
 DESIGN AND IMPLEMENTATION OF EFFICIENT

MATRIX MULTIPLICATION USING VARIOUS

ARCHITECTURE

A DISSERTATION REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

VLSI DESIGN & EMBEDDED SYSTEM

SUBMITTED BY:

SHIVAM KUMAR

2K21/VLS/17

UNDER THE SUPERVISION OF

Dr. J.Panda
PROFESSOR

ELECTRONICS & COMMUNICATION ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

MAY 2023

M
. T

ech
 (V

L
S

I D
esig

n
 a

n
d

 E
m

b
ed

d
ed

 S
y

stem
)

S

h
iv

a
m

2
0
2
3

S
h

iv
a

m
 K

u
m

a
r

i

ELECTRONICS & COMMUNICATION

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

 Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Shivam, Roll No. 2K21/VLS/17 student of M. Tech (VLSI Design & Embedded

system), hereby declare that the project Dissertation titled “Design and

Implementation of efficient Matrix Multiplication using various architecture”

which is submitted by me to the Department of Electronics and Communication

Engineering, Delhi Technological University, Delhi in partial fulfillment of the

requirement for the award of the degree of Master of Technology is unique and has not

been copied without proper citation. This work has never before been used to give a

degree, diploma associateship, fellowship, or other equivalent title or recognition.

Place: Delhi Shivam Kumar

Date: May 29, 2023

ii

ELECTRONICS & COMMUNICATION

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “Design and Implementation of

efficient Matrix Multiplication using various architecture” which is submitted by

Shivam Kumar , 2K21/VLS/17, to the Department of Electronics & Communication

Engineering, Delhi Technological University, Delhi in partial fulfillment of the

prerequisite for the award of the degree of Master of Technology, is a documentation of

the student's project work completed under my supervision. To the best of my

knowledge, this work has never been submitted in part or in full for any degree or diploma

at this university or anywhere else.

Place: Delhi Dr. J.Panda

Date: May 29, 2023, SUPERVISOR

 Professor

 Department of ECE, DTU

iii

ACKNOWLEDGMENT

First and foremost, I would like to express my heartfelt gratitude to my mentor

Dr. J.Panda for helping me on each step of this research, due to his continuous help and

support I completed this research. His patience, motivation, ambition, and wide

knowledge aided me throughout the research and dissertation writing process. Without his

guidance, I could not have imagined completing this research. His suggestions and the

way of managing the work were the most important key points, which made my path

clear. He helped me use my full potential because of that I tried my best to get the

maximum for this project. I am extremely grateful to him for guiding me throughout the

project. I am thankful to Electronics Department and faculty for helping me, and

thankful to my friends who helped me directly and indirectly in my research.

 Shivam Kumar

 2K21/VLS/17

MTech: VLSI Design and Embedded System

(2021-2023)

iv

ABSTRACT

The semiconductor industry plays a crucial role in the design and manufacture of

integrated circuits (ICs) used in a wide range of electronic devices. VLSI technology

allows for the integration of millions of transistors onto a single chip, enabling the creation

of highly complex and powerful devices such as computers, smart phones, and other

electronic devices. The VLSI industry is a key driver of innovation in the electronics

industry and has played a major role in the development of new technologies and the

proliferation of electronic devices in our daily lives. Consequently, area, speed, and power

play a critical role in any circuit design .A circuit must be created to meet the present

trend's requirements with minimal space and minimal time limitations.

Matrix multiplication is of significant importance in various fields and applications.

Matrix multiplication plays a fundamental role in linear algebra, solving system of linear

equations, data analysis and machine learning, computer graphics and computer vision,

network theory and graph algorithm, etc. This thesis gives a thorough investigation into

how the Wallace tree multiplier, Vedic multiplier, and parallel prefix adders might be

combined to enhance matrix multiplication performance. These techniques contribute to

achieving significant speed improvements, reduced and optimized resource utilization.

The findings of this study add to understanding of digital circuit design by offering

suggestions for choosing and incorporating effective multiplication methods for matrix

operations. The thesis provides helpful advice to researchers and designers of digital

circuits by explaining the trade-offs, benefits, and drawbacks of the integrated

architecture.

Firstly, Ripple Carry adders, Kogge Stone adders, and Han Carlson adders have been

designed and analyzed. After that, the Wallace tree multiplier and Vedic multiplier are

designed using these adders. By combining both multiplier and adder, matrix

multiplication designs, analyses the performance data, and interprets the results obtained

from the experiments. Using the ISE Design Suite tools in Verilog, all circuits are created

and simulations are run. The XC6SLX150T are the devices used for synthesis.

v

CONTENTS

Candidate's Declaration i

Certificate ii

Acknowledgment iii

Abstract iv

Content v

List of Figures vii

List of Tables xi

List of abbreviations xii

 CHAPTER 1 INTRODUCTION 1

1.1 Motivation 2

1.2 Objective 3

1.3 Thesis Organization 3

CHAPTER 2 LITERATURE REVIEW

5

2.1 Previous Reported Work 5

CHAPTER 3 CHARACTERISTICS COMPARISON FOR

DIFFERENT ADDERS

8

3.1 Ripple Carry adder 8

3.2 Parallel Prefix Adder 9

3.3 Kogge Stone Adder 10

3.4 Han Carlson Adder 11

3.5 Simulation and Synthesis Results 12

3.6 Important Outcomes 17

CHAPTER 4 DESIGN AND ANALYSIS OF MULTIPLIERS

 USING DIFFERENT PARALLEL PREFIX ADDERS

4.1. Multiplier 19

4.1.1 Wallace Tree Multiplier 19

4.1.2 Urdhva Tiryagbhyam Vedic Multiplier 21

vi

4.2 Simulation and Synthesis Results 24

4.2.1 Wallace Tree Multiplier using Ripple Carry Adder 24

4.2.2 Wallace Tree Multiplier using Kogge Stone Adder 25

4.2.3 Wallace Tree Multiplier using Han Carlson Adder 27

4.2.4 Vedic Multiplier using Ripple Carry Adder 28

4.2.5 Vedic Multiplier using Kogge Stone Adder 30

4.2.6 Vedic Multiplier using Han Carlson Adder 31

4.5 Important Outcomes 34

CHAPTER 5 DESIGN AND COMPARISON OF MATRIX

MULTIPLICATION USING WALLACE TREE AND VEDIC

MULTIPLIER WITH PARALLEL PREFIX ADDER

35

 5.1 Fundamentals of Matrix Multiplication 36

5.2 Simulation and Synthesis Results 36

5.2.1 Matrix multiplication using Wallace Tree Multiplier and RCA 36

5.2.2 Matrix multiplication using Wallace Tree Multiplier and KSA 38

5.2.3 Matrix multiplication using Wallace Tree Multiplier and HCA 39

5.2.1 Matrix multiplication using Vedic Multiplier and RCA 41

5.2.2 Matrix multiplication using Vedic Multiplier and KSA 42

5.2.3 Matrix multiplication using Vedic Multiplier and HCA 44

5.3 Important Outcomes 47

CHAPTER 6 CONCLUSION AND FUTUR SCOPE

48

6.1 Conclusion 48

6.2 Future Scope 49

 REFERENCES 50

vii

LIST OF FIGURES

Fig. No. Figure Name Page No.

Fig. 3.1

Block diagram of Ripple Carry adder

9

Fig. 3.2 Graphical Representation of 16 bit Kogge Stone adder 11

Fig. 3.3 Graphical Representation of 16 bit Han Carlson Adder 11

Fig. 3.4 Device utilization of Ripple Carry Adder 12

Fig. 3.5 Schematic of Ripple Carry Adder 12

Fig. 3.6 Delay Report of Ripple Carry Adder 13

Fig. 3.7 Simulation Result of Ripple Carry Adder 13

Fig. 3.8 Device utilization of Kogge Stone Adder 13

Fig. 3.9 Schematic of Kogge Stone Adder 14

Fig. 3.10 Delay Report of Kogge Stone Adder 14

Fig. 3.11 Simulation Result of Kogge Stone Adder 14

Fig. 3.12 Device utilization of Han Carlson Adder 15

Fig. 3.13 Schematic of Han Carlson Adder 15

Fig. 3.14 Delay Report of Han Carlson Adder 15

Fig. 3.15 Simulation Result of Han Carlson Adder 16

Fig. 3.16 Delay comparison graph for Adders 16

Fig.3.17 Area comparison graph for Adders 16

Fig. 4.1 Graphical Representation Of 8X8 bit Wallace Tree Multiplier 20

Fig. 4.2 Flow diagram of Wallace Tree Multiplier 21

Fig. 4.3 2X2 Gate level netlist of Vedic Multiplier 22

viii

Fig. 4.4 Block diagram of NXN bit Vedic Multiplier 23

Fig. 4.5 Device utilization of Wallace Tree Multiplier using RCA 24

Fig. 4.6 Delay Report of Wallace Tree Multiplier using RCA 24

Fig. 4.7 Schematic of Wallace Tree Multiplier using RCA 25

Fig. 4.8 Simulation Result of Wallace Tree Multiplier using RCA 25

Fig. 4.9 Device utilization of Wallace Tree Multiplier using KSA 25

Fig. 4.10 Delay Report of Wallace Tree Multiplier using KSA 26

Fig. 4.11 Schematic of Wallace Tree Multiplier using KSA 26

Fig. 4.12 Simulation Result of Wallace Tree Multiplier using KSA 27

Fig. 4.13 Device utilization of Wallace Tree Multiplier using HCA 27

Fig. 4.14 Delay Report of Wallace Tree Multiplier using HCA 27

Fig. 4.15 Schematic of Wallace Tree Multiplier using HCA 28

Fig. 4.16 Simulation Result of Wallace Tree Multiplier using HCA 28

Fig. 4.17 Device utilization of Vedic Multiplier using RCA 28

Fig. 4.18 Delay Report of Vedic Multiplier using RCA 29

Fig. 4.19 Schematic of Vedic Multiplier using RCA 29

Fig. 4.20 Simulation Result of Vedic Multiplier using RCA 30

Fig. 4.21 Device utilization of Vedic Multiplier using KSA 30

Fig. 4.22 Delay Report of Vedic Multiplier using KSA 30

Fig. 4.23 Schematic of Vedic Multiplier using KSA 31

Fig. 4.24 Simulation Result of Vedic Multiplier using KSA 31

Fig. 4.25 Device utilization of Vedic Multiplier using HCA 31

Fig. 4.26 Delay Report of Vedic Multiplier using HCA 32

Fig. 4.27 Schematic of Vedic Multiplier using HCA 32

Fig. 4.28 Simulation Result of Vedic Multiplier using HCA 33

ix

Fig. 4.29 Delay comparison graph for multiplier 33

Fig. 4.30 Area comparison graph for multiplier 34

Fig. 5.1 Device utilization of Matrix multiplication using Wallace Tree

Multiplier and RCA

36

Fig. 5.2 Delay Report of Matrix multiplication using Wallace Tree

Multiplier and RCA

37

Fig. 5.3 Schematic of Matrix multiplication using Wallace Tree

Multiplier and RCA

37

Fig. 5.4 Simulation Result of Matrix multiplication using Wallace Tree

Multiplier and RCA

38

Fig. 5.5 Device utilization of Matrix multiplication using Wallace Tree

Multiplier and KSA

38

Fig. 5.6 Delay Report of Matrix multiplication using Wallace Tree

Multiplier and KSA

38

Fig. 5.7 Schematic of Matrix multiplication using Wallace Tree

Multiplier and KSA

39

Fig. 5.8 Simulation Result of Matrix multiplication using Wallace Tree

Multiplier and KSA

39

Fig. 5.9 Device utilization of Matrix multiplication using Wallace Tree

Multiplier and HCA

39

Fig. 5.10 Delay Report of Matrix multiplication using Wallace Tree

Multiplier and HCA

40

Fig. 5.11 Schematic of Matrix multiplication using Wallace Tree

Multiplier and HCA

40

Fig. 5.12 Simulation Result of Matrix multiplication using Wallace Tree

Multiplier and HCA

41

Fig. 5.13 Device utilization of Matrix multiplication using Vedic Multiplier

and RCA

41

x

Fig. 5.14 Delay Report of Matrix multiplication using Vedic Multiplier and

RCA

41

Fig. 5.15 Schematic of Matrix multiplication using Vedic Multiplier and

RCA

42

Fig. 5.16 Simulation Result of Matrix multiplication using Vedic Multiplier

and RCA

42

Fig. 5.17 Device utilization of Matrix multiplication using Vedic Multiplier

and KSA

42

Fig. 5.18 Delay Report of Matrix multiplication using Vedic Multiplier and

KSA

43

Fig. 5.19 Schematic of Matrix multiplication using Vedic Multiplier and

KSA

43

Fig. 5.20 Simulation Result of Matrix multiplication using Vedic Multiplier

and KSA

44

Fig. 5.21 Device utilization of Matrix multiplication using Vedic Multiplier

and HCA

44

Fig. 5.22 Delay Report of Matrix multiplication using Vedic Multiplier and

HCA

44

Fig. 5.23 Schematic of Matrix multiplication using Vedic Multiplier and

HCA

45

Fig. 5.24 Simulation Result of Matrix multiplication using Vedic Multiplier

and HCA

45

Fig. 5.25 Delay comparison graph for Matrix Multiplication 46

Fig. 5.26 Area comparison graph for Matrix Multiplication 46

xi

LIST OF TABLES

Tab No. Table Name Page No.

Tab. 3.1

Comparative Analysis of Delay and Area of Adders

16

Tab. 4.1 Comparative Analysis Of Wallace Tree Multiplier

And Vedic Multiplier using Different Adders

33

Tab. 5.1 Comparative Analysis Of Matrix Multiplication using

using Different Multipliers

45

xii

LIST OF ABBREVIATIONS

S.No. Abbreviation Full Name

1.

VLSI

Very Large-Scale Integration

2. RCA Ripple Carry Adder

3. KSA Kogge Stone

4. HCA Han Carlson Adder

5. WTM Wallace Tree Multiplier

6. VM Vedic Multiplier

7. DSP Digital Signal Processing

8. PPA Parallel Prefix Adder

9. UTM Urdhva Tiryakbhyam multiplier

1

CHAPTER 1

INTRODUCTION

Multipliers are essential arithmetic units in the VLSI (Very Large Scale Integration)

industry, particularly in digital signal processing (DSP), communication systems, image

processing, and various other applications. They are responsible for performing

multiplication operations, which are fundamental to numerous computational tasks. The

VLSI industry continually works on developing advanced multiplier architectures to

enhance speed, power efficiency, and area utilization. Emerging technologies such as

approximate computing and approximate multipliers contribute to achieving a balance

between accuracy and computational efficiency. Overall, multipliers are indispensable

components in the VLSI industry, enabling efficient multiplication operations in various

applications and driving ongoing research and development.

 In many computer applications, matrix multiplication is an essential operation,

especially in the areas of linear algebra, image processing, machine learning, and

scientific computing. The need for effective and optimized matrix multiplication

algorithms grows as the size and complexity of matrices continue to increase. There is a

growing need for effective and optimized methods for matrix operations as the need for

high-performance computing keeps rising. In this work, to create a comprehensive

framework for high-performance matrix multiplication and multiplication operations in

digital circuit designs, investigate the integration of parallel prefix adders alongside the

Wallace tree multiplier and Vedic multiplier.

 The Wallace tree multiplier and Vedic multiplier are most effective multiplication. The

Wallace tree multiplier reduces the number of partial products and offers faster

multiplication speeds by utilizing a combination of carry-save adders and carry-propagate

adders. Similarly, the Vedic multiplier leverages simple arithmetic operations, inspired

by ancient Indian mathematics principles, to achieve high-speed multiplication with

fewer logic gates compared to conventional multipliers.

 We suggest using parallel prefix adders into the architecture of matrix multiplication

and the multiplier. Carry propagation is parallelized via parallel prefix adders, also known

as carry-look-ahead adders, which significantly increase speed. Parallel prefix adders

2

reduce the critical route time by efficiently allocating and computing the carries in

parallel, which improves overall performance.

 For the purpose of creating an optimized framework for matrix multiplication and

multiplication operations in digital circuit designs, this thesis investigates the synergistic

integration of the Wallace tree multiplier, Vedic multiplier, and parallel prefix adders.

Utilizing each component's advantages will increase throughput, decrease latency, and

enhance power efficiency.

 Partitioning the input matrices, using the implemented multipliers to create partial

products, and implementing parallel prefix adders for effective accumulation and carry

propagation are all part of the suggested methodology. We hope to significantly increase

matrix multiplication and multiplication operations performance by parallelizing the

computation and reducing the critical path delay. All the design and simulation are

performed in Verilog using ISE Design Suite tool. The selected board is XC6SLX150T.

1.1 Motivation

 A variety of computer activities, from scientific simulations to machine learning

algorithms, can be significantly sped up by using efficient matrix multiplication and

multiplication processes. Traditional multiplication methods may become a bottleneck

when data amount and complexity rise, reducing system performance as a whole.

Therefore, there is a strong motivation to explore novel approaches that can enhance the

efficiency and speed of matrix multiplication operations in digital circuit designs.

 The Wallace tree multiplier and Vedic multiplier have already shown potential for

accelerating multiplication and lowering the incidence of partial products. Additional

methods must be investigated, though, in order to improve the performance of these

multipliers and enable quicker matrix multiplication. Due to the parallelization of the

carry propagation mechanism, parallel prefix adders have seen notable speed gains.

The necessity to create an optimized framework that incorporates the benefits of the

Wallace tree multiplier, Vedic multiplier, and parallel prefix adders served as the driving

force for this work. The aim of this work is to increase throughput, decrease latency, and

reduce area in matrix multiplication and multiplication operations by utilizing the parallel

computing capabilities of the adders coupled with effective multiplication strategies. The

outcome of this research has the potential to benefit various domains that heavily rely on

matrix operations, providing faster and more energy-efficient solutions for processing

3

large-scale matrices leading to advancements in various domains. Furthermore, the

insights gained from this research can contribute to the ongoing development of efficient

arithmetic units and computing architectures, paving the way for future advancements

1.2 Objective

New questions, ideas, and understandings can arise as a result of an analysis of the

available data. Exploring uncharted territory is the main objective of research in order to

find new opportunities.

Primary objectives of this research project are as follows:

• To design and implement an efficient matrix multiplication algorithm using the

Wallace tree multiplier, Vedic multiplier, and parallel prefix adders in digital

circuit designs.

• To understand the working of multipliers and which ones perform the best, a

comparison is done between Wallace tree multiplier and Vedic multiplier. To

enhance the performance of multiplier, parallel prefix adder (Kogge Stone and

Han Carlson adder) are used.

• To validate the correctness and accuracy of the matrix multiplication algorithm

by comparing the results with established mathematical solutions.

• To contribute to the body of knowledge in the field of digital circuit design by

investigating the synergistic integration of the Wallace tree multiplier, Vedic

multiplier, and parallel prefix adders for effective matrix multiplication operations

By accomplishing these objectives, this effort gives a thorough understanding of the

functionality, effectiveness, and applicability of the integrated framework. By enabling

more effective and optimized matrix operations across a range of computing domains, the

research's results and insights will boost digital circuit design methodologies.

1.3 Thesis Organization

This thesis is divided into six chapters. The thesis is organized as follows: Chapter 2

provides the literature review and the technology gap. Chapter 3 is a comprehensive

review of the Ripple Carry adder, the Kogge Stone adder, and the Han Carlson adder.

Chapter 4 examines the comparison of the Wallace tree multiplier and the Vedic

4

multiplier using different adders. Chapter 5 depicts the design of matrix multiplication

and its analysis on the basis of performance and area. The conclusion and future scope

are presented in Chapter 6.

• CHAPTER 1- Provides a basic overview of matrix multiplication, multiplier and

parallel prefix adder operation. In this chapter discussion areas are thesis's

objective, motivation, methodology, and thesis organization.

• CHAPTER 2- This chapter provides a detailed overview of earlier research on

parallel prefix adders and multiplication. According to published research, Vedic

and Wallace tree multipliers are faster multipliers than traditional ones.

Additionally, Han Carlson and Kogge Stone PPAs are quicker than Ripple carry

adder.

• CHAPTER 3- This chapter covers the details of the implementation of Adder used

in this work. The design and performance evaluation of the Kogge Stone, Ripple

Carry, and Han Carlson adders are covered in this chapter.

• CHAPTER 4- This chapter covers the description of the Wallace tree and the

Vedic multiplier. Both multipliers are designed using different adders (discussed

in the previous chapter) and compared for their performance.

• CHAPTER 5- This chapter presents the methodology employed in this research,

including the design and integration of the matrix multiplication algorithm. This

chapter describes the implementation of matrix multiplication using multipliers

(discussed in chapter 4) and comparison between area and delay.

• CHAPTER 6- This chapter contains the important outcomes of every chapter

along with the future work.

In order to explore the directions for our current work, a comprehensive list of references

is supplied at the end of the thesis.

5

CHAPTER 2

LITERATURE REVIEW

Literature review is essential when conducting research. It helps to establish a solid

understanding of the topic and acknowledge the contributions of other scholars in the

field. It also helps to identify contradictions, research gaps, conflicting findings, and

unresolved issues that exist within the current body of knowledge. This information

guides the researcher in formulating research questions and designing studies that address

these gaps and contribute to the advancement of knowledge in the field.

This chapter is categorized into two sections: (1) previous reported work, and (2)

technical gaps.

2.1 PREVIOUS REPORTED WORK:

Y. d. Ykuntam, K. Pavani and K. Saladi [1], proposed new and innovative architecture

for the Wallace tree multiplier, which employs parallel prefix adders (PPAs) to perform

the final addition step of partial products. They put forward five distinct structures for the

Wallace tree multiplier, each incorporating a different type of adder.Detailed analysis of

the proposed designs in terms of area and delay compared to traditional multiplier designs

is completed.

S. Lad and V. S. Bendre [2], present an in-depth analysis of several Vedic sutras and their

application in multiplier design. They discuss the design methodology, implementation

details, and optimization techniques used to achieve high-performance multipliers. The

performance metrics considered include area utilization, power consumption, and speed.

The designs for the 16-bit sutras are implemented using Verilog language and evaluated.

Comparative analysis is conducted with existing research work to assess the performance

of the proposed sutras for better speed, area and power.

M. Kivi Sona and V. Somasundaram [3], propose a multiplier using Vedic mathematics

based on Nikhilam architecture to improve the speed of operation and compares different

architectures, including the existing Wallace Tree and Vedic mathematics based on

Urdhva Tiriyagbhyam, with the proposed design to evaluate metrics such as area

6

utilization, power consumption, and speed

T. Gupta and J. B. Sharma [4], The authors propose a Han-Carlson adder-based Vedic

multiplier architecture that utilizes the Urdhva-Tiryakbhyam sutra from Vedic

multiplication and the Han-Carlson adder, known for its high-speed performance. The

authors implement a 64x64 bit Vedic multiplier using VHDL and compare the

implementation results with conventional Vedic multipliers employing different adders.

The results show that the proposed architecture offers improved delay, reduced hardware

utilization (LUTs), and lower complexity

N. Kumar M., R. S. Adithyaa, B. Kumar D. and T. Pavithra [5], proposes a 16x16-bit

Wallace Tree Multiplier using the Kogge Stone Adder and modified approximate Full

Adder for improved performance. Performance analysis considers factors such as speed,

area utilization, and power consumption.

A. Raju and S. K. Sa [6], The research focuses on using the Kogge Stone Adder (KSA)

as a key component in multiplier architectures. The paper investigates different multiplier

designs based on the KSA, exploring their performance characteristics and comparing

them to conventional multiplier architectures. The author proposes multipliers utilizing

the KSA, which exhibit improved performance in terms of speed and efficiency compared

to conventional multiplier architectures.

P. Gulati, H. Yadav and M. K. Taleja [7], present a comparison of the three adders based

on several performance metrics. The results obtained from the simulation and analysis

provide insights into the performance trade-offs and advantages of using each adder. The

paper contributes to the understanding of the performance characteristics of different

adders in Vedic multiplier designs, which can help guide the selection and

implementation of appropriate adders for Vedic multipliers in various applications.

S. Dubey and G. Verma [8], presents a comparison of different 4-bit adders in terms of

power consumption, device utilization, and delay. The focus is on assessing the

performance of the adders and identifying the adder that provides the best overall

results.The Han Carlson Adder (HCA) is the best choice among the 4-bit adders evaluated

for power consumption, device utilization, and delay. It operates based on parallel prefix

computation and requires less area than the RCA, making it an efficient and effective

solution for achieving high-quality results with reduced resource utilization.

7

R. Shanmuganathan and K. Brindhadevi [9], This study compares three different types of

multiplier architectures using VHDL code and low power design methods. The Wallace

tree multiplier is chosen for its high-speed operation. The Baugh Wooley multiplier is

used for signed multiplication with reduced delay. The array multiplier is considered for

its impact on delay, with less significance on area. This study contributes to the

understanding of various multiplier architectures and their suitability for different

application scenarios.

 R. Anjana, B. Abishna, M. S. Harshitha, E. Abhishek, V. Ravichandra and M. S. Suma

[10], present a novel approach to designing a Vedic multiplier by incorporating a Kogge-

Stone adder. The results demonstrate that the Vedic multiplier with the Kogge-Stone

adder outperforms the conventional multipliers on the metrices of speed and area,

contributing to faster computation and improved performance. The experimental analysis

reveals that the proposed Vedic multiplier achieves a balance between speed and area

efficiency, making it suitable for various applications, including digital signal processing.

A. Sundhar, S. D. Tharshini, G. Priyanka, S. Ragul and C. Saranya [11], proposes a 16x16

multiplier architecture uses a 15-4 compressor and Kogge-Stone adder to enhance its

performance. Results indicate that the proposed multiplier architecture using the 15-4

compressor and Kogge-Stone adder outperforms the multiplier architecture with a parallel

adder in terms of speed. The Kogge-Stone adder contributes to faster computation,

making the proposed architecture more efficient. These findings suggest potential

applications in fields such as video and image processing.

M. N. Chandrashekara and S. Rohith [12], presents a promising approach to designing

efficient multipliers using Vedic mathematics and the Modified Carry Save Adder. The

objective is to develop a multiplier that can compute the product of two 8-bit binary

numbers with high speed and efficiency. The results demonstrate that the Vedic multiplier

utilizing the Urdhva Tiryagbhyam sutra with MCSA outperforms other multipliers in

terms of speed

8

CHAPTER 3

CHARACTERISTIC COMPARISON FOR

DIFFERENT ADDERS

The adder is an essential part of digital circuits and is used for a variety of tasks, from

simple computations to complicated ones, including basic arithmetic. It is crucial in many

areas, including computer architecture, signal processing, cryptography, , because it

enables effective data manipulation, processing, and arithmetic operations.

The performance of the multiplier depends on the speed and efficiency of the adder

used in the design. Faster and more efficient adders can significantly improve the

performance of the multiplier and reduce the overall delay in the computation. Therefore,

the design and implementation of the adder are crucial to achieving high-speed and high-

performance multipliers. A parallel prefix adder (PPA) is a type of adder circuit that is

used to perform fast and efficient addition of binary numbers.. Careful consideration and

selection of the appropriate adder architecture are crucial for achieving high-performance

multipliers.

This chapter is organized in five sections:

• The basic adder Ripple Carry adder, which is defined in section 3.1.

• A discussion of the parallel prefix adder and its kinds is covered in Section 3.2.

• The implementation and analysis of Kogge Stone adder and Han Carlson adder

are discussed in Section 3.3 and 3.4 respectively.

• Section 3.5 of the chapter discusses comparisons and the results

3.1 Ripple Carry Adder

A ripple carry adder is a fundamental adder to add binary digits. The carry bit ripples

or propagates through the stages of the adder, hence the name "ripple carry" adder. A

chain of numerous full adders joined together forms the ripple carry adder. A carry-in bit,

the matching bits from the numbers being added, two input bits, and the whole adder are

all required. The carry from each full adder is fed into the carry-in for the next full adder

in the chain as shown in Fig.3.1

9

Fig. 3.1 Block diagram of Ripple Carry adder

3.1 Parallel Prefix Adders

 Parallel Prefix Adders (PPA) are fast adders that are derived from Carry Look Ahead

Adders. In this paper, PPA is used because it can perform parallel addition which means

the partial additions can be computed parallel resulting in a significant reduction in the

addition time [6]. This is in contrast with the traditional Ripple Carry Adder which

performs Sequential addition and the consequent stage has to wait for the previous stage

to complete.

 Each stage in the parallel prefix adder performs parallel operations on different subsets

of the input bits. The final carry-out is then calculated by prefixing the carry-out bits from

each stage. The parallel prefix adder works by performing parallel computations within

each group to calculate the carries. These computed carries are then passed to the next

group, where they are combined with the corresponding inputs to compute the next level

of carries. This process continues until the final carry-out bits are obtained.

Parallel Prefix Adder typically consists of 6 stages:

• Input preparation: The binary numbers to be performed operation are spilt into

groups of bits. Each groups have a subset of input number.

• Perform parallel computation: To calculate the carries inside each group, parallel

computations are used. Depending on the particular parallel prefix adder

architecture, several methods, such as AND gates, XOR gates, and other logic

circuits, can be used to do the carry calculation.

• Carry Propagation: To calculate the carries inside each group, parallel

computations are used. Depending on the particular parallel prefix adder

architecture, several methods, such as AND gates, OR gates, and other logic

circuits, can be used to do the carry calculation.

10

• Carry Combination: The final carry-out bits are created by prefixing the carry bits

from each group. This entails creating a precise pattern, frequently like a tree,

connecting the carry outputs of each group to the inputs of the higher-order

groups.

• Generate Sum bits: The input bits and the carry bits are combined in a

straightforward XOR procedure to determine the sum bits. For each bit position,

this can be done in parallel.

• Final Carry Out: The most significant carry-out piece of the addition operation is

represented by the carry-out from the highest-order group.

 The two main parallel prefix adders are explored in this chapter. Kogge Stone adder and

Han Carlson adder are most efficient and faster adders in parallel prefix adder.

3.3 Kogge Stone Adder

The Kogge-Stone adder is a type of parallel prefix adder that efficiently computes the

carry bits in parallel and combines them in a prefix manner to perform fast addition of

binary numbers. In contrast to ripple carry adders, the Kogge-Stone adder uses parallelism

and effective carry propagation to produce quicker addition. By parallelizing carry

computations and reducing the ripple carry effect, it decreases the critical path delay.

Kogge Stone adder can broadly split into three stages. The first stage is the processing

stage, in which the propagate and generate signals are calculated using each bit of the

pair-bit signal.

Pi = Ai xor Bi

Gi = Ai and Bi

The second step generates carries by utilizing each bit individually and in parallel. This

is utilized for carry generation and carries propagation in the intermediate stage logically

and is referred to as the carry generation stage.

CPi:j = Pi:k+1 and Pk:j

CGi:j = Gi:k+1 or (Pi:k+1 and Gk:j)

In last step, sum and carry are calculated and this step is known as post processing

stage.

Si = Pi xor Ci-1

Ci-1 = (Pi and Ci) or Gi

11

Fig. 3.2 Graphical Representation of 16-bit Kogge Stone adder

3.4 Han Carlson Adder

Han Carlson adder is similar to Kogge Stone adder. The adder has the benefit of using

fewer cells and being shorter. To calculate the odd numbered prefixes, the Han-Carlson

adder starts with a Brent-Kung stage, moves through Kogge-Stone stages, and finishes

with another Brent-Kung stage. As a result, the complexity is reduced at the cost of an

extra stage merging the carry. Due to fewer cells, the speed is fastest in all parallel prefix

adder. The graphical representation of the Han Carlson adder is shown in Fig.3.3.

Fig. 3.3 Graphical Representation of 16-bit Han Carlson adder

12

3.5 Simulation and Synthesis Results

In this section a comparative analysis of 32-bits Ripple Carry Adder, Kogge Stone

Adder and Han Carlson Adder are performed. The factors that are considered for

comparison are area and delay. Through this detailed analysis, we aim to provide

insights into the performance characteristics of different adders and assist in making

informed design choices for multiplier implementations.

3.5.1 Ripple Carry Adder

Fig 3.4 : Device utilization of Ripple Carry Adder

Fig 3.5 : Schematic of Ripple Carry Adder

13

Fig 3.6 : Delay Report of Ripple Carry Adder

Fig 3.7: Simulation Result of Ripple Carry Adder

3.5.2 Kogge Stone Adder

Fig 3.8: Synthesis Result of Kogge Stone Adder

14

Fig 3.9: : Schematic of Kogge Stone Adder

Fig 3.10: Delay Report of Kogge Stone Adder

Fig 3.11: : Simulation Result of Kogge Stone Adder

15

 3.5.3 Han Carlson Adder

Fig 3.12 : Device utilization of Han Carlson Adder

Fig 3.13 : Schematic of Han Carlson Adder

Fig 3.14 : Delay Report of Han Carlson Adder

16

Fig 3.15: Simulation Result of Han Carlson Adder

Table 3.1 shows Comparative Analysis of Delay and Area of Adders

Adders Delay(ns) Area(LUT)

Ripple Carry Adder 20.8 49

Kogge Stone Adder 14.26 139

Han Carlson Adder 12.101 105

Fig 3.16. Delay comparison graph for Adders

Fig 3.17. Area comparison graph for Adders

17

3.6 Important Outcomes:

In this chapter, the design and analyses of several adders are carried out and compared to

determine the optimal option for the best performance.

• The Ripple Carry, Kogge Stone and Han Carlson adder are design and simulated.

• Delay and Area have been calculated and plotted.

• Performing addition using Han Carlson adder can reduce delay up to 40%.

• In terms of area, the ripple carry adder utilized space better than the parallel

prefix adder

18

CHAPTER 4

DESIGN AND ANALYSIS OF MULTIPLIER USING

DIFFERENT PARALLEL PREFIX ADDER

Multiplication operation is an essential component in a processing unit that is widely

employed in numerous disciplines, including engineering, physics, computer science, and

many others. Numerous multiplication operations are required by many algorithms. The

effectiveness and speed of these operations directly affect the system’s overall

performance.

 Improving the performance of a multiplier can bring several benefits, such as:

• Faster Calculation: The time needed to perform multiplication operations can be

decreased by optimizing a multiplier, which could result in quicker calculation

times.

• Reduced power consumption: Reduced power consumption from faster

computing is also beneficial for battery-operated gadgets and low-power systems.

• Increased accuracy: In many applications, like digital signal processing and image

processing, higher levels of accuracy are required, and high-performance

multipliers are able to perform multiplication operations with these levels of

accuracy.

• Improved system throughput: The throughput of the entire system can be boosted

by optimizing the performance of a multiplier, which is crucial in high-

performance computing systems.

In this chapter, we will discuss different multipliers and how to improve their

performance by using a faster adder.

The following is the arrangement of this chapter:

• Efficient Multiplier to be designed and the implementation of Wallace Tree

and Vedic Multiplier is described in Section 4.1.

• In section 4.2, simulated and synthesized results are presented,

• Performance comparison of the implemented Multipliers in terms of Delay

and Area discussed in section 4.3.

19

4.1 Multiplier

Wallace tree multiplier and the Vedic Urdhva Tiryakbhyam Multiplier (UTM) are two

fastest multipliers used in digital circuit. The Wallace tree multiplier is based on the

Wallace tree algorithm, a quick multiplication method that minimizes the number of

partial products needed to compute the final result. The Vedic UTM, on the other hand,

is based on prehistoric Indian mathematics systems that use particular formulas and

procedures to execute multiplication. It utilizes various sutras and sub-sutras to simplify

the process by breaking it into smaller steps.

For and efficient multiplication,it is important to increase the performance of the

adders involved. A series of additions are required for multiplication, and the pace at

which these additions are completed directly affects the total time required for

multiplication. The speed of the adder becomes significant when multiplying huge

numbers or carrying out multiplication operations in high-performance computing

systems. In this chapter, all the adders that were discussed in the previous chapter are

used to improve the performance of multipliers. By using the faster adder in the

multiplier, we can improve throughput, reduce execution time, enhance computational

efficiency, and impact complex operations.

4.1.1 Wallace Tree Mutliplier

The Wallace tree multiplier is based on the concept of”tree reduction,” which involves

decreasing the number of partial products that must be combined to create the final

product. This algorithm allows for efficient carry propagation in parallel processing. It

reduces the overall area footprint of the circuit by minimizing the number of logic gates

needed. It continues to be widely utilized in a range of applications where efficient and

fast multiplication operations are essential.

The steps involved in a Wallace tree multiplier’s operation are as follows:

• Partial products generation: A series of AND gates is used to multiply the binary

digits of the multiplicand by the binary digits of the multiplier. The resulting

partial products are arranged in columns.

• Reduction of partial products: To create a set of sums and carries, the partial

products are reduced using a succession of half-adders and full-adders

• Final Addition: A succession of full adders is used to condense the Wallace tree

into a single total.

20

Overall, utilizing digital circuits, the Wallace tree multiplier is a very effective approach

to multiplying two binary values. The graphical representation of 8-bits Wallace tree

multiplier shows in Fig.4.1

Fig. 4.1 Graphical Representation Of 8X8 bit Wallace Tree Multiplier

The Wallace Tree Multiplier is constructed by generating partial products where both the

input numbers are multiplied by passing through AND gates. Further reduction of the

partial products is carried out by adding them using half adders and full adders. This

21

reduction is carried out till the last two rows are received. To achieve a faster addition,

the last two rows are added using Kogge Stone adder and Han Carlson Adder (discussed

in previous chapter). Fig.4.2 depicts the flow diagram for generating the Wallace Tree

Multiplier.

Fig 4.2. Flow diagram of Wallace Tree Multiplier

The variation in performance of the Wallace Tree multiplier due to changes in the

adder will be discussed in Section 4.3.

4.1.2 Urdhva-Tiryakbhyam Vedic Multiplier

 The Vedic multiplier is a sort of multiplier derived from the Vedic mathematics

of ancient India. It offers a different way to carry out multiplication operations using

particular formulas and methods. Comparing the Vedic multiplier to conventional

multiplication algorithms, there are a number of benefits, including simplicity, speed, and

efficiency. To make multiplication easier, it applies a variety of sutras (formulas) and sub-

sutras (corollaries) from Vedic mathematics. It is one of the most used and fastest sutras

in Vedic mathematics. According to the sutra, there is a quick and easy method for

multiplying two-digit numbers that entails multiplying the vertical and crosswise

22

components and adding the results.

The basic steps of the Vedic multiplier algorithm for multiplication are as follows:

• Depending on place values, divide the multiplicand and multiplier into their

appropriate halves.

• Perform cross-multiplication between the corresponding parts of the multiplicand

and the multiplier. In order to do this, numbers must be multiplied both vertically

and diagonally, and the partial products must be arranged in a particular way.

• Vertical additions are used to add up the cross-multiplication step's partial

products.

• Any necessary carries from each vertical addition are carried forward.

• The final output is created by combining the results.

Given below is an example to illustrate multiplication:

Multiply A1A0 by B1B0

• Multiply the rightmost vertical terms A0 and B0. Write the output A0B0 on the

rightmost part of the answer

• Multiply the leftmost vertical terms A1 and B1. Write the output A1B1 on the

leftmost part of the answer

• Then multiply the cross-wise terms i.e.A1B0 and A0B1. Add the two results

(A1B0+A0B1). If the resultant is a 2digit, then the leftmost digit of this term will

be carried forward to the left

• The final result is as follows: (A1B1) +(A1B0+A0B1) +(A0B0)

The gate level implementation of 2x2 Vedic Multiplier as shown in Fig.4.3

Fig.4.3: 2x2 Gate level netlist of Vedic Multiplier

23

In order to construct an N-bit Vedic Multiplier, the input values A and B are split into

two equal parts. These parts are referred to as AH, AL, BH, and BL, representing the

Most Significant Bits (MSB) and Least Significant Bits (LSB) respectively. This

division allows the creation of an N x N size Vedic multiplier, as depicted in Figure

4.4. are utilized as inputs for four Vedic Multipliers, each of size N/2. These outputs

are then fed into four additional Vedic Multipliers, this time with a size of N/4. The

N/4 size Vedic Multipliers are further split into four Vedic Multipliers of size N/8,

following a similar pattern [2]. This continues until the splitting reaches a block size

of 2x2, as depicted in the block diagram shown in the figure. Finally, the outputs of

the four N/2 x N/2 multipliers are inputted into an adder with (N + N/2) bits.

Fig.4.4 Block diagram of NXN bit Vedic Multiplier

 Performance of Vedic multiplier depends upon the types of adder used in the circuit. The

24

variation in performance of the Vedic Multiplier due to changes in the adder will be

discussed in next section.

4.2 Simulation and Synthesis Results

4.2.1 Wallace Tree Multiplier using Ripple Carry Adder

Fig.4.5. Device utilization of Wallace Tree multiplier using RCA

Fig.4.6. Delay Report of Wallace Tree Multiplier using RCA

25

Fig.4.7 Schematic of Wallace Tree Multiplier using RCA

Fig.4.8. Simulation Result of Wallace Tree Multiplier using RCA

4.2.2 Wallace Tree Multiplier using Kogge Stone Adder

Fig.4.9. Device Utilization of Wallace Tree Multiplier using KSA

26

 Fig.4.10. Delay Report of Wallace Tree Multiplier using KSA

Fig.4.11. Schematic of Wallace Tree Multiplier Using KSA

27

Fig.4.12. Simulation of Wallace Tree Multiplier Using KSA

4.2.3 Wallace Tree Multiplier using Ripple Han Carlson Adder

Fig.4.13 Device utilization of Wallace Tree multiplier using Han Carlson

Fig.4.14. Delay Report of Wallace Tree multiplier using Wallace Tree HCA

28

Fig.4.15. Schematic of Wallace Tree Multiplier using HCA

Fig.4.16. Simulation of Wallace Tree Multiplier using HCA

4.2.4 Vedic Multiplier using Ripple Carry Adder

Fig.4.17. Device Utilization of Vedic Multiplier using RCA

29

Fig.4.18. Delay Report of Vedic Multiplier using RCA

Fig.4.19. Schematic of Vedic Multiplier using RCA

30

Fig.4.20. Simulation Result of Vedic Multiplier using RCA

4.2.5 Vedic Multiplier using Kogge Stone Adder

Fig.4.21. Device Utilization of Vedic Multiplier using KSA

Fig.4.22. Delay Report of Vedic Multiplier Using KSA

31

Fig.4.23. Schematic of Vedic Multiplier Using KSA

Fig.4.24. Simulation Result of Vedic Multiplier Using KSA

4.2.6 Vedic Multiplier using Han Carlson Adder

Fig.4.25. Device Utilization of Vedic Multiplier using HCA

32

Fig.4.26. Delay Report of Vedic Multiplier using HCA

Fig.4.27. Schematic of Vedic multiplier using HCA

33

Fig.4.28. Simulation result of Vedic multiplier using HCA

Table 1 shows the comparative analysis of the performance of the Wallace Tree Multiplier

and Vedic Multiplier designs using Ripple Carry Adder, Kogge Stone Adder, and Han

Carlson Adder on the basis of Area (LUT) and Delay(ns).

Table 4.1 shows Comparitive Analysis Of Wallace Tree Multiplier And Vedic Multiplier

Using Different Adders

Multiplier Delay(ns) Area(LUTs)

Wallace Tree Using Ripple Carry Adder 34.929 657

Wallace Tree Using Kogge Stone Adder 24.221 769

Wallace Tree Using Han Carlson Adder 23.12 703

Vedic Using Ripple Carry Adder 39.502 661

Vedic Using Kogge Stone Adder 28.338 810

Vedic Using Han Carlson Adder 28.128 730

Fig.4.29 Delay comparison graph for multipliers

34

Fig.4.30 . Area comparison graph for multipliers

4.3 IMPORTANT OUTCOMES

In this chapter, the design and analyses of multipliers are carried out and

compared to determine the optimal option for the best performance.

• The Wallace tree multiplier and Vedic multiplier are design and simulated using

Ripple Carry adder, Kogge Stone adder and Han Carlson adder..

• Delay and Area have been calculated and plotted

• Speeding up the circuit by using the Wallace tree multiplier and the Han

Carlson adder.

• The Vedic multiplier with ripple carry adder used less space but was the

slowest in terms of speed.

35

CHAPTER 5

DESIGN AND COMPARISON OF MATRIX

MULTIPLICATION USING WALLACE TREE AND

VEDIC MULTIPLIER WITH PARALLEL PREFIX

ADDER

Matrix multiplication is a basic operation in many mathematical concepts and

methods, including the solution of linear equation systems, computer graphics

transformations, and calculations involving neural networks. In many applications, the

effectiveness of matrix multiplication is a crucial factor to take into account, especially

when dealing with huge matrices or when matrix multiplication needs to be done

repeatedly. Multiplication of matrices can be computationally demanding, particularly

for large matrices. The amount of time needed to complete calculations can be

considerably decreased by optimizing matrix multiplication techniques. In real-time

applications like computer graphics, simulations, and scientific computations, where

faster execution can result in more responsive and effective systems, this is especially

crucial. Matrix multiplication algorithm performance optimization can help minimize

memory accesses and lower the memory footprint, resulting in more effective memory

usage.

Matrix multiplication performance can vary greatly depending on the matrix

multiplication method used, with effects on things like computational complexity,

memory access patterns, parallelizability, and cache utilization. The effectiveness of

matrix multiplication can also be impacted by the adder that is selected in a matrix

multiplier. The critical path delay of the matrix multiplier, which affects the total latency

of the multiplication operation, can be influenced by the adder choice. The critical route

length can be shortened with faster adders with less latency, which will speed up

multiplication. Lower latency can be achieved with adder designs that have reduced

carry propagation delays and optimized logic. In this chapter, matrix multiplication is

performed using the Wallace Tree Multiplier and Vedic Multiplier. For the addition

purpose, Ripple Carry Adder, Kogge Stone Adder, and Han Carlson Adder are used and

compared for their performance.

36

This chapter is organized in following sub-sections:

• The fundamental of matrix multiplication concept discuss in Section 5.1.

• The Simulation and Synthesis Resultss are found in section 5.2.

• The important outcomes of the improved sense amplifier are discussed in Section 5.3.

 The basic process of matrix multiplication in linear algebra entails multiplying two

matrices to produce a new matrix.

5.1 Fundamental of matrix multiplication

The "left" matrix and the "right" matrix are the two matrices needed to multiply two

matrices. The size of the left matrix, denoted as A, is characterized by its dimensions of

m x n, where m represents the number of rows and n represents the number of columns.

The right matrix, referred to as B, has dimensions of n x p, where p represents the

number of columns. The resulting matrix, denoted as C, will have dimensions of m x p,

where m represents the number of rows from matrix A and p represents the number of

columns from matrix B.The dot product of the i-th row of matrix A and the j-th column

of matrix B is used to calculate each element C[i][j] in the resulting matrix.

The i-th row of matrix A and the j-th column of matrix B's dot product are formed by

multiplying and adding the respective elements. Element A[i][k] from the i-th row of

matrix A is multiplied by element B[k][j] from the j-th column of matrix B in this

operation, where k is a number between 1 and n. The last element of matrix C[i][j] is

obtained by adding the generated products.

The mathematical formula for the element C[i][j] is:

C[i][j] = A[i][1] * B[1][j] + A[i][2]* B[2][j] +... + A[i][n]*B[n][j]

The resultant matrix C, which represents the multiplication of matrices A and B, is

created by repeating this calculation for each member.

 5.2 Simulated and Synthesis Results

 5.2.1 Matrix multiplication using Wallace Tree Multiplier and RCA

37

Fig 5.1. Device utilization of Matrix Multiplication using Wallace Tree Multiplier and RCA

Fig 5.2. Delay Report of Matrix Multiplication using Wallace Tree Multiplier and RCA

38

Fig 5.3. Schematic of multiplication using Wallace Tree Multiplier and RCA

Fig 5.4. Simulation of multiplication using Wallace Tree Multiplier and RCA

5.2.2 Matrix Multiplication using Wallace Tree Multiplier and KSA

Fig 5.5. Device Utilization of Matrix Multiplication using WTM and KSA

Fig 5.6. Delay Report of Matrix Multiplication using WTM and KSA

39

Fig 5.7. Schematic of Matrix Multiplication using WTM and KSA

Fig 5.8. Simulation result of Matrix Multiplication using WTM and KSA

 5.2.3 Matrix Multiplication using Wallace Tree Multiplier and HCA

Fig 5.9. Device Utilization of Matrix Multiplication using WTM and HCA

40

Fig 5.10. Delay Report of Matrix Multiplication using WTM and HCA

Fig 5.11. Schematic of Matrix Multiplication using WTM and HCA

41

Fig 5.12. Simulation result of Matrix Multiplication using WTM and HCA

5.2.4 Matrix Multiplication using Vedic Multiplier and Ripple Carry Adder

 Fig 5.13. Device utilization of Matrix Multiplication using Vedic Multiplier and RCA

Fig 5.14. Delay Report of Matrix Multiplication using Vedic multiplier and RCA

42

Fig 5.15. Schematic of Matrix Multiplication using Vedic multiplier and RCA

Fig 5.16. Simulation result of Matrix Multiplication using Vedic multiplier and RCA

5.2.5 Matrix Multiplication using Vedic Multiplier and KSA

Fig 5.17. Device Utilization of Matrix Multiplication using Vedic multiplier and KSA

43

Fig 5.18. Delay Report of Matrix Multiplication using Vedic multiplier and KSA

Fig 5.19. Schematic of Matrix Multiplication using Vedic multiplier and KSA

44

Fig 5.20. Simulation result of Matrix Multiplication using Vedic multiplier and KSA

5.2.6 Matrix Multiplication using Vedic multiplier and HCA

 Fig 5.21. Device Utilization of Matrix Multiplication using Vedic multiplier and HCA

Fig 5.22. Delay Report of Matrix Multiplication using Vedic multiplier and HCA

45

Fig 5.23. Schematic of Matrix Multiplication using Vedic multiplier and HCA

Fig 5.24. Simulation result of Matrix Multiplication using Vedic multiplier and HCA

Table 5.1 shows Comparative Analysis Of Matrix Multiplication using Different Multipliers

Matrix Multiplier Method Delay(ns) Area(LUTs)

Wallace Tree Multiplier and RCA 28.969 4009

Wallace Tree Multiplier and KSA 27.544 4972

Wallace Tree Multiplier and HCA 26.583 4528

Vedic Multiplier and RCA 32.998 4864

Vedic Multiplier and KSA 33.057 5523

Vedic Multiplier and HCA 34.04 5100

46

Fig 5.25 Delay comparison graph for Matrix Multiplication

Fig 5.26. Area comparison graph for Matrix Multiplication

47

5.3 Important Outcomes:

The thesis provides an integrated framework for matrix multiplication that

integrates the Wallace tree multiplier, Vedic multiplier, and parallel prefix adders.

Comparing the framework to conventional multiplication methods, it shows enhanced

performance and efficiency.

• It demonstrates that the Wallace tree multiplier outperforms the Vedic multiplier

in terms of speed and area utilization.

• The quickest matrix multiplication method uses a Wallace tree multiplier and a

Han Carlson adder.

• On comparing their area requirements, the most efficient multiplier is the Wallace

tree multiplier combined with a Ripple carry adder.

48

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1 CONCLUSION

This thesis has presented a comprehensive investigation into the optimization of matrix

multiplication through the utilization of the Wallace tree multiplier, Vedic multiplier, and

parallel prefix adders. This efficiency in improving the performance of matrix

multiplication operations has been revealed by the performance evaluation and analysis,

which has been quite helpful.

The best superior 32 bits adder is first designed. The Han Carlson adder provides higher

performance in terms of speed, according to examination and comparison with the Kogge-

Stone adder and ripple carry adder. The Han Carlson adder combines the advantages of

the Han-Carlson parallel prefix structure and the carry-save adder, resulting in a reduction

of critical path delay and efficient carry propagation. The Han Carlson adder reduces the

delay by around 40% compared to the Ripple Carry adder. In terms of area, due to their

added circuitry for parallel processing and carry propagation, the HAN-Carlson adder and

Kogge-Stone adder often demand more hardware resources than the ripple carry adder.

The performance of 16x16 multipliers is then designed and compared after that. Vedic

and Wallace tree multipliers are successfully designed with Han Carlson, Kogge Stone,

and Ripple Carry adders, and their performance is compared. According to the results, the

Wallace tree multiplier and Han-Carlson adder performed faster than the other

configuration. Faster multiplication operations were made possible by the Wallace tree

multiplier's parallel architecture, and overall performance was improved because the Han-

Carlson adder considerably decreased the propagation delay of carry bits.

Matrix Multiplication is implemented using the designed multipliers and adders. By

leveraging the strengths of the Wallace tree multiplier, Vedic multiplier, and parallel

prefix adders, the integrated framework offers a powerful approach for efficient matrix

multiplication, paving the way for advancements in various computational domains. The

performance evaluation demonstrates that the combination of the Wallace tree multiplier

49

and the Han-Carlson adder achieves the fastest matrix multiplication results compared to

other techniques.

6.2 FUTURE SCOPE

The future scope of this thesis includes a number of prospective directions for additional

study and advancement. While the thesis has focused on the performance comparison of

matrix multiplication with the Wallace tree multiplier and the Vedic multiplier using

different adders, future studies can investigate other advanced multiplier designs.

The following points can be used to extend and modify the SA. Improved circuit design

can further reduce delay.

• The thesis has highlighted optimization techniques such as memory access

optimization, and pipelining to improve the performance of matrix multiplication.

To further optimize the calculation process and lower the computational

complexity, future studies can go deeper into algorithmic improvements, such as

using Strassen's algorithm or the Coppersmith-Winograd algorithm for matrix

multiplication.

• Matrix Multiplication is frequently utilized in many different fields, and each field

could have particular needs and limitations. Research in the future can concentrate

on selecting the multiplier and optimizing the optimization approaches for certain

applications.

These areas of study will aid in the development and improvement of matrix multiplication

methods as well as their adaptability to various computational fields.

50

REFERENCES

[1] Y. d. Ykuntam, K. Pavani and K. Saladi, ”Design and analysis of High speed wallace tree

multiplier using parallel prefix adders for VLSI circuit designs,” 2020 11th International

Conference on Computing, Communication and Networking Technologies (ICCCNT),

Kharagpur, India, 2020, pp. 1-6.

[2] T. Gupta and J. B. Sharma, “Han–Carlson adder based high-speed Vedic multiplier for

complex multiplication,” Microsystem Technologies, vol. 24, no. 9, 2018,pp. 3901–3906.

[3] A. Raju and S. K. Sa, ”Design and performance analysis of multipliers using Kogge Stone

Adder,” 2017 3rd International Conference on Applied and Theoretical Computing and

Communication Technology (iCATccT), Tumkur, India, 2017, pp. 94-99.

[4] P. Gulati, H. Yadav and M. K. Taleja, ”Implementation of an efficient multiplier using

the vedic multiplication algorithm,” 2016 International Conference on Computing,

Communication and Automation (ICCCA), Greater Noida, India, 2016, pp. 1440-1443.

[5] S. Lad and V. S. Bendre, ”Design and Comparison of Multiplier using Vedic Sutras,”

2019 5th International Conference On Computing, Communication, Control And

Automation (ICCUBEA), Pune, India, 2019, pp. 1-5.

[6] S. Dubey and G. Verma, ”Analysis of Basic Adder with Parallel Prefix Adder,” 2020 First

IEEE International Conference on Measurement, In- strumentation, Control and

Automation (ICMICA), Kurukshetra, India, 2020, pp. 1-6.

[7] M. Kivi Sona and V. Somasundaram, “Vedic multiplier implementation in VLSI,” Mater.

Today, vol. 24,2020, pp. 2219–2230.

[8] R. Shanmuganathan and K. Brindhadevi, “Comparative analysis of various types of

multipliers for effective low power,” Microelectron. Eng., vol. 214, 2019,pp. 28–37.

[9] R. Anjana, B. Abishna, M. S. Harshitha, E. Abhishek, V. Ravichandra and M. S Suma,

”Implementation of vedic multiplier using Kogge-stone adder,” 2014 International

Conference on Embedded Systems (ICES), Coimbatore, India, 2014, pp. 28-31.

[10] A. Sundhar, S. D. Tharshini, G. Priyanka, S. Ragul and C. Saranya, ”Performance

Analysis of Wallace Tree Multiplier with Kogge Stone Adder using 15-4 Compressor,”

2019 International Conference on Com- munication and Signal Processing (ICCSP),

Chennai, India, 2019, pp. 0903-0907.

[11] M. N. Chandrashekara and S. Rohith, ”Design of 8 Bit Vedic Multiplier Using Urdhva

51

Tiryagbhyam Sutra With Modified Carry Save Adder,” 2019 4th International

Conference on Recent Trends on Electronics, Information, Communication Technology

(RTEICT), Bangalore, India, 2019, pp. 116-120.

[12] N. Kumar M., R. S. Adithyaa, B. Kumar D. and T. Pavithra, ”Design Analysis of Wallace

Tree based Multiplier using Approximate Full Adder and Kogge Stone Adder,” 2020 6th

International Conference on Advanced Computing and Communication Systems

(ICACCS), Coim- batore, India, 2020, pp. 612-616.

[13] U. Penchalaiah and S. K. VG, "Design of High-Speed and Energy-Efficient Parallel

Prefix Kogge Stone Adder," 2018 IEEE International Conference on System,

Computation, Automation and Networking (ICSCA), Pondicherry, India, 2018, pp. 1-7,

doi: 10.1109/ICSCAN.2018.8541143.

[14] P. Mehta and D. Gawali, "Conventional versus Vedic Mathematical Method for Hardware

Implementation of a Multiplier," 2009 International Conference on Advances in

Computing, Control, and Telecommunication Technologies, Bangalore, India, 2009, pp.

640-642, doi: 10.1109/ACT.2009.162.

[15] D. R. Gandhi and N. N. Shah, "Comparative analysis for hardware circuit architecture of

Wallace tree multiplier," 2013 International Conference on Intelligent Systems and Signal

Processing (ISSP), Vallabh Vidyanagar, India, 2013, pp. 1-6, doi:

10.1109/ISSP.2013.6526864.

[16] S. K. Yezerla and B. Rajendra Naik, "Design and estimation of delay, power and area for

Parallel prefix adders," 2014 Recent Advances in Engineering and Computational

Sciences (RAECS), Chandigarh, India, 2014, pp. 1-6, doi:

10.1109/RAECS.2014.6799654.

[17] J. Liu, Y. Zhu, H. Zhu, C. -K. Cheng and J. Lillis, "Optimum Prefix Adders in a

Comprehensive Area, Timing and Power Design Space," 2007 Asia and South Pacific

Design Automation Conference, Yokohama, Japan, 2007, pp. 609-615, doi:

10.1109/ASPDAC.2007.358053.

[18] C. N. Shilpa, K. D. Shinde and H. V. Nithin, "Design, Implementation and Comparative

Analysis of Kogge Stone Adder Using CMOS and GDI Design: A VLSI Based

Approach," 2016 8th International Conference on Computational Intelligence and

Communication Networks (CICN), Tehri, India, 2016, pp. 570-574, doi:

10.1109/CICN.2016.117.

