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ABSTRACT 
 

The deception in a system of structure in civil engineering often arises from uncertain 

conditions and various types of failures, including design, temporary, and failures caused 

by natural calamities. To address these challenges, engineers employ the art of 

formulating mathematical models that can answer questions related to the probability of 

a structure behaving in a specific way. These models take into account the randomness 

or incomplete knowledge of material properties, geometric dimensions, as well as the 

uncertainties associated with the loads and actions acting on the structure. 

Reliability analysis extends the traditional deterministic analysis of structures, which 

assumes known and fixed parameters, by considering the uncertainties present in these 

parameters. It involves developing mathematical models that can provide insights into 

how a structure will behave when all material as well as geometric properties, and actions 

are uniquely defined. By incorporating probabilistic models for the uncertain variables, 

namely material strengths, dimensions, and loads, engineers can quantitatively assess the 

likelihood of failure or desired behaviour for a given structure. 

The objective of reliability analysis is to gain a deeper understanding of how a structure 

will perform under uncertain conditions. By evaluating the reliability of a structure, 

engineers can make informed decisions regarding design choices, risk mitigation 

strategies, and maintenance planning to ensure the safety and performance of civil 

engineering structures. 
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CHAPTER 1 

INTRODUCTION 
 

1.1 General 
 

The deception of structural systems in civil engineering often arises from uncertain 

conditions and various types of failures, including design failures, temporary failures, 

and failures caused by natural hazards. To address these challenges, engineers employ 

the art of formulating mathematical models that can answer questions related to the 

probability of a structure behaving in a specific way. These models take into account the 

randomness or incomplete knowledge of material properties, geometric dimensions, and 

properties, as well as the uncertainties associated with the loads and actions acting on the 

structure. 

Reliability analysis extends the traditional deterministic analysis of structures, which 

assumes known and fixed parameters, by considering the uncertainties present in these 

parameters. It involves developing mathematical models that can provide insights into 

how a structure will behave when all material as well as geometric properties, and actions 

are uniquely defined. By incorporating probabilistic models for the uncertain variables, 

such as material strengths, dimensions, and loads, engineers can quantitatively assess the 

likelihood of failure or desired behaviour for a given structure. 

The objective of reliability analysis is to gain a deeper understanding of how a structure 

will perform under uncertain conditions. By evaluating the reliability of a structure, 

engineers can make informed decisions regarding design choices, risk mitigation 

strategies, and maintenance planning to ensure the safety and performance of civil 

engineering structures. 

The outcomes can assist in assessing the reliability of a structure, ensuring that it has 

adequate load carrying capacity under a specific load configuration, even when 

considering minute details. 



 

3 
 

Modern software tools are available to investigate the reliability of structures, and one 

such software used in this project is called COMREL. 

Essentially, any deviance from the maximum load parameter value or the load carrying 

capacity value of a structure, expressed in terms of a load parameter value in extreme 

conditions, raises concerns about the structure's safety. The analysis aids in determining 

the "minimum increase in the ultimate load value, with respect to the maximal load 

parameter evaluated with the highest level of confidence, that should be considered in 

the carrying capacity model to ensure that the structure will not face failure under normal 

service conditions, or at least, that the risk of failure is extremely low." 

 

 

 

 

1.2 Objectives and basis of study 
Following are the prime objectives: 

• To evaluate elemental forces of an L-shaped asymmetrical structure by 

performing non-linear Time History Analysis using ETABS. 

• To check the reliability of an L-shaped asymmetric structural element by using 

the Hasofer-Lind method in COMREL. 
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CHAPTER 2 

LITERATURE REVIEW 
 

Structural reliability analysis and design have been a topic of great interest to numerous 

scholars and researchers for a considerable period of time. Various approaches, analysis 

techniques, and design techniques have been developed and studied in this context. For 

this project, guidance was sought from the researches of well-known scholars in the field, 

whose works are discussed in detail in the following section. 

 

Armen Der Kiureghian (2000), FORM and SORM were used to analyse the geometry 

of unpredictable seismic oscillations and their solutions. It looks into the issues with 

seismic oscillations that arise from discretizing the input process in the standardised 

normal random variable space. Simple geometric shapes are visible in linear systems 

under Gaussian excitation. In contrast, non-Gaussian responses display more complex, 

nonlinear geometric shapes. To solve these problems approximately, the first and second-

order methods of reliability (FORM and SORM) are utilized. 

 

Armen Der Kiureghian and Pei-Ling Liu (1986), proposed a thorough framework for 

doing analysis of first-order structural reliability when taking in consideration 

the missing probability data. The authors present a method that integrates partial 

probability information on uncertain variables beyond the subsequent moments in order 

to meet the requirements of coherence, invariance, operability, and simplicity. This 

comprises bounds, higher moments, partial joint distributions, and marginal distributions. 

The suggested approach is in line with Ditlevsen's generalised reliability index 

philosophy and is meant to supplement first and  second-moment, and full-distribution 

of the reliability of the structure theories. The authors present new findings for joint 

distribution models with known marginals, which have broad applications in the fields 

of probability and statistics. 
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Chandra S. Putcha (1984), The majority of research papers in the field of reliability 

focus on assessing the probability of failure for different limit states or calculating the 

safety index (β). Conversely, only a limited number of papers have delved into the inverse 

formulation of reliability. The current study adopts a novel strategy by focusing on the 

development of different reinforced concrete components in order to achieve 

predetermined probabilities of failure. The reliability design issue is turned into a 

polynomial equation defined as a function of the design parameters, and probability-of-

failure levels for various members are taken from the literature. Standard techniques are 

then utilized to solve the polynomial, producing the design values for the members that 

meet the targeted probability’s failure. This methodology can be applied to any RC 

member and has practical relevance in the field of engineering. 

 

A. Neuenhofer and A. Der Kiureghian (1992), introduced a novel response spectrum 

technique for analyzing seismic activity in linear multi-degree-of-freedom of structures 

with multiple supports, which are exposed to ground motions that vary spatially. The 

suggested approach takes into account a number of variables, including local soil 

conditions, wave passage, and loss of coherence with distance. It is based on the core 

ideas of randomised vibration theory and takes into account the correlations between the 

motions of the supports as well as other structural modes. 

 

R. Ranganathan (1999), In practical engineering, decision-making processes often 

involve uncertainties that cannot be completely eliminated. These uncertainties manifest 

in various parameters encountered during analysis and design, making it impossible to 

ensure absolute safety. A rational criterion, proposed more than 25 years ago, addresses 

this challenge by considering the reliability or probability of survival of structures as a 

measure of their safety. The complement of reliability in reliability of structure, the 

chance of failure, statistically evaluates the safety of the structure. Probabilistic ideas are 

used in structural design and reliability analysis. It is now feasible to assess the degree of 

dependability for existing structures built in accordance with accepted criteria by using 

structural reliability theory.  
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CHAPTER 3 

SUMMARY OF PROBABILISTIC VARIABLES 
 

3.1 General 
The typical deterministic design technique makes the assumption that there are no 

probabilistic fluctuations in any of the parameters. The loads placed on structures, such 

as living loads, wind loads, ocean waves, earthquakes, etc., are commonly understood to 

be random variables. Likewise, the material strengths (e.g., concrete, steel) and geometric 

parameters (e.g. section dimensions, effective depth, bar diameter) are subject to 

statistical variations. Therefore, in order to accurately assess the structural safety, it is 

necessary to consider the stochastic nature of these fundamental parameters. The 

structural safety is a statistical number since both the loads and the strengths are arbitrary 

variables. 

To account for uncertainties in design parameters, a safety factor is incorporated by 

selecting the lowest strength value and the highest load value. This cautious methodology 

guarantees safety in the design process and ultimately yields cost-effective results. 

 

3.2 Mean and Variance 
The Sample mean serves as the ideal statistical measure to quantify the central value of 

a random variable. It effectively summarizes the distribution and represents the centre of 

gravity for the given data. 

 

 

The variability or spread of a dataset is a crucial aspect that characterizes the data. This 

dispersion can be exhibited using the sample variance, which can be further calculated 

as 

 

 



 

7 
 

3.3 Probability Density Function 
When examining a random function 𝑥(𝑡), the assessment involves analyzing the 

measured values and evaluating the corresponding time intervals between them. This 

analysis leads to the calculation of a ratio, which is determined as follows: 

 

 

 

 

 

3.4 Probability Distribution 
It can be thought of as a function in mathematics that determines the odds of different 

experiment results. From a technical standpoint, the probability distribution characterizes 

a random event by assigning probabilities to specific events. Examples of such random 

events include the outcomes of experiments or surveys. The probability distribution is 

defined within an underlying sample space, which encompasses all possible outcomes of 

the observed random event. 

 

3.4.1 Normal (Gaussian) Distribution 
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symmetric around the mean, with the highest point of the curve located at the mean. As 

the name implies, it follows the mathematical form of the Gaussian function or the 

probability density function (PDF) of a normal distribution. 

The probability density of the normal distribution is: 

 

 

 

3.4.2 Lognormal Distribution 
This type of distribution is a commonly encountered probability distribution. When a 

variable X is normally distributed with a specific mean and variance, the corresponding 

random variable 𝑌 = 𝑒𝑥 is referred to as having a lognormal distribution. This can be 

expressed as Y being an exponential function of X: 

𝑌 = 𝑒𝑥 and 𝑋 = ln 𝑌 

Lognormal PDF: 

 

 

 

3.4.3 Gamma Distribution 
The aggregate consists of R independent exponential random variables, where each random 

variable is distributed independently and consistently takes positive values. 

PDF and CDF function are as follows: 

Gamma Distribution, PDF: 

Gamma Distribution, CDF: 
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In which  Г(.) represents the gamma function as defined:  
 
Gamma function:  

 

3.4.4 Gumbel Distribution 

  

Gumbel (EV Largest-I) –  

 

Gumbel (EV Smallest-I) –  

 

The Gumbel distribution involves two parameters: β, representing the location, and α, 

representing the scale (with α > 0). It encompasses the entire range of results for the 

random variable X, where X can take any value between -∞ and ∞.  

To calculate the means and variances of both the distribution i.e. largest-I and smallest-

I,  the following formulas are utilized: 

Mean: 

 

Variance: 

 

The value (0.57722156649) is called Euler’s constant. 
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CHAPTER 4 

STRUCTURAL RELIABILITY 
 

4.1 Introduction 
The evaluation of a structure's performance takes into account its safety, serviceability, 

and cost-effectiveness. However, the details on the input variables are never entirely 

definite, accurate, or comprehensive. The unpredictability in the design and analysis of 

structures come from a variety of factors, including physical randomness, incomplete 

knowledge, and egregious mistakes. Due to these variabilities, it is not possible to achieve 

absolute safety in structures, since it is unpredictable how the loads, material strengths, 

and human errors will affect the structure during its life. Additionally, the conventional 

deterministic analysis and design methods do not consider the probabilistic variations of 

the parameters. Moreover, the safety factors based on experience and judgment may not 

be adequate or economical. 

 

 

To simplify matters, the failure in probability (Pf) can be considered as a basis for 

defining the reliability (Ro) in the following way,  
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4.2  Levels of Reliability Methods 
Depending on the significance of the structure that is being analysed, there are various 

stages or degrees that can be used to a design process in the subject of structural 

dependability analysis. The term "level" refers to the amount of information used and 

delivered in the analysis. Currently, there are four basic levels of safety analysis that can 

be employed to achieve a given limit state, with increasing levels of sophistication in the 

treatment of various problems. These levels are typically referred to as level I, II, III, and 

IV, and are chosen based on the degree of complexity required to accurately assess the 

safety and reliability of a structure. 

 

4.2.1  Level I 
By using the distinctive characteristics of random variables, Level I approaches are used 

in reliability analysis to take into account the unpredictable nature of numerical issues. 

These characteristic values are defined as fractiles corresponding to a specific order of 

the statistical distributions involved. The aforementioned values are linked to partial 

safety factors to guarantee the design is reliable to the acceptable levels. These factors 

are determined based on probabilistic considerations, aiming to minimize the disparity 

between the design's reliability and the target value. The Load & Resistance Factor 

Design (LRFD) approach is an illustration of a Level I method. 

4.2.2  Level II 
Level II methods in reliability analysis involve the consideration of mean and variance 

values for each uncertain parameter, along with their correlation with other parameters. 

These methods are also referred to as reliability methods and are more sophisticated than 

level I methods. 

4.2.3  Level III 
The topic is thoroughly examined using level III approaches, which also integrate the 

joint density function of probability of random variables throughout the safety domain. 

These techniques allow for a precise evaluation of dependability through the use of 

failure probability and reliability indices, such as the reliability index (β). 
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4.2.4  Level IV 
Level IV design techniques should be used for structures that call for engineering 

monetary evaluation and development under unpredictability and are of major financial 

significance. These structures should take into account design, upkeep, repairs, the 

likelihood of possible failure, and the return on capital. This degree of study is best suited 

for delicate projects like nuclear power plants, towers for transmission, and bridges. 

 

4.3  Calculating the reliability of a structure 
Calculating structural dependability is the process of determining how likely it is that a 

structure will achieve given performance criteria or limit states in the presence of 

uncertainty. It comprises assessing the effects of uncertain input parameters on the 

structural response, including loads, material strengths, and other pertinent elements. The 

goal of this analysis, which often relies on probabilistic models and statistical techniques, 

is to calculate the likelihood that the structure will succeed or fail. Structural reliability 

simulations can be carried out using a variety of methods, which includes Monte Carlo 

simulation, the First-Order Reliability Method etc. The results of this study provide 

insightful information that may be used to improve the design, increase the structure's 

safety and serviceability, and make well-informed maintenance and operating decisions. 

In the fundamental problem of structural reliability, the focus lies on a single load effect 

(S) and a single resistance (R) that possess known probability density functions, denoted 

as 𝑓S()  and 𝑓R()  respectively. It is crucial for the units of R and S to be consistent, and 

the safety of the structure is evaluated by comparing the values of R and S. In the event 

that R is lower than S, it signifies a failure occurrence. The probability of failure, 𝑝𝑓, for 

the structural component can be stated in any of the following manners: 
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or, in general 

 

The chance of failure may be regarded as the likelihood of breaking the limit state, where 

G() stands for the limit state function. Figure 2 provides an overview of the density 

functions of 𝑓S()  and 𝑓R() for variables S and R, respectively. It also shows the bivariate 

density function 𝑓RS(r,s) that describes the relationship between the two variables. 

 The joint density function 𝑓RS(r,s)  represents the probability of R falling within the 

range of r to r+Δr and S falling within the range of s to s+Δs for an infinitesimally small 

element (ΔrΔs). In Figure 2, the shaded failure domain D represents the equations that 

define this probability. As Δr and Δs approach zero, the failure probability corresponds 

to the probability that both R and S fall within this domain. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.1 : Joint density function fRS(r,s), marginal density functions fR(r) and fS(s) 

and failure domain D 

When R and S are independent,  
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Moreover, equation for probability of faliures then becomes:  

 

 

The convolution integral's significance becomes evident when considering Figure 2. In 

this context, 𝐹R(x) represents the probability of the structure's resistance being less than 

or equal to x, indicating structural failure. Conversely, 𝑓s(x) shows the probability of the 

load effect S on the member falling within the range from x to x+Δx, with Δx approaching 

zero. To determine the overall probability of failure, integration across all possible values 

of x is required. Figure 3 illustrates this concept, displaying the density functions 𝐹R(x) 

and 𝑓s(x) on the same axis. Through this integration process, a comprehensive 

understanding of the probability of failure can be attained. 

 

 

 

 

 

 

 

 

Fig. 4.2 : Basic R-S problem: fR( ) fS( ) representation 

 

4.3.1  Special case of normal random variable 
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Equation for probability of failure then becomes :- 

 

 

 Let 𝛷( ) stand for the typical normal distribution function, which has a mean of 0 and a 

variance of 1. The random variable i.e. Z, defined as the difference between R and S, is 

depicted in the Figure, with the shaded region indicating the failure region Z ≤ 0. By 

utilizing the aforementioned equations, it can be deduced that 

 

 

where,  

The equation mentioned above shows that if the standard deviations of 𝜎R and 𝜎S are 

increased, when the gap between the resistance's mean and the load effect's mean is less, 

the value of 𝑃𝑓 increases. This can be inferred from, where the overlap of fR () and fS() 

can be considered as an indicator of 𝑃𝑓.  

 

 

 

 

 

 

 

 

 

Fig. 4.3 : Distribution of margin safety Z = R – S 
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4.3.2  Reduced Variable 
It is advised to express all random factors in their "established form," which is a non-

dimensional form. The standard forms for the fundamental variables R and Q are given 

by: 

 

 

 

The transformed variables ZR and ZQ are derived by converting the random variables into 

a "standard form," which represents a dimensionless version of the variables. In terms of 

the reduced variables, the resistance, or R, and load, or Q, may be represented as follows: 

 

 

 𝑔(R, Q )  = R Q is the limit state function. This may be expressed using equations based 

on the condensed variables i.e. eq. 2. The result is 

 

    

 

4.3.2  Reliability Index 
The dependability index was given a fresh definition by Hasofer and Lind, who said that 

it was the inverse of the coefficient of variance. As shown in Figure 3 on the line with 

𝑔(𝑍R, 𝑍Q) = 0, the value of this index is denoted by the distance that is perpendicular 

between the source of reduced variables and the design point or breakdown point. 
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Let β represent the reciprocal of the coefficient of variance of the function 𝑔(𝑅,𝑄) =𝑅 − 

𝑄. In the case where R and Q are uncorrelated and follow a normal distribution, the index 

of reliability can be connected to the failures probability as follows, 

 

 

 

 

 

 

 

 

Fig. 4.4 : Reliability index defined as the least distance in the area of reduced variables 

 

 

4.4 First Order Reliability Method 
 

 The first-order Taylor series approximations is used to linearize the performance 

function at the mean values of the random variables. In the mean value first-order second 

moment (MVFOSM) technique, the mean and variance of the random variables are used 

as second-moment statistics, is usually referred to as this. In his work, Cornell (1969) 

suggested a streamlined two-variable strategy and assumed that the final probability of Z 

would follow a standard distribution. The fraction of the predicted value of Z along with 

its standard deviation is how he developed the reliability index, abbreviated as βc. The 

ordinate's absolute value at Z = 0 on the generalised normal probabilities plot, as shown 

in Figure 4, can be used to calculate βc. This can be stated mathematically as follows: 
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Fig. 4.5 : Definition of Reliability Index and Limit State 

 

 

 

 

 

 

Where it is understood that g(X)<0. 

Since the integral mentioned previously typically lacks an analytical solution, the First-

Order Reliability Method must be used to make an approximation. In order to use this 

strategy, the original scenario must be approximated to an idealised scenario in which 

g(X) is a linear function and X is a collection of uncorrelated Gaussian variables with a 

mean equal to zero and the standard deviation equal to one. A rough solution for the 

integral can be determined using the FORM technique, providing a workable answer to 

the issue. The probability of failure (pf) is then understood as  
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The provided equation displays the chance of failure as determined by the FORM 

technique. The parameters αi and in this equation denote the directional cosine of the 

random variable Xi and β  the distances among the origin and the hyperplane g(X)=0, 

respectively. The term n is the number of fundamental random variables X, while the 

term Φ  denotes the standard normal distribution function. It is important to understand 

that this approach is based on an erroneous assumption that X is a vector made up of 

distinct Gaussian parameters with a mean of 0 and a standard deviation of 1. The equation 

also suggests that the function g(X) is linear. 

 Let performance function is given as  

 

The performance function with respect to the mean value according to the Taylor series 

expansion is given by the equation,  

 

 

The first-order Taylor series estimate of the performance function may be represented as 

a linear expression of the standardised random variables Z by computing the derivatives 

of the performance function at the averages of random variables (𝑋1, 𝑋2 … 𝑋𝑛), where 

𝜇𝑥𝑖  is the mean value of Xi. Converting the series in linear terms, the mean and variance 

of Z can be evaluated as:   

  

And, 

 

 

Where var(Xi, Xj) is covariance of Xi and Xj. Since the variances are not correlated, then 

respectively the variance for z  can be derived as 
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Finding the ratio of mean(μz) to standard deviation of Z (σz) allows for the subsequent 

calculation of the dependability index as  

 

 

4.4.1  Hasofer-Lind’s Reliability Index 
Let the failure function be the function of independent stock variables 𝑋1, 𝑋2, … 𝑋n, 𝑖.𝑒. 

𝑔(𝑋1, 𝑋2, … 𝑋n ). The basic variables are then standardized using the relationship 

 

 

Where, 𝜇𝑖=µ𝑥𝑖 and 𝜎𝑖= 𝜎𝑥𝑖 , 

 

As a function of Zi, the failure of the system within the Z coordinate is represented. The 

failure surface equation is obtained in the normalised coordinate system by integrating 

this equation within the failure characteristic and setting it to zero. The failure surface 

separates the sample space into two areas namely safe and failure, due to the 

normalization of the basic variables with 𝜇zi = 0 and 𝜎zi = 1. 

 

It is significant to notice that the origin often lies inside the safe zone and that the z-

coordinate system in issue displays rotational symmetry with respect to the standard 

deviation. The location of the failure surface in relation to the origin inside the normalised 

coordinate system determines the dependability measure. Reliability rises as the failure 

surface goes farther from the origin, whereas reliability declines as the failure surface 

gets nearer to the origin. The reliability index 𝛽 was created by Hasofer and Lind as the 

shortest path through the normalised coordinate system between the origin O to the 

failure surface. The selection of failure function has no impact on this safety precaution 

since identical failure functions produce an identical failure surface. In the case of linear 

failure surfaces, the reliability index 𝛽 = 𝜇𝑀/𝜎𝑀 can be utilized. The shortest path from 

the origin to a nonlinear failure surface is not, however, uniquely defined, and numerical 

integration is necessary to calculate the failure probability. An approximation of the 
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reliability index can be obtained by utilizing the tangent plane to the design point, 

although the accuracy of the approximation relies on whether the failure surface is 

concave or convex towards the origin. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6 : Formulation of safety analysis in normalized coordinates 

 

 

4.5 SOFTWARE USED FOR ANALYSIS 
 

4.5.1  COMREL 
COMREL is a software program developed to conduct reliability analysis in engineering 

applications. It offers advanced methods to evaluate the probability’s of failure and 

reliability of the systems subjected to various uncertainties.  

COMREL incorporates first-order as well as  second-order reliability methods to assess 

the reliability index (β) through iterations. It provides algorithms to determine the most 

likely failure point, considering both differentiable and non-differentiable failure criteria. 

These techniques allow for efficient and accurate analysis of reliability and failure 

probabilities.  
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COMREL supports the inclusion of arbitrary dependence structures in stochastic models, 

such as Nataf models, Hermite, also Rosenblatt. It can handle various stochastic models 

(44 models) from SYSREL, enabling the user to input parameters in different forms.  

Additionally, COMREL allows the definition of multiple failure conditions within a 

single task, with state functions either called from external programs or expressed in 

mathematical representation. It offers a variety of built-in functions, such as hyperbolic, 

trigonometric, logarithmic, and other special functions like Bessel and Gamma functions. 

COMREL provides flexibility in differentiation, numerical integration, root finding, and 

includes test functions and comparative operators.  

Overall, COMREL is a powerful tool that enables engineers to perform reliability 

analysis, assess failure probabilities, and evaluate the reliability of systems under 

uncertainties, contributing to more robust and dependable engineering designs. 

 

4.5.2  ETABS 
ETABS (Extended Three-Dimensional Analysis of Building Systems) is a 

comprehensive software program developed by CSI company. It is widely used in the 

engineering industry for the analysis and design of buildings and structures.  

ETABS offers a range of powerful features and tools to facilitate the structural 

engineering process. Its 3D modeling capabilities allow users to create detailed and 

realistic models of structures, defining geometric elements, material properties, and 

structural components.  

The software provides advanced analysis techniques, including linear and nonlinear 

analysis, to accurately predict the structural response to various loads and forces. It can 

handle static and dynamic analysis, accounting for factors such as material nonlinearity 

and seismic or wind loads.  

ETABS also includes design modules that enable engineers to design various structural 

components, such as beams, columns, walls, and foundations. The software 

automatically generates design loads, performs code checks, and produces 

comprehensive reports and documentation. 
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Furthermore, ETABS seamlessly integrates with other CSI software programs like 

SAP2000 and SAFE, allowing for enhanced capabilities and a streamlined workflow in 

the structural design process. 

With its user-friendly interface, powerful analysis capabilities, and efficient design tools, 

ETABS has become a trusted solution for structural engineers involved in the analysis 

and design of complex building systems. It ensures the compliance of structures with 

international building codes and standards, making it an indispensable tool in the field of 

structural engineering. 
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CHAPTER 5 

METHODOLOGY 
 

To derive the Moment of Resistance equation for a section, it is crucial to consider the 

probabilistic nature of the physical parameters involved, as they often exhibit statistical 

variations. Hasofer and Lind introduced a method that addresses these uncertainties by 

defining a theoretical definition of the reliability index (β). This method incorporates 

mean and standard deviation values to account for the statistical variations in the physical 

parameters. 

STAAD PRO software is used to analyse the critical bending moment value and axial 

forces. These numbers are then transferred to COMREL for additional examination. The 

reliability index value and its inverse are evaluated using first-order and second-order 

reliability techniques by COMREL, which also performs numerous iterations to calculate 

the chance of failure. 

 

5.1 Brief Review of Time History Analysis 
Time history analysis is a method used in structural engineering to simulate and assess 

the structure's responsiveness to change subjected to time-varying loads. It involves 

analyzing the structure's behaviour over time, considering the actual recorded or 

synthetic load inputs as a function of time. 

Time history analysis begins with obtaining the load inputs, which can be recorded from 

actual events or generated synthetically based on the expected dynamic forces. These 

loads can include seismic ground motions, wind loads, or any other time-dependent 

forces that act upon the structure. 

The next step is to establish the mathematical model of the structure, which typically 

involves using finite element analysis or other numerical methods. The model represents 

the physical properties and behaviour of the structure, including its geometry, material 

properties, connections, and support conditions. 
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The load inputs are then applied to the structural model in a time-dependent manner. This 

involves incrementally applying the loads at each time step and calculating the responses 

of the structure at that specific time. The analysis proceeds step by step, considering the 

dynamic equilibrium of the structure at each time increment. 

During the time history analysis, the response of the structure is computed in terms of 

various parameters such as displacements, accelerations, forces, and stresses. These 

response quantities can be obtained for specific locations or elements of interest within 

the structure. 

The time history analysis considers the dynamic attributes of the structure, encompassing 

its inherent frequencies, mode shapes, and damping characteristics. These attributes 

significantly influence the structural response to external loads and the dissipation of 

energy during dynamic occurrences. 

The analysis results provide valuable insights into the structural behaviour under 

dynamic loads, helping engineers assess its performance, identify potential failure 

modes, and ensure the structure's safety and reliability. It can also aid in the design of 

structural elements to withstand specific dynamic events, such as earthquakes or severe 

winds. 

 

 

5.2 Methodological Verification and Rigor    

5.2.1  Sample Problem for Time History Analysis 
Question- The given diagram illustrates the plan dimensions of a 10-storey building with 

a storey height of 3.0 m. The floor area has a dead load (DL) of 4 kN/m2, including the 

floor slab and finishes, while the weight of the partitions on each floor is 2 kN/m2. 

Additionally, each floor is subjected to a live load intensity of 3 kN/m2, and the roof has 

a live load intensity of 1.5 kN/m2. The building is situated in Delhi on a hard soil 

foundation. The task at hand is to calculate the seismic forces at various floor along with 

shears.  
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                  Fig. 5.1 :  Structural Plan                                          Fig. 5.2 : 3d view of structure 

Percentage of live load to be considered is 25% 

Fundamental natural period of vibration, 

𝑇𝑎 = 0.075ℎ0.75  =  0.075(30)0.75 = 0.96𝑠 

Damping coefficient = 5% 

Average response acceleration coefficient = 1.04 

Design horizontal seismic coefficient, 
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𝐴 =
𝑍𝐼(𝑆𝑎

𝑔 )

2𝑅
 =  0.24×1.0×1.04

2×3
 = 0.04159 

Base shear VB = Ah W = 0.04159 × 50662 = 2107.5 kN 

Design Lateral Force at floor i, 𝑄𝑖 = 𝑉𝐵
𝑊𝑖ℎ𝑖

2

∑ 𝑊𝑖ℎ𝑖
2𝑛

1
 

 

 

Table 5.1 – Results based on Equivalent Static Lateral Load method 
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Fig. 5.3 : Story Shear Graphically                                Fig. 5.4 : Story Shear Graphically 

(Manually)                                                                    (Software) 

 

                   Table 5.2– Results based on Non-Linear Time History Analysis 
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5.2.2  Sample Problem for Reliability Analysis 
Question- Calculate the reliability index of an I-beam that is simply supported and 

experiencing a point load Q at mid-span, at the limit state of shear. Take into 

consideration that 𝜇𝑄= 5000 N, 𝜎𝑄= 1500 N, 𝜇𝑓𝑠= 100 N/mm2, 𝜎𝑓𝑠= 15 N/mm2,                  

𝜇𝑑= 60 mm, 𝜎𝑑= 4 mm, 𝑑
𝑡𝑤

 = 50. 

Solution- 

Maximum shear force = 
𝑄
2
 

For shear failure in beam, 

𝑓𝑠𝑡𝑤d - 
𝑄
2
 ≤ 0 

Hence, the failure surface equation is 

g(X) = 𝑓𝑠𝑡𝑤d - 
𝑄
2
 = 0 

Variation in 𝑡𝑤 being negligible, 𝑡𝑤 can be considered as deterministic. 
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Now using equation,  

αi= − 1
𝐾

( 𝜕𝑔1  
𝜕𝑧𝑖

)  

α1= − 1
𝐾

[1080 + 72 (3.909) (-0.5) ]= − 939.276
𝐾

 

α2= − 1
𝐾

[480 + 72 (3.909) (-0.5) ]= − 339.276
𝐾

 

α3= − 1
𝐾

[ -750 ]= 
750

𝐾
 

K2 = (-939.276)2 + (-339.276) +(750)2 

= 1559847.608 

K = 1248.938 
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Hence, 

α1 = − 939.276
1248.938

 = -0.75 

α2 = − 339.276
1248.938

 = -0.276 

α3 = 750
1248.938

 = 0.6005 

The cycle is repeated using the updated values of β, α1, α2, and α3 until β reaches the 

minimum convergence. Summary for the data is given in the table below, 

 

Table 5.3- Computation of β 
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5.2.2.1  Solved using COMREL 

Fig. 5.5 : Numerical Representation for assigning the variables with corresponding values of mean and 

standard deviation 

 

Fig. 5.6 : Graphical Representation for assigning the variables with corresponding values of mean and 

standard deviation 
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Fig. 5.7 : Defining the limit state function for the program 

 

 

 

 

 

 

 

Fig. 5.8 : Representative alphas of variables in the function 

Fig. 5.9 : Partial Safety Factors 



 

34 
 

Numerical Result 
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CHAPTER 6 

 RELIABILITY ANALYSIS  

6.1 Reliability assessment of a column in a multi-storey asymmetric 

RCC building 
To analyze earthquake loading on a six-storey RCC building, a column was considered 

and time history analysis was conducted in ETABS to determine both axial load as well 

as biaxial bending moments on the column, using data from the well-known El Centro 

earthquake. The resulting table was then exported to MS Excel to calculate the mean and 

standard deviations, which were obtained using the software's built-in formulae. The 

column failure criteria is taken from the RCC code IS:456-2000 prevalent in India for  

biaxial bending as well as axial loading which is given as:  
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The equations mentioned above are utilized to construct the failure's limiting state 

equation in COMREL. Various probability density functions (PDFs) including normal, 

lognormal, and Gumbel max have been considered during the analysis. To achieve 

optimized reliability, certain PDFs have been assigned to specific input variables.  FORM 

analyses have been conducted, and the reliability and probability of failure system have 

been computed using this approach. 

The figures below display the values given, middle steps, and results obtained from 

various software applications. 

 

6.1.1 Structural Modelling 
 

 

Fig. 6.1 : Defining the grid points for the structural plan 
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Fig. 6.2 : Structural Plan 

 

Fig. 6.3 : Structural Elevation 

 

 



 

38 
 

Table 6.1– Structural Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.4 : 3d view of structure 

Storeys G+5 

Plan Dimension for longer leg- 48m by 18m 

for shorter leg- 42m by 18m 

Slab Thickness 0.15m 

Beam Dimension 0.3m × 0.43m 

Column Dimension on 

regular structure 

0.5m × 0.5m 

Live load on floor 3 KN/m2 

Live load on roof 1.5 KN/m2 

Concrete grade M30 

Rebar Grade Fe415 
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Table 6.2– Earthquake Data 

  

 

Fig. 6.5 : Earthquake in X-Direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6 : Target Response Spectrum in X-Direction 

Earthquake Magnitude Year Station Name Damping Ratio 

Denali, Alaska 7.9 2002 Anchorage- 

K2-05 

5% 
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Fig. 6.7 : Earthquake in Y-Direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.8 : Target Response Spectrum in Y-Direction 
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Fig. 6.9 : Spectral Matching of Earthquake in X-Direction 

   

 

 

Fig. 6.10 : Spectral Matching of Earthquake in Y-Direction 

 

NOTE- Spectral matching for earthquakes is a technique used to compare observed 

seismic waveforms with synthetic waveforms to determine key characteristics of an 

earthquake. By analyzing the frequency content, amplitude, and arrival times of the 

seismic waves, scientists can estimate parameters like the earthquake's location, 

magnitude, and focal mechanism. This method plays a crucial role in earthquake source 

characterization, seismic hazard assessment, and the development of early warning 

systems. Spectral matching provides valuable insights into earthquake behaviour, helps 

improve seismic monitoring and prediction, and enhances our understanding of 

earthquake processes. Its accurate analysis of seismic waveforms contributes to better 

preparedness and mitigation strategies for seismic events. 
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Fig. 6.11 : Plot of Time History Function for X-Direction 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.12 : Plot of Time History Function for Y-Direction 
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6.2 COMREL Analysis 
 

 

Fig. 6.13 : Input Variables for COMREL in Numerical form 

 

Fig. 6.14 : Input Variables for COMREL in Graphical form 
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Fig. 6.15 : Defining the limit state function 

Fig. 6.16 : Representative alphas of variables 

 

 

 

 

 

 

Fig. 6.17 : Partial Safety of Factors 
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Numerical Result 
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Result- 

FORM-beta 1.579 

FORM-Pf 5.72e-02 
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CHAPTER 7 

RESULTS AND CONCLUSIONS 
 

A reliability index value of 1.58 suggests a moderate level of reliability for a structure. 

The reliability index, often denoted as β, quantifies the margin of safety between the 

applied loads and the capacity of the system. It is typically calculated based on 

probabilistic analysis considering the variability and uncertainties in the relevant 

parameters. 

In general, a higher reliability index value indicates a greater level of reliability and a 

larger safety margin. A value of 1.58 suggests that the structure has some margin of 

safety, but it may not be as robust as structures with higher reliability index values. 

The interpretation of the reliability index value also depends on the specific industry and 

design standards. Different industries and jurisdictions may have different acceptable 

limits for the reliability index based on the consequences of failure, risk tolerances, and 

specific design codes. 

It is observed that the reliability index value should be evaluated in conjunction with 

other factors, such as the consequences of failure, the criticality of the structure, and the 

specific design requirements, to determine if the structure meets the desired level of 

reliability and safety. 

It should be noted that with varying cross-section of structural elements i.e. beams and 

columns, and also the compressive strength of concrete, we can see a change in the 

probability of failure of the structure which shows a change in the reliability index.  
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APPENDIX 
 

Element Output Data for Column No.1 of Story No.1(Base):  

 

 

 

 

 

m kN kN-m kN-m kN
Story Column Output Case Case Type Step Type Station P M2 M3 P ABS

Story1 C1 UDConS1 Combination 0 -596.1778 10.8104 13.459 596.18
Story1 C1 UDConS1 Combination 1.285 -584.1345 13.3298 15.2388 584.13
Story1 C1 UDConS1 Combination 2.57 -572.0912 15.8492 17.0186 572.09
Story1 C1 UDConS2 Combination 0 -841.8375 5.6317 8.3246 841.84
Story1 C1 UDConS2 Combination 1.285 -829.7942 14.9137 16.8305 829.79
Story1 C1 UDConS2 Combination 2.57 -817.7509 24.1958 25.3364 817.75
Story1 C1 UDConS3 CombinationMax 0 -673.3684 4.5147 6.7971 673.37
Story1 C1 UDConS3 CombinationMax 1.285 -663.7337 11.9362 13.5472 663.73
Story1 C1 UDConS3 CombinationMax 2.57 -654.0991 19.358 20.2974 654.10
Story1 C1 UDConS3 CombinationMin 0 -673.642 4.4945 6.4712 673.64
Story1 C1 UDConS3 CombinationMin 1.285 -664.0074 11.9248 13.3628 664.01
Story1 C1 UDConS3 CombinationMin 2.57 -654.3727 19.3552 20.234 654.37
Story1 C1 UDConS4 CombinationMax 0 -673.298 4.5162 6.8481 673.30
Story1 C1 UDConS4 CombinationMax 1.285 -663.6634 11.9371 13.566 663.66
Story1 C1 UDConS4 CombinationMax 2.57 -654.0287 19.3581 20.3043 654.03
Story1 C1 UDConS4 CombinationMin 0 -673.5717 4.496 6.5223 673.57
Story1 C1 UDConS4 CombinationMin 1.285 -663.937 11.9257 13.3816 663.94
Story1 C1 UDConS4 CombinationMin 2.57 -654.3024 19.3552 20.2409 654.30
Story1 C1 UDConS5 CombinationMax 0 -673.1832 4.5252 6.9575 673.18
Story1 C1 UDConS5 CombinationMax 1.285 -663.5486 11.942 13.5866 663.55
Story1 C1 UDConS5 CombinationMax 2.57 -653.9139 19.359 20.3482 653.91
Story1 C1 UDConS5 CombinationMin 0 -673.6831 4.4848 6.2664 673.68
Story1 C1 UDConS5 CombinationMin 1.285 -664.0484 11.9196 13.2861 664.05
Story1 C1 UDConS5 CombinationMin 2.57 -654.4138 19.3545 20.1894 654.41
Story1 C1 UDConS6 CombinationMax 0 -673.257 4.5259 7.0529 673.26
Story1 C1 UDConS6 CombinationMax 1.285 -663.6223 11.9423 13.6427 663.62
Story1 C1 UDConS6 CombinationMax 2.57 -653.9877 19.3587 20.3489 653.99
Story1 C1 UDConS6 CombinationMin 0 -673.7568 4.4855 6.3618 673.76
Story1 C1 UDConS6 CombinationMin 1.285 -664.1221 11.9199 13.3423 664.12
Story1 C1 UDConS6 CombinationMin 2.57 -654.4875 19.3542 20.1901 654.49
Story1 C1 UDConS7 CombinationMax 0 -596.0508 10.8221 13.6307 596.05
Story1 C1 UDConS7 CombinationMax 1.285 -584.0075 13.3364 15.3423 584.01
Story1 C1 UDConS7 CombinationMax 2.57 -571.9642 15.851 17.0539 571.96
Story1 C1 UDConS7 CombinationMin 0 -596.3929 10.7968 13.2234 596.39
Story1 C1 UDConS7 CombinationMin 1.285 -584.3495 13.3221 15.1118 584.35
Story1 C1 UDConS7 CombinationMin 2.57 -572.3062 15.8474 16.9746 572.31
Story1 C1 UDConS8 CombinationMax 0 -595.9628 10.824 13.6945 595.96
Story1 C1 UDConS8 CombinationMax 1.285 -583.9195 13.3375 15.3658 583.92
Story1 C1 UDConS8 CombinationMax 2.57 -571.8762 15.8511 17.0626 571.88
Story1 C1 UDConS8 CombinationMin 0 -596.3049 10.7987 13.2872 596.30
Story1 C1 UDConS8 CombinationMin 1.285 -584.2616 13.3233 15.1353 584.26
Story1 C1 UDConS8 CombinationMin 2.57 -572.2183 15.8475 16.9833 572.22
Story1 C1 UDConS9 CombinationMax 0 -595.8194 10.8352 13.8313 595.82
Story1 C1 UDConS9 CombinationMax 1.285 -583.776 13.3436 15.3915 583.78
Story1 C1 UDConS9 CombinationMax 2.57 -571.7327 15.8523 17.1174 571.73
Story1 C1 UDConS9 CombinationMin 0 -596.4442 10.7847 12.9674 596.44
Story1 C1 UDConS9 CombinationMin 1.285 -584.4008 13.3156 15.0159 584.40
Story1 C1 UDConS9 CombinationMin 2.57 -572.3575 15.8466 16.9189 572.36
Story1 C1 UDConS10 CombinationMax 0 -595.9115 10.8361 13.9505 595.91
Story1 C1 UDConS10 CombinationMax 1.285 -583.8682 13.344 15.4616 583.87
Story1 C1 UDConS10 CombinationMax 2.57 -571.8249 15.8519 17.1183 571.82
Story1 C1 UDConS10 CombinationMin 0 -596.5363 10.7856 13.0866 596.54
Story1 C1 UDConS10 CombinationMin 1.285 -584.493 13.316 15.0861 584.49
Story1 C1 UDConS10 CombinationMin 2.57 -572.4497 15.8462 16.9198 572.45
Story1 C1 UDConS11 CombinationMax 0 -357.5797 6.4979 8.2471 357.58
Story1 C1 UDConS11 CombinationMax 1.285 -350.3537 8.0044 9.2468 350.35
Story1 C1 UDConS11 CombinationMax 2.57 -343.1277 9.5113 10.2465 343.13
Story1 C1 UDConS11 CombinationMin 0 -357.9217 6.4727 7.8398 357.92
Story1 C1 UDConS11 CombinationMin 1.285 -350.6957 7.9902 9.0163 350.70
Story1 C1 UDConS11 CombinationMin 2.57 -343.4697 9.5077 10.1672 343.47
Story1 C1 UDConS12 CombinationMax 0 -357.4917 6.4998 8.3109 357.49
Story1 C1 UDConS12 CombinationMax 1.285 -350.2657 8.0056 9.2703 350.27
Story1 C1 UDConS12 CombinationMax 2.57 -343.0397 9.5114 10.2551 343.04
Story1 C1 UDConS12 CombinationMin 0 -357.8338 6.4745 7.9036 357.83
Story1 C1 UDConS12 CombinationMin 1.285 -350.6078 7.9913 9.0398 350.61
Story1 C1 UDConS12 CombinationMin 2.57 -343.3818 9.5078 10.1759 343.38
Story1 C1 UDConS13 CombinationMax 0 -357.3482 6.5111 8.4477 357.35
Story1 C1 UDConS13 CombinationMax 1.285 -350.1222 8.0117 9.296 350.12
Story1 C1 UDConS13 CombinationMax 2.57 -342.8962 9.5126 10.3099 342.90
Story1 C1 UDConS13 CombinationMin 0 -357.973 6.4605 7.5838 357.97
Story1 C1 UDConS13 CombinationMin 1.285 -350.747 7.9837 8.9204 350.75
Story1 C1 UDConS13 CombinationMin 2.57 -343.521 9.5069 10.1114 343.52
Story1 C1 UDConS14 CombinationMax 0 -357.4404 6.512 8.5669 357.44
Story1 C1 UDConS14 CombinationMax 1.285 -350.2144 8.0121 9.3661 350.21
Story1 C1 UDConS14 CombinationMax 2.57 -342.9884 9.5122 10.3109 342.99
Story1 C1 UDConS14 CombinationMin 0 -358.0652 6.4614 7.7031 358.07
Story1 C1 UDConS14 CombinationMin 1.285 -350.8392 7.9841 8.9906 350.84
Story1 C1 UDConS14 CombinationMin 2.57 -343.6132 9.5065 10.1124 343.61
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The respective mean and standard deviation of the moments: 

 

 

m kN kN-m kN-m kN
Story Column Output Case Case Type Step Type Station P M2 M3 P ABS

Story1 C1 UDConS1 Combination 0 -596.1778 10.8104 13.459 596.18
Story1 C1 UDConS1 Combination 1.285 -584.1345 13.3298 15.2388 584.13
Story1 C1 UDConS1 Combination 2.57 -572.0912 15.8492 17.0186 572.09
Story1 C1 UDConS2 Combination 0 -841.8375 5.6317 8.3246 841.84
Story1 C1 UDConS2 Combination 1.285 -829.7942 14.9137 16.8305 829.79
Story1 C1 UDConS2 Combination 2.57 -817.7509 24.1958 25.3364 817.75
Story1 C1 UDConS3 CombinationMax 0 -673.3684 4.5147 6.7971 673.37
Story1 C1 UDConS3 CombinationMax 1.285 -663.7337 11.9362 13.5472 663.73
Story1 C1 UDConS3 CombinationMax 2.57 -654.0991 19.358 20.2974 654.10
Story1 C1 UDConS3 CombinationMin 0 -673.642 4.4945 6.4712 673.64
Story1 C1 UDConS3 CombinationMin 1.285 -664.0074 11.9248 13.3628 664.01
Story1 C1 UDConS3 CombinationMin 2.57 -654.3727 19.3552 20.234 654.37
Story1 C1 UDConS4 CombinationMax 0 -673.298 4.5162 6.8481 673.30
Story1 C1 UDConS4 CombinationMax 1.285 -663.6634 11.9371 13.566 663.66
Story1 C1 UDConS4 CombinationMax 2.57 -654.0287 19.3581 20.3043 654.03
Story1 C1 UDConS4 CombinationMin 0 -673.5717 4.496 6.5223 673.57
Story1 C1 UDConS4 CombinationMin 1.285 -663.937 11.9257 13.3816 663.94
Story1 C1 UDConS4 CombinationMin 2.57 -654.3024 19.3552 20.2409 654.30
Story1 C1 UDConS5 CombinationMax 0 -673.1832 4.5252 6.9575 673.18
Story1 C1 UDConS5 CombinationMax 1.285 -663.5486 11.942 13.5866 663.55
Story1 C1 UDConS5 CombinationMax 2.57 -653.9139 19.359 20.3482 653.91
Story1 C1 UDConS5 CombinationMin 0 -673.6831 4.4848 6.2664 673.68
Story1 C1 UDConS5 CombinationMin 1.285 -664.0484 11.9196 13.2861 664.05
Story1 C1 UDConS5 CombinationMin 2.57 -654.4138 19.3545 20.1894 654.41
Story1 C1 UDConS6 CombinationMax 0 -673.257 4.5259 7.0529 673.26
Story1 C1 UDConS6 CombinationMax 1.285 -663.6223 11.9423 13.6427 663.62
Story1 C1 UDConS6 CombinationMax 2.57 -653.9877 19.3587 20.3489 653.99
Story1 C1 UDConS6 CombinationMin 0 -673.7568 4.4855 6.3618 673.76
Story1 C1 UDConS6 CombinationMin 1.285 -664.1221 11.9199 13.3423 664.12
Story1 C1 UDConS6 CombinationMin 2.57 -654.4875 19.3542 20.1901 654.49
Story1 C1 UDConS7 CombinationMax 0 -596.0508 10.8221 13.6307 596.05
Story1 C1 UDConS7 CombinationMax 1.285 -584.0075 13.3364 15.3423 584.01
Story1 C1 UDConS7 CombinationMax 2.57 -571.9642 15.851 17.0539 571.96
Story1 C1 UDConS7 CombinationMin 0 -596.3929 10.7968 13.2234 596.39
Story1 C1 UDConS7 CombinationMin 1.285 -584.3495 13.3221 15.1118 584.35
Story1 C1 UDConS7 CombinationMin 2.57 -572.3062 15.8474 16.9746 572.31
Story1 C1 UDConS8 CombinationMax 0 -595.9628 10.824 13.6945 595.96
Story1 C1 UDConS8 CombinationMax 1.285 -583.9195 13.3375 15.3658 583.92
Story1 C1 UDConS8 CombinationMax 2.57 -571.8762 15.8511 17.0626 571.88
Story1 C1 UDConS8 CombinationMin 0 -596.3049 10.7987 13.2872 596.30
Story1 C1 UDConS8 CombinationMin 1.285 -584.2616 13.3233 15.1353 584.26
Story1 C1 UDConS8 CombinationMin 2.57 -572.2183 15.8475 16.9833 572.22
Story1 C1 UDConS9 CombinationMax 0 -595.8194 10.8352 13.8313 595.82
Story1 C1 UDConS9 CombinationMax 1.285 -583.776 13.3436 15.3915 583.78
Story1 C1 UDConS9 CombinationMax 2.57 -571.7327 15.8523 17.1174 571.73
Story1 C1 UDConS9 CombinationMin 0 -596.4442 10.7847 12.9674 596.44
Story1 C1 UDConS9 CombinationMin 1.285 -584.4008 13.3156 15.0159 584.40
Story1 C1 UDConS9 CombinationMin 2.57 -572.3575 15.8466 16.9189 572.36
Story1 C1 UDConS10 CombinationMax 0 -595.9115 10.8361 13.9505 595.91
Story1 C1 UDConS10 CombinationMax 1.285 -583.8682 13.344 15.4616 583.87
Story1 C1 UDConS10 CombinationMax 2.57 -571.8249 15.8519 17.1183 571.82
Story1 C1 UDConS10 CombinationMin 0 -596.5363 10.7856 13.0866 596.54
Story1 C1 UDConS10 CombinationMin 1.285 -584.493 13.316 15.0861 584.49
Story1 C1 UDConS10 CombinationMin 2.57 -572.4497 15.8462 16.9198 572.45
Story1 C1 UDConS11 CombinationMax 0 -357.5797 6.4979 8.2471 357.58
Story1 C1 UDConS11 CombinationMax 1.285 -350.3537 8.0044 9.2468 350.35
Story1 C1 UDConS11 CombinationMax 2.57 -343.1277 9.5113 10.2465 343.13
Story1 C1 UDConS11 CombinationMin 0 -357.9217 6.4727 7.8398 357.92
Story1 C1 UDConS11 CombinationMin 1.285 -350.6957 7.9902 9.0163 350.70
Story1 C1 UDConS11 CombinationMin 2.57 -343.4697 9.5077 10.1672 343.47
Story1 C1 UDConS12 CombinationMax 0 -357.4917 6.4998 8.3109 357.49
Story1 C1 UDConS12 CombinationMax 1.285 -350.2657 8.0056 9.2703 350.27
Story1 C1 UDConS12 CombinationMax 2.57 -343.0397 9.5114 10.2551 343.04
Story1 C1 UDConS12 CombinationMin 0 -357.8338 6.4745 7.9036 357.83
Story1 C1 UDConS12 CombinationMin 1.285 -350.6078 7.9913 9.0398 350.61
Story1 C1 UDConS12 CombinationMin 2.57 -343.3818 9.5078 10.1759 343.38
Story1 C1 UDConS13 CombinationMax 0 -357.3482 6.5111 8.4477 357.35
Story1 C1 UDConS13 CombinationMax 1.285 -350.1222 8.0117 9.296 350.12
Story1 C1 UDConS13 CombinationMax 2.57 -342.8962 9.5126 10.3099 342.90
Story1 C1 UDConS13 CombinationMin 0 -357.973 6.4605 7.5838 357.97
Story1 C1 UDConS13 CombinationMin 1.285 -350.747 7.9837 8.9204 350.75
Story1 C1 UDConS13 CombinationMin 2.57 -343.521 9.5069 10.1114 343.52
Story1 C1 UDConS14 CombinationMax 0 -357.4404 6.512 8.5669 357.44
Story1 C1 UDConS14 CombinationMax 1.285 -350.2144 8.0121 9.3661 350.21
Story1 C1 UDConS14 CombinationMax 2.57 -342.9884 9.5122 10.3109 342.99
Story1 C1 UDConS14 CombinationMin 0 -358.0652 6.4614 7.7031 358.07
Story1 C1 UDConS14 CombinationMin 1.285 -350.8392 7.9841 8.9906 350.84
Story1 C1 UDConS14 CombinationMin 2.57 -343.6132 9.5065 10.1124 343.61

M2 MEAN M2 STD M3 MEAN M3 STD
11.31973 4.596753 12.8785 4.419995
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