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ABSTRACT

In Perovskite to get rid of toxicity of lead-based perovskite solar cell and to increase its
efficiency various Materials are under research among them double perovskite solar cells
(DPSCs) are promising with high efficiency. Lead free DPSCs recently attracted lots of
research Interest because of its viability as a promising perovskite absorber layer in
the device architecture along with its reasonable cost, remarkable stability and high
performance. The lead and non-biodegradable material-based Perovskite solar cells
(PSCs) are still a hurdle to its commercialization.

Cs,AgGaBrg-based DPSC promised high efficiency in previous studies and we investigate it
further. ZnSe, 1GZ0O, WS;, TiOz, ZnO and CeO;, were chosen as ETLs, while Spiro-
OMeTAD, CuO, PEDQT: PSS, P3HT, CBTS, and Cu.O were chosen as HTLs. Using the
SCAPS-1D solar cell simulation program, we thoroughly investigated the properties of solar
cell layers to determine the optimum structure: CBTS/Cs;AgGaBre/ZNSe. ETL and HTL
with high mobility of charge carriers and absorption coefficient is required for desired
performance of DPSC. Cs;AgGaBrs exhibits a direct bandgap of 142 eV and a
semiconducting nature. In order to attain the highest possible power conversion efficiency
(PCE), the device structure of multiple cells was examined. Of these, a cell with ZnSe based
ETL and CBTS based HTL produced best efficiency, 30.26% at a thickness of 600 nm.

We have also investigated a non-toxic inorganic material i.e., Cs2AgInBrs using
SCAPS-1D software. we optimized various parameters like Defect density (N),
thickness, operating temperature and electron affinity () of perovskite absorber layer
(Cs2AgInBre). Effect of various ETLs and HTLs on the performance device is also
analyzed. At absorber layer thickness of 600 nm, the Cs;AgInBre-based DPSC has
achieved maximum efficiency of 26.9%. The optimized value of N; is 10 and

operating temperature is 300 K
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Chapterl Introduction

1.1 Background

A safe and inexhaustible renewable energy source is solar power, that holds great
potential for addressing global energy demands and reducing carbon emissions.
Significant research efforts have been made over the years to create more efficient,
economical, and stable solar cell. The conventional silicon and other inorganic
semiconductor-based photovoltaics dominated market as they offer established
performance and reliability. However, their high production costs and limited
flexibility have sparked interest in exploring alternatives. PSCs are emerging as
strong candidates for upcoming advanced and efficient photovoltaics.

PSCs are based on organic-inorganic metallic halide perovskite materials. These
materials are typically denoted by ABX3 (A and B are organic and metal cations
respectively; x= halide anion). Characteristics like tuneable bandgap and high
absorption coefficient enable PSCs to achieve high PCE and low-cost fabrication

processes, making them a potentially disruptive technology in the solar cell industry.

Despite their impressive performance, traditional PSCs face challenges regarding
stability, material toxicity, as well as moisture sensitivity. In recent years, researchers
have turned their attention to double perovskite materials as an alternative approach

for better stability and performance of PSCs

Double perovskite materials, also known as mixed-halide or mixed-cation
perovskites, are composed of two different metal cations in the B-site of the
perovskite structure. This modification introduces enhanced freedom in controlling
the material properties, including stability, bandgap, and defect tolerance. By
carefully engineering the composition of the double perovskite materials, it is
possible to tailor their optoelectronic properties to meet the requirements of efficient
solar cell operation.

Due of their possible advantages, such as improved stability, reduced toxicity, and
enhanced light harvesting capabilities. research into DPSCs has received a lot of
interest. Researchers have reported encouraging results in terms of efficiency, long-

term stability, and resistance to moisture and heat. However, the understanding of



double perovskite materials and their performance in solar cells is still in its early

stages, necessitating further investigation and optimization.

In this context, this study's goal is to look into the capabilities and characteristics of
DPSCs. The research will involve synthesizing and characterizing different double
perovskite compositions, fabricating solar cell devices, and evaluating their
optoelectronic properties, stability, and device performance. This study opens way
for further research on double perovskite materials and pave the way for their

potential implementation in efficient and stable solar cell technologies.

By addressing the limitations of traditional PSCs, DPSCs offer an exciting avenue
for advancing the field of photovoltaics and driving the development of sustainable
energy solutions.

1.2 Research Objectives:

Primary aim of this study on Cs,AgInBrs and Cs,AgGaBrs based double perovskite

solar cells are as follows:

1.2.1 Device Fabrication: The next objective is to fabricate solar cell devices
using the double perovskite materials as the active layer. The devices will be
constructed using suitable device architectures in SCAPS-1D. Optimization
of the device fabrication parameters will be carried out to enhance the device
performance.

1.2.2 Performance Evaluation: one of the primary goals is to evaluate the
optoelectronic  properties and performance of the Cs,AgInBre and
Cs2AgGaBrs based double perovskite solar cells. This includes measuring key
parameters like PCE, J-V characteristics, Fill factor and Q.E.

1.2.3 Analysis and Optimization: The final objective is to analyze the obtained
results and identify strategies to optimize the performance of Cs>AgInBrs and
Cs2AgGaBre DPSCs. The objective remains to improve DPSCs PCE and

performance.

1.3 Significance of this Research:

This research on Cs2AgInBrs and Cs:AgGaBrs based double perovskite solar cells

holds significant importance for several reasons:



13.1

1.3.2

1.3.3

1.34

Chapter2

Advancement of PSC Technology: By investigating the performance of
Cs2AgInBrs and Cs2AgGaBre double perovskite materials in solar cells,
this research contributes to significant progress of PSC technology. It
expands the knowledge base and understanding of the unique properties
and potential advantages of double perovskites as active materials.
Enhanced Efficiency and Stability: Double perovskite materials offer the
potential for improved efficiency and stability compared to traditional
perovskite materials. By exploring Cs2AgInBrs and Cs,AgGaBrs double
perovskites, this research aims to uncover the performance benefits that
these materials can bring to solar cell devices, such as enhanced charge
transport, reduced defects, and improved stability under operating
conditions.

Novel Material Exploration: The study of Cs,AgInBrs and Cs2AgGaBres
double perovskites expands the range of materials available for solar cell
applications. These materials offer different compositional and structural
properties compared to conventional perovskites, opening up new
possibilities for tailoring the optoelectronic properties of solar cells.
Sustainable Energy Solutions: Developing efficient as well as stable
photovoltaics is crucial for advancing sustainable energy solutions. By
improving the understanding and performance of CsAginBrs and
Cs2AgGaBre DPSCs, this research helps in achieving the broader goal of
realizing cost-effective and environmentally friendly photovoltaic

devices.



Chapter2 Literature Review

2.1 Perovskite Solar Cells

Undoubtedly, we have a significant requirement for electricity because of the world's
population growth. In past years, fossil fuels have been main source of electricity,
but as conventional energy sources become scarcer, people are increasingly turning
to pure, non-polluting energy sources. Both directly and tangentially using solar
energy as a source of heat is possible. Therefore, extensive research is required to
create such devices that can effectively recapture the massive thermal energy
produced as waste in various energy as well as available naturally through sun. For
the sake of human sustainability in this respect, research into novel renewable energy
sources is essential. In this view, photons to energy conversion are a preferred
approach for advancement of civilization. Perovskite solar cells among other such
devices attract attention of researchers because of a number of distinctive features
like cost efficacy, simple manufacturing, outstanding efficiency etc.

Because of their exceptional physical and/or chemical characteristics, such as their
structure, optical properties, electrical properties, superconducting, catalytic, and
magnetic properties perovskite materials have recently helped a number of
technologies[1]-[3]. More precisely, organic-inorganic perovskites ABXs with
halogens (CI, Br, 1) as anions at X-site and lead as a cation at B-site have
revolutionized the field of photovoltaic study[4], [5].

Devices manufactured based on halide perovskites demonstrated a significant
improvement in efficiency (3.8% to 25.5%) which is better than silicon thin-film
solar cells. lead-based perovskites subjected to air, heat, or moisture shows degrading
tendency; as a result, manufacturing of the solar cells require more sophisticated
enclosure methods than silicon[6]. In addition, due to the high lead concentration in
these compounds, the environmental effect is a worry in light of the anticipated
widespread use of perovskite-based solar cells [7], [8]. Meanwhile, Pb-free
perovskite compounds with exceptional ecological resilience have become an
emerging study challenge in light of such environmental concerns[9], [10].

Many significant attempts have been made over the past decade in order to reduce
the danger of Pb present in perovskites, particularly by enhancing their dimension
and/or makeup. A M* monovalent and a M'3* trivalent cations are previously shown
as substitute the 2Pb?* creating 3-D “Double-halide perovskites” (DHPs) having
formula A2MM'Xs. here, A can be Cs, Rb, K, Na; and M can be Cu, Ag, Au, In; M’ =
Bi, Sb, In, Ga; X =1, Br, Cl).[11], [12]. Research shows that in thermoelectric,
optoelectronic, and/or photovoltaic applications, gallium and silver atoms based non-
toxic perovskite materials are superior to perovskites based on lead. [13]



2.2 Double Perovskite Solar Cells

High-performance PSCs are unstable. Additionally, they are based on toxic lead
[[14]. Unquestionably, this severely restricts their usage in solar systems. As an
alternative, a new generation of DPSC material has been proposed to address the
issue [15]-[17]. The suggested compounds have been successfully synthesized and
are inorganic, stable, and non-toxic[15]-[19]. These are therefore excellent choices
for photovoltaic applications.
2.3 Cs2AgInBrs

Cs2AgInBrs is a double perovskite material which garnered significant attention as it
offers useful characteristics and possible applications in solar cells. This material
belongs to halide double perovskites and has a crystal structure composed of cesium
(Cs), silver (Ag), indium (In), and bromine (Br) atoms.

Cs2AgInBrs is one of the double perovskites materials that has been touted as a top
contender for technological applications, particularly in the solar industry hence
receiving a lot of attention recently. Only a few data were given about the material's
optical and electrical characteristics, which are crucial for the design and fabrication
of devices that utilize the perovskite in question[20], [21], despite several

fundamental aspects of the material being researched[22]-[24].

The Cs2AgInBre double perovskite exhibits several desirable properties which makes
it attractive for solar cell applications:

1. Optoelectronic Properties: Cs2AgInBrs possesses a direct bandgap in the
visible light range, enabling efficient absorption of sunlight. This property is crucial
for photovoltaics because it allows for effective conversion of solar energy into

electrical energy.

2. High Absorption Coefficient: The material in question has a high absorption
coefficient, which enables it to absorb a large number of photons even when the film
thickness is relatively thin. This property is advantageous for fabricating thin-film

solar cells, reducing material usage and cost.

3. Long Carrier Diffusion Length: Cs,AgInBre possess a long carrier diffusion
length, indicating that the photogenerated charges can go far into the material
without recombining. within material with no recombination. This characteristic is

essential for charge extraction and collection, leading to higher solar cell efficiencies.



4. Thermal Stability: Because of its great thermal stability, Cs2AgInBr6 can
survive high temperatures without suffering considerable deterioration. For the
manufacture and long-term reliability of solar cells, particularly under actual working

circumstances, this characteristic is crucial.

5. Low Toxicity: Compared to some other halide perovskites, Cs,AgInBrs has
relatively low toxicity, which is advantageous for large-scale manufacturing and

potential commercialization of photovoltaics.

The unique combination of these properties makes Cs»AgInBres an intriguing
candidate for solar cell applications. Researchers are actively exploring its potential
to develop highly efficient and DPSC. Some of the key areas of research and

development include:

1. Device Optimization: Researchers are working for improving the PCE of
Cs2AgInBrs-based DPSCs by optimizing device architectures, interface engineering,
and charge transport properties.

2. Stability Enhancement: Ensuring enduring stability of CsAglInBre-based
DPSC is a crucial area of focus. Researchers are investigating strategies to enhance
the material's resistance to moisture, heat, and light-induced degradation, thereby

improving the operational lifetime of the solar cells.

3. Scale-Up and Manufacturing: Efforts are underway to develop scalable
fabrication techniques for CspAgInBre solar cells, enabling their large-scale
production at low cost. This includes exploring solution-based deposition methods,

roll-to-roll processing, and compatibility with existing manufacturing infrastructure.

The application of Cs,AgInBre in solar cells holds promise for realizing high-
efficiency, cost-effective, and environmentally friendly photovoltaic devices.
Ongoing studies aim to overcome these challenges associated with stability,
efficiency, and scalability, therefore making way for commercialization of
Cs2AgInBres-based solar cells and contributing to the clean energy transition.

24  Cs2AgGaBrs

Research shows that in thermoelectric, optoelectronic, and/or photovoltaic
applications, gallium and silver atoms based non-toxic perovskite materials are
superior to perovskites based on lead. [13]

In the absence of interface imperfections, Cs,AgGaBre's favorable bandgap of 1.42
eV along with strong absorption leads to a high PCE of 34.99%. this corresponds to



ideal thickness of 2.6 micro-m. Yet, the efficiency is reduced to 30.90% by adding
interface defects[13]. In light of this we therefore attempt to study the effect of
different HTL/ETL layers to study and compare their effect on efficiency of solar
cell, at a lower thickness then the optimum of 2.6micrometer.[13] (As this is
considered much thicker); instead, we used standard 600nm as thickness.

Cs2AgGaBre (also referred to as Cesium Silver Gallium Bromide) is indeed a double
perovskite material that has gained attention for its potential application in solar
cells. This material consists of cesium (Cs), silver (Ag), gallium (Ga), and bromine

(Br) atoms in its crystal structure.

While specific information Cs;AgGaBre may be limited due to its relatively recent
discovery and ongoing research, we can discuss some general properties and

potential applications of double perovskite materials in solar cells.

1) Optoelectronic Properties: Double perovskite materials like Cs,AgGaBre
typically possess desirable optoelectronic properties, including a suitable bandgap for
solar absorption and efficient charge carrier transport. These properties are crucial for
effective light absorption and energy conversion in solar cells.

2) Tunability: Double perovskite materials have several benefits, including the
possibility of tuning their bandgap and electronic properties by altering their
composition and structure. This tunability allows researchers to optimize the material
for specific solar cell applications and tailor it to maximize device performance.

3) High Absorption Coefficient: Double perovskites often display a high
absorption coefficient. This property makes efficient absorption of light possible
even for thin films. This characteristic can facilitate the development of thin-film
DPSCs, decreasing material usage and cost.

4) Carrier Transport: Highly efficient PSCs require effective carrier transport.
Double perovskite materials can have favourable charge carrier mobilities, enabling
the effective extraction and collection of photogenerated electrons and holes.

5) Stability: Ensuring the prolonged stability of PSCs is challenging. Ongoing
research aims for improving stability of DPSC materials, including Cs,AgGaBrs by
addressing issues such as moisture sensitivity, thermal stability, and resistance to

degradation.

Regarding the specific application of Cs;AgGaBrs in DPSCs, it is important to notice

that the material is relatively new, and research on its solar cell performance and



optimization is still in progress. Researchers are likely exploring the fabrication
methods, device architectures, and stability considerations to determine the viability

and potential advantages of Cs2AgGaBrs-based solar cells.

Overall, while specific information about Cs)AgGaBre may be limited, double
perovskite materials are desirable for solar cell applications due to their general
characteristics. Ongoing research in PSCs aims to achieve stability, enhance
efficiency, and improve the scalability of these materials for commercialization in the

renewable energy sector.

2.5  SCAPS-1D Solar Cell Simulation Software

This section provides an overview of SCAPS-1D, a popular program for simulating
solar cells. It describes its capabilities in modeling and simulating various solar cell
parameters, such as electrical and optical properties, carrier transport, and
recombination mechanisms. The subsection also emphasizes the importance of
simulation software in solar cell research, allowing researchers to optimize device
performance and gain insights into the underlying physics.

SCAPS-1D is a simulation software tool specifically designed for modeling and
simulating the performance of photovoltaics. It provides a platform for analyzing and
optimizing the electronic and optical properties of various types of photovoltaics,
including and not constrained to silicon-based, thin-film, and perovskite solar cells.
Here's an overview of how SCAPS-1D works, its uses, underlying codes, and

concepts:

2.5.1 Working Principle:

SCAPS-1D utilizes a numerical approach to simulate the behavior of solar cells. It
employs a one-dimensional modeling framework, considering the device structure in
the form of layers along the thickness direction. By solving a set of coupled
differential equations, SCAPS-1D calculates and predicts various parameters, such as
J-V characteristics, Q.E., carrier density profiles, and electric fields within the solar

cell structure.



2.5.2 Uses of SCAPS-1D:

1. Device Design and Optimization: SCAPS-1D enables researchers and engineers
to explore different device architectures, layer materials, and parameters to optimize
solar cell performance. It aids in the design process by predicting the effects of
various changes on the electrical output, helping identify strategies to enhance
efficiency.

2. Parameter Extraction: The software allows users to extract and determine
important material and device parameters, such as carrier lifetimes, interface
recombination velocities, trap densities, and mobility values. These extracted
parameters can give insightful information on material’s quality and interfaces within
the solar cell structure.

3. Sensitivity Analysis: SCAPS-1D facilitates sensitivity analysis, allowing users
to evaluate the impact of variations in material properties, layer thicknesses, and
other parameters on the device performance. This analysis aids in identifying critical
parameters that significantly influence solar cell efficiency and guides experimental
efforts.

2.5.3 Underlying Codes and Concepts:

SCAPS-1D is built on a foundation of physical models and mathematical equations
that describe the behavior of solar cells. The software employs numerical methods
and iterative algorithms to solve these equations and simulate the device operation.

Some of the underlying concepts and codes used in SCAPS-1D include:

1. Drift-Diffusion Equations: SCAPS-1D employs the drift-diffusion model, which
incorporates charge carrier transport mechanisms like diffusion brought on by
gradients in carrier concentration and drift brought on by electric fields. These
equations describe the movement of electrons and holes within the solar cell
structure.

2. Shockley-Read-Hall (SRH) Recombination: The SRH model accounts for the
recombination of charge carriers at defect sites within the material. SCAPS-1D includes
algorithms to calculate and incorporate the impact of SRH recombination on device
performance.

3. Optical Modelling: SCcAPs-1D considers the absorption and transmission of

light within the solar cell structure. It utilizes concepts like Lambert-Beer's law to
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account for light absorption in different layers and interfaces, considering the
wavelength-dependent optical properties of materials.

4. Interface and Contact Models: The software includes models to characterize
the electrical behaviour and recombination properties at material interfaces and
contacts, accounting for phenomena such as surface recombination and tunnelling.

5. Parameter Fitting: SCAPS-1D incorporates fitting routines and optimization
algorithms to comparison between simulation and experimental results. This allows
for determination of accurate material and device parameters that best replicate the

measured device characteristics.

Overall, scAPs-1D leverages a combination of physics-based models, numerical
methods, and optimization algorithms to simulate and analyze the performance of
photovoltaics. By providing a comprehensive platform for device design,
optimization, and parameter extraction, SCAPS-1D contributes to the advancement of
solar cell technology and enables researchers and engineers to explore new avenues

for enhancing solar energy conversion efficiency.
2.5.4 Numerical method used in SCAPS-1D: -

SCAPS-1D utilizes a numerical method called the Transfer Matrix Method (TMM)
for solving the electrical and optical equations for the simulation of photovoltaic
devices. The TMM is a powerful technique for modeling multi-layered structures by
considering the transmission and reflection of light at each interface within the
structure. The TMM implemented in SCAPS-1D allows for the calculation of optical
properties, such as absorption and transmission coefficients, as well as the
propagation of light through the various layers of the solar cell. This information is
crucial for accurately modeling the absorption of photons and calculating the Q.E. of

the device.

In addition to the TMM, SCAPS-1D incorporates other numerical methods to solve
the drift-diffusion equations that describe the carrier transport and recombination
within the solar cell structure. These methods typically involve the discretization of
the device structure into a set of computational points or nodes along the thickness
direction, and the solution of the resulting set of coupled differential equations.

While the exact details of the specific code implementation in SCAPS-1D are not
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publicly disclosed, it likely employs well-established numerical algorithms, such as
finite difference or finite element methods, to solve the drift-diffusion equations.
These methods approximate the derivatives in the equations using discrete
differences and iteratively solve the resulting equations to obtain the carrier profiles

and device characteristics.

It's important to note that SCAPS-1D is a proprietary software tool, and the specific
implementation details, including the choice of algorithms and coding techniques,
are not publicly available. The underlying numerical methods and codes used in
SCAPS-1D are likely optimized for efficiency and accuracy in simulating solar cell
devices, providing researchers and engineers with a reliable platform for their

investigations and optimizations.
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Chapter3 Methodology

3.1 Cs2AgGaBrs

3.1.1 Device Structure

(FTO/ETL/Cs2AgGaBre/HTL/Au) device structure is used for the study of
Cs2AgGaBre based DPSC. This is also shown in Figure 3.1. During all the
simulations only parameters of ETL and HTL changes according to layers used. The
parameters of FTO and perovskite layers are same for all simulations and are
mentioned in Table 3.3. The back contact used in simulation is that of Au and is

same for all simulations.

41

Back Contact (Au)

FTO »
08 CBTS

= Au
Sl HTL (CBTS) T NQ —

>

[ -5.1

5 ZnSe ‘E

{ = i)

w 2
600 nm Absorber Layer 3 55

(Cs,AgGaBrg)

100 nm ETL (ZnSe)

Figure 3.1:- Device Structure for simulation and band alignment diagram

3.1.2 Procedure

The device was fabricated as shown in the Table 3.1; with a transparent ETL,
following which there is perovskite photon absorbing layer and holes transport layer
forming (n-i-p) type structure. This fabrication in SCAPS can be achieved by

navigating through set problem option and adding respective layers. The different
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layers and their parameters are mentioned in the Table 3.1 and Table 3.2. After
device fabrication different environment condition like temperature T=300k;
illumination file was set as “AM1 5G 1 sun.spe”. Then IV and QE calculations were
set and put for calculation.

We simulated 6 ETLs and 6 HTLs as possible combinations with double perovskite
solar cells. To achieve this, we fabricated multiple solar cell structures in SCAPS, 6
structures for each ETLs and HTLs. Parameters of these are given in Error! R
eference source not found. and Table 3.2. For each of these cell structures simulation

was performed and data was recorded as discussed in results section below.

Table 3.1:- various ETL parameters

Parameters 1GZO TiO: ZnSe Zn0O CeO: WS;
(ETL)

E (eV) 3.050 3.2 2.81 3.3 3.5 1.8

X (eV) 4.160 4 4.09 4 4.6 3.95
g/eo 10 9 8.6 9 9 13.6
Nc (cm™3) 5x10'8 2x10'8 2.2x10'® 3.7x10'®  1x10%° 1x1018
Nv (cm3) 5x10'8 1.8x10%° 1.8x10'® 1.8x10%° 2x10% 2.4x10%°
Ve (cm S2) 1x10’ 1x10’ 1x10’ 1x10’ 1x10’ 1x10’
Vh (cm S?) 1x10’ 1x10’ 1x10’ 1x107 1x10’ 1x10’
He (cm?2V1s?t) 15 20 400 100 100 100

Hh (cm2V1s?) 0.1 10 110 25 25 100

Np (cm™3) 1x10Y7 9x10%% 1x10%° 1x101'8 1x10% 1x1018
Na (cm3) _ _ _ _ _ _

Defect density 1x10% 1x10% 1x10% 1x10% 1x10%° 1x10%
(cm?)

REFERENCE [25]-[27] [25], [30] [25], [25], [32] [25],
[28], [29] [28], [31] [28], [33]




Table 3.2:- Various HTL parameters
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Parameters Spiro- Cul P3HT Cu0 PEDOT: CBTS
(HTL) OMeTAD PSS
Eg (eV) 3 3.1 1.7 2.2 1.6 1.9
x(eV) 2.2 2.1 3.5 3.4 3.4 3.6
g/eo 3 6.5 3 7.5 3 5.4
Nc (cm3) 2.2x10'®  2.8x10%° 2x10% 2x10%° 2.2x10'®  2.2x10%
Nv (cm3) 1.8x10%° 1x10%° 2x10%1 1x10%° 1.8x10%°  1.8x10%°
Ve (cm S1) 1x10’7 1x107 1x10’ 1x10’ 1x10’ 1x10’
Vh (cm S?) 1x107 1x107 1x107 1x107 1x107 1x107
Me (cm?V1S1)  2.1x103 100 1.8x103 200 4.5x102 30
Mh (cm2V1St)  2.16x103 43.1 1.86x10° 8600 4,5x102 10
2

Np (cm™3) _ _ _ _ _ _
Na (cm™3) 1x1018 1x10%8 1x10%8 1x10%8 1x1018 1x10%8
Defect density 1x10%° 1x10% 1x10% 1x10% 1x10% 1x10%
(cm?3)
REFERENCE [25], [25], [35] [25],[28] [25], [25], [25], [39]

[28], [28], [37], [38]

[29], [34] [36]
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Table 3.3:-Table for Parameters of (a) CBTS (b)perovskite layer (Cs2 AgGaBr6) (c)
ZnSe (d) FTO

Parameters CBTS Cs2AgGaBrg  ZnSe FTO
Thickness (nm) 200 600 100 100

Eg (eV) 1.9 1.420 2.81 3.5

X (eV) 3.6 4.210 4.09 4.5
g/eo 54 3.600 8.6 9.00
Nc (ecm3) 2.2 x10%8 1.26 x10%8 2.2x 108 2.2 x10%8
Nv (em3) 1.8 x10%° 1.73 x10'8 1.8 x 108 1 x10%°
Ve (cm S?) 1x107 1x 10’ 1x 107 1 x107
Vh (cm S?) 1x 107 1x 10’ 1 x107 1 x107
He (cm2 V-1 §) 30 160.8 400 2 x103
ph (cm?2Vv-1s?) 10 4.800 110 2 x103
Np (cm™3) _ _ 1 x10%° 2 x10%°
Na(cm3) 1x10%8 _ _ _
Defect density (cm3) 1x10% 1.8x10%3 1x10% 1 x10%
Reference [25], [39] [40], [41] [30] [40]

3.2 Cs2AgGaBrs
3.2.1 Structure

The device structure for the optimization of absorber layer is
(FTO/ETL/Cs2AgInBre/HTL/Au). Figure 3.2 shows device structure of optimized
DPSC and its band gap alignment. Table 3.1 Table 3.2, and Table 3.3 shows the
parameters of ETLs, HTLs, FTO, and absorber layer. The gold (Au) back contact is
used in simulation. For Cs,AgInBrs some of the parameters used for simulation were
obtained from previous works and others were calculated using the data available.
For calculating density of state for valance and conduction bands (Nv and N¢) the

given formula was used: -
3

2mkgTmg ,\2
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Here effective mass of electrons and holes i.e., m,,, differs from material to

material. Using formula, we found values of, Nc= 1.26 x 10'® and N,=1.73 x 10%8,

The dielectric constant was obtained using the following formula: -

k == =n? where n= refractive index (n=2.09 [42]). We found value of dielectric

€0

constant as 4.368.
Band gap (Eg) of material is taken as 1.47 eV[41]. The electron mobility and hole
mobility are 89.4 and 3.30 (cm? V! S1) respectively. The electron and hole thermal

velocity is 1 x 107 each.

Back Contact (Au) -3.6
4.4
, 41 (&)
FTO
-5.003
200 nm R LR CBTS
I 3 "
& =
600 nm Absorber Layer & ZnSe E
(Cs,AgInBry) S E:
-5.5
M
100 nm ETL (ZnSe) @
v
i -6.15
100 nm /\:

Figure 3.2:- Device structure and band gap alignment for Cs,AgInBrs based DPSC

3.2.2 DPSC design methodology: -

SCAPS software for 1-D designing was created by professor Marc Burgelman.[43],
[44].For charge carriers (electrons and holes), SCAPS-1D can compute
semiconductor equations such as continuity and Poisson's equations. Moreover, it
can compute spectral response and current-voltage characteristics at various
wavelengths specified by users. Additionally, this software's intrinsic capacity to

imitate bulk defects and interface defects makes it commonly employed in the
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numerical research of solar cells. Also, this simulation software has a standout

feature that makes it a wise option for applications related to constructing solar cells.

The Shockley-Read-Hall recombination model is used for the simulation, and

illumination parameters are A.M 1.5G (Air Mass). Thus, a viable strategy for

expanding the further growth of perovskite for solar applications is numerical PSC

analysis using SCAPS-1D. The fundamental idea behind the tool is to solve

continuity and Poisson's derivative equations using numerical differentiation and the

Gummel type iteration method[45].

Table 3.4:- simulation parameters of initial DPSC layers.

Parameters PEDOT:PSS  Cs2AgInBrs 1GZO FTO
Thickness (nm) 200 600 100 100

Eg (eV) 1.6 1.47 3.050 3.5

% (eV) 3.4 4.10 4.160 45

eleo 3 4.368 10 9.00
Nc (cm'3) 2.2x10'8 1.26 x10'8 5x108 2.2 x1018
Nv (cm3) 1.8x10% 1.73 x10'®  5x10'® 1 x10%°
Ve (cm S7) 1x10’ 1 x 10’ 1x10’ 1 %107
Vh (cm S?) 1x10’ 1 x 10’ 1x10’ 1 %107
Le (cm2 VL S1) 4.5%10°2 89.4 15 2 x10°
Hh (cm? V1 ST 4.5%x107? 3.300 0.1 2 x103
Nb (cm?) _ - 1x10%7 2 x10%
Na (cm-3) 1x108 - _ -
Defect density (cm3) 1x10% 1.8x10% 1x10% 1 x10'°
Reference [25], [38] [23], [41], [25]-[27]  [40]

[42]




Table 3.5:- Simulation parameters of various HTLs
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Parameters CBTS Spiro- MASNBrs CuO PEDOT:PSS
OMeTAD

Thickness (nm) 200 200 200 200 200

Eg (eV) 1.9 3 2.15 1.51 1.6

¥ (eV) 3.6 2.2 3.39 4.07 3.4

eleo 5.4 3 8.2 18.1 3

Nc (cm) 2.2 x1018 2.2x10'8 1 x 10%° 2.2 x10% 2.2x10'8

Nv (cm™) 1.8 x10%° 1.8x10%° 1x10'8 5,5x1020  1.8x10%

Ve (cm S7) 1x107 1x107 1x 107 1x 107 1x107

Vh (cm S?) 1 x 107 1x10’ 1 x 107 1 x 107 1x10’

He (cm2 V-1 S 30 2.1x10° 1.6 100 4.5x1072

Hh (cm2 V-1 S0 10 2.16x10% 1.6 0.1 4.5x1072

Nb (cm-3) - _ _ - B

Na (cm3) 1x 10 1x10'8 1x 108 1x 1018 1x10'8

Defect density (cm3) 1 x 10® 1x10%° 1 x10%° 1x10%° 1x10'°

Reference [25], [39] [25], [28], [46] [25], [47] [25], [38]

[29], [34]




Table 3.6:- simulation parameters of various ETLs

Parameters ZnSe TiO2 IGZ0

Thickness (nm) 100 100 100

Eg (eV) 2.81 3.2 3.050

7 (eV) 4.09 4 4.160

eleo 8.6 9 10

Nc (cm) 2.2 x10'8 2x1018 5x1018

Nv (cm-3) 1.8 x 1018 1.8x10% 5x1018

Ve (cm S1) 1 x 10’ 1x10’ 1x10’

Vh (cm SY) 1 %107 1x107 1x107

He (cm? V1 S1) 400 20 1.5

Hh (cm? V-1 S2) 110 10 0.1

Npb (cm™) 1 x10% 9x10%° 1x10%7

Na (cm?) _ _ _

Defect density (cm?3) 1x10% 1x10% 1x10%°

Reference [30] [25], [28], [25]-
[29] [27]
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Chapter4 Results and Discussion

4.1 Cs2AgGaBrs
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As discussed earlier we simulated multiple different Double perovskite solar cells
using various ETLs and HTLs thereafter, the simulation data was recorded.

Table 4.1:- different cell structures and their simulation results

Device structure Voc  Jsc(mA/cm2) FF (%) PCE
(FTO/ETL/Cs2AgGaBr6/HTL/Au) (volt) (%)
FTO/TiO2/Cs2AgGaBr6/Spiro-OMeTAD/Au 1.24  29.16 81.79 29.63
FTO/ZnSe/Cs2AgGaBr6/Spiro-OMeTAD/Au 1.24  29.18 80.07 30.13
FTO/CeO2/Cs2AgGaBr6/Spiro- 7.29  29.18 13.53 28.83
OMeTAD/Au

FTO/WS2/Cs2AgGaBr6/Spiro-OMeTAD/Au 1.24  29.17 81.68 29.62
FTO/ZnOCCs2AgGaBr6/Spiro- 124  28.93 82.92 29.79
OMeTAD/Au

FTO/IGZO/Cs2AgGaBr6/Spiro- 124  29.14 82.88 29.99
OMeTAD/Au

FTO/TiO2/Cs2AgGaBr6/CBTS/Au 124 2921 82.10 29.78
FTO/ZnSe/Cs2AgGaBr6/CBTS/Au 124  29.23 83.38 30.26
FTO/ZnO/Cs2AgGaBr6/CBTS/Au 124 2921 83.35 30.24
FTO/CeO2/Cs2AgGaBr6/CBTS/Au 737 29.23 13.44 28.98
FTO/WS2/Cs2AgGaBr6/CBTS/Au 124  29.20 8199 29.74
FTO/IGZO/Cs2AgGaBr6/CBTS/Au 124  29.28 83.25 29.95
FTO/TiO2/Cs2AgGaBr6/PEDOT: PSS/Au 1.24  29.30 79.77 29.04
FTO/CeO2/Cs2AgGaBr6/PEDOT: PSS/Au  1.99  29.25 50.27 29.33
FTO/WS2/Cs2AgGaBr6/PEDOT: PSS/Au 1.24  29.29 79.70  29.02
FTO/ZnO/Cs2AgGaBr6/PEDOT: PSS/Au 1.24  29.30 80.97 29.49
FTO/ZnSe/Cs2AgGaBr6/PEDOT: PSS/Au 1.24  29.33 80.97 2951
FTO/IGZO/Cs2AgGaBr6/PEDOT: PSS/Au  1.24  29.07 80.80 29.17
FTO/TiO2/Cs2AgGaBr6/Cul/Au 1.24  29.09 83.05 30.02
FTO/CeO2/Cs2AgGaBr6/Cul/Au 9.10 29.18 10.63 28.25
FTO/WS2/Cs2AgGaBr6/Cul/Au 124  29.17 81.54 29.56
FTO/ZnO/Cs2AgGaBr6/Cul/Au 124  29.16 82.88 30.03
FTO/1IGZO/Cs2AgGaBr6/Cul/Au 124  28.93 82.75 29.73
FTO/ZnSe/Cs2AgGaBr6/Cul/Au 124  29.18 82.89 30.05
FTO/TiO2/Cs2AgGaBr6/Cu20/Au 124  29.17 82.16 29.78
FTO/Ce02/Cs2AgGaBr6/Cu20/Au 754  29.20 13.15 28.96
FTO/ZnO/Cs2AgGaBr6/Cu20/Au 124  29.18 83.41 30.24
FTO/IGZ02Cs2AgGaBr6/Cu20/Au 124  28.95 83.30 29.94
FTO/WS2/Cs2AgGaBr6/Cu20/Au 124  29.20 82.00 29.75
FTO/ZnSe/Cs2AgGaBr6/Cu20/Au 1.24  29.20 83.44 30.26
FTO/TiO2/Cs2AgGaBr6/P3HT/Au 120 29.19 82.60 29.14
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FTO/ZnO/Cs2AgGaBr6/P3HT/Au 122 29.19 82.41 29.57
FTO/ZnSe/Cs2AgGaBr6/P3HT/Au 120 2921 83.90 29.61
FTO/WS2/Cs2AgGaBr6/P3HT/Au 121 2921 81.93 29.12
FTO/IGZO/Cs2AgGaBr6/P3HT/Au 122 28.95 82.27 29.29
FTO/CeO2/Cs2AgGaBr6/P3HT/Au 29.21 26.56

recorded Device structure (FTO/ETL/CspAgGaBre/HTL/Au) and  their
corresponding Voc (volt), Jss(mA/cm2), FF (%), PCE (%) Values obtained as a result
of their respective simulations. The data for plotting various graphs and analysis
were also recorded. After this analysis we found our optimized structure as
FTO/ZnSe/Cs,AgGaBre/CBTS/Au whose QE VS wavelength and Jsc-V curves were
plotted as shown in Figure 4.3.

4.1.1 Study of different ETL layers: -

The 1-V AND ‘QE VS wavelength’ curves were obtained for 6 different ETL layers
using data recorded in simulation and plotting the same in “Origin software” and the
curves were studied Figure 4.1. It was observed ZnSe (Zinc Selenide) ETL showed
the highest efficiency of 30.26%. Followed by ZnO with efficiency of 30.24. It was
also observed that this highest efficiency coincided with CBTS as HTL layer.

ZnSe shows highest PCE which can be because of its, high electron mobility,
suitable band gap alignment, high electron mobility and reduction in accumulation of
charge at ETL/perovskite layer interface. Further ZnSe based devices shows better
photostability because of greater ultraviolet light harvesting by ZnSe layer that
results in efficiently avoiding intense UV-light exposure for perovskite film hence
avoiding related degradation. [31, 19]
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Figure 4.1 Graphs of (a)QE vs wavelength for various ETL layers (b) J-V curve for various
ETL layers

4.1.2 Study of HTL layers: -
The I-V AND ‘QE VS wavelength’ curves were obtained for 6 different HTL layers

using data recorded in simulation and plotting the same in “Origin software” and the
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curves were studied. It was observed CBTS (copper barium Thiostannate) layer has
best efficiency of 30.26, followed by Cu20O which also showed efficiency of 30.26
with ZnSe as ETL layer. But studied with different ETLs cell with CBTS as HTL is
slightly better than Cu2 O. Because of suitable absorption coefficient and better
electron affinity, CBTS as HTL gives better cell efficiency. [14, 29]. Thin film
materials such as CBTS as HTL layer are also used over other common ones as they
give better stability in air and are in abundance in earth. CBTS also offers tunable
band gap and good light absorbing capacity. Non-centrosymmetric crystal structure
with significant variation in CBTS atomic size provides suitable traits for improving
the PCE of a solar cell. [14, 29]
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Figure 4.2:- Graphs of (a)QE vs wavelength for various HTL layers (b) J-V curve for various
HTL layers

It was concluded that best combination for the cell was that of
FTO/ZnSe/Cs,AgGaBre/CBTS/Au with efficiency 30.26%. It therefore is also our
optimized cell.

Table 4.1:- different cell structures and their simulation results

Device structure Voc Jse(mA/cm?) FF (%) PCE
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(FTO/ETL/Cs2AgGaBrs/HTL/AuU)

FTO/TiO2/Cs2AgGaBre/Spiro-OMeTAD/Au
FTO/ZnSe/Cs2AgGaBrs/Spiro-OMeTAD/Au
FTO/CeO2/Cs2AgGaBrs/Spiro-OMeTAD/Au
FTO/WS2/Cs2AgGaBre/Spiro-OMeTAD/Au
FTO/ZnOCCs2AgGaBrs/Spiro-OMeTAD/Au
FTO/1GZO/Cs2AgGaBre/Spiro-OMeTAD/Au

FTO/TiO2/Cs2AgGaBrs/CBTS/Au
FTO/ZnSe/Cs2AgGaBrs/CBTS/Au
FTO/ZnO/Cs2AgGaBrs/CBTS/Au
FTO/CeO2/Cs2AgGaBrs/CBTS/Au
FTO/WS2/Cs2AgGaBrs/CBTS/Au
FTO/1IGZO/Cs2AgGaBrs/CBTS/Au

FTO/TiO2/Cs2AgGaBrs/PEDOT: PSS/Au
FTO/CeO2/Cs2AgGaBrs/PEDOT: PSS/Au
FTO/WS2/Cs2AgGaBrs/PEDOT: PSS/Au
FTO/ZnO/Cs2AgGaBrs/PEDOT: PSS/Au
FTO/ZnSe/Cs2AgGaBrs/PEDOT: PSS/Au
FTO/IGZO/Cs2AgGaBrs/PEDOT: PSS/Au

FTO/TiO2/Cs2AgGaBres/Cul/Au
FTO/Ce0O2/Cs2AgGaBrs/Cul/Au
FTO/WS2/Cs2AgGaBrs/Cul/Au
FTO/ZnO/Cs2AgGaBrs/Cul/Au
FTO/IGZO/Cs2AgGaBrs/Cul/Au
FTO/ZnSe/Cs2AgGaBrs/Cul/Au
FTO/TiO2/Cs2AgGaBres/Cu20/Au
FTO/Ce02/Cs2AgGaBrs/Cu20/Au
FTO/ZnO/Cs2AgGaBrs/Cu20/Au
FTO/1GZ02Cs2AgGaBrs/Cu20/Au
FTO/WS2/Cs2AgGaBrs/Cu20/Au
FTO/ZnSe/Cs2AgGaBrs/Cu20/Au
FTOI/TiO2/Cs2AgGaBre/PsHT/Au
FTO/ZnO/Cs2AgGaBrs/PsHT/Au
FTO/ZnSe/Cs2AgGaBrs/PsHT/Au
FTO/WS2/Cs2AgGaBrs/PsHT/Au
FTO/1GZO/Cs2AgGaBrs/PsHT/Au
FTO/CeO2/Cs2AgGaBrs/PsHT/Au

(volt) (%)
1.24  29.16 81.79 29.63
124  29.18 80.07 30.13
7.29  29.18 1353 28.83
1.24 2917 81.68 29.62
1.24  28.93 82.92 29.79
124 29.14 82.88  29.99
1.24 2921 82.10 29.78
124 29.23 83.38  30.26
1.24 2921 83.35 30.24
737 29.23 13.44 28.98
1.24  29.20 81.99 29.74
124  29.28 83.25 29.95
1.24  29.30 79.77  29.04
199  29.25 50.27 29.33
1.24 2929 79.70  29.02
124 29.30 80.97 29.49
1.24 2933 80.97 29.51
1.24  29.07 80.80 29.17
1.24  29.09 83.05 30.02
9.10  29.18 10.63 28.25
1.24 2917 81.54 29.56
124 29.16 82.88  30.03
1.24  28.93 82.75 29.73
124  29.18 82.89  30.05
1.24 2917 82.16 29.78
754  29.20 13.15 28.96
1.24 2918 83.41 30.24
124 2895 83.30 29.94
1.24  29.20 82.00 29.75
124 29.20 83.44 30.26
1.20  29.19 82.60 29.14
122 29.19 82.41 29.57
1.20 2921 83.90 29.61
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Figure 4.3:- Graphs of (a)QE vs wavelength for optimized cell (b) J-V curve for

optimized cell structure

4.2  Cs2AgInBrs
4.2.1 Variation of HTLs and ETLs

We initially formed cell structure FTO/ IGZO /Cs2AgInBre/PEDOT:PSS/Au in
SCAPS-1D using parameters as shown in ( Table 3.4). And obtained the cell
efficiency of 19.79%. To increase the cell efficiency, we formed device structure
with 5 HTLs (PEDOT:PSS, CuO, Spiro-OMeTAD, MaSnBrs;, CBTS) and 3 ETLs
(IGZO, TiOy, ZnSe) and studied their effect on DPSC parameters using data from
SCAPS-1d simulations and plotting graphs on “origin-pro”. The simulation
parameters of various HTLs and ETLs are shown in Table 3.5 and Table 3.6
respectively. The Jsc VS V curve and Q.E. VS wavelength curves are shown below in
Figure 4.4 Figure 4.5, and Figure 4.6. The Q.E. (Quantum efficiency) is the ratio of
number of carriers captured by the solar cell to number of photons incident on the
solar cell with a specific energy. The Q.E. for a given wavelength is 1, when all
photons at the wavelength are absorbed and the ensuing minority carriers are
collected. The Q.E. is 0, when photon energy is less than band gap. Reflection and
low diffusion length causes a reduction in overall Q.E. Reduction can also be
accounted by near-surface recombination and reduced absorption at larger

wavelengths. [43]
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The more common device structure i.e., FTO/ TiO2/ Cs2AgInBrs/ Spiro-OMeTAD
/Au gave efficiency of 24.34%. From the study we can conclude that DPSCs with
ZnSe (Zinc Selenide) as ETL showed highest efficiency among the three ETL
materials used, due to its wider band gap (Figure 3.2). ZnSe ETL based devices
shows better photostability because of greater ultraviolet light harvesting by ZnSe
layer that results in efficiently avoiding intense UV-light exposure for perovskite
film hence avoiding related degradation. [30], [48] Whereas two HTLs i.e.,
MASNBr3; and CBTS (copper barium Thiostannate) showed highest efficiency of
26.97% and 26.90% with ZnSe. Since both vary little in efficiency and other
parameters, we took CBTS as our HTL for optimization of absorber layer
parameters. CBTS is a thin film material which offers tunable band gap and better
light absorbing capacity. Non-centrosymmetric crystal structure with significant
variation in CBTS atomic size provides suitable traits for improving the PCE of a
solar cell. [25], [39] Therefore, in further parts of our study device structure is
FTO/ZnSe/ Cs2AgInBre/CBTS/Au for optimization of absorber layer. Simulation
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parameters of optimized layers are shown in tables above. Suitable band alignment
diagram and device structure for further device optimization is shown in Figure 3.2.

Figure 4.4:- graphs of (a) Jsc VS Voltage (b) QE vs wavelength with ZnSe as ETL
and varying HTLs
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Table 4.2:- Different cell structure and their simulation results

DEVICE STRUCTURE FF (%) Vo (Volt) Jc(MAcm?) PCE (%)
FTO/ZnSe/Cs,AgInBre/CBTS/Au 83.49 1.17 27.54 26.90
FTO/ZnSe/ Cs2AgInBre/MASNBr3/Au 83.69 1.17 27.49 26.97
FTO/ZnSe/ Cs2AgInBre/spiro-OMeTAD/Au  75.57 1.17 27.44 24.34
FTO/ZnSe/ Cs2AgInBre/CuO/Au 88.5 0.95 27.89 22.75
FTO/ZnSe/ Cs2AgInBre/PEDOT: PSS/Au 62.23 1.17 27.49 20.19
FTO/1GZO/ Cs2AgInBre/CBTS/Au 83.30 1.16 27.28 26.56
FTO/IGZO/ Cs2AgInBre/MASNBr3/Au 83.46 1.17 27.24 26.61
FTO/IGZO/ Cs2AgInBre/spiro-OMeTAD /Au  75.96 1.170 27.21 24.21
FTO/1GZO/ Cs2AgInBrs/CuO/Au 86.84 0.94 27.66 22.82
FTO/IGZO/ Cs,AgInBre/PEDOT: PSS/Au 61.67 1.17 27.40 19.79
FTO/TiO2/ CsAginBre/ CBTS /Au 82.22 1,17 27.52 26.50
FTO/TiO2/ CsAginBre/ MASNBr3 /Au 82.41 1.17 27.63 26.56
FTO/TiO2/ Cs2AgInBre/ spiro-OMeTAD /Au  75.57 1.17 27.44 24.34
FTO/TiO2/ Cs2AginBre/CuO/Au 85.04 0.95 27.89 22.55
FTO/TiO2/ Cs,AgInBre/PEDOT: PSS/Au 61.61 1.17 27.63 19.99

4.2.2 Optimization of Absorber layer Defect density (N¢)
Batch calculations were Carried out in SCAPS-1D for studying the effect of change

in N, of Cs2Aglnbrs- layer on the PCE and other parameters of Cs2Aglnbrg solar cell.
Defect Density, Nt was varied in steps of 10* at a constant thickness of 600 nm- All
other parameters of ETL, HTL, FTO and absorber layers were kept same as
mentioned in Table 3.4 we observed that with increase of N, efficiency of DPSC
decreased. Only slight variation in efficiency was seen below Defect Density Nt =

10 cm™ at which point efficiency of 37.21%. above this value of defect density
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efficiency of solar cell decreases sharply and comes down to 24.65% at 1.3x10%° and
t0 8.71% at 1.3x10%%,

Nt in the active layer is a critical variable that has a big impact on efficiency of
device. High defect concentration means recombination is also high because of

pinholes generation, greater degradation rate of film, reduction in stability and
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Figure 4.7:- graph showing change in various DPSC parameters as a function of
defect density, Nt

overall reduction in device performance.
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4.2.3 Optimization of thickness of absorber layer
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Figure 4.8:- graph showing change in various DPSC parameters as a function of thickness
of Cs2AgInBr layer

Batch calculations were Carried out in SCAPS-1D for studying effect of thickness of
absorbing layer on efficiency and other parameters of Cs;AgInBre solar cell.
Thickness was varied in steps of 100nm at a constant defect density of 10%* all other
parameters of ETL, HTL, FTO and absorber layers were kept same as mentioned in,
tables above. It was seen that as thickness increased, efficiency also increased
because at low thickness photons could not absorb light adequately. but it started
decreasing after 1000 nm due to recombination of carriers occur for thick film.,
Maximum efficiency of 27.36% was observed at 900nm and 1000nm. Values of fill
factor decreases from 85.88 at 100nm to 82.34 at 1000nm and slight decline in
values of voltage could be observed. Current density values increase with increase in
thickness. Starting from 16.01 at 100 nm, it rises to 27.99 at 1000K.
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Active layer's thickness is key factor for maximising the PCE of DPSC. To maximise
current density and reduce the reverse saturation current, it should be properly
selected. Reduced electric field has an impact on the recombination behaviour of
charge carriers, which results in an efficiency drop, in thicker absorber layers [47].
FF is inversely related to thickness of absorber because series resistance increases
and power dissipation internally increases, in thick absorbing layer. There is also a
simultaneous decrease in Vo with thickness( Figure 4.8) because as dark saturation
current increases there is simultaneous increase in recombination of charge

carrier.[30]

4.2.4 Effect of Temperature

We have varied temperature in range 200 to 800K to investigate the temperature’s
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Figure 4.9:- graph showing in various DPSC parameters as a function of
Temperature

effect on four parameters of DPSC with the view of interrogating the thermal

stability of device. We observed the decrease in PCE, FF, Vo and slight increase in
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current density. Maximum efficiency of 29.49 is calculated at 200K and minimum of
5.86 at 800 K. FF initially increases then decrease...we obtain Max value of 85.21 at
250K and then it reduces to 49.89 Minimum value.

The device's performance is significantly influenced by the operating temperature.
Solar panels are typically installed outside and frequently function at temperatures
above 300 K. According to reports, raising the temperature makes structures under
more strain and stress which results in increase interfacial defects, disorder, and low
interconnectivity in layers. Temperature rise also impacts the hole and electron
mobilities and carrier concentration, which lowers the PSCs' efficiency. Increasing
temperature also causes a minor rise in Jsc (Figure 4.9)Figure 4.9:- graph showing in
various DPSC parameters as a function of Temperature, which is a result of reduced
energy band gap and creation of additional electron-hole pairs. The drop in Voc with
temperature rise (Figure 4.9), may be explained by more interfacial defects created
along with

4.2.5 Optimization of Electron affinity: -

For the optimization of electron affinity, we changed the absorber layer's electron
affinity from 3.5 eV to 4.5 eV. keeping all other properties of all layers of the solar
cell with structure FTO/ZnSe/ Cs:AginBrs /CBTS/Au same. We collected and
plotted the data using “origin” software and studied the DPSC parameters as shown
in Figure 4.10.

We found optimum value of election affinity can be taken as 4.1 eV as determined
from graph with efficiency 26.9%. the graphical study shows that PCE, FF, Vo, and
Jsc show stability with electron affinity between 3.6 and 4.3 with only slight and
stable variation in these parameters.
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Figure 4.10:- graph showing change in various DPSC parameters as a function of

electron affinity

43 CBTSHTL: -

Copper Barium Thiostannate (CBTS) is a ternary compound composed of copper

(Cu), barium (Ba), sulphur (S), and tin (Sn). It is known for its p-type semiconductor

properties, making it suitable for use as an HTL in solar cells.

Advantages of CBTS as an HTL material:

1 High Hole Mobility: CBTS exhibits high hole mobility, enabling efficient

transport of positive charge carriers (holes) within the material. This characteristic

facilitates the holes-extraction from the active layer as well as their movement

towards the electrode, contributing to improved charge transport and device

performance.
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2 Suitable Energy Level Alignment: CBTS can be engineered to have energy
levels that align well with the active layer of the photovoltaic device. This alignment
ensures efficient charge extraction and reduces energy losses at the HTL/active layer
interface.

3 Stability: CBTS offers good chemical and thermal stability, which is critical
for long-term performance and reliability of the photovoltaic device.

4 Solution Processability: CBTS can be processed from solution, allowing for
reduced-cost and scalable fabrication techniques like spin-coating or inkjet printing.
This solution processability enhances the potential for large-scale manufacturing of
solar cells.

5 It's important to note that while CBTS shows promise as an HTL material, its
application in solar cells is undergoing research. The specific device architectures,
optimization techniques, and performance characteristics of CBTS-based solar cells

may vary depending on the research and development efforts in the field.
HTL has larger impact than ETL on solar cell: -

Yes, the choice and properties of the hole transport layer (HTL) has significant
impact on the overall efficiency of a solar cell, often more so than the electron

transport layer (ETL). Here's why:

1. Charge Extraction: The HTL is responsible for extracting holes generated in
the active layer of the solar cell and transporting them to the electrode. Efficient hole
extraction is crucial to minimize carrier recombination and maximize the overall
device efficiency. A well-designed HTL with high hole mobility and suitable energy
level alignment can facilitate efficient charge extraction and reduce losses at the
HTL/active layer interface.

2. Interface Recombination: The interface between the HTL and the active layer
is a critical region where charge carrier recombination can occur. A properly selected
HTL can reduce interfacial recombination by providing a favourable energy level
alignment, preventing charge carriers from being trapped or lost at the interface.

3. Carrier Transport: The HTL's ability to efficiently transport holes through the
device plays a crucial role in minimizing carrier losses and improving the collection

efficiency. High hole mobility within the HTL ensures that the generated charge
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carriers can move freely towards the electrode without significant recombination or
trapping events.

4. Contact Resistance: The electrical contact between the HTL and the electrode
influences the overall device performance. A good HTL should provide a low-

resistance contact, enabling efficient charge transfer and minimizing energy losses.

While the ETL also plays a crucial role in charge extraction and transport, the HTL is
often considered more critical due to its direct interaction with the active layer and its
impact on hole extraction, interface recombination, and carrier transport. However,
both the HTL and ETL need to be carefully designed and optimized to achieve high

device efficiency.

It's important to note that the efficiency of a PSC is a complex interplay of multiple
factors, including the active layer material, device architecture, and overall device
engineering. The HTL and ETL must work synergistically to facilitate efficient
charge extraction and transport throughout the device. Therefore, optimizing both the
HTL and ETL is essential for maximizing the solar cell's overall performance.
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Chapter5 Conclusion

5.1 Cs2AgGaBres: -

As a result of the discussion above, we may say that Csp;AgBiBres as a double
perovskite material is alternate for Pb-based PSCs with a very high efficiency in
theoretical simulations. We studied effects of various HTL and ETL on the efficiency
of Cs>AgBIiBrs based DPSC. We took 6 different ETLs and 6 HTLs which led to
various combination of solar cell structures. All of these solar cell structures were
studied and their solar cell parameters like PCE were recorded. In this study we
found CBTS as the best HTL and ZnSe as best ETL. Combination of these two
layers makes following solar cell structure FTO/ZnSe/Cs,AgGaBre/CBTS/Au, which
gave the efficiency of 30.26%. This is among the best at a lower thickness of 600
nm. We also carried out graphical study of various ETL and HTL based solar cells to
conclude the same. Our study establishes the work for application of CBTS and ZnSe
as future HTLs and ETLs respectively for study and manufacturing of solar cells.
Our study can help the future practical works on Cs,AgBiBrs which is seen as an
excellent material for photovoltaics research and manufacturing, in absence of any
practical work on the material our studies may be considered as predictions.
Cs2AgInBrs: -

From the above discussion we can conclude that Cs2AgInBres is a promising DPSC
and has excellent potential for application in solar cell industry. Optimization of
defect density suggest that PCE of solar cell remains constant until 10%° and then
decreases with increase in defect density. Also, PCE increased with increase in
thickness and became maximum at 900 and 1000 nm with a value of 27.36% after
which it started decreasing. The effect of temperature was studied and PCE
decreased steadily with increase in temperature, in our study PCE was maximum at
200 K with a value of 29.49(N: = 10 and it was 26.9 at 300 K. We also studied
combination of 2 HTLs and 2 ETLs in the cell structure and its efficiency. Finally,
the optimised cell FTO/ZnSe/Cs>AgInBre/CBTS/Au with optimized parameters got
us efficiency of 26.90% and the FTO/ZnSe/Cs.AgInBre/MASNnBrs/Au cell showed

highest efficiency of 26.97% with optimized parameters.
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