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ABSTRACT 

 

The worldwide healthcare system faces substantial problems from neurodegenerative 

diseases, including Alzheimer's and Parkinson's. Innovative therapeutic drugs that target 

certain neurotransmitter receptors are essential for treating these disorders. In contrast to 

two well-known medications, galantamine and pramipexole, this research focuses on the 

therapeutic potential of curcumin, a naturally occurring substance, for the treatment of 

neurodegenerative illnesses. A molecular docking study utilizing AutoDock Vina was 

conducted on five crucial receptors associated with neurodegeneration, including 

acetylcholinesterase and dopamine receptors. The visualization and analysis of protein-

ligand interactions were then carried out in PyMOL using stick models for the ligands 

and surface representations for the proteins. In PyMOL, the polar contacts between 

ligands and protein atoms were identified, and the bond lengths of these interactions were 

measured to analyse the molecular interactions. 

The findings demonstrated curcumin's potential as a medicinal agent by revealing 

particular binding affinities and interactions between it and the chosen receptors. 

Galantamine and pramipexole demonstrated varied degrees of binding affinity in a 

comparative investigation, indicating the unique modes of action for each ligand. This 

thesis offers important information about the molecular foundations of curcumin's ability 

to cure neurodegenerative disorders and lays the groundwork for future in vitro and in 

vivo studies. Curcumin has been identified as a viable therapeutic option, which might 

result in the creation of more efficient treatment plans and eventually enhance the lives 

of people suffering from neurodegenerative diseases. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Debilitating cognitive and motor deficits are hallmarks of neurodegenerative diseases, 

including Alzheimer's disease (AD) and Parkinson's disease (PD), which are progressive 

disorders defined by the loss of structure and function of neurons [1,2]. 

Neurodegenerative diseases are predicted to become more common with the ageing 

global population, putting a heavy strain on healthcare and social services [3]. Greater 

knowledge of the molecular processes involved in neurodegeneration and the 

identification of possible therapeutic targets is required to develop successful treatment 

methods for these illnesses [4]. 

 

 

Fig 1.1: Major Factors Responsible for Neurodegeneration 
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The pathogenesis of neurodegenerative disorders is heavily influenced by 

neurotransmitter receptors [5, 6]. For example, the cholinesterase inhibitor galantamine 

and the dopamine receptor agonist pramipexole are both effective treatments for 

Alzheimer's disease and Parkinson's disease because they work by modulating these 

receptors [7,8]. Unfortunately, existing therapies aren't very effective and may have 

unwanted side effects [9]. Thus, novel treatment methods are required to address the 

complex pathophysiology of neurodegenerative disorders while minimizing associated 

side effects. 

Natural compounds are being investigated as a possible route for the development of new 

therapies because they have the potential to provide various pharmacological 

activities with fewer adverse effects than synthesized medications [10]. A natural 

polyphenolic compound called curcumin has been isolated from the spice turmeric, and 

it's gotten a lot of interest for its possible neuroprotective qualities and low side-effect 

profile [11]. Multiple signalling pathways, including those involving neurotransmitter 

receptors, have been linked to neurodegeneration, and previous research has shown that 

curcumin may affect these pathways [12]. Curcumin has been shown to have therapeutic 

benefits, although the molecular interactions that produce these effects are still poorly 

understood. 

This thesis aimed to examine curcumin's molecular interactions with major 

neurotransmitter receptors and determine whether it would be useful as a treatment agent 

for neurodegenerative diseases, similar to galantamine and pramipexole. Through the 

utilization of computational methodologies, specifically molecular docking and protein-

ligand interaction analysis, the present study endeavours to offer innovative perspectives 

regarding the molecular basis of curcumin's therapeutic efficacy. This investigation aims 

to establish a fundamental framework for subsequent in vitro and in vivo research. 
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Figure 1.2: Multifaceted Neuroprotective Properties of Curcumin 

 

 

Molecular docking is a popular computational approach in drug development that uses 

the complementary morphologies and physicochemical features of a ligand and a target 

protein to predict the binding position and affinity of the two [13]. This method has the 

potential to inform the rational development of novel therapeutic treatments [14] and 

shed light on the molecular recognition process. Successful applications of molecular 

docking to predict the binding modalities and affinities of different ligands to 

neurotransmitter receptors, such as serotonin and dopamine receptors, have been made 

in the setting of neurodegenerative disorders [15,16]. This work seeks to explain the 

molecular basis of curcumin's therapeutic potential for neurodegenerative illnesses by 

comparing its anticipated binding poses and affinities with those of galantamine and 

pramipexole. 
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Understanding the molecular processes that underlie the biological activity of a ligand 

and its target protein requires an examination of the protein-ligand interaction [17]. 

Researchers may pinpoint important residues in the binding process and create novel 

compounds with enhanced binding capabilities by viewing and studying the interactions 

between the ligand and the protein, including hydrogen bonds, hydrophobic contacts, and 

salt bridges [18]. In this investigation, we will utilize the PyMOL molecular graphics 

system to display and evaluate the binding mechanisms and possible therapeutic effects 

of curcumin, galantamine, and pramipexole on the chosen neurotransmitter receptors. 

Finally, using molecular docking and protein-ligand interaction analysis, this study aims 

to shed light on the potential of curcumin as a therapeutic agent for neurodegenerative 

diseases by comparing its molecular interactions with key neurotransmitter receptors to 

those of approved drugs like galantamine and pramipexole. Our goal is to aid in the 

discovery of new, more effective, and fewer harmful therapies for neurodegenerative 

diseases like Alzheimer's and Parkinson's by elucidating the molecular basis of 

curcumin's therapeutic potential. This research may pave the way for future in vitro and 

in vivo studies, which might lead to the development of novel treatment techniques to 

combat the increasing prevalence of neurodegenerative diseases in our ageing 

population. 

 

Objectives of this study: 

1. Perform a comprehensive computational analysis, including molecular docking, 

to understand the therapeutic potential of curcumin, galantamine, and 

pramipexole in neurodegeneration. 

2. Compare the efficacy of curcumin with established drugs like galantamine and 

pramipexole to identify their strengths and weaknesses, guiding future drug 

development efforts. 

3. Visualize and analyse the molecular interactions between these compounds and 

their receptors, uncovering the structural basis and key amino acid residues 

involved in binding and specificity. This knowledge will enhance our 

understanding of their therapeutic mechanisms in neurodegenerative diseases. 
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CHAPTER 2 

 

REVIEW OF LITERATURE 

 

 

Neurodegeneration involves the progressive loss of neuron structure or function, 

ultimately leading to neuron death [19]. Various neurodegenerative diseases, such as 

Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral 

sclerosis (ALS), are associated with this process [20]. These conditions result in the 

gradual deterioration of cognitive and motor functions, causing significant disability and 

reduced quality of life [21]. 

Researchers have not yet fully understood the exact mechanisms underlying 

neurodegeneration, but they have implicated several factors, including protein 

aggregation, oxidative stress, mitochondrial dysfunction, and neuroinflammation [22]. 

Specific types of neurons or neuronal populations often experience dysfunction in 

neurodegenerative diseases, leading to the characteristic clinical features of each disease 

[23]. For example, Alzheimer's disease primarily affects cholinergic neurons in the brain, 

while Parkinson's disease is characterized by the loss of dopaminergic neurons in the 

substantia nigra [24]. 

Considering the growing global burden of neurodegenerative diseases and the limited 

efficacy of current treatments, researchers urgently need to develop novel therapeutic 

approaches targeting these conditions' underlying mechanisms [25]. Studying key 

receptors implicated in neurodegeneration, such as acetylcholinesterase, cannabinoid, 

dopamine, NMDA, and serotonin, presents a promising avenue for the development of 

new pharmacological interventions [26]. 
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2.1 Neurodegenerative Receptors Focused on in This Study: 

 

2.1.1 Dopamine Receptors: 

Dopamine receptors are a class of G protein-coupled receptor that helps control 

movement, drive, reward, and the release of other neurotransmitters[27]. The two 

predominant families of dopamine receptors, namely D1-like (D1 and D5) and D2-like 

(D2, D3, and D4), manifest unique signalling pathways and physiological functions [28].  

Several neurodegenerative diseases, including Parkinson's, Alzheimer's, and 

Huntington's, have been linked to dysfunctional dopamine receptors. Dopamine levels 

drop and dopamine receptors become dysfunctional in Parkinson's disease because of the 

death of neurons in the substantia nigra that produce dopamine [29].  

The tremors, stiffness, and bradykinesia that are hallmarks of Parkinson's disease are all 

the outcomes of this dysfunction [30]. To alleviate the symptoms of Parkinson's disease, 

many doctors use drugs that either boost brain dopamine levels or act as agonists on 

dopamine receptors [31]. 

Dopamine receptors have been linked to Alzheimer's disease pathophysiology as well. 

Alzheimer's patients have been shown to have abnormal dopamine signalling, as well as 

changes in dopamine receptor expression and function [32]. Targeting dopamine 

receptors, especially the D1 and D2 subtypes, has been found in studies to enhance 

cognitive performance and reduce certain symptoms associated with Alzheimer's disease 

[33].  

Abnormalities in dopamine receptor function have also been related to Huntington's 

disease [34], a neurodegenerative condition marked by the gradual loss of motor control 

and cognitive deterioration. Animal models of Huntington's disease have shown changes 

in dopamine signalling pathways and receptor expression, and pharmaceutical 

manipulation of dopamine receptors has shown some promise for alleviating symptoms 

[35]. 
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2.1.2 Serotonin Receptors: 

A wide variety of physiological activities, including mood, hunger, and sleep, are 

governed by serotonin (5-HT) receptors [36]. The bulk of these receptors belongs to the 

G protein-coupled receptor family (from 5-HT1 to 5-HT7), whereas the 5-HT3 receptor 

is a ligand-gated ion channel [37]. Depression and anxiety, among other neuropsychiatric 

illnesses, have been linked to serotonergic system dysregulation [38]. 

Serotonin receptors have been linked to the development of Alzheimer's disease. The 

density of some serotonin receptors, including 5-HT2A and 5-HT4, has been 

demonstrated to be lower in Alzheimer's patients [39]. Deficits in cognition and other 

symptoms of the disease may be triggered by this decline. In addition, preclinical models 

of Alzheimer's disease have indicated some hope for the pharmaceutical targeting of 

serotonin receptors, notably the 5-HT6 receptor, to improve cognitive performance [40]. 

Serotonin receptor abnormalities are also linked to Parkinson's disease. Dopaminergic 

neuron degeneration in the substantia nigra leads to decreased dopamine levels, which in 

turn causes motor symptoms in Parkinson's disease.  

Non-motor symptoms such as anxiety and depression, on the other hand, are widespread 

in Parkinson's patients and may be linked to serotonin receptor malfunction [41]. The 

density of some serotonin receptors, such as 5-HT1A and 5-HT2A, has been observed to 

change in Parkinson's disease [42]. Non-motor symptoms in Parkinson's patients may be 

improved by treatments that target serotonin receptors [43]. 

Huntington's disease, a hereditary neurodegenerative condition with motor, cognitive, 

and behavioural symptoms, has also been related to changes in serotonin receptor 

function. Post-mortem investigations have shown decreased serotonin levels as well as 

changes in the density and location of serotonin receptors in the brains of Huntington's 

patients [44]. In animal models of Huntington's disease, pharmacological manipulation 

of serotonin receptors has shown some promise in easing symptoms and slowing disease 

development [45]. 
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2.1.3 Acetylcholinesterase Receptors: 

The function of the neurotransmitter acetylcholine at cholinergic synapses is blocked by 

the enzyme acetylcholinesterase (AChE) [46]. The cholinergic system, in which AChE 

plays an essential part, is involved in learning and memory, among other cognitive 

processes. As the cholinergic system is severely damaged in Alzheimer's disease [47], 

inhibiting AChE has been a prominent treatment method. 

Alzheimer's disease is characterized by a notable decline in cholinergic neurons and an 

associated reduction in ACh levels, as per earlier studies [48]. The cognitive impairments 

that are commonly observed in Alzheimer's disease are thought to be linked to a 

deficiency in cholinergic activity. Acetylcholinesterase inhibitors (AChEIs) represent a 

key therapeutic approach for addressing Alzheimer's disease. These inhibitors function 

by blocking the activity of AChE, thereby elevating ACh levels within the brain [49]. 

AChEIs have been shown to provide modest improvements in cognitive function and 

global clinical outcomes in Alzheimer's patients [50]. 

Cholinergic dysfunction is a notable feature in Parkinson's disease, particularly in 

advanced stages and among patients with cognitive deficits. AChEIs have been 

investigated as a prospective therapeutic intervention for cognitive impairments in 

Parkinson's disease.  

Several clinical trials have reported enhancements in attention, executive function, and 

memory following AChEI treatment [51]. Additionally, AChEIs may help alleviate some 

non-motor symptoms of Parkinson's disease, such as visual hallucinations and 

fluctuations in attention [52]. 

Cholinergic deficiencies have also been associated with Lewy body dementia [53], a 

neurodegenerative illness marked by gradual cognitive deterioration, parkinsonism, and 

visual hallucinations. Cognitive performance, overall clinical outcomes, and certain 

neuropsychiatric symptoms have all improved with the administration of AChEIs in 

Lewy body dementia [54]. 
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2.1.4 Cannabinoid Receptors: 

Another group of G protein-coupled receptors, cannabinoid receptors, are responsible for 

mediating the actions of endogenous and exogenous cannabinoids, such as the 

psychoactive component of cannabis, delta-9-tetrahydrocannabinol (THC) [55]. 

Cannabinoid receptors (CB1 and CB2) were shown to be mostly expressed in the brain 

and the immune system, respectively [56]. Multiple sclerosis, Parkinson's disease, and 

Alzheimer's disease are only some of the neurodegenerative conditions that have been 

linked to the endocannabinoid system [57].  

CB1 and CB2 receptor expression and endocannabinoid levels are two areas of the 

endocannabinoid system that have been shown to fluctuate in Alzheimer's disease [58]. 

Targeting the endocannabinoid system has shown promise in preclinical research for its 

potential to have neuroprotective benefits in Alzheimer's disease [59]. These include 

lowering neuroinflammation, increasing amyloid-beta clearance, and enhancing synaptic 

plasticity. 

Alterations in the endocannabinoid system, such as changes in endocannabinoid levels 

and the expression of cannabinoid receptors, have also been linked to Parkinson's disease 

[60]. Evidence from animal models of Parkinson's disease suggests that influencing the 

endocannabinoid system may reduce neuroinflammation and improve motor symptoms 

by influencing dopamine release [61]. 

The endocannabinoid system has been linked to the modulation of immunological 

responses and the management of neuroinflammation in demyelinating 

neurodegenerative diseases like multiple sclerosis [62]. Cannabinoids have shown 

potential for treating spasticity, pain, and other MS symptoms by acting on the 

endocannabinoid system [63]. 
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2.1.5 NMDA Receptors: 

The ionotropic glutamate receptors known as N-methyl-D-aspartate receptor (NMDA) 

receptors are essential for synaptic plasticity and memory [64]. Two GluN1 subunits and 

two GluN2 or GluN3 subunits make up these heterotetrameric complexes [65]. 

Alzheimer's disease, Parkinson's disease, and schizophrenia are only some of the 

neurodegenerative and neuropsychiatric diseases that have been linked to NMDA 

receptor dysregulation [66]. The therapeutic potential of NMDA receptor function 

modulation in various diseases has been extensively investigated [67]. 

Neuronal damage and loss are hallmarks of Alzheimer's disease, and there is mounting 

evidence that NMDA receptor-mediated excitotoxicity plays a role in this process [68]. 

Excessive NMDA receptor activation is hypothesized to cause excitotoxicity by raising 

intracellular calcium levels and setting off several cell death pathways [69]. Memantine, 

an NMDA receptor antagonist, has been shown to enhance cognitive function and overall 

clinical outcomes by a small amount, warranting its approval for the treatment of 

moderate to severe Alzheimer's disease [70]. 

Loss of dopaminergic neurons and the emergence of motor and non-motor symptoms in 

Parkinson's disease have both been linked to NMDA receptor dysfunction [71]. Animal 

models of Parkinson's disease have shown that NMDA receptor antagonists may have 

neuroprotective benefits and reduce motor symptoms [72]. 

Another progressive neurodegenerative ailment associated with NMDA receptor failure 

is Huntington's disease, which manifests in motor, cognitive, and psychiatric ways. 

Excessive activation of NMDA receptors has been linked to excitotoxicity and neuronal 

death in animal models of Huntington's disease [73]. More study is required to determine 

the therapeutic potential of NMDA receptor antagonists as a therapy for Huntington's 

disease, although clinical studies have not shown substantial improvements thus far [74]. 
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2.2 Ligands investigated in this study for potential therapeutic effect: 

 

2.2.1 Curcumin: 

Chemical structure and properties: Curcumin, a natural polyphenol, is extracted from 

the turmeric (Curcuma longa) plant's rhizomes. It has a bright yellow hue and a 

characteristic smell. The pharmacological effects are attributed to its chemical structure, 

which consists of two aromatic rings linked by α,β-unsaturated carbonyl group [75]. 

Neurological effects: Curcumin has been demonstrated to have many neuroprotective 

benefits, particularly suppressing the pathogenesis-related processes of inflammation, 

oxidative stress, and beta-amyloid deposition [76]. 

Potential therapeutic effects on neurodegenerative diseases: Curcumin may have 

therapeutic benefits for neurodegenerative disorders, according to many studies. These 

include Alzheimer's, Parkinson's, and Huntington's diseases. Animal models of 

neurodegenerative disorders have shown that curcumin may enhance cognitive 

performance, decrease motor symptoms, and halt disease development [77]. 

Mode of action: It has yet to be discovered how curcumin really works in the brain and 

neurological system. It has been found to interact with a number of targets related to 

neurodegenerative diseases, including the NMDA receptor, the dopamine transporter, 

and acetylcholinesterase [78]. 

Interaction with selected receptors: Curcumin's interactions with the selected receptors 

have been established, and they include the serotonin receptor, the dopamine receptor, 

and the NMDA receptor. According to a recent study, curcumin may protect the NMDA 

receptor by decreasing its overactivation and resultant excitotoxicity [79]. 

Overall, curcumin's neuroprotective benefits and interactions with several nervous 

system targets make it a promising candidate as a therapeutic agent for neurodegenerative 

diseases. Its method of action and possible therapeutic uses need more study. 
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Figure 2.1: Curcumin Chemical Structure 

 

 

2.2.2 Galantamine: 

Chemical structure and properties: Galantamine, a chemical compound with unique 

characteristics, is extracted from the blooms and bulbs of the Galanthus Caucasus species 

[80]. Its tricyclic structure, which includes a nitrogen atom, is characteristic of alkaloids 

[81]. 

Neurological effects: Galantamine's ability to inhibit acetylcholinesterase, hence 

improving cholinergic function, has earned it recognition as a cognitive enhancer [82,83]. 

Potential therapeutic effects on neurodegenerative diseases: Galantamine has been 

licensed for the treatment of mild to moderate Alzheimer's disease, suggesting its 

therapeutic potential for other neurodegenerative diseases. Improved cognition and 

function are only two of the many treatment effects that have been shown in clinical 

studies [84]. 
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Mode of action: Galantamine works by blocking an enzyme called acetylcholinesterase, 

which keeps acetylcholine in the synaptic cleft for a longer period of time. Its unique 

therapeutic benefits may be attributed in part to its ability to alter nicotinic acetylcholine 

receptors [85]. 

Interaction with selected receptors: Galantamine's interactions with the selected 

receptors have been thoroughly investigated. The enzyme acetylcholinesterase breaks 

down acetylcholine, a neurotransmitter that is crucial for memory and cognition [86]. 

In conclusion, galantamine is a significant contributor in the area of neurodegenerative 

diseases due to its dual mode of action and established therapeutic advantages in 

Alzheimer's disease. However, further study is needed to determine whether or not it can 

be used as a treatment for other forms of neurodegeneration. 

 

 

 

Figure 2.2 : Galantamine Chemical Structure 
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2.2.3 Pramipexole: 

Chemical structure and properties: Pramipexole, a non-ergoline dopamine agonist, 

uniquely belongs to the benzothiazole class of compounds. Its structure comprises a six-

membered thiazole ring fused with a benzene ring [87]. 

Neurological effects: Studies have shown that Pramipexole exerts potent effects on the 

dopaminergic system, specifically activating D2 and D3 dopamine receptors in the 

striatum and substantia nigra, areas of the brain that control motor functions [88]. 

Potential therapeutic effects on neurodegenerative diseases: Physicians primarily 

prescribe Pramipexole for the treatment of Parkinson's disease and Restless Legs 

Syndrome, conditions that stem from dopamine deficiency. Recent studies are starting to 

explore its potential neuroprotective properties and its effects on depressive symptoms 

[89,90]. 

Mode of action: Pramipexole primarily works by activating dopamine receptors, thereby 

mimicking the effects of dopamine, a neurotransmitter deficient in patients with 

Parkinson's disease. Besides, Pramipexole may also inhibit the release of glutamate, 

which in turn protects neurons from excitotoxic damage [89]. 

Interaction with selected receptors: Pramipexole exhibits a high affinity for the D2, 

D3, and D4 dopamine receptors, but it mainly acts on the D2 and D3 subtypes [27]. 

In conclusion, the dopaminergic activity of Pramipexole and its potential neuroprotective 

properties make it a crucial drug in treating neurodegenerative diseases. Further research 

is needed to fully understand its therapeutic potential and safety profile. 
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Figure 2.3:Pramipexole Chemical Structure 
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2.3 Bioinformatics Tools Used in This Study 

 

2.3.1 AutoDock Vina:  

AutoDock Vina is a highly known and often used molecular docking program created by 

the Scripps Research Institute [91]. It is notable for its accuracy in predicting binding 

affinities and poses, computational efficiency, and user-friendly interface. Trott and 

Olson (2010) made substantial enhancements to the original AutoDock, which increased 

its speed and made its search method more effective. Drug discovery, protein 

engineering, and structure-based drug design are just some of the many areas of study 

that have recently made use of AutoDock Vina to investigate molecular interactions 

between ligands and protein targets [92]. 

 

 

Figure 2.4: A Typical AutoDock Vina Running Window 
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2.3.2 PyMOL:  

PyMOL is a versatile and popular molecular visualization tool developed by Warren L. 

DeLano and currently maintained by Schrödinger. The program enables researchers to 

examine and study three-dimensional molecular structures, including proteins, nucleic 

acids, and tiny compounds. PyMOL's powerful features allow the development of high-

quality pictures and animations of protein-ligand complexes, offering vital insights into 

binding sites and crucial interactions that contribute to ligand binding and specificity 

[93]. Lill and Danielson (2011) explored the implementation of PyMOL as a platform 

for computer-aided drug design, stressing its promise in structure-based drug discovery 

efforts. PyMOL has been used in various studies to examine and show the results of 

molecular docking simulations, validating the validity of computational models and 

helping researchers understand the structural basis of ligand-protein interactions [94]. 

 

 

 

Figure 4.5: A PyMol Window during Visualisation 
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CHAPTER 3 

 

METHODOLOGY 

 

 

3.1 Acetylcholinesterase Receptor 

 

3.1.1 Acetylcholinesterase Receptor-Curcumin Docking and Visualisation 

I. Data preparation:  

a. Downloaded the 3D structure of curcumin from PubChem in SDF format and 

converted it to PDB format using PyMOL  

b. Obtained the PDB file of acetylcholinesterase receptor (PDB ID: 6oij) from the Protein 

Data Bank 

II. Ligand and protein preparation using AutoDock Tools:  

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges  

b. Created .pdbqt files for both the ligand and the protein 

III. Grid box and configuration file preparation:  

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 118.192, 101.959, and 113.034, respectively  

b. Prepared the configuration file for AutoDock Vina 

IV. Molecular docking with AutoDock Vina:  

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file  

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 
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V. Visualization and analysis of docking results using PyMOL:  

a. Opened the output.pdbqt file (containing the docked curcumin) and the receptor protein 

pdbqt file in PyMOL  

b. Displayed the receptor as lines and the docked curcumin as sticks  

c. Identified polar contacts between the docked curcumin and amino acid residues in the 

receptor  

d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues"  

e. Displayed binding residues as sticks and labelled them with amino acid names and 

residue numbers using the label function  

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu  

g. Displayed the receptor protein as a surface model  

h. Adjusted the colour, transparency, and resolution of the protein surface and curcumin-

receptor interaction for better visualization  

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 

 

3.1.2 Acetylcholinesterase Receptor-Galantamine Docking and Visualisation 

I. Data preparation:  

a. Downloaded the 3D structure of galantamine from PubChem in SDF format and 

converted it to PDB format using PyMOL  

b. Obtained the PDB file of acetylcholinesterase receptor (PDB ID: 6oij) from the Protein 

Data Bank 
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II. Ligand and protein preparation using AutoDock Tools:  

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges  

b. Created .pdbqt files for both the ligand and the protein 

III. Grid box and configuration file preparation:  

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 118.192, 101.959, and 113.034, respectively  

b. Prepared the configuration file for AutoDock Vina 

IV. Molecular docking with AutoDock Vina:  

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file  

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 

V. Visualization and analysis of docking results using PyMOL:  

a. Opened the output.pdbqt file (containing the docked galantamine) and the receptor 

protein pdbqt file in PyMOL  

b. Displayed the receptor as lines and the docked galantamine as sticks  

c. Identified polar contacts between the docked galantamine and amino acid residues in 

the receptor  

d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues"  

e. Displayed binding residues as sticks and labelled them with amino acid names and 

residue numbers using the label function  

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu  
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g. Displayed the receptor protein as a surface model  

h. Adjusted the colour, transparency, and resolution of the protein surface and 

galantamine-receptor interaction for better visualization  

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 

 

3.1.3 Acetylcholinesterase Receptor-Pramipexole Docking and Visualisation 

I. Data preparation:  

a. Downloaded the 3D structure of pramipexole from PubChem in SDF format and 

converted it to PDB format using PyMOL  

b. Obtained the PDB file of acetylcholinesterase receptor (PDB ID: 6oij) from the Protein 

Data Bank 

II. Ligand and protein preparation using AutoDock Tools:  

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges  

b. Created .pdbqt files for both the ligand and the protein 

III. Grid box and configuration file preparation:  

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 118.192, 101.959, and 113.034, respectively  

b. Prepared the configuration file for AutoDock Vina 

IV. Molecular docking with AutoDock Vina:  

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file  

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 
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V. Visualization and analysis of docking results using PyMOL:  

a. Opened the output.pdbqt file (containing the docked pramipexole) and the receptor 

protein pdbqt file in PyMOL  

b. Displayed the receptor as lines and the docked pramipexole as sticks  

c. Identified polar contacts between the docked pramipexole and amino acid residues in 

the receptor  

d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues"  

e. Displayed binding residues as sticks and labelled them with amino acid names and 

residue numbers using the label function  

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu  

g. Displayed the receptor protein as a surface model  

h. Adjusted the colour, transparency, and resolution of the protein surface and 

pramipexole-receptor interaction for better visualization  

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 

 

3.2 Cannabinoid Receptor 

 

3.2.1 Cannabinoid Receptor-Curcumin Docking and Visualisation 

I. Data preparation: 

a. Downloaded the 3D structure of curcumin from PubChem in SDF format and 

converted it to PDB format using PyMOL 

b. Obtained the PDB file of the cannabinoid receptor (PDB ID: 5zty) from the Protein 

Data Bank 
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II. Ligand and protein preparation using AutoDock Tools: 

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges 

b. Created .pdbqt files for both the ligand and the protein 

III. Grid box and configuration file preparation: 

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 5.902, -4.854, and -26.652, respectively 

b. Prepared the configuration file for AutoDock Vina 

IV. Molecular docking with AutoDock Vina: 

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file 

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 

V. Visualization and analysis of docking results using PyMOL: 

a. Opened the output.pdbqt file (containing the docked curcumin) and the receptor protein 

pdbqt file in PyMOL 

b. Displayed the receptor as lines and the docked curcumin as sticks 

c. Identified polar contacts between the docked curcumin and amino acid residues in the 

receptor 

d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues" 

e. Displayed binding residues as sticks and labelled them with amino acid names and 

residue numbers using the label function 

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu 

g. Displayed the receptor protein as a surface model 
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h. Adjusted the colour, transparency, and resolution of the protein surface and curcumin-

receptor interaction for better visualization 

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 

 

3.2.2 Cannabinoid Receptor-Galantamine Docking and Visualisation 

I. Data preparation for cannabinoid receptor-curcumin interaction: 

a. Downloaded the 3D structure of galantamine from PubChem in SDF format and 

converted it to PDB format using PyMOL 

b. Obtained the PDB file of the cannabinoid receptor (PDB ID: 5zty) from the Protein 

Data Bank 

II. Ligand and protein preparation using AutoDock Tools: 

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges 

b. Created .pdbqt files for both the ligand and the protein 

III. Grid box and configuration file preparation: 

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 5.902, -4.854, and -26.652, respectively 

b. Prepared the configuration file for AutoDock Vina 

IV. Molecular docking with AutoDock Vina: 

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file 

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 
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V. Visualization and analysis of docking results using PyMOL: 

a. Opened the output.pdbqt file (containing the docked galantamine) and the receptor 

protein pdbqt file in PyMOL 

b. Displayed the receptor as lines and the docked galantamine as sticks 

c. Identified polar contacts between the docked galantamine and amino acid residues in 

the receptor 

d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues" 

e. Displayed binding residues as sticks and labelled them with amino acid names and 

residue numbers using the label function 

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu 

g. Displayed the receptor protein as a surface model 

h. Adjusted the colour, transparency, and resolution of the protein surface and 

galantamine-receptor interaction for better visualization 

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 

 

3.2.3 Cannabinoid Receptor-Pramipexole Docking and Visualisation 

I. Data preparation for cannabinoid receptor-curcumin interaction: 

a. Downloaded the 3D structure of pramipexole from PubChem in SDF format and 

converted it to PDB format using PyMOL 

b. Obtained the PDB file of the cannabinoid receptor (PDB ID: 5zty) from the Protein 

Data Bank 
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II. Ligand and protein preparation using AutoDock Tools: 

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges 

b. Created .pdbqt files for both the ligand and the protein 

III. Grid box and configuration file preparation: 

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 5.902, -4.854, and -26.652, respectively 

b. Prepared the configuration file for AutoDock Vina 

IV. Molecular docking with AutoDock Vina: 

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file 

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 

V. Visualization and analysis of docking results using PyMOL: 

a. Opened the output.pdbqt file (containing the docked pramipexole) and the receptor 

protein pdbqt file in PyMOL 

b. Displayed the receptor as lines and the docked pramipexole as sticks 

c. Identified polar contacts between the docked pramipexole and amino acid residues in 

the receptor 

d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues" 

e. Displayed binding residues as sticks and labelled them with amino acid names and 

residue numbers using the label function 

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu 
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g. Displayed the receptor protein as a surface model 

h. Adjusted the colour, transparency, and resolution of the protein surface and 

pramipexole-receptor interaction for better visualization 

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 

 

3.3 Dopamine Receptor 

 

3.3.1 Dopamine Receptor-Curcumin Molecular Docking and Visualisation 

I. Data preparation: 

a. Downloaded the 3D structure of curcumin from PubChem in SDF format and 

converted it to PDB format using PyMOL 

b. Obtained the PDB file of the dopamine receptor (PDB ID: 6cm4) from the Protein 

Data Bank 

II. Ligand and protein preparation using AutoDock Tools: 

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges 

b. Created .pdbqt files for both the ligand and the protein 

III. Grid box and configuration file preparation: 

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 17.684, 1.438, and 14.969, respectively 

b. Prepared the configuration file for AutoDock Vina 
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IV. Molecular docking with AutoDock Vina: 

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file 

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 

V. Visualization and analysis of docking results using PyMOL: 

a. Opened the output.pdbqt file (containing the docked curcumin) and the receptor protein 

pdbqt file in PyMOL 

b. Displayed the receptor as lines and the docked curcumin as sticks 

c. Identified polar contacts between the docked curcumin and amino acid residues in the 

receptor 

d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues" 

e. Displayed binding residues as sticks and labelled them with amino acid names and 

residue numbers using the label function 

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu 

g. Displayed the receptor protein as a surface model 

h. Adjusted the colour, transparency, and resolution of the protein surface and curcumin-

receptor interaction for better visualization 

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 
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3.3.2 Dopamine Receptor-Galantamine Molecular Docking and Visualisation 

I. Data preparation: 

a. Downloaded the 3D structure of galantamine from PubChem in SDF format and 

converted it to PDB format using PyMOL 

b. Obtained the PDB file of the dopamine receptor (PDB ID: 6cm4) from the Protein 

Data Bank 

II. Ligand and protein preparation using AutoDock Tools: 

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges 

b. Created .pdbqt files for both the ligand and the protein 

III. Grid box and configuration file preparation: 

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 17.684, 1.438, and 14.969, respectively 

b. Prepared the configuration file for AutoDock Vina 

IV. Molecular docking with AutoDock Vina: 

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file 

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 

V. Visualization and analysis of docking results using PyMOL: 

a. Opened the output.pdbqt file (containing the docked galantamine) and the receptor 

protein pdbqt file in PyMOL 

b. Displayed the receptor as lines and the docked galantamine as sticks 

c. Identified polar contacts between the docked galantamine and amino acid residues in 

the receptor 



 

30 
 

d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues" 

e. Displayed binding residues as sticks and labelled them with amino acid names and 

residue numbers using the label function 

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu 

g. Displayed the receptor protein as a surface model 

h. Adjusted the colour, transparency, and resolution of the protein surface and 

galantamine-receptor interaction for better visualization 

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 

 

3.3.3 Dopamine Receptor-Pramipexole Molecular Docking and Visualisation 

I. Data preparation: 

a. Downloaded the 3D structure of pramipexole from PubChem in SDF format and 

converted it to PDB format using PyMOL 

b. Obtained the PDB file of the dopamine receptor (PDB ID: 6cm4) from the Protein 

Data Bank 

II. Ligand and protein preparation using AutoDock Tools: 

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges 

b. Created .pdbqt files for both the ligand and the protein 

III. Grid box and configuration file preparation: 

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 17.684, 1.438, and 14.969, respectively 

b. Prepared the configuration file for AutoDock Vina 
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IV. Molecular docking with AutoDock Vina: 

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file 

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 

V. Visualization and analysis of docking results using PyMOL: 

a. Opened the output.pdbqt file (containing the docked pramipexole) and the receptor 

protein pdbqt file in PyMOL 

b. Displayed the receptor as lines and the docked pramipexole as sticks 

c. Identified polar contacts between the docked pramipexole and amino acid residues in 

the receptor 

d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues" 

e. Displayed binding residues as sticks and labelled them with amino acid names and 

residue numbers using the label function 

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu 

g. Displayed the receptor protein as a surface model 

h. Adjusted the colour, transparency, and resolution of the protein surface and 

pramipexole-receptor interaction for better visualization 

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 
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3.4 N-methyl-D-aspartate (NMDA) Receptor 

 

3.4.1 NMDA Receptor-Curcumin Molecular Docking and Visualisation 

I. Data preparation for N-methyl-D-aspartate (NMDA) receptor-curcumin 

interaction: 

a. Downloaded the 3D structure of curcumin from PubChem in SDF format and 

converted it to PDB format using PyMOL 

b. Obtained the PDB file of the NMDA receptor (PDB ID: 6dwq) from the Protein Data 

Bank 

II. Ligand and protein preparation using AutoDock Tools: 

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges 

b. Created .pdbqt files for both the ligand and the protein 

III. Grid box and configuration file preparation: 

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 32.313, -21.122, and 5.097, respectively 

b. Prepared the configuration file for AutoDock Vina 

IV. Molecular docking with AutoDock Vina: 

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file 

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 

V. Visualization and analysis of docking results using PyMOL: 

a. Opened the output.pdbqt file (containing the docked curcumin) and the receptor protein 

pdbqt file in PyMOL 

b. Displayed the receptor as lines and the docked curcumin as sticks 
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c. Identified polar contacts between the docked curcumin and amino acid residues in the 

receptor 

d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues" 

e. Displayed binding residues as sticks and labelled them with amino acid names and 

residue numbers using the label function 

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu 

g. Displayed the receptor protein as a surface model 

h. Adjusted the colour, transparency, and resolution of the protein surface and curcumin-

receptor interaction for better visualization 

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 

 

3.4.2 NMDA Receptor-Galantamine Molecular Docking and Visualisation 

I. Data preparation for N-methyl-D-aspartate (NMDA) receptor-Galantamine 

interaction: 

a. Downloaded the 3D structure of galantamine from PubChem in SDF format and 

converted it to PDB format using PyMOL 

b. Obtained the PDB file of the NMDA receptor (PDB ID: 6dwq) from the Protein Data 

Bank 

II. Ligand and protein preparation using AutoDock Tools: 

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges 

b. Created .pdbqt files for both the ligand and the protein 
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III. Grid box and configuration file preparation: 

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 32.313, -21.122, and 5.097, respectively 

b. Prepared the configuration file for AutoDock Vina 

IV. Molecular docking with AutoDock Vina: 

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file 

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 

V. Visualization and analysis of docking results using PyMOL: 

a. Opened the output.pdbqt file (containing the docked Galantamine) and the receptor 

protein pdbqt file in PyMOL 

b. Displayed the receptor as lines and the docked galantamine as sticks 

c. Identified polar contacts between the docked galantamine and amino acid residues in 

the receptor 

d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues" 

e. Displayed binding residues as sticks and labelled them with amino acid names and 

residue numbers using the label function 

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu 

g. Displayed the receptor protein as a surface model 

h. Adjusted the colour, transparency, and resolution of the protein surface and 

Galantamine-receptor interaction for better visualization 

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 
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3.4.3 NMDA Receptor-Pramipexole Molecular Docking and Visualisation 

I. Data preparation for N-methyl-D-aspartate (NMDA) receptor-Pramipexole  

interaction: 

a. Downloaded the 3D structure of pramipexole from PubChem in SDF format and 

converted it to PDB format using PyMOL 

b. Obtained the PDB file of the NMDA receptor (PDB ID: 6dwq) from the Protein Data 

Bank 

II. Ligand and protein preparation using AutoDock Tools: 

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges 

b. Created .pdbqt files for both the ligand and the protein 

III. Grid box and configuration file preparation: 

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 32.313, -21.122, and 5.097, respectively 

b. Prepared the configuration file for AutoDock Vina 

IV. Molecular docking with AutoDock Vina: 

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file 

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 

V. Visualization and analysis of docking results using PyMOL: 

a. Opened the output.pdbqt file (containing the docked Pramipexole) and the receptor 

protein pdbqt file in PyMOL 

b. Displayed the receptor as lines and the docked pramipexole as sticks 

c. Identified polar contacts between the docked pramipexole and amino acid residues in 

the receptor 
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d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues" 

e. Displayed binding residues as sticks and labelled them with amino acid names and 

residue numbers using the label function 

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu 

g. Displayed the receptor protein as a surface model 

h. Adjusted the colour, transparency, and resolution of the protein surface and 

Pramipexole-receptor interaction for better visualization 

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 

 

3.5 Serotonin Receptor 

 

3.5.1 Serotonin Receptor-Curcumin Molecular Docking and Visualization 

I. Data preparation for serotonin receptor-curcumin interaction: 

a. Downloaded the 3D structure of curcumin from PubChem in SDF format and 

converted it to PDB format using PyMOL 

b. Obtained the PDB file of the serotonin receptor (PDB ID: 6bqh) from the Protein Data 

Bank 

II. Ligand and protein preparation using AutoDock Tools: 

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges 

b. Created .pdbqt files for both the ligand and the protein 
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III. Grid box and configuration file preparation: 

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 40.188, 33.467, and 40.750, respectively 

b. Prepared the configuration file for AutoDock Vina 

IV. Molecular docking with AutoDock Vina: 

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file 

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 

V. Visualization and analysis of docking results using PyMOL: 

a. Opened the output.pdbqt file (containing the docked curcumin) and the receptor protein 

pdbqt file in PyMOL 

b. Displayed the receptor as lines and the docked curcumin as sticks 

c. Identified polar contacts between the docked curcumin and amino acid residues in the 

receptor 

d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues" 

e. Displayed binding residues as sticks and labelled them with amino acid names and 

residue numbers using the label function 

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu 

g. Displayed the receptor protein as a surface model 

h. Adjusted the color, transparency, and resolution of the protein surface and curcumin-

receptor interaction for better visualization 

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 
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3.5.2 Serotonin Receptor-Galantamine Molecular Docking and Visualization 

I. Data preparation for serotonin receptor-galantamine interaction: 

a. Downloaded the 3D structure of galantamine from PubChem in SDF format and 

converted it to PDB format using PyMOL 

b. Obtained the PDB file of the serotonin receptor (PDB ID: 6bqh) from the Protein Data 

Bank 

II. Ligand and protein preparation using AutoDock Tools: 

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges 

b. Created .pdbqt files for both the ligand and the protein 

III. Grid box and configuration file preparation: 

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 40.188, 33.467, and 40.750, respectively 

b. Prepared the configuration file for AutoDock Vina 

IV. Molecular docking with AutoDock Vina: 

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file 

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 

V. Visualization and analysis of docking results using PyMOL: 

a. Opened the output.pdbqt file (containing the docked galantamine) and the receptor 

protein pdbqt file in PyMOL 

b. Displayed the receptor as lines and the docked galantamine as sticks 

c. Identified polar contacts between the docked galantamine and amino acid residues in 

the receptor 
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d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues" 

e. Displayed binding residues as sticks and labeled them with amino acid names and 

residue numbers using the label function 

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu 

g. Displayed the receptor protein as a surface model 

h. Adjusted the colour, transparency, and resolution of the protein surface and 

galantamine-receptor interaction for better visualization 

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 

 

3.5.3 Serotonin Receptor-Pramipexole Molecular Docking and Visualization 

I. Data preparation for serotonin receptor-pramipexole interaction: 

a. Downloaded the 3D structure of pramipexole from PubChem in SDF format and 

converted it to PDB format using PyMOL 

b. Obtained the PDB file of the serotonin receptor (PDB ID: 6bqh) from the Protein Data 

Bank 

II. Ligand and protein preparation using AutoDock Tools: 

a. Prepared the ligand and protein by removing water molecules, adding polar hydrogens, 

and assigning Kollman charges 

b. Created .pdbqt files for both the ligand and the protein 

III. Grid box and configuration file preparation: 

a. Defined the grid box using AutoDock Tools with size_x, size_y, and size_z set to 40 

and center_x, center_y, and center_z set to 40.188, 33.467, and 40.750, respectively 

b. Prepared the configuration file for AutoDock Vina 
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IV. Molecular docking with AutoDock Vina: 

a. Changed the directory in the command prompt to the folder containing the vina.exe 

file 

b. Executed the docking simulation using the command template: "--receptor 

receptor.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt" 

V. Visualization and analysis of docking results using PyMOL: 

a. Opened the output.pdbqt file (containing the docked pramipexole) and the receptor 

protein pdbqt file in PyMOL 

b. Displayed the receptor as lines and the docked pramipexole as sticks 

c. Identified polar contacts between the docked pramipexole and amino acid residues in 

the receptor 

d. Created a selection for the identified polar binding residues and renamed it to "binding 

residues" 

e. Displayed binding residues as sticks and labeled them with amino acid names and 

residue numbers using the label function 

f. Measured the distances between interacting atoms using the "Measurement" option in 

the "Wizard" menu 

g. Displayed the receptor protein as a surface model 

h. Adjusted the color, transparency, and resolution of the protein surface and 

pramipexole-receptor interaction for better visualization 

i. Saved the customized image of the protein-ligand complex for further analysis and 

documentation 
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Figure 3.1: Research Methodology Flowchart 
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CHAPTER 4 

 

RESULT AND DISCUSSION 

 

 

4.1 RESULT 

 

4.1.1 Acetylcholinesterase Receptor Interactions 

The molecular docking simulations for acetylcholinesterase (AChE) with curcumin, 

galantamine, and pramipexole were performed using AutoDock Vina. The top 2 hits of 

each docking were selected for further analysis and presentation based on their binding 

affinities and RMSD values. The binding affinities and RMSD values for the selected 

hits are presented in Table 4.1. 

 

Table 4.1: Binding affinities and RMSD values for the top 2 hits of 

Acetylcholinesterase Receptor interactions. 

Interaction Mode Affinity (kcal/mol) RMSD l.b. RMSD u.b. 

Acetylcholinesterase-Curcumin 1 -7.8 0.000 0.000 

Acetylcholinesterase-Curcumin 2 -7.7 2.188 3.933 

Acetylcholinesterase-Galantamine 1 -7.9 0.000 0.000 

Acetylcholinesterase-Galantamine 2 -7.3 27.969 30.083 

Acetylcholinesterase-Pramipexole 1 -5.9 0.000 0.000 

Acetylcholinesterase-Pramipexole 2 -5.8 4.596 7.571 
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The molecular interactions between AChE and the ligands were visualized using 

PyMOL. The top-scoring binding mode for each ligand showed the following 

interactions: 

1. Acetylcholinesterase-Curcumin: Curcumin interacted with key residues in the 

active site of AChE, forming hydrogen bonds and hydrophobic interactions with 

ARG 150, ARG 314, and ILE 232 (Figure 4.1). 

2. Acetylcholinesterase-Galantamine: Galantamine established several hydrogen 

bonds and hydrophobic interactions with AChE, occupying the enzyme's active 

site, and making polar contacts with MET 61 and ARG 150 (Figure 4.2). 

3. Acetylcholinesterase-Pramipexole: Pramipexole interacted with AChE through 

hydrogen bonding and hydrophobic interactions, binding to the enzyme's active 

site, and making polar contacts with ARG 150, LEU 190, ILE 232, SER 275, and 

SER 316 (Figure 4.3). 

 

 

 

Figure 4.1: Acetylcholinesterase Receptor-Curcumin interaction 
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Figure 4.2: Acetylcholinesterase Receptor-Galantamine interaction 

 

 

Figure 4.3: Acetylcholinesterase Receptor-Pramipexole interaction. 
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In summary, the molecular docking results suggest that curcumin, galantamine, and 

pramipexole can interact with acetylcholinesterase, with curcumin and galantamine 

showing higher binding affinities than pramipexole. The visualization of these 

interactions provides insights into the potential binding modes and key residues involved 

in ligand-receptor interactions. 

 

4.1.2 Cannabinoid Receptor Interactions 

The molecular docking simulations for the cannabinoid receptor with curcumin, 

galantamine, and pramipexole were performed using AutoDock Vina. The top 2 hits of 

each docking were selected for further analysis and presentation based on their binding 

affinities and RMSD values. The binding affinities and RMSD values for the selected 

hits are presented in Table 4.2. 

 

Table 4.2: Binding affinities and RMSD values for the top 2 hits of Cannabinoid 

Receptor interactions 

Interaction Mode Affinity (kcal/mol) RMSD l.b. RMSD u.b. 

Cannabinoid Receptor-Curcumin 1 -7.1 0.000 0.000 

Cannabinoid Receptor-Curcumin 2 -6.6 1.346 9.562 

Cannabinoid Receptor-Galantamine 1 -6.5 0.000 0.000 

Cannabinoid Receptor-Galantamine 2 -5.9 31.420 33.532 

Cannabinoid Receptor-Pramipexole 1 -5.3 0.000 0.000 

Cannabinoid Receptor-Pramipexole 2 -4.8 3.054 6.064 
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The molecular interactions between the cannabinoid receptor and the ligands were 

visualized using PyMOL. The top-scoring binding mode for each ligand showed the 

following interactions: 

1. Cannabinoid Receptor-Curcumin: Curcumin interacted with key residues in the 

active site of the cannabinoid receptor, forming polar contacts with 2 amino acids: 

ARG 1007 and ARG 1147 (Figure 4.4). 

2. Cannabinoid Receptor-Galantamine: Galantamine established a polar contact 

with 1 amino acid of the receptor: MET 147 (Figure 4.5). 

3. Cannabinoid Receptor-Pramipexole: Pramipexole interacted with the 

cannabinoid receptor through polar contacts with 2 amino acids: GLN 218 and 

VAL 220 (Figure 4.6). 

 

 

 

Figure 4.4: Cannabinoid Receptor-Curcumin interaction 
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Figure 4.5: Cannabinoid Receptor-Galantamine interaction 

 

 

 

 

Figure 4.6: Cannabinoid Receptor-Pramipexole interaction 

 

In summary, the molecular docking results suggest that curcumin, galantamine, and 

pramipexole can interact with the cannabinoid receptor, with curcumin showing the 

highest binding affinity followed by galantamine and pramipexole. The visualization of 

these interactions provides insights into the potential binding modes and key residues 

involved in ligand-receptor interactions. 
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4.1.3 Dopamine Receptor Interactions 

The molecular docking simulations for the dopamine receptor with curcumin, 

galantamine, and pramipexole were performed using AutoDock Vina. The top 2 hits of 

each docking were selected for further analysis and presentation based on their binding 

affinities and RMSD values. The binding affinities and RMSD values for the selected 

hits are presented in Table 4.3. 

 

Table 4.3: Binding affinities and RMSD values for the top 2 hits of dopamine receptor 

interactions. 

Interaction Mode Affinity (kcal/mol) RMSD l.b. RMSD u.b. 

Dopamine-Curcumin 1 -6.7 0.000 0.000 

Dopamine-Curcumin 2 -6.3 3.175 6.340 

Dopamine-Galantamine 1 -7.2 0.000 0.000 

Dopamine-Galantamine 2 -6.7 2.944 4.902 

Dopamine-Pramipexole 1 -5.1 0.000 0.000 

Dopamine-Pramipexole 2 -5.0 1.315 2.044 
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The molecular interactions between the dopamine receptor and the ligands were 

visualized using PyMOL. The top-scoring binding mode for each ligand showed the 

following interactions: 

1. Dopamine-Curcumin: Curcumin interacted with one key residue in the active site 

of the dopamine receptor, forming polar contact with ASN 1068 (Figure 4.7). 

2. Dopamine-Galantamine: Galantamine established polar contact with one amino 

acid, TYR 1088, in the active site of the dopamine receptor (Figure 4.8). 

3. Dopamine-Pramipexole: Pramipexole interacted with the dopamine receptor 

through polar contacts with two amino acids, LEU 216 and ARG 220 (Figure 

4.9). 

 

 

 

 

Figure 4.7: Dopamine Receptor-Curcumin interaction 
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Figure 4.8: Dopamine Receptor-Galantamine interaction 

 

 

 

 

Figure 4.9: Dopamine Receptor-Pramipexole interaction 
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In summary, the molecular docking results suggest that curcumin, galantamine, and 

pramipexole can interact with the dopamine receptor, with galantamine showing the 

highest binding affinity followed by curcumin and pramipexole. The visualization of 

these interactions provides insights into the potential binding modes and key residues 

involved in ligand-receptor interactions. 

 

4.1.4 NMDA Receptor Interactions 

Molecular docking simulations for the NMDA receptor with curcumin, galantamine, and 

pramipexole were performed using AutoDock Vina. The top 2 hits of each docking were 

selected for further analysis and presentation based on their binding affinities and RMSD 

values. The binding affinities and RMSD values for the selected hits are presented in 

Table 4.4. 

 

Table 4.4: Binding affinities and RMSD values for the top 2 hits of NMDA Receptor 

interactions. 

Interaction Mode Affinity (kcal/mol) RMSD l.b. RMSD u.b. 

NMDA-Curcumin 1 -7.9 0.000 0.000 

NMDA-Curcumin 2 -7.6 1.996 6.658 

NMDA-Galantamine 1 -7.1 0.000 0.000 

NMDA-Galantamine 2 -6.9 1.542 2.039 

NMDA-Pramipexole 1 -4.8 0.000 0.000 

NMDA-Pramipexole 2 -4.6 2.268 5.750 
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The molecular interactions between the NMDA receptor and the ligands were visualized 

using PyMOL. The top-scoring binding mode for each ligand showed the following 

interactions: 

1. NMDA-Curcumin: Curcumin interacted with four key residues in the active site 

of the NMDA receptor, forming polar contacts with GLY 126, ASN 154, SER 

155, and EDO 301 (Figure 4.10). 

2. NMDA-Galantamine: Galantamine established polar contact with one amino 

acid, GLY 126, in the active site of the NMDA receptor (Figure 4.11). 

3. NMDA-Pramipexole: Pramipexole interacted with the NMDA receptor through 

polar contacts with two amino acids, ASN 25 and EDO 307 (Figure 4.12). 

 

 

 

 

Figure 4.10: NMDA Receptor-Curcumin interaction 
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Figure 4.11: NMDA Receptor-Galantamine interaction 

 

 

 

Figure 4.12: NMDA Receptor-Pramipexole interaction. 
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In summary, the molecular docking results suggest that curcumin, galantamine, and 

pramipexole can interact with the NMDA receptor, with curcumin showing the highest 

binding affinity followed by galantamine and pramipexole. The visualization of these 

interactions provides insights into the potential binding modes and key residues involved 

in ligand-receptor interactions. 

 

4.1.5 Serotonin Receptor Interactions 

Molecular docking simulations for the serotonin receptor with curcumin, galantamine, 

and pramipexole were performed using AutoDock Vina. The top 2 hits of each docking 

were selected for further analysis and presentation based on their binding affinities and 

RMSD values. The binding affinities and RMSD values for the selected hits are presented 

in Table 4.5. 

 

Table 4.5: Binding affinities and RMSD values for the top 2 hits of Serotonin Receptor 

interactions. 

Interaction Mode Affinity (kcal/mol) RMSD l.b. RMSD u.b. 

Serotonin-Curcumin 1 -6.6 0.000 0.000 

Serotonin-Curcumin 2 -6.6 17.594 21.350 

Serotonin-Galantamine 1 -7.3 0.000 0.000 

Serotonin-Galantamine 2 -7.1 2.441 4.408 

Serotonin-Pramipexole 1 -5.4 0.000 0.000 

Serotonin-Pramipexole 2 -5.4 15.952 17.964 
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The molecular interactions between the serotonin receptor and the ligands were 

visualized using PyMOL. The top-scoring binding mode for each ligand showed the 

following interactions: 

1. Serotonin-Curcumin: Curcumin interacted with two key residues in the active site 

of the serotonin receptor, forming polar contacts with ARG 152 and ASN 372 

(Figure 4.13). 

2. Serotonin-Galantamine: Galantamine established polar contact with one amino 

acid, ARG 152, in the active site of the serotonin receptor (Figure 4.14). 

3. Serotonin-Pramipexole: Pramipexole interacted with the serotonin receptor 

through polar contacts with two amino acids, GLY 362 and THR 369 (Figure 

4.15). 

 

 

 

 

Figure 4.13: Serotonin Receptor-Curcumin interaction 
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Figure 4.14: Serotonin Receptor-Galantamine interaction 

 

 

 

 

 

Figure 4.15: Serotonin Receptor-Pramipexole interaction 
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In summary, the molecular docking results suggest that curcumin, galantamine, and 

pramipexole can interact with the serotonin receptor, with galantamine showing the 

highest binding affinity followed by curcumin and pramipexole. The visualization of 

these interactions provides insights into the potential binding modes and key residues 

involved in ligand-receptor interactions. 
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4.2 DISCUSSION   

4.2.1 Acetylcholinesterase Receptor 

 

The aim of the molecular docking study of acetylcholinesterase (AChE) with curcumin, 

galantamine, and pramipexole was to find out if they could potentially be used as AChE 

inhibitors and to learn more about how the enzyme and these ligands interact at the 

molecular level. Acetylcholinesterase is a very important target for developing treatments 

for Alzheimer's disease and other neurodegenerative diseases because it breaks down the 

neurotransmitter acetylcholine, which is essential for cognitive functions such as learning 

and memory. 

Our docking results revealed that curcumin and galantamine exhibited higher binding 

affinities to AChE compared to pramipexole, suggesting their potential as AChE 

inhibitors. In both in vitro and in vivo studies [95,96], curcumin and galantamine have 

slowed the activity of AChE. These results are in line with those studies. The 

visualization of the interactions showed that curcumin and galantamine formed hydrogen 

bonds and hydrophobic interactions with key residues in the active site of AChE, such as 

ARG 150 and ILE 232, which are known to be essential to the enzyme's catalytic activity.  

When pramipexole was docked, the results showed that it binds to AChE less strongly 

than curcumin and galantamine. Still, pramipexole made polar bonds with ARG 150, 

LEU 190, ILE 232, SER 275, and SER 316, which are all important residues in the 

enzyme's active site. These findings suggest that pramipexole might still possess some 

inhibitory effects on AChE, although it is likely to be less potent than curcumin and 

galantamine. Further experimental studies are needed to evaluate the potential inhibitory 

effects of pramipexole on AChE and its potential role in the treatment of 

neurodegenerative disorders. 

In conclusion, the molecular docking analysis of AChE interactions with curcumin, 

galantamine, and pramipexole provided valuable insights into their potential as AChE 

inhibitors and the molecular basis of their interactions. Our study showcases that 

curcumin and galantamine are more effective AChE inhibitors as compared to 

pramipexole. In addition, the potential therapeutic applications of these ligands in the 

context of neurological disorders require further exploration. 
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4.2.2 Cannabinoid Receptor 

 

The cannabinoid receptor is involved in a wide variety of physiological processes, such 

as pain regulation, appetite control, and immune system regulation. The molecular 

docking study aimed to learn how curcumin, galantamine, and pramipexole could interact 

with this receptor. Multiple neurological and psychological disorders, including 

Alzheimer's, Parkinson's, and schizophrenia, have been associated with the cannabinoid 

receptor. Knowing how these ligands interact with the cannabinoid receptor on a 

molecular level might shed light on their therapeutic potential. 

According to our docking data, curcumin binds to the cannabinoid receptor with the 

greatest affinity, followed by galantamine and pramipexole. These results show that 

curcumin, in comparison to galantamine and pramipexole, may have a greater capacity 

to regulate cannabinoid receptor function. Curcumin's interaction with the cannabinoid 

receptor may be responsible for some of its various biological benefits, including its anti -

inflammatory, antioxidant, and neuroprotective properties [97-99]. 

Curcumin was shown to make polar interactions with ARG 1007 and ARG 1147, two 

essential amino acids in the cannabinoid receptor's active site. These amino acids may be 

pivotal for ligand-receptor interaction and may contribute to curcumin's known 

biological effects.  On the other hand, galantamine and pramipexole had fewer polar 

contacts with the receptor. This may indicate that their binding affinities are lower and 

that they have weaker interactions with the receptor. 

Cannabinoid receptor interactions with curcumin, galantamine, and pramipexole were 

analysed using molecular docking, yielding important insights into the binding affinities 

of these compounds and the critical residues involved in ligand-receptor interactions. 

Based on our results, curcumin may have a greater ability than galantamine and 

pramipexole to alter cannabinoid receptor function. Further experimental research 

is required to corroborate these discoveries and study the functional effects of these 

interactions on cannabinoid receptor signalling and associated physiological processes. 

Additionally, these ligands' therapeutic potential for neurological and 

neurological disorders needs further investigation. 
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4.2.3 Dopamine Receptor 

 

In this molecular docking study, we sought to explore the dopamine receptor's possible 

interactions with curcumin, galantamine, and pramipexole. Dopamine receptors have 

significance in the pathophysiology of multiple neurological and psychiatric illnesses 

such as Parkinson's disease, schizophrenia, and addiction because of their roles in 

cognition, motor control, and reward. Learning how these ligands interact with the 

dopamine receptor on a molecular level might shed light on their therapeutic potential. 

According to our docking analysis, pramipexole and curcumin have the next-highest 

affinities for the dopamine receptor after galantamine. This indicates that galantamine, 

in comparison to curcumin and pramipexole, may have a greater capacity to alter 

dopamine receptor function. The pharmacological effects of galantamine in Alzheimer's 

disease may be attributable to its many biological functions, such as the inhibition of 

acetylcholinesterase and the allosteric regulation of nicotinic acetylcholine receptors 

[100-102]. Interacting with the dopamine receptor might broaden its potential therapeutic 

uses. 

Galantamine was discovered to interact with TYR 1088, a critical amino acid in the 

dopamine receptor's active site, through polar interactions. The biological effects of 

galantamine may be related to the importance of this residue in the ligand-receptor 

interaction. Curcumin and pramipexole, in contrast, made less polar contact with the 

receptor, which may have led to fewer polar interactions and lower binding affinities. 

Our molecular docking investigation of curcumin, galantamine, and pramipexole with 

the dopamine receptor elucidates various binding mechanisms and critical residues 

involved in ligand-receptor interactions. Based on our results, galantamine may have a 

higher ability than curcumin and pramipexole to alter dopamine receptor activation. 

However, more experimental research is required to corroborate these discoveries and 

investigate the functional effects of these interactions on dopamine receptor 

signalling and associated physiological processes. More research is required to determine 

whether or not these ligands have any therapeutic use in the treatment of neurological 

and psychological disorders. 
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4.2.4 NMDA Receptor 

 

The purpose of the molecular docking study of the NMDA receptor with curcumin, 

galantamine, and pramipexole was to determine how they may interact with this 

important receptor, which plays a significant role in the central nervous system by 

influencing synaptic plasticity and excitatory neurotransmission. Alzheimer's disease, 

Parkinson's disease, and schizophrenia, among other neurological disorders, have been 

linked to NMDA receptors. Understanding the molecular interactions between these 

ligands and the NMDA receptor may therefore shed light on their possible therapeutic 

applications. 

After curcumin, galantamine and pramipexole were the NMDA receptor ligands with the 

second-highest binding affinity, according to our docking results. These results indicate 

that curcumin may have a greater capacity to modulate NMDA receptor activity than 

galantamine and pramipexole. It has been said to have different biological qualities, such 

as anti-inflammatory, antioxidant, and neuroprotective effects [103–105]. The interaction 

with the NMDA receptor could further expand its potential therapeutic applications. 

The visualisation of the interactions showed that curcumin made polar connections with 

GLY 126, ASN 154, SER 155, and EDO 301, which are all important residues in the 

active site of the NMDA receptor. These residues might be crucial for the ligand-receptor 

interaction and could play a role in the observed biological effects of curcumin. 

Galantamine and pramipexole, on the other hand, made fewer polar contacts with the 

receptor. This could mean their interactions with the receptor are weaker and their 

binding affinities are lower. 

The molecular docking analysis of how the NMDA receptor interacts with curcumin, 

galantamine, and pramipexole gives important information about how they might bind 

and which key residues are involved in how ligands interact with receptors. Our findings 

suggest that curcumin might have a stronger potential to modulate NMDA receptor 

activity compared to galantamine and pramipexole. However, further experimental 

studies are needed to validate these observations and investigate the functional 

consequences of these interactions on NMDA receptor signalling and related 

physiological processes. In addition, the potential therapeutic applications of these 

ligands in the context of neurological disorders require further exploration. 
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4.2.5 Serotonin Receptor 

 

The molecular docking study of the serotonin receptor with curcumin, galantamine, and 

pramipexole aimed to discover how they might interact with this important receptor, 

which is involved in many physiological processes like regulating mood, controlling 

hunger, and sleep. Several psychological disorders, such as sadness, anxiety, and 

obsessive-compulsive disorder, have been linked to the serotonin receptor in the way 

they work. So, knowing how these ligands interact with the serotonin receptor at the 

molecular level could help us figure out how they could be used as therapeutics. 

According to our docking results, pramipexole and curcumin had the next highest binding 

affinities for the serotonin receptor after galantamine. These findings suggest that 

galantamine might have a stronger potential to modulate serotonin receptor activity 

compared to curcumin and pramipexole. Galantamine is primarily known for its effects 

on Alzheimer's disease through acetylcholinesterase inhibition and allosteric modulation 

of nicotinic acetylcholine receptors [106,107]. The interaction with the serotonin receptor 

could further expand its potential therapeutic applications. 

When the interactions were visualised, it was seen that galantamine made polar contacts 

with ARG 152, a key amino acid in the active site of the serotonin receptor. This residue 

could be vital to the contact between the drug and the receptor, and it could also play a 

part in the metabolic effects of galantamine. Curcumin and pramipexole, on the other 

hand, made fewer polar contacts with the receptor, which could make their interactions 

weaker and their binding affinities lower. 

The molecular docking analysis of serotonin receptor interactions with curcumin, 

galantamine, and pramipexole provides valuable insights into their potential binding 

modes and key residues involved in ligand-receptor interactions. Our findings suggest 

that galantamine might have a stronger potential to modulate serotonin receptor activity 

compared to curcumin and pramipexole. However, further experimental studies are 

needed to validate these observations and investigate the functional consequences of 

these interactions on serotonin receptor signalling and related physiological processes. In 

addition, the potential therapeutic applications of these ligands in the context of 

neurological disorders require further exploration. 



 

63 
 

CHAPTER 5 

 

CONCLUSION 

 

In conclusion, molecular docking simulations showed that curcumin interacts with a wide 

variety of neurotransmitter receptors, highlighting its potential as a versatile therapeutic 

agent. These receptors include acetylcholinesterase, cannabinoid, dopamine, serotonin, 

and NMDA receptors. Curcumin's high binding affinities for several receptors, especially 

the NMDA receptor, indicate that it may alter many features of neuronal activity. This 

might be the reason why curcumin has a wide range of pharmacological actions, 

including anti-inflammatory, antioxidant, and neuroprotective characteristics. 

On the other hand, galantamine and pramipexole exhibit more selective receptor 

interactions, with galantamine demonstrating the highest binding affinity for the 

serotonin receptor, suggesting that it may also be able to modulate serotonin receptor 

activity in addition to its well-established effects on Alzheimer's disease. However, 

pramipexole has lower binding affinities for all of the receptors tested. 

Experimental validation and optimization of curcumin against proven drugs such as 

galantamine and pramipexole as potential therapeutic agents for various neurological and 

psychiatric disorders can now proceed with this newfound knowledge of the molecular 

interactions and mechanisms underlying their therapeutic effects. Future research needs 

to devote effort to understanding the specific molecular mechanisms and verifying the in 

vivo effectiveness of curcumin. Researchers should also investigate potential synergistic 

effects and combination treatments involving curcumin. 
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