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ABSTRACT 

 

Bioinformatics data is treated as high-dimensional data by nature, which requires great 

computational demands. Scientists around the world have proposed many computing solutions 

such as Field-Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs). In 

order to meet these high computational demands, a feature wherein we can alter some specific 

areas in the chip proves to be very helpful and resourceful, from which FPGAs are benefiting. 

FPGAs enable flexible, reconfigurable computing, as most enable the user to reprogram the 

hardware circuit with different logic functions. Applying classification machine learning 

algorithms to the bioinformatics data set on a conventional PC to get the desired result proves to 

be a very time-consuming task. This is where the FPGAs come into the picture and help in 

drastically reducing this computational time. In this project, we have implemented the above 

approach using an FPGA board and executed its software-based implementation on a CPU to 

compare them on the grounds of timing. The hardware implementation of the algorithm is done 

using Verilog and for the software-based implementation we have used Python. Furthermore, in 

this project we have done a comparative analysis by adopting different sorting technique which 

plays a vital role in the KNN classification  algorithm implemented. These algorithms also are one 

of the pivotal factors for the speed and hardware utilization requirement for implementing the 

algorithm on the FPGA board.      
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CHAPTER 1: INTRODUCTION 
 

1.1 Introduction 

 
Terabytes of data are processed daily by massive data centres in the information technology age. 

These data centres heavily rely on machine learning algorithms for classifications, forecasts, 

recognition, recommendations, etc. Processing big amounts of data using these techniques is quite 

computationally intensive. It has motivated attempts in recent years to use hardware accelerations 

to address this issue, which are accomplished by utilising various architectures like GPUs and 

FPGAs. 

 

An important architecture for attaining great efficiency is heterogeneous computing system 

architecture, which combines CPUs with FPGAs. The FPGA architecture may be utilised to 

implement machine learning algorithms like K-NN since it is ideal for parallelization and 

reconfiguration [4]. FPGAs are a good contender since many businesses are looking for effective 

solutions to attain high performance and low energy expenses. The K-NN method is frequently 

used in applications such as data mining, text classification, prediction analysis, pattern 

recognition, etc. 

 

In the field of data mining, it is regarded as one of the most significant algorithms of the 20th 

century [7]. Hardware-accelerated K-NN is a preferable option because the K-NN algorithm's 

execution time grows exponentially with the quantity of the training data and requires a lot of 

computing resources. A new era with a plethora of innovative biomedical technology is quickly 

approaching. The use of computer and analytic tools to collect and analyse biological data is what 

bioinformatics is all about. 

 

In this project we have also demonstrated the supremacy of one sorting algorithm over another. 

As, the sorting algorithm plays a vital role in defining the speed and the hardware utilization of the 

machine learning algorithm implemented, we have compared the 2 adapted sorting algorithms on 

the grounds of speed and hardware utilization. 
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1.2 Literature Review 

Firstly, B. B. C, A. Deshmukh, and A. V. Narasimhadhan in their paper “Modulation and signal 

class labelling with active learning and classification using machine learning” (2022 IEEE 

International Conference on Electronics, Computing and Communication Technologies), explores 

the application of active learning and classification techniques using machine learning for 

modulation and signal class labelling [1]. They propose a methodology that combines active 

learning and classification algorithms to improve the accuracy and efficiency of modulation and 

signal class labelling. The experimental results presented in the paper demonstrate the 

effectiveness of the proposed approach. 

A comparison of different classification techniques in the context of vocational guidance data is 

presented in the paper “Comparison of Classification Techniques used in Machine Learning as 

Applied on Vocational Guidance Data” authored by H. I. Bulbul and O. Unsal [2]. The authors 

evaluate and compare the performance of various machine learning algorithms for classifying 

vocational guidance data. The results and analysis provided in the paper offer insights into the 

effectiveness of different classification techniques in this specific domain. Addressing the problem 

of multi-class classification of Turkish texts, the paper “Multi-Class Classification of Turkish 

Texts with Machine Learning Algorithms” by F. G¨urcan, explores the use of machine learning 

algorithms. The authors evaluate the performance of various machine learning techniques in 

classifying Turkish texts into multiple classes [3]. The paper discusses the challenges specific to 

Turkish language text classification and provides insights into the effectiveness of different 

machine learning algorithms in this context. 

S. Gandhare and B. Karthikeyan in “Survey on FPGA Architecture and Recent Applications” 

(ISMSIT) presents a survey on FPGA architecture and its recent applications [4]. The paper 

discusses the basics of FPGA architecture, its advantages for implementing various applications, 

and reviews recent research and developments in FPGA technology. It provides a comprehensive 

overview of FPGA applications in different domains. An optimized FPGA architecture for 

machine learning applications using Posit multipliers is proposed by K. Elsaid, M. Safar and M. 

W. El-Kharashi in “Optimized FPGA Architecture for Machine Learning Applications using Posit 

Multipliers” [5].  
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To accelerate the training process of Support Vector Machine (SVM) machine learning algorithms, 

C. Kardaris, C. Kachris and D. Soudris in paper “A high-performance FPGA architecture for 

Acceleration of SVM Machine Learning Training” (PACET) presents a high-performance FPGA 

architecture [6]. The authors propose an efficient FPGA design that optimizes computation and 

memory access patterns. Experimental results and comparisons with CPU-based implementations 

highlight the superior performance of the FPGA architecture. The research and application of an 

intersection similarity algorithm based on the K-Nearest Neighbor (KNN) classification model are 

discussed in “Research and Application of Intersection Similarity Algorithm Based on KNN 

Classification Model” by W. Lv, H. Huang, W. Tang and T. Chen [7]. The authors propose a novel 

approach to calculate intersection similarity for KNN classification, aiming to improve accuracy 

and efficiency. The paper presents experimental results and discusses practical applications of the 

proposed algorithm. 

The implementation of binary classification using the K-Nearest Neighbor (KNN) algorithm on 

FPGA is presented in “Binary Classification using K-Nearest Neighbor Algorithm on FPGA” [8]. 

The authors N. U. Sadad, A. Afrin and M. N. I. Mondal, propose an FPGA-based approach for 

efficient binary classification tasks. They provide details of the FPGA implementation and 

evaluate its performance through experimental results and comparisons with other approaches. 

R. S. Latha et al. in the paper “Stock Movement Prediction using KNN Machine Learning 

Algorithm” (ICCCI), the application of the K-Nearest Neighbor (KNN) algorithm for stock 

movement prediction is explored [9]. The authors propose a KNN-based approach to predict the 

movement of stocks based on historical data. The paper discusses the methodology, features used, 

and experimental results to demonstrate the effectiveness of the KNN algorithm in stock 

prediction. For the classification of Electromyography (EMG) signals for human hand 

rehabilitation, S. Briouza, H. Gritli, N. Khraief, S. Belghith and D. Singh in paper “EMG Signal 

Classification for Human Hand Rehabilitation via Two Machine Learning Techniques: KNN and 

SVM” compares the performance of two machine learning techniques: KNN and SVM. The 

authors conduct a comparative study between KNN and SVM algorithms and evaluate their 

accuracy in classifying EMG signals [10]. The paper presents the experimental setup, feature 

extraction methods, and performance evaluation of both algorithms. 
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Majumder et al. in paper “Machine learning approach for argument extraction of bio-molecular 

events” presents a machine learning approach for argument extraction of bio-molecular events 

[11]. The authors propose a methodology that leverages machine learning techniques to 

automatically extract arguments related to bio-molecular events from scientific literature. The 

paper describes the dataset used, feature extraction techniques, and the evaluation of the proposed 

approach. 

In the paper “FPGA Architecture To Enhance Hardware Acceleration for Machine Learning 

Applications” by Itagi et al., an FPGA architecture is presented with the objective of enhancing 

hardware acceleration for machine learning applications [12]. The authors propose an optimized 

FPGA design that focuses on improving the performance and efficiency of machine learning 

algorithms. The paper discusses the detailed architecture design and provides insights into the 

implementation process. Additionally, the performance gains achieved through FPGA-based 

acceleration are evaluated, showcasing the effectiveness of the proposed approach. Furthermore, 

Y. Zou and M. Lin in “GridGAS: An I/O-Efficient Heterogeneous FPGA+CPU Computing 

Platform for Very Large-Scale Graph Analytics” introduces the GridGas platform, which 

combines FPGA and CPU to create an I/O-efficient computing platform specifically designed for 

large-scale graph analytics [13]. This platform demonstrates promising results in terms of 

performance and scalability, making a significant contribution to the field of graph analytics. 

 

1.3 What is Machine Learning 

Machine learning is a field within AI that seeks to develop systems capable of learning from 

past data, identifying patterns, and drawing logical inferences with minimal human 

intervention. It involves employing data analysis techniques on various types of digital 

information, including text, numbers, clicks, and images, to automatically construct analytical 

models. 

Machine learning applications utilize automated optimization techniques to continuously 

improve the accuracy of their outputs by learning from input data. The effectiveness of a 

machine learning model is influenced by two key factors: 
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Data quality: The saying "Garbage in, garbage out" holds true in the development of machine 

learning algorithms. If the input data is disorganized or of poor quality, the model's results 

will likely be significantly flawed. 

 

Model selection: Different machine learning techniques have specific applications that data 

scientists can choose from. It is essential to select the appropriate algorithm for each use case. 

Neural networks, for example, have gained considerable attention due to their impressive 

accuracy and versatility. However, simpler models often yield better results when dealing 

with limited amounts of data  

 

1.4  Need for Machine Learning 

Machine learning is becoming increasingly significant because of the expanding quantity and 

variety of data, along with the enhanced availability and affordability of computing power 

and high-speed internet. These factors associated with digital transformation allow for the 

swift and automated development of models capable of analysing extensive and complex 

datasets with accuracy and efficiency. Machine learning is utilized in diverse fields, including 

suggesting products and services, identifying cybersecurity breaches, and enabling 

autonomous vehicles.  

 

Machine learning has become crucial due to the exponential growth of data, as traditional data 

analysis and processing methods are insufficient in handling large volumes of data, including 

unstructured and complex data types like text, images, and videos. Machine learning 

algorithms excel in processing such data and enable computers to recognize patterns and make 

predictions based on historical data. This capability has proven invaluable in fields like 

finance, healthcare, marketing, and cybersecurity, where the ability to identify trends, 

anomalies, and potential risks can provide significant insights for informed decision-making. 

 

Another advantage of machine learning is its ability to automate time-consuming and 

repetitive tasks. By leveraging existing data, machines can automate processes, make 

intelligent decisions, and optimize workflows, resulting in enhanced efficiency and 

productivity across various industries. 
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1.5 Introduction to FPGA 

The hardware design engineer has the capability to program custom Digital Logic using Field 

Programmable Gate Arrays (FPGAs), which are digital Integrated Circuits (ICs) [2]. FPGAs are 

referred to as "Field Programmable" because the end-user or designer can program the Digital 

Logic of the IC, as opposed to it being fixed during the manufacturing process. 

 

Figure 1.5.1: FPGA 

The FPGAs constitutes of programmable logic blocks which enables then to be versatile in nature 

and gives them the ability of handle complex data with a very small computational time. The logic 

which we implement in the FPGAs are hardwired unlike in CPUs because of which we see the 

supremacy of FPGA over CPUs on the grounds of speed. But, this enhancement in speed comes 

with a trade-off in power consumption, as FPGAs consume more power as compared to our 

conventional CPUs. 

 

FPGAs have been available in the market for over three decades, and during this time, they have 

undergone significant technological advancements and gained increasing popularity [3]. Also, as 

compared to the conventional CPUs, FPGAs are less complex as they do not have fixed set of 

processes and logic blocks designed by the manufacturers. 
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CHAPTER 2: BACKGROUND 

 
2.1 Introduction to Classification & its Types 

 
Depending on the nature of the dependent variable, various machine learning classification 

techniques can be applied. Among the different classification techniques, the following are the 

most common ones: 

 

2.1.1 Binary Classification: 

Binary classification is the most fundamental and widely used type of classification. It involves a 

dependent variable that consists of two distinct categories represented by the numbers 1 and 0. 

Typically, 1 represents "True" and 0 represents "False." For example, if we are predicting whether 

a bank member will default on a loan, the dependent variable "Loan Defaulter" would be either 1 

(True) or 0 (False). Binary classification serves as the foundation for many classification 

algorithms and is the most well-known type of classification method. 

 

2.1.2 Binomial Classification: 

Binomial classification is like binary classification, but the dependent variable has two categories 

instead of just one. These categories may not necessarily be in the form of "True" or "False." For 

example, a dataset may have features indicating pixel density, and the dependent variable could 

have categories like "Car" or "Bike." These categories can still be encoded as 0 and 1, making it 

like binary classification, especially in the context of machine learning. 

 

2.1.3 Multi-class Classification: 

When the target variable has more than two categories or groups, multi-class classification is used. 

The classification method seeks to ascertain the correlation between the input variables and the 

data points, and each data point is given a distinct class assignment. Each piece of data is 

categorised into a single, distinct class during prediction. A multi-class classification challenge 

would be one in which data points must be categorised as "Safe," "At-Risk," or "Unsafe," for 

example. A data point cannot simultaneously belong to numerous classes in this situation. 
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2.1.4 Multi-label Classification: 

Multi-label classification is like multi-class classification, but here the dependent variable can have 

more than two categories, and a single observation can be assigned multiple categories. The 

classification algorithm needs to understand the potential classes for each observation and interpret 

the patterns accordingly. This type of classification is commonly used in text mining, where an 

observation (e.g., a newspaper article) can have multiple categories in the dependent variable (e.g., 

"Politics," "Names of Politicians Involved," "Important Geographical Locations"). 

 

In summary, classification can take different forms depending on the business problem and the 

nature of the dependent variable. It is important to identify the appropriate classification technique 

and algorithms based on the specific problem at hand. 

 

2.2 Machine Learning Classification Algorithm 

 
We are aware that the bulk of algorithms used to oversee machine learning are classification and 

regression techniques. Utilising training data, the classification process uses supervised learning 

to categorise subsequent observations [4]. It is a programme that classifies fresh observations and 

divides them into several classes or groups after learning from the supplied data set or observations. 

 

In classification algorithms, the output is classified into a certain category, such as "Diabetic" or 

"Non-Diabetic," "Class A" or "Class B," "Black" or "White," etc. Regression algorithms, however, 

produce a final output that takes the form of a value. Since the K-NN classification technique is a 

supervised learning algorithm, it uses labelled input data, which implies that it has input and the 

related output. 

 

Figure 2.1.1: Classification Algorithm 
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The classification algorithm, however, can be classify into two subcategories, i.e., binary 

classifiers and multi-class classifiers. This project uses the binary classifier approach, which states 

that the problem will only have two possible outcomes. 

 

2.3  KNN – Introduction 

 
This paper's primary contribution is a comparison of the processing rates of traditional CPUs and 

FPGAs, as well as an application of the K-NN classification method on an FPGA. In this paper, 

we will demonstrate why FPGAs are a far better option for demanding high-level processing and 

large-scale applications. According to the K-NN classification technique, all computations are 

suspended pending the local approximation and evaluation of the function. More diverse training 

data is necessary in order to improve the effectiveness and accuracy of this classification algorithm, 

which will significantly improve accuracy [1]. This algorithm assigns weights to the nearest 

neighbours, which proves to be a beneficial method for not only classification but also regression 

by making the closer neighbour more contributively as compared to the farther one. 

 

In order to represent non-numerical data, preprocessing and feature engineering may be necessary 

to create feature vectors. A feature vector is a mathematical representation of data, where each 

entry in the vector corresponds to a specific feature of the data point. For data with N distinct 

features, the feature vector would be a vector of length N, and each entry represents the value of 

the corresponding feature. Essentially, each feature vector can be viewed as a point in an N-

dimensional space (R^N). 

K-nearest neighbours (KNN) is a type of lazy learning algorithm, which means it does not have an 

explicit training phase before classification, unlike many other classification methods. Instead, any 

abstractions or generalizations of the data are based on the classification itself. While this allows 

for immediate classification once data is available, there are some inherent challenges with this 

approach. The computational cost of classification can be high because the algorithm needs to 

compare the data point with all other data points for each classification. This means that the 

complete training set must be stored in memory, unless some form of data reduction is applied. 

Consequently, KNN often performs better on smaller datasets with fewer features due to these 

considerations. 
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Figure 2.3.1: KNN Classification  

Unless you have some prior understanding that clearly leads to selecting one over the other, it may 

be advisable to just utilise cross-validation to decide when choosing a measure because it can be 

difficult sometimes. The direction of a word is more significant than the magnitude of the 

component values, therefore you might want to utilise Cosine similarity for things like word 

vectors. Both approaches will typically take about the same amount of time to complete and will 

struggle with large dimensional data. 

The outcome of the KNN algorithm is a decision boundary that divides RN into parts after carrying 

out all of the aforementioned steps and selecting a measure. A class is represented by each part 

(clearly coloured below) in the classification issue. The boundaries are determined using the 

distance measure and the available training points rather than having to be created with real 

training instances. We can determine the most likely class for a hypothetical data point in an area 

by taking 𝑅𝑁 in (small) chunks, and we then colour that chunk as being in the region for that class. 

 

2.4 KNN – Algorithm 

 
There is a designated algorithm flow for the KNN algorithm where we make the below 

assumptions: 

➢ A data set ‘D.’ 

➢ A Distance Set metric is required in order to store and measure the distance between the 

test and training data set. 
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➢ The most crucial and important parameter of the K-NN algorithm is ‘K’, which denotes 

the number of nearest neighbours to be considered. The following steps need to be taken 

in order to get the output based on our input values: Here we assume the output to be 

denoted by “Y” and the input as “X.” 

 

STEP 1: Calculation of the total distance between the test data input ’X’ and the training data 

points. 

 

STEP 2: Now, we recognize the nearest ’K’ values between the test data and the training data set. 

 

STEP 3: If it is a regression problem, we will take the mean of the ’Y’ outputs we have obtained 

considering nearest ’K’ neighbours. Whereas, if it turns out to be an classification problem case 

we will take the Mode of the same ’Y’ output observations. 

 

STEP 4: The value calculated in the step 3 will be the final prediction. 
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CHAPTER 3: METHODOLOGY 
 

3.1 Algorithm Flow 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.1: Algorithm Flow 

As depicted in Figure 2, the very first thing the program does is load all the training data set values 

in to the respective sets. After this, the calculation of each test data with its respective training data 

set takes place and gets stored into another distance set which is mapped to respective test input. 

After calculating the separation, sorting algorithm starts running and sorts the distance as well as 

the label set in accordance to the nearest distance. After this step we reach the final stage of 

execution where we after implemented a majority function to classify our test input to a particular 

class. 
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3.2 Hardware Implementation 

 
A sequential, clock driven circuit implements the KNN algorithm. It consists of four steps: loading 

data, comparing data, sorting training data, and categorising unclassified data. After the 

information has been fed into the registers, the calculation for the closest distance begins. 

 

 

3.3 Similarity Calculation 

 
We need to find the most appropriate distance metric in accordance with the dataset in order for 

the algorithm to perform optimally. We will just discuss a few frequently used distance 

measurements out of the many various distance metrics that are accessible. The Manhattan 

distance function is the most often used of them all since it is the default setting in the Python 

scalar KNN classifier package. 

Some of the Distance methods are mentioned below for the reference: 

Minkowski Distance: It is a metric specific to real-valued vector spaces. It is used to calculate 

distances between vectors in a normed vector space, where distances are represented by non-

negative vector lengths. The Minkowski distance satisfies several conditions as a distance metric, 

including: 

 

• Non-negativity: There is never a negative distance between any two places. 

• Identity of indiscernibles: If and only if two points are identical, the distance between them 

is 0. 

• Symmetry: The separation between points A and B is equal to the separation between 

points B and A. 

• Triangle inequality: The distance between two points A and C is never greater than or equal 

to the sum of the distances between A and B and B and C. This is known as the triangle 

inequality. 

 

These conditions ensure that the Minkowski distance is a valid distance metric that satisfies 

fundamental properties. 
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(1) 

Manhattan Distance: It is also referred to as taxicab distance or city block distance, is a measure 

of distance between two points. It is named as such because it reflects the distance a taxicab would 

need to travel to navigate the city blocks or streets. 

 

The Manhattan Distance is calculated by taking the sum of the absolute differences between the 

Cartesian coordinates of the two points. In other words, it measures the total distance a taxicab 

would need to travel horizontally and vertically to move from one point to another, without 

considering diagonal movement. 

 

The name "Manhattan" is derived from the layout of streets in Manhattan, New York, where the 

streets form a grid-like pattern, making the taxicab distance a suitable measure for calculating 

travel distances. 

 

 

 Figure 3.3.1: Manhattan Distance 

Euclidean Distance – Euclidean Distance is a widely used distance metric, particularly in machine 

learning algorithms such as K-Nearest Neighbors (KNN). It is the default metric used by the 

Python SKlearn package for KNN. 
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The Euclidean Distance is the linear separation between two points in Euclidean space. The total 

of the squared differences between the corresponding coordinates of the two points is used to 

calculate it. 

 

 

 Figure 3.3.2: Euclidian Distance 

 

(2) 

 

Cosine Distance – Cosine Distance is a distance measure commonly used to assess the similarity 

between two vectors. It determines whether two vectors are pointing in the same direction by 

calculating the cosine of the angle between them. 

 

In text analysis, Cosine Distance is often utilized to measure document similarity. By considering 

the frequency of terms in a document, it helps determine how similar or related two documents are 

to each other. When combined with K-Nearest Neighbours (KNN), Cosine Distance can provide 

new insights into business problems and uncover hidden information that may not be evident when 

using other distance measures. 
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By analysing the occurrence of specific terms in a document, text analytics can leverage Cosine 

Distance to compare and quantify the similarity between two documents. This measure proves 

valuable in various text-related tasks, such as document clustering, information retrieval, and text 

classification. 

 

Jaccard Distance - Jaccard Distance is a comparison technique that is similar to Cosine Similarity 

in the sense that both methods evaluate a single type of attribute distributed across all data points. 

 

The Jaccard coefficient measures the similarity between two sets of data by identifying the 

instances where both values are 1 (or present). By calculating the proportion of 1:1 matches to all 

data points, it provides a measure of how closely the two sets align. This concept is closely related 

to what the Cosine Similarity algorithm aims to achieve. 

 

However, it's important to note that Jaccard Distance can be highly sensitive to small sample sizes 

and may yield erroneous results, particularly with very small data sets or in the presence of missing 

observations. Care should be taken when applying Jaccard Distance in such cases to avoid potential 

inaccuracies or misleading interpretations.  

 

Hamming Distance - A metric for contrasting two binary data strings is the hamming distance. 

The number of bit places in which two binary strings of equal length are different from one another 

is known as the hamming distance. The Hamming distance approach examines the entire set of 

data to determine whether individual data points are comparable or dissimilar.  The Hamming 

distance reveals the number of various qualities. This is primarily utilised while one-hot encoding 

data and determining the separation between two binary vectors. 

 

3.4 Data Sorting Algorithm 

 
One of the most computationally demanding activities on the entire hardware architecture is 

sorting training data in accordance with a similarity function. We used the faster and easier 

selection sorting algorithm to accomplish the classification process. In the selection sort algorithm, 

every element is selected repeatedly and then compared across all the unselected values. If the 
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selected value is found to be smaller than the unselected one, the values will be swapped and the 

method will be repeated. This carries on until we get our sorted array. 

 

 

Figure 3.4.1: Selection Sort Algorithm 

 

Each array is maintained by the method with two sub-arrays. 

• The sub-array which has already been sorted. 

• The final sub-array was unsorted. 

 

The minimum element from the unsorted sub-array is selected and moved to the sorted sub-array 

in each iteration of the selection sort. 

 

 

 3.4.1 Introduction to Data Sorting 
 

Data sorting is a process of arranging data in a meaningful order to simplify comprehension, 

analysis, and visualization. It is commonly used when working with research data to present it in 

a way that facilitates understanding the underlying story conveyed by the data. Sorting can be 

applied to both raw data, encompassing all individual records, and aggregated data presented in 

tables, graphics, or other summarized outputs. 
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Typically, data sorting involves arranging the data in either ascending or descending order based 

on actual numeric values, counts, or percentages. Additionally, data can be sorted based on the 

labels of variable values. Some software programs allow researchers to assign labels to each value 

choice of a categorical variable, enabling sorting based on these labels. Furthermore, sorting can 

be performed based on multiple factors, prioritizing specific variables. For instance, a dataset with 

fields for country and region can be sorted first by region as the primary sort, followed by a 

secondary sort based on country within each region. 

 

By organizing data in a systematic order, data sorting facilitates data analysis, pattern recognition, 

and drawing meaningful insights from the information at hand 

 
3.4.2 Standard Application of Data Sorting 

 
When working with data, there are several common applications of sorting that are widely used. 

One of these applications is data cleaning, which involves sorting through the data to identify any 

irregularities or patterns that require attention. For example, monthly sales data can be sorted by 

month to detect any fluctuations or changes in sales volume over time. 

 

Sorting is also frequently used for ranking or prioritizing records based on specific criteria. This 

can involve sorting data according to a rank, computed score, or other prioritization values. For 

instance, sorting customer data based on their purchase volume or ranking accounts based on their 

importance can aid in decision-making and resource allocation. 

 

In order to facilitate effective data interpretation, visualizations such as tables and charts need to 

be properly sorted. It is common practice in market research to arrange the results of a single 

response question in descending order by column percentage, from the most answered option to 

the least answered option. This allows for a clear and meaningful representation of the data, 

particularly when analysing brand preferences or other similar questions. 
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3.4.3 Classification of Sorting Algorithms 

 
Sorting algorithms can be classified based on various parameters, which include: 

 

1. Number of swaps or inversions required: This parameter indicates the number of times 

elements need to be swapped to sort the input. For example, selection sort requires the 

minimum number of swaps among sorting algorithms. 

 

2. Number of comparisons: This parameter measures the number of comparisons performed 

by the algorithm before sorting the input. Most sorting algorithms, such as the ones 

mentioned earlier, require at least O(𝑛𝑙𝑜𝑔𝑛) comparisons in the best case and O(𝑁2) 

comparisons in the worst case, according to Big-O notation. 

 

3. Use of recursion: Some sorting algorithms employ recursive approaches, like quicksort, to 

sort the input. On the other hand, non-recursive methods are used by other algorithms like 

selection sort and insertion sort. Additionally, certain algorithms, such as merge sort, utilize 

both recursive and non-recursive techniques. 

 

4. Stability: Stability refers to whether the relative order of items with equal values or keys is 

preserved during sorting. Stable sorting algorithms maintain the relative arrangement of 

such items, while unstable sorting algorithms do not guarantee this preservation. 

 

These parameters help categorize sorting algorithms and provide insights into their performance 

characteristics behaviour. 
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CHAPTER 4: SORTING TECHIQUES UTILIZED 

 
4.1 Introduction 

 
In this project we have successfully demonstrated a machine learning classification algorithm and 

ran it over a 3-dimensional complex bio-medical database. In this we were successfully able 

achieve our goal of demonstrating the supremacy of FPGAs over the conventional CPUs. For this, 

we took 30 random bio-medical samples and test through our implemented algorithm. For 

convergence we also took the help of F-measure which is a key notifying factor on how much 

accurate the implemented algorithm is. 

 

Upon this conclusion, we were very inclined to improve our machine learning algorithm much 

further on the FPGA board. The one factor we took into consideration on improving the efficiency 

and the speed of the algorithm is to enhance the sorting algorithm embedded in the implementation 

of the same. Earlier we used the “Selection Sort” algorithm to get the sorted set of data and label. 

In this improved version we have incorporated the “Insertion Sort” algorithm which proves to be 

much faster and more stable version of the existing sorting algorithm incorporated. 

 

Not only our aim was to improve speed by using this sorting algorithm, but also to reduce the 

utilization of the hardware components. As we know in the biomedical fields, the time and cost 

are the two constraints that are very crucial. This new advancement not only proves to be passing 

the time criteria of the field but also is a more cost-effective algorithm as it utilizes less components 

of hardware. 

 
4.2 Technique Utilized 

 
 4.2.1 Introduction to Insertion Sorting 

 
The simple sorting technique known as insertion sort is like holding a deck of cards in your hand. 

The sorted section and the unsorted portion of the array are separated. Elements are chosen from 

the unsorted component and positioned where they belong in the sorted portion. The process of 

insertion sort is like sorting playing cards. Before selecting an unsorted card in a card game, it is 

assumed that the previous cards have already been sorted. If the chosen unsorted card is larger than 
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the first card, it is placed to the right; otherwise, it is placed to the left. This process is repeated for 

all unsorted cards, collecting them, and placing them in their correct positions. This approach is 

also followed in insertion sort. 

 

Insertion sort works by iterating over the sorted array one element at a time. Although it is easy to 

implement, insertion sort is not efficient for large data sets due to its time complexity, which is 

O(n^2) in both the best and worst cases. 

 
Figure 4.2.1: Insertion Sort Algorithm 

 

4.2.2 Working of Insertion Sort 

 
Suppose we need to sort the following array. 

 
Figure 4.2.2.1: Sample Unsorted Array 

 

1. The In the insertion sort algorithm, the first element in the array is considered already 

sorted. The second element is then taken and stored separately as a key. 

 

The key is compared with the first element. If the first element is greater than the key, the key is 

placed in front of the first element. 
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Figure 4.2.2.2: Insertion Sort Step 1 

 
1. The first two components have now been sorted. Compare the third element to the ones to 

its left to see how they compare. Put it behind the component that was smaller than it in 

front of it. If there is not an element smaller than it, put it at the beginning of the array. 

 
Figure 4.2.2.3: Insertion Sort Step 2 
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2. In a similar manner, put each unsorted component in its proper location. 

 

 
Figure 4.2.2.4: Insertion Sort Step 3 

 

 
Figure 4.2.2.5: Insertion Sort Step 4 
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4.3 Comparison between Selection Sort and Insertion Sort technique 

 
Two well-liked sorting algorithms, insertion sort and selection sort, vary primarily in how they 

choose and arrange elements in a sorted sequence. 

 

• While insertion sort scans the sorted section to identify the ideal position to insert the 

element, selection sort scans the unsorted part to find the element that is the minimum. 

• Compared to insertion sort, selection sort necessitates fewer swaps but more 

comparisons. 

• When the input array is just slightly sorted or almost sorted, insertion sort is more 

effective than selection sort; selection sort is more effective when the array is 

significantly unsorted. 

• The insertion sort sorts a set of values by inserting the values into a prestored file. The 

selection sort, on the other hand, determines the least number from the list . 

 

In conclusion, the temporal complexity of the two algorithms is comparable, but the selection 

and placement strategies are different. The decision between them is based on the qualities of 

the input data and the particular specifications of the current situation. 

 

4.4 Results comparison on the grounds of Timing and Hardware Utilization 

The two main areas of comparison which will determine the supremacy of one technique over the 

other would-be Timing and Hardware Utilization. 

 

4.4.1 Timing & Hardware Utilization Comparison 

For this comparison we have used our 3-Dimensional bio-medical dataset with 40 sample values. 

 

TABLE I: Timing & Hardware Utilisation 

Technique Timing (nsec) 
Utilization 

LUT FF IO BUFG 

Selection Sort 8.773 5272 3835 1338 1 

Insertion Sort 5.85 3589 4046 1338 1 
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CHAPTER 5: RESULTS 

 
 

On a Windows 10 PC with a 2.5 GHz 8th Gen Intel Core i7 CPU, Python is used to build algorithms 

for software-based K-NN implementation on the CPU. On the Zynq 7000 series FPGA board, a 

K-NN implementation built on an FPGA is employed. This board's video codec supports a wide 

range of popular peripherals and interfaces for embedded vision use cases and is based on the 

FPGA architecture from Xilinx. All the scripts are written in HDL, and the hardware designs are 

synthesised and analysed using the Vivado Design Suite. 

 

5.1 Sample Dataset 
 

We used a simple data set to verify our FPGA implementation. We used up to 30 pieces of data 

for training purposes. Our training data has two attributes and one label. Sample training data is 

shown in Table I. The label 1 represents a diabetic category, and conversely, 0 represents a non-

diabetic category. The below table is just a part of the training data set that we have used and 

implemented our project upon. This is a 3-dimensional data set that helped us with the accuracy 

of the result and to validate the same in all the three factors which is Glucose level, Sugar level 

and Age. 

 

TABLE II: Sample Data Set 

Training Data 

No. 

Data Set 1 

(Glucose Level) 

Data Set 2  

(BP-Diastolic) 

Data Set 3 

(Age) 

Label 

1 148 72 50 1 

2 85 66 31 0 

3 183 64 32 1 

4 89 66 21 0 

5 137 40 33 1 
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5.2 Hardware Simulation 

 
The simulation feature of Vivado Design Suite generates the timing diagram. Figure 3 and 4 depict 

the timing diagrams pertaining to the design run of the project. The circuit includes clk, K (a 

parameter), Tran data 1, Tran data 2, Tran data 3, and Train data 4. Label the input pins as “input” 

and the output pins as “output” and “result set”. When the circuit has completed its calclation, it 

will set the Result bit as the label value and classify it accordingly. Here, we have considered that 

if the label value is 1, the person is classified as diabetic and otherwise non-diabetic. 

 

 
 

Figure 5.2.1: Timing Diagram of KNN Algorithm depicting all input sets. 

 

 
 

Figure 5.2.2: Timing Diagram depicting the result categorised in the result set by the algorithm. 
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5.3 Synthesized Design 
 

The Elaborated Design feature of Vivado Design Suite generates the synthesised design. In simple 

terms, synthesis is the most crucial and essential part of the design methodology. Its focus is to 

convert our high-level description code into a gate-level netlist, which is an optimised gate-level 

representation. Its focus is to exhibit meaningful connections between the various strands of data 

in order to get the desired and expected behaviour during the research phase. Figure 5 depicts the 

synthesised diagram of the K-NN algorithm. 

 
 

Figure 5.3.1: Synthesized design of the implemented algorithm. 
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5.4 Comparison and Analysis 

 
As shown below in Table II, the CPU execution Time increases rapidly as the size of inputs 

increases. But FPGA simulation time increases very little as it is better at parallel computation and 

its implementation. To prove this parallel computation result we implemented the CPU based 

model in Python language and consequently the FPGA based model was implemented in Verilog 

on Xilinx Vivado. Clearly, FPGA-based K-NN is much faster than CPU-based K-NN by a high 

margin of average of 300,000 times. This result turns out to be a very promising, as it dictates that 

implanting algorithms on FPGA can save a fortune of time as compared to CPU. 

 

TABLE III: CPU vs FPGA Timing Comparison 

No. of Training Data CPU FPGA 

30 0.997 msec 2.823 nsec 

 

 

5.5 Utilization Report 

 

We also examined how our synthesised project's implementation used its resources. Look Up 

Table (LUT) and Flip Flop (FF) implementation is effective since it uses less space in FPGA, as 

shown in Table III. The utilisation table below demonstrates how little infrastructure is needed to 

implement such a challenging algorithm. 

 

TABLE IV: FPGA Utilization Report 

Resource Estimation Available Utilization % 

LUT 3934 230400 1.71 

FF 2849 460800 0.62 

BUFG 1 544 0.18 
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5.6 Accuracy Achieved 
 

In classification problems, accuracy is a metric used to measure the proportion of correct 

predictions made by a model. It is a statistical measure that compares the number of accurate 

predictions to the total number of predictions made by the model.  

 

TABLE V: Result Data Set for F-Measure Calculation 

Test Data No. Glucose Level BP-Diastolic Age Result 

1 88 58 22 PASS 

2 90 68 27 FAIL 

3 109 75 60 FAIL 

4 111 72 56 PASS 

5 180 64 26 PASS 

6 62 78 41 FAIL 

7 102 76 46 PASS 

8 131 0 26 PASS 

 9 126 88 27 FAIL 

10 145 82 57 FAIL 

11 136 70 43 PASS 

12 117 92 38 PASS 

13 158 76 28 PASS 

14 102 76 46 FAIL 

15 171 110 54 PASS 

 

We took 15 random test samples as shown in Table IV, in order to test the accuracy of the bio 

informatics classification system implemented. It was found out that our system is approximately 

60% accurate which is very promising given the data set. 
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5.7 F-Measure Calculation 

 
Precision and recall are two very crucial and important factors that are useful when weighing in 

on the reliability and quality of a machine learning algorithm. This is where F-Measure comes into 

the picture, where it considers both factors in its calculation and gives us a promising result as to 

whether a certain algorithm is up to the mark or not. In cases where we have poor precision, it can 

be balanced off with a very good recall value, and vice versa. Below is an equation that clearly 

depicts how the F-measure takes both factors into account. The traditional F measure is calculated 

as follows: 

𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
(2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

Here, the harmonic mean of the two factors has been depicted. This is also known as the F-Score 

or the F1-Score and is conceivably the most used metric for imbalanced classification problems. 

An F-Measure value of 0.0 is considered bad, whereas an F-Measure value of 1.0 is considered a 

perfect score. 

Precision calculation based on our result, let precision be denoted as ’P’: 

𝑃 =  𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) 

P = 9 / (9 + 6) 

P = 0.60 

Recall calculation based on our result, let recall be denoted as ’R’: 

𝑅 =  𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 / (𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) 

R = 9 / (9 + 2) 

R = 0.818 

Now as we have obtained the value of precision and recall, we can calculate the value of F-

Measure. Let F-Measure be denoted as ’F-Score’: 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =  (2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙) 

F-Score = (2 * 0.60 * 0.818) / (0.60 + 0.818) 

F-Score = (2 * 0.4908) / 1.418 

F-Score = 0.69224 

Now, we have obtained an F-Measure score of ≈ 0.7 which is quite good value given our multi-

dimensional data set. 
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CHAPTER 6: CONCLUSION 

 
 

In this project, we have utilized HDL to implement the K-NN algorithm on an FPGA, harnessing 

the raw computational power of the hardware. Our focus was to showcase the applicability of the 

K-NN classification algorithm on bioinformatics data, specifically in segregating patients into 

diabetic and non-diabetic categories based on their sugar level, glucose level, and age information. 

The results demonstrated the remarkable accuracy and efficiency of the method. Notably, the 

FPGA implementation of the K-NN algorithm exhibited a speed improvement of 300,000 times 

compared to its CPU counterpart. This significant difference in computational performance can be 

attributed to the fundamental distinction in how logic is executed between the CPU and FPGA. 

While the CPU utilizes Fetch/Decode instructions, in FPGA, the logic is hardwired. Furthermore, 

we observed that the FPGA implementation required less space, in addition to reduced execution 

time and utilization, while achieving an acceptable F-measure value. Moving forward, this FPGA-

based K-NN implementation holds promise for multi-class classification tasks on large datasets, 

addressing the critical time constraints in the medical industry. By adopting FPGA technology, we 

can bridge the gap and achieve faster processing. Additionally, we explored the utilization of 

different sorting techniques, specifically insertion sort, in implementing the same algorithm on the 

FPGA board. The results showcased the advancements achieved in terms of hardware resource 

utilization, where we were able to save approximately 1472 hardware components by sparing 

around 3 nanoseconds, leading to cost reduction. 
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