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ABSTRACT 
 
 
 

 

Ensuring secure communication of multi-media messages is crucial for social 

networking and data sharing platforms. Prevention of data manipulation and theft has 

led to the development of various encryption techniques, but scope remains for a fast 

and efficient multi-media encryptor. Advanced Encryption Standard (AES) is 

mathematically one of the most complex cipher algorithms to crack and has been 

widely deployed in the banking sector.  

The algorithm's mathematical framework and the implementation of numerous 

iterations of encryption procedures augment its security. AES has undergone exhaustive 

examination and scrutiny by the cryptographic community, unveiling no significant 

vulnerabilities. AES implementation for battery operated devices requires an algorithm 

with low power consumption and high-speed encryption/decryption of digital data. This 

dissertation proposes an FPGA implementation of a high throughput parallel pipelined 

128-bit AES algorithm with a low power key expansion mechanism for iterative stages. 

A 128-bit symmetric key has been used for undertaking 10 rounds of transformations. 

All the encryption and decryption transformations are simulated using iterative design 

methodology in order to minimize hardware consumption.  

Xilinx Artix-7 FPGA device is used for hardware evaluation and Verilog HDL for 

programming. Simulation and synthesis task has been performed on Xilinx Vivado 

v2021.1 IDE.  
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The results exhibit high-rate encryption of 68 Gb/s and low energy consumption of 7 

pJ/bit. Detailed study of the synthesized design has been undertaken to highlight the 

power consumption and performance of the algorithm at various operating voltages and 

temperature levels. The results have further been compared with existing work to 

substantiates its unwavering dependability and formidable efficacy. AES is integrated 

into a multitude of applications and systems, encompassing secure communication 

protocols, virtual private networks (VPNs), disk encryption software, and various other 

domains. 

A high throughput implementation of 256-bit AES cipher has also been carried out for 

encrypting digital images and explore its practicality in peer-to-peer communication. 

Pre-processing of images has been performed to make them suitable for encryption. A 

detailed study of the encryption results and histogram analysis has been carried out. The 

proposed algorithm achieved a Peak Signal to Noise Ratio (PSNR) of 61 dB for the 

decrypted image. Correlation between the input and the decrypted image was found to 

be 0.994 while the Mean Square Error (MSE) was calculated to be 0.0030. AES-256 

has gained wide acceptance and standardization, making it compatible across different 

platforms, domains, operating systems, and devices.  

This compatibility facilitates interoperability and seamless integration into multimedia 

systems including video streaming, image protection, digital rights management, and 

secure multimedia communication. 
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CHAPTER 1 
 
 
 

 

INTRODUCTION 
 
 

 

1.1.      NEED FOR ENCRYPTION 
 
 

 

Encryption ensures sensitive information remains confidential by 

converting it into an unreadable form. Only authorized individuals possessing the 

decryption key can decode the encrypted data, preventing unauthorized access. It 

safeguards data against unauthorized modification, tampering, or corruption. Even if 

intercepted, encrypted data cannot be altered without the decryption key. This 

guarantees the integrity and authenticity of the information [1]. In an increasingly 

digital world, safeguarding privacy has become crucial. Encryption enables secure and 

private communication, ensuring that personal conversations, emails, financial 

transactions, and other sensitive information remain confidential. Numerous industries, 

including finance, healthcare, and government, have strict regulations pertaining to 

sensitive data protection. Encryption often serves as a requirement to comply with these 

regulations, helping organizations meet legal obligations and avoid penalties or legal 

consequences [2].  

Encryption is vital for secure communication across networks. It thwarts unauthorized 

parties from eavesdropping on conversations, intercepting messages, or accessing 

sensitive data in transit. This is particularly important for activities such as online 

banking, e-commerce, and confidential business communications [3]. Governments and 

intelligence agencies rely on encryption to protect sensitive information, secure 

communications among officials, and safeguard national security interests. Encryption 

helps prevent unauthorized access to classified or confidential data, mitigating potential 

threats [4]. Overall, encryption techniques are vital for safeguarding data, preserving  
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privacy, ensuring compliance, and establishing trust in the current digital landscape. 

They form the foundation for secure communication, protect sensitive information, and 

support various aspects of our personal and professional lives [5]. 

 

 

1.2. HISTORY OF ENCRYPTION 
 
 

 

In the early 1970s, DES was developed by the U.S. National Bureau of 

Standards (now NIST) as the first widely used encryption standard [6]. DES utilized a 

symmetric key algorithm, where the same key was employed for both encryption and 

decryption [7]. With a key length of 56 bits, DES gained widespread adoption in 

various applications. Public key cryptography emerged in the late 1970s, independently 

introduced by Whitfield Diffie and Martin Hellman, and subsequently enhanced by 

Rivest, Shamir, and Adleman (RSA) [8]. Public key cryptography involves a pair of 

mathematically similar keys: a public key for encrypting and a private key for 

decrypting. This breakthrough enabled secure communication without requiring a 

shared secret key [9]. SSL, developed by Netscape in the mid-1990s, and its successor 

TLS, are cryptographic protocols deployed for securing internet communication. They 

provide encryption and authentication mechanisms, ensuring secure connections 

between web browsers and servers. SSL and TLS have undergone multiple iterations 

and updates to address vulnerabilities and enhance security. Elliptic Curve 

Cryptography (ECC) is a contemporary technique of public key cipher based on the 

algebraic structure of elliptic curves over finite fields [10]. ECC offers nearly equal 

security as RSA but with shorter key lengths, resulting in computational efficiency. 

ECC has gained popularity, particularly in resource-constrained environments like 

mobile devices and IoT devices. These significant milestones represent notable 

advancements in the history of digital encryption, addressing evolving security needs 

and technological progress. Encryption remains integral to protecting sensitive 

information in the digital age [11]. 
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1.3. ADVANCED ENCRYPTION STANDARD 
 

 

Cyber-attacks and data theft are a major concern for companies worldwide. 

Securing messages containing digital images and videos for real time communication 

can be a difficult and computationally expensive task. AES has been widely used for 

secure storage and transmission of digital information but its application in real time 

image/video encryption has been limited [12]. Developed in the year 2001 by National 

Institute of Standards and Technology, AES is a cryptographic algorithm that uses a 

symmetric public key for undertaking encryption and decryption tasks [13]. It is robust 

to existing brute force attacks and has been widely used by financial institutions and 

government agencies to carry out secure transactions and sharing of sensitive 

information.  

AES processes 128-bit packets of data, although it can have a key size of 128,192 or 

256 bits [14]. AES-256 is the most secure form of AES encryption and consists of 14 

rounds of iterations for manipulating data into an unrecognizable form [15]. Encryption 

of multimedia messages using existing cipher technologies requires high bandwidth and 

large latencies are observed in peer-to-peer communication [16]. A high throughput 

encryption technique coupled with modules for pre, and post processing of images is 

needed for solving this issue and have a vast application in social networking / message 

sharing apps. AES can operate in 5 different modes, most common among these are 

Cipher Block Chaining, Electronic Code Book [17]. ECB is a widely used mode as it 

does not require an Initialization Vector (IV) for its operations. CBC requires IV which 

may lead to propagation of error through the encryption stages [18]. Encryption 

techniques like AES are based on Shannon’s theory of confusion and diffusion (1945) 

[19]. Here confusion aims at complicating the relationship between cipher message and 

symmetric key whereas diffusion aims at dispersing the features of input message 

throughout the encrypted message. It can be efficiently used for both hardware and 

software applications One of the major limitations of AES algorithm is its  
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high computational complexity which leads to high power consumption, making it less 

suitable for battery operated devices. Another area for improvement in AES is the speed 

of the algorithm [20].  

Faster encryption and decryption processes are highly desirable for real time 

communication and data storage. For hardware implementation, AES algorithms that 

takes less area for implementation, has high throughput and low power consumption are 

preferable and is a topic of constant research [21].  

 

 

1.4. ADVANCEMENTS IN ENCRYPTION  
 
 
 

   Among the various underdevelopment encryption techniques, few of the most 

promising and revolutionary ones are:  

 

1. Quantum key distribution (QKD) is an advanced and groundbreaking encryption 

technique based on the intricate principles of quantum mechanics [22]. It harnesses the 

remarkable properties of quantum particles, such as photons, to establish highly secure 

communication channels. Quantum encryption offers unparalleled security guarantees, as 

any interception attempt disrupts the delicate quantum state, triggering immediate 

detection. It presents a promising solution to the looming security challenges posed by 

quantum computers to conventional encryption algorithms [23]. 

 

2. Homomorphic Encryption: It is a powerful and innovative encryption method that 

empowers computations to be performed on encrypted information without the need for 

decryption [24]. It enables the processing of critical information while preserving utmost 

privacy and security. Homomorphic encryption finds diverse applications in secure cloud 

computing, privacy-preserving data analysis, and collaborative computations, 

revolutionizing the way data is securely utilized and analyzed [25]. 
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3. Lattice-Based Cryptography: It represents a sophisticated form of post-quantum 

cryptography that capitalizes based on the formidable complexity of mathematical 

problems related to lattice structures [26]. It offers robust resistance against attacks from 

both classical and quantum computers, making it a highly reliable and  

future-proof cryptographic approach. Lattice-based cryptographic schemes provide 

stringent security guarantees and have emerged as a prominent and rapidly evolving 

research area in the era of post-quantum cryptography [27]. 

 

4. Zero-Knowledge Proofs: Zero-knowledge proofs stand as an ingenious and privacy-

enhancing cryptographic protocol, allowing one party, known as the prover, to 

convincingly demonstrate knowledge of a statement to another party, known as the 

verifier, without divulging any additional information [28]. Zero-knowledge proofs have 

profound implications for privacy-preserving protocols and secure authentication 

systems. By ensuring that sensitive information remains undisclosed during 

authentication or verification processes, they enable individuals and organizations to 

maintain the highest levels of privacy and security [29]. 

 

 

5. Multi-Party Computation: MPC protocols embody a sophisticated and secure 

collaborative computing paradigm, empowering multiple parties to collectively compute 

a function on their respective private inputs while preserving the confidentiality of 

individual inputs through encryption [30]. MPC facilitates secure collaboration and 

computation, thereby enabling privacy-preserving data analysis and secure outsourcing of 

computations [31]. It represents a groundbreaking advancement in secure and privacy-

enhanced data processing. 

 

6. Fully Homomorphic Encryption: FHE exemplifies a state-of-the-art and groundbreaking 

encryption technique that enables the execution of arbitrary computations on encrypted 

information without the requirement for decryption [32]. FHE empowers privacy-

preserving data processing in scenarios where maintaining the strictest levels of data 

confidentiality is of paramount importance.  
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Although FHE is an active and rapidly evolving research domain, it holds immense 

promise for the future of secure cloud computing and data privacy, revolutionizing the 

way sensitive data is processed and utilized [33]. 

 

These remarkable and scientific advancements in encryption techniques epitomize ongoing 

research and development efforts, offering unparalleled security, privacy, and functionality 

[34]. They effectively address the dynamic challenges posed by data protection and secure 

communication in the ever-evolving digital age. 

 

 

1.5. GENERAL STRUCTURE OF ENCRYPTION ALGORITHM  

 

 

     The essential elements of an encryption algorithm comprise various key 

components. These encompass substitution, transposition, key generation, encryption 

function, decryption function, and key management. 

Substitution involves the replacement of plaintext elements with alternative elements or 

values, which can be achieved through the use of substitution tables or mathematical 

functions. Transposition refers to the rearrangement of the sequence of plaintext elements 

to generate ciphertext, employing techniques such as permutation or reordering based on 

specific patterns [35]. 

Key generation plays a pivotal role in encryption algorithms, as it involves the creation of 

suitable keys with appropriate length and complexity. These keys govern the conversion of 

plaintext into ciphertext and vice versa. They can be derived from user input, passphrases, 

or cryptographic protocols [36]. 

The encryption function is responsible for the actual transformation of plaintext into 

ciphertext using the provided key. This function combines substitution and transposition 

operations, employing mathematical operations on the plaintext and key to produce the 

encrypted output. 

The decryption function functions as the inverse of the encryption function. It takes the 

ciphertext and the corresponding decryption key, reversing the encryption process and 

converting the ciphertext back into plaintext [37]. 
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Key management is a critical aspect of encryption algorithms, encompassing secure key 

generation, distribution, storage, and disposal. It ensures the confidentiality and 

safeguarding of keys from unauthorized access, as well as their appropriate synchronization 

between communicating parties [38-39]. 

Regarding the structure of encryption algorithms, many modern ones, such as the widely 

used Advanced Encryption Standard (AES), adhere to a prevalent structure known as a 

Feistel structure. This structure involves multiple rounds of processing, with each round 

employing a fusion of substitution and transposition operations on the input data [40]. 

In a typical Feistel structure, the plaintext is divided into two equivalent parts. These 

segments undergo multiple rounds of processing, involving the following steps: 

1. The right segment of the data undergoes a substitution operation using a specific 

function that takes the right segment and a round key as inputs. The substitution 

function employed may vary depending on the algorithm [41]. 

2. The outcome of the substitution is combined with the left segment of the data using 

an operation such as XOR. 

3. The left and right segments are interchanged, with the previous right segment 

becoming the new left segment. 

4. These steps are repeated for a predefined number of rounds, typically 10, 12, or 14, 

depending on the algorithm and key length [42-44]. 

5. In the final round, the left and right segments are swapped again, but no further 

processing is applied. 

 

The ultimate output of the last round represents the ciphertext, the altered and encrypted 

version of the plaintext. 

It is crucial to note that while the Feistel structure is a prevalent approach, the specific 

constituents and structure of an encryption algorithm may vary based on its design and 

cryptographic properties [45]. Different algorithms may employ diverse methodologies to 

achieve encryption, but they generally encompass the a forementioned key components. 
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1.6. STRENGHT OF ENCRYPTION  
   

 

 

    Encryption algorithms are specifically crafted to offer robust security and 

safeguard data from unauthorized access. The strength of an encryption algorithm refers to 

its resilience against diverse attacks and the arduousness of decrypting the encryption 

without possessing the correct decryption key. 

 

The process of attempting to decrypt encrypted data and uncover the original plaintext 

without the key is commonly referred to as "cracking" or "cryptanalysis." Cracking 

encryption algorithms often involves employing a variety of methods, such as brute-force 

attacks, exploiting cryptographic vulnerabilities, and executing side-channel attacks. 

Nevertheless, contemporary encryption algorithms are intentionally designed to withstand 

such attacks, making their successful cracking exceedingly challenging and time-

consuming [46]. 

 

1. Brute-Force Attacks: Brute-force attacks entail systematically attempting every 

conceivable key combination until the correct one is identified. The strength of an 

encryption algorithm is intricately tied to the length of the encryption key [47]. Lengthier 

key sizes exponentially expand the number of possible key combinations, rendering brute-

force attacks impractical. For instance, a 128-bit AES key boasts an overwhelmingly vast 

number of 2^128 possible combinations. 

 

2. Cryptographic Weaknesses: Cryptographic weaknesses may arise from algorithmic 

design or implementation flaws. These weaknesses can be exploited to uncover 

vulnerabilities that can subsequently be leveraged to crack the encryption. However, 

modern encryption algorithms, such as AES, have undergone meticulous scrutiny and 

evaluation by cryptographic experts to ensure their robustness and resilience against known 

weaknesses [48]. 
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3. Side-Channel Attacks: Side-channel attacks capitalize on information leaked during the 

execution of an encryption algorithm, such as timing data, power consumption, 

electromagnetic emissions, or even acoustic emanations. By scrutinizing these side-channel 

signals, an attacker may gather information about the encryption key. Guarding against 

side-channel attacks necessitates implementing countermeasures, such as constant-time 

algorithms, to minimize the leakage of sensitive information [49]. 

 

It is essential to acknowledge that while encryption algorithms themselves may exhibit 

strength, vulnerabilities may potentially emerge in their implementation or the surrounding 

systems. These vulnerabilities may encompass weak key management practices, improper 

encryption utilization, or other security weaknesses that can undermine the encryption's 

effectiveness [50]. 

 

To ensure the security of encrypted data, it is of paramount importance to adhere to 

recommended best practices. These may entail employing encryption algorithms with 

sufficiently long and robust key sizes, implementing sound key management and secure 

storage practices, regularly updating software and systems with security patches, and 

employing robust authentication mechanisms. In summary, contemporary encryption 

algorithms are thoughtfully crafted to offer formidable security and resilience against 

cracking attempts [51]. The strength of encryption resides in the vast key spaces, absence of 

known vulnerabilities, and the ability to withstand diverse attack vectors. Nonetheless, it is 

vital to adopt best practices and remain vigilant to uphold the security of encrypted data. 

 

1.7. POWER AND PERFORMANCE OF ENCRYPTION TECHNIQUES  
 

 

    The power efficiency and throughput of encryption techniques are pivotal aspects 

when assessing their performance and effectiveness. 

 

1. Power Efficiency: Power efficiency relates to the energy consumption of an encryption 

technique during its operation. It is crucial to minimize power usage, particularly in  
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limited resource environments such as mobiles, IoT devices, or battery-powered systems. 

Power-efficient encryption techniques are engineered to curtail energy consumption while 

upholding the security of the encryption process [52]. By reducing power consumption, 

devices can operate for extended periods on limited power sources, thus prolonging their 

battery life. 

 

2. Throughput: Throughput, in the context of encryption techniques, refers to the rate at 

which data can be processed and encrypted. It measures the efficiency and speed of the 

encryption process [53]. Higher throughput translates to expedited encryption and 

decryption operations, facilitating efficient data transmission and processing. Throughput 

assumes paramount importance in scenarios involving copious amounts of data, real-time 

applications, or high-performance computing environments. Encryption techniques 

boasting high throughput ensure that the encryption process does not impede data 

processing or communication systems. 

 

 

Attaining a harmonious equilibrium between power efficiency and throughput is critical 

when selecting an appropriate encryption technique for a given use case. Different 

encryption algorithms and implementations exhibit varying power consumption and 

throughput characteristics [54]. 

In practice, the power and throughput of encryption techniques can be influenced by several 

factors, including: 

• Algorithm Complexity: The computational complexity of the encryption algorithm has a 

direct impact on power consumption and throughput. Elaborate algorithms typically 

necessitate more computational resources and might incur higher power usage, resulting 

in diminished throughput. Striking a balance between algorithm complexity and security 

requirements is essential to achieve desired performance attributes [55]. 

• Hardware Acceleration: Hardware acceleration techniques, such as specialized 

cryptographic processors or dedicated hardware modules, can significantly enhance the 

power efficiency and throughput of encryption. These hardware components are  
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optimized to expedite encryption operations, mitigating power consumption, and 

bolstering processing speed [56]. 

• Implementation Efficiency: The efficiency of the encryption implementation, 

encompassing software optimizations, parallelization methodologies, or algorithmic 

enhancements, can impact power consumption and throughput. Well-optimized 

implementations reduce computational overheads and enhance overall efficiency. 

• Key Size: The length of encryption keys can affect both power consumption and 

throughput. Lengthier key sizes may necessitate additional computational resources, 

resulting in heightened power consumption and potentially reduced throughput [57]. 

Optimal selection of key sizes that strike a balance between security requirements and 

performance considerations is paramount. 

 

Considering power efficiency and throughput requisites while selecting an encryption 

technique is crucial, factoring in the specific constraints and objectives of the target system 

or application. Assessing the power consumption and throughput characteristics of 

encryption techniques ensures an optimal equilibrium between security, performance, and 

energy efficiency. 

 

1.8.    IMPLEMENTATION OF ENCRYPTION TECHNIQUES 

 

   The utilization of encryption techniques can be divided into two main 

approaches: hardware implementation and software implementation.  

 

1. Hardware Implementation: 

Hardware implementation involves the utilization of specialized hardware components or 

dedicated cryptographic processors to execute encryption and decryption operations. These 

hardware solutions are specifically designed for cryptographic tasks and offer several 

advantages: 
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- Swiftness and Efficiency: Hardware implementations are generally faster and more 

efficient compared to software implementations. Dedicated cryptographic hardware can 

swiftly execute encryption algorithms, reducing processing time and enhancing overall 

system efficiency [58]. 

 

- Parallelism: Hardware solutions can take advantage of parallel processing capabilities to 

simultaneously carry out multiple encryption or decryption operations. This parallelism 

increases throughput and enables the efficient handling of large volumes of data [59]. 

 

- Security: Hardware implementations provide heightened security by isolating 

cryptographic operations from other system processes. Dedicated cryptographic modules or 

secure hardware elements ensure the safeguarding of sensitive cryptographic keys and 

prevent unauthorized access or tampering. 

 

- Resilience to Attacks: Hardware solutions can be designed with specific security measures 

to withstand various types of attacks, such as side-channel attacks or physical tampering. 

These measures strengthen the security of cryptographic keys and protect against potential 

vulnerabilities [60]. 

 

However, hardware implementation also has certain limitations: 

 

- Flexibility and Upgradability: Hardware solutions are often tailored to specific encryption 

algorithms or protocols. Modifying or upgrading the implemented encryption scheme may 

require physical alterations to the hardware, limiting flexibility and adaptability. 

 

- Cost and Complexity: Hardware implementation can entail additional costs, as it may 

require specialized hardware components or dedicated cryptographic processors. The 

development and integration of custom hardware solutions can also be intricate and time-

consuming [61]. 

 



24 

 

2. Software Implementation: 

Software implementation involves the utilization of software algorithms and libraries to 

execute encryption and decryption operations on general-purpose computing platforms. 

Software implementations offer the following advantages: 

 

- Flexibility and Compatibility: Software encryption algorithms can be easily updated or 

replaced without the need for hardware modifications. They can be implemented across a 

wide range of computing platforms, from desktop computers to mobile devices. 

 

- Cost-Effectiveness: Software implementations typically do not require additional 

hardware components, making them cost-effective compared to hardware solutions. 

 

- Adaptability: Software encryption allows for the support of various encryption algorithms, 

enabling flexibility in selecting the most suitable algorithm for specific security 

requirements or regulatory standards. 

 

However, software implementation also has certain limitations: 

 

- Performance: Software implementations are generally slower compared to hardware 

implementations. The execution of encryption algorithms relies on the computational 

capabilities of the underlying hardware, which may not be as optimized for cryptographic 

operations as dedicated hardware solutions. 

 

- Security Risks: Software implementations may be more susceptible to specific types of 

attacks, such as side-channel attacks or software vulnerabilities. Implementing additional 

security measures, such as secure coding practices and robust key management, is crucial to 

mitigate these risks. 

 

In practice, a combination of hardware and software implementation is often employed to 

strike a balance between performance, security, and flexibility. Dedicated hardware  



25 

 

components can accelerate computationally intensive encryption tasks, while software 

implementations provide adaptability and versatility across various computing platform. 

 

Encryption plays a pivotal role in the realms of AI and robotics, ensuring data security and 

privacy. It serves as a vital safeguard, protecting sensitive information generated and 

processed by AI and robotics systems, shielding it from unauthorized access, interception, 

and tampering. Encryption techniques are employed to fortify data throughout storage, 

transmission, and processing stages, effectively mitigating the perils of data breaches. 

Moreover, encryption enables secure collaboration by safeguarding the exchange of data 

and models among researchers and organizations. It also upholds privacy by encrypting 

personal data employed in AI applications, such as facial recognition or user behaviour 

analysis.  

Furthermore, encryption acts as a protective shield for AI models and intellectual property, 

thwarting unauthorized access and replication, thus upholding the sanctity of proprietary 

technologies. In the deployment of AI and robotics systems, encryption ensures secure 

communication among devices, sensors, and actuators, effectively fending off malicious 

interference. Overall, encryption in AI and robotics augments data security, privacy, 

collaboration, and engenders trust in these cutting-edge technologies [62]. 

 

Military forces and aerial vehicles employ advanced encryption techniques to secure their 

radio communications.  

These methods include Frequency Hopping Spread Spectrum (FHSS) and Advanced 

Encryption Standard (AES), which provide robust security and prevent interception or 

decoding of signals [63]. Secure Voice Systems encrypt voice signals, while spread 

spectrum techniques spread signals across a wide frequency range to deter interception and 

jamming. Tactical Secure Radios support encryption algorithms like AES, DES, or 3DES, 

along with secure key management and distribution protocols. Additionally, link encryption 

ensures data confidentiality during transmission. Advancements in encryption techniques 

aim to strengthen algorithms, improve key management, and integrate encryption into next- 
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generation systems, ensuring secure and reliable communication channels for military 

operations and sensitive information [64].                                                                .
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CHAPTER 2 
 
 
 

 

LITERATURE REVIEW 
 
 

 

2.1. RELATED WORK 
 
 

 

There have been significant efforts in the past aimed at utilizing AES algorithm 

for encrypting alphanumerical messages, but very limited work has been carried out for 

multimedia messages. Hajihassani et al. [65] proposed a high throughput AES architecture 

based on bit slicing, which processed 32 128-bit data stream parallelly to provide an 

encryption throughput of 1.47 Tbps. This method performs expensive Byte transformations 

using shifting and swapping of registers.  

 

Kim et al. [66] utilized the CTR mode in AES for fast encryption in low-end 

microcontrollers. This led to a reduced computation of 2 Add Round Key, 2 Shift-Rows, 2 

Substitution Bytes, and 1 Mixed Column transformation. Alomari et al. [67] compared 

different encryption techniques for storage devices for different operating modes. A 

detailed performance analysis was done to provide guidelines for disk encryption.  

 

Le et al. [68] proposed a fast GPU parallel computing design for AES 

cryptography. This technique accelerates the speed of AES encryption significantly. A 

novel low latency FPGA based AES architecture was proposed by Zhang et al. [69] in 

which an efficient key expansion method along with pipelining was used to obtain a 

throughput of nearly 21.56 Gbps.  

 

Custom S-box techniques are implemented for low energy consumption 

applications for AES designed for battery operated devices [70-71]. Pipelined AES  
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architectures proposed by Chellappa et al. [72] and Oukili et al. [73] provided high 

throughput encryption of up to 64-79 Gbps.  

  

For encryption of images, Zhang et al. [74] performed MATLAB 

implementation of AES-128 followed by digital image processing to obtain the encrypted 

and recovered test image. AES in CBC mode was utilized for image encryption [75] and its 

security performance was tested and compared with existing systems based on chaos.  

 

A similar system was proposed by Arab et al. [76] for novel image encryption 

using chaos sequence and an improvised AES-128. This approach reduces computational 

time and increases the diffusion ability of the proposed scheme. Singh et al. [77] proposed a 

dynamic AES developed using key dependent S-box for image encryption. 

 

Bui et al. [78] proposed a hardware optimization strategy for AES 

implementation in ultra-low power IoT applications to provide multilevel security using 

different key sizes. Power and energy optimization has been performed for both data path 

and key expansion. This led to significant reduction in energy per bit to a value of 1 pJ/b at 

10 MHz at 0.6 V and throughput of 28 Mb/s.  

 

Duran et al. [79] proposed an AES-128/256 S-box acceleration scheme which 

uses a custom S-box unit connected as a logic unit. All S-box calculations were performed 

using pipelined and pure combinational approach resulting in lower memory access and 

lower energy consumption of 9.7 pJ/bit. A large portion of the energy consumed in an AES 

circuit is during the substitution process, hence S-box architecture plays a crucial role.  

 

Morioka et al. [80] proposed a low power S-box architecture in which signal 

arrival time at gates are very close if their depth from main input is identical. This led to a 

minimalistic power consumption of 29 µW at 10 MHz using 0.13 µm CMOS technology. 

In recent studies, pipelining of AES architecture has proven to significantly increase the 

throughput of the encryption system and accompanied power reduction.  
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Chellappa et al. [81] proposed a fully pipelined 256-bit AES design with pulse 

clocked latches connecting the pipeline stages that can be made transparent when in use 

resulting a 7.6% decrease in energy. This design could deliver 64 Gb/s encryption when 

fabricated on 90 nm technology.  

 

Oukili et al. [82] presented a 5-stage pipeline S-box design to increase the 

maximum speed and frequency of the AES system. S-box transformations plays a crucial 

role in the complexity of AES algorithm therefore parallel processing using pipelined 

stages helped the proposed method to achieve a throughput of 79 Gbps.  

 

Kshirsagar et al. [83] proposed interchanging of byte substitution and shift 

rows operations in the AES implementation which helped to streamline the processing of 

16 data blocks into 4 parallel blocks of data. This led to significant reduction in hardware 

area consumption by 56% and increasing the throughput by 4.25%. 

 

In their study, Rais et al. (2009) examined the effective hardware design and 

FPGA implementation of a 128-bit AES using a design based on residue prime numbers. 

They analyzed various hardware models of AES [84]. Fan et al. (2008) discussed a high-

speed, high-throughput design for AES 128-bit, focusing on the implementation of a 

content addressable memory-based SBox with a pipeline structure that minimizes delay 

compared to other designs [85].  

 

H. Samiee, R.E. Atani, and H. Amindavar (2011) proposed a novel area-

throughput optimized architecture for the AES algorithm, concentrating on a normal basis 

composite field arithmetic architecture model [86]. Hodjat et al. (2004) designed a fully 

pipelined structure for a high-speed AES processor with a throughput speed of 21.5 Gbps 

[87].  

 

 

 



30 

 

In terms of application-based implementation, Daemen et al. (1998) introduced 

the block cipher Rijndael for smart card applications [88]. Narang et al.  (2012) conducted a 

literature survey on various wireless security designs [89]. 

 

Ranjeeth et al. (2012) provided an in-depth analysis of the WiMax structure 

and security issues in their research. They discussed the different security algorithms used 

in the WiMax MAC layer [90]. Yu et al. (2005) explored a compact hardware 

implementation of AES, presenting an efficient hardware structure for AES [91]. Uribe et 

al. focused on the privacy key management of the WiMax MAC layer [92]. 
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CHAPTER 3 
 
 
 

 

           PRINCIPLES OF ENCRYPTION   
 

 

3.1. SHANNON’S THEORY OF CONFUSION AND DIFFUSION  
 

 

 

    Encryption techniques often incorporate the principles of confusion and 

diffusion, as outlined in Claude Shannon's theory of cryptography [93]. Detailed 

description of these concepts are mentioned below: 

 

3.1.1. Confusion: Confusion involves introducing complexity and randomness into the 

relationship between the encryption key and the ciphertext. It aims to make the 

relationship between the two as obscure as possible, making it difficult for an attacker 

to derive any meaningful information about the plaintext from the ciphertext without 

knowledge of the key. Confusion is typically achieved through the use of substitution 

techniques, where elements of the plaintext are replaced with different elements in the 

ciphertext based on the key [94]. 

3.1.2. Diffusion: Diffusion refers to spreading the influence of each plaintext element 

throughout the ciphertext, making the statistical properties of the plaintext less 

apparent in the ciphertext. Diffusion aims to ensure that changes in the plaintext result 

in widespread changes in the ciphertext, thereby hiding any patterns or regularities. 

Diffusion is typically achieved through permutation or transposition techniques, 

which rearrange the positions of elements within the ciphertext based on the key. 

 

By combining confusion and diffusion, an encryption algorithm can provide a higher 

level of security and resistance against various cryptographic attacks. Shannon's theory 

highlights the importance of these principles in achieving robust and effective encryption  
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schemes. Encryption algorithms like the Advanced Encryption Standard (AES) heavily 

rely on confusion and diffusion to ensure the confidentiality and integrity of data. 

Confusion and diffusion help to thwart statistical analysis, frequency analysis, and other 

known-plaintext attacks by creating a complex and unpredictable relationship between 

the plaintext, encryption key, and resulting ciphertext. These concepts form the basis of 

modern encryption techniques and play a vital role in ensuring the strength and resilience 

of cryptographic algorithms. 

 

 

3.2. FRAMEWORK OF ENCRYPTION ALGORITHM 

 

  

Encryption and ciphers are built upon various scientific theories and 

mathematical principles. Number theory, probability theory, information theory, 

Boolean algebra, cryptographic hash functions, modular arithmetic, and complexity 

theory are some of the key foundations [95]. These concepts provide the framework for 

designing secure encryption algorithms, ensuring data confidentiality, integrity, and 

authenticity. Number theory enables the creation of mathematical structures used in 

encryption, while probability theory and information theory contribute to generating 

randomness and measuring information. 

 

Number theory, with concepts like prime numbers and modular arithmetic, is vital for 

encryption algorithms such as RSA. It enables the generation of cryptographic keys and 

the efficient computation of mathematical operations. Probability theory plays a role in 

generating random numbers, essential for creating strong encryption keys and ensuring 

unpredictability. Information theory offers insights into measuring and quantifying 

information, guiding the design of encryption algorithms that aim to maximize data 

entropy and minimize predictability. Boolean algebra, rooted in logic gates and binary 

operations, provides the logical foundation for cryptographic functions and operations, 

allowing for secure transformations and computations [96].  
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Cryptographic hash functions, based on number theory and discrete mathematics, 

generate fixed-size outputs (hashes) that verify data integrity and provide digital 

signatures. Modular arithmetic, a branch of number theory, facilitates computations in 

finite fields, enabling efficient and secure cryptographic operations. Complexity theory 

analyzes the computational complexity of encryption algorithms, assessing their 

resistance to various attacks and providing insights into the required computational 

resources. By drawing from these scientific theories and mathematical principles, 

encryption and ciphers are designed to protect sensitive information, ensure secure 

communication, and uphold the principles of confidentiality, integrity, and authenticity. 
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CHAPTER 4 
 
 
 

 

 METHODOLOGY 
 

 

4.1. ALPHANUMERIC DATA CIPHER 
 
 

 

  AES algorithm makes use of iterative process to obscure the relationship between 

the key and the cipher text. Each iteration step performs fixed number of substitutions and 

permutations to encrypt the input message. The number of iterations depends on the size of 

the cipher key used. Key can be of size 128,192 and 256 bits and subsequently the number of 

iterations are 10,12 or 14 respectively. Similarly, during the decryption process the encrypted 

message is passed through these iterative steps in reverse order to obtain the original input 

message. Each of these steps consists of four processes named (1) Substitute bytes (2) Shift 

rows (3) Mix Column (4) Add round keys the details of which has been discussed in brief in 

this section [97]. Before the first iteration is performed, a pre round transformation takes place 

along with key expansion in which the size of cipher key is extended from 4 words (in case of 

128 bits key) to 44 words, where each word is of size 4 bytes.  

Four words of this expanded key is then supplied to each of the 10 iterative rounds as well as 

to the pre-round transformation. All operations on the data are performed on a block size of 

128 bits in the AES irrespective of the key size, hence the input message is divided into 4x4 

matrices where each element in the matrix is of size 1 byte. After each operation the results 

are stored in a 4x4 intermediate state matrix on which further operations are performed [98]. 

Figure 4.1 shows the flow of input data through N rounds of transformation where each round 

is provided with extended key.  

The cipher key is first XORed with the input data matrix in the pre-round transformation to 

produce the state matrix which then acts as the input for subsequent rounds. 
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Fig.4.1. Block diagram of N rounds 128-bit AES algorithm. 

 

4.1.1 Key Expansion  

 
 

The cipher key is supplied by the user as a plain text which is first converted to 

hexadecimal form. Consider a 128-bit key arranged in the form of a 4x4 matrix with each 

column representing a 4-byte word as shown in Figure 4.2. This 4-word representation of 

the original key is expanded to 44 words and supplied to the pre-round transformation 

stage along with 10 transformation rounds [99]. The first 4 words of the expanded key 

representation is the original key itself which is XORed with the input message (in hex) 

and the intermediate state matrix is passed on to round 1 as input. 
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             Fig.4.2. Key Expansion process for 128-bit symmetric key. 

Figure 4.3 depicts the process of obtaining the next four words (W4-W7) from the first 4 

words (W0-W3) of the original cipher key using the “g” function.   

                           

                             Fig.4.3. Key expansion operation for obtaining next 4 key words.  

Mathematically this can be defined as: 

  W4 = W0 ⊕ g(W3)        (1) 

  W5 = W4 ⊕ W1        (2) 

  W6 = W5 ⊕ W2        (3) 

  W7 = W6 ⊕ W3        (4) 

Here g(W3) is obtained by performing a 3-step process, one-byte circular left shift of the word 

W3 to get X1 and then performing a byte substitution on each byte of X1 using S-box to get Y1.  

Finally,  

  g(W3) = Y1 ⊕ RCON[j]        (5) 

Here RCON[j] is the round constant described for each iteration round as shown in Table 1.  
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 Table 1. Round constant table for 10 rounds of transformation in AES. 

                                

Figure 4.4 depicts the four processes in round 1 to 9 of the 128-bit AES algorithm with a cipher 

key size of 128 bit. The final round R10 has only 3 internal processes as the Mix column 

operation is excluded from it.  

 

         Fig.4.4. XOR of expanded key with each round of AES.         
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4.1.2 SUBSTITUTE BYTES 

 

Substitute byte forms the first step in each round. Here the output of pre-round 

transformation is used as an input to this step in which the elements of intermediate state 

matrix are replaced using an S-box table as shown in Figure 4.5. S-box is a major 

component of any cryptography algorithm, which performs substitution. It is a 16x16 

Look Up Table (LUT) with its elements ranging from 00 to FF. Substitution has the 

largest share in power consumption and is one of the most complex process in the entire 

algorithm [100]. 

                           

                                Fig. 4.5. Substitution byte transformation using 16x16 S-box 

 

4.1.3 SHIFT ROWS 

 

The result obtained from substitution then undergoes shift rows operation in which 

circular left shift is performed on the state array as shown in figure 4.6. There is no shift 

in the first row of the matrix, a 1-byte circular left shift in second row, followed by 2 and 

3 bytes circular left shift in row 3 and 4 respectively [101]. 
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           Fig 4.6. Shift rows operation on 128-bit block size data 

 

4.1.4 MIX COLUMNS 

 

In this step, the state matrix obtained from shift row operation undergoes word by word 

multiplication with a constant matrix as shown in figure 4.7 [102]. 

 

               

            Fig. 4.7. Multiplication of state matrix with constant matrix 

 
 

 

4.1.5 ADD ROUND KEYS 

In this final step round keys are XORed with the output obtained from mix column 

operation and the results are passed on to the next round [103]. After all the 4 steps are 

performed iteratively for all the 10 rounds final cipher text is obtained. This encrypted 

message is in hexadecimal form. For performing decryption, a similar approach is 

undertaken where the encrypted message is passed through the 10 rounds of 

transformation with inverted Mix Columns and inverted shift rows. An inverted S-box is 

used in the substitute bytes step and the output obtained is the original message in 

hexadecimal form which can be further converted to plain text. 
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4.1.6 PIPELINED ARCHITECTURE 

All operation inside the AES is performed on 128-bit block size of data, that means the 

input message (in hex) needs to be broken to and presented in 128-bit 4x4 matrices 

before being processed inside the AES [104]. Since the data blocks passes through the 

10 iterative rounds in a sequential manner therefore only one block is processed at a 

given time in a particular round leaving the subsequent stages unused or idle. Parallel 

pipelining enables multiple data blocks to be processed parallelly in different stages 

hence making the encryption process of large messages or images faster [105]. 

4.2. MULTIMEDIA DATA CIPHER 

 

     AES encrypts a stream of input data by performing several substitution and 

shifting operations in an iterative manner. A 256-bit AES algorithm comprises of 14 

rounds of transformation. In the proposed method a 256-bit key is entered by the user (as 

plain text) along with the input image that needs to be encrypted. The cipher key is 

symmetric in nature i.e., the same key is utilized for encryption and decryption process 

[106]. The symmetric key undergoes expansion from 8 words (4 bytes each) to 60 words 

using the key expansion process. Each iterative round manipulates the input through a 

series of substitutions and permutations based on Shannon’s theory of confusion and 

diffusion [107]. Each of these rounds consist of four processes, Substitute bytes, Shift 

rows, Mix Column and Add round keys [108]. Only the last round is different from 

previous rounds as it does not contain mix-column step. Before the input matrix is passed 

through the first stage, the key is XORed with the input matrix and then the key 

expansion process takes place. All operations inside the AES are performed on 128-bit 

packets of data arranged in a 4×4 matrix with each element of size 1 byte.  

4.2.1 IMAGE ENCRYPTION USING AES-256  

 

Digital image undergoes pre-processing before it is sent for encryption. In this paper a 

digital color image has been taken under consideration. First the Red, Green, and Blue 

(RGB) layers are extracted from the image [109]. This image is then converted to grey 

scale format of size 256×256 pixels. This grey scale image is then broken into 4×4 

matrices (128-bits each) with each element of size 1 byte. These matrices are fed to the 

input of  
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AES-256 algorithm along with the 256-bit cipher key and encrypted 4×4 matrices are 

obtained at output, which are then stitched together to form the 256×256 encrypted image 

[110]. Each set of 4×4 matrix undergoes exactly same encryption process.  

Figure 4.8 shows the flow chart for RGB image encryption with an image pre-processing 

component at top of the AES cipher. 

 

 
                Fig.4.8. Flow chart for encryption process of RGB Image 
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CHAPTER 5 

 

  RESULTS 

 

5.1. FPGA SYNTHESIS RESULTS FOR TEXT ENCRYPTION 

    To perform encryption of “sample message 1” with 128 bit key “secure 

password1” the resulting 128-bit encrypted output will be 

“786e4e6532761c57e253cc34814c233c”. The decryption module will take this 128-bit 

hexadecimal encrypted data as input and same 128 bit key as input to generate the 

decipher text message “sample message 1”. The energy consumed per bit in 

transformation during the entire process was 7 pJ/bit and throughput of encrypted results 

was 68 Gbps. Figure 5.1 and 5.2 shows the produced encryption and decryption outputs. 

                
          Fig. 5.1. Encrypted 128-bit hexadecimal output. 

                 

      Fig. 5.2. Shows the Encrypted 128-bit hexadecimal results and decrypted message. 
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Xilinx Artix-7 FPGA device based on 28nm technology was used for hardware evaluation 

and Verilog HDL for programming. This FPGA provides highest performance/watt and 

has 215,360 logic cells for design implementation [111]. For the AES-128 

implementation, a total of 23,689 logic cells were used which comes to about 11% 

resource utilization on the FPGA. Simulation and synthesis task has been performed on 

Xilinx Vivado v2021.1 IDE. Figure 5.3 shows simulation of the given algorithm run for 

1000ns and the encryption status in Vivado tcl console, peak memory used, gain, and time 

elapsed in producing simulation results. 

 

 

     Fig. 5.3. simulation runtime and status of encryption. 

 

Figure 5.4. shows the AES top module in Xilinx Vivado simulator with 128 bits of input 

data and cipher key and the clock pulse. Dataout[127:0] is the encrypted output message 

in hex form. Figure 5.5. Shows the Rounds operation module with datain[127:0], 

keyin[127:0], clk, rc[3;0] input vectors and  keyout[127:0], rndout[127:0] output vectors. 

           

Fig. 5.4. AES top module with input data, key and clock pulse and encrypted output. 
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            Fig. 5.5. Round transformation module with its input and output vectors 
   

Table 5.1.1. shown below provides a variation in the energy/bit (pJ/b) of the design with 

varying temperature in kelvin at various input supply voltages (V). 

 

          Table 5.1.1. Energy/bit variation with temperature and input voltage 

 

S. 

No 

Temperature 

(K) 

Input Voltage 

(V) 

Energy/bit 

(pJ/b) 

1 290 0.9 7 

2 300 1 7.09 

3 310 1.05 7.23 

4 320 1.1 8.10 

 

Table 5.1.2. shown below provides a variation in the dynamic power (W) and the leakage 

power (W) at various input supply voltages (V). 

 
Table 5.1.2. Input voltage vs dynamic and leakage power 

 

S. 

No 

Input Voltage 

(V) 

Dynamic Power 

(W) 

Leakage Power 

(W) 

1 0.9 0.69 0.09 

2 1 0.83 0.11 

3 1.05 0.9 0.12 

4 1.1 1.01 0.14 

 

Table 5.1.3. shown below provides a comparison of the throughput and energy consumed 

in per bit transformation of the presented parallel pipelined architecture with existing 

work.  
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Table 5.1.3. Result comparison of presented method with existing research. 

S.No Author Algorithm Throughput Energy  Frequency 

1 D.H Bui 

(2017) [6] 

Data Path 

optimization 

28 Mb/s 1 pJ/bit 10 MHz 

2 C. Duran 

(2022) [7] 

S-box 

acceleration  

- 9.7 pJ/bit 100 MHZ 

3 S. 

Chellapa 

(2015) [9] 

Fully 

Pipelined  

64 Gbps - 500 MHz 

 

 

 

 

 5.2.  SIMULATION RESULTS FOR IMAGE ENCRYPTION 

 

 

    The implementation and simulation of AES-256 for digital image encryption 

has been carried out on MATLAB 2021a. The 256-bit key considered for encryption is 

“secure encryption password 10111” (32 characters in plain text). Cipher key 

representation in hex format 

“73656375726520656e6372797074696f6e2070617373776f7264203130313131”.  Figure 

5.6 shows the RGB image along with its histogram plot and its gray scale conversion and 

corresponding histogram plot. The 4×4 image matrices extracted from the gray scale 

image that is fed into the encryptor is shown in figure 9. The packets of 4×4 encrypted 

images obtained at the encryptor output are stitched together to form the 256×256 pixels 

encrypted form of the original gray scale image. Figure 10 shows the 4×4 encrypted 

image matrix (in Hex). 
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Fig. 5.6. RGB Image and Gray scale image with their Histogram plots. 

 

  

Figure 11 shows the Encrypted image and its histogram plot along with the recovered 

image (decrypted) and its corresponding histogram plot. The results exhibited a high 

PSNR of 61 dB for the decrypted image and the correlation between the input digital 

image and the decrypted (recovered) image was found to be 0.994. The MSE between the 

input and the decrypted image was calculated to be 0.0030, indicating very low levels of 

distortion in the recovered image. This proves that AES-256 is highly suitable for image 

encryption and is robust to any distortions induced during the encryption processes. 

Decryption of the encrypted image matrix follows similar approach as the encryption, an 

inverted S-box is utilized but the flow remains mostly same [112]. Post processing of 

obtained decrypted matrix is done for stitching of image and conversion to original form. 
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Fig. 5.9. Encrypted & Decrypted images with their Histogram plots. 

 

                   Fig. 5.7. Input image matrix to the AES-256.  Fig. 5.8. 4×4 encrypted image matrix 
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CHAPTER 6 
 
 
 

 

CONCLUSIONS AND FUTURE SCOPE 
 

 

 

   This dissertation proposes an efficient high throughput pipelined architecture of 

128-bit AES cipher algorithm. A detailed study of the transformation processes in 

encryption/decryption of data has been presented to analyse the results obtained from 

each stage of the AES. The results exhibit high-rate encryption of 68 Gbps and a low 

energy consumption of 7 pJ/bit. Both encryption and decryption processes have been 

demonstrated for an alphanumeric text message using a 128-bit symmetric cipher key. 

This architecture makes it useful for applications in battery operated devices which have 

speed and power consumption constraints.   

 

An efficient and high throughput 256-bit AES cipher algorithm for encrypting digital 

image has also been proposed. A user input symmetric cipher key-based encryption 

process was simulated along with pre-processing of image data. A detailed study of the 

input image and the encrypted/decrypted images was carried out along with their 

histogram plots. The results exhibited high PSNR of 61 dB for the decrypted image and 

the correlation between the input image and the decrypted image was found to be 0.994. 

The MSE between the two images was calculated to be 0.0030.  

 

This architecture proved to be more efficient and easier to implement as compared to 

other techniques adopted for image encryption and has vast applications in messaging 

apps and data sharing platforms. The results proved the robustness of the algorithm as 

very little deviations were observed in the recovered image. AES is a computationally 

expensive and power-hungry algorithm hence not suitable for encryption of high-

resolution images when there are low power constraints.  
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Future improvements on this work include pipelining of AES algorithm for higher 

throughput and use of a low power multiplier in the mix-column step to reduce the power 

consumption. AES-256 can be made furthermore secure using a dynamic S-box in the 

substitution byte step. 

 

These facts highlight the significance and strength of the AES encryption algorithm, 

making it a widely trusted and respected cryptographic standard. Overall, AES offers a 

strong combination of security, efficiency, compatibility, and proven reliability, making it 

an excellent choice for multimedia encryption applications. In conclusion, AES has 

established itself as a highly dependable and secure encryption algorithm, extensively 

adopted across diverse sectors and applications. Its resilience, immunity to known 

attacks, and adaptability in key sizes have positioned it as the preferred choice for 

ensuring the confidentiality and integrity of data. 

 

Looking ahead, the future of AES entails ongoing research and development aimed at 

optimizing its performance and addressing emerging challenges. Efforts are underway to 

fine-tune AES implementations for various platforms and devices, leveraging hardware 

acceleration techniques to enhance speed and efficiency. Additionally, a comprehensive 

analysis of potential vulnerabilities is crucial to ensuring AES remains impervious to new 

attack methodologies and quantum computing risks. As technology evolves, the demand 

for robust and efficient encryption solutions will persist. AES is expected to continue 

playing a vital role in meeting these demands, serving as a fundamental pillar for data 

protection in an increasingly interconnected and digital landscape. Continuous 

advancements and innovative approaches to AES will reinforce its status as a leading 

encryption standard, empowering secure communication, safeguarding sensitive 

information, and bolstering overall digital security.  

 

  

 

 

 



 

50 

 

In terms of power and performance, one area of focus is hardware acceleration, where 

specialized hardware components and instructions are utilized to offload AES 

computations, improving encryption and decryption speeds. This includes the integration 

of AES-NI (AES New Instructions) in modern CPUs, which provide dedicated 

instructions for AES operations, resulting in significant performance gains. 

Parallel processing is another avenue for enhancing AES performance. By leveraging 

multi-core architectures and distributed computing techniques, encryption and decryption 

tasks can be divided into smaller parallel tasks, allowing for faster processing and 

improved throughput. 

Furthermore, advancements in hardware design, such as the use of FPGA (Field-

Programmable Gate Array) or ASIC (Application-Specific Integrated Circuit) 

technologies, offer opportunities for optimized AES implementations. These specialized 

hardware solutions can be customized to efficiently execute AES algorithms, resulting in 

faster and more power-efficient encryption and decryption operation. 
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