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ABSTRACT 

 

The semiconductor industry plays a crucial role in the design and manufacture of 

integrated circuits (ICs) used in a wide range of electronic devices. VLSI technology 

allows for the integration of millions of transistors onto a single chip, enabling the creation 

of highly complex and powerful devices such as computers, smart phones, and other 

electronic devices. The VLSI industry is a key driver of innovation in the electronics 

industry and has played a major role in the development of new technologies and the 

proliferation of electronic devices in our daily lives. Consequently, area, speed, and power 

play a critical role in any circuit design .A circuit must be created to meet the present 

trend's requirements with minimal space and minimal time limitations. 

Matrix multiplication is of significant importance in various fields and applications. 

Matrix multiplication plays a fundamental role in linear algebra, solving system of linear 

equations, data analysis and machine learning, computer graphics and computer vision, 

network theory and graph algorithm, etc. This thesis gives a thorough investigation into 

how the Wallace tree multiplier, Vedic multiplier, and parallel prefix adders might be 

combined to enhance matrix multiplication performance. These techniques contribute to 

achieving significant speed improvements, reduced and optimized resource utilization. 

The findings of this study add to understanding of digital circuit design by offering 

suggestions for choosing and incorporating effective multiplication methods for matrix 

operations. The thesis provides helpful advice to researchers and designers of digital 

circuits by explaining the trade-offs, benefits, and drawbacks of the integrated 

architecture.  

Firstly, Ripple Carry adders, Kogge Stone adders, and Han Carlson adders have been 

designed and analyzed. After that, the Wallace tree multiplier and Vedic multiplier are 

designed using these adders. By combining both multiplier and adder, matrix 

multiplication designs, analyses the performance data, and interprets the results obtained 

from the experiments. Using the ISE Design Suite tools in Verilog, all circuits are created 

and simulations are run. The XC6SLX150T are the devices used for synthesis. 
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CHAPTER 1 

 

INTRODUCTION 

 

Multipliers are essential arithmetic units in the VLSI (Very Large Scale Integration) 

industry, particularly in digital signal processing (DSP), communication systems, image 

processing, and various other applications. They are responsible for performing 

multiplication operations, which are fundamental to numerous computational tasks. The 

VLSI industry continually works on developing advanced multiplier architectures to 

enhance speed, power efficiency, and area utilization. Emerging technologies such as 

approximate computing and approximate multipliers contribute to achieving a balance 

between accuracy and computational efficiency. Overall, multipliers are indispensable 

components in the VLSI industry, enabling efficient multiplication operations in various 

applications and driving ongoing research and development. 

    In many computer applications, matrix multiplication is an essential operation, 

especially in the areas of linear algebra, image processing, machine learning, and 

scientific computing. The need for effective and optimized matrix multiplication 

algorithms grows as the size and complexity of matrices continue to increase. There is a 

growing need for effective and optimized methods for matrix operations as the need for 

high-performance computing keeps rising. In this work, to create a comprehensive 

framework for high-performance matrix multiplication and multiplication operations in 

digital circuit designs, investigate the integration of parallel prefix adders alongside the 

Wallace tree multiplier and Vedic multiplier. 

   The Wallace tree multiplier and Vedic multiplier are most effective multiplication. The 

Wallace tree multiplier reduces the number of partial products and offers faster 

multiplication speeds by utilizing a combination of carry-save adders and carry-propagate 

adders. Similarly, the Vedic multiplier leverages simple arithmetic operations, inspired 

by ancient Indian mathematics principles, to achieve high-speed multiplication with 

fewer logic gates compared to conventional multipliers. 

   We suggest using parallel prefix adders into the architecture of matrix multiplication 

and the multiplier. Carry propagation is parallelized via parallel prefix adders, also known 

as carry-look-ahead adders, which significantly increase speed. Parallel prefix adders 
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reduce the critical route time by efficiently allocating and computing the carries in 

parallel, which improves overall performance. 

    For the purpose of creating an optimized framework for matrix multiplication and 

multiplication operations in digital circuit designs, this thesis investigates the synergistic 

integration of the Wallace tree multiplier, Vedic multiplier, and parallel prefix adders. 

Utilizing each component's advantages will increase throughput, decrease latency, and 

enhance power efficiency. 

    Partitioning the input matrices, using the implemented multipliers to create partial 

products, and implementing parallel prefix adders for effective accumulation and carry 

propagation are all part of the suggested methodology. We hope to significantly increase 

matrix multiplication and multiplication operations performance by parallelizing the 

computation and reducing the critical path delay. All the design and simulation are 

performed in Verilog using ISE Design Suite tool. The selected board is XC6SLX150T. 

 

1.1 Motivation 

 

     A variety of computer activities, from scientific simulations to machine learning 

algorithms, can be significantly sped up by using efficient matrix multiplication and 

multiplication processes. Traditional multiplication methods may become a bottleneck 

when data amount and complexity rise, reducing system performance as a whole. 

Therefore, there is a strong motivation to explore novel approaches that can enhance the 

efficiency and speed of matrix multiplication operations in digital circuit designs. 

    The Wallace tree multiplier and Vedic multiplier have already shown potential for 

accelerating multiplication and lowering the incidence of partial products. Additional 

methods must be investigated, though, in order to improve the performance of these 

multipliers and enable quicker matrix multiplication. Due to the parallelization of the 

carry propagation mechanism, parallel prefix adders have seen notable speed gains. 

The necessity to create an optimized framework that incorporates the benefits of the 

Wallace tree multiplier, Vedic multiplier, and parallel prefix adders served as the driving 

force for this work. The aim of this work is to increase throughput, decrease latency, and 

reduce area in matrix multiplication and multiplication operations by utilizing the parallel 

computing capabilities of the adders coupled with effective multiplication strategies. The 

outcome of this research has the potential to benefit various domains that heavily rely on 

matrix operations, providing faster and more energy-efficient solutions for processing 
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large-scale matrices leading to advancements in various domains. Furthermore, the 

insights gained from this research can contribute to the ongoing development of efficient 

arithmetic units and computing architectures, paving the way for future advancements  

 

1.2 Objective 

 

New questions, ideas, and understandings can arise as a result of an analysis of the 

available data. Exploring uncharted territory is the main objective of research in order to 

find new opportunities. 

Primary objectives of this research project are as follows: 

 

• To design and implement an efficient matrix multiplication algorithm using the 

Wallace tree multiplier, Vedic multiplier, and parallel prefix adders in digital 

circuit designs.  

• To understand the working of multipliers and which ones perform the best, a 

comparison is done between Wallace tree multiplier and Vedic multiplier. To 

enhance the performance of multiplier, parallel prefix adder (Kogge Stone and 

Han Carlson adder) are used. 

• To validate the correctness and accuracy of the matrix multiplication algorithm 

by comparing the results with established mathematical solutions. 

• To contribute to the body of knowledge in the field of digital circuit design by 

investigating the synergistic integration of the Wallace tree multiplier, Vedic 

multiplier, and parallel prefix adders for effective matrix multiplication operations 
 

By accomplishing these objectives, this effort gives a thorough understanding of the 

functionality, effectiveness, and applicability of the integrated framework. By enabling 

more effective and optimized matrix operations across a range of computing domains, the 

research's results and insights will boost digital circuit design methodologies. 

 

1.3 Thesis Organization 

 

This thesis is divided into six chapters. The thesis is organized as follows: Chapter 2 

provides the literature review and the technology gap. Chapter 3 is a comprehensive 

review of the Ripple Carry adder, the Kogge Stone adder, and the Han Carlson adder. 

Chapter 4 examines the comparison of the Wallace tree multiplier and the Vedic 
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multiplier using different adders. Chapter 5 depicts the design of matrix multiplication 

and its analysis on the basis of performance and area. The conclusion and future scope 

are presented in Chapter 6. 

• CHAPTER 1- Provides a basic overview of matrix multiplication, multiplier and 

parallel prefix adder operation. In this chapter discussion areas are thesis's 

objective, motivation, methodology, and thesis organization. 

• CHAPTER 2- This chapter provides a detailed overview of earlier research on 

parallel prefix adders and multiplication. According to published research, Vedic 

and Wallace tree multipliers are faster multipliers than traditional ones. 

Additionally, Han Carlson and Kogge Stone PPAs are quicker than Ripple carry 

adder. 

• CHAPTER 3- This chapter covers the details of the implementation of Adder used 

in this work. The design and performance evaluation of the Kogge Stone, Ripple 

Carry, and Han Carlson adders are covered in this chapter.  

• CHAPTER 4- This chapter covers the description of the Wallace tree and the 

Vedic multiplier. Both multipliers are designed using different adders (discussed 

in the previous chapter) and compared for their performance. 

• CHAPTER 5- This chapter presents the methodology employed in this research, 

including the design and integration of the matrix multiplication algorithm. This 

chapter describes the implementation of matrix multiplication using multipliers 

(discussed in chapter 4) and comparison between area and delay. 

• CHAPTER 6- This chapter contains the important outcomes of every chapter 

along with the future work. 

In order to explore the directions for our current work, a comprehensive list of references 

is supplied at the end of the thesis. 
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CHAPTER 2 

 

LITERATURE REVIEW 

Literature review is essential when conducting research. It helps to establish a solid 

understanding of the topic and acknowledge the contributions of other scholars in the 

field. It also helps to identify contradictions, research gaps, conflicting findings, and 

unresolved issues that exist within the current body of knowledge. This information 

guides the researcher in formulating research questions and designing studies that address 

these gaps and contribute to the advancement of knowledge in the field. 

This chapter is categorized into two sections: (1) previous reported work, and (2) 

technical gaps. 

 

2.1 PREVIOUS REPORTED WORK: 

 

Y. d. Ykuntam, K. Pavani and K. Saladi [1], proposed new and innovative architecture 

for the Wallace tree multiplier, which employs parallel prefix adders (PPAs) to perform 

the final addition step of partial products. They put forward five distinct structures for the 

Wallace tree multiplier, each incorporating a different type of adder.Detailed analysis of 

the proposed designs in terms of area and delay compared to traditional multiplier designs 

is completed.  

S. Lad and V. S. Bendre [2], present an in-depth analysis of several Vedic sutras and their 

application in multiplier design. They discuss the design methodology, implementation 

details, and optimization techniques used to achieve high-performance multipliers. The 

performance metrics considered include area utilization, power consumption, and speed. 

The designs for the 16-bit sutras are implemented using Verilog language and evaluated. 

Comparative analysis is conducted with existing research work to assess the performance 

of the proposed sutras for better speed, area and power.   

M. Kivi Sona and V. Somasundaram [3], propose a multiplier using Vedic mathematics 

based on Nikhilam architecture to improve the speed of operation and compares different 

architectures, including the existing Wallace Tree and Vedic mathematics based on 

Urdhva Tiriyagbhyam, with the proposed design to evaluate metrics such as area 
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utilization, power consumption, and speed 

T. Gupta and J. B. Sharma [4], The authors propose a Han-Carlson adder-based Vedic 

multiplier architecture that utilizes the Urdhva-Tiryakbhyam sutra from Vedic 

multiplication and the Han-Carlson adder, known for its high-speed performance. The 

authors implement a 64x64 bit Vedic multiplier using VHDL and compare the 

implementation results with conventional Vedic multipliers employing different adders. 

The results show that the proposed architecture offers improved delay, reduced hardware 

utilization (LUTs), and lower complexity 

N. Kumar M., R. S. Adithyaa, B. Kumar D. and T. Pavithra [5], proposes a 16x16-bit 

Wallace Tree Multiplier using the Kogge Stone Adder and modified approximate Full 

Adder for improved performance. Performance analysis considers factors such as speed, 

area utilization, and power consumption.  

A. Raju and S. K. Sa [6], The research focuses on using the Kogge Stone Adder (KSA) 

as a key component in multiplier architectures. The paper investigates different multiplier 

designs based on the KSA, exploring their performance characteristics and comparing 

them to conventional multiplier architectures. The author proposes multipliers utilizing 

the KSA, which exhibit improved performance in terms of speed and efficiency compared 

to conventional multiplier architectures. 

P. Gulati, H. Yadav and M. K. Taleja [7], present a comparison of the three adders based 

on several performance metrics. The results obtained from the simulation and analysis 

provide insights into the performance trade-offs and advantages of using each adder. The 

paper contributes to the understanding of the performance characteristics of different 

adders in Vedic multiplier designs, which can help guide the selection and 

implementation of appropriate adders for Vedic multipliers in various applications. 

S. Dubey and G. Verma [8], presents a comparison of different 4-bit adders in terms of 

power consumption, device utilization, and delay. The focus is on assessing the 

performance of the adders and identifying the adder that provides the best overall 

results.The Han Carlson Adder (HCA) is the best choice among the 4-bit adders evaluated 

for power consumption, device utilization, and delay. It operates based on parallel prefix 

computation and requires less area than the RCA, making it an efficient and effective 

solution for achieving high-quality results with reduced resource utilization. 
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R. Shanmuganathan and K. Brindhadevi [9], This study compares three different types of 

multiplier architectures using VHDL code and low power design methods. The Wallace 

tree multiplier is chosen for its high-speed operation. The Baugh Wooley multiplier is 

used for signed multiplication with reduced delay. The array multiplier is considered for 

its impact on delay, with less significance on area. This study contributes to the 

understanding of various multiplier architectures and their suitability for different 

application scenarios. 

 R. Anjana, B. Abishna, M. S. Harshitha, E. Abhishek, V. Ravichandra and M. S. Suma 

[10], present a novel approach to designing a Vedic multiplier by incorporating a Kogge-

Stone adder. The results demonstrate that the Vedic multiplier with the Kogge-Stone 

adder outperforms the conventional multipliers on the metrices of speed and area, 

contributing to faster computation and improved performance. The experimental analysis 

reveals that the proposed Vedic multiplier achieves a balance between speed and area 

efficiency, making it suitable for various applications, including digital signal processing. 

A. Sundhar, S. D. Tharshini, G. Priyanka, S. Ragul and C. Saranya [11], proposes a 16x16 

multiplier architecture uses a 15-4 compressor and Kogge-Stone adder to enhance its 

performance. Results indicate that the proposed multiplier architecture using the 15-4 

compressor and Kogge-Stone adder outperforms the multiplier architecture with a parallel 

adder in terms of speed. The Kogge-Stone adder contributes to faster computation, 

making the proposed architecture more efficient. These findings suggest potential 

applications in fields such as video and image processing. 

M. N. Chandrashekara and S. Rohith [12], presents a promising approach to designing 

efficient multipliers using Vedic mathematics and the Modified Carry Save Adder. The 

objective is to develop a multiplier that can compute the product of two 8-bit binary 

numbers with high speed and efficiency. The results demonstrate that the Vedic multiplier 

utilizing the Urdhva Tiryagbhyam sutra with MCSA outperforms other multipliers in 

terms of speed 

 

 

 



8 
 

CHAPTER 3 

 

CHARACTERISTIC COMPARISON FOR 

DIFFERENT ADDERS 

 

The adder is an essential part of digital circuits and is used for a variety of tasks, from 

simple computations to complicated ones, including basic arithmetic. It is crucial in many 

areas, including computer architecture, signal processing, cryptography, , because it 

enables effective data manipulation, processing, and arithmetic operations.  

The performance of the multiplier depends on the speed and efficiency of the adder 

used in the design. Faster and more efficient adders can significantly improve the 

performance of the multiplier and reduce the overall delay in the computation. Therefore, 

the design and implementation of the adder are crucial to achieving high-speed and high-

performance multipliers. A parallel prefix adder (PPA) is a type of adder circuit that is 

used to perform fast and efficient addition of binary numbers.. Careful consideration and 

selection of the appropriate adder architecture are crucial for achieving high-performance 

multipliers. 

This chapter is organized in five sections: 

• The basic adder Ripple Carry adder, which is defined in section 3.1. 

• A discussion of the parallel prefix adder and its kinds is covered in Section 3.2. 

• The implementation and analysis of Kogge Stone adder and Han Carlson adder 

are discussed in Section 3.3 and 3.4 respectively. 

• Section 3.5 of the chapter discusses comparisons and the results 

 

3.1 Ripple Carry Adder 

 

A ripple carry adder is a fundamental adder to add binary digits. The carry bit ripples 

or propagates through the stages of the adder, hence the name "ripple carry" adder. A 

chain of numerous full adders joined together forms the ripple carry adder. A carry-in bit, 

the matching bits from the numbers being added, two input bits, and the whole adder are 

all required. The carry from each full adder is fed into the  carry-in for the next full adder 

in the chain as shown in Fig.3.1 
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Fig. 3.1 Block diagram of Ripple Carry adder 

3.1 Parallel Prefix Adders 

  Parallel Prefix Adders (PPA) are fast adders that are derived from Carry Look Ahead 

Adders. In this paper, PPA is used because it can perform parallel addition which means 

the partial additions can be computed parallel resulting in a significant reduction in the 

addition time [6]. This is in contrast with the traditional Ripple Carry Adder which 

performs Sequential addition and the consequent stage has to wait for the previous stage 

to complete. 

  Each stage in the parallel prefix adder performs parallel operations on different subsets 

of the input bits. The final carry-out is then calculated by prefixing the carry-out bits from 

each stage. The parallel prefix adder works by performing parallel computations within 

each group to calculate the carries. These computed carries are then passed to the next 

group, where they are combined with the corresponding inputs to compute the next level 

of carries. This process continues until the final carry-out bits are obtained.  

Parallel Prefix Adder typically consists of 6 stages: 

• Input preparation: The binary numbers to be performed operation are spilt into 

groups of bits. Each groups have a subset of input number.  

• Perform parallel computation: To calculate the carries inside each group, parallel 

computations are used. Depending on the particular parallel prefix adder 

architecture, several methods, such as AND gates, XOR gates, and other logic 

circuits, can be used to do the carry calculation. 

• Carry Propagation: To calculate the carries inside each group, parallel 

computations are used. Depending on the particular parallel prefix adder 

architecture, several methods, such as AND gates, OR gates, and other logic 

circuits, can be used to do the carry calculation. 
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• Carry Combination:  The final carry-out bits are created by prefixing the carry bits 

from each group. This entails creating a precise pattern, frequently like a tree, 

connecting the carry outputs of each group to the inputs of the higher-order 

groups. 

• Generate Sum bits: The input bits and the carry bits are combined in a 

straightforward XOR procedure to determine the sum bits. For each bit position, 

this can be done in parallel. 

• Final Carry Out: The most significant carry-out piece of the addition operation is 

represented by the carry-out from the highest-order group. 

 The two main parallel prefix adders are explored in this chapter. Kogge Stone adder and 

Han Carlson adder are most efficient and faster adders in parallel prefix adder. 

 

3.3 Kogge Stone Adder 

 

The Kogge-Stone adder is a type of parallel prefix adder that efficiently computes the 

carry bits in parallel and combines them in a prefix manner to perform fast addition of 

binary numbers. In contrast to ripple carry adders, the Kogge-Stone adder uses parallelism 

and effective carry propagation to produce quicker addition. By parallelizing carry 

computations and reducing the ripple carry effect, it decreases the critical path delay. 

Kogge Stone adder can broadly split into three stages. The first stage is the processing 

stage, in which the propagate and generate signals are calculated using each bit of the 

pair-bit signal.  

Pi = Ai xor Bi 

Gi = Ai and Bi 

The second step generates carries by utilizing each bit individually and in parallel. This 

is utilized for carry generation and carries propagation in the intermediate stage logically 

and is referred to as the carry generation stage.  

CPi:j = Pi:k+1 and Pk:j 

CGi:j = Gi:k+1 or ( Pi:k+1 and Gk:j ) 

In last step, sum and carry are calculated and this step is known as post processing 

stage. 

Si = Pi xor Ci-1 

Ci-1 = ( Pi and Ci ) or Gi 
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Fig. 3.2 Graphical Representation of 16-bit Kogge Stone adder 

 

3.4 Han Carlson Adder 

Han Carlson adder is similar to Kogge Stone adder. The adder has the benefit of using 

fewer cells and being shorter. To calculate the odd numbered prefixes, the Han-Carlson 

adder starts with a Brent-Kung stage, moves through Kogge-Stone stages, and finishes 

with another Brent-Kung stage. As a result, the complexity is reduced at the cost of an 

extra stage merging the carry. Due to fewer cells, the speed is fastest in all parallel prefix 

adder. The graphical representation of the Han Carlson adder  is shown in Fig.3.3. 

 

Fig. 3.3 Graphical Representation of 16-bit Han Carlson adder 
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3.5 Simulation and Synthesis Results 

In this section a comparative analysis of 32-bits Ripple Carry Adder, Kogge Stone 

Adder and Han Carlson Adder are performed. The factors that are considered for 

comparison are area and delay. Through this detailed analysis, we aim to provide 

insights into the performance characteristics of different adders and assist in making 

informed design choices for multiplier implementations. 

 

3.5.1 Ripple Carry Adder 

 

Fig 3.4 : Device utilization of Ripple Carry Adder 

 

 

Fig 3.5 : Schematic of Ripple Carry Adder 
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Fig 3.6 : Delay Report of Ripple Carry Adder 

 

 

 

Fig 3.7: Simulation Result of Ripple Carry Adder 

 

3.5.2 Kogge Stone Adder  

 

 

Fig 3.8: Synthesis Result of Kogge Stone Adder 
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Fig 3.9: : Schematic of Kogge Stone Adder 

 

 

Fig 3.10: Delay Report of Kogge Stone Adder 

 

 

Fig 3.11: : Simulation Result of Kogge Stone Adder 
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     3.5.3 Han Carlson Adder 

 

 

Fig 3.12 : Device utilization of Han Carlson Adder 

 

 

Fig 3.13  : Schematic of Han Carlson Adder 

 

 

Fig 3.14 : Delay Report of Han Carlson Adder 
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Fig 3.15: Simulation Result of Han Carlson Adder 

 

Table 3.1  shows Comparative Analysis  of Delay and Area of Adders  

Adders Delay(ns) Area(LUT) 

Ripple Carry Adder 20.8 49 

Kogge Stone Adder 14.26 139 

Han Carlson  Adder 12.101 105 

 

 

Fig 3.16. Delay comparison graph for Adders 

 

Fig 3.17. Area comparison graph for Adders 
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3.6  Important Outcomes: 

 

In this chapter, the design and analyses of several adders are carried out and compared to 

determine the optimal option for the best performance. 

• The Ripple Carry, Kogge Stone and Han Carlson adder are design and simulated. 

• Delay and Area have been calculated and plotted. 

• Performing addition using Han Carlson adder can reduce delay up to 40%. 

• In terms of area, the ripple carry adder utilized space better than the parallel 

prefix adder 
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CHAPTER 4 

 

DESIGN AND ANALYSIS OF MULTIPLIER USING 

DIFFERENT PARALLEL PREFIX ADDER 

 

Multiplication operation is an essential component in a processing unit that is widely 

employed in numerous disciplines, including engineering, physics, computer science, and 

many others. Numerous multiplication operations are required by many algorithms. The 

effectiveness and speed of these operations directly affect the system’s overall 

performance. 

     Improving the performance of a multiplier can bring several benefits, such as: 

• Faster Calculation: The time needed to perform multiplication operations can be 

decreased by optimizing a multiplier, which could result in quicker calculation 

times. 

• Reduced power consumption: Reduced power consumption from faster 

computing is also beneficial for battery-operated gadgets and low-power systems. 

• Increased accuracy: In many applications, like digital signal processing and image 

processing, higher levels of accuracy are required, and high-performance 

multipliers are able to perform multiplication operations with these levels of 

accuracy. 

• Improved system throughput: The throughput of the entire system can be boosted 

by optimizing the performance of a multiplier, which is crucial in high-

performance computing systems. 

In this chapter, we will discuss different multipliers and how to improve their 

performance by using a faster adder.  

The following is the arrangement of this chapter: 

• Efficient Multiplier to be designed and the implementation of Wallace Tree 

and Vedic Multiplier is described in Section 4.1. 

• In section 4.2, simulated and synthesized results are presented,  

• Performance comparison of the implemented Multipliers in terms of Delay 

and Area discussed in section 4.3. 
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4.1 Multiplier  

 

Wallace tree multiplier and the Vedic Urdhva Tiryakbhyam Multiplier (UTM) are two 

fastest multipliers used in digital circuit. The Wallace tree multiplier is based on the 

Wallace tree algorithm, a quick multiplication method that minimizes the number of 

partial products needed to compute the final result. The Vedic UTM, on the other hand, 

is based on prehistoric Indian mathematics systems that use particular formulas and 

procedures to execute multiplication. It utilizes various sutras and sub-sutras to simplify 

the process by breaking it into smaller steps. 

For and efficient multiplication,it is important to increase the performance of the 

adders involved. A series of additions are required for multiplication, and the pace at 

which these additions are completed directly affects the total time required for 

multiplication. The speed of the adder becomes significant when multiplying huge 

numbers or carrying out multiplication operations in high-performance computing 

systems. In this chapter, all the adders that were discussed in the previous chapter are 

used to improve the performance of multipliers. By using the faster adder in the 

multiplier, we can improve throughput, reduce execution time, enhance computational 

efficiency, and impact complex operations. 

 

4.1.1 Wallace Tree Mutliplier  

 

The Wallace tree multiplier is based on the concept of”tree reduction,” which involves 

decreasing the number of partial products that must be combined to create the final 

product. This algorithm allows for efficient carry propagation in parallel processing. It 

reduces the overall area footprint of the circuit by minimizing the number of logic gates 

needed. It continues to be widely utilized in a range of applications where efficient and 

fast multiplication operations are essential.  

The steps involved in a Wallace tree multiplier’s operation are as follows: 

• Partial products generation: A series of AND gates is used to multiply the binary 

digits of the multiplicand by the binary digits of the multiplier. The resulting 

partial products are arranged in columns. 

• Reduction of partial products: To create a set of sums and carries, the partial 

products are reduced using a succession of half-adders and full-adders 

• Final Addition: A succession of full adders is used to condense the Wallace tree 

into a single total. 
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Overall, utilizing digital circuits, the Wallace tree multiplier is a very effective approach 

to multiplying two binary values. The graphical representation of 8-bits Wallace tree 

multiplier shows in Fig.4.1 

 

Fig. 4.1 Graphical Representation Of 8X8 bit Wallace Tree Multiplier  

 

The Wallace Tree Multiplier is constructed  by generating partial products where both the 

input numbers are multiplied by passing through AND gates. Further reduction of the 

partial products is carried out by adding them using half adders and full adders. This 
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reduction is carried out till the last two rows are received. To achieve a faster addition, 

the last two rows are added using Kogge Stone adder and Han Carlson Adder (discussed 

in previous chapter).  Fig.4.2  depicts the flow diagram for generating the Wallace Tree 

Multiplier. 

 

Fig 4.2. Flow diagram of Wallace Tree Multiplier 

 

The variation in performance of the Wallace Tree multiplier due to changes in the 

adder will be discussed in Section 4.3. 

 

4.1.2 Urdhva-Tiryakbhyam Vedic Multiplier 

 

         The Vedic multiplier is a sort of multiplier derived from the Vedic mathematics 

of ancient India. It offers a different way to carry out multiplication operations using 

particular formulas and methods. Comparing the Vedic multiplier to conventional 

multiplication algorithms, there are a number of benefits, including simplicity, speed, and 

efficiency. To make multiplication easier, it applies a variety of sutras (formulas) and sub-

sutras (corollaries) from Vedic mathematics. It is one of the most used and fastest sutras 

in Vedic mathematics. According to the sutra, there is a quick and easy method for 

multiplying two-digit numbers that entails multiplying the vertical and crosswise 
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components and adding the results.  

The basic steps of the Vedic multiplier algorithm for multiplication are as follows: 

• Depending on place values, divide the multiplicand and multiplier into their 

appropriate halves. 

• Perform cross-multiplication between the corresponding parts of the multiplicand 

and the multiplier. In order to do this, numbers must be multiplied both vertically 

and diagonally, and the partial products must be arranged in a particular way. 

• Vertical additions are used to add up the cross-multiplication step's partial 

products. 

• Any necessary carries from each vertical addition are carried forward. 

• The final output is created by combining the results. 

Given below is an example to illustrate multiplication: 

Multiply A1A0 by B1B0  

• Multiply the rightmost vertical terms A0 and B0. Write the output A0B0 on the 

rightmost part of the answer 

• Multiply the leftmost vertical terms A1 and B1. Write the output A1B1 on the 

leftmost part of the answer 

• Then multiply the cross-wise terms i.e.A1B0 and A0B1. Add the two results 

(A1B0+A0B1). If the resultant is a 2digit, then the leftmost digit of this term will 

be carried forward to the left 

• The final result is as follows: (A1B1) +(A1B0+A0B1) +(A0B0) 

The gate level implementation of 2x2 Vedic Multiplier as shown in Fig.4.3 

 

 

Fig.4.3: 2x2 Gate level netlist of Vedic Multiplier  
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In order to construct an N-bit Vedic Multiplier, the input values A and B are split into 

two equal parts. These parts are referred to as AH, AL, BH, and BL, representing the 

Most Significant Bits (MSB) and Least Significant Bits (LSB) respectively. This 

division allows the creation of an N x N size Vedic multiplier, as depicted in Figure 

4.4. are utilized as inputs for four Vedic Multipliers, each of size N/2. These outputs 

are then fed into four additional Vedic Multipliers, this time with a size of N/4. The 

N/4 size Vedic Multipliers are further split into four Vedic Multipliers of size N/8, 

following a similar pattern [2]. This continues until the splitting reaches a block size 

of 2x2, as depicted in the block diagram shown in the figure. Finally, the outputs of 

the four N/2 x N/2 multipliers are inputted into an adder with (N + N/2) bits. 

 

 

 

Fig.4.4 Block diagram of NXN bit Vedic Multiplier 

 

 Performance of Vedic multiplier depends upon the types of adder used in the circuit. The 
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variation in performance of the Vedic Multiplier due to changes in the adder will be 

discussed in next section. 

4.2 Simulation and Synthesis Results  

4.2.1 Wallace Tree Multiplier using Ripple Carry Adder 

 

  

Fig.4.5. Device utilization of Wallace Tree multiplier using RCA 

 

 

Fig.4.6. Delay Report of Wallace Tree Multiplier using RCA 
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Fig.4.7 Schematic of Wallace Tree Multiplier using RCA 

 

 

 

Fig.4.8. Simulation Result  of Wallace Tree Multiplier using RCA 

4.2.2 Wallace Tree Multiplier using Kogge Stone  Adder 

 

  

 

Fig.4.9. Device Utilization of Wallace Tree Multiplier using KSA  
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 Fig.4.10. Delay Report of Wallace Tree Multiplier using KSA 

 

 

 

Fig.4.11. Schematic of Wallace Tree Multiplier Using KSA 
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Fig.4.12. Simulation of Wallace Tree Multiplier Using KSA 

 

4.2.3 Wallace Tree Multiplier using Ripple Han Carlson Adder 

 

 

 

Fig.4.13 Device utilization of Wallace Tree multiplier using Han Carlson 

 

  

 

Fig.4.14. Delay Report of Wallace Tree multiplier using Wallace Tree HCA 
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Fig.4.15. Schematic of Wallace Tree Multiplier using HCA 

 

  

 

Fig.4.16. Simulation of Wallace Tree Multiplier using HCA 

 

4.2.4 Vedic Multiplier using Ripple Carry Adder 

 

 

 

Fig.4.17. Device Utilization of Vedic Multiplier using RCA 
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Fig.4.18. Delay Report of Vedic Multiplier using RCA 

 

 

Fig.4.19. Schematic of Vedic Multiplier using RCA 
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Fig.4.20. Simulation  Result of Vedic Multiplier using RCA 

 

4.2.5 Vedic Multiplier using Kogge Stone Adder 

 

 

 

Fig.4.21. Device Utilization of Vedic Multiplier using KSA 

 

 

 

Fig.4.22. Delay Report of Vedic Multiplier Using KSA 
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Fig.4.23. Schematic of Vedic Multiplier Using KSA 

 

 

Fig.4.24. Simulation Result of Vedic Multiplier Using KSA 

 

4.2.6 Vedic Multiplier using Han Carlson Adder 

 

  

Fig.4.25. Device Utilization of Vedic Multiplier using HCA 



32 
 

 

Fig.4.26. Delay Report of Vedic Multiplier using HCA 

 

 

Fig.4.27. Schematic of Vedic multiplier using HCA 
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Fig.4.28. Simulation result of Vedic multiplier using HCA 

Table 1 shows the comparative analysis of the performance of the Wallace Tree Multiplier 

and Vedic Multiplier designs using Ripple Carry Adder, Kogge Stone Adder, and Han 

Carlson Adder on the basis of Area (LUT) and Delay(ns). 

 

Table 4.1 shows Comparitive  Analysis Of  Wallace  Tree  Multiplier  And  Vedic Multiplier   

Using   Different   Adders 

Multiplier Delay(ns) Area(LUTs) 

Wallace Tree Using Ripple Carry Adder 34.929 657 

Wallace Tree Using Kogge Stone Adder 24.221 769 

Wallace Tree Using Han Carlson Adder 23.12 703 

Vedic Using Ripple Carry Adder 39.502 661 

Vedic Using Kogge Stone Adder 28.338 810 

Vedic Using Han Carlson Adder 28.128 730 

 

 

 

Fig.4.29  Delay comparison graph for multipliers 
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Fig.4.30 . Area comparison graph for multipliers  

 

4.3 IMPORTANT OUTCOMES 

 

In this chapter, the design and analyses of multipliers are carried out and 

compared to determine the optimal option for the best performance. 

• The Wallace tree multiplier and Vedic multiplier are design and simulated using 

Ripple Carry adder, Kogge Stone adder and Han Carlson adder.. 

• Delay and Area have been calculated and plotted 

• Speeding up the circuit by using the Wallace tree multiplier and the Han 

Carlson adder. 

• The Vedic multiplier with ripple carry adder used less space but was the 

slowest in terms of speed. 
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CHAPTER 5 

 
DESIGN AND COMPARISON OF MATRIX 

MULTIPLICATION USING WALLACE TREE AND 

VEDIC MULTIPLIER WITH PARALLEL PREFIX 

ADDER 

 

 
Matrix multiplication is a basic operation in many mathematical concepts and 

methods, including the solution of linear equation systems, computer graphics 

transformations, and calculations involving neural networks. In many applications, the 

effectiveness of matrix multiplication is a crucial factor to take into account, especially 

when dealing with huge matrices or when matrix multiplication needs to be done 

repeatedly. Multiplication of matrices can be computationally demanding, particularly 

for large matrices. The amount of time needed to complete calculations can be 

considerably decreased by optimizing matrix multiplication techniques. In real-time 

applications like computer graphics, simulations, and scientific computations, where 

faster execution can result in more responsive and effective systems, this is especially 

crucial. Matrix multiplication algorithm performance optimization can help minimize 

memory accesses and lower the memory footprint, resulting in more effective memory 

usage. 

Matrix multiplication performance can vary greatly depending on the matrix 

multiplication method used, with effects on things like computational complexity, 

memory access patterns, parallelizability, and cache utilization. The effectiveness of 

matrix multiplication can also be impacted by the adder that is selected in a matrix 

multiplier. The critical path delay of the matrix multiplier, which affects the total latency 

of the multiplication operation, can be influenced by the adder choice. The critical route 

length can be shortened with faster adders with less latency, which will speed up 

multiplication. Lower latency can be achieved with adder designs that have reduced 

carry propagation delays and optimized logic. In this chapter, matrix multiplication is 

performed using the Wallace Tree Multiplier and Vedic Multiplier. For the addition 

purpose, Ripple Carry Adder, Kogge Stone Adder, and Han Carlson Adder are used and 

compared for their performance.  
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This chapter is organized in following sub-sections: 

• The fundamental of matrix multiplication concept discuss in Section 5.1. 

• The Simulation and Synthesis Resultss are found in section 5.2. 

• The important outcomes of the improved sense amplifier are discussed in Section 5.3. 

         The basic process of matrix multiplication in linear algebra entails multiplying two 

matrices to produce a new matrix.  

5.1 Fundamental of matrix multiplication 
 

The "left" matrix and the "right" matrix are the two matrices needed to multiply two 

matrices. The size of the left matrix, denoted as A, is characterized by its dimensions of 

m x n, where m represents the number of rows and n represents the number of columns.  

The right matrix, referred to as B, has dimensions of n x p, where p represents the 

number of columns. The resulting matrix, denoted as C, will have dimensions of m x p, 

where m represents the number of rows from matrix A and p represents the number of 

columns from matrix B.The dot product of the i-th row of matrix A and the j-th column 

of matrix B is used to calculate each element C[i][j] in the resulting matrix. 

The i-th row of matrix A and the j-th column of matrix B's dot product are formed by 

multiplying and adding the respective elements. Element A[i][k] from the i-th row of 

matrix A is multiplied by element B[k][j] from the j-th column of matrix B in this 

operation, where k is a number between 1 and n. The last element of matrix C[i][j] is 

obtained by adding the generated products.  

The mathematical formula for the element C[i][j] is: 

C[i][j] = A[i][1] * B[1][j] + A[i][2]* B[2][j] +... + A[i][n]*B[n][j] 

The resultant matrix C, which represents the multiplication of matrices A and B, is 

created by repeating this calculation for each member. 
 

 5.2 Simulated and Synthesis Results 

  

 5.2.1 Matrix multiplication using Wallace Tree Multiplier and RCA 
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Fig 5.1. Device utilization of Matrix Multiplication using Wallace Tree Multiplier and RCA 

 

 

Fig 5.2. Delay Report of Matrix Multiplication using Wallace Tree Multiplier and RCA 

 

 

 



38  

Fig 5.3. Schematic of multiplication using Wallace Tree Multiplier and RCA 

 

Fig 5.4. Simulation of multiplication using Wallace Tree Multiplier and RCA 

 

5.2.2 Matrix Multiplication using Wallace Tree Multiplier and KSA 

 

 

 

Fig 5.5. Device Utilization of Matrix Multiplication using WTM and KSA 

 

 

Fig 5.6. Delay Report of Matrix Multiplication using WTM and KSA 
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Fig 5.7. Schematic of Matrix Multiplication using WTM and KSA 

 

 

 

Fig 5.8. Simulation result of Matrix Multiplication using WTM and KSA 

 

   5.2.3 Matrix Multiplication using Wallace Tree Multiplier and HCA 

 

 

 

Fig 5.9. Device Utilization of Matrix Multiplication using WTM and HCA 
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Fig 5.10. Delay Report of Matrix Multiplication using WTM and HCA 

 

 

 

Fig 5.11. Schematic of Matrix Multiplication using WTM and HCA 
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Fig 5.12. Simulation result  of Matrix Multiplication using WTM and HCA 

 

 

5.2.4 Matrix Multiplication using Vedic Multiplier and Ripple Carry Adder 

 

 

 Fig 5.13. Device utilization of Matrix Multiplication using Vedic Multiplier and RCA 

 

 

 

Fig 5.14. Delay Report of Matrix Multiplication using Vedic multiplier and RCA 
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Fig 5.15. Schematic of Matrix Multiplication using Vedic multiplier and RCA 

 

 

 

Fig 5.16. Simulation result  of Matrix Multiplication using Vedic multiplier and RCA 

 

5.2.5 Matrix Multiplication using Vedic Multiplier and KSA 

 

 

  

Fig 5.17. Device Utilization of Matrix Multiplication using Vedic multiplier and KSA  



43  

 

Fig 5.18. Delay Report of Matrix Multiplication using Vedic multiplier and KSA 

 

 

 

Fig 5.19. Schematic of Matrix Multiplication using Vedic multiplier and KSA 
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Fig 5.20. Simulation  result of Matrix Multiplication using Vedic multiplier and KSA  

 

5.2.6 Matrix Multiplication using Vedic multiplier and HCA 

 

 

 Fig 5.21. Device Utilization of Matrix Multiplication using Vedic multiplier and HCA 

 

 

 

Fig 5.22. Delay Report of Matrix Multiplication using Vedic multiplier and HCA 
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Fig 5.23. Schematic of Matrix Multiplication using Vedic multiplier and HCA 

 

 

Fig 5.24. Simulation result  of Matrix Multiplication using Vedic multiplier and HCA 

 

Table 5.1 shows Comparative  Analysis Of  Matrix Multiplication using Different   Multipliers 

 

 

 

Matrix Multiplier Method Delay(ns) Area(LUTs) 

Wallace Tree Multiplier and RCA 28.969 4009 

Wallace Tree Multiplier and KSA 27.544 4972 

Wallace Tree Multiplier and HCA 26.583 4528 

Vedic Multiplier and RCA 32.998 4864 

Vedic Multiplier and KSA 33.057 5523 

Vedic Multiplier and HCA 34.04 5100 
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Fig 5.25  Delay comparison graph for Matrix Multiplication 

 

 

 

Fig 5.26. Area comparison graph for Matrix Multiplication  
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5.3 Important Outcomes: 

 

The thesis provides an integrated framework for matrix multiplication that 

integrates the Wallace tree multiplier, Vedic multiplier, and parallel prefix adders. 

Comparing the framework to conventional multiplication methods, it shows enhanced 

performance and efficiency. 

• It demonstrates that the Wallace tree multiplier outperforms the Vedic multiplier 

in terms of speed and area utilization. 

• The quickest matrix multiplication method uses a Wallace tree multiplier and a 

Han Carlson adder. 

• On comparing their area requirements, the most efficient multiplier is the Wallace 

tree multiplier combined with a Ripple carry adder. 
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CHAPTER 6 

 

CONCLUSION AND FUTURE SCOPE 

 

6.1 CONCLUSION 

 

This thesis has presented a comprehensive investigation into the optimization of matrix 

multiplication through the utilization of the Wallace tree multiplier, Vedic multiplier, and 

parallel prefix adders. This efficiency in improving the performance of matrix 

multiplication operations has been revealed by the performance evaluation and analysis, 

which has been quite helpful.  

The best superior 32 bits adder is first designed. The Han Carlson adder provides higher 

performance in terms of speed, according to examination and comparison with the Kogge-

Stone adder and ripple carry adder. The Han Carlson adder combines the advantages of 

the Han-Carlson parallel prefix structure and the carry-save adder, resulting in a reduction 

of critical path delay and efficient carry propagation. The Han Carlson adder reduces the 

delay by around 40% compared to the Ripple Carry adder. In terms of area, due to their 

added circuitry for parallel processing and carry propagation, the HAN-Carlson adder and 

Kogge-Stone adder often demand more hardware resources than the ripple carry adder. 

The performance of 16x16 multipliers is then designed and compared after that. Vedic 

and Wallace tree multipliers are successfully designed with Han Carlson, Kogge Stone, 

and Ripple Carry adders, and their performance is compared. According to the results, the 

Wallace tree multiplier and Han-Carlson adder performed faster than the other 

configuration. Faster multiplication operations were made possible by the Wallace tree 

multiplier's parallel architecture, and overall performance was improved because the Han-

Carlson adder considerably decreased the propagation delay of carry bits. 

Matrix Multiplication is implemented using the designed multipliers and adders. By 

leveraging the strengths of the Wallace tree multiplier, Vedic multiplier, and parallel 

prefix adders, the integrated framework offers a powerful approach for efficient matrix 

multiplication, paving the way for advancements in various computational domains. The 

performance evaluation demonstrates that the combination of the Wallace tree multiplier 
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and the Han-Carlson adder achieves the fastest matrix multiplication results compared to 

other techniques. 

 

6.2 FUTURE SCOPE 

 

The future scope of this thesis includes a number of prospective directions for additional 

study and advancement. While the thesis has focused on the performance comparison of 

matrix multiplication with the Wallace tree multiplier and the Vedic multiplier using 

different adders, future studies can investigate other advanced multiplier designs.  

The following points can be used to extend and modify the SA. Improved circuit design 

can further reduce delay. 

• The thesis has highlighted optimization techniques such as memory access 

optimization, and pipelining to improve the performance of matrix multiplication. 

To further optimize the calculation process and lower the computational 

complexity, future studies can go deeper into algorithmic improvements, such as 

using Strassen's algorithm or the Coppersmith-Winograd algorithm for matrix 

multiplication. 

• Matrix Multiplication is frequently utilized in many different fields, and each field 

could have particular needs and limitations. Research in the future can concentrate 

on selecting the multiplier and optimizing the optimization approaches for certain 

applications. 

 

These areas of study will aid in the development and improvement of matrix multiplication 

methods as well as their adaptability to various computational fields. 
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