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ABSTRACT 

 

 

This paper aims to fabricate multilayer wall of AA4047 by Wire Arc Additive Manufacturing 

(WAAM) through Cold Metal Transfer (CMT). To determine the optimal process parameters, 

optimization of monolayer parameters is carried out via Response Surface Methodology (RSM) 

– Analysis of Variance (ANOVA). There is an overall impact on the operational characteristics 

of fabrication time, and heat input (HI); geometrical characteristics of wall height, and width; 

and metallurgical characteristics of strength, microhardness, porosity, and microstructure for the 

deposited layers.  

 

The multilayer wall had average Microhardness of 49.90 HV, Yield Strength of 67.5 MPa, 

Elastic Modulus of 1032.58 MPa, Percentage Elongation (PE) of 31.3, and Ultimate Tensile 

Strength (UTS) of 146.5615 MPa. It was concluded that UTS, and microhardness increased, and 

deposition rate, PE and pore size decreased, as HI was decreased by decreasing current and 

increasing travel speed, on increasing the number of layers. 

 

KEYWORDS: WAAM, CMT, AA4047, Heat Input, Tensile Strength, Hardness 
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CHAPTER 1 INTRODUCTION 

1.1 ADDITIVE MANUFACTURING (AM) 

Ere the industrial revolutions, livelihood was subjected to craftsmanship and agriculture. With time 

the urge to develop newer materials and manufacturing processes came up and people wanted to use 

better quality products and enhance their lifestyle. This started research for newer materials and 

fabrication methods, which could be more effective and fast compared to the traditional ones. This 

trend made the country's economy dependent on its industrial growth via large-scale production and 

mechanized tooling.  

Four stages in the industrial revolution are seen as (a) Stage 1: A shift in manufacturing from manual 

to the steam-driven, which continued up to 1835, (b) Stage 2: Vast-scale manufacturing by high-end 

energy resource development, which continued up to 1945, (c) Stage 3: Shift from mechanically 

driven era to a technology-driven era of Computer, Digital data, and Internet, it continued up to 2015, 

(d) Stage 4: Integrates advanced manufacturing processes especially Additive Manufacturing(AM) 

with the Simulation and Optimization, Big data,  Internet of Things, Augmented Reality, Robotics and 

AI to create computer-aided manufacturing systems which not only interpret but also use data by 

Machine Learning to manage numerous intelligent movements back in real-world pacing towards 

complete automation [1].  

Hence the industry is benefited from the flexible product modification, product development, market 

entrance, reduced cost, and operational unification achieved [2]. The six primary steps of AM are (a) 

building a 3D model via Software packages, (b) tessellating, (c) stacking, (d) configuring and 

calibrating the machine, (e) producing prototypes, and (f) post-processing and strength analysis.  

As new technologies and techniques for fabrication are developed, design and production research is 

redefining the boundary of conventional methods. Earlier termed as rapid prototyping (in the 1980s), 

this process faced advancements and is now termed as Additive manufacturing. Feedstock is used, 

which is in the form of a powder or wire. It may be fused, heated, or build as stacks by multi-

dimensional computer-aided process planning and manufacturing system.  

With minimum homo sapiens interaction, it eliminates all needs to remove or mould material further 

into the shape of a product [3]. Additive manufacturing (AM) is the formal industrial nomenclature, 

but 3D printing is recognised frequently common alternative, owing to a joint effort by the ASTM-

American Society for Testing and Materials with ISO-International Standards Organization [4].  

Due to its capacity to create complicated geometries, decrease waste, increase design flexibility, and 

lower the cost of customization, metallic 3-d printing (AM) is among the most key techniques 

employed in the manufacturing business [5,6]. For example, some titanium surgical implants have 
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recently been printed using it. Boeing 777 with engine GE9X uses a heat exchanger system, 

consisting of 300 individual pieces. Owing to AM evolution, it just requires one, which also happens 

to be 25% cheaper and 40% lighter.  

SpaceX has used MAM components to cut down on production time and weight for its Super Draco 

and Raptor engines, and NASA plans to do the same for the Space Shuttle's primary engine in the 

near future. Made of 308LSi austenitic stainless steel, the world's 1st additively manufactured metallic 

bridge is at De Wallen, Amsterdam, it stretches 10.50 meters over the Oudezijds Achterburgwal 

canal. [7-9] 

1.1.1 Types of Additive Manufacturing 

Binder jetting (BJ), Sheet Lamination, Material Extrusion (ME), Direct energy deposition (DED), Vat 

Polymerization, and Powder bed fusion (PBF) are the six main types of MAM processes defined by 

ASTM/ISO 52900:2017, others are Friction Stir Additive Manufacturing, WAAM as shown in Fig. 

1.1.1 [4]. Metals are involved in just four of these six processes. Acknowledging advancements in 

AM, metal, polymer, ceramic, composite, and bio-compatible materials are just a few examples that 

can be used [10]. 

Binder Jetting results are analogous to those of printing text on paper. When metal powdered granules 

bond to one another through a liquid binder, it creates a solid material layer. This printing process 

normally takes place at room temperature, this assists in avoiding thermally induced errors such as 

undesired grain development and distortion which are common in other MAM techniques that rely on 

a heat source [11-14]. The base material also acts as a substitute support structure while the permanent 

one is being built. Waste is reduced since there is no need for framing [15-17].  

DED- Direct Energy Deposition is a method that, like welding, employs a concentrated heat source to 

melt materials that are placed via a nozzle [18].  It accounts for 16% of the overall MAM market and 

is mostly used for producing fairly close parts and fixing or making improvements to existing parts 

[19,20]. The DED method makes use of a heat source that may melt a feedstock (wire and powder) to 

a liquid state [21,22]. 

It is touted as being more efficient than competing technologies since it doesn't need the use of 

powerful lasers. In addition to being more cost-effective than PBF (Powder Bed Fusion) by 60-80%, it 

is simpler to run too. Fused deposition modelling (FDM) was developed for additive production of 

polymeric as well as composite layers [21-24]. 

The bound powder and ceramic release substance, are held on separate spools in a sealed container, 

and extruded by a conventional Material Extrusion machine. When using polymer binders, the 3d 

printer must raise the temperature of the feed higher than its melting point [25-28]. When using an 
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electron or laser beam, PBF melts the material, allowing for the deposition of several coatings of 

material at once.  

Metal direct laser sintering is being used to create bigger mechanical components like turbine blades, 

it has the potential of creating thick multi-layered substances but has a massive operational expense. 

PBF falls into a similar category.  

Similarly, electron beam melting necessitates a vacuum during the production of functional 

components, whereas selective laser heating has higher operating costs than the aforementioned AM 

techniques [29-33]. 

 

Fig.1.1.1 Types of Additive Manufacturing 

 1.1.2 Limitations of AM 

Calvert et. al declared that elevated temperatures and gradients developed in electron beam welding 

caused accelerated grain growth, a decrease in isotropic behaviour, a decrement in levels of stress 

dilution, and other typical cast defects. They also explained that it required some machining within 

every succeeding layer for a better connection surface [36].  

The traditional subtractive production process for fabrication involved around 85 percent wastage of 

base material. The AM process requires lesser material bulk volume and concurrently improves the 

Additive 
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Wire Arc Additive 
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strength-to-weight ratio. Some of its latest techniques that are extensively used are selective laser 

sintering, cold spray AM, electron beam welding, layered friction stir AM [37]  

Sing et al. [38] declared that selective laser melting fabricated components with remarkable defects 

along with porosity. Mertens et al. [39] observed that the enormous laser energies utilised in laser 

beam AM would lead to more material loss due to evaporation, unnecessary spatter, and degradation 

of exterior nature by baling.  

SMD (shape metal deposition) has an extensive build rate but inferior surface quality and bad 

dimensional tolerance, this issue was resolved by the application of LBAM. The parts made had better 

properties but had a tremendous cost of operation, slow build rates, and moderate bulk volume.  

Hang et al. stated that making metal parts by AM got commonly restrained to fusion-based methods 

where the powder substrates have to be heated above the melting point and, as the laser or beam 

moves forward, the consequent molten metal pool tempers down, getting solidified according to the 

scanning tool path followed by the laser or beam [40].  

Like in fusion welding and casting, fusion-based MAM unavoidably negotiates in quality control of 

the material; cooled material suffers from hot cracking (especially in pure aluminium), porosity 

(especially in LBAM-made parts), residual stresses, and other defects.  

These defects get elevated due to the improper grain structure formed by the swift cooling rate and a 

sharp temperature gradient. Even after years of research, the quality of fusion-based components still 

lacks.  

Even in Cold Spray AM, which is the most researched AM in recent times, FSP has to be followed 

after deposition due to the porosity, micro-cracks, and improper bindings in some places. Thus, there 

has to be post-processing done on FSP machines, this increases the cost of the component as it 

undergoes two different exclusive machine setups. These limitations cause the emergence of Wire Arc 

Additive Manufacturing (WAAM). 

1.2 WIRE ARC ADDITIVE MANUFACTURING (WAAM) 

The technique of Wire Arc Additive Manufacturing (WAAM) for aluminum alloy has evolved swiftly 

in previous years [41]. WAAM is a continuous feed technique that employs an arc to be the heat 

source while the metallic wire is the feedstock [42]. In contrast to the low energy efficiency of 

additive manufacturing (AM) using electron beams and laser energies, the energy efficiency in 

WAAM may reach as high as 90 percent [43,44].  

Feedstock transfer efficiency can go up to 100 percent [45]. This gives high material efficiency and 

makes the process economical. It has a high formation rate of approximately 10 kg/hr [46]. The 

WAAM Ti-6Al-4V alloy's fatigue life exceeded that of the cast sample, indicating its suitability for 
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superior strength applications [47]. It is best for sizable components with a moderate degree of 

geometrical intricacy [48,49].  

If process parameters are not chosen wisely, they can result in high porosity, inferior mechanical 

properties, and collapse, initiated by critical heat deposition [50,51]. One of the crucial parameters for 

WAAM is heat input [52-54]. A lot of researchers have analyzed the effect of heat input in WAAM 

[55-58]. 

WAAM owns its existence to Direct Energy Deposition (DED). DED is a technique that, like 

welding, uses an intensified heat source to melt solids that are deposited through a nozzle [59].  

According to Tepylo, Vafadar, it accounts for 16% of the total AM industry and is ideal for 

manufacturing relatively near components and repairing or enhancing pre-existing ones [60,61].  

The DED technique employs a thermal source that can transform a feedstock (wire or granules) into a 

liquid state [62,63]. It is expected to account for a market share of approximately 80% of the revenue 

generated by AM. Furthermore, it is 60-80% less expensive than PBF (Powder Bed Fusion), and it is 

also easier to operate [63].  

Powder-fusing systems are optimal for tiny, complicated sections with detailed and difficult features, 

whereas wire-fusing systems with DED technology typically have higher rates of deposition but lower 

quality of finish. Wire or powder can be used as feed; there both have advantages as well as 

disadvantages. When using powder as feed, a certain quantity of additives can be used to enhance the 

properties of the deposited material, so a variety of powder mixtures can be formed, deposited, and 

analyzed, making the process flexible.  

Along with an increase in the variability of the powder, there comes a risk of impurity embrittlement. 

When using solid rods as feed, the ease of variability decreases but the risk of impurity embrittlement 

diminishes, allowing the formation of high-quality deposited material [64].  

1.3 HEAT SOURCES IN WAAM 

On understanding the effect of heat input value on the properties of WAAM-made products, it is 

critical to know about the various heat sources that can be employed in WAAM. These are Tungsten 

Inert Gas (TIG), Metal Inert Gas (MIG), and Plasma Arc Welding (PAW) [65-69].  

Although PAW has more focussed heat than MIG, PAW has the limitation of high gas usage and 

costly machinery [69-71]. The arc welding source creates heat energy, that widens the heat-affected 

zone (HAZ). On comparing with wrought alloys, these have poor build quality. Aluminum alloys 

have a large linear expansion leading to solidification cracking [72-75].  

The MIG process is extensively used for aluminium alloys, but can lead to intense solidification 

cracking and critical deformation [76,77]. By decreasing heat input in the MIG plasma hybrid process 
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of AA 7075, the solidification cracking tendency is reduced [78,79]. For AA 6061 alloy, increasing 

the wire feed speed, initially increased the tendency of solidification cracking and later decreased it 

[80]. A test of transverse motion weldability depicts the solidification cracking tendency of AA 7075 

alloy when compared between CMT and MIG processes [81].  

1.4 COLD METAL TRANSFER  

The MIG process has revolutionized into (CMT) process, seeking the advantages of lower heat input, 

lower residual stress, more stable arc, higher controllability of material deposition, and diminished 

spatter [82-84]. Fronius company played a huge part in evolving the CMT technique. The wire feed 

was incorporated into the welding procedure. They programmed the complete control of the system 

robotically.  

For each short circuit that occurred, the robotic control interrupted the power cycle. The CMT cycle 

for material deposition has three phases- the peak current phase, the background current phase, and 

the short-circuiting phase [85,86]. In the first phase, high current and constant voltage cause the 

lightening of the arc, heating the feed wire to initiate the droplet. In the second phase, the current is 

lowered to stop the transfer of droplets formed [87,88].  

The voltage is decreased to zero in the short circuit stage. A system of oscillatory wire feeders having 

an approximate frequency of less than 70 Hz, retracts the wire against the work surface [89]. This 

decreases the heat input, reducing deformation [90]. It is in this phase that the heat is received by the 

wire from the weld pool by the intermediate droplet [91]. Hence, spatter and heat input gets reduced. 

In this paper, a CMT technology for getting high deposition rates by WAAM is proposed. 
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CHAPTER 2 LITERATURE REVIEW AND OBJECTIVES OF 

PRESENT WORK 

2.1 LITERARTURE REVIEW 

2.1.1 WAAM 

Su et al. [92] analyzed the effect of source energy on the mechanical and microstructural properties of 

the Al-Mg alloy manufactured using WAAM. Various levels of heat energy were generated by 

altering the transverse speed and the wire feed speed to produce numerous Al-Mg parts. Significant 

columnar grains within the interlayer and interior layers got transformed into fine equiaxed grains by 

modifying the heat input [93].  

Wang et al. [94] displayed grain refinement and porosity decrement in components with thin walls by 

modifying the current and the pulse frequency. At reduced current values and pulse rates, 

finer grains and uniform microstructure were developed as a result of the quick cooling of the material 

[95]. 

 Guo et al. worked on Al-Si alloy thin wall components and concluded that WAAM performed better 

than casting. To increase the controllability of the process, the travel speed (TS) was increased by 

decreasing heat input levels [96,97]. Zhou et al. concluded that to minimize the diameter of the 

equiaxed grain and to lower the volume fraction, heat input was lowered, incrementing formation 

rates and cooling rates [98].   

2.1.2 CMT 

The tendency of solidification cracking is diminished by CMT due to its low heat input characteristic 

[59,60]. This characteristic also reduces intermediate layer thickness, improving joint efficiency [99]. 

CMT, also shows lowered dilution cladding [100]. 

Robotically governed CMT gives improved process efficiency, travel speed, flexibility, part strength, 

and 100% material efficiency [101-103]. It has a variety of applications in aeronautics, structures, 

electronic parts, and locomotive media [104,105].  CMT has a variety of arc modes, namely advanced 

CMT, pulse CMT, and pulse advanced CMT [106].  

Cong analyzed the CMT technique with variable polarity technique. It effectively eradicated porosity 

and showed that the most important variables were minimal heat input, a refined equiaxed grain 

arrangement, and efficient oxide cleansing of the feed wire. In terms of eradicating porosity, the CMT 

technique with variable polarity mode is more practical compared to the arc modes. This arc mode has 

increased application potential in WAAM [107].  
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Thin-walled Al-6Mg components with a uniform structure and low porosity were manufactured via 

WAAM utilizing a CMT-VP arc energy source with multiple arc modes. Components 

made had (Ultimate Tensile Strength) UTS, greater than those of other mode components and also, 

better than the wrought metal. It is capable of converting columnar grains into equiaxed 

grains, refining the grains, and enhancing mechanical performance [108].  

2.1.3 Fabricating Aluminium Alloys 

In the past few years, numerous scientists and researchers have been trying to produce a variety of 

aluminium alloys, like Al-Mg, Al-Cu, and Al-Si alloys via the WAAM technique [109]. Due to the 

exceptionally high strength of WAAM-made Al-Zn-Mg-Cu aluminium alloy components, many 

scientists are concentrating on their viability [110].  

Alloy was made with the GTAW technique by simultaneously injecting ER2319, Zn, and 

ER5356 infill wires into the pool of molten metal. When greater than forty layers had been added, 

liquation splits appeared 50 mm from the base. As the deposition height increased, the internal tension 

increased, leading to the formation of macro cracks [111].  

In a study by Yu et al., the microstructure lacked equiaxed grains and consisted of columnar grains. 

Defects of cracks and porosity were seen, with a tensile strength of 240 Mpa [112]. Including several 

wires as feed, leads to improper composition and varied microstructure. The produced parts are highly 

prone to hot cracking, and their physical characteristics may get degraded [113,114]. Thus, for 

studying WAAM on unexplored aluminium alloy feed wires, simultaneously combining different feed 

wires isn't recommended.  

Simply employing industrial or readymade aluminium alloy filaments as feed, is a viable option for 

avoiding the above-mentioned shortcomings in WAAM for aluminium alloys [115]. AA 4047 shows 

good mechanical characteristics and applications, and is thus, used with TIG joining process [116-

119], Laser beam joining process [120,121], Laser Brazing process [122], and CMT Welding process 

[123]. AA 4047 has applications of layering in aerospace, automotive, and electronic industries, due 

to its good corrosion resistance, resistance to crack, and ability to bear high temperatures. 

2.1.4 CMT-WAAM for Wall Fabrication 

Ortega et al. made multilayer AA 4043 deposits via the CMT WAAM route. They first studied 

monolayer deposits and then worked on the wall formation [124]. V Shukla et al. studied the tensile 

properties and microstructure of the ER706-6 wall. Before going for the study of the multilayer 

deposit, they first studied the single-layer deposit [125].  

Zhou et. al. [126] stated that sample morphologies of mono-layer Ti6Al4V deposits, need to be 

evaluated for making multilayer deposits. The bead's morphology was determined by its width, aspect 



9  

ratio, and reinforcement. The aspect ratio was defined as the ratio between the width of the bead and 

the thickness of the reinforcement. The upper portion of the made layer was thin and slanted, making 

succeeding layers difficult to deposit. The succeeding deposition layer's molten pool spilled, causing 

collapsed faults. The molten pool's spreadability altered multi-layer deposition sample morphology in 

the CMT-WAAM process [126]. The forming effect improved when each layer's arc beginning point 

matched the preceding layer's endpoint. 

Qi et.al. [127] investigated the effect of process variables of the CMT-WAAM process on the shape 

and appearance of mono-layer and multi-layer deposits (30 layers) of ER2209 duplex stainless steel. 

 Microstructure was monitored simultaneously with the Process parameters. 

Monolayer deposits required 60~70 mm/s wire feed speed and 5~7 mm TS. Multi-

layer deposits require homogeneous reciprocating additive route formation, 65~75 mm/s wire speed, 7 

mm scanning speed, and 60 s interlayer cooling period.  

There lies a need for optimization to find a suitable combination of process parameters, like Multi 

response optimization for WAAM-CMT for SS308L [128], Multi response mathematical modeling of 

AA6061 weld bead configuration using Response surface methodology (RSM) [129], Multi-response 

mathematical modeling in CMT welding using RSM- Grey Relational Analysis [130].  

Heat is built as the number of deposition layers increases, causing the molten pool to overflow [131]. 

Therefore, as the number of deposition layers increases current is decreased [132] and the travel speed 

is increased [133] to get the same effective wall width. In this paper, the current is decreased by 

increasing the height of the wall.  

2.2 RESEARCH GAP  

The research gap has been found out by carrying out Literature Review. 

CMT-WAAM with AA4047 feed wire, has been less explored. AA 4047 has applications of layering 

in aerospace, automotive, and electronic industries, due to its good corrosion resistance, resistance to 

crack, and ability to bear high temperatures. 

For making multilayer deposits, initially bead on plate study for finding out the optimised parameters 

is required, which has been missing in some studies. 

The effect of CMT-WAAM process parameters, on heat input, and various mechanical properties has 

not been studied fully. 
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2.3 OBJECTIVES 

The research objectives have been formulated, by understanding the research gap. 

To study the weld on bead by CMT-WAAM, with AA 4047 filler wire and AA 6082 substrate, and to 

study the heat input, percentage dilution, and microhardness of the monolayers with varying current 

and travel speeds. 

To optimise the process parameters (current and travel speed) by analysing the responses of 

percentage dilution and microhardness of monolayer by Response Surface Methodology (RSM) and 

Analysis of Variance (ANOVA). 

To fabricate a multilayer wall, via cold metal transfer (CMT) mode of wire arc additive 

manufacturing (WAAM), and to study the samples cut out from the various zones of the build wall, 

for Tensile test, Hardness test, and Microstructural study. 
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CHAPTER 3 METHODOLOGY 

3.1 MATERIAL SELECTION 

AA 4043 has been used with the CMT-WAAM process in earlier studies, but AA 4047 has not been 

studied with the CMT-WAAM technique. AA 4047 has a higher silicon content of about 12%, this 

helps in minimizing the shrinkage, getting a smooth finish, and improving its fluidity. It has a melting 

point higher than that of AA 4043, giving it higher resistance to cracking. It can bear high 

temperatures, has good corrosion and wear resistance, and can bind and shield other metals, making it 

apt for automotive, and aerospace applications.  

The use of AA 4047 filler wire has been done in limited studies. The scope of studying the usage of 

AA 4047 with the CMT WAAM process has not been yet explored. Thus, more research is needed in 

this field. AA 4047 feed wire, with 1.2 mm diameter is used. It weighs about 3.5 grams per meter of 

wire. The AA6082 base plate is 5 mm thick, 100 mm in length, and 60 mm in width, as shown in Fig. 

3.1. It is found that AA4047 is compatible with AA4047 for getting proper bindings. The composition 

of AA4047 filler wire and substrate of AA6082 can be seen as described in Table 3.1.1 [130,134].  

Table 3.1.1 Composition of AA4047 and AA6082  

Elements 

(wt. %) 

Si Cr Cu Fe Mg Mn Zn Ti Be Al 

AA4047 11.85 - 0.02 0.24 0.01. 0.01 0.09 0.01 .0003 Balance 

AA6082 1.2 0.25 0.09 0.49 0.58 0.4 .19 - - Balance 

 

 

Fig. 3.1.1 AA6082 Base Plates 
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3.2 EXPERIMENTAL SET-UP 

CMT machine TPS400i made by Fronius is used to carry out the experiments. On working with the 

automatic mode in CMT-WAAM mode, for every filler wire material, pre-setting is created within the 

Fronius system after years of research on the behavior of the material.  The process parameters of the 

voltage, current, and wire feed rate are interdependent on each other.  

Hence, on changing any one parameter, the other two are controlled automatically due to the smart, 

Industry 4.0 enabled CMT set up by Fronius Austria Ltd, as shown in Fig. 3.2.1. Consequently, the 

requirement is to select just a single process variable amongst voltage, wire feed rate, and current of 

which current is selected based on a test run and by the literature review. In addition to that, the most 

essential process variable is welding speed, as demonstrated based by the test run and the literature 

review.  

 

Fig. 3.2.1 Experimental Set-up for CMT-WAAM  
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Fig. 3.2.2 CMT Power Source, Wire Pool, and Argon Gas cylinder 

 

Fig. 3.2.3 CMT Torch, with Nozzle 
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Pure argon (99.999%) was used for shielding the molten AA4047 to avoid oxidation and other 

defects. The gas flow rate influences its cooling rate, leading to an alteration in the specimen's 

solidification rate. In this work, it is kept constant, at 15 L/min. Before commencing the metal 

deposition procedure, the substrate was meticulously cleansed with an alkaline solution to clean oil 

stains and then with acetone ((CH3)2CO).  

 

Fig. 3.2.4 Motion Controller on Work table 

 

Fig. 3.2.5 Remote for controlling robotic motions and process parameters 
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CMT machine is made up of various parts,  

 CMT Power Source, as shown in Fig. 3.2.2 

 Wire Spool, as shown in Fig. 3.2.2 

 Argon Gas cylinder, as shown in Fig. 3.2.2 

 CMT Torch, with Nozzle, as shown in Fig. 3.2.3 

 Motion Controller on Work Table, as shown in Fig. 3.2.4 

 Remote for controlling robotic motions and process parameters, as shown in Fig. 3.2.5 

 Height Adjuster fitted between motion controller and CMT Torch, as shown in Fig. 3.2.6 

 Fume Exhauster, for sucking harmful gases released during deposition, as shown in Fig. 3.2.7 

Following the cleaning of the AA6082 substrate surface, the base plate was fastened with the help of 

fixtures, keeping the torch angle at 90 °, 10 mm of nozzle tip distance (NTD), and stick-out at 5 mm. 

A torch traveler with rectilinear motion is fitted on a gantry robot allowing it to move linearly along 

three axes to maintain the position of the CMT torch. In this research, among the different parameters, 

current and welding speed, are chosen due to their extensive impact on the mechanical properties of 

the made parts.  

 

 

 

Fig. 3.2.6 Height Adjuster fitted between motion controller and CMT Torch 
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Fig. 3.2.7 Fume Exhauster 
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3.3 TEST SET-UP 

3.3.1 Macro Imaging 

Macro images were taken through Trinocular stereo zoom microscope with digital camera as shown 

in Fig.  3.3.1.1 and 3.3.1.2. ImageJ software was used to calculate the area of reinforcement, and that 

of penetration. By the data of reinforcement area and penetration area, total area was calculated. 

Hence, Percentage Dilution could be calculated easily. Before taking macro images, the mounted 

samples, need to be dry and wet polished. Otherwise, the penetration boundary could not be seen 

clearly.  

 

Fig. 3.3.1.1 Stereo Zoom Microscope, with mounted monolayer sample 

 

Fig. 3.3.1.2 Stereo Zoom Microscope with macro image shown on monitor 
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3.3.2 Tensile Testing 

 

 

Fig. 3.3.2.1 Dog shaped sample clamped for Tensile Test on Universal Testing Machine (UTM) 

To determine the tensile strength of the two samples of top and bottom zone, tensile testing is 

carried on a Universal Testing Machine (UTM) as shown in Fig. 3.3.2.1, Fig. 3.3.2.2 and Fig. 

3.3.2.3. The specimen for the same is prepared according to the ASTM-E8 standard is used for 

preparing the samples for testing, and are cut by wire electrical discharge machining (EDM), in the 

form of the shape of a dog bone. At ambient temperature, the prepared specimens undergo tensile 

testing at an ongoing cross-head velocity of 1 mm/min. 

 

Fig. 3.3.2.2 Dog shaped sample after fracture on UTM 
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Fig. 3.3.2.3 Readings obtained on UTM, during Testing 

3.3.3 Microhardness Testing   

 

Fig. 3.3.3.1 Positioning the place of indent, shown by green dot 
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It measures material hardness or penetration resistance. When testing tiny or thin samples or small 

sections of made samples on Duramin 40 struers hardness tester, as shown in Fig. 3.3.3.1, During the 

Vickers microhardness test, an indenter of diamond shape is inserted into the outermost layer of the 

material using a penetrator and a mild burden (300 grams).  

When a load is applied to the material, it penetrates the depression, resulting in an irreversible 

deformation of the material's surface in the form of the indenter. For a square-shaped diamond 

indenter, the test is conducted under controlled conditions through tracking force for an allotted period 

(dwell period of 15 seconds). The diagonal arising from an indentation on the material's surface is 

measured and the Vickers hardness value is calculated using a formula. Fig 3.3.3.2 shows making 

indent on mounted monolayer cross section by Duramin 40 struers hardness tester, and is displayed on 

3.3.3.3. 

 

Fig. 3.3.3.2 Making indent on mounted monolayer cross section by Duramin 40 struers hardness tester 
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Fig. 3.3.3.3 Monitor showing indent 

3.3.4 Optical Microscopy 

As depicted in Figure optical microscopy is performed using an Olympus compact GX41 

metallurgical inverted microscope, as shown in Fig. 3.3.4.1. The GX41 inverted metallographic 

microscope is ideal for the rapid and precise analysis of materials and for checking if mechanical 

properties meet product specifications. Its lightweight and compact body makes portability easier. 

Portability, Optimal Eyepoint Adjustment, and Outstanding Picture Clarity and Definition with 

Polarised Lighting are its few distinguishing features. 
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Fig. 3.3.4.1 Monitor showing microstructure 

3.4 PROCEDURE 

 DOE is made to set input parameters values of current and travel speed. 

 RSM is applied to find the optimum process parameters of current and travel speed. 

 The heat input, percentage dilution, and microhardness of the monolayers are studied with 

varying current and travel speeds.  

 Based on this optimized parameter by RSM-ANOVA, the first layer of the wall is laid.  

 It was learnt from literature review that bidirectional strategy with natural cooling gives 

sufficient results, and is so followed.  

 To prevent the issue of wall collapse due to various reasons, current and travel speed are set 

in a manner to reduce the heat input as the number of layer increase.  

 Current (A), Voltage (V), Wire Feed Speed (m/min), Travel Speed (TS) (cm/min), Heat Input 

(HI) (J/mm), and Deposition Rate (Kg/hr) is studied for all 27 layers.  

 Tensile test, Hardness test, Pore area measurement and microstructural study are done from 

different zones of build wall. 
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3.5 FCCD for DOE 

For each of the two input parameters, three levels (-1, 0, 1) have been chosen, yielding 3*3 = 9 

different input parameter combinations for full factorial experimental design (DOE) as stated in Table 

3.5.1.  

For greater precision and accuracy, the face-centered composite design (FCCD) provides the 

repetition of the central value of the DOE. The full factorial design has five repetitions of the central 

value. To simplify this, in the current model, the central value is repeated three times, giving 11 

experiments.  

It is applied to get the best input parameters for maximizing microhardness and specifying a target 

range on % Dilution. The count of the FCCD-designed test is determined using Equation 1. Here, ''C'' 

represents the overall count of tests, ''f'' represents the count of investigated factors, and ''r'' represents 

the count of replicates. 

C = f2 + 2f + r                                                                                                                                     (1) 

A value of 1 for Alpha is desirable because it assures the axial position of the point within the 

factorial element. As stated in Table 3.5.2, it is known as FCCD offers three different stages for the 

parameters to be incorporated into the DOE matrix. 

Table 3.5.1 DOE 

Process 

Parameters Units Symbol Levels 

   

-1 0 1 

Current A I 150 165 180 

Travel 

Speed cm/min TS 30 40 50 
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Table 3.5.2 FCCD for DOE 

S.N. Current 

(A) 

Travel 

Speed 

(cm/min) 

1 150 50 

2 150 30 

3 150 40 

4 165 30 

5 165 50 

6 165 40 

7 165 40 

8 165 40 

9 180 30 

10 180 50 

11 180 40 

 

3.6 MONOLAYER DEPOSITS 

PD =
Penetration Area

Penetration Area+Reinforcement Area
∗ 100                                                                                 (2) 

To make a wall of layers, single-layer deposits were studied. Design of Experiment (DOE) was made 

via face-centered central composite design (FCCD) on the Design Expert software. In CMT 

synergic mode, there are three dependent parameters of wire feed rate, current, and voltage. 

Modifying the setting of a single parameter alters the other two parameters. Therefore, between these 

three, we can study any one parameter only. 

The process parameters of welding speed and, current leave a large impact on the characteristics of 

the monolayer, microstructural characteristics, and mechanical properties. CMT is characterized by 

low heat input. CMT has an advantage over other processes which show defects due to undergoing 

temperatures much above their melting point.  

Chen [135] worked on Al-Si alloy via WAAM. They worked on the effects of various heat input 

values on the construction and functionality of manufactured parts. By analyzing the formation, 

microstructure, and characteristics of WAAM components, a new conceptualization of thermal input 

is achieved.  
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Fig. 3.6.1 Samples mounted for polishing 

After making mono-layer deposit beads, parallel cuts were made from the centre of each plate 

perpendicular to its length. A cross-section of the monolayer is obtained by cutting on wire EDM. It 

was then mounted as shown in Fig. 3.6.1 and then dry polished using various grades of emery paper 

namely 320, 400, 600, 800, 1000, 1200, 1500, 2000, and 2500, wet polished, and etching was done 

with Keller's agent (1 ml of HF,1.5 ml of HCl, 2.5 ml of HNO3, and 95 ml of H2O for 12 seconds).  

Macro image were taken on Trinocular stereo zoom microscope with digital camera and PD 

calculated by the help of ImageJ software, by Eq. 2. Monolayer deposits were then clicked at different 

magnifications for their micro image, and their dimensions and regions were determined employing a 

machine.   

The micro-hardness of the monolayer deposit and that at different locations (Base metal and Fusion 

Zone) was measured using a Duramin 40 struers hardness tester. It includes a micro indenter that 

indents with 300 mN of force for 15 s with a drift time of 5 s. Heat input is calculated for each mono-

layer deposit.  

3.7 RSM-ANOVA 

RSM [136] is a set of mathematical and statistical methods for constructing models. Employing 

experimental design, the aim is to optimize the several responses which are impacted by 

the independent parameters. RSM can solve multiple responses, giving more productive solutions 

with greater precision than other approaches [137]. RSM is an efficient method for determining the 

optimal quantities of multiple variables in order to achieve the maximum or minimum responses 

[138].  
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To make a wall of layers, initially, single-layer deposits were studied. Trials were conducted to study 

the effect of parameters. Through literature review and trials, it was found that the parameters of 

current and TS had the most effect on the morphologies of monolayer deposits [139]. In this study, 

RSM was utilized to optimize the response of Micro Hardness, and % Dilution by modulating the 

current and TS. 

RSM application necessitates establishing the response parameter, defining runs, developing a model 

framework, optimizing the parameters, and verifying it. Various steps of RSM are-  

 The first step: State the response parameter, such as Micro Hardness, and % Dilution.  

 Second step: Input of data and its analysis. After collecting the responses, 

the provided information must be submitted into a database or spreadsheet for assessment.  

 Third Step: Construct the RSM model. After data analysis, RSM can be used to develop a 

statistical framework that describes the correlation amongst the input parameters (like current 

and travel speed) and the response variables (like Micro Hardness, and % Dilution). 

This model can be applied to anticipate the response parameter given any combination of 

input parameters.  

 Fourth Step: Optimise the system. It can optimize the welding process by determining the 

input variables with the most influence on the outcome variables and altering those in order to 

attain the intended efficiency.  

Fifth Step: To check the developed model by evaluating it against fresh data, guaranteeing it's 

precision and dependability, and its utility to optimize the process of performance [140-142]. 

In the RSM, it is impractical to conduct a complete factorial experiment where all possible values for 

every parameter are examined. Rather, the face-centered central composite design (FCCD) fractional 

factorial method is adopted. The RSM method was implemented using FCCD as it demands lesser 

runs [139]. Eleven experiments were performed for monolayer deposition, as designed on the 

software, and analyzed the model through Analysis of variance (ANOVA). 

3.8 MULTI-LAYER DEPOSITS 

Deposition Rate (Kg/hr) =  η ∗ Wire Feed Rate ∗ 60 ∗ kg per metre of wire                         (3)                                                                              

The deposition rate is calculated by Eq. 3, η=0.90 for short circuit mode of transfer. Feed wire of 

AA4047 weighs about 3.5 grams per metre of wire.  

The path planning of infill wire deposition is an extremely crucial and decisive factor in the 

production of WAAM products. There are two ways of path strategies, unidirectional and 

bidirectional path planning directions. The metal layer is only deposited along one way using the 

unidirectional procedure. In the reverse orientation, the torch is raised and arrives at the beginning 
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point (direction of residence). In the bidirectional process, the metal layer is deposited in the back and 

forth manner. 

 Due to less wastage of material and increased product credibility, the bidirectional technique is a 

successful approach for wall-making [143]. Also, better mechanical properties are achieved by the 

bidirectional technique [144]. Thus, in this work, the wall was constructed using a bidirectional layer 

deposition strategy, in which each successive layer is deposited in the opposing direction of the 

preceding layer. Moreover, the Bidirectional torch movement with reduced heat input decreases the 

humping defect.  

The humping defect is the uneven deposition of filler wire. It reduces the positional capability, 

especially when layers have to be deposited over one another, like in wall fabrication. This defect 

mainly occurs due to high travel speed [145,146].  

Koli et. al. has studied the humping defect on varying current and torch trajectory motion. The 

humping defect has a significant impact on the elongation and tensile strength. The greater 

the humping defect, the softer the material becomes, giving reduced hardness levels. Bidirectional 

motion with reduced heat accumulation reduces humping defect [147].  

Chen et. al. [132] made wall fabrication via different methods- by making multiple layers at a 

constant current without cooling, at a constant current with inter-layer cooling time for 3 mins, by 

decreasing current by 2 A for each depositing layer without extra interlayer cooling, and by 

decreasing current by 3 A for first six layers, decreasing current by 2 A for next six layers, and 

decreasing current by 1 A for next six layers without extra interlayer cooling, to make an 18-layer 

wall. The study reflected the last method to be the best in terms of uniform width of layers, deposition 

rate, fabrication time, quality, and morphology of the deposited layers.  

Teixeira et. al. [133] increased the travel speed when increasing the deposition layers. They studied 

various external cooling methods of near immersion active cooling (NIAC). They also studied the 

interlayer temperature (IT) variations. Regardless of the cooling method (natural cooling (NC) 

or NIAC)), a more polished look (waviness) is achieved with a greater IT and TS combination when 

the effective wall width remains the same.  

Choosing any of the cooling methods has no effect on the thickness of the wall (average or external) 

or the height of the layer. Nonetheless, they are influenced by the arrangement of IT as well as TS (the 

more the IT-TS combination, the narrower and smaller the breadth and height, correspondingly).  

Although there was variability in arc energy (in proportion to TS) and IT, no significant 

microstructural differences were found as an effect of IT in combination with TS when either NC or 

NIAC was employed. However, tempering was noticed in the layers deposited under NC at 

temperatures between 300 and 500 degrees Celsius [148]. The average width of the wall reduces from 
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1.22 to 1.06 mm as the TS increases from 30 cm/min to 42 cm/min, indicating a drop in the melt pool 

area.  Limiting the width of the melt pool boundary provides an additional advantage for UTS, as the 

huge amount of Silicon particles in the melt pool boundaries happen to degrade readily, thereby 

diminishing the strength of the alloys [149,150].  

Hence, by literature review, it is more viable to decrease current on increasing the number of layer 

depositions, until threshold current is reached. The threshold current for a particular material is the 

minimum current required for the proper fusing of its two layers when undergoing WAAM. For the 

factor of safety, the current is not decreased beyond 110 A, as the threshold current for AA 4047 is 

103 A.  

On reaching near the threshold current, the current cannot be decreased further. Hence, travel speed is 

increased to justify the above-mentioned cause. Increasing travel speed can reduce porosity, due to 

lowered heat accumulation. The diameter of the pores reduces when cooling time and TS are 

increased.  

Cooling time increase can increase the duration of the process, therefore decreasing process 

efficiency. Hence, it is better to lower the current and increase the TS for overall improvement in wall 

characteristics. The process parameter for making a wall is selected by the optimized result of RSM. 

The optimized level of current and welding speeds for monolayer by RSM are 150.211 A and 47.914 

cm/min.  

Also, in research by Novelino et. al. [143], the horizontal TS finalized after analyzing multiple walls 

is 8 mm/sec or 48 cm/min. Thus, the first layer of the wall is laid at 150 A and TS of 48 cm/min. After 

depositing the first layer on AA 6082 substrate, multiple layers are laid. Studies have shown the effect 

of inter-layer cooling time on the temperature of the deposited layer, affecting the width, and height of 

each layer [151,152].  

According to the literature review, TS can be increased upto 95 cm/min, and researchers have 

concluded that increasing the travel speed, reduces the pore diameter. Thus, it is beneficial to increase 

travel speed, and there lies no problem to increase the TS up to 70 cm/min. 

There is an overall impact of variation of current and TS for a constant rate of shielding gas on then 

the operational characteristics of surface finish, fabrication time, and heat input; geometrical 

characteristics of wall width, and height; and metallurgical characteristics of % dilution, 

microhardness, and microstructure of multilayer deposits. Heat input, microhardness, strength, and 

microstructure of the wall are studied in this paper. 

A 27-layer thin wall is made by the CMT WAAM process with 45 seconds of inter-layer pause time 

for natural cooling. To control the width and deposition energy, the current is reduced in Zone A and 
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Zone B, keeping the travel speed constant. Once the threshold current is reached, the current is kept 

constant and, travel speed is increased in Zone C, and Zone D. 
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CHAPTER 4 RESULTS AND DISCUSSION 

4.1 MONOLAYER DEPOSITS 

4.1.1 Characteristics 

To get the optimum heat input for CMT WAAM of AA 4047, several layers can be selected - the third 

monolayer, made with 150 A current, 40 cm/min TS, 282.6 J/mm of heat input, the fifth monolayer 

made with 165 A current, 50 cm/min TS, 258.192 J/mm of heat input, and tenth monolayer made with 

180 A current, 50 cm/min TS, 292.032 J/mm of heat input, as shown in Table 4.1.1.1. Table 4.1.1.2 

shows measured area of deposition.  

Table 4.1.1.1 Characteristics of deposited monolayer 

 

 

 

 

 

 

 

Bead 

Current 

(A) 

Travel 

Speed 

(cm/min) 

Reinforcem

ent height 

(mm) 

Width of 

monolayer 

(mm) 

Depth of 

Penetration 

(mm) 

Voltage 

(V) 

Heat Input 

( J/mm) 

1 150 50 2.76 7.16 1.31 15.7 226.08 

2 150 30 3.26 9.93 2.57 15.7 376.8 

3 150 40 2.88 8.74 2.26 15.7 282.6 

4 165 30 3.08 11.6 3.46 16.3 430.32 

5 165 50 3.05 9.5 2.83 16.3 258.192 

6 165 40 2.9 9.8 3.38 16.3 322.74 

7 165 40 3.18 9.82 2.61 16.3 322.74 

8 165 40 3.05 10.66 3.19 16.3 322.74 

9 180 30 3.21 12.64 5.05 16.9 486.72 

10 180 50 3.68 11.02 3.77 16.9 292.032 

11 180 40 3.2 10.96 4.95 16.9 365.04 
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Fig. 4.1.1.1 Macroscopic images of Monolayer (a-k), as per DOE 
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Table 4.1.1.2 Measured Area of deposition  

 

4.1.2 Effect of Process Parameters  

Fig. 4.1.2.1 shows that with an increase in welding speed (30–50 cm/min) at constant currents (150 A, 

165 A, 180 A), the heat input is reduced by 30% (Fig. 4.1.2.1 a), decreasing width (Fig. 4.1.2.1 b), 

depth of penetration, reinforcement area (Fig. 4.1.2.1 e), deposited area (Fig. 4.1.2.1 f) and % Dilution 

(Fig. 4.1.2.1 i), and increasing microhardness (Fig. 4.1.2.1 j). The reinforcement height decreases at a 

constant current of 150 A and 165 A when TS increases from 30 cm/min to 50 cm/min, but for current 

180 A, it almost remains constant between 30 cm/min to 50 cm/min, and increases when travel speed 

is increased to 50 cm/min. It can be seen that % Dilution is directly proportional to Heat Input (Fig. 

4.1.2.1 g) whereas Micro Hardness and Heat Input are inversely proportional (Fig. 4.1.2.1 h). 

 

 

 

 

 

 

 

 

 

 

Current 

(A) 

Travel 

Speed     

(cm/min) 

Penetration 

Area           

(mm2) 

Reinforcement 

Area ( mm2) 

Total 

Deposited 

Area ( mm2) 

Macro image 

1 150 50 7.1247 11.5753 18.7 Fig. 4.1.1.1 a 

2 150 30 13.759 21.25107 35.01 Fig. 4.1.1.1 b 

3 150 40 10.233 16.34547 26.578 Fig. 4.1.1.1 c 

4 165 30 17.533 26.190676 43.724 Fig. 4.1.1.1 d 

5 165 50 12.362 20.255778 32.618 Fig. 4.1.1.1 e 

6 165 40 12.785 20.081737 32.867 Fig. 4.1.1.1 f 

7 165 40 13.461 20.531772 33.993 Fig. 4.1.1.1 g 

8 165 40 13.102 20.067245 33.169 Fig. 4.1.1.1 h 

9 180 30 25.1 28.19041 53.29 Fig. 4.1.1.1 i 

10 180 50 18.42 24.218384 42.638 Fig. 4.1.1.1 j 

11 180 40 22.166 26.657358 48.823 Fig. 4.1.1.1 k 
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Fig. 4.1.2.1 Characteristic graphs for monolayer (a-f) 
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4.1.3 Testing of Monolayer samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1.3.1 shows hardness value parallel to the base from base substrate to monolayer to base 

substrate. Table 4.1.3.1 shows responses of hardness and PD of monolayers. Highest TS with least 

current gives maximum hardness. It increases with increase in TS, and decrease in current. PD 

increases, as current is increased to 180 A, it is not much affected by the TS (Fig. 4.1.3.2). On 

increasing HI, hardness decreases and PD increases (Fig. 4.1.3.3). 

 

Fig. 4.1.3.1 Hardness parallel to the base from base substrate to monolayer to base substrate 

Table 4.1.3.1 Hardness and PD of 

monolayers 

SN 

Response 

1 

Response 

2 

Hardness 

(Hv) 
PD (%) 

1 72.99 0.381 

2 69.56 0.393 

3 72.43 0.385 

4 63.11 0.401 

5 69.99 0.379 

6 67.89 0.389 

7 68.15 0.396 

8 67.14 0.395 

9 61.23 0.471 

10 69.89 0.432 

11 66.89 0.454 
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Fig. 4.1.3.2 Micro Hardness, Percentage Dilution (PD) vs Travel Speed for Varying Current  

 

 

Fig. 4.1.3.3 Micro Hardness, Percentage Dilution (PD) vs Heat Input (HI) for monolayers 

At the edges of the melt pool, a coarser microstructure is observed, which is common for Al-Si alloys. 

Large Si particles are present in bulk in the melt pool boundaries, and columnar grains with nuclei are 

observable in the melt pool. In the Fig. 4.1.3.4, a transition from equiaxed grains to columnar grains is 

seen when moving from the center of deposition toward the base metal. 
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Fig. 4.1.3.4 Showing Boundary region of monolayer deposits 

4.2 RSM OPTIMISATION  

This paper implements Design Expert software for optimization. Employing the sequential F-test 

along with the test for lack of fit, and the ANOVA approach, the model’s reliability is examined to 

determine the optimal model. In the current study, RSM is applied to establish the statistical 

connections among the factors and their responses as shown in Table 4.2.1, in order to determine the 

optimal monolayer for wall formation. 

 

Table 4.2.1 Factors and their Responses for monolayer deposits 

 

SN 

 

Run 

Factor 1 Factor 2 Response 1 Response 2 

A: 

Current 

(A) 

B: Travel 

Speed 

(cm/min) 

Micro 

Hardness 

(Hv) 

Percentage 

Dilution 

(%) 

1 11 150 50 72.99 0.381 

2 1 150 30 69.56 0.393 

3 8 150 40 72.43 0.385 

4 5 165 30 63.11 0.401 

5 10 165 50 69.99 0.379 

6 9 165 40 67.89 0.389 

7 3 165 40 68.15 0.396 

8 4 165 40 67.14 0.395 

9 2 180 30 61.23 0.471 

10 7 180 50 69.89 0.432 

11 6 180 40 66.89 0.454 
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4.2.1 ANOVA for Quadratic Model and Fit Statistics 

Table 4.2.1.1 and Table 4.2.1.2 depicts ANOVA for % Dilution and Hardness, respectively. The 

technique of ANOVA is employed to evaluate the model's significance. The objective of ANOVA is 

to determine if the CMT WAAM parameters and their interactions have a major influence on the 

characteristics of the monolayer and to determine whether the model developed is significant or not.  

 

Table 4.2.1.1 ANOVA table of full quadratic for PD 

Source 

Sum of 

Squares 

(SS) 

Degree 

of 

Freedom 

(DOF) 

Mean 

Square 

(MS) 

F-value p-value 
 

Model 125.3 5 25.06 157.53 < 0.0001  significant 

A-Current 48 1 48 301.71 < 0.0001 

 B-Travel 

Speed 
59.98 1 59.98 377.01 < 0.0001 

 AB 6.84 1 6.84 42.98 0.001 

 A² 9.13 1 9.13 57.41 0.000 

 B² 3.72 1 3.72 23.37 0.004 

 Residual 0.7954 5 0.1591 
  

 
Lack of Fit 0.2454 3 0.0818 0.2974 0.828 

not 

significant 

Pure Error 0.5501 2 0.275 
  

 Cor Total 126.1 10 
 

   
    

R² 0.9937 

 
Std. Dev. 0.3989 

  

Adjusted R² 0.9874 

 
Mean 68.12 

  

Predicted R² 0.9714 

 
C.V. % 0.5856 

  

Adeq 

Precision 40.67 

  

 

 

 



38  

Table 4.2.1.2 ANOVA table of full quadratic model for hardness 

Source Sum of 

Squares 

(SS) 

Degree 

of 

Freedom 

(DOF) 

Mean 

Square 

(MS) 

F-value p-value  

Model 125.3 5 25.06 157.53 < 0.0001  significant 

A-Current 48 1 48 301.71 < 0.0001 

 B-Travel 

Speed 
59.98 

1 59.98 377.01 < 0.0001 

 AB 6.84 1 6.84 42.98 0.0012 

 A² 9.13 1 9.13 57.41 0.0006 

 B² 3.72 1 3.72 23.37 0.0047 

 Residual 0.7954 5 0.1591 

   
Lack of Fit 0.2454 

3 0.0818 0.2974 0.8287 

not 

significant 

Pure Error 0.5501 2 0.275 

   Cor Total 126.1 10 

    
  

  

R² 0.9953 

 
Std. Dev. 0.003 

  

Adjusted 

R² 0.9906 

 
Mean 0.4069 

  

Predicted 

R² 0.9785 

 
C.V. % 0.7414 

  

Adeq 

Precision 41.235 

  

Table 4.2.1.1 and 4.2.1.2 shows the ANOVA results for the response. It displays SS, DOF, and mean 

square (MS) is the ratio of SS to DOF, F value, and P value. The F-value is the proportion of factor 

variance to within-factor variance.  

The P value represents the chance and is lower than 0.05 for the model terms to be significant. For % 

Dilution, A, B, AB, A² are the model terms with significance whereas for Micro Hardness, A, B, AB, 

A², B² are the model terms with significance.  

Both the tables for ANOVA display the complete quadratic model for % Dilution, and 

Hardness, as each of the model terms, which include relationships among input parameters (AB), are 

statistically significant. It is good to have a non-significant lack of fit, both cases have a non-

significant lack of fit. 



39  

 The variation in adjusted R2 and predicted R2 is lower than 0.2 for all response parameters. The 

utmost number of points that lie within the line of regression is determined by the similarity of the 

predicted and revised R2 values.  

The primary distinction between the predicted R2 and revised R2 is that predicted R2 implies that the 

change of the dependent variable can be analyzed by each individual variable. A sufficient level of 

precision corresponds to a signal-to-noise ratio (S/N) that is greater than 4. According to the result of 

% Dilution and Hardness in the ANOVA, it is higher than that of 4, indicating adequate signal.  

4.2.2 Model Equations 

The following are the absolute statistical equations derived from actual response factors. By 

juxtaposing the factor coefficients, these equations are utilized to study the respective importance of 

the factors. 

 

% Dilution = +3.11651 - 0.036758 * Current + 0.007577 * Travel Speed - 0.000045 Current * Travel 

Speed + 0.000124 * Current² - 0.000017 * Travel Speed²                                                                    (4) 

 

Micro Hardness = +354.09526 - 3.32196 * Current - 0.153031 * Travel Speed + 0.008717 * 

Current * Travel Speed + 0.008439 * Current² - 0.012113 * Travel Speed                                (5)                                                               
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4.2.3 Graphs for RSM-ANOVA 

 

 

Fig 4.2.3.1. Interaction curve of input and output parameters for % Dilution and Micro Hardness 
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Fig. 4.2.3.2 3-D surface plot of input-output parameter interaction for CMT-WAAM. 

Fig 4.2.3.1 shows interaction curve of input and output parameters for % Dilution and Micro 

Hardness. Figure 4.2.3.2 depicts the 3D surface plot of the interaction of input-output parameters for 

CMT-WAAM. The Fig. 4.2.3.3 depicts the predicted versus actual response, that approximately fits, 

showcasing the applicability of the quadratic regression equations, and concluding the significance 

of the model. A higher value of % dilution results in a lower reinforcement height and deeper 

penetration. In such cases, dilution should be between 35 and 45 percent, as discussed by numerous 

scientists and researchers.  

CMT accomplishes satisfactory dilution by conserving nearly fifty percent of the energy required. 

Too much dilution results in the formation of cavities (burn-through), while too little dilution leads to 

a lack of bonding. CMT can yield lower dilution (less than 5%) for cladding purposes.  
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Fig. 4.2.3.3 Predicted vs Actual values for CMT-WAAM for PD (a), and hardness (b) 

4.2.4 Optimal Parameters 

Optimization of WAAM parameters on design expert software identifies a set of levels of factors or 

ranges that simultaneously satisfy essential optimization criteria on all response as well as process 

parameters. The RSM's optimization of the desirability function is utilized optimization. Using the 

process of optimization, a target was established to maximize micro hardness while keeping dilution 

in range.  

In CMT joining high dilution is required to get good strength of the joint. Such high dilution is not 

required for the base monolayer, as further layers have to be built on the monolayer for making a thin 

wall, and the base has to be kept strong enough to retain the wall load. High dilution can also create a 

high HAZ, altering base metal properties, and is thus kept in range. The Table 4.2.4.1 shows the 

criteria of optimal parameters, and Table 4.2.4.2 shows optimized results for optimal parameters. 
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Table 4.2.4.1 Criteria for optimal parameters 

Name Goal Lower Limit Upper Limit Lower Weight Upper Weight Importance 

A: Current is in range 150 180 1 1 3 

B: Travel Speed is in range 30 50 1 1 3 

Micro Hardness maximize 61.23 72.99 1 1 3 

% Dilution is in range 0.38 0.43 1 1 3 

 

Table 4.2.4.2 Optimized results for optimal parameters 

Number Current Travel Speed Micro Hardness % Dilution Desirability  

 A cm/min Hv %   

1 150.211 47.914 73.098 0.382 1.000 Selected 

2 150.158 44.945 73.025 0.384 1.000  

3 150.009 48.249 73.170 0.382 1.000  

4 150.028 49.002 73.145 0.381 1.000  

5 150.000 50.000 73.110 0.380 1.000  

6 150.188 48.938 73.089 0.381 1.000  

7 150.048 44.867 73.064 0.384 1.000  

8 150.333 47.784 73.053 0.382 1.000  

9 150.219 47.560 73.095 0.382 1.000  

10 150.417 47.272 73.019 0.382 1.000  

11 150.193 47.462 73.104 0.382 1.000  

12 150.226 46.557 73.076 0.383 1.000  

13 150.294 45.347 72.997 0.384 1.000  

14 150.287 49.402 73.038 0.380 1.000  

15 150.311 46.810 73.050 0.382 1.000  

16 150.248 46.716 73.072 0.383 1.000  

 

Table 4.2.3.2 depicts the optimal parameters, in decreasing order of desirability value. RSM method 

generated 54 solutions out of which 45 have desirability 1. The optimum level of current and TS are 

150.211 A and 47.914 cm/min, respectively with 100 % desirability.  

The optimum parameters produce results of in-range dilution (38.2 %) and maximal microhardness 

(73.098 Hv), resulting in an aesthetically pleasing monolayer for effective wall construction. The 

confirmation test is a supplementary run conducted at the optimal parameter combination. The mean 

of the confirmation test response is contrasted with the model's prediction interval.  
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If the mean data from the validation trial falls within the prediction interval of the validation node, the 

model is validated. To confirm the model, three validation tests were performed. Using the software's 

point prediction ability, the outcomes were estimated with a confidence level of 95%. Model 

equations were used to compute the predicted values of dilution and microhardness. 

4.3 MULTILAYER WALL FABRICATION 

Multilayer wall is made on the optimized parameter. Thus, the first layer of the wall is laid at 150 A 

and TS of 48 cm/min. A 27-layer thin wall is made by the CMT WAAM process with 45 seconds of 

inter-layer pause time for natural cooling. To maintain the uniform width of the wall and to overcome 

the molten pool overflow, due to reheating, arc energy is made to decrease on increasing the number 

of deposition layers by either decreasing current or increasing the TS.  

For overall improvement in characteristics of build AA 4047 wall, initially current is decreased (up to 

the threshold current) and then TS is increased. The threshold current is the minimum current for the 

proper fusing.  Once the threshold current is reached, the current is kept constant and, travel speed is 

increased in Zone C, and Zone D. For the factor of safety, the current is not decreased beyond 110 A. 

The wall is built in 4 zones, as shown in Table 4.3.1.  

The current is reduced in Zone A and Zone B to 130 A and 114 A respectively, keeping the TS 

constant. Then, the current is kept constant at 112 A, and 110 A and, TS is increased to 54 cm/min 

and 61 cm/min respectively in Zone C, and Zone D. Thus, it is harmless to increase TS up to 61 

cm/min.  
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Table 4.3.1 Zone wise, process parameters for making multilayer wall 

Overall 

Layer 

No. 

ZONES Zone 

Wise 

Layer 

No. 

Current 

(A) 

Voltage 

(V) 

Wire 

Feed 

Speed 

(m/min) 

Travel 

Speed 

(TS) 

Heat 

Input (HI) 

Deposition 

Rate 

(Kg/hr) 

Remarks 

1 ZONE 

A 

1 150 15.7 9.1 48 235.5 1.4742 4 times 

5 A drop 

in 

current 

2 2 145 15.4 8.9 48 223.3 1.4418 

3 3 140 15.2 8.7 48 212.8 1.4094 

4 4 135 15 8.5 48 202.5 1.377 

5 5 130 14.8 8.3 48 192.4 1.3446 

6 ZONE 

B 

1 128 14.8 8.2 48 189.44 1.3284 9 times 

2 A drop 

in 

current 

7 2 126 14.7 8.1 48 185.22 1.3122 

8 3 124 14.6 8 48 181.04 1.296 

9 4 122 14.5 7.9 48 176.9 1.2798 

10 5 120 14.5 7.8 48 174 1.2636 

11 6 118 14.4 7.7 48 169.92 1.2474 

12 7 116 14.4 7.7 48 167.04 1.2474 

13 8 114 14.3 7.6 48 163.02 1.2312 

14 ZONE 

C 

1 112 14.2 7.5 48 159.04 1.215 

15 2 112 14.2 7.5 49 155.7943 1.215 6 times, 

1 

cm/min 

hike in 

TS 

16 3 112 14.2 7.5 50 152.6784 1.215 

17 4 112 14.2 7.5 51 149.6847 1.215 

18 5 112 14.2 7.5 52 146.8062 1.215 

19 6 112 14.2 7.5 53 144.0362 1.215 

20 7 112 14.2 7.5 54 141.3689 1.215 

21 ZONE 

D 

1 110 14.1 7.4 55 135.36 1.1988 6 times, 

1 

cm/min 

hike in 

TS 

22 2 110 14.1 7.4 56 132.9429 1.1988 

23 3 110 14.1 7.4 57 130.6105 1.1988 

24 4 110 14.1 7.4 58 128.3586 1.1988 

25 5 110 14.1 7.4 59 126.1831 1.1988 

26 6 110 14.1 7.4 60 124.08 1.1988 

27 7 110 14.1 7.4 61 122.0459 1.1988 

 

Fig. 4.3.1 shows the build wall. The measured wall height (Fig.4.3.2 a), wall length (Fig. .4.3.2 b) was 

10 cm, 5 cm and the wall thickness reduced from 8 mm to 7.3 mm after flattening. The side of the 

substrate material is cut out and the wall surface is made flat from at least one side-by-end milling.  
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Electric Discharge Machine is used for cutting out test samples. Two samples are cut for tensile 

testing, three samples are cut for hardness, and three more samples are cut for the micro image of the 

microstructure on the wall, from different zones, as seen in Fig. .4.3.2 c.  

 

Fig. 4.3.1 CMT-WAAM made AA4047 wall 

 

 

Fig. 4.3.2 Height (a) and Length (b) of the built wall, Samples cut from wall (c) for various tests 
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4.4 TEST RESULTS AND DISCUSSION FOR WALL SAMPLES  

For tensile testing, wall is divided into 2 zones, whereas for microhardness, and pore area 

measurement, wall is divided into three zones. The Table 4.4.1 depicts the elastic modulus, yield 

strain, yield strength (YS), percentage elongation, UTS, microhardness, and pore area of the cut 

samples from bottom to the top. 

Table 4.4.1 Test results on wall samples 

S.No. 
Elastic 

Modulus 

Yield 

Strain 

Yield 

Strength 

Ultimate 

Tensile 

Strength 

Percentage 

Elongation 

Micro 

Hardness 

Pore 

Area 

Symbol E ϵ YS UTS EL MH PA 

Unit MPa  MPa MPa % Hv mm2 

1 

(Bottom 

Zone) 

1142.9 0.71 67 144.3089 31.7 48.405   

(Fig. 4.4.1 a) 

0.1032 

2 

(Middle 

Zone) 

- - - - - 48.56     

(Fig. 4.4.1 b) 

0.0635 

3 

(Top 

Zone) 

922.26 0.78 68 148.814 30.9 52.73     

(Fig. 4.4.1 c) 

0.0410 

 

The average microhardness was 49.90 HV, as depicted in Fig. 4.4.1 (a-c), measured on Duramin 40 

struers hardness tester. This is due to the difference in IT among added layers and the existence of 

coarse particles and tiny pores between layers, which results in a decreased microhardness.  

 

Fig. 4.4.1 Indent by Microhardness test on bottom zone (a), middle zone (b), top zone (c) 
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If the parameters were kept constant, the lower zone had higher hardness than the top zones, due to 

heat accumulation by reheating in the top zone. The presence of HAZ in the sampling position can 

lead to variations in microhardness. HI is decreased as the number of build layers is increased, by 

decreasing current and increasing TS. Thus, it is swifter to cool the top layers with lower HI, giving 

them higher hardness.  

Fig. 4.4.2 shows tensile testing machine (Fig. 4.4.2 a), samples before (Fig. 4.4.2 b) and after fracture 

(Fig. 4.4.2 c). The stress strain curve for samples 1 and 2 (bottom and top zone, respectively) is shown 

in Fig. 4.4.3 a, and the equation of their trend line is shown in Table 4.4.2. The average UTS of these 

materials is approximately 146.5615 MPa. UTS/YS are proportional to wall height.  

From literature review, it is clear that the mechanical properties are generally isotropic, with only a 3–

8 MPa variation in ultimate tensile strength (UTS), and a 2–11 MPa variation in yield strength (YS). 

Analyzing the strength of specimens collected at various current and TS levels, the UTS of these 

materials is approximately 146.5615 MPa. UTS/YS follows an upward trend. As TS increases from 

48 cm/min to 61 cm/min, UTS increases from 144.31 MPa to 148.814 MPa. 

 

Fig. 4.4.2 Universal Testing machine (a), samples before (b), and after Tensile Test (c) 
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Table 4.4.2 Equation of stress strain trend line and their R2 

S.No. Mathematical Equation of Stress Strain Trend Line 
R2 of 

trend line 

   1 

y = -79,60,506.58x6+72,15,471.13x5-24,74,693.82x4+4,01,581.90x3-

33,522.98x2+2,101.43x+1.09 
0.9688 

2 

y = -1,19,63,347.48x6+1,02,29,390.86x5-32,79,215.71x4 4,84,198.42x3- 

34,075.28x2+1,823.37x- 2.08 
0.97 

 

 

 

Fig. 4.4.3 Stress Strain diagram for two samples, 1 and 2 (a), and variation of tensile strength, and pore area 

with microhardness (b) 

Also, percentage elongation (PE) in this study is not related to current or TS. On decreasing HI, PE 

decreased. This trend of PE being directly proportional to HI, is not seen in ER 5356 walls or AA4043 

walls. Such unexpected behaviour of AA4047, can own due to its characteristic of lower ductility, or 

its requirement of repeated annealing for drawing it into wires.  

Hence, as the raw AA4047 wire has low PE, so is reflected in the wall samples. Keist et. al. [158] 

concluded that on increasing hardness, UTS increases. The same trend is observed here, as shown in 

Fig. 4.4.3.b Sufficient cooling rates in the interlayer regions, lead to the formation of equiaxed 
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dendrites, single and bi-nuclei formation, along with the fine-grain structure promoting enhanced 

microstructure, as shown in Fig. 4.4.4 (a-d).  

Significant columnar grains in the interlayers got transformed into fine equiaxed grains by modifying 

the HI. To minimize the diameter of the equiaxed grain and to lower the volume fraction, the TS was 

increased by decreasing HI levels. At reduced current values, finer grains and uniform microstructure 

were developed as a result of the quick cooling of the material. 

 

Fig. 4.4.4 Microstructural images (a-c) by Optical Microscope, and showing nuclei formation (d) by Duramin 40 

Struers micro image camera 

WAAM components have porosity due to turbulent mixing, shielding gas flow rates, and dynamic gas 

pressure. The shielding gas flow rate affects the number of holes in aluminium components because 

the convective cooling accelerates melt pool solidification, preventing process-associated gas bubbles 

from escaping. Cavities are made by gas inclusions that have left from the melt pool. More cavities on 

the surface means fewer pores in the component [159].  

 

Pores are predominantly close to layer boundaries. Porosity is present more in the first and second 

layers of deposition. Hence, the current is kept high at the bottom layers, to enable proper penetration 
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and bonding, reducing the chances of lower strength. The average pore area is 0.0692 mm2. The 

average porosity percentage reduces as TS increases.  

Reduced current, and increased TS, reduces the porosity. Still, in some places large pores were found. 

The defects can be reduced by using the circling motion planning, instead of the typical hatching 

trajectory motion of the torch. Circling can increase strength, and reduce the defects, pore size and 

the porosity area percentage.  

Because of an elevated deposition temperature, circling can produce a stronger accumulation with a 

lesser threat of humping, needing no requirement of process parameter variation [160,161]. Circling 

motion planning is beyond the scope of this work and can be taken as Future Scope.  
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CHAPTER 5 CONCLUSIONS 

This work had the aim to understand the effect of CMT-WAAM process parameters on the 

characteristics of the deposited AA 4047. The work comprised 2 deposition groups- monolayer and 

multilayer deposits. Current and TS, were the most influencing parameters. The RSM method was 

implemented using FCCD. DOE was designed on the software and analyzed the model through 

Analysis of variance (ANOVA). The monolayer deposits were analyzed for reinforcement height, 

layer width, depth of penetration, percentage dilution, microstructure, and microhardness, with respect 

to varying travel speed, at different current and heat input values. Based on optimized parameters, a 

27-layer wall was made and analyzed for heat input, PE, microhardness, strength, porosity, and 

microstructure. It can be concluded that: 

 With an increase in welding speed (30–50 cm/min) at constant currents (150 A, 165 A, 180 

A), the heat input is reduced to almost 30% of the initial value, decreasing the width of layer, 

depth of penetration, reinforcement area, deposited area and Percentage Dilution, and 

increasing microhardness for the deposited monolayer.  

 Hardness is maximum for the highest TS with least current. Microhardness increases with 

increasing TS, and decreasing current. 

 Hardness and HI are inversely proportional to each other, and PD increases slightly on 

increasing the HI. 

 The optimized parameters for current and TS were 150 A and 48 cm/min, respectively, for a 

constant rate of shielding gas.  

 The optimal parameters produced results for the values of in-range dilution (38.2 %) and 

maximal microhardness (73.098 Hv), resulting in an aesthetically pleasing monolayer. 

 There was a need to decrease the current and increase the travel speed, on increasing the 

number of layer depositions, to manage the heat accumulation in the layers.  

 The width of layers was maintained constant, decreasing the heat input, while increasing the 

height of the wall. 

 Average microhardness of 49.90 HV, yield strength of 67.5 MPa, elastic modulus of 1032.58 

MPa, PE of 31.3, and UTS of 146.5615 MPa were achieved for the built wall. 

 Tensile strength and microhardness increased, as heat input decreased on going upwards in 

the wall. 

 Percentage elongation decreased, as heat input decreased on going upwards in the wall, 

justifying the raw material property of AA 4047. 

 Tensile Strength and Hardness were proportional to each other. 
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