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ABSTRACT 

 

Machine health monitoring plays an increasingly crucial role in automated 

industries, particularly in the context of meeting Industry 4.0 standards. One significant 

aspect is the detection and diagnosis of faults in rotating machines by implementing 

continuous machine health monitoring systems. These systems can proactively detect 

and classify issues related to rotating elements in real-time, allowing for timely 

maintenance and repairs.  

Bearing faults and shaft imbalances are common problems that accounts for 

50% of motor failures. This can significantly impact machine performance and lead to 

premature failures. Through continuous monitoring and analysis of vibration patterns, 

temperature fluctuations, stator current, acoustic noise or any other relevant parameters, 

an early sign of bearing faults and shaft imbalances can be identified. This will enable 

timely corrective actions to prevent catastrophic assembly line failures. Integrating 

machine health monitoring with advanced analytics and predictive maintenance 

algorithms, can help achieve higher levels of efficiency, productivity, and cost savings 

by minimizing unplanned downtime and extending the lifespan of critical machinery.  

There has been significant contribution in this field but a major challenge 

remains in terms of fault detection and severity identification under varying load and 

rotational speed. The changing speed impacts frequency content and pattern changing 

the fault characteristic frequency which hinders consistent fault detection. To overcome 

this challenge robust algorithm incorporating speed information or extracting features 

which are independent of speed is essentially an area of research. This thesis presents a 
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comprehensive investigation of the rolling bearing faults and shaft unbalance faults, 

including their characteristics and fault signatures in the vibrational signals.  

The presented work proposes two methods based on non-stationary signal 

decomposition to tackle variational speed problem. The first work introduces an 

intelligent framework for fault detection using a single sensor. It utilizes Gramian-

multi-resolution dynamic mode decomposition to process vibration signals. Initially, the 

vibration signals are transformed using a gram matrix, which converts the one-

dimensional data into a snapshot matrix that evolves with time, preserving the temporal 

variation. This transformed data is then subjected to spatial temporal decomposition 

through multi-resolution dynamic mode decomposition (MrDMD). It decomposes the 

system dynamics into hierarchically evolving fast and slow modes, enabling the 

identification of transient fault characteristics. To handle noise from sensors and the 

environment, a robust least square dynamic mode decomposition algorithm is applied at 

each level of MrDMD. The resulting mode matrix is further processed by colour coding, 

effectively converting it into an image format for analysis and classification. 

The second work fuses vibration signals from sensors placed at three different 

locations in the frequency domain. This fusion process ensures that maximum spectral 

information is retained, enabling a more comprehensive analysis. The fused signal is 

then subjected to decomposition using an energy-preserving maximum overlap discrete 

wavelet transform, resulting in a multi-scale matrix. Further, to evaluate the severity of 

the shaft unbalance the decomposed scale matrix is encoded into a contour plot, using 

the mean absolute deviation of individual scales as iso-reference lines. Finally, the 

images generated from both the methods are used for classification using different 

convolutional neural networks. The proposed methodology is evaluated on publicly 
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available datasets, from University of Ottawa for bearing fault identification and 

Fraunhofer Institute for Integrated Circuits for shaft unbalance and severity detection. 

The results show an overall classification accuracy of 96.83% for bearing fault 

characteristic and accuracy of 97.05% for unbalance severity detection. 

The effectiveness of the method is evaluated by comparing the accuracy of fault 

detection and analysing the performance metrics such as sensitivity and specificity. The 

finding and result demonstrates the potential of the proposed methodology in improving 

the reliability and maintenance practices of rotating machinery systems, ultimately 

leading to enhanced operational efficiency and reduced downtime. The performance 

surpasses the results achieved by previous studies in terms of adaptability of real-time 

operation and accuracy. 
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 GENERAL 

The reliable functioning of rotating machine is of paramount importance 

across industries such as manufacturing, construction, power plants and also in the 

drivetrains of electric vehicles. In the context of this thesis is a motor is being referred 

as rotating machine. Among the crucial components of motor, bearings and shafts 

assume a pivotal role in supporting and transferring power to rotating elements. 

Nevertheless, faults in these components can lead to significant ramifications, including 

diminished performance, extended downtime, and potential safety hazards. Hence, the 

implementation of a condition monitoring system for rotating machine elements like 

bearings and shafts holds great significance across diverse industries. 

The industrial advancement and the need for health monitoring of rotating 

elements go hand in hand. The foundation of Industry 4.0 revolves around automating 

processes and remotely monitoring the condition of systems in large-scale factories [1]. 

It encompasses the integration of digital technologies and automation in manufacturing, 

leveraging concepts from artificial intelligence (AI) and the Internet of Things [2]. 

Similarly, a real-time monitoring and alert system is designed to continuously monitor 

and track the status of machine components, and promptly alerting operators of any 

anomalies or deviations from standard operation. 

Precise identification and detection of faults in these elements are crucial to 

avoid catastrophic failures and promote optimal performance and durability of 

machinery. Over time, mechanical fault analysis and detection techniques have 

experienced substantial advancements, incorporating sophisticated methodologies and 

technologies such as vibration analysis, acoustic emission, temperature monitoring, 

along with advanced signal processing algorithms and data-driven decompositions [3]. 

By utilizing advanced technologies and methodologies, the system continuously 

monitors the condition of bearings and shafts, promptly identifying early indicators of 
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wear, misalignment, lubrication problems, and abnormal vibrations. The information 

about the health of these components is delivered in real-time, enabling the condition 

monitoring system to proactively raise alarms for maintenance measures. 

1.2 MOTOR COMPONENTS: SIGNIFICANCE AND RELIABILITY 

1.2.1 Overview  

Motors are widely used in various sectors due to their cost-effective and 

energy-efficient design for converting electrical energy into mechanical power. They 

consist of stationary and rotating parts, with crucial elements such as bearings and 

shafts as shown in Figure 1.1 supporting their proper functioning. These components 

form the foundation of the motor's mechanical system [4], ensuring smooth rotation and 

proper alignment. Understanding their significance is essential for optimizing motor 

performance, reliability, and longevity. However, these components are subjected to 

various stress profiles, leading to non-deterministic abrasions and the emergence of 

different faults within the motor. This study focuses on the development of fault 

diagnosis methods for bearings and shafts. The operational importance of these 

components is outlined below. 

 

Figure 1.1 Components of motor. 

1. Bearings: Bearings facilitate smooth rotational movement in motors by 

reducing friction by supporting axial and radial loads. They guide and support 

rotating shafts, allowing them to rotate with minimal resistance. By distributing 

the load evenly, bearings prevent wear and damage to the shaft and other 

components [5]. Proper selection, lubrication, and maintenance of bearings are 

essential to minimize friction, extend the motor's lifespan, and ensure efficient 

operation. 



16 

 

2. Shafts: Shafts are essential components that transmit power from the motor to 

connected machinery or devices. In motors, the shaft connects the rotating part, 

known as the rotor, to the driven load. It transfers torque [6] and rotational 

motion, enabling the motor to fulfil its intended function. Achieving optimal 

performance and reliability requires careful consideration of shaft design and 

construction, including factors such as material selection, diameter, length, and 

shaft alignment. 

The reliable functioning of bearings, shafts, and rotating parts is crucial for 

the performance of motors in diverse industries. Any issues or failures in these 

components can result in reduced efficiency, increased energy consumption, or 

mechanical damage. Therefore, proactive monitoring and timely replacement of these 

critical components are essential to ensure optimal motor reliability and minimize 

downtime. 

1.2.2 Types of Faults 

Electric motors can encounter various faults [7] that have the potential to 

affect their performance and reliability. These faults can be broadly classified based on 

the nature into two groups namely electrical fault or mechanical fault as shown in 

Figure 1.2. Electrical faults primarily involve problems related to the electrical 

components and systems within the motor. These include issues with the electrical 

wiring, insulation breakdown, short circuits, open circuits, electrical overloads, voltage 

fluctuations, and component failures such as capacitors, or switches. While mechanical 

faults, on the other hand, pertain to issues concerning the mechanical components and 

systems of the machinery. These faults can involve problems with bearings, gears, 

shafts, belts, lubrication, misalignment, unbalance, resonance, structural defects, and 

wear and tear of mechanical parts. 

Electrical faults can arise from various factors, including insulation 

degradation, moisture or contamination, overheating, electrical surges, overloading, 

poor wiring or connection quality, aging of electrical components, and inadequate 

maintenance. To detect these faults in motors, a range of electrical measurements and 

monitoring techniques are employed [8]. These methods involve analysing parameters 

such as voltage, current, power factor, harmonic distortion, insulation resistance, and 



17 

 

thermal imaging to identify any abnormalities or deviations from normal electrical 

behaviour. Electrical faults in motors can have significant repercussions, including 

equipment malfunctions, electrical failures, circuit breakdowns, power outages, and the 

risk of electrical fires. They can also lead to damage to electrical components, disrupt 

operations, pose safety hazards, and jeopardize personnel safety. Remedial actions for 

electrical faults in motors typically involve repairing or replacing faulty electrical 

components, improving insulation, ensuring proper grounding, addressing wiring or 

connection issues, and implementing effective electrical protection measures such as 

circuit breakers or fuses. 

 

Figure 1.2 Classification of Motor faults. 

Mechanical faults in motors can arise from various factors, including 

excessive loads, inadequate lubrication, misalignment, unbalanced forces, fatigue, 

improper installation or assembly, environmental conditions, wear and tear, and 

insufficient maintenance practices. Detecting these faults requires the use of techniques 

such as vibration analysis, acoustic monitoring, thermography, oil analysis, and visual 

inspections. These methods are employed to identify irregularities in vibration patterns, 

temperature distributions, lubrication quality, noise emissions, and the physical 

condition of mechanical components [9]. The consequences of mechanical faults in 

motors can be severe, leading to increased friction, excessive wear, loss of accuracy, 
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unexpected downtime, decreased efficiency, increased energy consumption, and even 

catastrophic failures. These faults [10] can cause production delays, higher maintenance 

costs, safety risks, and damage to other components within the motor system. Remedial 

actions for mechanical faults often involve repairing or replacing damaged parts, 

realigning or balancing components, optimizing lubrication practices, implementing 

preventive maintenance schedules, conducting equipment overhauls, and adopting 

condition-based monitoring strategies to detect faults early. 

It's important to note that electrical and mechanical faults can coexist and 

impact motor performance. By understanding the specific characteristics and detection 

methods associated with both types of faults, appropriate remedial actions can be taken 

to ensure the reliable and efficient operation of electric motors. In this thesis, the focus 

is on providing a detailed exploration of two specific mechanical faults: bearing 

raceway faults and shaft unbalance faults. 

1.3 FAULT MONITORING 

1.3.1 Evolution  

Machine fault diagnosis has emerged as a critical field in industrial 

maintenance and reliability, and understanding its historical context is essential. The 

roots of machine fault diagnosis can be traced back to the early stages of 

industrialization when machines became increasingly complex and integral to various 

industries. The smooth operation and prevention of unexpected failures became a 

significant concern. 

Bearings and shafts play crucial roles in ensuring the smooth and efficient 

operation of machinery by providing support to rotating elements and transmitting 

power in automated industries, renewable energy plants, and intelligent vehicles. 

However, these components operate under diverse conditions in the industrial sector, 

making them susceptible to various faults [11], including wear, misalignment, 

unbalance, lubrication issues, and others. Periodic quality checks are necessary to 

ensure proper operation and mitigate the detrimental effects of these faults. 

In the past, fault monitoring on rotating machine components relied 

primarily on manual inspection and rudimentary techniques. Technicians would 
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physically inspect the machines, looking for visible signs of wear, damage, or 

misalignment. This involved observing and listening to the machines while in operation, 

checking for unusual vibrations, noises, or excessive heat. However, these traditional 

monitoring methods had limitations. They heavily relied on human expertise, were 

subjective in nature, and often required machines to be taken offline for inspection. 

Consequently, this reactive maintenance approach often led to unexpected breakdowns 

and cost inefficiency. 

These limitations prompted the development of more advanced and 

automated fault monitoring approaches in subsequent years. The advancements in 

electrical engineering, electronics, computing, and sensing technology played a 

significant role in this progression. Early diagnostic methods began to emerge, such as 

infrared thermography and vibration spectrum analysis. 

Infrared thermography [12] involved the use of infrared cameras to capture 

the thermal patterns emitted by the machines. Experts would then analyse these patterns 

for any variations in temperature distribution, which could indicate issues like 

overheating or friction. On the other hand, vibration spectrum analysis [13] involved 

studying the vibration spectrum of rotating machines. By analysing the spectral 

characteristics of recorded vibration signals, experts could then identify early signs of 

faults such as imbalances, misalignments, bearing defects, and shaft damage based on 

characteristic frequency. 

Today, machine fault diagnosis continues to evolve rapidly, driven by 

advancements in machine learning, AI, data driven analytics, and connectivity [14]. 

Researchers are exploring the potential of AI techniques, such as expert systems and 

neural networks, to automate fault detection and diagnosis processes. These approaches 

aimed to replicate human expertise and decision-making in analysing and identifying 

potential faults. Additionally, the integration of cloud-based platforms and digital twins 

is allowing remote monitoring and diagnosis of faults. 

Overall, the field of fault monitoring in bearings and shafts demonstrates the 

evolution from manual inspection to data-driven [15], proactive maintenance practices. 

The integration of advanced signal processing methods along with smart decision 
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making through AI has revolutionized the field, providing more sophisticated tools for 

fault detection and contributing to safer and more reliable industrial operations. 

1.3.2 Types of Signals 

Condition monitoring techniques are used to assess the health and 

performance of machinery and equipment, including motors. Several types of sensor 

data are suitable for performing this task but the ultimate choice of sensors depends on 

the specific application and the type of fault being targeted. These sensors primary 

objective is to monitoring various physical parameters of motor components to detect 

abnormalities, faults, or potential failures. Table 1.1 presents summary of commonly 

used techniques and their focus on corresponding physical parameters and motor 

components. Detailed overview of common types of sensor data that are often used for 

fault diagnosis is presented below: 

Table 1.1 Summary of methods used for motor fault identification 

Method Recorded Parameter Target Motor Part 

Vibration Analysis 
Vibration for analysis of fault 

characteristic frequency. 

Bearings, Shaft, rotors, 

stators 

Temperature Sensing 
Temperature for sudden 

increase due to friction etc. 

Windings, bearings, cooling 

systems 

Oil Analysis 
Oil properties like viscosity, 

contaminants etc. is studied 

Bearings, gears, lubrication 

system 

Current Analysis 
Electric current for abnormal 

spikes in usage 

Windings, electrical 

connections 

 

Acoustic Emission 
Acoustic emissions or sound 

waves 

Bearings, gears, electrical 

discharges 

Motor Current Signature 

Analysis (MCSA) 

Current waveform and 

harmonics 

Rotor bars, stator windings, 

air gap 

Flux Analysis 
Stray flux intensity or 

distribution 

Stator core, rotor core, 

magnetic circuits, Insulation 

degradation 
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1. Vibration data: Monitoring the vibrational behaviour of rotating machinery 

using vibration sensors is a common practice. By analysing the spectrum of the 

vibration signal, it is possible to identify fault characteristic frequencies. This 

analysis provides insights into the acceleration and displacement levels 

associated with specific faults, such as unbalance, misalignment, bearing 

defects, or mechanical looseness. Changes in these parameters can help diagnose 

and detect potential issues in the machinery [16]. 

2. Current data: Utilizing current sensors, the electrical current flowing through 

components or motors can be measured. Deviations from normal current 

patterns can be indicative of various issues [17], including motor winding faults, 

short circuits, or electrical imbalances. By closely monitoring the current data, 

such anomalies can be promptly detected, enabling necessary actions to address 

the underlying problems and prevent further complications. 

3. Temperature data: Temperature sensors are used to monitor the thermal 

behaviour of various components and systems. They are particularly useful for 

detecting faults related to overheating [18], such as issues with bearings, motors, 

electrical connections, or cooling systems. By monitoring the temperature of 

these components, abnormalities or excessive temperature levels can be 

identified, allowing for timely intervention to prevent further damage or failures. 

4. Acoustic data: Acoustic sensors are utilized to capture sound or noise emissions 

generated by machinery. Abnormal or excessive noise levels [19] can serve as 

indicators of potential faults such as bearing defects, gear problems, or excessive 

friction. By analysing the acoustic data, operators can identify these issues and 

take appropriate measures for maintenance and repair. However, it's important to 

note that acoustic monitoring may have limitations in certain environments 

where background noise or masking effects can affect the accuracy of fault 

detection. Therefore, careful consideration should be given to the operating 

conditions and other monitoring techniques employed in conjunction with 

acoustic data to ensure comprehensive and reliable condition monitoring. 

5. Oil analysis data: In systems that employ lubricating oil, the chemical 

composition, contaminants, and wear debris within the oil can be monitored 

using oil analysis sensors [20]. Alterations in oil properties can offer valuable 

insights into potential issues such as bearing wear, contamination, or lubrication 
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problems. It is important to note, however, that oil analysis has limitations, as 

certain faults may not be detectable through oil analysis alone. Additionally, the 

interpretation of oil analysis results requires expertise and knowledge of the 

specific system being monitored.  

6. Speed data: Speed sensors like tachometers are utilized to measure the 

rotational speed of components or systems. Deviations from the expected speed 

values can be indicative of various issues, including unbalance, misalignment, or 

mechanical faults [21]. However, it's important to note that relying solely on 

speed or RPM data may have limitations, especially in the case of fast-moving 

machines. Tachometers or speed sensors may not capture rapid variations or 

transient events accurately. Additionally, while speed deviations can signal 

potential problems, they alone cannot provide detailed information about the 

specific fault or its severity. Therefore, it is essential to combine speed data with 

other condition monitoring techniques that measure additional parameters, such 

as vibration, temperature, or current, to diagnose specific faults accurately. 

7. Optical Imaging Data:  Sensors such as infrared thermography or high-speed 

cameras play a crucial role in motor fault analysis. They capture visual or 

thermal images of motor components, revealing hotspots, material deformations, 

or abnormal surface conditions [22]. However, it is important to consider the 

cost of implementing these techniques as they can be relatively expensive. 

Additionally, optical imaging has limitations and may not detect certain types of 

faults, such as internal defects or faults without visible or thermal anomalies on 

the motor's surface. Hence, it is recommended to combine optical imaging with 

other condition monitoring techniques. By leveraging multiple sensor data 

sources and complementary techniques, the effectiveness and reliability of 

motor fault diagnosis and maintenance activities can be enhanced. 

It is worth noting that despite the availability of various types of sensors, 

vibration sensor data analysis remains the most popular method for detecting faults 

related to bearings and shafts. Vibration data provides a unique advantage over other 

sensor data in detecting these faults. Not only does vibration data detect motor bearing 

and shaft faults, but it also has the capability to distinguish between their severity and 

other factors such as unbalance. By analysing various vibration parameters, such as 
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amplitude, frequency, and phase, vibration data can provide insights into the specific 

characteristics of different faults. This means that it can differentiate between the 

severity of bearing faults, such as early-stage wear or advanced damage, and also 

identify the presence and magnitude of unbalance in the motor. This capability allows 

maintenance practitioners to prioritize and address the most critical issues, ensuring 

optimal motor performance and minimizing the risk of further damage or failures. 

The methods discussed above serve as examples of condition monitoring 

techniques that analyse physical parameters and motor components to detect potential 

faults or degradation. By integrating multiple sensor data sources and applying suitable 

signal processing and machine learning techniques, the accuracy and effectiveness of 

fault diagnosis systems can be enhanced. This comprehensive assessment of motor 

health facilitates predictive maintenance and helps minimize the occurrence of 

unexpected issues. 

1.3.3 Significance of Condition Monitoring System  

Leading research institutions such as IEEE Industry and General 

Application, the Electric Power Research Institute, and companies like Brüel & Kjær 

have consistently emphasized the importance of fault monitoring. Their research 

suggests that up to 50% of faults in motors [23] and rotating parts are attributed to 

faulty bearings and shafts. Therefore, the application of real-time condition monitoring 

systems (RT-CMS) plays a crucial role in various industries and sectors for several 

compelling reasons [24], which are discussed below. 

1. Early Fault Detection: RT-CMS enables early detection of faults, anomalies, 

and deviations from normal operating conditions using data from sensors like 

vibration, temperature, pressure, etc. A moving system works at a characteristic 

frequency under healthy conditions, but once a fault occurs, the behaviour of 

sensor data changes. Hence, implementing RT-CMS in industrial rotating 

machines helps to solve a fundamental problem of early fault detection. 

2. Increased Equipment Reliability: Monitoring the condition of critical 

components such as bearings, shafts, gears, and motors, helps ensure the 

reliability and longevity of the equipment. By addressing these issues promptly, 
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maintenance activities can be scheduled in a planned and controlled manner, 

reducing the risk of unexpected breakdowns and enhancing reliability. 

3. Optimized Maintenance Strategies: RT-CMS offers valuable insights into 

machinery condition and performance, enabling condition-based maintenance 

strategies. It replaces scheduled or reactive repairs with tailored maintenance 

based on real-time machine condition. This optimizes maintenance schedules 

and production efficiency. 

4. Reduces Cost: Condition monitoring saves costs by preventing unplanned 

downtime, mitigating major failures, and emergency repairs. It enables planned 

repairs, minimizing production losses. It also optimizes spare parts inventory 

based on actual condition assessments. 

5. Improved Safety: By detecting abnormal equipment conditions, RT-CMS helps 

in identifying safety hazards, leading to a safer workplace and reducing the risk 

of accidents. 

6. Data-Driven Decision Making: Monitoring machine parts records valuable 

data which can be used for optimizing processes, improving equipment design, 

and making informed decisions about maintenance, and repairs. This data-driven 

approach improves operational efficiency, reduces costs, and enhances 

productivity. 

The main goal of RT-CMS is to detect potential failures early by analysing 

sensor data using intelligent AI-based classification. This helps improve equipment 

reliability, optimize maintenance, reduce costs, enhance safety, and enable data-driven 

decision-making. Continuous monitoring of machinery allows for early issue detection, 

proactive maintenance, and optimal performance and longevity of high cost machines. 

1.3.4 Challenges 

The field of fault diagnosis for mechanical faults, particularly related to 

bearings and motor shafts, presents significant challenges that researchers continually 

strive to address. The faults in these components can have severe implications for 

system performance, reliability, and safety. However, diagnosing these faults is a 

complex task due to factors such as the diverse range of possible fault types, the 

inherent variability in operating conditions, and the need to differentiate between 

normal variations and abnormal behaviour. Moreover, the increasing complexity and 



25 

 

integration of mechanical systems introduce additional challenges in fault diagnosis. 

This section explores the key challenges [25] faced in the field of fault diagnosis and 

real-time monitoring for bearings and motor shafts as listed below. 

1. Varying operating conditions: It presents challenges in data collection and 

modelling for fault diagnosis. Data collection becomes complex as it requires 

capturing diverse operating conditions. Traditional fault diagnosis models 

struggle to handle changing conditions, requiring advanced techniques like 

machine learning to adapt and differentiate between normal variations and actual 

faults. Moreover, the shifting fault frequencies with rotational speed add 

complexity. Signal processing and machine learning algorithms are used to track 

and adapt to these shifting frequencies, improving fault detection. Researchers 

aim to develop robust predictive monitoring systems that address these 

challenges and provide accurate fault diagnosis for mechanical faults. 

2. Noise in sensor data: Noise interference is the presence of unwanted signals or 

disturbances that contaminate measured data, posing challenges in accurately 

detecting and analysing fault-related information. It can result from factors like 

electromagnetic interference, electrical noise, vibrations, or environmental 

conditions. This interference introduces additional components or frequencies in 

the spectrum, obscuring fault signatures and making it difficult to isolate 

relevant fault-related information. It masks or distorts fault-related signals, 

leading to false alarms or missed detections and reducing the signal-to-noise 

ratio. As a result, the accuracy and reliability of fault diagnosis systems are 

compromised, impacting their effectiveness in detecting and predicting 

mechanical faults. 

3. False Alarm: A major challenge in bearing health predictive maintenance is the 

occurrence of false alarms, where the monitoring system incorrectly detects 

faults or anomalies in the bearings. False alarms can lead to unnecessary 

maintenance actions and disrupt operations. Factors such as noise interference, 

variations in operating conditions and limitations in fault detection algorithms 

contribute to false alarms. It is important to minimize false alarms to maintain 

the integrity and reliability of the predictive maintenance system. To address this 

challenge, advanced signal processing algorithms and accurate fault signature 
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analysis techniques are employed to reduce false alarms, ensuring maintenance 

actions are taken only when necessary, optimizing efficiency, and reducing 

costs. 

4. Scalability and real-time processing: In many industrial settings, there is a 

need to monitor a large number of machines in real time. This requires system 

capable of real-time data acquisition, processing, and analysis to promptly alert 

and notify for essential proactive maintenance actions.  Scalability becomes a 

challenge when dealing with a massive amount of sensor data, especially while 

processing it in real time. Efficient algorithms and infrastructure are required to 

handle the high volume, velocity, and variety of data generated by multiple 

machines simultaneously. 

5. Artificial Intelligence: AI-based predictive maintenance encounters challenges 

that impact its effectiveness and practicality. The scarcity of labelled data 

impairs predictive models' accuracy in anomaly detection and overall 

performance. Feature extraction and selection pose another challenge in real-

world scenarios, as determining the most informative features from sensor data 

is complex. Employing techniques for feature extraction and selection is crucial 

to reduce dimensionality and identify discriminative features for accurate 

predictions. Additionally, interpretability limitations hinder practicality of the 

proposed solution. Despite achieving high accuracy, complex models like deep 

learning lack transparency. Understanding the reasoning behind predictions or 

failure diagnoses is vital for building trust and making informed decisions.  

In conclusion, addressing these challenges requires advancements in data 

pre-processing techniques, feature engineering, model development and integration with 

domain expertise. Continued research, development, and innovation in this field are 

crucial to further enhance the effectiveness and practicality of predictive fault 

maintenance systems, leading to significant benefits for industries across various 

sectors. 

 

 

 



27 

 

1.4 OBJECTIVE 

The objective of this thesis is to explore mechanical fault analysis and 

detection, with a specific emphasis on bearing and shaft faults in rotating elements. The 

research aims to enhance the reliability, efficiency, and overall performance of rotating 

machinery systems by understanding common fault mechanisms and developing 

effective detection strategies. The following objectives have been identified for this 

thesis: 

 Conduct a comprehensive literature review and analysis of various types, causes, 

and consequences of bearing and shaft faults in rotating elements. 

 Develop a framework that focuses on fault severity assessment, aiming to 

accurately measure the severity and type of faults. 

 Explore data-driven decomposition methods such as multi-resolution dynamic 

mode decomposition and time-frequency analysis using the maximum overlap 

discrete wavelet transform for non-stationary vibrational signals. 

 Develop methods capable of handling translating fault signatures caused by 

variations in speed and load conditions. 

 Develop a framework using only vibration sensor data for detecting bearing and 

shaft faults under time-varying rotational speed and discrete load conditions. 

 Utilize a complementary data fusion strategy to integrate data from vibration 

sensors into a single signal with maximum relevance. 

 Design a novel encoded statistical contour plot for signals decomposed using the 

maximum overlap discrete wavelet transform. 

 Design a multi-level convolutional neural network (CNN) model for bearing and 

shaft fault identification to improve the false alarm rate. 

 Perform experimental studies to validate the proposed fault detection techniques 

and assess their effectiveness in identifying and classifying bearing and shaft 

faults. 

The findings and conclusions of this research are expected to contribute to 

the advancement of mechanical fault analysis and detection techniques, specifically for 

bearing and shaft faults in rotating elements. The practical implications of this work can 

benefit various industries by assisting in proactive maintenance management, enhancing 

reliability, and optimizing the performance of critical rotating machinery systems. 
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1.5 OVERVIEW OF PROPOSED METHODS 

1.5.1 Bearing Fault Detection 

The Gramian-Multi-Resolution Dynamic Mode Decomposition (GMrDMD) 

approach introduces fault detection in bearings using a single accelerometer sensor. The 

framework involves transforming vibration signals into a gram matrix to enhance spatial 

resolution while preserving temporal characteristics. The gram matrix undergoes 

spatial-temporal decomposition via MrDMD, resulting in fast and slow evolving modes 

that capture transient fault characteristics. To handle noise, the framework employs a 

robust least square DMD algorithm at each MrDMD level. The framework color-codes 

the resulting mode matrix and treats it as an image input for fault classification using a 

CNN. Experimental validation on the University of Ottawa dataset, which features five 

fault vibration signal types under varying rotational speed conditions, demonstrates the 

efficacy of the framework in early bearing fault identification. 

1.5.2 Shaft Unbalance Detection 

This work focuses on developing an automated algorithm for detecting 

unbalance faults of varying strengths at different rotational speeds. Unbalance occurs 

due to uneven mass distribution, causing misalignment between the shaft's centre of 

mass and rotation axis. The proposed approach integrates data fusion, contour plot 

encoding, and deep learning techniques namely CNN, offering contributions such as a 

complementary data fusion strategy, an encoded statistical contour plot for signal 

analysis, and a two-stage warning system for unbalance detection and severity analysis. 

The effectiveness of method is examined on the dataset by Fraunhofer Institute for 

Integrated Circuits for shaft unbalance and severity detection. The proposed 

advancements aim to enhance accuracy, enable timely actions, and reduce maintenance 

expenses in rotating machinery. 

1.6 ORGANISATION OF DISSERTATION  

The thesis is structured as follows: Chapter 1 serves as an introduction, 

providing a comprehensive understanding of faults, their evolution, fault monitoring 

techniques, sensing methods, and the associated significance and challenges in fault 

detection. Additionally, it offers a brief overview of the work conducted in the thesis. 
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Chapter 2 presents an extensive literature review on fault detection, encompassing both 

static and dynamic operating conditions. This chapter examines time domain, frequency 

domain, and time-frequency domain features utilized in fault detection, along with the 

latest advancements in deep learning algorithms for predictive maintenance. Chapter 3 

delves into the intricacies of bearing geometry, fault characteristic frequencies, and 

shaft faults, including an in-depth exploration of unbalance strength. This chapter 

establishes the essential background knowledge necessary for comprehending the 

specific fault detection methodologies proposed in the thesis. Chapter 4 provides a 

detailed, step-by-step discussion of the proposed methodology for bearing fault 

detection. It encompasses the utilization of the gram matrix, multi-resolution Dynamic 

Mode Decomposition (DMD), and the overall methodology. Additionally, this chapter 

presents a description of the employed dataset and an analysis of the obtained results. 

Chapter 5 follows a similar structure to Chapter 4 but focuses on the proposed 

methodology for shaft unbalance detection and severity assessment. It introduces the 

application of the Maximum Overlap Discrete Wavelet Transform (MODWT) and 

contour plots within the proposed methodology. Furthermore, this chapter includes a 

detailed description of the dataset utilized and an analysis of the results obtained. Lastly, 

Chapter 6 concludes the thesis by summarizing the main findings and contributions. It 

also addresses the limitations of the proposed methodologies and proposes potential 

avenues for future research, aiming to further enhance fault detection techniques. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 
 

2.1 OVERVIEW 

Research in the field of bearing fault detection can broadly be categorized 

into methods designed for stationary working conditions and methods suitable for 

application under dynamic and time-varying operating conditions [26]. Each category 

addresses different challenges and requirements in fault detection.  

For stationary working conditions, numerous studies have focused on 

developing techniques that assume a stable operating state. These techniques heavily 

rely on signal processing methods, dependent on analysis in either time domain, 

frequency domain, or analysis in the time-frequency domain. Work in time domain 

entails the computation of statistical measures [27] from the vibration signal, such as 

root mean square, peak value, standard deviation, skewness, kurtosis, shape factor, and 

impulse factor. On the other hand, analysis in the frequency domain employs techniques 

like FFT to examine the frequency components present in the signal or amplitude of 

power spectrum. Further, time-frequency analysis [28] methods like the STFT and 

Winner-Ville distribution etc. has been widely used for bearing fault detection these 

methods offers insights into time-dependent variations of characteristic frequencies. 

Though these signal processing methods are known to give satisfactory results but the 

high knowledge required for selecting frequency, mother wavelet and sub-band limit 

[29] its usage. Also, these methods require extensive feature selection to categorize the 

fault and many times these handcrafted features fail to extract all the patterns from the 

waveform which results in lesser accuracies for fault detection. 

In contrast, the dynamic and time-varying operating conditions pose 

additional challenges for fault detection. Vibration signals recorded from bearings in 

real-world scenarios often exhibit non-stationary behaviour, consisting of periodic 
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components, impulse components from faults or cracks, and broad-band background 

noise generated by other machine parts. Traditional methods like order tracking [30] 

and time or phase averaging-based methods [31]  were used but these methods struggle 

with spectrum smearing caused by variable speed. To address these challenges, 

researchers have proposed advanced techniques that can handle non-stationary signals. 

These methods focus on capturing the transient nature of faults from the vibration 

signal. For instance, adaptive data based techniques [32], such as Empirical Mode 

Decomposition (EMD), Dynamic Mode Decomposition (DMD), Variational Mode 

Decomposition (VMD), synchro-squeezing transform (SST) and local mean 

decomposition (LMD) have gained popularity for their ability to analyse non-stationary 

signals and extract fault signatures at different scales and time intervals. These data-

driven methods have shown promising results in detecting faults under dynamic 

operating conditions and have become foundational methods and base of future result. 

In both the domains ultimately for decision-making [33], researchers have 

increasingly favoured machine learning and deep learning approaches over thresholding 

based methods. Machine learning algorithms encompass feature extraction, feature 

selection, and classification stages, leveraging data to improve accuracy. Commonly 

employed machine learning methods for bearing fault detection include optimised 

nearest neighbours, support vector machine (SVM), principle component analysis, and 

artificial neural networks. While these methods have yielded satisfactory results, the 

desire to automate feature extraction and minimize human intervention has spurred the 

adoption of deep learning techniques. Inspired by the brain's structure, deep learning 

models facilitate hierarchical feature learning [34] from raw data. Models such as 

convolutional neural networks (CNN), dense neural networks (DNN), stacked auto 

encoders, and recurrent neural networks have demonstrated superior accuracy compared 

to traditional machine learning models. Nonetheless, the process of training deep 

learning models can be computationally demanding and requires a substantial volume of 

labelled data. This creates a balance between the desired accuracy and the 

computational resources needed. This thesis primarily concentrates on fault diagnosis 

under varying speed conditions, thereby emphasizing a comprehensive literature review 

of existing techniques suitable for dynamic operating conditions in the subsequent 

section.  
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2.2 DETAILED REVIEW 

 2.2.1 Order Tracking Based Methods 

Order tracking (OT) synchronizes vibration data with the rotational speed to 

analyse the signal in terms of order components, allowing for accurate fault detection 

even in varying speed scenarios. However, spectrum smearing can occur when the 

speed continuously changes, spreading fault-related frequencies and hindering accurate 

fault identification. Inaccurate OT based methods also require domain knowledge to 

understand signal spectrum sometimes this can lead to false alarms or missed 

detections. Further research is needed to overcome these limitations and develop 

alternative approaches for fault detection in variable speed systems. 

Several studies have proposed innovative approaches to improve the 

analysis of order components and enhance fault diagnosis in different systems. In [35], a 

combination of Vold-Kalman filtering and computed order tracking is presented, 

demonstrating improved Fourier analysis results through numerical simulations and 

experimental validation. Research in [36] introduces a phase demodulation-based order 

tracking method that accurately measures rotation angle and time relationship for 

bearing and gear signals. Paper [37] discusses a technique that utilizes EMD and 

intrinsic cycles to simplify signal analysis, proving its effectiveness as a condition 

monitoring tool even without rotational speed information. Researchers in [38] have 

developed a tacholess order tracking method for wind turbine gearboxes, which utilizes 

phase reference information and resampling for analysis. Work in [39] addresses the 

challenge of limited sensor installation by using virtual multichannel signals in the 

angle domain, combining computed OT and VMD for independent component analysis. 

Lastly, [40] introduces an order spectrogram-based method that estimates instantaneous 

frequency through ridge extraction, performs resonance demodulation, and rescales the 

time-frequency distribution to suppress non-stationary interference caused by speed 

fluctuations. 
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2.2.2 Time-Frequency Analysis Based Methods 

In the field of fault diagnosis for rolling element bearings, time-frequency 

analysis plays a crucial role in accurately extracting diagnostic information from 

vibration signals. An early work on in TF analysis is proposed in [34] which uses a 

three-level discrete wavelet transform (DWT) followed by the FFT of the approximate 

coefficient to establish unbalance detection of shaft using on spectrum visualization. 

Work in [41] propose a combination of a ridge extraction algorithm and an enhanced 

empirical wavelet transform to estimate instantaneous frequency for feature extraction. 

Another method proposed in [42] introduces a sparsity-promoting low-rank 

decomposition technique that utilizes robust principal component analysis to denoise 

the TF representation of signals. The method incorporates a reassignment strategy to 

enhance the detection of fault characteristics. In [43], researchers present a novel 

method known as the transient extracting transform, based on the STFT. The method 

yielded a concentrated TF representation, verified using quantized indicators such as 

Rényi entropy and kurtosis. Approach proposed in [44] uses CWT combined with 

Gabor wavelets with multiple Q-factors, combining sets of continuous wavelet 

coefficients for each Q-factor to generate a time-frequency map. Comparison of 

proposed method with Morlet wavelet transform and tuneable Q-factor wavelet 

transform (TQWT) is extensively highlighted by the researchers. A novel TF analysis 

method using synchrosqueezing extracting transform is introduced [45]. The method 

exhibits improved noise robustness and lower time consumption which is confirmed 

using numerical signal analysis.  

2.2.3 Data Driven Decompositions 

  This section reviews the advancements in field of adaptive data driven 

methods for predictive maintenance. Work proposed in [46] focus on detecting 

unbalance of different strengths using EMD followed by novel dimensionality 

reduction, which achieves an accuracy of 98.13% with SVM under constant rotating 

speed. Researchers of [47] proposed a new data-driven approach for fault detection and 

isolation by combining EMD, envelope analysis, and a pseudo fault signal. Dominant 

mode function is extracted using EMD followed by envelope modulation with multiple 

sources and noise. Work in [48], also explores strength of by combining EMD and 
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VMD. The method adaptively selects sensitive IMF components based on an evaluation 

index and analyses them using Hilbert spectrum. To overcome problem associated with 

mode mixing work in [49] uses ensemble local mean decomposition and kurtogram for 

rotating machinery fault diagnosis. The method generates product functions which 

characterizes the fault impulse based on kurtosis index, and then an optimal band-pass 

filter. 

 To address the limitation of physical interpretation of extracted 

components dynamic mode decomposition (DMD) emerged from fluid mechanics and 

has gained significance through Koopman spectrum analysis. In [50], the development 

of DMD is discussed, offering strong mathematical and physical implications. 

Variations of DMD have been explored to suit different applications. For fault 

diagnosis, [51] proposes the use of approximate entropy applied to decomposed DMD 

modes. In [52], the advantages of DMD over other signal processing methods are 

highlighted, and a rank truncation method is introduced to extract dominant DMD 

modes. Additionally, [53] presents an efficient algorithm called PRLDMD that 

preserves the amplitude and energy of transient features in faulty signals. Another 

extension of DMD, known as MrDMD [54], is capable of extracting transient events 

through recursive application of DMD. These advancements in DMD and its variations 

contribute to improved understanding and analysis of signals in various domains. 

2.2.4 Advance AI Networks 

Significant advancements have been made in deep learning architectures for 

fault analysis research in [55], provides an improved autoencoder called the SN-AE. 

This model incorporates a speed branch to address challenges related to speed 

variations. Experimental evaluations conducted on various rotating machines 

demonstrate that the SN-AE outperforms existing autoencoder-based methods, 

achieving superior fault detection performance. Approach presented in [56] is based on 

VMD-DenseNet method, which converts vibration signals into images using Hilbert 

spectrum analysis through VMD and utilizes the lightweight DenseNet network for 

accurate image classification and prediction. The VMD-DenseNet achieves an 

impressive accuracy rate of 92% for common motor faults. Additionally, research in 

[57] introduces the deep sparse representation network (DSRNet), a novel deep learning 
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model specifically designed to suppress noise and directly learn features from noisy 

vibration signals. DSRNet employs a sparse representation layer to filter out impulsive 

components and reduce noise, followed by an adaptive densely stacked convolutional 

structure for effective feature extraction. Experimental results on gearbox cases validate 

the superiority of DSRNet in terms of feature learning and signal denoising 

performance when compared to popular deep learning networks. 

Research in [58], proposes a novel DL architecture called the Deep 

Interpolation ConvNet which incorporates specialized layers, such as sub-ConvNet 

units, weight units, and fusion units, to effectively extract fault features and handle the 

influence of working conditions. To enhance the architecture's performance, a 

ConditionSenseNet (CSN) module is introduced, which dynamically represents crucial 

features while suppressing the impact of unknown working conditions.  

Authors in [59] introduce a decision-level fusion approach that utilizes an 

ensemble model consisting of a convolutional residue network, auto-encoder, and deep 

belief network (DBN) to classify multiple faults. This ensemble model achieves an 

impressive accuracy of 98.08% for data collected under various speeds. Transfer 

learning is explored in [60], where a pre-trained VGG19 model is employed to analyse 

Mel frequency spectrogram images of vibration signals obtained under a fixed 

unbalance strength of 3.2gm. Transfer learning has gained attention in the field of deep 

learning for bearing fault diagnosis in rotating machinery as it addresses the time-

consuming process of constructing and training convolutional neural network (CNN) 

models and reduces the need for extensive prior knowledge [61]. Notable advantage of 

transfer learning methods is demonstrated in, where a pre-existing AlexNet model is 

utilized. In this approach, only the last fully connected layer needs to be replaced, 

resulting in time and knowledge savings. Despite this simplicity, the method achieves 

effective feature extraction and condition classification. By transforming raw 

acceleration signals into time-frequency images, the model can process diverse input 

forms. Experimental validation using standardized images generated through various 

time-frequency analysis methods confirms the effectiveness of this approach. These 

findings underscore the practical applicability of the method in real-world scenarios. 
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2.3 MOTIVATION  

This thesis is motivated by the research gaps identified in the field of rotor 

fault detection and severity assessment, specifically regarding single sensor type 

methods under time-varying rotational speed. Existing approaches in AI have high time 

complexity, and incur moderate processing costs. The aim is to develop innovative 

algorithms that strike a balance between accuracy, time complexity, and processing 

cost. Additionally, most work focuses only on bearing health monitoring, but from the 

mechanical standpoint, the stress caused by unbalanced faults extravagate bearing 

faults. This research focus on use of data-driven methods for feature extraction of 

bearing fault signatures from vibration signals. 
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CHAPTER 3 

 

FAULTS OVERVIEW 

 

3.1 ROLLING ELEMENT BEARING 

 

3.1.1 Structure 

The mechanical structure of a rolling element bearing consists of several 

key components that work together to facilitate smooth rotational motion and support 

axial and radial loads. The main components of a rolling element bearing are as shown 

in Figure 3.1. The mechanical structure of a rolling element bearing consists of an outer 

ring (outer race), inner ring (inner race), rolling elements (balls or rollers), and a cage. 

The outer ring provides support, the inner ring rotates and transmits the load, and the 

rolling elements enable smooth motion. Ball bearings have spherical balls for low-

friction rotation, while roller bearings use cylindrical, tapered, or spherical rollers for 

higher load capacities. The cage separates the rolling elements, maintaining proper 

spacing [62]. 

 

Figure 3.1 Components of a rolling bearing element. 

3.1.2 Types of Defect And Causes 

Bearing faults can be categorized into distributed faults and localized faults: 
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1. Distributed faults: 

 Fatigue Spalling: Small cracks and surface fatigue due to repeated loading and 

unloading. 

 Brinelling: Dents or indentations caused by excessive static or impact loads. 

 Fretting corrosion: Microscopic wear and corrosion due to slight movement or 

vibration [63]. 

2. Localized faults: 

 Inner raceway fault: Cracks, pitting, scoring, or wear on the inner ring. 

 Outer raceway fault: Similar types of damage as the inner raceway fault on the 

outer ring. 

 Ball fault: Pitting, spalling, cracking, or wear on the rolling elements [64]. 

 Combined fault: Multiple types of faults occurring simultaneously in the 

bearing. 

 

Bearing faults can occur due to various factors. Inadequate lubrication, 

whether it's due to insufficient lubricant or using the wrong type, can lead to increased 

friction, heat, and wear on the bearing surfaces. Contamination by foreign particles or 

contaminants can also accelerate wear and damage the raceways and rolling elements. 

Misalignment or unbalance between the bearing and the rotating shaft or housing can 

result in excessive loads and uneven force distribution, leading to localized faults. 

Operating the bearing under loads beyond its design capacity can cause fatigue and 

accelerated wear. Additionally, improper installation practices, such as excessive 

interference fit or incorrect clearances, can contribute to bearing faults. Addressing 

these factors is vital to ensure optimal performance and durability of bearings. 

3.1.3 Mathematical Analysis 

Fault characteristic frequencies (FCF) in bearing are specific frequencies 

that are generated as a result of the faulty conditions within the bearing. These 

frequencies are derived from the impulse generated during interaction between the 

rolling elements and the faulted areas on the inner and outer raceways of the bearing. 

The calculation of these characteristic frequencies depends on the bearing's geometry 

and the shaft's rotational speed. As a result, additional processing techniques are 

necessary to effectively handle and analyse the time-varying FCF for accurate diagnosis 
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of bearing faults in such situations [65]. FCF can be calculated as mentioned below 

where f is the frequency of rotation in Hz, m is the number of ball elements, γ is the 

angle of contact, db is the diameter of the ball and dc is cage diameter [66] as shown in 

Figure 3.2. 

 

Figure 3.2 Mechanical drawing of bearing structure [66]. 

 Cage Frequency (FTF): FTF is the frequency at which the cage or retainer that 

holds the rolling elements rotates.  
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 Ball Pass Inner (BPI): BPI is the frequency at which the rolling elements pass 

over the inner raceway fault.  
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 Ball Pass Outer (BPO): BPO is the frequency at which the rolling elements 

pass over the outer raceway fault.  
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 Ball Spin frequency (BSF): It is associated with the spinning of the rolling. 
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By analysing the vibration signals of the rotating machinery using 

techniques such as spectral analysis or Fourier transform, these characteristic 

frequencies can be identified. The presence and intensity of these frequencies indicate 

the presence and severity of specific bearing faults, allowing for early detection, 

diagnosis, and appropriate maintenance actions to be taken. 

The bearing fault-induced signal can be viewed as the impulse response s(t) 

of a one-degree-of-freedom mass-spring-damper system [67] as shown in Equation 3.5, 
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the vibration system determines the excited resonance frequency ω, while the amplitude 

A and damping coefficient β further characterize the system. 

                       (3.5) 

Hence the bearing fault signal x(t) can be modelled as repeated impulse 

response as shown below, where M is the total number of impulses which is determined 

by the signal length T and the fault characteristic frequency fc, Am is the amplitude of 

the m
th

 fault impulse response, Tp is the reciprocal of fc and τi is the random slippage 

during each Tp  [68] as shown in Figure 3.3. 
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Figure 3.3 Fault induced bearing signal under constant speed. 

 

3.2 SHAFT FAULT 

A shaft in rotating machines is a cylindrical component that transmits power 

and rotational motion, connecting different parts of the machine. Made of durable 

materials, shafts support and align components, use couplings for torque transfer, and 
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may have keyways or splines for secure connections. Balancing techniques minimize 

vibration, while regular maintenance and inspection ensure their integrity. Shafts are 

vital for efficient machine operation, enabling power transmission and interconnection 

of components [69]. Various standards and guidelines exist to define acceptable levels 

of unbalance for different types of machinery. The ISO 1940-1:2016 and ISO 10816 

standards, for instance, provides specifications for balance quality requirements of 

rotors. It establishes tolerance limits for residual unbalance based on factors such as the 

machine type, rotational speed, and balance quality grade. 

3.2.1 Types of Defect and Causes 

Some of the common shaft faults that can occur in rotating machinery are listed 

below. The work in this thesis focuses on unbalance fault detection and strength of 

unbalance.  

1. Shaft unbalance: It is an uneven mass distribution in rotating machinery, 

causing centrifugal forces, vibration, decreased performance, and potential 

damage. 

2. Misalignment: Rotational axes of connected shafts are improperly aligned, 

leading to increased forces, vibration, bearing wear, and reduced efficiency. 

3. Bent Shaft: Physical deformation causes the shaft to deviate from its straight 

form, resulting in vibration, stress on bearings, and decreased performance. 

4. Shaft Cracking: Cracks develop due to cyclic loading, stress concentrations, 

fatigue, or improper maintenance, compromising structural integrity and risking 

catastrophic failure. 

5. Bearing Faults: Issues like misalignment, lubrication problems, wear, pitting, 

or failure in bearings cause vibration, friction, noise, and reduced machinery 

lifespan. 

6. Shaft Eccentricity: Centre of rotation does not coincide with the geometric 

center due to defects, assembly issues, or wear, leading to vibration, stress on 

bearings, and decreased performance. 

7. Shaft Runout: Radial deviation from true circular path caused by uneven wear, 

defects, or mishandling results in vibration, stress on components, and reduced 

accuracy. 
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8. Resonance: Natural frequency coincides with excitation frequency, causing 

excessive vibration due to unbalanced masses, stiffness, or inadequate damping, 

leading to potential damage. 

Shaft faults in rotating machinery can stem from manufacturing defects, 

wear and tear, debris accumulation, component damage, or incorrect assembly. It leads 

to adverse effects such as vibration, reduced performance, bearing and seal wear, 

structural damage, and noise. Detection methods include vibration analysis, portable 

balancing equipment, modal analysis, and infrared thermography. Balancing procedures 

involve static and dynamic balancing, using correction methods like adding or removing 

weights. By addressing shaft unbalance, the overall performance, reliability, and 

lifespan of the machinery can be improved while minimizing the risk of catastrophic 

failures. 

3.2.2 Mathematical Analysis 

The unbalance factor is represented as "e" or "eU," It is a measure of the 

severity of unbalance in a rotating component. It is defined as the ratio of the calculated 

centrifugal force due to unbalance to the product of the mass of the rotating component 

and the square of the reference speed. The unbalance factor can be expressed 

mathematically as [70]: 

   
    

    
 (3.7) 

where, F is centrifugal force due to unbalance, r is the distance from the 

centre of rotation to the centre of gravity of the unbalanced mass, m is the mass of the 

rotating component and ω is the rotational speed of the component.  

 Centrifugal Force (F): 

The centrifugal force is the force generated by the unbalanced mass as it rotates. It is 

directly proportional to the square of the rotational speed n and the unbalance factor 

eU [71]. Mathematically, it can be expressed as: 

          (3.8) 
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 Centrifugal Moment (M): 

The centrifugal moment is a measure of the unbalance's effect on the rotating 

machinery. It represents the moment generated by the centrifugal force acting at a 

distance from the axis of rotation. Mathematically, it is given by [71]: 

      (3.9) 

 Correction Weight (W): 

To balance the rotating component, correction weights are added at specific 

locations to counteract the unbalance. The magnitude and position of the correction 

weights can be determined using the following formula [72]: 

  
 

    
 

(3.10) 

By calculating the centrifugal force, centrifugal moment, and correction 

weight, engineers can determine the necessary adjustments to balance the rotating 

machinery effectively. It's important to note that unbalance can also be expressed in 

terms of angular displacement or phase angle. The phase angle represents the position 

of the unbalance mass relative to a reference point on the rotating component. It is 

measured in degrees or radians and provides information about the location of the 

unbalance, which is crucial for accurate balancing. 

Additionally, there are various methods to measure and analyse unbalance, 

such as vibration analysis, which involves monitoring and interpreting the vibration 

signals produced by the rotating machinery to assess the severity of unbalance and 

identify corrective actions [73]. These mathematical concepts and calculations play a 

vital role in diagnosing, quantifying, and rectifying unbalance-related issues in rotating 

machinery, ultimately ensuring smooth and reliable operation. 
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CHAPTER 4 
 

BEARING FAULT DIAGNOSIS 

 

 

4.1 OVERVIEW 

The chapter provided detailed discussion of the approach employed for 

bearing fault identification. The primary goal of this work is to develop a tachometer-

free method capable of identifying faults using single sensor data, while effectively 

addressing the translation of fault signatures resulting from variations in rotational 

speed.  

To achieve this objective, the MrDMD framework is extended, and a novel 

method called GMrDMD is introduced. This method enhances the spatial resolution of 

vibration signals through gram matrix transformation while preserving their temporal 

characteristics. The GMrDMD technique involves a spatial-temporal decomposition of 

the gram matrix using multi-resolution dynamic mode decomposition. Subsequently, the 

resulting mode matrix is color-coded and utilized for fault classification, leveraging 

convolutional neural networks (CNNs) to eliminate the dependency on expert 

knowledge for feature extraction.  

The proposed methodology is validated using experimental simulations with 

data from the University of Ottawa, covering varying rotational speeds. It is structured 

into three stages: signal pre-processing, feature generation, and classification, as 

depicted in Figure 1. Performance metrics are employed to evaluate the method's 

effectiveness, ensuring a comprehensive assessment of its performance. The results 

obtained from the experiments demonstrate the accuracy and efficiency of the approach 

in identifying bearing faults. 

 

4.2 METHOD 

This section is divided into three stages namely signal preprocessing, feature generation 

and classification Figure 4.1 shows the flowchart of the proposed method. 
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Figure 4.1 Flowchart of the proposed methodology. 

4.2.1 Signal Pre-processing 

4.2.1.1 Segmentation & Resampling  

The raw signal is originally sampled at 200 KHz for duration of 10s. For 

efficient resource utilization the signal is resampled at 100 KHz and segmented without 

overlapping. The purpose of segmentation is to subdivide a large signal into small 

sections which have similar properties. The segment size varies according to the 

occurrence of the frequency region of interest in a signal. Then each sub-signal is 
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transformed into a gram angular field which preserves the temporal relation of the 

original segment while separating inference signal. 

Figure 4.2 shows the raw signals under increasing rotational speed. It can be 

observed that no significant information can be understood based on the raw signals 

except that the amplitude is increasing with time. To further analyse the signal FFT of 

the input signal is plotted as shown in Figure 4.3.  It can be seen from the frequency 

spectrum that majority information is present below 50 KHz. Hence resampling of 

original vibration signal at 100 KHz is performed.  The resampled signal is segmented 

into 500 sub signals such that each sub-signal has fault characteristics. 

 

Figure 4.2 Raw vibration signals under increasing speed condition. 

 

Figure 4.3 Frequency spectrum of orignal signals shown in figure 4.2. 
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4.2.1.2  Gram Based Transformation 

In case of varying speed, it is important to preserve the temporal relation 

between sample points. Gram matrix is an ancient representation that calculates 

complete inner product space of vectors. The extension of this to gram angular field was 

first proposed in 2015, as a transformation of 1D time series signal to a 2D 

representation using polar coordinates. Since then, GAF has shown excellent results 

with ECG, ECoG for activity tracking, financial market tracking, fault monitoring etc.  

Let V be a given time series sensor data that is first rescaled to have a maximum value 1 

and minimum value -1 using Equation 4.1. Then the scaled signal is transformed into 

polar space where the angular value is determined by taking trigonometric inverse of 

amplitude and the radius is calculated as the time stamp divided by number of samples 

as shown in Equation 4.2.Finally, the polar representation is used to calculate the G 

matrix Equation 4.3 whose leading diagonal represent original signal and remaining 

columns from top left to right represent the preserved the temporal correlation between 

signal. This transformation method is bijective and invertible as followed from 

mathematical principle of inverse trigonometric operations [74]. 

 

  
                     

             
                                                             (4.1) 

 

     {
                      

             
                               (4.2) 

 

                                                                        (4.3) 

4.2.2 Multi-Resolution DMD 

The basic idea of DMD is to form dynamic system matrix using Koopman 

frequency analysis [50]. The eigenvectors of this matrix form coherent spatial-temporal 

modes while eigenvalues depict how each mode evolves in time. The advantage of 

DMD is that it produces non-orthogonal single frequency modes which are used in 

diagnostics. Usually, DMD decompose a multivariate time signal but mechanical 

vibration signals are 1D time-series. The algorithm of proposed standard DMD is 

presented in [22] transforms mechanical signal into a m x n shift-stack Hankel matrix as 
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shown in Equation 4.4. Considering V1, V2…Vn as snapshots V‟ can be written as 

Equation 4.5. 

    [

     
   
       

    

  

 
      

]                                 (4.4) 

 

                                                                  (4.5) 

This V‟ matrix is now rearranged in the form of two snapshot matrix X and Y. 

                                                                 (4.6) 

                                                                   (4.7) 

The crux is to find A matrix such that Y = AX, the algorithm applied to find 

A can be found in [74]. Thus, evolution of X to Y is found using eigenvalues of A. This 

approach suffers from noise bias effect hence an improved framework tlsDMD [75] is 

used for countering the effect of noise. The tlsDMD aims to find a total least square 

solution for estimating error in both the matrix X and Y using Equation 4.8. 

                                   ‖
  

  
‖                 (4.8) 

The problem of noise tolerance is solved using tlsDMD and multi resolution 

DMD approach has been adopted to handle the problem of extracting transient events. 

The MrDMD method successively pulls out time-frequency information in a principled 

way. The modes with the slowest variation are extracted at each level. This gives a time 

frequency representation as shown in Figure 4.4 . where sampling window at each level 

is divided into half and slow varying modes are selected at each level for reconstructing 

the original signal V(t) without initial conditions as shown in Equation 4.9 where,    is 

the level of decomposition and M1, M2 ... are number of slow modes selected at each 

level   is the frequency corresponding to the eigenvector  . 

      {∑           
   
   

    ∑           
   
   

}          (4.9) 

After completion of signal processing we get an NxN gram matrix on which 

a four-level multi-resolution tlsDMD is applied. This step gives two matrices namely 

mode and dynamic whose significance can be understood from Koopman theory [50]. 

At each level of decomposition, the time axis is sampled into 2
L
 sub-parts, where L 
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represents the level of decomposition and tlsDMD is performed on each sub part to 

calculate the modes. The mathematical process of calculating modes matrix is already 

discussed in [75]. These modes are typically Eigen vectors corresponding to individual 

frequencies of the original gram matrix. Hence the collection of the entire modes into a 

snapshot is able to isolate the behaviour corresponding to all frequencies of original 

matrix. This snapshot is used as input for classification using a CNN Figure 4.5. shows 

the mode snapshot for the five classes under four types of varying rotational speed. 

 

Figure 4.4 Time frequency representation generated using MrDMD. 

 

Figure 4.5 Mode snapshots generated for 5 classes under four speeds. 
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4.2.3 Classification  

The next step after generating mode snapshot is to perform classification, in this work 

we used a 10 layer CNN inspired from GoogleNet architecture [24]. A CNN consists of 

three basic layers namely convolutional layer which strides kernel of a specified size 

over the input image to get a convolved output of kernel function with input image 

followed by pooling layer and activation layer. The proposed structure uses 4 inception 

blocks as shown in Figure 4.6 with different kernel sizes of (7x7, 5x5, 3x3 and 1x1) 

each with a single stride. The main advantage of the structure is that it gives the network 

an idea about the spatial resolution of the input. After each inception block filter output 

concatenation is performed along the depth.  

Since fault characteristic require non-linear classification, hence relu is used as 

activation function for the proposed CNN. We have also used drop out layer with 0.2 

dropping fraction which ensures that our network avoids over fitting on the training 

data. Figure 4.7 shows the basic block diagram of the used CNN model for fault 

classification. 

 

Figure 4.6 Inception module used in CNN. 

 

 

Figure 4.7 Proposed 10 layer CNN network. 
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4.3 EXPERIMENTAL SETUP 

This section firstly describes the used dataset followed by an overview of 

the considered performance metrics. Lastly the results and discussion section cover the 

comparison of the proposed work with other relevant deep learning-based methods from 

literature. All the experiments are carried on Intel i5 9
th

 gen processor with 8 GB RAM. 

4.3.1 Dataset  

The proposed data driven fault classification method is validated using time-

varying rotational speed dataset from the University of Ottawa, version 2 published in 

2019 [76]. The data from university of Ottawa consists of vibration signals under four 

time-varying rotational speeds as mentioned in Table 4.1. The vibration data is collected 

for ER16K rolling element using ICP accelerometer. The experimental setup for 

recording signals is shown in Figure 4.8. The recorded signal length is of 10s, and has a 

sampling frequency of 200 KHz and for each speed condition three trials are conducted. 

When the ball element of the bearing interacts with a fault region it 

produces a fault frequency proportional to rotational speed in Hz.  This data contains 

vibration signals for five faults type namely ball (class-0), combined (class-1), healthy 

(class-2), inner raceway (class-3) and outer raceway fault (class-4).  

 

Table 4.1 Various Speed Condition Of Dataset 

Speed Condition Speed Value (in Hz) 

A- Increasing 14.1 to 23.8 

B- Decreasing 28.9 to 13.7 

C- Increasing - Decreasing Increased: 14.7 to 25.3 

Decreased: 25.3 to 21 

D- Decreasing - Increasing Decreased: 24.2 to 14.8 

Increased: 14.8 to 20.6 
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Figure 4.8 Experimental setup to record vibration data [76]. 

4.3.2 Performance Metrics 

      To evaluate the proposed GMrDMD method widely used accuracy 

metric and confusion plot is considered. Accuracy is the ratio of total correct classified 

sample to the total number of samples. It evaluates an overall average performance 

without considering class wise categorization. Accuracy is insightful only for a 

balanced class problem. Since in our dataset we have equal samples for each class 

accuracy gives a good idea about model performance. Another metric to understand the 

micro-level performance is confusion metric it gives a holistic analysis of each class. It 

helps in understanding which classes are closer to each other causing confusion and 

wrong prediction in the model.  

4.4 RESULTS AND DISCUSSION 

The data of trial 1 is divided into 5 datasets which are individually used for 

training and testing. Table 4.2 summarizes the experimental data setup for trial 1 (T1) 

where 80% data is used for training and 20% for testing. The remaining two trials T2 

and T3 are only used as testing data for the model. The D5 dataset is most crucial for 

our experiment as it captures all types of speed variation. 
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Table 4.2 Experimental Setup of Data 

Data (t1) Symbol Total Sample Train Test 

A D1 2500 2000 500 

B D2 2500 2000 500 

C D3 2500 2000 500 

D D4 2500 2000 500 

(A+B+C+D) D5 10000 8000 2000 

 

The 500 sub signals from each class were used to generate the mode 

snapshots according to the methodology discussed in previous section. The snapshots 

obtained after GMrDMD are augmented for scale and rotational invariance.  These were 

now given as input to a 10-layer CNN inspired from GoogleNet architecture. The CNN 

structure uses multiple kernel sizes of which gives network a perspective about spatial 

resolution of the image. A summary of accuracy obtained using the model is mention in 

Table 4.3. The model shows best performance for increasing speed with an average 

accuracy of 98.2% while, the average accuracy for all four-speed condition is 94.8%. 

Figure 4.9 shows the confusion matrix on dataset D5 it can be seen that class 0 

corresponding to ball fault has maximum misclassification with a false detection rate of 

4.8% while the class 3 corresponding to inner raceway fault has the lowest false 

detection rate of 0.9%. Also, it should be noted that the model raises a fault warning for 

2.7% times when in reality the roller bearing is not faulty. This category of false alarm 

is of concern and further improvement is possible in this direction. The plot of model 

training accuracy and loss for dataset D5 is shown in Figure 4.10. 

 

Table 4.3 Summary Of Accuracy Obtained On Dataset 

Trial Accuracy 
Dataset 

D1 D2 D3 D4 D5 

T1 98.67 96.81 97.17 97.43 94 

T2 98.41 96.46 98.31 96.71 96.12 

T3 97.52 96.9 96.48 97.24 94.28 

Mean 98.2 96.72 97.32 97.12 94.8 
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Figure 4.9 Plot of accuracy for three trials of each dataset. 

 

Figure 4.10 Plot of accuracy for three trials of each dataset. 

We also tested the generated feature set with other state of art DNN 

architectures the results for the same is summarized in Table 4.4 along with other 

similar work done on the same dataset for fault identification. Most of the discussed 

work uses a standard train-test split size of 80:20. A VMD based transfer learning 
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method [77] using Hilbert spectrum images with DeneNet is able to achieve 92% 

accuracy. Similar method proposed in [78] is also using IMF of VMD as an input to a 

deep belief network is achieving an accuracy of 93.17%. The other works proposed in 

[79] considers subset of fault types using a feature set based on wavelet packet 

transform. Research in [80] uses local mean decomposition-based data driven method to 

identify four fault conditions except combined and ball fault to achieve an accuracy of 

95.88% with random forest classifier. 

 

Table 4.4 Comparison with related work 

Method Features Class Average Accuracy (%) 

Proposed-CNN 

GMrDMD modes 

3 98.89 

Proposed-CNN 

5 

96.83 

Proposed-AlexNet 84 

Proposed-DenseNet 93.62 

Proposed-GoogleNet 93.4 

VMD-DenseNet [77] Hilbert Spectrum  5 92 

AVMD-DBM-ELM [78] IMFs Data driven 5 93.17 

WPT-MWSVD+SVM [79] Wavelet packet 3 87.8 

HPO-RF [80] 
Local  Mean 

Decomposition 
3 95.88 
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CHAPTER 5 
 

BEARING FAULT DIAGNOSIS 

 

5.1 OVERVIEW 

This chapter aims to address the critical fault of unbalance in rotating 

machinery through the development of an automated algorithm capable of detecting 

unbalance and analyzing its severity in real-time. The algorithm utilizes data fusion, 

contour encoding, and deep learning techniques to achieve its objectives. Vibration data 

from three sensors is integrated into a single signal to maximize its relevance. 

Additionally, a novel encoded statistical contour plot is introduced to decompose the 

signal using the maximum overlap discrete wavelet transform. The system includes a 

two-stage warning system to effectively detect unbalance and analyze its severity.  

 

The proposed approach is validated using a dataset obtained from the 

Fraunhofer Institute for Integrated Circuits, demonstrating its effectiveness. The results 

show that the proposed algorithm achieves a high accuracy rate in classifying the 

severity of unbalance, surpassing existing methods. The distributed architecture and 

utilization of single modal data make the algorithm well-suited for real-time 

applications. To further enhance accuracy, future work can focus on refining contour 

encoding techniques and expanding the labeled dataset to incorporate more advanced 

deep neural networks. 

5.2 METHODOLOGY  

The work proposes a three stage method for identifying unbalance and 

classifying its severity based on ISO standards for small machines as mild, moderate 

and severe as shown in Figure 5.1. The following sub-section discusses the details of 

each stage. 
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Figure 5.1 Flowchart for the proposed methodology. 

5.2.1 Data fusion 

Fusion refers to the process of amalgamating information from different 

sources. This can be done at three levels. First is the sensor level, where multi-domain 

sensors record data that gets processed differently, as proposed in [81]. The second type 

is data level, where sensor data is combined based on mathematical or domain 

knowledge to form a single signal with relevant and consistent information. Third is 

decision-level fusion involving an ensemble of multiple algorithms [82] to complement 

each other‟s drawback in the decision-making phase.  

This work uses the frequency domain for performing data level fusion of three vibration 

sensors. Fault signals are associated with fault characteristic frequency hence frequency 

domain has been chosen for data fusion. Two of the sensors are placed in an orthogonal 

manner at the bearing block and one at the motor mount. Firstly, FFT is calculated for 

signals S1, S2 and S3 to obtain frequency spectrum F1, F2 and F3, respectively. Then 

point wise mean is calculated and inverse FFT (IFFT) is performed to obtain the fused 

signal as given by Equation 5.1. The frequency domain is ideal for fusion because the 

region of interest for unbalanced machine fault lies at the amplitude of peak frequency. 

With variation in speed, the peak frequency varies and often becomes difficult to 

distinguish in the spectrum obtained under the real-world environment with ambient 
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noise. The recording of individual sensors and the obtained fused signal of a signal 

segment of 1s is shown in Figure 5.2. 

           [ ∑
                 

 
 
    ]   (5.1) 

 

Figure 5.2 Representation of fused signals obtained for different strengths of unbalance. 

5.2.2 Maximum Overlap Discrete Wavelet Transform 

Wavelet-based signal decomposition [29] is among the most suitable 

method for the feature generation of non-stationary signals. It uses a time-shifted and 

scaled collection of basis functions of the selected mother wavelet. Traditionally DWT 

has been used for machine fault detection [34] but it suffers from an inherent 

disadvantage of loss of data due to down-sampling and stringent requirement of 2n 

samples in a signal. Owning to this MODWT was proposed as a revised version of 

DWT which does not decimate the decomposed signal at each scale. This makes 

MODWT redundant in nature as well as energy-preserving decomposition. Hence 

XFused can be obtained from the summation of coefficients from all scales. This work 

uses higher-order Daubechies asymmetrical wavelet „db40‟ to ensure maximum 

localization [28] with non-linear phase response. The decomposition of fused signal for 

no unbalance and maximum unbalance is shown in Figure 5.3 and Figure 5.4, 

respectively. 
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Figure 5.3 MODWT of the fused signal under no unbalance condition. 

 

Figure 5.4 MODWT of the fused signal under maximum unbalance condition. 

5.2.3 Contour Plot 

The work in the literature has significantly explored time-frequency images 

like spectrogram, scalogram, Hilbert transform, and synchrosqueezing transform as 

potential options for the CNN network. In general, the computational cost of calculating 

wavelet-based scalograms is very high, which introduces latency in the system for real-

time monitoring. To overcome this, a contour plot has been proposed using mean 
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absolute deviation-based iso-response z slices. Historically contour plots have been 

widely used for elevation representation in meteorology, geology, and physics [83].   

 

We have proposed a novel application of statistically encoded contour plot to 

visualise the decomposed signal by relating it with the variance at each scale. A level 

matrix with 13 values is created for each decomposed segment using MAD shown in 

Equation 5.2 where, xm is the coefficients of a given scale μ is the mean of the scale and 

N is the total number of coefficients [84]. Figure 5.5 shows the zoom version of 

obtained contour plot for samples of individual classes for development and evaluation 

signals. It can be seen that with the increase in unbalance strength, the plot captures the 

detailed variation of the signal. 

  

                              
 

 
∑|    |   (5.2) 

 

Figure 5.5 Encoded contour plot of the decomposed signal matrix for all classes. 

5.2.4 Convolutional Neural Network 

CNN has proved its capability for classification problems related to machine 

failure [85] over time. It is a popular choice among researchers because of its ability to 

learn contour lines from complex images using filter weights adjustment [56-58]. CNN 

is realised using a set of recurring units consisting of a convolutional, activation, and 

pooling layer. In this work, a dual-stage CNN is used to improve the accuracy of the 
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severity-based warning system. Stage 1 is a coarse CNN structure with two convolution 

blocks and a dropout layer. The shallow net learns more generalized weights for 

classifying the rotor as balanced or unbalanced in case of unbalancing the stage 2 

network triggers and raises a warning based on detected severity. The input image size 

for best performance is taken as 256 x 256. „Leaky Relu‟ with alpha 0.2 is used as an 

activation function, while „softmax‟ is used for classification, and „sparse cross entropy‟ 

is the loss function minimized during the training process. The architecture of CNN for 

both stages, along with the first filter response of the convolutional layer on the input 

image, is shown in Figure 5.6. 

 

Figure 5.6 Architecture and filter weight visualization of convolutional layer of CNN. 

5.3 DATASET 

The method for automated detection of unbalance and severity classification 

is verified using a publicly available dataset from Fraunhofer Institute for Integrated 

Circuits [86]. The speed of the motor is varied from 550-2500 RPM for recording 

different datasets for development (Dx) and evaluation (Ex). The measurement setup 
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and speed variation are shown in Figure 5.7. The setup employs a 3D printed disc to 

introduce unbalance of different strengths viz. 0 – no unbalance and 4 – maximum 

unbalance. The data is sampled at 4096 samples per second and a window of 1s is 

considered for segmentation. Table 5.1 summarizes the details of different conditions 

considered in the dataset.  

Unbalance force is equivalent to the centrifugal force also it can be noted that 

the strength of unbalance (UF) for a point mass is proportional to the product of mass m 

times the radii r Equation 5.3 and its effects get amplified at higher rotational speeds   

[87]. 

                                                    (5.3) 

 

Figure 5.7 Measurement setup for recorded dataset [86]. 

Table 5.1 Summary of dataset from Fraunhofer Institute. 

Parameter Severity of Fault based on ISO standard 10816 

Normal Mild Mild Moderate Strong 

Dataset D0 and E0 D1 and E1 D2 and E2 D3 and E3 D4 and E4 

Radi (mm) - 14 18.5 23 23 

Mass (g) 0 3.281 3.281 3.281 6.614 

UF (mm g) 0 45.9 60.7 75.5 152.1 

 

5.4 RESULTS  

This section discusses the results obtained from the dual-stage classification 

process and severity detection of unbalance. The system configuration used for the 



63 

 

experimental study is i5 9th, 2.4GHz, and 16 GB RAM. The speed of classification 

using mentioned system configuration and the proposed method is approximately 2800 

samples per second. The recorded wall time for generating the encoded contour image 

is 0.52ms, while for generating a scalogram with the same data is 2.9ms. Hence the 

proposed method speeds up the classification process by five times. 

As mentioned above a segment of 1s length with 4096 data points from 

three sensors is fused in the frequency domain to form a single, decomposed signal, and 

a contour MAD-based input image for CNN is obtained. The data is divided into 6000 

images from each development file (Dx) to form a training dataset and 1500 images 

from the evaluation file (Ex) to create a testing dataset. Further, the training set is split 

into two parts, with 4800 and 1200 from all individual files. This is used for training 

and validation, respectively. 

Evaluation for two stages is conducted where stage 1 is a general qualitative 

analysis using coarse CNN to detect an unbalanced or balanced rotor operation state. 

Accuracy in validation and test data has been considered for describing the model 

performance, as summarized in Table 5.2. Initially, a pairwise analysis is done to 

understand the distinguishability between the two classes. It is observed that the 

unbalance strength of 45.9mm g is the most difficult to distinguish from the balanced 

case, and it shows the lowest test accuracy of 98.3%. The final test accuracy all samples 

from 1E, 2E, 3E, and 4E are considered as unbalance class. In contrast, 0E as the 

balanced class gives an accuracy of 99%, comparable to the other methods summarized 

in Table 5.3. 

The second stage involves quantitative analysis of severity as mild (1E & 

2E), moderate (3E), and severe (4E) based on ISO standards to raise the alarm. It is seen 

that the proposed method is capable of raising a correct warning with a test accuracy of 

98.42% which is significantly higher compared to the literature for datasets with 

varying rotational speeds. The confusion matrix for the overall warning system obtained 

by evaluating the complete two-stage method end-to-end using test data of all classes 

(0E, 1E, 2E, 3E, and 4E) is shown in Figure 5.8. The observed accuracy for the 4-layer 

CNN model with batch normalization and dropout layer neither over fits nor under fits 

the data. Also, the results establish that the MAD iso-reference-based contour plot of the 

MODWT decomposed signal is a good representation of localized information. The 
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study conducted in this paper is limited in the selection of iso-reference where options 

like energy, median frequency, etc., can also be explored. 

 

Figure 5.8.Confusion matrix for overall warning system using test data. 

Table 5.2 Summary of accuracy obtained for different classification tasks. 

STAGE 1 -  CNN ( 2 Class - Balance/Unbalance Detection) 

Train Dataset Validation 

Accuracy 

Test Dataset Test 

Accuracy 

0D + 1D 98.67 0E + 1E 98.3 

0D + 2D 99.24 0E + 2E 98.62 

0D + 3D 99.84 0E + 3E 99.39 

0D + 4D 100 0E + 4E 99.45 

0D + (1D + 2D + 3D + 

4D) 

99.46 0E + (1E + 2E + 3E + 

4E) 

99 

STAGE 2 -  CNN  ( 3 Class - Severity Detection) 

Train Dataset Validation 

Accuracy 

Test Dataset Test 

Accuracy 

(1D +2D) + 3D + 4D 99.7 (1E + 2E) + 3E + 4E 98.42 

Overall Warning Accuracy (4 Class - Normal/Mild/Moderate/Severe) 97.05 

 



65 

 

Work addressing the two-class problem on the same dataset is presented in 

[86]. It compared the performance of multiple algorithms where maximum accuracy of 

98.6% is obtained using a single sensor data for FFT-based fully connected neural 

network (FCN) with two hidden layers for unbalance detection. Other summarized 

works use personal datasets like research in [90] that combines three statistical features 

from both the time and frequency domain to feed into an SVM classifier. The results 

showed the accuracy was a vital function of operating speed, and the method is 

unsuitable for classification at lower speeds. Work in [91] uses data recorded at multiple 

speeds to develop and test classification and regression trees using dynamic-based 

features (D-CART). The method achieved 90% accuracy for qualitative analysis of 

severity detection. Research in [92] used heterogeneous information from vibration 

signals and shaft orbital plots to extract features using a deep belief network (DBN) 

automatically. The method showed an accuracy of up to 100% using both sensor data 

and only 75% using the vibration sensor under constant motor speed.   

Table 5.3 Comparison of work with existing methods in the literature. 

Classification 

Method 
Features Classes Speed 

Average  

Accuracy 

(%) 

Proposed CNN 
MODWT-MAD-

Contour Images 

2 Time-Varying 

 

98.72 

4 97.05 

SVM [59] Frequency spectrum 2 Constant 94 

FCN [86] FFT (single sensor) 2 Time-Varying 98.6 

1D-CNN [86] Raw vibration signal 2 Time-Varying 93.6 

CNN [88] 
TF Image  angular 

domain 
2 Time-Varying 98.1 

SVM [89] 
Raw time / frequency 

domain  
2 Multiple Speeds 91.66 

D-CART [90] Dynamics   4 Multiple Speeds 90 

SVM [91] Hybrid features  4 Constant 93.2 - 98.2 

Multi-DBN [92] 

Raw vibration signal 

4 

Constant 75 

Fused orbit plots + 

vibration 
86.46 - 100 
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CHAPTER 6 
 

 

CONCLUSIONS AND FUTURE SCOPE 

 

This thesis undertakes a comprehensive study aimed at advancing 

mechanical fault analysis and detection techniques, with a specific focus on bearing and 

shaft faults in rotating parts. Extensive literature review was conducted to explore the 

different types, causes, and consequences of mechanical faults in rotating elements. 

This review served as the foundation for identifying the research objectives, resulting in 

the development of novel methodologies and a framework for an early warning system. 

The key aspect of this research is to accurately measure the severity and 

type of faults in order to enable timely actions and reduce maintenance expenses. By 

integrating data-driven decomposition methods, such as MrDMD and time-frequency 

analysis using the MODWT, non-stationary vibrational signals can be effectively 

analyzed. Furthermore, the research aims to address the challenges posed by translating 

fault signatures caused by variations in speed and load conditions. By developing 

methods capable of handling these variations, the proposed framework ensures accurate 

detection of bearing and shaft faults under time-varying rotational speed and discrete 

load conditions. 

The first part of this work presents a fault detection framework for bearings 

using GMrDMD and CNN, addressing the challenge of using only a single type of 

sensor for fault detection under varying rotational speeds. The method utilizes a gram 

matrix-based transformation to convert vibration signals into time-evolving snapshot 

matrices, preserving temporal relations. These matrices are decomposed using MrDMD, 

isolating transient fault characteristics. The GMrDMD approach offers preservation of 

spatial and temporal information, aiding fault identification, especially for transient 

events. The CNN architecture with inception modules enhances fault classification 

accuracy using multiple-size kernels. This work contributes to fault detection 
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advancements, offering an innovative approach applicable across industries to enhance 

reliability and performance optimization of bearings in rotating machines. 

Another contribution of this research relates to shaft unbalance and severity 

detection by utilizing a complementary data fusion strategy. The approach integrates 

data from vibration sensors into a single signal with maximum relevance, enhancing the 

accuracy and reliability of fault detection. Additionally, a novel encoded statistical 

contour plot is designed for signals decomposed using the maximum overlap discrete 

wavelet transform. This contour plot provides a visual representation of fault 

characteristics, enabling effective analysis and classification. To further improve fault 

identification and reduce the false alarm rate, a multi-level CNN model is developed 

specifically for shaft fault identification. The CNN model leverages the power of deep 

learning techniques to effectively analyse the encoded contour plots and classify faults 

with high accuracy. 

The proposed fault detection techniques were validated through 

experimental studies using real-world datasets, including the University of Ottawa 

dataset and the dataset provided by the Fraunhofer Institute for Integrated Circuits. 

These datasets encompassed various fault vibration signal types and rotational speed 

conditions. The results demonstrated the effectiveness of the proposed methodologies, 

achieving an impressive 96.83% accuracy for distinguishing fault characteristics in 

bearing faults using the GMrDMD-CNN method, and an overall classification accuracy 

of 97.05% for unbalance fault detection. 

The findings and conclusions of this research significantly contribute to the 

advancement of mechanical fault analysis and detection techniques, specifically for 

bearing and shaft faults in rotating elements. There are potential areas for further 

exploration, such as adaptive level encoding for contours, which could enhance the 

accuracy and robustness of fault detection methodologies. Additionally, increasing the 

labelled data for more advanced deep neural networks can further improve the 

performance and applicability of the proposed methods. Alternative options for iso-

reference selection, such as energy or median frequency, can also be investigated to 

expand the capabilities of the fault detection framework. 
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Future research in mechanical fault analysis and detection can focus on 

refining the false alarm rate of the GMrDMD method, improving fault classification 

algorithms, optimizing threshold values, and incorporating additional features or data 

analysis methods. It is essential to test the methodologies on dynamic load variation to 

ensure their robustness and accuracy in real-world scenarios. Integration of multiple 

sensor data, such as temperature or acoustic sensors, can provide a comprehensive 

understanding of system health and enhance fault detection capabilities. Validating the 

proposed methodologies on diverse industrial systems will further enhance their 

generalizability and practicality. Exploring adaptive level encoding for contours can 

improve fault identification and classification accuracy, while increasing labeled data 

for testing advanced deep neural networks will enable the exploration of more complex 

models with improved generalization capabilities. These future scopes will contribute to 

the continuous advancement of mechanical fault analysis and detection, optimizing the 

performance of rotating machinery systems in various industries. 

By refining and developing these techniques, the field of mechanical fault 

analysis and detection can continue to evolve and drive progress in the maintenance and 

performance optimization of rotating machinery. The comprehensive understanding of 

fault mechanisms, utilization of advanced data-driven approaches, and integration of 

deep learning techniques hold great promise for the future of fault detection and 

maintenance in rotating machinery systems. 
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