, including
equipment malfunctions, electrical failures, circuit breakdowns, power outages, and the
risk of electrical fires. They can also lead to damage to electrical components, disrupt
operations, pose safety hazards, and jeopardize personnel safety. Remedial actions for
electrical faults in motors typically involve repairing or replacing faulty electrical
components, improving insulation, ensuring proper grounding, addressing wiring or
connection issues, and implementing effective electrical protection measures such as

circuit breakers or fuses.

Motor Fault
Classification

Mechanical Faults Electrical Faults

1 Skt s 1. Insulation Breakdown

2 Shafi Unbalance 2. Voltage Fluctuation

3 Broken Rotor Bar 3. Phase Imbalance

4. Eccentricity 4. Ground Faults

5. Stator Damage 5. EM / RF Interference

6. Short Circuits

Figure 1.2 Classification of Motor faults.

Mechanical faults in motors can arise from various factors, including
excessive loads, inadequate lubrication, misalignment, unbalanced forces, fatigue,
improper installation or assembly, environmental conditions, wear and tear, and
insufficient maintenance practices. Detecting these faults requires the use of techniques
such as vibration analysis, acoustic monitoring, thermography, oil analysis, and visual
inspections. These methods are employed to identify irregularities in vibration patterns,
temperature distributions, lubrication quality, noise emissions, and the physical
condition of mechanical components [9]. The consequences of mechanical faults in

motors can be severe, leading to increased friction, excessive wear, loss of accuracy,
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unexpected downtime, decreased efficiency, increased energy consumption, and even
catastrophic failures. These faults [10] can cause production delays, higher maintenance
costs, safety risks, and damage to other components within the motor system. Remedial
actions for mechanical faults often involve repairing or replacing damaged parts,
realigning or balancing components, optimizing lubrication practices, implementing
preventive maintenance schedules, conducting equipment overhauls, and adopting

condition-based monitoring strategies to detect faults early.

It's important to note that electrical and mechanical faults can coexist and
impact motor performance. By understanding the specific characteristics and detection
methods associated with both types of faults, appropriate remedial actions can be taken
to ensure the reliable and efficient operation of electric motors. In this thesis, the focus
is on providing a detailed exploration of two specific mechanical faults: bearing

raceway faults and shaft unbalance faults.
1.3 FAULT MONITORING
1.3.1 Evolution

Machine fault diagnosis has emerged as a critical field in industrial
maintenance and reliability, and understanding its historical context is essential. The
roots of machine fault diagnosis can be traced back to the early stages of
industrialization when machines became increasingly complex and integral to various
industries. The smooth operation and prevention of unexpected failures became a

significant concern.

Bearings and shafts play crucial roles in ensuring the smooth and efficient
operation of machinery by providing support to rotating elements and transmitting
power in automated industries, renewable energy plants, and intelligent vehicles.
However, these components operate under diverse conditions in the industrial sector,
making them susceptible to various faults [11], including wear, misalignment,
unbalance, lubrication issues, and others. Periodic quality checks are necessary to

ensure proper operation and mitigate the detrimental effects of these faults.

In the past, fault monitoring on rotating machine components relied

primarily on manual inspection and rudimentary techniques. Technicians would
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physically inspect the machines, looking for visible signs of wear, damage, or
misalignment. This involved observing and listening to the machines while in operation,
checking for unusual vibrations, noises, or excessive heat. However, these traditional
monitoring methods had limitations. They heavily relied on human expertise, were
subjective in nature, and often required machines to be taken offline for inspection.
Consequently, this reactive maintenance approach often led to unexpected breakdowns

and cost inefficiency.

These limitations prompted the development of more advanced and
automated fault monitoring approaches in subsequent years. The advancements in
electrical engineering, electronics, computing, and sensing technology played a
significant role in this progression. Early diagnostic methods began to emerge, such as
infrared thermography and vibration spectrum analysis.

Infrared thermography [12] involved the use of infrared cameras to capture
the thermal patterns emitted by the machines. Experts would then analyse these patterns
for any variations in temperature distribution, which could indicate issues like
overheating or friction. On the other hand, vibration spectrum analysis [13] involved
studying the vibration spectrum of rotating machines. By analysing the spectral
characteristics of recorded vibration signals, experts could then identify early signs of
faults such as imbalances, misalignments, bearing defects, and shaft damage based on

characteristic frequency.

Today, machine fault diagnosis continues to evolve rapidly, driven by
advancements in machine learning, Al, data driven analytics, and connectivity [14].
Researchers are exploring the potential of Al techniques, such as expert systems and
neural networks, to automate fault detection and diagnosis processes. These approaches
aimed to replicate human expertise and decision-making in analysing and identifying
potential faults. Additionally, the integration of cloud-based platforms and digital twins

is allowing remote monitoring and diagnosis of faults.

Overall, the field of fault monitoring in bearings and shafts demonstrates the
evolution from manual inspection to data-driven [15], proactive maintenance practices.

The integration of advanced signal processing methods along with smart decision
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making through Al has revolutionized the field, providing more sophisticated tools for

fault detection and contributing to safer and more reliable industrial operations.

1.3.2 Types of Signals

Condition monitoring techniques are used to assess the health and
performance of machinery and equipment, including motors. Several types of sensor
data are suitable for performing this task but the ultimate choice of sensors depends on
the specific application and the type of fault being targeted. These sensors primary
objective is to monitoring various physical parameters of motor components to detect
abnormalities, faults, or potential failures. Table 1.1 presents summary of commonly
used techniques and their focus on corresponding physical parameters and motor
components. Detailed overview of common types of sensor data that are often used for

fault diagnosis is presented below:

Table 1.1 Summary of methods used for motor fault identification

Method Recorded Parameter Target Motor Part

o ) Vibration for analysis of fault |Bearings, Shaft, rotors,
Vibration Analysis

characteristic frequency. stators
_ Temperature for sudden Windings, bearings, cooling
Temperature Sensing ) o
increase due to friction etc. systems

) ) Oil properties like viscosity, |Bearings, gears, lubrication
Oil Analysis . ] _
contaminants etc. is studied system

) Windings, electrical
) Electric current for abnormal _
Current Analysis o connections
spikes in usage

) o Acoustic emissions or sound | Bearings, gears, electrical
Acoustic Emission

waves discharges
Motor Current Signature |Current waveform and Rotor bars, stator windings,
Analysis (MCSA) harmonics air gap

) _ Stator core, rotor core,
) Stray flux intensity or S )
Flux Analysis o magnetic circuits, Insulation
distribution )
degradation
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Vibration data: Monitoring the vibrational behaviour of rotating machinery
using vibration sensors is a common practice. By analysing the spectrum of the
vibration signal, it is possible to identify fault characteristic frequencies. This
analysis provides insights into the acceleration and displacement levels
associated with specific faults, such as unbalance, misalignment, bearing
defects, or mechanical looseness. Changes in these parameters can help diagnose
and detect potential issues in the machinery [16].

Current data: Utilizing current sensors, the electrical current flowing through
components or motors can be measured. Deviations from normal current
patterns can be indicative of various issues [17], including motor winding faults,
short circuits, or electrical imbalances. By closely monitoring the current data,
such anomalies can be promptly detected, enabling necessary actions to address
the underlying problems and prevent further complications.

Temperature data: Temperature sensors are used to monitor the thermal
behaviour of various components and systems. They are particularly useful for
detecting faults related to overheating [18], such as issues with bearings, motors,
electrical connections, or cooling systems. By monitoring the temperature of
these components, abnormalities or excessive temperature levels can be
identified, allowing for timely intervention to prevent further damage or failures.
Acoustic data: Acoustic sensors are utilized to capture sound or noise emissions
generated by machinery. Abnormal or excessive noise levels [19] can serve as
indicators of potential faults such as bearing defects, gear problems, or excessive
friction. By analysing the acoustic data, operators can identify these issues and
take appropriate measures for maintenance and repair. However, it's important to
note that acoustic monitoring may have limitations in certain environments
where background noise or masking effects can affect the accuracy of fault
detection. Therefore, careful consideration should be given to the operating
conditions and other monitoring techniques employed in conjunction with
acoustic data to ensure comprehensive and reliable condition monitoring.

Oil analysis data: In systems that employ lubricating oil, the chemical
composition, contaminants, and wear debris within the oil can be monitored
using oil analysis sensors [20]. Alterations in oil properties can offer valuable

insights into potential issues such as bearing wear, contamination, or lubrication
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problems. It is important to note, however, that oil analysis has limitations, as
certain faults may not be detectable through oil analysis alone. Additionally, the
interpretation of oil analysis results requires expertise and knowledge of the
specific system being monitored.

6. Speed data: Speed sensors like tachometers are utilized to measure the
rotational speed of components or systems. Deviations from the expected speed
values can be indicative of various issues, including unbalance, misalignment, or
mechanical faults [21]. However, it's important to note that relying solely on
speed or RPM data may have limitations, especially in the case of fast-moving
machines. Tachometers or speed sensors may not capture rapid variations or
transient events accurately. Additionally, while speed deviations can signal
potential problems, they alone cannot provide detailed information about the
specific fault or its severity. Therefore, it is essential to combine speed data with
other condition monitoring techniques that measure additional parameters, such
as vibration, temperature, or current, to diagnose specific faults accurately.

7. Optical Imaging Data: Sensors such as infrared thermography or high-speed
cameras play a crucial role in motor fault analysis. They capture visual or
thermal images of motor components, revealing hotspots, material deformations,
or abnormal surface conditions [22]. However, it is important to consider the
cost of implementing these techniques as they can be relatively expensive.
Additionally, optical imaging has limitations and may not detect certain types of
faults, such as internal defects or faults without visible or thermal anomalies on
the motor's surface. Hence, it is recommended to combine optical imaging with
other condition monitoring techniques. By leveraging multiple sensor data
sources and complementary techniques, the effectiveness and reliability of

motor fault diagnosis and maintenance activities can be enhanced.

It is worth noting that despite the availability of various types of sensors,
vibration sensor data analysis remains the most popular method for detecting faults
related to bearings and shafts. Vibration data provides a unique advantage over other
sensor data in detecting these faults. Not only does vibration data detect motor bearing
and shaft faults, but it also has the capability to distinguish between their severity and

other factors such as unbalance. By analysing various vibration parameters, such as



23

amplitude, frequency, and phase, vibration data can provide insights into the specific
characteristics of different faults. This means that it can differentiate between the
severity of bearing faults, such as early-stage wear or advanced damage, and also
identify the presence and magnitude of unbalance in the motor. This capability allows
maintenance practitioners to prioritize and address the most critical issues, ensuring

optimal motor performance and minimizing the risk of further damage or failures.

The methods discussed above serve as examples of condition monitoring
techniques that analyse physical parameters and motor components to detect potential
faults or degradation. By integrating multiple sensor data sources and applying suitable
signal processing and machine learning techniques, the accuracy and effectiveness of
fault diagnosis systems can be enhanced. This comprehensive assessment of motor
health facilitates predictive maintenance and helps minimize the occurrence of

unexpected issues.
1.3.3 Significance of Condition Monitoring System

Leading research institutions such as IEEE Industry and General
Application, the Electric Power Research Institute, and companies like Briel & Kjeer
have consistently emphasized the importance of fault monitoring. Their research
suggests that up to 50% of faults in motors [23] and rotating parts are attributed to
faulty bearings and shafts. Therefore, the application of real-time condition monitoring
systems (RT-CMS) plays a crucial role in various industries and sectors for several

compelling reasons [24], which are discussed below.

1. Early Fault Detection: RT-CMS enables early detection of faults, anomalies,
and deviations from normal operating conditions using data from sensors like
vibration, temperature, pressure, etc. A moving system works at a characteristic
frequency under healthy conditions, but once a fault occurs, the behaviour of
sensor data changes. Hence, implementing RT-CMS in industrial rotating
machines helps to solve a fundamental problem of early fault detection.

2. Increased Equipment Reliability: Monitoring the condition of critical
components such as bearings, shafts, gears, and motors, helps ensure the

reliability and longevity of the equipment. By addressing these issues promptly,
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maintenance activities can be scheduled in a planned and controlled manner,
reducing the risk of unexpected breakdowns and enhancing reliability.

3. Optimized Maintenance Strategies: RT-CMS offers valuable insights into
machinery condition and performance, enabling condition-based maintenance
strategies. It replaces scheduled or reactive repairs with tailored maintenance
based on real-time machine condition. This optimizes maintenance schedules
and production efficiency.

4. Reduces Cost: Condition monitoring saves costs by preventing unplanned
downtime, mitigating major failures, and emergency repairs. It enables planned
repairs, minimizing production losses. It also optimizes spare parts inventory
based on actual condition assessments.

5. Improved Safety: By detecting abnormal equipment conditions, RT-CMS helps
in identifying safety hazards, leading to a safer workplace and reducing the risk
of accidents.

6. Data-Driven Decision Making: Monitoring machine parts records valuable
data which can be used for optimizing processes, improving equipment design,
and making informed decisions about maintenance, and repairs. This data-driven
approach improves operational efficiency, reduces costs, and enhances

productivity.

The main goal of RT-CMS is to detect potential failures early by analysing
sensor data using intelligent Al-based classification. This helps improve equipment
reliability, optimize maintenance, reduce costs, enhance safety, and enable data-driven
decision-making. Continuous monitoring of machinery allows for early issue detection,

proactive maintenance, and optimal performance and longevity of high cost machines.

1.3.4 Challenges

The field of fault diagnosis for mechanical faults, particularly related to
bearings and motor shafts, presents significant challenges that researchers continually
strive to address. The faults in these components can have severe implications for
system performance, reliability, and safety. However, diagnosing these faults is a
complex task due to factors such as the diverse range of possible fault types, the
inherent variability in operating conditions, and the need to differentiate between

normal variations and abnormal behaviour. Moreover, the increasing complexity and
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integration of mechanical systems introduce additional challenges in fault diagnosis.
This section explores the key challenges [25] faced in the field of fault diagnosis and

real-time monitoring for bearings and motor shafts as listed below.

1. Varying operating conditions: It presents challenges in data collection and
modelling for fault diagnosis. Data collection becomes complex as it requires
capturing diverse operating conditions. Traditional fault diagnosis models
struggle to handle changing conditions, requiring advanced techniques like
machine learning to adapt and differentiate between normal variations and actual
faults. Moreover, the shifting fault frequencies with rotational speed add
complexity. Signal processing and machine learning algorithms are used to track
and adapt to these shifting frequencies, improving fault detection. Researchers
aim to develop robust predictive monitoring systems that address these
challenges and provide accurate fault diagnosis for mechanical faults.

2. Noise in sensor data: Noise interference is the presence of unwanted signals or
disturbances that contaminate measured data, posing challenges in accurately
detecting and analysing fault-related information. It can result from factors like
electromagnetic interference, electrical noise, vibrations, or environmental
conditions. This interference introduces additional components or frequencies in
the spectrum, obscuring fault signatures and making it difficult to isolate
relevant fault-related information. It masks or distorts fault-related signals,
leading to false alarms or missed detections and reducing the signal-to-noise
ratio. As a result, the accuracy and reliability of fault diagnosis systems are
compromised, impacting their effectiveness in detecting and predicting
mechanical faults.

3. False Alarm: A major challenge in bearing health predictive maintenance is the
occurrence of false alarms, where the monitoring system incorrectly detects
faults or anomalies in the bearings. False alarms can lead to unnecessary
maintenance actions and disrupt operations. Factors such as noise interference,
variations in operating conditions and limitations in fault detection algorithms
contribute to false alarms. It is important to minimize false alarms to maintain
the integrity and reliability of the predictive maintenance system. To address this

challenge, advanced signal processing algorithms and accurate fault signature
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analysis techniques are employed to reduce false alarms, ensuring maintenance
actions are taken only when necessary, optimizing efficiency, and reducing
costs.

4. Scalability and real-time processing: In many industrial settings, there is a
need to monitor a large number of machines in real time. This requires system
capable of real-time data acquisition, processing, and analysis to promptly alert
and notify for essential proactive maintenance actions. Scalability becomes a
challenge when dealing with a massive amount of sensor data, especially while
processing it in real time. Efficient algorithms and infrastructure are required to
handle the high volume, velocity, and variety of data generated by multiple
machines simultaneously.

5. Artificial Intelligence: Al-based predictive maintenance encounters challenges
that impact its effectiveness and practicality. The scarcity of labelled data
impairs predictive models' accuracy in anomaly detection and overall
performance. Feature extraction and selection pose another challenge in real-
world scenarios, as determining the most informative features from sensor data
is complex. Employing techniques for feature extraction and selection is crucial
to reduce dimensionality and identify discriminative features for accurate
predictions. Additionally, interpretability limitations hinder practicality of the
proposed solution. Despite achieving high accuracy, complex models like deep
learning lack transparency. Understanding the reasoning behind predictions or

failure diagnoses is vital for building trust and making informed decisions.

In conclusion, addressing these challenges requires advancements in data
pre-processing techniques, feature engineering, model development and integration with
domain expertise. Continued research, development, and innovation in this field are
crucial to further enhance the effectiveness and practicality of predictive fault
maintenance systems, leading to significant benefits for industries across various

sectors.
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1.4 OBJECTIVE

The objective of this thesis is to explore mechanical fault analysis and
detection, with a specific emphasis on bearing and shaft faults in rotating elements. The
research aims to enhance the reliability, efficiency, and overall performance of rotating
machinery systems by understanding common fault mechanisms and developing
effective detection strategies. The following objectives have been identified for this

thesis:

e Conduct a comprehensive literature review and analysis of various types, causes,
and consequences of bearing and shaft faults in rotating elements.

e Develop a framework that focuses on fault severity assessment, aiming to
accurately measure the severity and type of faults.

e Explore data-driven decomposition methods such as multi-resolution dynamic
mode decomposition and time-frequency analysis using the maximum overlap
discrete wavelet transform for non-stationary vibrational signals.

e Develop methods capable of handling translating fault signatures caused by
variations in speed and load conditions.

e Develop a framework using only vibration sensor data for detecting bearing and
shaft faults under time-varying rotational speed and discrete load conditions.

e Utilize a complementary data fusion strategy to integrate data from vibration
sensors into a single signal with maximum relevance.

e Design a novel encoded statistical contour plot for signals decomposed using the
maximum overlap discrete wavelet transform.

e Design a multi-level convolutional neural network (CNN) model for bearing and
shaft fault identification to improve the false alarm rate.

e Perform experimental studies to validate the proposed fault detection techniques
and assess their effectiveness in identifying and classifying bearing and shaft
faults.

The findings and conclusions of this research are expected to contribute to
the advancement of mechanical fault analysis and detection techniques, specifically for
bearing and shaft faults in rotating elements. The practical implications of this work can
benefit various industries by assisting in proactive maintenance management, enhancing

reliability, and optimizing the performance of critical rotating machinery systems.
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1.5 OVERVIEW OF PROPOSED METHODS
1.5.1 Bearing Fault Detection

The Gramian-Multi-Resolution Dynamic Mode Decomposition (GMrDMD)
approach introduces fault detection in bearings using a single accelerometer sensor. The
framework involves transforming vibration signals into a gram matrix to enhance spatial
resolution while preserving temporal characteristics. The gram matrix undergoes
spatial-temporal decomposition via MrDMD, resulting in fast and slow evolving modes
that capture transient fault characteristics. To handle noise, the framework employs a
robust least square DMD algorithm at each MrDMD level. The framework color-codes
the resulting mode matrix and treats it as an image input for fault classification using a
CNN. Experimental validation on the University of Ottawa dataset, which features five
fault vibration signal types under varying rotational speed conditions, demonstrates the

efficacy of the framework in early bearing fault identification.
1.5.2 Shaft Unbalance Detection

This work focuses on developing an automated algorithm for detecting
unbalance faults of varying strengths at different rotational speeds. Unbalance occurs
due to uneven mass distribution, causing misalignment between the shaft's centre of
mass and rotation axis. The proposed approach integrates data fusion, contour plot
encoding, and deep learning techniques namely CNN, offering contributions such as a
complementary data fusion strategy, an encoded statistical contour plot for signal
analysis, and a two-stage warning system for unbalance detection and severity analysis.
The effectiveness of method is examined on the dataset by Fraunhofer Institute for
Integrated Circuits for shaft unbalance and severity detection. The proposed
advancements aim to enhance accuracy, enable timely actions, and reduce maintenance

expenses in rotating machinery.
1.6 ORGANISATION OF DISSERTATION

The thesis is structured as follows: Chapter 1 serves as an introduction,
providing a comprehensive understanding of faults, their evolution, fault monitoring
techniques, sensing methods, and the associated significance and challenges in fault

detection. Additionally, it offers a brief overview of the work conducted in the thesis.
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Chapter 2 presents an extensive literature review on fault detection, encompassing both
static and dynamic operating conditions. This chapter examines time domain, frequency
domain, and time-frequency domain features utilized in fault detection, along with the
latest advancements in deep learning algorithms for predictive maintenance. Chapter 3
delves into the intricacies of bearing geometry, fault characteristic frequencies, and
shaft faults, including an in-depth exploration of unbalance strength. This chapter
establishes the essential background knowledge necessary for comprehending the
specific fault detection methodologies proposed in the thesis. Chapter 4 provides a
detailed, step-by-step discussion of the proposed methodology for bearing fault
detection. It encompasses the utilization of the gram matrix, multi-resolution Dynamic
Mode Decomposition (DMD), and the overall methodology. Additionally, this chapter
presents a description of the employed dataset and an analysis of the obtained results.
Chapter 5 follows a similar structure to Chapter 4 but focuses on the proposed
methodology for shaft unbalance detection and severity assessment. It introduces the
application of the Maximum Overlap Discrete Wavelet Transform (MODWT) and
contour plots within the proposed methodology. Furthermore, this chapter includes a
detailed description of the dataset utilized and an analysis of the results obtained. Lastly,
Chapter 6 concludes the thesis by summarizing the main findings and contributions. It
also addresses the limitations of the proposed methodologies and proposes potential

avenues for future research, aiming to further enhance fault detection techniques.
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CHAPTER 2

LITERATURE REVIEW

2.1 OVERVIEW

Research in the field of bearing fault detection can broadly be categorized
into methods designed for stationary working conditions and methods suitable for
application under dynamic and time-varying operating conditions [26]. Each category
addresses different challenges and requirements in fault detection.

For stationary working conditions, numerous studies have focused on
developing techniques that assume a stable operating state. These techniques heavily
rely on signal processing methods, dependent on analysis in either time domain,
frequency domain, or analysis in the time-frequency domain. Work in time domain
entails the computation of statistical measures [27] from the vibration signal, such as
root mean square, peak value, standard deviation, skewness, kurtosis, shape factor, and
impulse factor. On the other hand, analysis in the frequency domain employs techniques
like FFT to examine the frequency components present in the signal or amplitude of
power spectrum. Further, time-frequency analysis [28] methods like the STFT and
Winner-Ville distribution etc. has been widely used for bearing fault detection these
methods offers insights into time-dependent variations of characteristic frequencies.
Though these signal processing methods are known to give satisfactory results but the
high knowledge required for selecting frequency, mother wavelet and sub-band limit
[29] its usage. Also, these methods require extensive feature selection to categorize the
fault and many times these handcrafted features fail to extract all the patterns from the

waveform which results in lesser accuracies for fault detection.

In contrast, the dynamic and time-varying operating conditions pose
additional challenges for fault detection. Vibration signals recorded from bearings in

real-world scenarios often exhibit non-stationary behaviour, consisting of periodic
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components, impulse components from faults or cracks, and broad-band background
noise generated by other machine parts. Traditional methods like order tracking [30]
and time or phase averaging-based methods [31] were used but these methods struggle
with spectrum smearing caused by variable speed. To address these challenges,
researchers have proposed advanced techniques that can handle non-stationary signals.
These methods focus on capturing the transient nature of faults from the vibration
signal. For instance, adaptive data based techniques [32], such as Empirical Mode
Decomposition (EMD), Dynamic Mode Decomposition (DMD), Variational Mode
Decomposition (VMD), synchro-squeezing transform (SST) and local mean
decomposition (LMD) have gained popularity for their ability to analyse non-stationary
signals and extract fault signatures at different scales and time intervals. These data-
driven methods have shown promising results in detecting faults under dynamic

operating conditions and have become foundational methods and base of future result.

In both the domains ultimately for decision-making [33], researchers have
increasingly favoured machine learning and deep learning approaches over thresholding
based methods. Machine learning algorithms encompass feature extraction, feature
selection, and classification stages, leveraging data to improve accuracy. Commonly
employed machine learning methods for bearing fault detection include optimised
nearest neighbours, support vector machine (SVM), principle component analysis, and
artificial neural networks. While these methods have yielded satisfactory results, the
desire to automate feature extraction and minimize human intervention has spurred the
adoption of deep learning techniques. Inspired by the brain's structure, deep learning
models facilitate hierarchical feature learning [34] from raw data. Models such as
convolutional neural networks (CNN), dense neural networks (DNN), stacked auto
encoders, and recurrent neural networks have demonstrated superior accuracy compared
to traditional machine learning models. Nonetheless, the process of training deep
learning models can be computationally demanding and requires a substantial volume of
labelled data. This creates a balance between the desired accuracy and the
computational resources needed. This thesis primarily concentrates on fault diagnosis
under varying speed conditions, thereby emphasizing a comprehensive literature review
of existing techniques suitable for dynamic operating conditions in the subsequent

section.
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2.2 DETAILED REVIEW

2.2.1 Order Tracking Based Methods

Order tracking (OT) synchronizes vibration data with the rotational speed to
analyse the signal in terms of order components, allowing for accurate fault detection
even in varying speed scenarios. However, spectrum smearing can occur when the
speed continuously changes, spreading fault-related frequencies and hindering accurate
fault identification. Inaccurate OT based methods also require domain knowledge to
understand signal spectrum sometimes this can lead to false alarms or missed
detections. Further research is needed to overcome these limitations and develop

alternative approaches for fault detection in variable speed systems.

Several studies have proposed innovative approaches to improve the
analysis of order components and enhance fault diagnosis in different systems. In [35], a
combination of Vold-Kalman filtering and computed order tracking is presented,
demonstrating improved Fourier analysis results through numerical simulations and
experimental validation. Research in [36] introduces a phase demodulation-based order
tracking method that accurately measures rotation angle and time relationship for
bearing and gear signals. Paper [37] discusses a technique that utilizes EMD and
intrinsic cycles to simplify signal analysis, proving its effectiveness as a condition
monitoring tool even without rotational speed information. Researchers in [38] have
developed a tacholess order tracking method for wind turbine gearboxes, which utilizes
phase reference information and resampling for analysis. Work in [39] addresses the
challenge of limited sensor installation by using virtual multichannel signals in the
angle domain, combining computed OT and VMD for independent component analysis.
Lastly, [40] introduces an order spectrogram-based method that estimates instantaneous
frequency through ridge extraction, performs resonance demodulation, and rescales the
time-frequency distribution to suppress non-stationary interference caused by speed

fluctuations.
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2.2.2 Time-Frequency Analysis Based Methods

In the field of fault diagnosis for rolling element bearings, time-frequency
analysis plays a crucial role in accurately extracting diagnostic information from
vibration signals. An early work on in TF analysis is proposed in [34] which uses a
three-level discrete wavelet transform (DWT) followed by the FFT of the approximate
coefficient to establish unbalance detection of shaft using on spectrum visualization.
Work in [41] propose a combination of a ridge extraction algorithm and an enhanced
empirical wavelet transform to estimate instantaneous frequency for feature extraction.
Another method proposed in [42] introduces a sparsity-promoting low-rank
decomposition technique that utilizes robust principal component analysis to denoise
the TF representation of signals. The method incorporates a reassignment strategy to
enhance the detection of fault characteristics. In [43], researchers present a novel
method known as the transient extracting transform, based on the STFT. The method
yielded a concentrated TF representation, verified using quantized indicators such as
Reényi entropy and kurtosis. Approach proposed in [44] uses CWT combined with
Gabor wavelets with multiple Q-factors, combining sets of continuous wavelet
coefficients for each Q-factor to generate a time-frequency map. Comparison of
proposed method with Morlet wavelet transform and tuneable Q-factor wavelet
transform (TQWT) is extensively highlighted by the researchers. A novel TF analysis
method using synchrosqueezing extracting transform is introduced [45]. The method
exhibits improved noise robustness and lower time consumption which is confirmed

using numerical signal analysis.

2.2.3 Data Driven Decompositions

This section reviews the advancements in field of adaptive data driven
methods for predictive maintenance. Work proposed in [46] focus on detecting
unbalance of different strengths using EMD followed by novel dimensionality
reduction, which achieves an accuracy of 98.13% with SVM under constant rotating
speed. Researchers of [47] proposed a new data-driven approach for fault detection and
isolation by combining EMD, envelope analysis, and a pseudo fault signal. Dominant
mode function is extracted using EMD followed by envelope modulation with multiple

sources and noise. Work in [48], also explores strength of by combining EMD and
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VMD. The method adaptively selects sensitive IMF components based on an evaluation
index and analyses them using Hilbert spectrum. To overcome problem associated with
mode mixing work in [49] uses ensemble local mean decomposition and kurtogram for
rotating machinery fault diagnosis. The method generates product functions which
characterizes the fault impulse based on kurtosis index, and then an optimal band-pass
filter.

To address the limitation of physical interpretation of extracted
components dynamic mode decomposition (DMD) emerged from fluid mechanics and
has gained significance through Koopman spectrum analysis. In [50], the development
of DMD is discussed, offering strong mathematical and physical implications.
Variations of DMD have been explored to suit different applications. For fault
diagnosis, [51] proposes the use of approximate entropy applied to decomposed DMD
modes. In [52], the advantages of DMD over other signal processing methods are
highlighted, and a rank truncation method is introduced to extract dominant DMD
modes. Additionally, [53] presents an efficient algorithm called PRLDMD that
preserves the amplitude and energy of transient features in faulty signals. Another
extension of DMD, known as MrDMD [54], is capable of extracting transient events
through recursive application of DMD. These advancements in DMD and its variations

contribute to improved understanding and analysis of signals in various domains.

2.2.4 Advance Al Networks

Significant advancements have been made in deep learning architectures for
fault analysis research in [55], provides an improved autoencoder called the SN-AE.
This model incorporates a speed branch to address challenges related to speed
variations. Experimental evaluations conducted on various rotating machines
demonstrate that the SN-AE outperforms existing autoencoder-based methods,
achieving superior fault detection performance. Approach presented in [56] is based on
VMD-DenseNet method, which converts vibration signals into images using Hilbert
spectrum analysis through VMD and utilizes the lightweight DenseNet network for
accurate image classification and prediction. The VMD-DenseNet achieves an
impressive accuracy rate of 92% for common motor faults. Additionally, research in

[57] introduces the deep sparse representation network (DSRNet), a novel deep learning
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model specifically designed to suppress noise and directly learn features from noisy
vibration signals. DSRNet employs a sparse representation layer to filter out impulsive
components and reduce noise, followed by an adaptive densely stacked convolutional
structure for effective feature extraction. Experimental results on gearbox cases validate
the superiority of DSRNet in terms of feature learning and signal denoising

performance when compared to popular deep learning networks.

Research in [58], proposes a novel DL architecture called the Deep
Interpolation ConvNet which incorporates specialized layers, such as sub-ConvNet
units, weight units, and fusion units, to effectively extract fault features and handle the
influence of working conditions. To enhance the architecture's performance, a
ConditionSenseNet (CSN) module is introduced, which dynamically represents crucial

features while suppressing the impact of unknown working conditions.

Authors in [59] introduce a decision-level fusion approach that utilizes an
ensemble model consisting of a convolutional residue network, auto-encoder, and deep
belief network (DBN) to classify multiple faults. This ensemble model achieves an
impressive accuracy of 98.08% for data collected under various speeds. Transfer
learning is explored in [60], where a pre-trained VGG19 model is employed to analyse
Mel frequency spectrogram images of vibration signals obtained under a fixed
unbalance strength of 3.2gm. Transfer learning has gained attention in the field of deep
learning for bearing fault diagnosis in rotating machinery as it addresses the time-
consuming process of constructing and training convolutional neural network (CNN)
models and reduces the need for extensive prior knowledge [61]. Notable advantage of
transfer learning methods is demonstrated in, where a pre-existing AlexNet model is
utilized. In this approach, only the last fully connected layer needs to be replaced,
resulting in time and knowledge savings. Despite this simplicity, the method achieves
effective feature extraction and condition classification. By transforming raw
acceleration signals into time-frequency images, the model can process diverse input
forms. Experimental validation using standardized images generated through various
time-frequency analysis methods confirms the effectiveness of this approach. These
findings underscore the practical applicability of the method in real-world scenarios.
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2.3 MOTIVATION

This thesis is motivated by the research gaps identified in the field of rotor
fault detection and severity assessment, specifically regarding single sensor type
methods under time-varying rotational speed. Existing approaches in Al have high time
complexity, and incur moderate processing costs. The aim is to develop innovative
algorithms that strike a balance between accuracy, time complexity, and processing
cost. Additionally, most work focuses only on bearing health monitoring, but from the
mechanical standpoint, the stress caused by unbalanced faults extravagate bearing
faults. This research focus on use of data-driven methods for feature extraction of

bearing fault signatures from vibration signals.
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CHAPTER 3

FAULTS OVERVIEW

3.1 ROLLING ELEMENT BEARING

3.1.1 Structure

The mechanical structure of a rolling element bearing consists of several
key components that work together to facilitate smooth rotational motion and support
axial and radial loads. The main components of a rolling element bearing are as shown
in Figure 3.1. The mechanical structure of a rolling element bearing consists of an outer
ring (outer race), inner ring (inner race), rolling elements (balls or rollers), and a cage.
The outer ring provides support, the inner ring rotates and transmits the load, and the
rolling elements enable smooth motion. Ball bearings have spherical balls for low-
friction rotation, while roller bearings use cylindrical, tapered, or spherical rollers for
higher load capacities. The cage separates the rolling elements, maintaining proper

spacing [62].
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Figure 3.1 Components of a rolling bearing element.

3.1.2 Types of Defect And Causes

Bearing faults can be categorized into distributed faults and localized faults:



38

1. Distributed faults:
e Fatigue Spalling: Small cracks and surface fatigue due to repeated loading and
unloading.
¢ Brinelling: Dents or indentations caused by excessive static or impact loads.
e Fretting corrosion: Microscopic wear and corrosion due to slight movement or
vibration [63].
2. Localized faults:
e Inner raceway fault: Cracks, pitting, scoring, or wear on the inner ring.
e Outer raceway fault: Similar types of damage as the inner raceway fault on the
outer ring.
e Ball fault: Pitting, spalling, cracking, or wear on the rolling elements [64].
e Combined fault: Multiple types of faults occurring simultaneously in the

bearing.

Bearing faults can occur due to various factors. Inadequate lubrication,
whether it's due to insufficient lubricant or using the wrong type, can lead to increased
friction, heat, and wear on the bearing surfaces. Contamination by foreign particles or
contaminants can also accelerate wear and damage the raceways and rolling elements.
Misalignment or unbalance between the bearing and the rotating shaft or housing can
result in excessive loads and uneven force distribution, leading to localized faults.
Operating the bearing under loads beyond its design capacity can cause fatigue and
accelerated wear. Additionally, improper installation practices, such as excessive
interference fit or incorrect clearances, can contribute to bearing faults. Addressing
these factors is vital to ensure optimal performance and durability of bearings.

3.1.3 Mathematical Analysis

Fault characteristic frequencies (FCF) in bearing are specific frequencies
that are generated as a result of the faulty conditions within the bearing. These
frequencies are derived from the impulse generated during interaction between the
rolling elements and the faulted areas on the inner and outer raceways of the bearing.
The calculation of these characteristic frequencies depends on the bearing's geometry
and the shaft's rotational speed. As a result, additional processing techniques are

necessary to effectively handle and analyse the time-varying FCF for accurate diagnosis
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of bearing faults in such situations [65]. FCF can be calculated as mentioned below
where f is the frequency of rotation in Hz, m is the number of ball elements, vy is the

angle of contact, dy is the diameter of the ball and d. is cage diameter [66] as shown in

db 7
—
de
y

Figure 3.2 Mechanical drawing of bearing structure [66].

Figure 3.2.

e Cage Frequency (FTF): FTF is the frequency at which the cage or retainer that

holds the rolling elements rotates.
f [ dp ]
FTF ==|1—— 3.1
> R cosy (3.2)

o Ball Pass Inner (BPI): BPI is the frequency at which the rolling elements pass

over the inner raceway fault.
mf dp
BPI = — [1 + —cosy ] (3.2)
2 d.

e Ball Pass Outer (BPO): BPO is the frequency at which the rolling elements

pass over the outer raceway fault.

mf db
BPO = > [1 - d—ccosy (3.3)
e Ball Spin frequency (BSF): It is associated with the spinning of the rolling.
def[. [ T
= — 3.4
BSF 2d, 1 ) cosy (3.4)

By analysing the vibration signals of the rotating machinery using
techniques such as spectral analysis or Fourier transform, these characteristic
frequencies can be identified. The presence and intensity of these frequencies indicate
the presence and severity of specific bearing faults, allowing for early detection,
diagnosis, and appropriate maintenance actions to be taken.

The bearing fault-induced signal can be viewed as the impulse response s(t)
of a one-degree-of-freedom mass-spring-damper system [67] as shown in Equation 3.5,
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the vibration system determines the excited resonance frequency o, while the amplitude

A and damping coefficient B further characterize the system.

s(t) = Ae PFtsin(wt)u(t) (3.5)

Hence the bearing fault signal x(t) can be modelled as repeated impulse

response as shown below, where M is the total number of impulses which is determined
by the signal length T and the fault characteristic frequency fc, Am is the amplitude of
the m™ fault impulse response, T, is the reciprocal of fc and i is the random slippage

during each T,, [68] as shown in Figure 3.3.

M m m
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Figure 3.3 Fault induced bearing signal under constant speed.

3.2 SHAFT FAULT

A shaft in rotating machines is a cylindrical component that transmits power
and rotational motion, connecting different parts of the machine. Made of durable

materials, shafts support and align components, use couplings for torque transfer, and
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may have keyways or splines for secure connections. Balancing techniques minimize
vibration, while regular maintenance and inspection ensure their integrity. Shafts are
vital for efficient machine operation, enabling power transmission and interconnection
of components [69]. Various standards and guidelines exist to define acceptable levels
of unbalance for different types of machinery. The ISO 1940-1:2016 and ISO 10816
standards, for instance, provides specifications for balance quality requirements of
rotors. It establishes tolerance limits for residual unbalance based on factors such as the
machine type, rotational speed, and balance quality grade.

3.2.1 Types of Defect and Causes

Some of the common shaft faults that can occur in rotating machinery are listed
below. The work in this thesis focuses on unbalance fault detection and strength of

unbalance.

1. Shaft unbalance: It is an uneven mass distribution in rotating machinery,
causing centrifugal forces, vibration, decreased performance, and potential
damage.

2. Misalignment: Rotational axes of connected shafts are improperly aligned,
leading to increased forces, vibration, bearing wear, and reduced efficiency.

3. Bent Shaft: Physical deformation causes the shaft to deviate from its straight
form, resulting in vibration, stress on bearings, and decreased performance.

4. Shaft Cracking: Cracks develop due to cyclic loading, stress concentrations,
fatigue, or improper maintenance, compromising structural integrity and risking
catastrophic failure.

5. Bearing Faults: Issues like misalignment, lubrication problems, wear, pitting,
or failure in bearings cause vibration, friction, noise, and reduced machinery
lifespan.

6. Shaft Eccentricity: Centre of rotation does not coincide with the geometric
center due to defects, assembly issues, or wear, leading to vibration, stress on
bearings, and decreased performance.

7. Shaft Runout: Radial deviation from true circular path caused by uneven wear,
defects, or mishandling results in vibration, stress on components, and reduced

accuracy.
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8. Resonance: Natural frequency coincides with excitation frequency, causing
excessive vibration due to unbalanced masses, stiffness, or inadequate damping,

leading to potential damage.

Shaft faults in rotating machinery can stem from manufacturing defects,
wear and tear, debris accumulation, component damage, or incorrect assembly. It leads
to adverse effects such as vibration, reduced performance, bearing and seal wear,
structural damage, and noise. Detection methods include vibration analysis, portable
balancing equipment, modal analysis, and infrared thermography. Balancing procedures
involve static and dynamic balancing, using correction methods like adding or removing
weights. By addressing shaft unbalance, the overall performance, reliability, and
lifespan of the machinery can be improved while minimizing the risk of catastrophic

failures.

3.2.2 Mathematical Analysis

The unbalance factor is represented as "e" or "eU," It is a measure of the
severity of unbalance in a rotating component. It is defined as the ratio of the calculated
centrifugal force due to unbalance to the product of the mass of the rotating component
and the square of the reference speed. The unbalance factor can be expressed

mathematically as [70]:

F Xr
el =

= 3.7
m X w? 3.7)

where, F is centrifugal force due to unbalance, r is the distance from the
centre of rotation to the centre of gravity of the unbalanced mass, m is the mass of the

rotating component and o is the rotational speed of the component.

e Centrifugal Force (F):

The centrifugal force is the force generated by the unbalanced mass as it rotates. It is
directly proportional to the square of the rotational speed n and the unbalance factor

eU [71]. Mathematically, it can be expressed as:

F=mxelUX w? (3.8)
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e Centrifugal Moment (M):

The centrifugal moment is a measure of the unbalance's effect on the rotating
machinery. It represents the moment generated by the centrifugal force acting at a

distance from the axis of rotation. Mathematically, it is given by [71]:

M=FXr (3.9
e Correction Weight (W):

To balance the rotating component, correction weights are added at specific
locations to counteract the unbalance. The magnitude and position of the correction

weights can be determined using the following formula [72]:

_ M (3.10)
T eUxr

By calculating the centrifugal force, centrifugal moment, and correction
weight, engineers can determine the necessary adjustments to balance the rotating
machinery effectively. It's important to note that unbalance can also be expressed in
terms of angular displacement or phase angle. The phase angle represents the position
of the unbalance mass relative to a reference point on the rotating component. It is
measured in degrees or radians and provides information about the location of the

unbalance, which is crucial for accurate balancing.

Additionally, there are various methods to measure and analyse unbalance,
such as vibration analysis, which involves monitoring and interpreting the vibration
signals produced by the rotating machinery to assess the severity of unbalance and
identify corrective actions [73]. These mathematical concepts and calculations play a
vital role in diagnosing, quantifying, and rectifying unbalance-related issues in rotating

machinery, ultimately ensuring smooth and reliable operation.
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CHAPTER 4

BEARING FAULT DIAGNOSIS

4.1 OVERVIEW

The chapter provided detailed discussion of the approach employed for
bearing fault identification. The primary goal of this work is to develop a tachometer-
free method capable of identifying faults using single sensor data, while effectively
addressing the translation of fault signatures resulting from variations in rotational

speed.

To achieve this objective, the MrDMD framework is extended, and a novel
method called GMrDMD is introduced. This method enhances the spatial resolution of
vibration signals through gram matrix transformation while preserving their temporal
characteristics. The GMrDMD technique involves a spatial-temporal decomposition of
the gram matrix using multi-resolution dynamic mode decomposition. Subsequently, the
resulting mode matrix is color-coded and utilized for fault classification, leveraging
convolutional neural networks (CNNs) to eliminate the dependency on expert

knowledge for feature extraction.

The proposed methodology is validated using experimental simulations with
data from the University of Ottawa, covering varying rotational speeds. It is structured
into three stages: signal pre-processing, feature generation, and classification, as
depicted in Figure 1. Performance metrics are employed to evaluate the method's
effectiveness, ensuring a comprehensive assessment of its performance. The results
obtained from the experiments demonstrate the accuracy and efficiency of the approach
in identifying bearing faults.

4.2 METHOD

This section is divided into three stages namely signal preprocessing, feature generation

and classification Figure 4.1 shows the flowchart of the proposed method.
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Figure 4.1 Flowchart of the proposed methodology.
4.2.1 Signal Pre-processing

4.2.1.1 Segmentation & Resampling

The raw signal is originally sampled at 200 KHz for duration of 10s. For
efficient resource utilization the signal is resampled at 100 KHz and segmented without
overlapping. The purpose of segmentation is to subdivide a large signal into small
sections which have similar properties. The segment size varies according to the

occurrence of the frequency region of interest in a signal. Then each sub-signal is
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transformed into a gram angular field which preserves the temporal relation of the

original segment while separating inference signal.

Figure 4.2 shows the raw signals under increasing rotational speed. It can be
observed that no significant information can be understood based on the raw signals
except that the amplitude is increasing with time. To further analyse the signal FFT of
the input signal is plotted as shown in Figure 4.3. It can be seen from the frequency
spectrum that majority information is present below 50 KHz. Hence resampling of
original vibration signal at 100 KHz is performed. The resampled signal is segmented

into 500 sub signals such that each sub-signal has fault characteristics.

Increasing Rotational Speed

O-Haalthy

24nner Race Fault
e

! T T T T T T
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s - Y ~y Ll d L Lm gL b
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Figure 4.2 Raw vibration signals under increasing speed condition.
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Figure 4.3 Frequency spectrum of orignal signals shown in figure 4.2.
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4.2.1.2 Gram Based Transformation

In case of varying speed, it is important to preserve the temporal relation
between sample points. Gram matrix is an ancient representation that calculates
complete inner product space of vectors. The extension of this to gram angular field was
first proposed in 2015, as a transformation of 1D time series signal to a 2D
representation using polar coordinates. Since then, GAF has shown excellent results
with ECG, ECoG for activity tracking, financial market tracking, fault monitoring etc.
Let V be a given time series sensor data that is first rescaled to have a maximum value 1
and minimum value -1 using Equation 4.1. Then the scaled signal is transformed into
polar space where the angular value is determined by taking trigonometric inverse of
amplitude and the radius is calculated as the time stamp divided by number of samples
as shown in Equation 4.2.Finally, the polar representation is used to calculate the G
matrix Equation 4.3 whose leading diagonal represent original signal and remaining
columns from top left to right represent the preserved the temporal correlation between
signal. This transformation method is bijective and invertible as followed from
mathematical principle of inverse trigonometric operations [74].

_ (v—max(V))+(w-min(V))

max(V)—-min(V) (4.1)

_ cos '(v), —1<v<1
flv) = { t/N, t€N (4.2)
G = [cos@; — cos D] (4.3)

4.2.2 Multi-Resolution DMD

The basic idea of DMD is to form dynamic system matrix using Koopman
frequency analysis [50]. The eigenvectors of this matrix form coherent spatial-temporal
modes while eigenvalues depict how each mode evolves in time. The advantage of
DMD s that it produces non-orthogonal single frequency modes which are used in
diagnostics. Usually, DMD decompose a multivariate time signal but mechanical
vibration signals are 1D time-series. The algorithm of proposed standard DMD is

presented in [22] transforms mechanical signal into a m x n shift-stack Hankel matrix as
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shown in Equation 4.4. Considering V1, V2...V, as snapshots V’ can be written as

Equation 4.5.
(21 v, Up
VI — cee cee cee cee (44)
Um VUm+1 o Umin-1
V= [ViVyVs..... V] (4.5)

This V’ matrix is now rearranged in the form of two snapshot matrix X and Y.

X=[VyVoVs .. Vsl (4.6)
Y= [V, VsVy.... V] 4.7)

The crux is to find A matrix such that Y = AX, the algorithm applied to find
A can be found in [74]. Thus, evolution of X to Y is found using eigenvalues of A. This
approach suffers from noise bias effect hence an improved framework tIsSDMD [75] is
used for countering the effect of noise. The tIsSDMD aims to find a total least square

solution for estimating error in both the matrix X and Y using Equation 4.8.
. Ex
AY + €, = AX + €,) s.t. argmin ||€y|| (4.8)

The problem of noise tolerance is solved using tisSDMD and multi resolution
DMD approach has been adopted to handle the problem of extracting transient events.
The MrDMD method successively pulls out time-frequency information in a principled
way. The modes with the slowest variation are extracted at each level. This gives a time
frequency representation as shown in Figure 4.4 . where sampling window at each level
is divided into half and slow varying modes are selected at each level for reconstructing
the original signal V(t) without initial conditions as shown in Equation 4.9 where, [ is
the level of decomposition and M; M, ... are number of slow modes selected at each

level w is the frequency corresponding to the eigenvector ¢.

V() = {Zgil¢de“”0'+“'+ Zg21¢ae“””} (4.9)
1=1 1=4

After completion of signal processing we get an NxN gram matrix on which
a four-level multi-resolution tIsSDMD is applied. This step gives two matrices namely
mode and dynamic whose significance can be understood from Koopman theory [50].
At each level of decomposition, the time axis is sampled into 2- sub-parts, where L
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represents the level of decomposition and tIsDMD is performed on each sub part to
calculate the modes. The mathematical process of calculating modes matrix is already
discussed in [75]. These modes are typically Eigen vectors corresponding to individual
frequencies of the original gram matrix. Hence the collection of the entire modes into a
snapshot is able to isolate the behaviour corresponding to all frequencies of original
matrix. This snapshot is used as input for classification using a CNN Figure 4.5. shows

the mode snapshot for the five classes under four types of varying rotational speed.

FREQUENCY

Figure 4.4 Time frequency representation generated using MrDMD.

Combine (1) Normal (2) Inner (3) Outer (4)

Figure 4.5 Mode snapshots generated for 5 classes under four speeds.
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4.2.3 Classification

The next step after generating mode snapshot is to perform classification, in this work
we used a 10 layer CNN inspired from GoogleNet architecture [24]. A CNN consists of
three basic layers namely convolutional layer which strides kernel of a specified size
over the input image to get a convolved output of kernel function with input image
followed by pooling layer and activation layer. The proposed structure uses 4 inception
blocks as shown in Figure 4.6 with different kernel sizes of (7x7, 5x5, 3x3 and 1x1)
each with a single stride. The main advantage of the structure is that it gives the network
an idea about the spatial resolution of the input. After each inception block filter output
concatenation is performed along the depth.

Since fault characteristic require non-linear classification, hence relu is used as
activation function for the proposed CNN. We have also used drop out layer with 0.2
dropping fraction which ensures that our network avoids over fitting on the training
data. Figure 4.7 shows the basic block diagram of the used CNN model for fault

classification.
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Figure 4.6 Inception module used in CNN.
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4.3 EXPERIMENTAL SETUP

This section firstly describes the used dataset followed by an overview of
the considered performance metrics. Lastly the results and discussion section cover the
comparison of the proposed work with other relevant deep learning-based methods from

literature. All the experiments are carried on Intel i5 9™ gen processor with 8 GB RAM.
4.3.1 Dataset

The proposed data driven fault classification method is validated using time-
varying rotational speed dataset from the University of Ottawa, version 2 published in
2019 [76]. The data from university of Ottawa consists of vibration signals under four
time-varying rotational speeds as mentioned in Table 4.1. The vibration data is collected
for ER16K rolling element using ICP accelerometer. The experimental setup for
recording signals is shown in Figure 4.8. The recorded signal length is of 10s, and has a

sampling frequency of 200 KHz and for each speed condition three trials are conducted.

When the ball element of the bearing interacts with a fault region it
produces a fault frequency proportional to rotational speed in Hz. This data contains
vibration signals for five faults type namely ball (class-0), combined (class-1), healthy

(class-2), inner raceway (class-3) and outer raceway fault (class-4).

Table 4.1 Various Speed Condition Of Dataset

Speed Condition Speed Value (in Hz)
A- Increasing 14.1t0 23.8
B- Decreasing 28.9t0 13.7
C- Increasing - Decreasing Increased: 14.7 to 25.3

Decreased: 25.3 to 21

D

Decreasing - Increasing Decreased: 24.2 to 14.8
Increased: 14.8 to 20.6
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Healthy Bearing Accelerometer

V—

Encoder

Figure 4.8 Experimental setup to record vibration data [76].

4.3.2 Performance Metrics

To evaluate the proposed GMrDMD method widely used accuracy
metric and confusion plot is considered. Accuracy is the ratio of total correct classified
sample to the total number of samples. It evaluates an overall average performance
without considering class wise categorization. Accuracy is insightful only for a
balanced class problem. Since in our dataset we have equal samples for each class
accuracy gives a good idea about model performance. Another metric to understand the
micro-level performance is confusion metric it gives a holistic analysis of each class. It
helps in understanding which classes are closer to each other causing confusion and

wrong prediction in the model.

4.4 RESULTS AND DISCUSSION

The data of trial 1 is divided into 5 datasets which are individually used for
training and testing. Table 4.2 summarizes the experimental data setup for trial 1 (T1)
where 80% data is used for training and 20% for testing. The remaining two trials T2
and T3 are only used as testing data for the model. The D5 dataset is most crucial for

our experiment as it captures all types of speed variation.
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Table 4.2 Experimental Setup of Data

Data (t1) Symbol Total Sample | Train Test
A D1 2500 2000 500
B D2 2500 2000 500
C D3 2500 2000 500
D D4 2500 2000 500
(A+B+C+D) D5 10000 8000 2000

The 500 sub signals from each class were used to generate the mode
snapshots according to the methodology discussed in previous section. The snapshots
obtained after GMrDMD are augmented for scale and rotational invariance. These were
now given as input to a 10-layer CNN inspired from GoogleNet architecture. The CNN
structure uses multiple kernel sizes of which gives network a perspective about spatial
resolution of the image. A summary of accuracy obtained using the model is mention in
Table 4.3. The model shows best performance for increasing speed with an average
accuracy of 98.2% while, the average accuracy for all four-speed condition is 94.8%.
Figure 4.9 shows the confusion matrix on dataset D5 it can be seen that class O
corresponding to ball fault has maximum misclassification with a false detection rate of
4.8% while the class 3 corresponding to inner raceway fault has the lowest false
detection rate of 0.9%. Also, it should be noted that the model raises a fault warning for
2.7% times when in reality the roller bearing is not faulty. This category of false alarm
is of concern and further improvement is possible in this direction. The plot of model

training accuracy and loss for dataset D5 is shown in Figure 4.10.

Table 4.3 Summary Of Accuracy Obtained On Dataset

Dataset
Trial Accuracy

D1 D2 D3 D4 D5
Tl 98.67 96.81 97.17 97.43 94
T2 98.41 96.46 98.31 96.71 96.12
T3 97.52 96.9 96.48 97.24 94.28
Mean 98.2 96.72 97.32 97.12 94.8
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Figure 4.9 Plot of accuracy for three trials of each dataset.
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Figure 4.10 Plot of accuracy for three trials of each dataset.

We also tested the generated feature set with other state of art DNN
architectures the results for the same is summarized in Table 4.4 along with other
similar work done on the same dataset for fault identification. Most of the discussed
work uses a standard train-test split size of 80:20. A VMD based transfer learning



55

method [77] using Hilbert spectrum images with DeneNet is able to achieve 92%
accuracy. Similar method proposed in [78] is also using IMF of VMD as an input to a
deep belief network is achieving an accuracy of 93.17%. The other works proposed in
[79] considers subset of fault types using a feature set based on wavelet packet
transform. Research in [80] uses local mean decomposition-based data driven method to
identify four fault conditions except combined and ball fault to achieve an accuracy of

95.88% with random forest classifier.

Table 4.4 Comparison with related work

Method Features Class Average Accuracy (%)
Proposed-CNN 3 98.89
Proposed-CNN 96.83
Proposed-AlexNet GMrDMD modes 84
Proposed-DenseNet > 93.62
Proposed-GoogleNet 93.4
VMD-DenseNet [77] Hilbert Spectrum |5 92
AVMD-DBM-ELM [78] IMFs Data driven | 5 93.17
WPT-MWSVD+SVM [79] | Wavelet packet 3 87.8
HPO-RF [80] ocal I\/Iea-m- 3 95.88
Decomposition
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CHAPTER 5

BEARING FAULT DIAGNOSIS

5.1 OVERVIEW

This chapter aims to address the critical fault of unbalance in rotating
machinery through the development of an automated algorithm capable of detecting
unbalance and analyzing its severity in real-time. The algorithm utilizes data fusion,
contour encoding, and deep learning techniques to achieve its objectives. Vibration data
from three sensors is integrated into a single signal to maximize its relevance.
Additionally, a novel encoded statistical contour plot is introduced to decompose the
signal using the maximum overlap discrete wavelet transform. The system includes a

two-stage warning system to effectively detect unbalance and analyze its severity.

The proposed approach is validated using a dataset obtained from the
Fraunhofer Institute for Integrated Circuits, demonstrating its effectiveness. The results
show that the proposed algorithm achieves a high accuracy rate in classifying the
severity of unbalance, surpassing existing methods. The distributed architecture and
utilization of single modal data make the algorithm well-suited for real-time
applications. To further enhance accuracy, future work can focus on refining contour
encoding techniques and expanding the labeled dataset to incorporate more advanced

deep neural networks.

5.2 METHODOLOGY

The work proposes a three stage method for identifying unbalance and
classifying its severity based on I1SO standards for small machines as mild, moderate
and severe as shown in Figure 5.1. The following sub-section discusses the details of

each stage.
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Figure 5.1 Flowchart for the proposed methodology.

5.2.1 Data fusion

Fusion refers to the process of amalgamating information from different
sources. This can be done at three levels. First is the sensor level, where multi-domain
sensors record data that gets processed differently, as proposed in [81]. The second type
is data level, where sensor data is combined based on mathematical or domain
knowledge to form a single signal with relevant and consistent information. Third is
decision-level fusion involving an ensemble of multiple algorithms [82] to complement

each other’s drawback in the decision-making phase.

This work uses the frequency domain for performing data level fusion of three vibration
sensors. Fault signals are associated with fault characteristic frequency hence frequency
domain has been chosen for data fusion. Two of the sensors are placed in an orthogonal
manner at the bearing block and one at the motor mount. Firstly, FFT is calculated for
signals S1, S2 and S3 to obtain frequency spectrum F1, F2 and F3, respectively. Then
point wise mean is calculated and inverse FFT (IFFT) is performed to obtain the fused
signal as given by Equation 5.1. The frequency domain is ideal for fusion because the
region of interest for unbalanced machine fault lies at the amplitude of peak frequency.
With variation in speed, the peak frequency varies and often becomes difficult to

distinguish in the spectrum obtained under the real-world environment with ambient
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noise. The recording of individual sensors and the obtained fused signal of a signal

segment of 1s is shown in Figure 5.2.
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Figure 5.2 Representation of fused signals obtained for different strengths of unbalance.
5.2.2 Maximum Overlap Discrete Wavelet Transform

Wavelet-based signal decomposition [29] is among the most suitable
method for the feature generation of non-stationary signals. It uses a time-shifted and
scaled collection of basis functions of the selected mother wavelet. Traditionally DWT
has been used for machine fault detection [34] but it suffers from an inherent
disadvantage of loss of data due to down-sampling and stringent requirement of 2n
samples in a signal. Owning to this MODWT was proposed as a revised version of
DWT which does not decimate the decomposed signal at each scale. This makes
MODWT redundant in nature as well as energy-preserving decomposition. Hence
Xrused CaN be obtained from the summation of coefficients from all scales. This work
uses higher-order Daubechies asymmetrical wavelet ‘db40’ to ensure maximum
localization [28] with non-linear phase response. The decomposition of fused signal for
no unbalance and maximum unbalance is shown in Figure 5.3 and Figure 5.4,

respectively.
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Figure 5.4 MODWT of the fused signal under maximum unbalance condition.
5.2.3 Contour Plot

The work in the literature has significantly explored time-frequency images
like spectrogram, scalogram, Hilbert transform, and synchrosqueezing transform as
potential options for the CNN network. In general, the computational cost of calculating
wavelet-based scalograms is very high, which introduces latency in the system for real-

time monitoring. To overcome this, a contour plot has been proposed using mean
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absolute deviation-based iso-response z slices. Historically contour plots have been

widely used for elevation representation in meteorology, geology, and physics [83].

We have proposed a novel application of statistically encoded contour plot to
visualise the decomposed signal by relating it with the variance at each scale. A level
matrix with 13 values is created for each decomposed segment using MAD shown in
Equation 5.2 where, X, is the coefficients of a given scale p is the mean of the scale and
N is the total number of coefficients [84]. Figure 5.5 shows the zoom version of
obtained contour plot for samples of individual classes for development and evaluation
signals. It can be seen that with the increase in unbalance strength, the plot captures the

detailed variation of the signal.

L= 5l —l (5.2)
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Figure 5.5 Encoded contour plot of the decomposed signal matrix for all classes.
5.2.4 Convolutional Neural Network

CNN has proved its capability for classification problems related to machine
failure [85] over time. It is a popular choice among researchers because of its ability to
learn contour lines from complex images using filter weights adjustment [56-58]. CNN
is realised using a set of recurring units consisting of a convolutional, activation, and

pooling layer. In this work, a dual-stage CNN is used to improve the accuracy of the
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severity-based warning system. Stage 1 is a coarse CNN structure with two convolution
blocks and a dropout layer. The shallow net learns more generalized weights for
classifying the rotor as balanced or unbalanced in case of unbalancing the stage 2
network triggers and raises a warning based on detected severity. The input image size
for best performance is taken as 256 x 256. ‘Leaky Relu’ with alpha 0.2 is used as an
activation function, while ‘softmax’ is used for classification, and ‘sparse cross entropy’
Is the loss function minimized during the training process. The architecture of CNN for
both stages, along with the first filter response of the convolutional layer on the input

image, is shown in Figure 5.6.
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Figure 5.6 Architecture and filter weight visualization of convolutional layer of CNN.

5.3 DATASET

The method for automated detection of unbalance and severity classification
is verified using a publicly available dataset from Fraunhofer Institute for Integrated
Circuits [86]. The speed of the motor is varied from 550-2500 RPM for recording
different datasets for development (Dx) and evaluation (Ex). The measurement setup
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and speed variation are shown in Figure 5.7. The setup employs a 3D printed disc to
introduce unbalance of different strengths viz. 0 — no unbalance and 4 — maximum
unbalance. The data is sampled at 4096 samples per second and a window of 1s is
considered for segmentation. Table 5.1 summarizes the details of different conditions

considered in the dataset.

Unbalance force is equivalent to the centrifugal force also it can be noted that
the strength of unbalance (UF) for a point mass is proportional to the product of mass m
times the radii r Equation 5.3 and its effects get amplified at higher rotational speeds w
[87].

F = mrw?

(5.3)
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Figure 5.7 Measurement setup for recorded dataset [86].

Table 5.1 Summary of dataset from Fraunhofer Institute.

Parameter Severity of Fault based on ISO standard 10816

Normal Mild Mild Moderate Strong
Dataset DOandEO |DlandEl |D2andE2 | D3 andE3 D4 and E4
Radi (mm) - 14 18.5 23 23
Mass (g) 0 3.281 3.281 3.281 6.614
UF (mm Q) 0 45.9 60.7 75.5 152.1
5.4 RESULTS

This section discusses the results obtained from the dual-stage classification

process and severity detection of unbalance. The system configuration used for the
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experimental study is i5 9th, 2.4GHz, and 16 GB RAM. The speed of classification
using mentioned system configuration and the proposed method is approximately 2800
samples per second. The recorded wall time for generating the encoded contour image
Is 0.52ms, while for generating a scalogram with the same data is 2.9ms. Hence the

proposed method speeds up the classification process by five times.

As mentioned above a segment of 1s length with 4096 data points from
three sensors is fused in the frequency domain to form a single, decomposed signal, and
a contour MAD-based input image for CNN is obtained. The data is divided into 6000
images from each development file (Dx) to form a training dataset and 1500 images
from the evaluation file (Ex) to create a testing dataset. Further, the training set is split
into two parts, with 4800 and 1200 from all individual files. This is used for training
and validation, respectively.

Evaluation for two stages is conducted where stage 1 is a general qualitative
analysis using coarse CNN to detect an unbalanced or balanced rotor operation state.
Accuracy in validation and test data has been considered for describing the model
performance, as summarized in Table 5.2. Initially, a pairwise analysis is done to
understand the distinguishability between the two classes. It is observed that the
unbalance strength of 45.9mm g is the most difficult to distinguish from the balanced
case, and it shows the lowest test accuracy of 98.3%. The final test accuracy all samples
from 1E, 2E, 3E, and 4E are considered as unbalance class. In contrast, OE as the
balanced class gives an accuracy of 99%, comparable to the other methods summarized
in Table 5.3.

The second stage involves quantitative analysis of severity as mild (1E &
2E), moderate (3E), and severe (4E) based on ISO standards to raise the alarm. It is seen
that the proposed method is capable of raising a correct warning with a test accuracy of
98.42% which is significantly higher compared to the literature for datasets with
varying rotational speeds. The confusion matrix for the overall warning system obtained
by evaluating the complete two-stage method end-to-end using test data of all classes
(OE, 1E, 2E, 3E, and 4E) is shown in Figure 5.8. The observed accuracy for the 4-layer
CNN model with batch normalization and dropout layer neither over fits nor under fits
the data. Also, the results establish that the MAD iso-reference-based contour plot of the

MODWT decomposed signal is a good representation of localized information. The
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study conducted in this paper is limited in the selection of iso-reference where options

like energy, median frequency, etc., can also be explored.

Figure 5.8.Confusion matrix for overall warning system using test data.

Table 5.2 Summary of accuracy obtained for different classification tasks.

True Label

Moderate

Normal

Mild

Severe

| |
Normal Mild

|
Moderate Severe
Predicted Label

- 40

-20

STAGE 1 - CNN ( 2 Class - Balance/Unbalance Detection)

Train Dataset Validation Test Dataset Test
Accuracy Accuracy

0D+ 1D 98.67 OE + 1E 98.3

0D +2D 99.24 OE + 2E 98.62

0D +3D 99.84 OE + 3E 99.39

0D +4D 100 OE + 4E 99.45

OD + (1D + 2D + 3D +|99.46 OE + (1E+2E + 3E + | 99

4D) 4E)

STAGE 2 - CNN (3 Class - Severity Detection)

Train Dataset Validation Test Dataset Test
Accuracy Accuracy

(1D +2D) + 3D + 4D 99.7 (IE+2E)+3E+4E | 98.42

Overall Warning Accuracy (4 Class - Normal/Mild/Moderate/Severe) | 97.05
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Work addressing the two-class problem on the same dataset is presented in
[86]. It compared the performance of multiple algorithms where maximum accuracy of
98.6% is obtained using a single sensor data for FFT-based fully connected neural
network (FCN) with two hidden layers for unbalance detection. Other summarized
works use personal datasets like research in [90] that combines three statistical features
from both the time and frequency domain to feed into an SVM classifier. The results
showed the accuracy was a vital function of operating speed, and the method is
unsuitable for classification at lower speeds. Work in [91] uses data recorded at multiple
speeds to develop and test classification and regression trees using dynamic-based
features (D-CART). The method achieved 90% accuracy for qualitative analysis of
severity detection. Research in [92] used heterogeneous information from vibration
signals and shaft orbital plots to extract features using a deep belief network (DBN)
automatically. The method showed an accuracy of up to 100% using both sensor data

and only 75% using the vibration sensor under constant motor speed.

Table 5.3 Comparison of work with existing methods in the literature.

o Average
Classification
Features Classes | Speed Accuracy
Method
(%)
MODWT-MAD- 2 Time-Varying | 98.72
Proposed CNN
Contour Images 4 97.05
SVM [59] Frequency spectrum 2 Constant 94
FCN [86] FFT (single sensor) 2 Time-Varying | 98.6
1D-CNN [86] Raw vibration signal 2 Time-Varying | 93.6
TF Image angular ) )
CNN [88] ) 2 Time-Varying | 98.1
domain
Raw time / frequency )
SVM [89] ) 2 Multiple Speeds | 91.66
domain
D-CART [90] Dynamics 4 Multiple Speeds | 90
SVM [91] Hybrid features 4 Constant 93.2-98.2
Raw vibration signal Constant 75
Multi-DBN [92] | Fused orbit plots + |4
o 86.46 - 100
vibration
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CHAPTER 6

CONCLUSIONS AND FUTURE SCOPE

This thesis undertakes a comprehensive study aimed at advancing
mechanical fault analysis and detection techniques, with a specific focus on bearing and
shaft faults in rotating parts. Extensive literature review was conducted to explore the
different types, causes, and consequences of mechanical faults in rotating elements.
This review served as the foundation for identifying the research objectives, resulting in

the development of novel methodologies and a framework for an early warning system.

The key aspect of this research is to accurately measure the severity and
type of faults in order to enable timely actions and reduce maintenance expenses. By
integrating data-driven decomposition methods, such as MrDMD and time-frequency
analysis using the MODWT, non-stationary vibrational signals can be effectively
analyzed. Furthermore, the research aims to address the challenges posed by translating
fault signatures caused by variations in speed and load conditions. By developing
methods capable of handling these variations, the proposed framework ensures accurate
detection of bearing and shaft faults under time-varying rotational speed and discrete

load conditions.

The first part of this work presents a fault detection framework for bearings
using GMrDMD and CNN, addressing the challenge of using only a single type of
sensor for fault detection under varying rotational speeds. The method utilizes a gram
matrix-based transformation to convert vibration signals into time-evolving snapshot
matrices, preserving temporal relations. These matrices are decomposed using MrDMD,
isolating transient fault characteristics. The GMrDMD approach offers preservation of
spatial and temporal information, aiding fault identification, especially for transient
events. The CNN architecture with inception modules enhances fault classification

accuracy using multiple-size kernels. This work contributes to fault detection
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advancements, offering an innovative approach applicable across industries to enhance

reliability and performance optimization of bearings in rotating machines.

Another contribution of this research relates to shaft unbalance and severity
detection by utilizing a complementary data fusion strategy. The approach integrates
data from vibration sensors into a single signal with maximum relevance, enhancing the
accuracy and reliability of fault detection. Additionally, a novel encoded statistical
contour plot is designed for signals decomposed using the maximum overlap discrete
wavelet transform. This contour plot provides a visual representation of fault
characteristics, enabling effective analysis and classification. To further improve fault
identification and reduce the false alarm rate, a multi-level CNN model is developed
specifically for shaft fault identification. The CNN model leverages the power of deep
learning techniques to effectively analyse the encoded contour plots and classify faults

with high accuracy.

The proposed fault detection techniques were validated through
experimental studies using real-world datasets, including the University of Ottawa
dataset and the dataset provided by the Fraunhofer Institute for Integrated Circuits.
These datasets encompassed various fault vibration signal types and rotational speed
conditions. The results demonstrated the effectiveness of the proposed methodologies,
achieving an impressive 96.83% accuracy for distinguishing fault characteristics in
bearing faults using the GMrDMD-CNN method, and an overall classification accuracy

of 97.05% for unbalance fault detection.

The findings and conclusions of this research significantly contribute to the
advancement of mechanical fault analysis and detection techniques, specifically for
bearing and shaft faults in rotating elements. There are potential areas for further
exploration, such as adaptive level encoding for contours, which could enhance the
accuracy and robustness of fault detection methodologies. Additionally, increasing the
labelled data for more advanced deep neural networks can further improve the
performance and applicability of the proposed methods. Alternative options for iso-
reference selection, such as energy or median frequency, can also be investigated to

expand the capabilities of the fault detection framework.
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Future research in mechanical fault analysis and detection can focus on
refining the false alarm rate of the GMrDMD method, improving fault classification
algorithms, optimizing threshold values, and incorporating additional features or data
analysis methods. It is essential to test the methodologies on dynamic load variation to
ensure their robustness and accuracy in real-world scenarios. Integration of multiple
sensor data, such as temperature or acoustic sensors, can provide a comprehensive
understanding of system health and enhance fault detection capabilities. Validating the
proposed methodologies on diverse industrial systems will further enhance their
generalizability and practicality. Exploring adaptive level encoding for contours can
improve fault identification and classification accuracy, while increasing labeled data
for testing advanced deep neural networks will enable the exploration of more complex
models with improved generalization capabilities. These future scopes will contribute to
the continuous advancement of mechanical fault analysis and detection, optimizing the

performance of rotating machinery systems in various industries.

By refining and developing these techniques, the field of mechanical fault
analysis and detection can continue to evolve and drive progress in the maintenance and
performance optimization of rotating machinery. The comprehensive understanding of
fault mechanisms, utilization of advanced data-driven approaches, and integration of
deep learning techniques hold great promise for the future of fault detection and

maintenance in rotating machinery systems.
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An Intelligent System for Bearing Fault
Identification based on Gramian Multi-Resolution
Dynamic Mode Decomposition

Sonalika Bhandari
Department of Electronics and
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Abstract— This work introduces a single sensor
intelligent end-to-end framework for fault detection
based on Gramian-multi-resolution dynamic mode
decomposition (GMrDMD). Vibration signals are
transformed using gram matrix followed by spatial
temporal decomposition based on multi-resolution
dynamic mode decomposition (MrDMD). The gram
matrix converts the 1D data into time evolving snapshot
matrix which retains the relation of signal with time.
This forms the input to the MrDMD framework which
decomposes the system dynamics into hierarchically
evolving fast and slow modes capable of isolating the
transient fault characteristics. To handle sensor and
environmental noise a robust total least square DMD
algorithm is applied at each level of MrDMD. The
resultant mode matrix is color coded and fed as image
to a convolutional neural network (CNN) for
classification. The performance of the designed method
is verified on University of Ottawa dataset which
contains five type of fault vibration signal under four
different time varying rotational speed condition. The
results demonstrate that of the proposed data driven
method is effectively able to distinguish between
different fault characteristics with an accuracy of
96.83%.

Keywords—Fault  detection, DMD, Gram matrix,
Convolutional neural network, Vibration signal.

1. INTRODUCTION

The foundation of industry 4.0 revolves around automation
and remote condition monitoring of systems. The industrial
sector inhabits some of the most complex machines which
work under stochastic conditions. These machines require
time to time quality check but physical inspection-based
methods are not scalable. Hence the shortcoming gave rise
to a broad field of intelligent machine health monitoring
and prognostics. The aerospace and atomic energy are the
carliest industries [ 1] to adopt fault monitoring systems.

Today, with the technological advancement in sensing
devices, network connectivity and high-speed processors
all large-scale industrial setups include early fault
monitoring and warning systems. Machines are made of
multiple rotating parts that house a crucial rolling element
called ball bearing, which comprises of equally-spaced
balls between two concentric circular races. These elements
in any system are critically exposed to different stress
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profile, load and speed which cause non-deterministic
abrasion and limit their life cycle. The early warning of
faults in ball bearing elements at lower severity of abrasion
saves huge resources and industrial down-time avoiding
machine strip down. So, bearing fault detection is hour of
need and several algorithms have been proposed for the
same.

The earliest works for fault identification with varying
speed condition [2] focused on order tracking based on
resampling using the changing speed signal. It involves an
extra sensor i.e., tachometer and additional multiple
resampling needs to be performed. An improved order
tracking method using virtual multichannel signals based
on variational mode decomposition (VMD) has been
proposed in [3] with a primary target of improving
performance for detecting compound faults. Another work
in [4] proposes a deep learning (DL) based speed
normalization-based auto encoder method to normalize the
effect of speed using speed accounting function. The
effectiveness of the method is only studied for determining
healthy and faulty state with 97% accuracy. The research
in [5] uses a tachometer free approach which focuses on
optimizing the ridge detection using time-frequency ridge
estimation method but with the application of this method
classification of fault requires manual efforts and domain
knowledge. A DL based speed fusion network is proposed
in [6] it uses multihead self-attention modules to improve
accuracy for distinguishing between healthy, inner and
outer race fault but details about network performance for
ball and combined fault is not mentioned. Work in [7]
discusses time frequency-based method improved using
sparse and low rank decomposition based on robust
principle component analysis for noise removal. Presently,
DL architectures are being used rigorously to address
variable working condition, work in [8] develops a
condense sense network with emphasis on non-linear
fitting functions to improve accuracy by 9% but limits the
real time application due to computational complexity. To
address the existing algorithms gap in terms of algorithmic
complexity, sensor requirement and accuracy this work
proposes  Gramian-multi-resolution  dynamic  mode
decomposition (GMrDMD).

Prominent spectrum analysis methods [9] like fast
Fourier transform, short time Fourier transform, Hilbert
transform and envelop detection worked best in case of
datasets acquired from test-bench with constant operating
conditions with less or no ambient noise. Still they are not
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Abstract. The rotor unbalances a critical fault that increases stress at rotational
parts like bearings and gears, resulting in higher power consumption and early
machinery wear. The general behavior of the vibration spectrum under this fault
changes with strength and rotational speed. To address this problem, the pre-
sented work proposes frequency domain data fusion of vibration signals ob-
tained from sensors placed at three different locations. The fused signal retains
maximum spectral information, which decomposes into a multi-scale matrix us-
ing energy-preserving maximum overlap discrete wavelet transform. To analyze
the severity of unbalance, the decomposed scale matrix is encoded into a con-
tour plot using the mean absolute deviation of individual scales as iso-reference
lines. Finally, a two-stage classification is performed using a convolutional neu-
ral network. The proposed method is tested using a publicly available dataset
from Fraunhofer Institute for Integrated Circuits. The results show an overall
classification accuracy of 97.05% for unbalance severity which is significantly
better than other studies using single-sensor data.

Keywords: Unbalance Fault, Data Fusion, MODWT, Contour Plot.

1 Introduction

The advancement in networks, processors, and sensors has together revolutionized
multiple fields. It has opened a plethora of opportunities for the development of real-
time condition monitoring systems (RT-CMS). These systems have strong use cases
in areas where 24-hour supervision of all components is not possible, like automated
industries, renewable energy plants, intelligent vehicles, etc. RT-CMS aims to create
an early warning in case of any probable failure. This is done based on sensor data
analysis and intelligent Al-based classification. A critical area of innovation lies in
developing algorithms with low time complexity and moderate processing cost.

A typical drive train or rotating machine comprises shafts, gears and bearings. These
parts often get worn out due to operating conditions causing misalignment, bearing, or
unbalanced faults. A moving system works at a characteristic frequency under healthy
conditions, but once a fault occurs, the behaviour of sensor data changes. Hence, im-
plementing RT-CMS in industrial rotating machines helps to solve a fundamental
problem of early fault detection, which scrapes downtime requirements. This work
focuses on detecting unbalance faults of multiple strengths at varying rotational
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