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ABSTRACT

The deception in a system of structure in civil engineering often arises from uncertain
conditions and various types of failures, including design, temporary, and failures caused
by natural calamities. To address these challenges, engineers employ the art of
formulating mathematical models that can answer questions related to the probability of
a structure behaving in a specific way. These models take into account the randomness
or incomplete knowledge of material properties, geometric dimensions, as well as the

uncertainties associated with the loads and actions acting on the structure.

Reliability analysis extends the traditional deterministic analysis of structures, which
assumes known and fixed parameters, by considering the uncertainties present in these
parameters. It involves developing mathematical models that can provide insights into
how a structure will behave when all material as well as geometric properties, and actions
are uniquely defined. By incorporating probabilistic models for the uncertain variables,
namely material strengths, dimensions, and loads, engineers can quantitatively assess the

likelihood of failure or desired behaviour for a given structure.

The objective of reliability analysis is to gain a deeper understanding of how a structure
will perform under uncertain conditions. By evaluating the reliability of a structure,
engineers can make informed decisions regarding design choices, risk mitigation
strategies, and maintenance planning to ensure the safety and performance of civil

engineering structures.
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CHAPTER 1

INTRODUCTION

1.1 General

The deception of structural systems in civil engineering often arises from uncertain
conditions and various types of failures, including design failures, temporary failures,
and failures caused by natural hazards. To address these challenges, engineers employ
the art of formulating mathematical models that can answer questions related to the
probability of a structure behaving in a specific way. These models take into account the
randomness or incomplete knowledge of material properties, geometric dimensions, and
properties, as well as the uncertainties associated with the loads and actions acting on the

structure.

Reliability analysis extends the traditional deterministic analysis of structures, which
assumes known and fixed parameters, by considering the uncertainties present in these
parameters. It involves developing mathematical models that can provide insights into
how a structure will behave when all material as well as geometric properties, and actions
are uniquely defined. By incorporating probabilistic models for the uncertain variables,
such as material strengths, dimensions, and loads, engineers can quantitatively assess the

likelihood of failure or desired behaviour for a given structure.

The objective of reliability analysis is to gain a deeper understanding of how a structure
will perform under uncertain conditions. By evaluating the reliability of a structure,
engineers can make informed decisions regarding design choices, risk mitigation
strategies, and maintenance planning to ensure the safety and performance of civil

engineering structures.

The outcomes can assist in assessing the reliability of a structure, ensuring that it has
adequate load carrying capacity under a specific load configuration, even when

considering minute details.



Modern software tools are available to investigate the reliability of structures, and one

such software used in this project is called COMREL.

Essentially, any deviance from the maximum load parameter value or the load carrying
capacity value of a structure, expressed in terms of a load parameter value in extreme
conditions, raises concerns about the structure's safety. The analysis aids in determining
the "minimum increase in the ultimate load value, with respect to the maximal load
parameter evaluated with the highest level of confidence, that should be considered in
the carrying capacity model to ensure that the structure will not face failure under normal

service conditions, or at least, that the risk of failure is extremely low."

1.2 Objectives and basis of study

Following are the prime objectives:

e To evaluate elemental forces of an L-shaped asymmetrical structure by

performing non-linear Time History Analysis using ETABS.

e To check the reliability of an L-shaped asymmetric structural element by using

the Hasofer-Lind method in COMREL.



CHAPTER 2

LITERATURE REVIEW

Structural reliability analysis and design have been a topic of great interest to numerous
scholars and researchers for a considerable period of time. Various approaches, analysis
techniques, and design techniques have been developed and studied in this context. For
this project, guidance was sought from the researches of well-known scholars in the field,

whose works are discussed in detail in the following section.

Armen Der Kiureghian (2000), FORM and SORM were used to analyse the geometry
of unpredictable seismic oscillations and their solutions. It looks into the issues with
seismic oscillations that arise from discretizing the input process in the standardised
normal random variable space. Simple geometric shapes are visible in linear systems
under Gaussian excitation. In contrast, non-Gaussian responses display more complex,
nonlinear geometric shapes. To solve these problems approximately, the first and second-

order methods of reliability (FORM and SORM) are utilized.

Armen Der Kiureghian and Pei-Ling Liu (1986), proposed a thorough framework for
doing analysis of first-order structural reliability when taking in consideration
the missing probability data. The authors present a method that integrates partial
probability information on uncertain variables beyond the subsequent moments in order
to meet the requirements of coherence, invariance, operability, and simplicity. This
comprises bounds, higher moments, partial joint distributions, and marginal distributions.
The suggested approach is in line with Ditlevsen's generalised reliability index
philosophy and is meant to supplement first and second-moment, and full-distribution
of the reliability of the structure theories. The authors present new findings for joint
distribution models with known marginals, which have broad applications in the fields

of probability and statistics.



Chandra S. Putcha (1984), The majority of research papers in the field of reliability
focus on assessing the probability of failure for different limit states or calculating the
safety index (P). Conversely, only a limited number of papers have delved into the inverse
formulation of reliability. The current study adopts a novel strategy by focusing on the
development of different reinforced concrete components in order to achieve
predetermined probabilities of failure. The reliability design issue is turned into a
polynomial equation defined as a function of the design parameters, and probability-of-
failure levels for various members are taken from the literature. Standard techniques are
then utilized to solve the polynomial, producing the design values for the members that
meet the targeted probability’s failure. This methodology can be applied to any RC

member and has practical relevance in the field of engineering.

A. Neuenhofer and A. Der Kiureghian (1992), introduced a novel response spectrum
technique for analyzing seismic activity in linear multi-degree-of-freedom of structures
with multiple supports, which are exposed to ground motions that vary spatially. The
suggested approach takes into account a number of variables, including local soil
conditions, wave passage, and loss of coherence with distance. It is based on the core
ideas of randomised vibration theory and takes into account the correlations between the

motions of the supports as well as other structural modes.

R. Ranganathan (1999), In practical engineering, decision-making processes often
involve uncertainties that cannot be completely eliminated. These uncertainties manifest
in various parameters encountered during analysis and design, making it impossible to
ensure absolute safety. A rational criterion, proposed more than 25 years ago, addresses
this challenge by considering the reliability or probability of survival of structures as a
measure of their safety. The complement of reliability in reliability of structure, the
chance of failure, statistically evaluates the safety of the structure. Probabilistic ideas are
used in structural design and reliability analysis. It is now feasible to assess the degree of
dependability for existing structures built in accordance with accepted criteria by using

structural reliability theory.



CHAPTER 3

SUMMARY OF PROBABILISTIC VARIABLES

3.1 General

The typical deterministic design technique makes the assumption that there are no
probabilistic fluctuations in any of the parameters. The loads placed on structures, such
as living loads, wind loads, ocean waves, earthquakes, etc., are commonly understood to
be random variables. Likewise, the material strengths (e.g., concrete, steel) and geometric
parameters (e.g. section dimensions, effective depth, bar diameter) are subject to
statistical variations. Therefore, in order to accurately assess the structural safety, it is
necessary to consider the stochastic nature of these fundamental parameters. The
structural safety is a statistical number since both the loads and the strengths are arbitrary

variables.

To account for uncertainties in design parameters, a safety factor is incorporated by
selecting the lowest strength value and the highest load value. This cautious methodology

guarantees safety in the design process and ultimately yields cost-effective results.

3.2 Mean and Variance

The Sample mean serves as the ideal statistical measure to quantify the central value of
a random variable. It effectively summarizes the distribution and represents the centre of

gravity for the given data.

X =

=3

n
i=1

The variability or spread of a dataset is a crucial aspect that characterizes the data. This
dispersion can be exhibited using the sample variance, which can be further calculated

as

n
1
§2 = ;Z(xi %
i=1



3.3 Probability Density Function

When examining a random function x(t), the assessment involves analyzing the
measured values and evaluating the corresponding time intervals between them. This
analysis leads to the calculation of a ratio, which is determined as follows:

Aty + At, + - At,,
T

P(X, <X <X,)=

Furthermore, the probability distribution function P(X) offers the likelithood of X being
within the range of values X1 and X2 during the random process. Similarly, the

probability of X(t) being smaller than a given value of X 1s represented as

P(X)=P[Xx() < X] = lim z AT;
==y
The delta represents the function X(t) where its value 1s less than the specified value for
X. The function P(X) 1s referred to as the cumulative density function within the equation
of function X(t). When graphically represented, the cumulative density function is a

monotonically increasing function.

3.4 Probability Distribution

It can be thought of as a function in mathematics that determines the odds of different
experiment results. From a technical standpoint, the probability distribution characterizes
a random event by assigning probabilities to specific events. Examples of such random
events include the outcomes of experiments or surveys. The probability distribution is
defined within an underlying sample space, which encompasses all possible outcomes of

the observed random event.

3.4.1 Normal (Gaussian) Distribution

The Gaussian distribution, commonly referred to as the normal Gaussian distribution or
bell curve, 1s a continuous probability distribution extensively utilized in statistics and
probability theory. It 1s renowned for its symmetrical shape and i1s defined by two

essential parameters: the mean(u) and the standard deviation(c). The distribution i1s



symmetric around the mean, with the highest point of the curve located at the mean. As
the name implies, it follows the mathematical form of the Gaussian function or the

probability density function (PDF) of a normal distribution.

The probability density of the normal distribution is:

. ~X-X)°
P(x) =—=e &

- v

Nio

Where,

X is the mean of the distribution.
o 1s the standard deviation of distribution

o? is variance

3.4.2 Lognormal Distribution

This type of distribution is a commonly encountered probability distribution. When a
variable X is normally distributed with a specific mean and variance, the corresponding
random variable Y = e”* is referred to as having a lognormal distribution. This can be

expressed as Y being an exponential function of X:
Y=e*and X =InY

Lognormal PDF:

3.4.3 Gamma Distribution

The aggregate consists of R independent exponential random variables, where each random

variable is distributed independently and consistently takes positive values.

PDF and CDF function are as follows:

A

Gamma Distribution, PDF: fx(X) = R (AX)R1e™  if (x20, 120)

Gamma Distribution, CDF: 1- SR (A0 ()F i (x20, 120)



In which T'(.) represents the gamma function as defined:

m - —
Gamma function: rx)= fo e “u*Ydy

3.4.4 Gumbel Distribution

The Gumbel distribution 1s commonly employed to represent the distribution of the
maximum or minimum values observed in a set of samples from different distributions.
It finds utility in assessing the likelihood of extreme events like earthquakes, floods, or
other natural disasters occurring. Referred to as the extreme value type I distribution, the
Gumbel distribution encompasses two forms: one for extreme maximum (extreme value
largest I) and one for extreme minimum (extreme value smallest I). The respective

definitions of these forms are as follows:

Gumbel (EV Largest-I) — fe(x) = ae-a(x-ﬁ)e-exp(—a(x—ﬁ))
F,(x) = e~®P(-2x=P) for (—o0 < x < o0)

Gumbel (EV Smallest-I) — fx(x) = ae——a(x-B)e-exp(—a(x—B))

F,(x) = 1 — e~ eP(-a(=P) for (—o0 < x < 00)

The Gumbel distribution involves two parameters: B, representing the location, and o,
representing the scale (with a > 0). It encompasses the entire range of results for the

random variable X, where X can take any value between -co and co.

To calculate the means and variances of both the distribution i.e. largest-I and smallest-
I, the following formulas are utilized:

0.57722156649

Mean: m, =0+ = (largest-I)
m, = — 0.57722156649 (smallest-T)
2
Variance: g2 = # (largest-I and smallest-I)

The value (0.57722156649) is called Euler’s constant.



CHAPTER 4

STRUCTURAL RELIABILITY

4.1 Introduction

The evaluation of a structure's performance takes into account its safety, serviceability,
and cost-effectiveness. However, the details on the input variables are never entirely
definite, accurate, or comprehensive. The unpredictability in the design and analysis of
structures come from a variety of factors, including physical randomness, incomplete
knowledge, and egregious mistakes. Due to these variabilities, it is not possible to achieve
absolute safety in structures, since it is unpredictable how the loads, material strengths,
and human errors will affect the structure during its life. Additionally, the conventional
deterministic analysis and design methods do not consider the probabilistic variations of
the parameters. Moreover, the safety factors based on experience and judgment may not

be adequate or economical.

Reliability 1s a concept applied in many fields and has various interpretations. The most
commonly accepted definition of reliability 1s the probability that an item will perform
its expected function during a given period under the operating conditions. In the context
of structures, it can be defined as the probability that the structure will not exceed the
specified limit states (such as flexure, shear, torsion, or deflection) during a reference
period (the life of the structure). The concept of reliability 1s useful 1n many applications,
such as calibrating codes and developing partial safety factors, assessing existing

structures, establishing inspection criteria, and devising maintenance schedules.

To simplify matters, the failure in probability (Pr) can be considered as a basis for

defining the reliability (Ro) in the following way,

Ry =1-F

10



4.2 Levels of Reliability Methods

Depending on the significance of the structure that is being analysed, there are various
stages or degrees that can be used to a design process in the subject of structural
dependability analysis. The term "level" refers to the amount of information used and
delivered in the analysis. Currently, there are four basic levels of safety analysis that can
be employed to achieve a given limit state, with increasing levels of sophistication in the
treatment of various problems. These levels are typically referred to as level I, II, III, and
IV, and are chosen based on the degree of complexity required to accurately assess the

safety and reliability of a structure.

4.2.1 Level I

By using the distinctive characteristics of random variables, Level I approaches are used
in reliability analysis to take into account the unpredictable nature of numerical issues.
These characteristic values are defined as fractiles corresponding to a specific order of
the statistical distributions involved. The aforementioned values are linked to partial
safety factors to guarantee the design is reliable to the acceptable levels. These factors
are determined based on probabilistic considerations, aiming to minimize the disparity
between the design's reliability and the target value. The Load & Resistance Factor

Design (LRFD) approach is an illustration of a Level I method.

4.2.2 Level II

Level II methods in reliability analysis involve the consideration of mean and variance
values for each uncertain parameter, along with their correlation with other parameters.
These methods are also referred to as reliability methods and are more sophisticated than

level I methods.

4.2.3 Level II1

The topic is thoroughly examined using level III approaches, which also integrate the
joint density function of probability of random variables throughout the safety domain.
These techniques allow for a precise evaluation of dependability through the use of

failure probability and reliability indices, such as the reliability index (B).

11



4.2.4 Level 1V

Level IV design techniques should be used for structures that call for engineering
monetary evaluation and development under unpredictability and are of major financial
significance. These structures should take into account design, upkeep, repairs, the
likelihood of possible failure, and the return on capital. This degree of study is best suited

for delicate projects like nuclear power plants, towers for transmission, and bridges.

4.3 Calculating the reliability of a structure

Calculating structural dependability is the process of determining how likely it is that a
structure will achieve given performance criteria or limit states in the presence of
uncertainty. It comprises assessing the effects of uncertain input parameters on the
structural response, including loads, material strengths, and other pertinent elements. The
goal of this analysis, which often relies on probabilistic models and statistical techniques,
is to calculate the likelihood that the structure will succeed or fail. Structural reliability
simulations can be carried out using a variety of methods, which includes Monte Carlo
simulation, the First-Order Reliability Method etc. The results of this study provide
insightful information that may be used to improve the design, increase the structure's

safety and serviceability, and make well-informed maintenance and operating decisions.

In the fundamental problem of structural reliability, the focus lies on a single load effect
(S) and a single resistance (R) that possess known probability density functions, denoted
as fs() and fr() respectively. It is crucial for the units of R and S to be consistent, and
the safety of the structure is evaluated by comparing the values of R and S. In the event
that R is lower than S, it signifies a failure occurrence. The probability of failure, pf, for

the structural component can be stated in any of the following manners:
= P(R-S5<0)

=P(R/g<1)

= P(InR — InS < 0)

12



or, in general
=P(G(R,S) <0)

The chance of failure may be regarded as the likelihood of breaking the limit state, where
G() stands for the limit state function. Figure 2 provides an overview of the density
functions of fs() and fr() for variables S and R, respectively. It also shows the bivariate

density function frs(r,s) that describes the relationship between the two variables.

The joint density function frs(r,s) represents the probability of R falling within the
range of r to r+Ar and S falling within the range of s to s+As for an infinitesimally small
element (ArAs). In Figure 2, the shaded failure domain D represents the equations that
define this probability. As Ar and As approach zero, the failure probability corresponds
to the probability that both R and S fall within this domain.

pr=PR-5<0) = ff frs (r,s)drds
D

Hs

G < 0 : Failure
s domain D

Fig. 4.1 : Joint density function fzs(7,s), marginal density functions fz(r) and fs(s)
and failure domain D

When R and S are independent,

frs(rs) = fr(r)fs(s)

13



Moreover, equation for probability of faliures then becomes:

o sz2r oo

pf=P(R-5<0)= f f fr(@) fs(s)drds = f Fr(x)f:(x)dx

- 00 =00 - 00

The convolution integral's significance becomes evident when considering Figure 2. In
this context, Fr(X) represents the probability of the structure's resistance being less than
or equal to x, indicating structural failure. Conversely, fs(x) shows the probability of the
load effect S on the member falling within the range from x to x+Ax, with Ax approaching
zero. To determine the overall probability of failure, integration across all possible values
of x is required. Figure 3 illustrates this concept, displaying the density functions Fr(x)
and fs(x) on the same axis. Through this integration process, a comprehensive

understanding of the probability of failure can be attained.

rfr(x), fs(x)

hmounl of overlap
of fz( ) and £5() —

rough indicator of py

Fig. 4.2 : Basic R-S problem: fz( ) fs( ) representation

4.3.1 Special case of normal random variable

Analytical integration of the convolution integral (2) can be accomplished for specific
distributions of R and S. A notable example 1s when both variables follow normal
distributions with means ug and ug. and variances g3 and g, respectively. In this case,
the safety margin Z, defined as Z=R-S, can be evaluated using established rules for

adding normal random variables, yielding the mean and variance of Z.
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Hz = Hr — HUs

0% = of + o¢

Equation for probability of failure then becomes :-

0—u
p=PR-5<0)=P(Z<0)=0(—%)
Z
Let &( ) stand for the typical normal distribution function, which has a mean of 0 and a
variance of 1. The random variable i.e. Z, defined as the difference between R and S, is
depicted in the Figure, with the shaded region indicating the failure region Z < 0. By

utilizing the aforementioned equations, it can be deduced that

—(ug — ps)

(0% +0d)2

P= = &(—p)

where, B =H2/; isdefined as reliability (safety) index.

The equation mentioned above shows that if the standard deviations of or and O are
increased, when the gap between the resistance's mean and the load effect's mean is less,
the value of Pf increases. This can be inferred from, where the overlap of fr () and fs()

can be considered as an indicator of Pf.

L fz(z2) Bo: !

Z<0r
<4
Failure [

M

Fig. 4.3 : Distribution of margin safety Z=R — S
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4.3.2 Reduced Variable

It is advised to express all random factors in their "established form," which is a non-

dimensional form. The standard forms for the fundamental variables R and Q are given

by:

The transformed variables Zr and Zq are derived by converting the random variables into
a "standard form," which represents a dimensionless version of the variables. In terms of

the reduced variables, the resistance, or R, and load, or Q, may be represented as follows:

R = Ug +ZRUR
Q = pg + 240,

g(R Q) =R Q is the limit state function. This may be expressed using equations based

on the condensed variables i.e. eq. 2. The result is

g(ZRFZQ) = Ug + ZRUR - an - ZQUQ - (‘uR - MQ) +ZRGR - ZQUQ

The equation above represents a straight line in the space of reduced variables Zz and Zg
for any specific value of g(Zg.Zq). The line that corresponds to g(Zg.Zg)= 0 separates the
failure domain from the safe domain in the space of reduced variables. The literature
sometimes expresses the loads Q and resistances R in terms of capacity C and demand D

as well.

4.3.2 Reliability Index

The dependability index was given a fresh definition by Hasofer and Lind, who said that
it was the inverse of the coefficient of variance. As shown in Figure 3 on the line with
g(Zr, Zg) = 0, the value of this index is denoted by the distance that is perpendicular

between the source of reduced variables and the design point or breakdown point.
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Hr — Hq
’a,% + 05

Let B represent the reciprocal of the coefficient of variance of the function g(R,Q) =R —

ﬁ:

Q. In the case where R and Q are uncorrelated and follow a normal distribution, the index

of reliability can be connected to the failures probability as follows,

B=—¢ " (P) or Pr = p(—p)

-
Limit state function g(Z,, Z)
N
/
" SAFE /
B g it

/ FAILURE

Fig. 4.4 : Reliability index defined as the least distance in the area of reduced variables

4.4 First Order Reliability Method

The first-order Taylor series approximations is used to linearize the performance
function at the mean values of the random variables. In the mean value first-order second
moment (MVFOSM) technique, the mean and variance of the random variables are used
as second-moment statistics, is usually referred to as this. In his work, Cornell (1969)
suggested a streamlined two-variable strategy and assumed that the final probability of Z
would follow a standard distribution. The fraction of the predicted value of Z along with
its standard deviation is how he developed the reliability index, abbreviated as Bc. The
ordinate's absolute value at Z = 0 on the generalised normal probabilities plot, as shown

in Figure 4, can be used to calculate fc. This can be stated mathematically as follows:
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/\/’ fz(z)

Limit surface 62 Be

Hz +o

Fig. 4.5 : Definition of Reliability Index and Limit State

Hr — HUs

Be = —=—
Jog +a

Alternatively, if joint probability density function fi(x) 1s 1dentified for the multi variable

case, then probability of failure py1s given by

Uz = g (#xll Hx,,........... #xn)

Where it is understood that g(X)<0.

Since the integral mentioned previously typically lacks an analytical solution, the First-
Order Reliability Method must be used to make an approximation. In order to use this
strategy, the original scenario must be approximated to an idealised scenario in which
g(X) is a linear function and X is a collection of uncorrelated Gaussian variables with a
mean equal to zero and the standard deviation equal to one. A rough solution for the
integral can be determined using the FORM technique, providing a workable answer to

the issue. The probability of failure (py) is then understood as

n

pr=P(g(X) <0) =P (Z aX;— < 0) = 6(=P)

=1
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The provided equation displays the chance of failure as determined by the FORM
technique. The parameters a; and in this equation denote the directional cosine of the
random variable X; and B the distances among the origin and the hyperplane g(X)=0,
respectively. The term n is the number of fundamental random variables X, while the
term @ denotes the standard normal distribution function. It is important to understand
that this approach is based on an erroneous assumption that X is a vector made up of
distinct Gaussian parameters with a mean of 0 and a standard deviation of 1. The equation

also suggests that the function g(X) is linear.

Let performance function is given as

Z=gX) =g (X, X,..X)

The performance function with respect to the mean value according to the Taylor series

expansion is given by the equation,

d%g
Tﬁ(xi - Hy,) (X/ - #x,) + o
J

L

n
ag 1
a3 -
g(/'lX)+‘16Xi(l “X1)+2
= 4

L)
[y
-~
L]
[y

The first-order Taylor series estimate of the performance function may be represented as
a linear expression of the standardised random variables Z by computing the derivatives

of the performance function at the averages of random variables (X1,X2 ... Xn), where
Ux; 1s the mean value of Xi. Converting the series in linear terms, the mean and variance

of Z can be evaluated as:

Hz = Q(Iv‘xu Hxy, .. Mx,,)
And,

n n

dg dg
2 o E E - I X. X
9%z 6X,-6X,-var( i 1)

i=1 j=1

Where var(X;, X)) is covariance of X; and X;. Since the variances are not correlated, then

respectively the variance for z can be derived as
o 2

ag
2 o — .
o3 Z(ax,.) var(X;)

i=1
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Finding the ratio of mean(u:) to standard deviation of Z (o) allows for the subsequent

calculation of the dependability index as

4.4.1 Hasofer-Lind’s Reliability Index

Let the failure function be the function of independent stock variables A7, 4>, ... 47, i.e.

g(X1, o, ... Xn). The basic variables are then standardized using the relationship

Where, y;=ux; and g,= ox;,

As a function of Z;, the failure of the system within the Z coordinate is represented. The
failure surface equation is obtained in the normalised coordinate system by integrating
this equation within the failure characteristic and setting it to zero. The failure surface
separates the sample space into two areas namely safe and failure, due to the

normalization of the basic variables with puz =0 and gz = 1.

It is significant to notice that the origin often lies inside the safe zone and that the z-
coordinate system in issue displays rotational symmetry with respect to the standard
deviation. The location of the failure surface in relation to the origin inside the normalised
coordinate system determines the dependability measure. Reliability rises as the failure
surface goes farther from the origin, whereas reliability declines as the failure surface
gets nearer to the origin. The reliability index 8 was created by Hasofer and Lind as the
shortest path through the normalised coordinate system between the origin O to the
failure surface. The selection of failure function has no impact on this safety precaution
since identical failure functions produce an identical failure surface. In the case of linear
failure surfaces, the reliability index 8 = uM/aM can be utilized. The shortest path from
the origin to a nonlinear failure surface is not, however, uniquely defined, and numerical

integration is necessary to calculate the failure probability. An approximation of the
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reliability index can be obtained by utilizing the tangent plane to the design point,
although the accuracy of the approximation relies on whether the failure surface is

concave or convex towards the origin.

N

Fig. 4.6 : Formulation of safety analysis in normalized coordinates

4.5 SOFTWARE USED FOR ANALYSIS

4.5.1 COMREL

COMREL is a software program developed to conduct reliability analysis in engineering
applications. It offers advanced methods to evaluate the probability’s of failure and

reliability of the systems subjected to various uncertainties.

COMREL incorporates first-order as well as second-order reliability methods to assess
the reliability index () through iterations. It provides algorithms to determine the most
likely failure point, considering both differentiable and non-differentiable failure criteria.
These techniques allow for efficient and accurate analysis of reliability and failure

probabilities.
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COMREL supports the inclusion of arbitrary dependence structures in stochastic models,
such as Nataf models, Hermite, also Rosenblatt. It can handle various stochastic models

(44 models) from SYSREL, enabling the user to input parameters in different forms.

Additionally, COMREL allows the definition of multiple failure conditions within a
single task, with state functions either called from external programs or expressed in
mathematical representation. It offers a variety of built-in functions, such as hyperbolic,
trigonometric, logarithmic, and other special functions like Bessel and Gamma functions.
COMREL provides flexibility in differentiation, numerical integration, root finding, and

includes test functions and comparative operators.

Overall, COMREL is a powerful tool that enables engineers to perform reliability
analysis, assess failure probabilities, and evaluate the reliability of systems under

uncertainties, contributing to more robust and dependable engineering designs.

4.5.2 ETABS
ETABS (Extended Three-Dimensional Analysis of Building Systems) is a

comprehensive software program developed by CSI company. It is widely used in the

engineering industry for the analysis and design of buildings and structures.

ETABS offers a range of powerful features and tools to facilitate the structural
engineering process. Its 3D modeling capabilities allow users to create detailed and
realistic models of structures, defining geometric elements, material properties, and

structural components.

The software provides advanced analysis techniques, including linear and nonlinear
analysis, to accurately predict the structural response to various loads and forces. It can
handle static and dynamic analysis, accounting for factors such as material nonlinearity

and seismic or wind loads.

ETABS also includes design modules that enable engineers to design various structural
components, such as beams, columns, walls, and foundations. The software
automatically generates design loads, performs code checks, and produces

comprehensive reports and documentation.
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Furthermore, ETABS seamlessly integrates with other CSI software programs like
SAP2000 and SAFE, allowing for enhanced capabilities and a streamlined workflow in

the structural design process.

With its user-friendly interface, powerful analysis capabilities, and efficient design tools,
ETABS has become a trusted solution for structural engineers involved in the analysis
and design of complex building systems. It ensures the compliance of structures with
international building codes and standards, making it an indispensable tool in the field of

structural engineering.
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CHAPTER 5

METHODOLOGY

To derive the Moment of Resistance equation for a section, it is crucial to consider the
probabilistic nature of the physical parameters involved, as they often exhibit statistical
variations. Hasofer and Lind introduced a method that addresses these uncertainties by
defining a theoretical definition of the reliability index (B). This method incorporates
mean and standard deviation values to account for the statistical variations in the physical

parameters.

STAAD PRO software is used to analyse the critical bending moment value and axial
forces. These numbers are then transferred to COMREL for additional examination. The
reliability index value and its inverse are evaluated using first-order and second-order
reliability techniques by COMREL, which also performs numerous iterations to calculate

the chance of failure.

5.1 Brief Review of Time History Analysis

Time history analysis is a method used in structural engineering to simulate and assess
the structure's responsiveness to change subjected to time-varying loads. It involves
analyzing the structure's behaviour over time, considering the actual recorded or

synthetic load inputs as a function of time.

Time history analysis begins with obtaining the load inputs, which can be recorded from
actual events or generated synthetically based on the expected dynamic forces. These
loads can include seismic ground motions, wind loads, or any other time-dependent

forces that act upon the structure.

The next step is to establish the mathematical model of the structure, which typically
involves using finite element analysis or other numerical methods. The model represents
the physical properties and behaviour of the structure, including its geometry, material

properties, connections, and support conditions.
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The load inputs are then applied to the structural model in a time-dependent manner. This
involves incrementally applying the loads at each time step and calculating the responses
of the structure at that specific time. The analysis proceeds step by step, considering the

dynamic equilibrium of the structure at each time increment.

During the time history analysis, the response of the structure is computed in terms of
various parameters such as displacements, accelerations, forces, and stresses. These
response quantities can be obtained for specific locations or elements of interest within

the structure.

The time history analysis considers the dynamic attributes of the structure, encompassing
its inherent frequencies, mode shapes, and damping characteristics. These attributes
significantly influence the structural response to external loads and the dissipation of

energy during dynamic occurrences.

The analysis results provide valuable insights into the structural behaviour under
dynamic loads, helping engineers assess its performance, identify potential failure
modes, and ensure the structure's safety and reliability. It can also aid in the design of
structural elements to withstand specific dynamic events, such as earthquakes or severe

winds.

5.2 Methodological Verification and Rigor

5.2.1 Sample Problem for Time History Analysis

Question- The given diagram illustrates the plan dimensions of a 10-storey building with
a storey height of 3.0 m. The floor area has a dead load (DL) of 4 kN/m?, including the
floor slab and finishes, while the weight of the partitions on each floor is 2 kN/m?.
Additionally, each floor is subjected to a live load intensity of 3 kN/m?, and the roof has
a live load intensity of 1.5 kN/m?. The building is situated in Delhi on a hard soil
foundation. The task at hand is to calculate the seismic forces at various floor along with

shears.
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Fig. 5.1 : Structural Plan Fig. 5.2 : 3d view of structure

Design Parameters:

Considering Delhi (Zone IV), zone factor Z=0.24
Importance factor, I=1.0

Response reduction factor, R=3.0

Seismic Weight:

Floor area = 2424 = 576 m?

Dead weight = 4 kNI'm?2

Weight of partitions = 2 kN/m?

Percentage of live load to be considered is 25%
Fundamental natural period of vibration,
T, = 0.075h%75 = 0.075(30)%7° = 0.96s
Damping coefficient = 5%
Average response acceleration coefficient = 1.04

Design horizontal seismic coefficient,
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Sa
ZICH)  0.24%x1.0X1.04

= = 0.04159
2R 2x3

Base shear Ve= A W=0.04159 x 50662 =2107.5 kN

Wihiz
Design Lateral Force at floor i, Q; = Vp ———

Table 5.1 — Results based on Equivalent Static Lateral Load method

W.h?
MassNo.  W;(kN)  h,(m)  Wh? (KN-m?) ZW" O, (kN)
i=1
1 3519 30.0 3167100 0.1907 402.0
2 5238 27.0 3818502 0.2299 484.6
3 5238 24.0 3017088 0.1817 382.9
4 5238 21.0 2309958 0.1391 293.3
5 5238 18.0 1697112 0.1022 215.5
6 5238 15.0 1178550 0.0709 149.5
7 5238 12.0 754272 0.0454 95.7
8 5238 9.0 424278 0.0255 54.0
9 5238 6.0 188568 0.0114 24.0
10 5238 3.0 47142 0.0028 6.0
IWh? = 16602570
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402 kN
484.6 kN
382.9 kN
293.3 kN
215.5 kN
149.5 kN
95.7 kN
54.0 kN
24.0 kN

6.0 kN

N

Story10

Story9

Story8

Story7

Story4

Story1

Auto Lateral Load to Stories

408.145 kN

495.526 kN

391.236 kN

Story6 -4

Story5 -

Story3 -

Story2 -

«

302.875 kN

223.698 kN

155.623 kN

e

103.256 kN
64.145 kN
6
29.756 kN

8.369 kN

Fig. 5.3 : Story Shear Graphically

(Manually)

Fig. 5.4 : Story Shear Graphically

(Software)

Table 5.2— Results based on Non-Linear Time History Analysis

TABLE: Story Response
Story Elevation Location X-Dir Y-Dir
m kN kN

Story10 30 Top 408.145 0
Story9 27 Top 495.526 0
Story8 24 Top 391.236 0
Story7 21 Top 302.875 0
Story6 18 Top 223.698 0
Story5 15 Top 155.623 0
Story4 12 Top 103.256 0
Story3 9 Top 64.145 0
Story2 6 Top 29.756 0
Storyl 3 Top 8.369 0
Base 0 Top 0 0
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5.2.2 Sample Problem for Reliability Analysis
Question- Calculate the reliability index of an I-beam that is simply supported and

experiencing a point load Q at mid-span, at the limit state of shear. Take into

consideration that py= 5000 N, gp= 1500 N, pre= 100 N/'mm?, ops= 15 N/mm?,

Hg= 60 mm, 5,=4 mm, == 50.

Where, d 1s the depth of the beam,
t,, 1s the thickness of the web,

f's 1s the shear strength of the material.

Solution-
) Q
Maximum shear force = 5
For shear failure in beam,
Q
ﬁstwd -—=<0
2
Hence, the failure surface equation is
Q _
800 = fityd -— =0

Variation in t,, being negligible, t,, can be considered as deterministic.
Let,

, = (=)
1 O'fs
(d — pd)
2775
_(@—-pnQ)
Zq _—O'Q

Substituting the values in equation given for g(X) =0,

uQ

oQ
gi(z)=t,, (of.zy +ufs )(adzz+ud)-723-7=0
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On further substitution,

g:(z) = 1080z, + 480z; +72z,z; — 750z; + 4700=0
At design point we know that, z; = Poy

g1(z) = 1080 Ba; + 480 By +72 BAoyaz — 750 Puz + 4700 = 0

—4700
"~ 1080a; + 480a, + 72Ba a, — 75003

B

Taking partial derivative of g;(z).

a
(L) = (1080 + 722z))

dz,

(&) = (480 + 72z;)

0z,
991 ) _ -
(—aza =(-750)
Start with,
=6, ua;=-0.5 a;=-0.5, a3=0.707
Substituting these values in equation above,

—4700

~ 1080(—0.5) + 480(—0.5) + 72(6)(—0.5)(—0.5) — 750(0.707) _ 3309

B

Now using equation,

1 (ag1 )
o= —— =~
' K\ 0z;

1 939.276
o= — {1080 + 72 (3.909) (-0.5) = —

K

339.276

1= — —[480 + 72 (3.909) (-0.5) = —

750

= ——[-750 ]ZT

1

K

K2 =(-939.276)*+ (-339.276) +(750)*
= 1559847.608

K =1248.938
30



Hence,

1248.938

w=—22_—0.6005
1248.938

The cycle is repeated using the updated values of B, a1, 02, and o3 until B reaches the

minimum convergence. Summary for the data is given in the table below,

Table 5.3- Computation of f3

Variable Iteration
Start I II I
B 6 3.909 3.524 3.526
ay -0.5 -0.75 -0.7209 -0.7165
ay -0.5 -0.276 -0.333 -0.341
o3 0.707 0.6005 0.607 0.6095
Result:

p=3.526, 01=-0.7165, 02=-0.341, 03=0.6095

Also, the design point is z* = (Bai, fo2, Pu3)
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5.2.2.1 Solved using COMREL

%File Function Model Job View Window Help
J2R|5A5C| X008/ Bk %ie 8 8~

Reliability Job - No cc t - e )
ety 1o commen ja Symbolic Expressions |4 stochastic Model [ correlations ':" Multiple Runs Q Results m Plots

ja Symbolic Expressions

B y‘ Limit State Functions I... Comment Distribution . . . . V... . . V..
"F FLIM(1) R lox Normal (Gauss) M/ X € 5eee (| £ 15¢@

a Serd 1 )

- Interface Scripts B"s shear strength Normal (Gauss) P ‘/m C 1@ (0g¢C 15

I‘ Stochastic Variables B d depth of beam  Normal (Gauss) I\'I\/ X € 6 0¢C 4

EJB‘ R - Variables
i R P - { load }
B f5 - { shear streng
B' d - { depth of bean
E Correlations
ILP Deterministic Parameter St

xC Characteristic Values
By Multiple Runs
,@ Starting Solution

Fig. 5.5 : Numerical Representation for assigning the variables with corresponding values of mean and

standard deviation

1
B - {1000}
| Normal (Gauss) Distribution
Moments X a 2es
Values 5000 15¢8
Parameters m- 5eee 0~ 1500
1
B o - { cepth of beam }
| Normal (Gauss) Distribution
Moments X a 476
Values ) a
Parameters m- 6o d- 4
1
B +5 - { shear strengtn }
| Normal (Gauss) Distribution
Parameters m a 53.6 144
Values 109 15
Moments X - 100 dg= 15

Fig. 5.6 : Graphical Representation for assigning the variables with corresponding values of mean and

standard deviation
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gﬁFile Function Model Job View Window Help

O2E A X0B| 8 B b lkleS B

Reliabili - M P : s .
elizbility Job - Mo coment .{8 Symbolic Expressions I‘ Stochastic Model E Correlations ':i Multiple Runs Q Results @ Plots

Ja Symbolic Expressions

Bw Limit State Functions FLIM(;)=
-9 FLINGL) fs*d"2/50-(P/2)
: Interface Scripts
|‘_ Stochastic Variables
BB! R - Variables
foe B P - { load }
B #5 - { shear streng|
----- B d - { depth of beam
E Correlations
g Deterministic Parameter St

"KC Characteristic Values
':" Multiple Runs
@ Starting Solution

Fig. 5.7 : Defining the limit state function for the program

Representative Alphas of Variables FLIM(1), DEMO.pti

fs 0.68
d 0.45
P -0.58

Sum of a21.00

Fig. 5.8 : Representative alphas of variables in the function

PSF. 500,00 Partial Safety Factor% %IM( 1), DEMO.pti

60.00

1.41

1.25

0.94 —

0.78 —

0.63

0.47 —

fs d
Top: Characteristic Values, Bottom: Variables

Fig. 5.9 : Partial Safety Factors
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Job name ............
Failure criterion no.
Comment : No comment
Transformation type

Cptimization algorithm:

Date(dd.mm.yyyy) ....
Time(hh:mm) ........

Numerical Result

: DEMO

: Rosenblatt

Comrel-TI, (Version 2023),

RFLS
13.
: le:

0s5.2023
18

Copyright: RCP GmbH (19835-2023)

Block beginning with Keyword $CHARVAL not found in Input-£file !
Characteristic Values default to mean values.

Create buffer for $LIMFUNC with 2852 Bytes (Ier from Fstat = 0)
CCMREL-TI
Iteration monitoring of YBETAU algorithm
General enviroment information
Maximal number of iterations in RFLS1 = S0
Maximal number of iterations in RFLS2 = S0
Type of numerical derivatives = 0
Precision for convergence criteria = 1.0000E-03
Line search precision = 1.0000E-01
Initial U-space solution
0.0000 0.0000 0.0000
Algorithm 1 : Iteration history
Iteration No. 1; CPU-seconds(cumulative): 0.012
Scaled St.F(U) = 0.113% ; BETA = 0.0000; BETA/||U||= 0.0000
Iteration No. 2; CPU-seconds(cumulative): 0.020
Scaled St.F(U) = -0.5358E-03; BETA = 2.8451; BETA/I|IU|l|I= 0.8722
Iteration No. 3; CPU-seconds(cumulative): 0.020
Scaled St.F(U) = -0.€09€E-04; BETA = 3.2€09; BETA/||UlI= 1.0010
Iteration No. 4; CPU-seconds(cumulative): 0.027
Scaled St.F(U) = -0.4052E-05; BETA = 3.2575; BETA/||UlI= 1.0001
Iteration No. 5; CPU-seconds(cumulative): 0.031
Scaled St.F(U) = -0.2€44E-0¢; BETA = 3.2572; BETA/|IUlI= 1.0000
Iteration No. ¢€; CPU-seconds(cumulative): 0.031
Scaled St.F(U) = -0.1721E-07; BETA = 3.2572; BETA/|IUlI= 1.0000
Statistics after RFLS-algorithm #1 (YRFLS1)
Cumulative seconds used : 0.0312
Number of iterations H €
Cumulative gradient calls : €
Cumulative state function calls: 25
State function scaling : 4_7000E+03
Statistics after beta-point search
Cumulative seconds used : 0.0312
Number of iterations (RFLS-1+-2): €
Cumulative gradient calls : €
Cumulative state function calls: 25
Transfer to GUI: NBV= 3; NPVEC= 0
----- Vector U-mem plus FU at solution —_———
-2.217 -1.457 1.889 -0.1721E-07
----- Vector X at solution transfered to GUI ————-
€6.74 54.17 7834.
----- Vector of constant Parameters transfered to GUI ————-
beta-value to GUI: 3.2572; Pf-value to GUI: 5.€258E-04
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CHAPTER 6
RELIABILITY ANALYSIS

6.1 Reliability assessment of a column in a multi-storey asymmetric

RCC building

To analyze earthquake loading on a six-storey RCC building, a column was considered
and time history analysis was conducted in ETABS to determine both axial load as well
as biaxial bending moments on the column, using data from the well-known El Centro
earthquake. The resulting table was then exported to MS Excel to calculate the mean and
standard deviations, which were obtained using the software's built-in formulae. The
column failure criteria is taken from the RCC code 1S:456-2000 prevalent in India for

biaxial bending as well as axial loading which is given as:

M. . an M, ., an
[ “"] +[ “}] <1.0
Myxq Muyl

Where,
M, M,, =moments about x and y axes due to design loads,

M, .1* Myy; = maximum uniaxial moment capacity for an axial load of Pu, bending

about x and y axes respectively, and
@, 1s related to Pu/Puz
Where Py =0.45 fac Ac + 0.67 fy Asc
Puz =045 fac Ac + 0.75 fy Asd
Where,
Py = axial load on the member,
fok = characteristic compressive strength of the concrete,
Ac = Area of concrete,
fy = characteristic strength of the compression reinforcement,

Asc = area of longitudinal reinforcement for columns.
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For values of P,/Py; = 0.2 to 0.8, the values of a,, vary linearly from 1.0 to 2.0. For values

less than 0.2, @, 1s 1.0; for values greater than 0.8, &, 15 2.0.

The equations mentioned above are utilized to construct the failure's limiting state
equation in COMREL. Various probability density functions (PDFs) including normal,
lognormal, and Gumbel max have been considered during the analysis. To achieve
optimized reliability, certain PDFs have been assigned to specific input variables. FORM
analyses have been conducted, and the reliability and probability of failure system have

been computed using this approach.

The figures below display the values given, middle steps, and results obtained from

various software applications.

6.1.1 Structural Modelling

Grid Dimensions (Plan) Story Dimensions

(® Uniform Grid Spacing (® Simple Story Data
Number of Grid Lines in X Direction S Number of Stories D}
Number of Grid Lines in Y Direction s ] Typical Story Height 3 |m
Spacing of Grids in X Direction 6 m Bottom Story Height 3 jm
Spacing of Grids in Y Direction 6 m
Specify Grid Labeling Options Grid Labels...

O Custom Grid Spacing (O Custom Story Data

Specify Custom Story Data

Add Structural Objects

- - (] ]
1 Ll 1 (] 1
L] s i
L] L | 1
& O I
1) Ll 1 . 1 1
I | " “ 1 ) T (] ]
1) L L L] 1
- - [ 1
Blank Steel Deck Staggered Truss Flat Slab Flat Slab with Waffle Slab Two Way or
Perimeter Beams Ribbed Slab

Fig. 6.1 : Defining the grid points for the structural plan
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Fig. 6.3 : Structural Elevation
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Table 6.1— Structural Data

Fig. 6.4 : 3d view of structure
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Table 6.2— Earthquake Data

Earthquake Magnitude Year Station Name | Damping Ratio
Denali, Alaska 7.9 2002 Anchorage- 5%
K2-05

1 ! 1 | ! 1
0 40 80 120 160 200 240 280 320 380 400

Fig. 6.5 : Earthquake in X-Direction

2.26 -
Legend
2.04 - ——— Damping 0
——— Damping 0.02
1.81- ——— Damping 0.03
——— Damping 0.05
1.58 - Damping 0.07
Damping 0.1

1.36 -

113 -

0.91 - | y

0.68 -

Psuedo Spectral Acceleration, PSA

0.45 -

0.23 -

0‘001 I | I I I I 1 | | |
000 050 100 150 200 250 300 350 400 450 500
Period, sec
Fig. 6.6 : Target Response Spectrum in X-Direction
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Fig. 6.7 : Earthquake in Y-Direction
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Fig. 6.8 : Target Response Spectrum in Y-Direction
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L e

Fig. 6.9 : Spectral Matching of Earthquake in X-Direction

b

Fig. 6.10 : Spectral Matching of Earthquake in Y-Direction

NOTE- Spectral matching for earthquakes is a technique used to compare observed
seismic waveforms with synthetic waveforms to determine key characteristics of an
earthquake. By analyzing the frequency content, amplitude, and arrival times of the
seismic waves, scientists can estimate parameters like the earthquake's location,
magnitude, and focal mechanism. This method plays a crucial role in earthquake source
characterization, seismic hazard assessment, and the development of early warning
systems. Spectral matching provides valuable insights into earthquake behaviour, helps
improve seismic monitoring and prediction, and enhances our understanding of
earthquake processes. Its accurate analysis of seismic waveforms contributes to better

preparedness and mitigation strategies for seismic events.
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Fig. 6.11 : Plot of Time History Function for X-Direction
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Fig. 6.12 : Plot of Time History Function for Y-Direction
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6.2 COMREL Analysis

File Function Model Job View Window Help
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Fig. 6.13 : Input Variables for COMREL in Numerical form

1
B fck - { comressive strength }
| Normzl (Gauss) Distribution
Moments o a 1.5 48.5
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T T i 37e-2%
B muxt - { moment 1n x direction }
| Lognormal Distribution |
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Fig. 6.14 : Input Variables for COMREL in Graphical form
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Fig. 6.15 : Defining the limit state function

Representative Alphas of Variables FLIM(1), DEMO.pti

fck -0.13
Muy1l -0.99
Mux1 -0.08

Sum of a2 1.00

Fig. 6.16 : Representative alphas of variables
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Fig. 6.17 : Partial Safety of Factors

44




Numerical Result

Job name ............ : DEMO
Failure criterion no. : 1
Comment : No comment
Transformation type : Rosenblatt
Optimization algorithm: RFLS
Date(dd.mm.yyyy) .... : 22.05.2023
Time(hh:mm) ........ : 21:13

Comrel-TI, (Version 2023), Copyright: RCP GmbH (1585-2023)

Block beginning with Keyword $CHARVAL not found in Input-£file !
Characteristic Values default to mean values.

Create buffer for FLIMFUNC with 2888 Bytes (Ier from Fstat = 0)

COMREL-TI
Iteration monitoring of YBETAU algorithm

General enviroment information

Maximal number of iterations in RFLS1 = 100
Maximal number of iterations in RFLS2Z = 100
Type of numerical derivatives = 0
Precision for convergence criteria = 1.0000E-03
Line search precision = 1.0000E-01
Initial U-space solution
0.0000 0.0000 0.0000
Algorithm 1 : Iteration history
Iteration No. 1; CPU-seconds(cumulative): 0.000
Scaled St.F(U) = 0.5508 ; BETA = 0.0000; BETA/||U]||= 0.0000
Iteration No. 2; CPU-seconds(cumulative): 0.008
Scaled St.F(U) = 0.3505% ; BETA = 0.2417; BETA/||U]||= 0.5837
Iteration No. 3; CPU-seconds(cumulative): 0.008
Scaled St.F(U) = 0.8¢42 ; BETA = 0.4138; BETA/||U||= 0.7558
Iteration No. 4; CPU-seconds(cumulative): 0.008
Scaled St.F(U) = 0.813¢ ; BETA = 0.5471; BETA/||U]||= 0.7950
Iteration No. 5; CPU-seconds(cumulative): 0.008
Scaled St.F(U) = 0.€318 ; BETA = 0.€837; BETA/||U]||= 0.€543
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Iteration No. ¢€; CPU-seconds(cumulative): 0.008

Scaled St.F(U) = -0.7178 ; BETA = 1.0400; BETA/||U]||= 0.5072
Iteration No. 7; CPU-seconds(cumulative): 0.023
Scaled St.F(U) = -0.172¢ ; BETA = 1.5819; BETA/||U||= 1.1700
Iteration No. 8; CPU-seconds(cumulative): 0.023
Scaled St.F(U) = -0.153%E-01; BETA = 1.€787; BETA/||U||= 1.05¢¢
Iteration No. 9; CPU-seconds(cumulative): 0.023
Scaled St.F(U) = -0.3€25E-03; BETA = 1.5880; BETA/||U]||= 1.005¢
Iteration No. 10; CPU-seconds (cumulative) : 0.023
Scaled St.F(U) = -0.1503E-04; BETA = 1.57%0; BETA/||U||= 1.0001
Iteration No. 1l1; CPU-seconds(cumulative): 0.023
Scaled St.F(U) = -0.8270E-0¢; BETA = 1.5788; BETA/||U||= 1.0000
Iteration No. 12; CPU-seconds(cumulative): 0.023
Scaled St.F(U) = -0.4518E-07; BETA = 1.5788; BETA/||U||= 1.0000

Statistics after RFLS-algorithm £1 (YRFLS1)

Cumulative seconds used - 0.0234
Number of iterations : 12
Cumulative gradient calls : 12
Cumulative state function calls: 54
State function scaling : 8.7058E-01

Statistics after beta-point search :
Cumulative seconds used : 0.0234

Number of iterations (RFLS-1+-2): 12
Cumulative gradient calls 12
Cumulative state function calls: 54

Transfer to GUI: NEBV= 3; NPVEC= u}

————— Vector U-mem plus FU at solution ————
0.2025 1.5¢1 0.127% -0.4518E-07

----- Vector X at solution transfered to GUI —_———
31.21 0.43459E+0¢ 0.33€1lE+05

----- Vector of constant Parameters transfered to GUI ————

beta-value to GUI: 1.5788; Pf-value to GUI: 5.718S%E-02
Result-
FORM-beta 1.579
FORM-Pf 5.72e-02
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CHAPTER 7

RESULTS AND CONCLUSIONS

A reliability index value of 1.58 suggests a moderate level of reliability for a structure.
The reliability index, often denoted as P, quantifies the margin of safety between the
applied loads and the capacity of the system. It is typically calculated based on
probabilistic analysis considering the variability and uncertainties in the relevant

parameters.

In general, a higher reliability index value indicates a greater level of reliability and a
larger safety margin. A value of 1.58 suggests that the structure has some margin of

safety, but it may not be as robust as structures with higher reliability index values.

The interpretation of the reliability index value also depends on the specific industry and
design standards. Different industries and jurisdictions may have different acceptable
limits for the reliability index based on the consequences of failure, risk tolerances, and

specific design codes.

It 1s observed that the reliability index value should be evaluated in conjunction with
other factors, such as the consequences of failure, the criticality of the structure, and the
specific design requirements, to determine if the structure meets the desired level of

reliability and safety.

It should be noted that with varying cross-section of structural elements i.e. beams and
columns, and also the compressive strength of concrete, we can see a change in the

probability of failure of the structure which shows a change in the reliability index.
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APPENDIX

Element Output Data for Column No.1 of Story No.1(Base):

Story
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl

m

Column Output Case Case Type Step Type Station

C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1

UDConS1
UDConS1
UDConS1
UDConS2
UDConS2
UDConS2
UDConS3
UDConS3
UDConS3
UDConS3
UDConS3
UDConS3
UDConS4
UDConS4
UDConS4
UDConS4
UDConS4
UDConS4
UDConS5
UDConS5
UDConS5
UDConS5
UDConS5
UDConS5
UDConS6
UDConS6
UDConS6
UDConS6
UDConS6
UDConS6
UDConS7
UDConS7
UDConS7
UDConS7
UDConS7
UDConS7

Combination

Combination

Combination

Combination

Combination

Combination

Combinatior Max
Combinatior Max
Combinatior Max
Combinatior Min
Combinatior Min
Combinatior Min
Combinatior Max
Combinatior Max
Combinatior Max
Combinatior Min
Combinatior Min
Combinatior Min
Combinatior Max
Combinatior Max
Combinatior Max
Combinatior Min
Combinatior Min
Combinatior Min
Combinatior Max
Combinatior Max
Combinatior Max
Combinatior Min
Combinatior Min
Combinatior Min
Combinatior Max
Combinatior Max
Combinatior Max
Combinatior Min
Combinatior Min
Combinatior Min

0
1.285
2.57
0
1.285
2.57
0
1.285
2.57
0
1.285
2.57
0
1.285
2.57
0
1.285
2.57
0
1.285
2.57
0
1.285
2.57
0
1.285
2.57
0
1.285
2.57
0
1.285
2.57
0
1.285
2.57

kN
P

-596.1778
-584.1345
-572.0912
-841.8375
-829.7942
-817.7509
-673.3684
-663.7337
-654.0991

-673.642
-664.0074
-654.3727

-673.298
-663.6634
-654.0287
-673.5717

-663.937
-654.3024
-673.1832
-663.5486
-653.9139
-673.6831
-664.0484
-654.4138

-673.257
-663.6223
-653.9877
-673.7568
-664.1221
-654.4875
-596.0508
-584.0075
-571.9642
-596.3929
-584.3495
-572.3062

kN-m
M2
10.8104
13.3298
15.8492
5.6317
14.9137
24.1958
4.5147
11.9362
19.358
4.4945
11.9248
19.3552
4.5162
11.9371
19.3581
4.496
11.9257
19.3552
4.5252
11.942
19.359
4.4848
11.9196
19.3545
4.5259
11.9423
19.3587
4.4855
11.9199
19.3542
10.8221
13.3364
15.851
10.7968
13.3221
15.8474

kN-m
M3
13.459
15.2388
17.0186
8.3246
16.8305
25.3364
6.7971
13.5472
20.2974
6.4712
13.3628
20.234
6.8481
13.566
20.3043
6.5223
13.3816
20.2409
6.9575
13.5866
20.3482
6.2664
13.2861
20.1894
7.0529
13.6427
20.3489
6.3618
13.3423
20.1901
13.6307
15.3423
17.0539
13.2234
15.1118
16.9746

kN
P ABS

596.18
584.13
572.09
841.84
829.79
817.75
673.37
663.73
654.10
673.64
664.01
654.37
673.30
663.66
654.03
673.57
663.94
654.30
673.18
663.55
653.91
673.68
664.05
654.41
673.26
663.62
653.99
673.76
664.12
654.49
596.05
584.01
571.96
596.39
584.35
572.31
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Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl
Storyl

C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1

UDConS8

UDConS8

UDConS8

UDConS8

UDConS8

UDConS8

UDConS9

UDConS9

UDConS9

UDConS9

UDConS9

UDConS9

UDConS10
UDConS10
UDConS10
UDConS10
UDConS10
UDConS10
UDConS11
UDConS11
UDConS11
UDConS11
UDConS11
UDConS11
UDConS12
UDConS12
UDConS12
UDConS12
UDConS12
UDConS12
UDConS13
UDConS13
UDConS13
UDConS13
UDConS13
UDConS13
UDConS14
UDConS14
UDConS14
UDConS14
UDConS14
UDConS14

Combinatior Max
Combinatior Max
Combinatior Max
Combinatior Min
Combinatior Min
Combinatior Min
Combinatior Max
Combinatior Max
Combinatior Max
Combinatior Min
Combinatior Min
Combinatior Min
Combinatior Max
Combinatior Max
Combinatior Max
Combinatior Min
Combinatior Min
Combinatior Min
Combinatior Max
Combinatior Max
Combinatior Max
Combinatior Min
Combinatior Min
Combinatior Min
Combinatior Max
Combinatior Max
Combinatior Max
Combinatior Min
Combinatior Min
Combinatior Min
Combinatior Max
Combinatior Max
Combinatior Max
Combinatior Min
Combinatior Min
Combinatior Min
Combinatior Max
Combinatior Max
Combinatior Max
Combinatior Min
Combinatior Min
Combinatior Min

0
1.285
2.57

1.285
2.57
0
1.285
2.57

1.285
2.57

1.285
2.57

1.285
2.57
0
1.285
2.57

1.285
2.57

1.285
2.57

1.285
2.57

1.285
2.57

1.285
2.57
0
1.285
2.57

1.285
2.57

-595.9628
-583.9195
-571.8762
-596.3049
-584.2616
-572.2183
-595.8194

-583.776
-571.7327
-596.4442
-584.4008
-572.3575
-595.9115
-583.8682
-571.8249
-596.5363

-584.493
-572.4497
-357.5797
-350.3537
-343.1277
-357.9217
-350.6957
-343.4697
-357.4917
-350.2657
-343.0397
-357.8338
-350.6078
-343.3818
-357.3482
-350.1222
-342.8962

-357.973

-350.747

-343.521
-357.4404
-350.2144
-342.9884
-358.0652
-350.8392
-343.6132

10.824
13.3375
15.8511
10.7987
13.3233
15.8475
10.8352
13.3436
15.8523
10.7847
13.3156
15.8466
10.8361

13.344
15.8519
10.7856

13.316
15.8462

6.4979

8.0044

9.5113

6.4727

7.9902

9.5077

6.4998

8.0056

9.5114

6.4745

7.9913

9.5078

6.5111

8.0117

9.5126

6.4605

7.9837

9.5069

6.512

8.0121

9.5122

6.4614

7.9841

9.5065

13.6945
15.3658
17.0626
13.2872
15.1353
16.9833
13.8313
15.3915
17.1174
12.9674
15.0159
16.9189
13.9505
15.4616
17.1183
13.0866
15.0861
16.9198
8.2471
9.2468
10.2465
7.8398
9.0163
10.1672
8.3109
9.2703
10.2551
7.9036
9.0398
10.1759
8.4477
9.296
10.3099
7.5838
8.9204
10.1114
8.5669
9.3661
10.3109
7.7031
8.9906
10.1124

595.96
583.92
571.88
596.30
584.26
572.22
595.82
583.78
571.73
596.44
584.40
572.36
595.91
583.87
571.82
596.54
584.49
572.45
357.58
350.35
343.13
357.92
350.70
343.47
357.49
350.27
343.04
357.83
350.61
343.38
357.35
350.12
342.90
357.97
350.75
343.52
357.44
350.21
342.99
358.07
350.84
343.61

The respective mean and standard deviation of the moments:

M2 MEAN M2STD M3 MEAN M3STD
"11.319737 4.596753" 12.8785" 4.419995
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