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ABSTRACT 

 

To explore nonlinear random vibration, a novel non-parametric linearization 

methodology has been devised that is based on a discretized representation of stochastic 

inputs and integrates first order reliability method (FORM) thoughts. This method 

characterises the corresponding linear system by matching the design points of the 

nonlinear and linear responses in the space of standard normal variables created by 

discretizing the excitation with a predefined response threshold for the nonlinear system. 

Because it equals the first order estimate of the tail probability of the nonlinear system 

with that of the linear system, the methodology provides a more realistic picture of the 

TELS than earlier similar linearization approaches. A unit-impulse response function of 

the input excitation is required to represent the TELS. The purpose of this research is to 

examine the analysis of stochastic nonlinear systems using this approach and to compute 

certain nonlinear response characteristics. It also discusses the random vibrational 

analysis approach, particularly the equivalent linearization method, and gives an outline 

of structural reliability analysis, including FORM. 

The primary goal of the study is to investigate the effect of various factors on the system. 

At the design point, the limit-state surface is linearized to define a linear system, the 

TELS. This non-parametric linearization approach has a promising potential to improve 

upon existing equivalent linearization techniques and provide a more effective means of 

analyzing nonlinear random vibration. 
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CHAPTER – 1   INTRODUCTION 

 

1.1 GENERAL 

When it comes to analysing the reliability of structural and mechanical systems, it's 

important to consider the stochastic and non-linear parameters that often come into play. 

These factors can have a major influence on the behaviour of a system under high loading 

situations, such as earthquakes or turbulent winds. However, the currently known 

approaches for nonlinear stochastic dynamic analysis have constraints that hinder their 

use in practise in many circumstances. 

One method that is not limited by these constraints is the Monte Carlo Simulation method. 

However, this approach can be very time-consuming and difficult, making it impractical 

for many engineering applications.  

In contrast, linear systems' second moment response functions offer a valuable tool for 

understanding a system's characteristics. However, finding solutions using this approach 

can require an iterative process. Additionally, assuming a Gaussian distribution for 

probability distribution may not always be the best choice, particularly when dealing with 

the tail region of the distribution.  

Overall, there is a clear need for a more effective method for non-linear stochastic 

dynamic analysis that can overcome the limitations of existing approaches. Such a 

method would be invaluable in ensuring the safety and reliability of structural and 

mechanical systems in a wide range of applications. 

1.2 Objective and scope of the study 

 Determination of nonlinear systems by TAIL Equivalent Linearization Method 

for calculation of certain nonlinear reaction attributes. 

 To perform nonlinear dynamic analysis for damping based on TIME and 

FREQUENCY domain. 

 To determine the variation of reliability index with the selected threshold using 

TAIL Equivalent Linearization Method 
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CHAPTER – 2 LITERATURE RIVIEW 

 

Kazuya Fujimara,Armen Der Kiureghian , presented the Tail-Equivalent 

Linearization Method (TELM) is a non-parametric technique for evaluating nonlinear 

random vibrations that has been developed. TELM matches the design points of linear 

and nonlinear responses by categorising stochastic excitation and modelling it with 

standard normal variables. This assures that the linear system's tail probability approaches 

that of the nonlinear system. 

TELM uniquely generates the corresponding linear system from its impulse response 

function and allows for the examination of various nonlinear response statistics. TELM 

beats the traditional Equivalent Linearization Method (ELM) in terms of accuracy, 

especially for high response thresholds, giving a reliable and efficient solution to 

nonlinear random vibration analysis. 

Luca Garre,Armen Der Kiureghian, The prior work on the Tail Equivalent 

Linearization Method (TELM) was extended to the frequency domain. Using its 

frequency-response function, the Tail-Equivalent Linearization Method (TELM) may 

represent the Tail-Equivalent Linear System. TELM provides advantages in analysing 

stationary maritime structures by matching design points of nonlinear and linear 

responses. The TailEquivalent Linear System can accommodate multi-support 

excitations and is excitation scaling insensitive, enhancing computing efficiency for 

shifting sea conditions. The frequency-response function sheds light on the nature of 

random vibrations as well as the response process. The validity of TELM has been 

demonstrated by analysing the random sway displacement of a jack-up platform model. 

It relies on discretizing input excitation using standard normal variables and has proven 

successful in civil engineering applications. 

 

Armen Der Kiureghian and Kazuya Fujimura, A novel method is proposed for 

seismic fragility curve computation in PBEE analysis of nonlinear structures. . . For 

nonlinear stochastic dynamic analysis, it applies tail-equivalent linearization, which 

eliminates the requirement for recurrent time-history analysis with scaled ground 

movements. Instead, the ground motion is handled as an unpredictable procedure, and 
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fragility curves for various reaction thresholds are generated by linear random vibration 

analysis with the Tail-Equivalent Linear System (TELS).The method ensures consistency 

by using a uniform stochastic model for all intensity levels. Limitations include 

applicability to non-degrading systems only, consideration of a single ground motion 

component, and the requirement for response gradient computations. Nonetheless, it 

offers a valuable alternative in an analysis domain with limited viable options. 

 

Sanaz Rezaeian and Armen Der Kiureghian, The goal of this kind of study is to 

explore stochastic modelling and simulation of ground motion time histories for usage in 

performance-based earthquake engineering. The work presents a site-based, entirely 

nonstationary probabilistic model that captures the temporal and spectral properties of 

genuine earthquake ground movements. To lessen velocity and displacement residuals, 

high-pass filtering is used. The proposed model offers advantages such as accurate 

representation of non-stationary characteristics, a small number of interpretable 

parameters, time-domain modeling, and ease of simulation. It provides a practical method 

for generating synthetic ground motions with similarities to real earthquake motions. The 

research findings advances the area of individualised earthquake engineering by giving a 

simple method for creating realistic synthetic ground movements. 

Caughey TK, In this study presents a generalized method for analyzing nonlinear 

dynamic systems under random excitation. The proposed approach incorporates the use 

of characteristic functions and compares results with exact solutions derived from the 

Fokker-Planck equation when possible. By extending the analysis to nonlinear systems, 

the method enables a comprehensive understanding of system responses. The validity of 

the method is demonstrated through various problem scenarios, confirming its 

effectiveness. The discussion emphasizes the significance of employing diverse 

mathematical techniques for analyzing complex systems. Overall, the proposed method 

offers valuable insights into the behavior of nonlinear systems subjected to random 

excitation and serves as an alternative when exact solutions using the Fokker-Planck 

equation are not achievable. 

 

A. Der Kiureghian, The inquiry into the topic investigates the geometric representation 

of random vibration worries in the space of standard normal deviations got from 
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discretization of the input process. The problems for linear systems with Gaussian 

stimulation have basic geometric structures such as vectors, planes, and ellipsoids. Non-

Gaussian and nonlinear reactions, on the other hand, introduce more complicated 

geometric forms. As approximate answers to these challenges, the authors suggest the 

First Order Reliability Method (FORM) and the Second Order Reliability Method 

(SORM). 

By leveraging the geometric interpretation in the standard normal space, the article offers 

a fresh perspective on random vibration problems. It implies that many statistical 

parameters of relevance in random vibrations may be represented geometrically, possibly 

opening up new avenues for addressing non-Gaussian or non-linear issues. 

The proposed methods, FORM and SORM, are explored as efficient approaches for 

solution. They provide effective means of analysis, but caution is advised in their 

application. The limitations of these methods are acknowledged, and the article 

emphasizes the need for careful utilization to ensure accurate results. 

Furthermore, the article hints at the possibility of developing simulation methods that 

exploit the geometric forms identified in the standard normal space. Such methods could 

offer more efficient and accurate solutions to random vibration problems. 

Through numerical examples, the effectiveness of FORM and SORM is demonstrated, 

showcasing their ability to provide approximate solutions for non-Gaussian excitation 

and the out-crossing of a vector process from a non-linear domain. 

Overall, the article contributes to advancing the understanding of random vibration 

problems and presents a novel approach to their approximate solution. By utilizing 

geometric interpretations and exploring methods like FORM and SORM, researchers can 

gain valuable insights into non-Gaussian and non-linear scenarios in random vibration 

analysis. 

 

 

 

Heonsang Koo, Armen Der Kiureghian, Kazuya Fujimura, The concept of design-

point excitation in random vibration analysis is examined in this study, with emphasis on 
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a nonlinear elastic single-degree-of-freedom (SDOF) oscillator with Gaussian white 

noise input. The design-point excitation, according to the findings, corresponds to the 

inverse of the oscillator's free-vibration response when free of the target threshold. 

Although approximations are vital, this outcome. is extended to non-white and 

nonstationary excitations, as well as hysteretic oscillators. 

Understanding the design-point excitation is crucial because it demonstrates the input 

process that is most likely to result in the sought occurrence. The study also proposes a 

simple and accurate method for measuring the mean up-crossing rate of random vibration 

response using the First Order Reliability approach (FORM). This rough figure provides 

important information on the frequency with which the response exceeds a given 

threshold. Overall, the current inquiry contributes to the area of random vibration analysis 

by explaining the calculation of the design-point activation and offering a realistic 

method for estimating the mean up-crossing rate. This knowledge is critical for assessing 

the dependability and performance of structures subjected to random vibrations. 

Yan-Gang Zhao, Tetsuro Ono, The efficacy of the First Order Reliability Method 

(FORM) and Second Order Reliability Method (SORM) in reliability analysis varies by 

a trio of factors: the curvature radius at the design point, the number of arbitrary variables 

that are involved, and the first-order reliability index. In this study, the tolerances of these 

elements are looked at in order to determine the conditions under which FORM/SORM 

might offer conclusive results.  

A three-step process is presented to make the actual implementation of FORM/SORM 

easier. First, a limit state surface is fitted to a single design point. Then, the total principal 

curvatures (Ks) are computed. Finally, the failure probability is evaluated based on the 

range of Ks. However, it is important to note that this procedure is only applicable to 

limit state surfaces with a single design point. If multiple design points are present, local 

convergence issues and inaccurate results may arise. Furthermore, the usefulness of 

FORM/SORM ranges is limited when the curvatures at the design point have distinct 

signs and an unequal distribution.  

Engineers and researchers may examine the accuracy and usefulness of FORM/SORM 

for their specific study by understanding the ranges of the curvature radius, number of 

random variables, and firstorder reliability index. This knowledge aids in making 
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informed decisions regarding structural design, considering the uncertainties associated 

with random variables and their impact on system reliability. 

M. Ababneh*, M. Salah, K. Alwidyan, In this work, the effectiveness of two 

linearization strategies, the optimum linear model and Jacobian linearization, is checked 

out.The inverted pendulum and the Duffing chaotic system are two well-known nonlinear 

systems to which these approaches are applied. Linearization is a key method used in the 

study and design of nonlinear systems, with the ultimate objective of approximating their 

behaviour with simpler linear models. The optimal linear model is an online technique 

that considers both the state and control variables, resulting in a more comprehensive 

linear approximation. On the other hand, Jacobian linearization focuses on linearizing the 

system around an operating point by computing the Jacobian matrix. The performance of 

these techniques is evaluated by assessing their ability to capture the nonlinear dynamics 

of the benchmark systems. By comparing the results, researchers gain insights into the 

strengths and limitations of each method. This comparative analysis aids in selecting the 

appropriate linearization technique for specific nonlinear systems, enhancing the 

understanding and analysis of their behavior. 

Fayçal Ikhouane, Víctor Mañosa, José Rodellar, The Bouc-Wen model is commonly 

used in structural and mechanical engineering to describe smooth hysteretic behavior. 

However, it is crucial to assess whether these models accurately capture the underlying 

physical properties of the system being modeled, beyond their fit to specific input data. 

The intention of this research is to outline several classes of Bouc-Wen models based on 

their limited input-bounded output stability feature and capacity to represent fundamental 

physical aspects of the real system. By analyzing these characteristics, researchers can 

evaluate the limitations and capabilities of Bouc-Wen models, aiding in their appropriate 

application. Understanding the bounded input-bounded output stability and the ability to 

replicate essential physical properties enhances the reliability and accuracy of modeling 

approaches in engineering. It provides insights into the model's suitability for practical 

applications and ensures that the resulting simulations align with the real-world behavior 

of the system under consideration. 
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CHAPTER - 3 METHODS OF NONLINEAR STOCHASTIC 

ANALYSIS 

3.1  INTRODUCTION 

Nonlinear stochastic analysis is an area of mathematics that focuses on the study of 

nonlinear systems that are influenced by random events. Several approaches have been 

developed in this discipline to analyse and learn about the behaviour of nonlinear 

stochastic systems. Some of the commonly used methods of nonlinear stochastic analysis 

are: 

3.2  CLASSICAL METHOD  

 Stochastic Perturbation Method 

 Fokker-Planck Equation 

 Moment Closure Techniques 

 Stratonovich Calculus 

3.3  SIMULATION METHOD  

 Monte Carlo Simulation 

 Markov Chain Monte Carlo (MCMC) 

 Stochastic Differential Equations (SDE) Simulation 

 Agent-Based Modelling (ABM) 

3.4  LINEARIZATION METHOD 

 Classical Equivalent Linearization Method (ELM) 

 Tail-Equivalent Linearization Method (TELM)    

Stochastic modeling is a powerful tool for understanding complex systems. My research 

paper explores several methods for stochastic modeling, including classical methods like 

stochastic perturbation and Fokker-Planck equation, simulation methods like Monte 

Carlo simulation and Markov Chain Monte Carlo, and linearization methods like ELM 

and TELM. Each method offers unique advantages and challenges, and understanding 

their strengths and weaknesses can aid in developing more accurate and efficient models. 

 



10 

 

10 

 

3.2  CLASSICAL METHODS 

Classical methods of nonlinear stochastic analysis involve a range of mathematical 

techniques used to study and analyze nonlinear stochastic systems. These methods have 

been developed over several decades and are widely used in various fields to understand 

the behaviour of complex systems subjected to stochastic fluctuations. 

3.2.1 Stochastic Perturbation Method 

The stochastic perturbation method is a mathematical technique used to solve ordinary 

and partial differential equations that involve random variables or stochastic processes. 

The method involves introducing small random perturbations into the system and then 

averaging over these perturbations to obtain a more accurate solution. The basic idea of 

the stochastic perturbation method is to represent the random process as a sum of a 

deterministic component and a random component, where the random component has 

small amplitude.  

The deterministic component is then solved using standard techniques, and the effect of 

the random component is included through averaging. The stochastic perturbation 

method has several advantages over other methods for solving stochastic differential 

equations, including its ability to handle non-linear and non-Markovian systems, as well 

as its ability to generate accurate results with relatively few simulations. The method is 

widely used to model and analyze complex systems subject to random fluctuations. 

3.2.2 Fokker-Planck Equation  

The Fokker-Planck equation, frequently referred to as the Kolmogorov forward equation, 

is a partial differential equation that captures the time it takes to create the probability 

density function of a stochastic process. It is widely used in several disciplines to model 

the behaviour of systems susceptible to random fluctuations.The general version of the 

Fokker-Planck equation is: 

 

 

where p(x,t) is the stochastic process's probability density function at time t and location 

x, b(x,t) is the drift or average velocity of the process at position x and time t, and (x,t) is 

the diffusion coefficient or degree of randomness of the process at position x and time 
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t.The first aspect on the right-hand side of the equation indicates the process's drift or 

deterministic motion, while the second term represents the process's diffusion or random 

fluctuations.   

The Fokker-Planck equation is a strong tool for analysing and forecasting the behaviour 

of stochastic processes such as Brownian motion, diffusion processes, and Langevin 

dynamics. 

3.2.3 Moment Closure Techniques 

Moment closure tackles are a class of mathematical techniques that are used to estimate 

the higher-order moments of a stochastic process using a finite collection of lower-order 

moments. The basic idea behind moment closure techniques is to close the infinite 

hierarchy of equations that arise when considering all possible moments of a stochastic 

system, by truncating the series of moments at some order and using a closure relation to 

approximate the higher-order moments in terms of the lower-order ones.  

The closure relation is typically derived from assumptions about the distribution of the 

system, and the choice of closure relation can have a significant impact on the accuracy 

of the approximation. Some commonly used moment closure techniques include the 

mean-field approximation, the maximum entropy closure, and the Gaussian closure, 

among others. Moment closure techniques have a wide range of applications, including 

in systems biology, ecology, chemical kinetics, and finance. They are particularly useful 

for analysing large-scale systems with many interacting components, where exact 

solutions to the governing equations are often difficult or impossible to obtain 

3.2.4 Stratonovich Calculus 

Stratonovich calculus is a mathematical framework used to study stochastic processes 

and their associated differential equations. It is a type of stochastic calculus that is based 

on the Stratonovich integral, which differs from the more commonly used Itô integral in 

how it handles the interaction between the stochastic process and the underlying 

deterministic system. 

The key difference between Stratonovich and Itô calculus lies in how the stochastic 

integrals are defined. In Stratonovich calculus, the integral takes into account the 

interactions between the stochastic process and the underlying deterministic system by 

incorporating a correction term that depends on the derivative of the underlying function. 
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This correction term can be thought of as a kind of "averaging" term that helps to smooth 

out the effects of the random fluctuations. Stratonovich calculus has a number of 

advantages over other types of stochastic calculus, including a more natural 

representation of physical systems with underlying deterministic dynamics, and better 

preservation of symmetries and conservation laws.  

It is widely used in physics, engineering, finance, and other fields to study systems subject 

to random fluctuations, including Brownian motion, Langevin dynamics, and many other 

types of stochastic processes. 

3.3  SIMULATION METHODS 

 Simulation methods of nonlinear stochastic analysis refer to the techniques used to 

simulate the behavior of nonlinear stochastic systems using computer simulations. The 

aforementioned methods are frequently used to examine the functioning of complex 

systems subjected to stochastic fluctuations in domains such as physics, science, finance, 

and economics. Here are some of the simulation methods of nonlinear stochastic analysis. 

3.3.1 Monte Carlo simulation 

Monte Carlo simulation is a computer approach for estimating the behaviour of complex 

systems or processes by generating random samples from probability distributions. It is 

called after the Monte Carlo Casino in Monaco, where games of chance incorporate 

unpredictable events. The core principle underlying Monte Carlo simulation is to utilise 

random sampling to determine the probability distribution of a system's behaviour.  

The simulation draws a large number of randomly selected samples from the distribution 

and then analyses the data to determine the system's anticipated behaviour.Monte Carlo 

simulation may be used to tackle a variety of issues in physics, engineering, economics, 

and biology. Some examples include estimating the probability of success in a complex 

engineering project, predicting the future value of a financial asset, or modeling the 

behavior of a chemical reaction. 

Monte Carlo simulation is often used when an analytical solution to a problem is difficult 

or impossible to obtain, or when the system being studied is too complex to be analyzed 

using traditional methods. The technique is also useful for exploring the sensitivity of a 

system's behavior to changes in its input parameters, or for identifying potential sources 

of risk or uncertainty. 
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3.3.2 Stochastic Differential Equations (SDE) Simulation 

Stochastic Differential Equations (SDE) simulation is a technique used to model and 

analyze systems subject to random fluctuations over time. SDEs are a type of differential 

equation that includes a stochastic component, which captures the effect of random noise 

on the system.  

SDE simulation involves generating a trajectory of the system over time by solving the 

SDE numerically. The simulation generates a sequence of random numbers that are used 

to simulate the random fluctuations in the system.  

For simulating SDEs, plenty numerical approaches are available, including the Euler-

Maruyama method, the Milstein method, and the stochastic Runge-Kutta method. These 

approaches entail discretizing the SDE and updating the system at each time step based 

on beforehand time step values and random noise.   

One of the advantages of SDE simulation is that it can capture the effect of random noise 

on the system, which is often an important factor in real-world systems. However, SDE 

simulation can also be computationally intensive and requires careful tuning of the 

numerical parameters to obtain accurate results. 

 

3.4  LINEARIZATION METHOD 

Linearization is a computational modelling approach that employs linear methods to 

mimic the behaviour of a nonlinear system. The method entails locating the system's 

operating or balance point and then approaching the nonlinear function by its tangent or 

first-order approximation around that point. This results in a set of linear differential 

equations that clarify the system's activity around the operational point. Linearization 

plays a role in many areas, notably the analysis of complex systems and the design of 

control systems.  

However, it is only true in a limited neighbourhood surrounding the functioning point, 

and the approximation's correctness is dependent on the degree of nonlinearity and 

closeness to the operating point. 
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3.4.1 Classical Equivalent Linearization Method (ELM) 

The Equivalent Linearization Method (ELM) is a technique for calculating the response 

to random stimulation of a nonlinear system. When the nonlinear system can be treated 

as a single-degree-of-freedom (SDOF) system, ELM is extremely useful. 

 The primary idea behind ELM is to simulate a nonlinear system using comparable 

properties that have been modified to match the chaotic system's response. After that, the 

similar linear system is subjected to the same random stimulation as the original nonlinear 

system, and its response is analysed using linear analytic techniques. 

The ELM procedure for an SDOF system can be summarized as follows:  

1. Define the source of excitation and identify the nonlinear system. 

2. Determine the unique features of the corresponding linear system by modifying the 

stiffness and damping coefficients to match the nonlinear system's displacement and 

velocity response at a reference level of stimulation. 

3. Estimate the system response by solving the linear system using linear analysis 

techniques such as the power spectral density approach. 

4. Adjust the corresponding linear system parameters to match the nonlinear system 

response at different levels of stimulation, and repeat the analysis. 

5. Use the estimated response of the analogous linear system as an approximation of the 

real nonlinear system's response.  

ELM is a valuable approach in a variety of engineering applications, including earthquake 

engineering, where it is used to predict the reaction of buildings and other structures 

subjected to seismic stimulation. It should be noted, however, that ELM is only applicable 

for low to moderate degrees of excitation and may not be correct for highly nonlinear 

systems or under excessive loading circumstances. 

3.4.2 Tail-Equivalent Linearization Method (TELM) 

The Tail Equivalent Linearization Method (TELM) is a variant of the Equivalent 

Linearization Method (ELM) used to estimate the response of a single-degree-of-freedom 

(SDOF) nonlinear system to extreme loads or events. TELM is particularly useful when 

the nonlinear system exhibits a nonlinear stiffness behavior, such as the snap-through 
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buckling of a slender column. The basic idea behind TELM is to partition the input 

excitation into two parts: a high-intensity peak excitation and a background excitation 

that contains the low-intensity random component. The high-intensity peak excitation is 

assumed to drive the nonlinear system to a limit state, while the background excitation is 

treated as a small perturbation around this limit state. The TELM procedure for an SDOF 

system can be summarized as follows:  

1. Identify the nonlinear system and define the input excitation as a combination of 

high-intensity peak excitation and background excitation.  

2. Adjust the stiffness and damping coefficients of the analogous linear system to 

match the reactivity of the nonlinear system at the limit state, i.e., its optimum 

reaction under high-intensity peak activation.  

3. For assessing how it adapts to background stimulation, solve the linear system 

using linear analysis techniques such as the power spectral density proximity. 

4. Repeat the study after adjusting the analogous linear factors to match the outcome 

of the nonlinear system at additional stages of high-intensity peak stimulation. 

5. Use the probabilistic response of the comparable linear system to figure out the 

response of the real nonlinear system under high stresses.  

TELM is a valuable approach in a variety of engineering scenarios where the reaction of 

buildings subjected to high stresses, such as quake it is or wind-induced loads, must be 

anticipated. However, it is important to note that TELM, like ELM, is only valid for small 

to moderate levels of excitation and may not be accurate for highly nonlinear systems or 

under extreme loading conditions. 

3.5 CHARACTERSTICS OF A LINEAR SYSTEM 

A linear system is defined by its impulse response function (IRF) and frequency response 

function (FRF). The IRF demonstrates the system's response to a unit impulse input, 

whereas the FRF depicts the system's steady-state responsiveness to a complex 

logarithmic input.  

Knowing a linear system's IRF and FRF isn't needed to fully characterise the system's 

behaviour for any input signal. For example, calculating the Fourier transform of the input 

signal by the FRF yields the system's continuous response to an input signal F(t).   
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In terms of math, if h(t) is a linear system's IRF and H() is its FRF, then the system's 

output anticipation to an input signal F(t) may be computed as: 

 𝑿(𝒕) =  𝑭(𝒕) ∗  𝒉(𝒕) 

where * represents the convolution operation. Alternatively, the system's steady-state 

response to a sinusoidal input signal F(t) = exp(it) may be determined as:  

 

where F() denotes the Fourier transform of the input signal and H() represents the Fourier 

transform of the IRF.  

Therefore, if we know the IRF and FRF of a stable linear system, we can predict the 

system's response to any input signal without needing to know the system's physical  

Linearity: An arrangement is linear if it adheres to the superposition principle, which 

asserts that the response to a set of inputs equals the sum of the responses to the individual 

inputs.The equation can be used to express a linear system: 

𝑦(𝑡)  =  ∫  ℎ(𝜏) 𝑥(𝑡 − 𝜏) 𝑑𝜏 

where y(t) symbolises the system's output, x(t) the system's input, and h(t) the system's 

impulse response. 

Fig 4.1 Linear System 
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The linearity property of the system can be expressed mathematically as: 

 

 

 

 

 

 

where y1(t) and y2(t) are the answers to the inputs x1(t) and x2(t). The total of the replies 

y1(t) and y2(t) is equal to the sum of the responses received x1(t) + x2(t), which is similar 

to the response x(t) = x1(t) + x2(t). 

Time-invariance: A system is unaffected by time if the impulse response does not vary 

with time and is independent of the time it is seen. A time invariant system can be stated 

numerically by the following equation: 

 

where h() is the system's impulse response and x(t-) is the input delayed by seconds.The 

system's time-invariance feature may be stated numerically as: 

 

 

 

where T is a time shift. The otput of the system shifted 

by T seconds is equal to the outpt of the system with the input shifted by T seconds and 

the impulse response shifted by T seconds. 

Causality: If the impulse response for negative time is zero, the system is deterministic. 

A deterministic system can be conceptually expressed by the following equation: 

  

 

where h() is the system's impulse response and x(t-) is the delayed input in seconds. 
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 The system's temporality feature may be quantitatively stated as: 

h(t) = 0 for t < 0 

A deterministic system's impulse response is zero for negative time, implying that the 

system's output is solely determined by the input and the system's previous state. 

A linear system has input and output that are linked by a linear algorithm. A linear system 

may be symbolised by its (IRF) h(t) for a single input-output duo (F(t), X(t)), which 

depicts the system's output in response to a unit impulse input F(t) = (t). Convolving the 

input with the IRF yields the system's response to any arbitrary input F(t): 

 𝑿(𝒕) =  𝑭(𝒕) ∗  𝒉(𝒕) =  ∫ 𝑭(𝝉)𝒉(𝒕 − 𝝉)𝒅𝝉 

 where * denotes the convolution operation.  

The function (FRF) of a linear system is the convoluted amplitude ratio of the system's 

steady-state output response to a sinusoidal input of frequency. Theoretically the FRF H() 

is defined as 

 

where Xss() is the system's stable response to the input F(t) = exp(it), and F() is the 

Fourier transform of the input signal. For a stable linear system, the IRF and FRF are 

related by the Fourier transform:  

𝑯(𝝎)  =  ∫  𝒉(𝒕) 𝒆𝒙𝒑(−𝒊𝝎𝒕) 𝒅𝒕 

and the inverse Fourier transform: 

 𝒉(𝒕) =  (
𝟏

𝟐𝝅
) ∫ 𝑯(𝝎) 𝐞𝐱𝐩(𝒊𝝎𝒕) 𝒅𝝎 

Knowing both the IRF and FRF of a linear system is sufficient to completely characterize 

the system's behavior for any input signal. For example, the steady-state response of the 

system to an input signal 𝐹(𝑡) can be obtained by multiplying the Fourier transform of 

the input signal by the FRF: 

𝑿𝒔𝒔(𝝎)  =  𝑯(𝝎) 𝑭(𝝎) 

The knowledge of IRF and FRF is very useful for analysing and designing linear systems, 

as it enables us to predict the system's response to any input. 
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CHAPTER – 4 RELIABILITY 

5.1 Reliability Analysis 

5.1.1 Reliability :  

In the field of structural reliability analysis, there are two commonly used techniques: 

First Order Reliability Methods and Second Order Reliability Method. These methods 

are employed to assess the safety and performance of structures when faced with 

uncertainties. To understand these techniques, it is important to understanding of basic 

random variable concepts and limit state  function, as well as the issue of error 

propagation. 

In structural reliability analysis, a limit state equation represents the relationship between 

uncertain variables associated with the structure's parameters and the failure of the 

structure. It defines the condition where the structure no longer meets the desired 

performance criteria. For example, in the design of a bridge, the limit state equation could 

express the maximum load the bridge can sustain without failure. 

 

 

 

 

 

 

 

performance criteria. For example, in the design of a bridge, the limit state equation could 

express the maximum load the bridge can sustain without failure. 

The uncertain parameters that affect the behavior of the structure are known as basic 

random variables. These variables can include material properties, loads, dimensions, and 

other relevant factors. Each basic random variable is characterized by its probability 

distribution, mean, and standard deviation. 

Fig. 5.1 Standard Normal Distribution Curve 
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Error propagation refers to the process of determining how uncertainties in the basic 

random variables propagate through the limit state equation, affecting the probability of 

failure. Traditional methods simplify the error propagation problem by assuming that the 

limit state equation can be linearized around the random variable's average value. 

However, this linearization approximation may lead to inaccurate results, particularly for 

non-linear limit state equations. 

FORM provides a more general solution to the error propagation problem. It involves 

transforming the original limit state equation into a standard normal space, where the 

Variables are thought to have a normal distribution with a mean of zero and a standard 

deviation of one. This transformation allows the non-linear limit state equation to be 

converted into a linear equation in the transformed space. 

In summary, FORM and SORM are valuable techniques in structural reliability analysis 

that help evaluate the safety and performance of structures under uncertain conditions. 

By considering limit state equations, basic random variables, and addressing the 

phenomenon of occurrence of error, these methods provide engineers and designers with 

insights to ensure reliable structures in the presence of uncertainties 

5.2 Methods of reliability :  

 

 

 

 

 

5.2.1 Introduction 

When it comes to structural components and systems, there are certain challenges in 

conducting reliability assessments. Firstly, there may be a lack of relevant failure data, 

making it difficult to rely on historical information alone. Additionally, structural failures 

occur relatively infrequently, making it challenging to statistically analyze these rare 

events. Furthermore, failures in structural systems are often caused by a combination of 

factors, including extreme external events such as high winds, heavy snowfall, 
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earthquakes, etc. Therefore, it becomes necessary to individually consider the influences 

from external sources (loads) and internal sources (resistances) when assessing reliability. 

It is crucial to create probabilistic mathematical models for both the loads and the 

resistances, taking into account all the information that is currently known about the 

statistical properties of the parameters impacting them. This may involve data related to 

earthquakes, experimental results on concrete compression strength, and other relevant 

information. 

Probabilistic modeling in reliability assessment involves a two-fold approach. Firstly, it 

requires creating models for the random variables representing the loads and resistances. 

These models describe the statistical distributions and parameters associated with these 

variables. Secondly, it involves studying the relationship between these random variables 

to understand how the loads and resistances interact and affect the performance of the 

structural component. 

In the case of an idealized structural component, it is assumed to have two performance 

states. These states represent different levels of structural integrity, such as a "safe" state 

and a "failure" state. The objective is to determine the probability of the component being 

in the failure state based on the probabilistic models of the loads and resistances. By 

analyzing the behavior of the random variables and their interactions, reliability 

assessment techniques provide estimates of the probability of failure. 

It is crucial to stress that the legitimacy of the processes used, rather than the precise 

outcomes obtained, is the emphasis of the reliability evaluation. By utilizing established 

and reliable procedures and using reasonable inputs based on the available information, 

the calculated probability of failure can serve as a valuable tool for decision-making. 

5.2.2 FIRST ORDER RELIBILITY METHOD 

Let's delve into the explanation of the First Order Reliability Method (FORM) using the 

Tail Equivalent Linearization (TEL) method, including relevant equations. 

a) Limit State Equation: 

The efficiency state of the structure is related to the fundamental random variables by the 

limit state equation. It can be represented as: 
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b) Standardization: 

Basic variables that are random are converted into typical normal variables (Z) having a 

zero mean and a single standard deviation in order to streamline the study. This 

standardization process is commonly achieved using the inverse of the cumulative 

distribution function (CDF) of each variable. The standardization equation can be 

expressed as: 

𝑍 =  𝛷^(−1)(𝑋) 

where Φ^(-1) represents the inverse CDF (also known as the quantile function) and Z is 

the vector of standard normal variables. 

 

 

c) Linearization: 

 

The TEL approach uses a linear function in the common normal space to approximate 

the tail part of the limit state function (G). The linearization equation can be written as: 

Fig.5.2: Overlapped area is the probability of failure of random variable S and R 
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𝐺_𝑎𝑝𝑝𝑟𝑜𝑥(𝑍)  =  𝛽^𝑇 𝑍 −  𝑐 

where β is a vector of direction cosines representing the gradient of the limit state function 

at the design point, c is a scalar value representing the distance from the origin to the 

design point, and Z is the vector of standard normal variables. 

 

d) Reliability Analysis: 

 

 

The linearized limit state equation is used in analysis of reliability to determine the 

chances of collapse. The probability of failure (Pf) may be measured using the usual 

normal cumulative distribution function (CDF), displayed here: 

𝑃𝑓 =  𝛷(−𝛽^𝑇 𝑍𝑑 +  𝑐) 

where Zd stands in for the design point in the typical standard space. 

The calibrated limit state equation for Z in the form of Pf is solved to get the design point 

(Zd). It can be expressed as: 

𝑍𝑑 =  (𝛽^𝑇)^(−1) (𝑐 +  𝛷^(−1)(1 −  𝑃𝑓)) 

 

It should be noted that the accuracy of the results obtained through the TEL method relies 

on the adequacy of the linear approximation. For more accurate results, especially 

Fig. 5.3: Distribution of safety margin  
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for larger failure probabilities or complex limit state functions, higher-order reliability 

methods like the Second Order Reliability Method (SORM) may be more appropriate In 

summary, the First Order Reliability Method with the Tail Equivalent Linearization 

method involves transforming the original limit state equation into a linearized form in 

the standard normal space. This allows for the estimation of the probability of failure by 

solving the linearized equation and utilizing the standard normal CDF. 

5.2.3 Monte Carlo Sampling (MCS) 

Monte Carlo Sampling (MCS) is a widely employed technique in various domains, 

including engineering, finance, and science, to approximate unknown quantities and 

conduct numerical simulations. It utilizes statistical sampling principles to estimate 

complex mathematical problems. 

MCS is used in reliability analysis to assess the probability of loss for structural 

components or systems. The basic idea underlying MCS is to generate an extensive 

amount of random specimens from the probability distributions of the unknown variables 

involved in the investigation. These samples are then used to perform computations and 

statistical analysis, allowing for the generation of accurate estimates. 

Here is a step-by-step explanation of how Monte Carlo Sampling works: 

1. Problem Definition: Probability Distribution Specification: Define the probability 

distributions for each uncertain variable, including their means and standard deviations. 

Commonly used distributions in MCS include normal, uniform, and log-normal 

distributions 

Fig 5.4: Geometry of random variables 1 



25 

 

25 

 

2. Probability Distribution Specification: Define the probability distributions for each 

uncertain variable, including their means and standard deviations. Commonly used 

distributions in MCS include normal, uniform, and log-normal distributions 

3. Sample Generation: Generate a large number of random samples for each uncertain 

variable based on their specified probability distributions. The number of samples should 

be sufficiently large to achieve accurate estimations, typically thousands or more. 

4. Analysis Execution: For each set of samples, perform the necessary calculations to 

evaluate the system response or the limit state function. This may involve solving 

equations, conducting simulations, or running numerical models. 

5. Failure Counting: Determine whether each sample results in failure or success based 

on the limit state function. If the limit state function indicates failure, the sample is 

categorized as a failure; otherwise, it is considered a success. 

6. Probability of Failure Estimation: To get the failure probability, divide the entire 

number of samples produced by the number of failure samples. This approximation offers 

an estimate of the real failure probability. 

7. Confidence Assessment: Assess the uncertainty associated with the estimated 

probability of failure using statistical techniques, such as confidence intervals or variance 

analysis. This helps evaluate the reliability of the estimation. 

MCS offers the advantage of flexibility in handling complex problems with multiple 

uncertain variables and non-linear behaviors. It can provide reliable estimations even in 

the absence of closed-form analytical solutions. However, MCS can be computationally 

demanding, especially for simulations involving a large number of samples or complex 

models. 

By increasing the number of samples and repeating the sampling process, MCS allows 

for convergence towards more accurate estimations. This makes it a powerful tool for 

analyzing structural reliability and assessing system performance in the presence of 

uncertainties. 

5.2.4 Numerical Integration (NI) 

Numerical Integration (NI), also known as numerical quadrature, is a technique used to 

find out the value of a definite integral when an exact solution is challenging to obtain. It 
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involves breaking down the integral into smaller intervals and using numerical methods 

to approximate the area under the curve. 

Here's a rephrased explanation of how Numerical Integration works: 

1. Problem Definition: Identify the definite integral that needs to be evaluated. This 

integral represents the area under a curve between specified limits. 

2. Interval Division: Subdivide the integration interval into smaller subintervals. The 

number of subintervals can be specified by selecting a step size or the required precision. 

3. Approximation Methods: Select a suitable numerical method to approximate the 

integral within each subinterval. Commonly used methods include the Trapezoidal Rule, 

Simpson's Rule, and the Midpoint Rule. 

4. Subinterval Integration: Apply the chosen approximation method to each 

subinterval. This involves evaluating the function at specific points within the subinterval 

and calculating the corresponding area. 

5. Summation: Add up the calculated areas from each subinterval to obtain an 

approximation of the total integral. Increasing the number of subintervals generally 

improves the accuracy of the approximation. 

6. Error Estimation: Estimate the error associated with the numerical integration. 

Different methods offer error estimation techniques, which help assess the reliability of 

the approximation. 

Numerical Integration is particularly valuable when dealing with functions that lack an 

analytical solution or when the function is too complex to integrate by hand. It provides 

a practical approach to estimate integrals in various scientific and engineering 

applications. 

The choice of the numerical integration method depends on factors such as the 

smoothness of the function, desired accuracy, and computational efficiency. Methods like 

Simpson's Rule offer higher accuracy at the expense of more function evaluations, while 

simpler methods like the Trapezoidal Rule may be computationally faster but provide 

lower accuracy.It's vital to remember that numerical integration involves approximation 

errors, and the precision of the output is determined by the method used and the number 

of subintervals used.  
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CHAPTER – 5 DISCRETE REPRESENTATION OF 

STOCHASTIC PROCESS 

 

5.1 INTRODUCTION 

 

The finite representation of based on chance requires sampling the continuous-time 

process at regular time intervals to approximate the continuous-time process.  This is 

typically done by discretizing the time axis and using update equations to describe the 

process's evolution over discrete time steps. 

Consider a general continuous-time stochastic process defined by the equation: 

 

where X(t) is the position of the process at time t, f is a function defining its development, 

t is time, and W(t) is an independent variable reflecting the stochastic component.  To 

obtain a discrete representation, we divide the time axis into equally spaced intervals with 

a fixed time step denoted by Δt. The process is then approximated at these isolated time 

points. Let's call the continuous process X[n], where n is the time index. One commonly 

used approach is the Euler-Maruyama method, which approximates the continuous-time 

process using the following update equation: 

 

where X[n] represents the state of the process at time nΔt, and W[n] is a sample of the 

random variable W(t) at time nΔt. 

In this method, the discrete-time process is obtained by assuming that the change in X 

over a small time step Δt is proportional to the derivative of f(X, t, W) evaluated at the 

current state X[n]. The random variable W[n] is sampled at each time step to incorporate 

the stochastic component. 

It is important to note that in the discrete form, the picking of the time step t is critical.  

A smaller time step allows for a more accurate approximation but increases 

computational complexity, while a larger time step reduces computational burden but 



28 

 

28 

 

may introduce larger errors in the approximation. The appropriate choice of Δt depends 

on the specific characteristics and requirements of the stochastic process being modeled. 

Additionally, it's worth mentioning that the discretization process is an approximation, 

and the accuracy of the discrete representation depends on the specific discretization 

method used. There are alternative numerical methods available that may provide more 

accurate approximations, especially for complex nonlinear stochastic processes. 

In summary, the discrete representation of a stochastic process involves sampling the 

continuous-time process at regular intervals and approximating its behavior using update 

equations that describe its evolution over discrete time steps. 

General form of a zero-mean Gaussian process 

Each fluctuating variable in a zero-mean Gaussian process follows a Gaussian 

distribution with a typical value of zero. The covariance function or covariance matrix of 

a zero-mean Gaussian process refers to the connection between multiple points or time 

instances within the process.   

Let's call a zero-mean Gaussian process X(t), where t is the time parameter. The generic 

form of a zero-mean Gaussian process may be stated mathematically as 

𝑋(𝑡) ~ 𝑁(0, 𝐶(𝑡₁, 𝑡₂)), 

where N(0, C(t₁, t₂)) indicates a Gaussian distribution with a mean of zero and a 

covariance denoted by C(t₁, t₂). The covariance function C(t₁, t₂) specifies how the process 

values at two different time instances, t₁ and t₂, are related. 

We examine the joint distribution of a limited collection of random variables selected 

from the process to understand the distinctive properties of a zero-mean Gaussian 

process. Assume we have a set of random variables X(t1), X(t2),..., X(t_n) generated by 

a zeromean Gaussian process, with t1, t2,..., t_n denoting discrete time occurrences.   

The multivariate Gaussian distribution may be used to illustrate the joint distribution of 

these unplanned variables:  

 

The covariance function C(t1, t2), which specifies the covariance between the process 

values at time occurrences t1 and t2, produces the members of the variance matrix. We 



29 

 

29 

 

may infer key properties of zero-mean Gaussian processes from the properties of 

multivariate Gaussian distributions:   

1. Marginal distribution: Each subset of random variables extracted from the process 

follows a Gaussian distribution. For example, the marginal distribution of X(t₁) adheres 

to a Gaussian distribution with a mean of zero and a variance of C(t₁, t₁). 

2. Conditional distribution: Given the values of the remaining variables, the conditional 

distribution of a subset of random variables follows a Gaussian distribution. For example, 

given X(t2), the conditional distribution of X(t1) is a Gaussian distribution with a mean 

proportional to the covariance C(t1, t2)/C(t2, t2) and a variance C(t1, t1) - (C(t1, t2)/C(t2, 

t2)) * C(t2, t1). 

3. Joint distribution: The joint distribution of any number of unknown variables is a 

multiplex Gaussian distribution, as illustrated by the aforementioned equation. 

These properties make zero-mean Gaussian processes useful for analysis and modeling 

purposes, as they facilitate straightforward computations and provide probabilistic 

descriptions of the process's behavior. 

 

It should be noted that the specific shape of the correlations function C(t1, t2) relies on 

the zero-mean Gaussian process under consideration. Different covariance functions 

result in different kinds of Gaussian processes, such as stationary processes, processes 

with specified spatial or temporal features, and so on. The choice of the covariance 

function depends on the application and the desired characteristics of the process being 

modeled. 

 

 

5.1.1 Time domain discretization 

 

In time domain discretization, the goal is to approximate a continuous-time signal or 

process by representing it in a discrete-time form. One specific scenario involves 

discretizing a modulated filtered white noise process using an impulse response function. 
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The modulated filtered white noise process can be described by the equation: 

𝑋(𝑡)  =  𝑚(𝑡)  ∗  𝑌(𝑡), 

where X(t) represents the modulated filtered white noise process, m(t) is the modulation 

function, and Y(t) is the white noise process. 

To discretize this process, we need to discretize both the modulation function and the 

white noise process. 

1. Discretizing the modulation function: 

The modulation function, m(t), can be transformed into a discrete sequence of values by 

sampling it at regular time intervals. We can denote the discrete modulation function as 

m[n], where n represents the time index. 

2. Discretizing the white noise process: 

The continuous-time white noise process, Y(t), has an impulse autocorrelation function. 

To discretize it, we must first identify an acceptable impulse response function that 

characterises the white noise process's behaviour.The bodily reaction function represents 

the filtering impact on the white noise process and records the system's reaction to an 

impulse input. The impulse reaction function is denoted as h(t). To discretize the white 

noise process, we apply the impulse response function to a discrete-time white noise 

sequence. We can represent the discrete white noise process as Y[n], where n represents 

the time index. 

Fig 6.1: Time domain discretization 
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By convolving the discrete white noise sequence with the impulse response function, we 

obtain the discrete white noise process: 

𝑌[𝑛]  =  ∑ ℎ[𝑛 − 𝑘]  ∗  𝜉[𝑘], 

where h[n-k] represents the impulse response function evaluated at the time difference n-

k, ξ[k] represents the discrete white noise sequence at time k, and the summation is 

performed over the appropriate range of k. 

Finally, we obtain the discretized modulated filtered white noise process, X[n], by 

multiplying the discrete modulation sequence, m[n], with the discretized white noise 

sequence 

 𝑌[𝑛]: 𝑋[𝑛]  =  𝑚[𝑛]  ∗  𝑌[𝑛]. 

In summary, the discretization of a modulated filtered white noise process involves 

sampling the modulation function to obtain a discrete modulation sequence and 

convolving a discrete white noise sequence with an appropriate impulse response 

function to approximate the continuous-time white noise process. The discretized 

modulated filtered white noise process is then obtained by multiplying the discrete 

modulation sequence with the discretized white noise sequence 

It's important to note that the choice of the impulse response function and specific 

implementation details may depend on the characteristics of the modulation and filtering 

operations in the process. In the discrete-time domain, the partitioning process 

approximates the continuous-time controlled filtered white noise process. 

 

 

 

Fig 6.2 Frequency domain discretization 
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CHAPTER – 6 FORM SOLUTION OF STOCHASTIC 

DYNAMIC PROBLEMS 

 

6.1  DEFINITION 

 

The First Order Reliability Method (FORM) is a widely used technique for analyzing the 

reliability of stochastic dynamic nonlinear systems. It is particularly useful when dealing 

with complex systems that involve uncertainty and nonlinearity. 

The goal of reliability analysis is to determine the likelihood that a system will execute 

its intended function without failure during a time frame. In dynamic systems, the 

behavior of the system evolves with time, and the uncertainties associated with various 

parameters can affect the system's reliability. 

FORM is a numerical method that allows us to estimate the probability of failure for such 

dynamic nonlinear systems. It is based on the concept of limit state function, It denotes 

the performance border with regard to the safe and failure portions of the system. The 

limit state function is typically a mathematical expression that relates the system's input 

variables to its output response.. 

6.2  Reliability Formulation 

 

The FORM method starts by transforming the original stochastic dynamic nonlinear 

problem into a series of equivalent linear problems. This transformation is achieved by 

employing the Taylor series expansion and keeping only the first-order terms. By doing 

so, the problem becomes amenable to linear reliability analysis techniques. 

In FORM, the reliability analysis is performed in two steps: 

Reliability index calculation: The reliability index, also known as the performance 

index or the safety margin, measures the distance between the mean value of the limit 

state function and the failure threshold. It quantifies the level of safety or risk in the 

system. The reliability index can be calculated by applying an optimization algorithm, 

such as the first-order second-moment (FOSM) or the Hasofer-Lind (HL) method. 
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Probability of failure estimation: After determining the reliability index, the failure 

probability may be evaluated using appropriate probabilistic approaches, such as the 

Normal or Lognormal distribution. These strategies are based on the assumption that the 

limit state function adopts a specified probability distribution. 

FORM provides an efficient means of estimating the probability of failure for dynamic 

nonlinear systems by linearizing the problem and utilizing advanced optimization 

techniques. However, it is important to note that FORM has some limitations. It assumes 

that the limit state function is separable and that the system response can be accurately 

represented by its mean value and variance. These assumptions may not always hold true 

in practical scenarios. 

Researchers and engineers have developed various modifications and extensions to 

FORM to overcome these limitations and enhance its applicability to a broader range of 

dynamic nonlinear systems. These advancements include techniques like second-order 

reliability method (SORM), subset simulation, and adaptive response surface methods. 

Overall, the First Order Reliability Method is a valuable tool in the field of reliability 

analysis, providing insights into the performance and safety of stochastic dynamic 

nonlinear systems. 

 

 

 

Fig 7.1 Reliability index (𝛽(x)) 
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6.3  Reliability Formulation of Linear System 
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CHAPTER – 7 TAIL EQUIVALENT LINEARIZATION 

METHOD 

 

7.1  INTRODUCTION 

 

The Tail Equivalent Linearization Method (TELM) is a structural reliability analysis tool 

intended for quantifying the probability of failure or exceedance for extreme response 

levels, with an emphasis on the tail area that defines the response distribution. TELM is 

an extension of the Equivalent Linearization Method (ELM) that tries to capture the 

response's tail pattern. 

ELM, the conventional approach, linearizes the nonlinear system response by 

approximating it with an equivalent linear system. This simplifies the analysis and allows 

the application of well-established linear techniques. However, ELM assumes a Gaussian 

distribution for the response, which may not accurately represent extreme events or 

nonlinear systems. 

To alleviate this restriction, TELM considers the response's non-Gaussian features, 

notably in the tail area. By combining higher-order statistical information, TELM aims 

to give a more accurate assessment of the chance of failure for extreme occurrences. This 

is accomplished by the use of equivalent linearization, among other in the tail section of 

the response distribution. 

The fundamental concept behind TELM is to approximate the response distribution 

beyond a predefined threshold value, denoted as β, using a linear distribution. This linear 

distribution is characterized by its mean, variance, and other statistical properties derived 

from the tail behavior of the original response distribution. By utilizing this linear 

approximation in the tail region, TELM improves the estimation of the probability of 

failure for extreme events. 
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7.2  Steps in TELM 

 

To approximate the failure probability of a system or structure with nonlinear behaviour, 

the Tail Equivalent Linearization (TEL) technique combines the principles of the First-

Order Reliability Technique (FORM) and the Equivalent Linearization Method (ELM). 

The approaches below are frequently used to determine the TEL surface. 

Step 1: Formulating the limit-state function 

The limit-state function, designated as 'U,' is defined in such a way that U 0 denotes 

failure and U > 0 represents non-failure. The limit-state function may be stated for a given 

threshold 'x' and time 't' as: 

𝑈(𝑥, 𝑡)  =  𝑔(𝑥, 𝑡)  −  𝑥_0 

where g(x,t) is the system's reaction at threshold 'x' and x_0 is the threshold level. 

Step 2: Finding the design point 

The design point, denoted as 'u*', is the point at which the limit-state function equals zero. 

Mathematically, we can express it as: 

𝑈(𝑢 ∗)  =  𝑔(𝑢 ∗, 𝑡)  −  𝑥_0 =  0 

Solving for u*, we get: 

𝑢 ∗ =  𝑔^ − 1(𝑥_0, 𝑡) 

Fig 9.1 Representation of design point 
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where g^-1 is the inverse of the response function. 

 

Step 3: Obtaining the gradient vector 

The gradient vector at the design point 'u*' represents the direction in which the limitstate 

function changes the most. It is derived by evaluating the partial derivatives of the 

limitstate function pertaining to the variables that are supplied at the design point. 

Mathematically, we can express it as: 

a = ∇g(u*,t) 

where ∇ represents the gradient operator. 

Step 4: Identifying the TEL surface 

The TEL surface is the tangent hyperplane that corresponds to the gradient vector 'a'. It 

approximates the limit-state function in the vicinity of the design point 'u*'. 

Mathematically, the TEL surface can be expressed as: 

𝑈(𝑥, 𝑡)  =  𝑎^𝑇 (𝑥 − 𝑢 ∗)  +  𝐶 

where a^T is the transpose of the gradient vector 'a', and C is a constant. The TEL surface 

represents a linear approximation of the limit-state function near the design point. 

To compute the constant 'C,' the first-order reliability technique (FORM) can be utilised. 

FORM imitates the limit-state function employing a linear hyperplane and computes the 

dependability index, which measures the distance between the mean point and the limit-

state function. The dependability index can be commented mathematically as: 

𝛽 =  𝑢 ∗  − 𝑥_0 / ||𝑎|| 

where ||a|| is the Euclidean norm of the gradient vector 'a'. 

Using the normal distribution function, the failure probability can be calculated as: 

𝑃(𝑓)  =  𝛷(−𝛽) 

 

where Φ is the cumulative distribution function of the standard normal distribution. 
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To summarise, the TEL model entails stipulating the limit-state function, identifying the 

design point, measuring the gradient vector, and determining the TEL surface. Around 

the design point, the TEL surface approximates the limit-state function, and the failure 

probability may be assessed via the first-order reliability technique. 

 

7.3  Iterative Algorithms For Solving Design Point 

 

Iterative algorithms used to solve for the design point in the Tail Equivalent Linearization 

(TEL) method: 

1. Fixed-Point Iteration: 

The Fixed-Point Iteration is an iterative technique often used in the TEL method to 

identify the design point. This algorithm begins with an initial guess for the design point 

and iteratively adjusts it until convergence is obtained. The technique entails calculating 

an updated value using the inverse of the response function and the threshold value. The 

algorithm refines the guess until the requisite accuracy is achieved at the design point. 

2. Newton-Raphson Method: 

Another iterative algorithm utilized in the TEL method is the Newton-Raphson method. 

It leverages the gradient vector and the Hessian matrix of the limit-state function to 

iteratively improve the initial guess for the design point. The algorithm starts with an 

initial guess and then calculates an updated value by subtracting the product of the inverse 

of the gradient vector and the limit-state function. This iterative process continues until 

convergence is achieved, providing a more accurate determination of the design point. 

These iterative algorithms play a crucial role in the TEL method by facilitating the 

computation of the design point. They enable the refinement of the initial guess through 

successive iterations, resulting in a more accurate estimation of the design point within 

the desired tolerance level. The choice between the Fixed-Point Iteration and the Newton 

Raphson method is determined by a number of factors, including the problem's 

complexity and the availability of gradient information, to ensure that the most 

appropriate algorithm is used for efficient convergence and accurate design point 

determination. 
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CHAPTER – 8 CHARACTERICTICS OF THE TAIL 

EQUIVALENT LINEARIZATION METHOD 

 

8.1  For threshold x and time t 

The Tail Equivalent Linearization (TEL) technique is a popular method for estimating 

the response of nonlinear systems, including single degree of freedom (SDOF) systems. 

The TEL approach allows the use of typical linear analytic techniques by substituting the 

nonlinear system with an equivalent linear system, making it a powerful tool for 

analysing nonlinear system reactions to nonlinear excitations.The TEL method possesses 

several distinctive characteristics: 

1. Nonlinear to Linear Conversion: The primary objective of the TEL method is to 

convert the nonlinear equations of motion of the SDOF system into equivalent linear 

equations. This conversion facilitates the utilization of conventional linear analysis 

methods, such as modal analysis or frequency response analysis, to examine the system's 

response. 

 

2. Tail Effect Consideration: The TEL method accounts for the "tail effect" inherent in 

nonlinear systems. The tail effect signifies the impact of higher-order terms within the 

system's nonlinear equations on the response. By incorporating these tail terms, the TEL 

method improves the accuracy of the linearized approximation, allowing for a more 

reliable estimation of the system's behavior. 

 

3. Frequency-Dependent Parameters: Because of the magnitude and frequency of the 

stimulation, nonlinear systems frequently display frequency dependent fluctuations in 

their characteristics such as stiffness, damping, and mass properties. In the TEL method, 

frequency-dependent parameters are introduced into the equivalent linear system to 

capture these variations accurately. This ensures that the linearized system can better 

replicate the frequency-dependent characteristics of the original nonlinear system. 
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4. Energy Dissipation Modeling: The TEL method addresses the dissipation of energy, 

which is a critical aspect of nonlinear systems. Nonlinear systems tend to possess 

distinctive energy dissipation characteristics that differ from those of linear systems. The 

TEL method approximates this behavior by adjusting the damping parameters of the  

 

 

 

 

 

linearized system to more accurately represent the energy dissipation properties of the 

original nonlinear system 

5. Limited Amplitude Range Validity: It is vital to note that the TEL method's validity 

can frequently be restricted to a specified stimulation amplitude range. As the excitation 

amplitude increases, nonlinear effects become increasingly significant, thereby 

diminishing the accuracy of the linearized approximation. Consequently, the TEL method 

is most effective when applied to systems subject to small to moderate excitation 

amplitudes. 

It is crucial to acknowledge that the TEL method is an approximation technique and may 

not capture all the complexities inherent in the original nonlinear system. However, it 

provides a simplified and computationally efficient approach for studying the responses 

of SDOF systems to nonlinear excitations. Engineers and researchers may acquire 

significant insights into the system's behaviour and make educated decisions based on the 

results of the linearized approximation by utilising the TEL approach. 

 

 

 

 

Fig 10.1 TELS ofzthe non linear response for azgiven threshold x andzpoint in time t 
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8.2  Numerical Example 

 

A SDOF oscillator with inelastic material behaviour is considered to numerically 

investigate the properties of TELM. Both the frequency and time domains are utilized to 

solve the problem. A symmetric Bouc-Wen material model is used in order to describe 

the force-displacement relationship. 

A hysteretic oscillator is considered to obtain further insight into the nature of the system. 

This oscillator is described as: 

                           m Ẍ(t) + c Ẋ(t) +k[a X(t)+ (1-α)Z(t)] = F(t) 

Where, 

    

The degree of hysteresis is controlled by the 

parameter ‘α’.   

                          α = 0.1 

The excitation process is described by the equation: 

 

Where,   gives base acceleration modelled as white-noise process. 

A finite setting of the intensity of the white noise process yields the results depicted below 

since the scale of the excitation has no effect on the TELS. 

The mathematical term Z(t) stems based on the Bouc-Wen hysteresis law. 

 

Where                       in which                     is the mean square response of the linear 

 (α = 1) oscillator, and the selected parameters are n = 3 and A = 1. 

Fig. 10.2 SDOF oscillator with inelastic material 

behaviour 
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The problem statement provided specific values for certain parameters, which were used 

in the code. Additionally, assumptions were made for other parameters not explicitly 

mentioned. The code implementation utilized predefined functions available in 

MATLAB, such as "linsquare," "pwelch," "linsquare," and "hilbert." These functions are 

built-in MATLAB functions that assist in various computational tasks. 

 The code generated a graph depicting the relationship between ground 

acceleration and time. This graph illustrated the IRF and FRF of the system. A 

thorough knowledge of the system's behaviour was achieved by addressing the 

issue in both the time and frequency phase. 

 In the time domain analysis, the code used preset functions to construct the 

impulse response functions, which represent the system's reaction to an impulse 

input over time. These functions made it possible to calculate system variables 

including displacement, velocity, and acceleration as a function of time. 

 In the frequency phase analysis, the code employed the predefined functions to 

compute the frequency response functions. These functions provided insights into 

how the system responds to sinusoidal inputs at different frequencies. The 

frequency response functions enabled for the determination of system behaviour 

in the frequency domain, such as resonant frequencies, mode shapes, and 

frequency response characteristics. 

 By solving the problem in both domains and plotting the corresponding graphs, 

the code implementation offered a comprehensive analysis of the SDOF system's 

behavior. This approach provided valuable insights into the system's response 

characteristics, enabling a better understanding of its dynamics and aiding in 

decision-making for practical applications. 
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The graph image indicates the ground acceleration g(t) hits a maximum after which it 

falls with time. 

 The TELS (Tail Equivalent Linearization) method is not influenced by the scaling 

of the excitation, making it independent of changes in the magnitude or amplitude 

of the input. This independence is explained by the invariance of the design point 

direction and the geometry of the limit-state surface with respect to the scaling 

factor.  

 In the TELS method, the design point represents a specific operating condition or 

state of the system that is considered the most representative or probable for the 

analysis. The form of the limit-state surface establishes the border between safe 

and failure areas in the system's response space. The design point and the limit-

state surface are both defined by certain criteria or thresholds. 

 

Fig.10.3 ground acceleration vs time graph 
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 Using the Bouc-Wen model and the TAIL equivalent linearization approach, this 

programme runs Monte Carlo simulations to calculate the fragility curve of a 

single-degree-of-freedom system exposed to white noise excitation. 

  The code begins with specifying System parameters, which include the mass m, 

stiffness k, Bouc-Wen model parameters alpha, beta, and gamma, damping ratio 

zeta, number of simulations n_sim, number of points on the fragility curve 

n_points, and sigma_range. 

 Next, the code performs a loop over different levels of white noise standard 

deviations. For each noise level, it initializes a failure count variable and runs 

n_sim simulations. In each simulation, it generates a white noise acceleration a 

using the randn function. It then initializes the system state variables and 

simulates the system response using the TAIL method. The simulation continues 

until the system displacement exceeds a threshold of 2 (indicating failure). The 

failure count is incremented whenever a failure occurs. 

 

 Fig.10.3 Fragility curve for given threshold 
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When an impulse input is applied to a system, the Impulse Response Function (IRF) is 

the output. The IRF in a non-linear Single Degree of Freedom (SDOF) system can display 

complicated and non-linear behaviour that is difficult to analyse. The TAIL (Time 

Approximation of an Integral of the Lapse-rate) equivalent linearization approach is used 

to approximate the system's nonlinear performance as a linear system.  

The TAIL equivalent linearization method can also be used to determine the system's 

response to other types of inputs, such as a sinusoidal or random input. This can be useful 

for predicting the system's behavior in response to different parameters. 

Overall, by analyzing the IRF of a non-linear SDOF system using the TAIL equivalent 

linearization method, we can determine the system's linear parameters and predict its 

response to different inputs. This can be useful for designing and optimizing engineering 

systems and understanding their behavior in different operating conditions. 

 

 

 

Fig.10.4 IRFs of TELS for hysteretic oscillator response to white noise 
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 The programme computes the frequency response function (FRF) of a single-

degree-of-freedom system that has been modelled with the Bouc-Wen hysteresis 

model and the TAIL equivalent linearization approach. The FRF is a measure of 

the system's steady-state response to a particular frequency input, and it gives the 

amplitude and phase of the system's output in proportion to the input.  

 By generating a white noise acceleration input and using the FRF, the program 

also calculates the system's output in the frequency domain. This may be used to 

look into the system's reaction to a wide range of stimuli of frequencies and to 

identify any resonant frequencies or other characteristics of the system's behavior. 

 Overall, the program can be used to gain insight into the dynamic behavior of a 

single-degree-of-freedom system with Bouc-Wen hysteresis, which can be useful 

in a variety of engineering applications. 

Fig.10.5 FRFs of TELS for hysteretic oscillator response to white noise 
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The provided graph illustrates a comparison of the Impulse Response Functions (IRFs) 

at three different time instances: tn = 4s, 7s, and 10s. These IRFs are plotted over a time 

interval ranging from 0 to 5 seconds. The analysis focuses on a suddenly applied 

stationary excitation. 

 

Upon examining the graph, it becomes evident that there is minimal reliance of the IRF 

on tn, which represents the specific time instance for evaluating the IRF. This implies 

that variations in tn have little impact on the shape and characteristics of the IRF. 

Consequently, for a stationary excitation process, it is sufficient to use a single IRF per 

threshold to accurately capture the system's response. 

Conversely, when dealing with non-stationary excitation processes like time-varying or 

transient excitations, the situation changes. Determining the IRF at each time point when 

response data are relevant becomes crucial in such cases. This is owing to the enormous 

variability in the system's reaction to non-stationary excitations that might occur 

throughout time. 

Similar to the Equivalent Linearization Method (ELM), for non-stationary excitation, the 

analogous linear system must be computed at each time step, the same principle applies 

 Fig.10.6 Influence of non-stationarity on the IRFs of the TELSs 
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to the determination of IRFs. Each time step represents a distinct operating condition, and 

the system's response can exhibit dynamic changes over time. 

To ensure accurate representation of the response statistics in non-stationary processes, 

it is crucial to evaluate the IRF at each specific time point of interest. This enables a more 

precise understanding of the system's behavior and response characteristics throughout 

the duration of the non-stationary excitation. 

In summary, for stationary excitation processes, a single IRF per threshold is typically 

adequate due to the limited dependence of the IRF on the evaluated time instance. 

However, when dealing with non-stationary excitations when response data are required, 

the IRF must be determined at each time point. This method enables a thorough study 

that accurately reflects the time-varying behaviour of the system's reaction. 

 

 

 

 

 

 

 

 

The variation of the Impulse Response Function (IRF) in the Tail Equivalent 

Linearization (TELS) method for different thresholds offers valuable insights into how 

the system's response changes as these thresholds are adjusted. 

In the TELS approach, the IRF indicates the system's response to a sudden or impulsive 

input. Analyzing the variation of the IRF for selected thresholds allows us to examine 

how the system behaves under different triggering conditions or input levels. 

By adjusting the thresholds, which represent specific response levels of interest, we can 

explore various scenarios and assess the system's behavior under different magnitudes of 

excitation. 

 Fig.10.7 variation of IRF of the TELS for selected thresholds 
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Studying the variation of the IRF for selected thresholds provides a deeper understanding 

of the system's response characteristics, including amplitude, duration, and shape, at 

different excitation levels. This analysis helps us discern how the system's behavior 

changes as the triggering conditions or input magnitudes are modified. 

 In the code, the system parameters, such as mass m, stiffness k, Bouc-Wen model 

parameters alpha, beta, and gamma, damping ratio zeta, and time vector t, are 

defined. 

 The code then calculates the IRF for each selected threshold value by iterating 

over the thresholds. It initializes the IRF with an impulse input and computes the 

system response over time. If the absolute value of the response falls below the 

threshold, it applies the thresholding operation by setting the response to zero. 

 The IRF variations for each threshold are stored in the irf_variations matrix. 

 Finally, the code plots the IRF variations for the selected thresholds on the same 

graph, with each threshold value labeled in the legend. 

 

 

 

 

 

 

 

Analyzing the variation of the Frequency Response Function (FRF) in the Tail Equivalent 

Linearization (TELS) method, specifically for the Bouc-Bena model subjected to white 

noise excitation, allows us to examine how the system's frequency response changes as 

we adjust the selected thresholds. 

The FRF in the TELS approach represents the system's frequency domain reaction to a 

given input. By investigating the variation of the FRF for different thresholds, we gain 

insights into how the system behaves at different response levels and how it responds to 

various frequencies. 

 Fig.10.8 variation of FRF of the TELS of selected threshold 
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By selecting different thresholds, we can explore the system's frequency response 

characteristics and analyze its behavior under different levels of excitation. Adjusting the 

thresholds enables us to examine various response scenarios and assess the system's 

sensitivity to different excitation levels. 

Increasing the threshold may lead to a broader frequency response range, indicating a 

wider band of frequencies that significantly affect the system's behavior. Conversely, 

decreasing the threshold may result in a narrower frequency response range, indicating a 

more limited range of frequencies that influence the system's response. 

The code then calculates the FRF for each selected threshold value by iterating over the 

thresholds. It computes the magnitude of the FRF at each frequency using the given 

expression. If the magnitude falls below the threshold, it applies the thresholding 

operation by setting the magnitude to zero. 

The FRF variations for each threshold are stored in the frf_variations matrix. 

Finally, the code plots the FRF variations for the selected thresholds on a logarithmic 

scale graph, with each threshold value labeled in the legend. 

 

 

 

 

 

 

 

The reliability index is a measure of safety that measures the chance of failure or the 

distance in standard deviations between the mean response and the failure threshold. By 

analyzing how the reliability index changes with varying thresholds, we gain a deeper 

understanding of the system's performance and safety margins. 

Adjusting the threshold allows us to explore different response levels and evaluate the 

system's reliability under varying conditions. Increasing the threshold indicates a higher 

response level, which imposes a more stringent safety requirement and reduces the 

 Fig.10.9 Variation of reliability index with threshold 
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reliability index. On the other hand, decreasing the threshold represents a lower response 

level, relaxes the safety criteria, and increases the reliability index. 

𝑃𝑟[𝑥 ≤ 𝑋(𝑡, 𝑢)] = 𝛷(−𝛽(𝑥)) 

 The code then calculates the reliability index for each selected threshold value by 

iterating over the thresholds. For each threshold, it generates a random frequency 

in the range of interest and evaluates the magnitude of the frequency response 

function (FRF) at that frequency. If the magnitude exceeds the threshold, it 

increments the reliability index. This process is repeated 1000 times to obtain a 

statistically significant result. Finally, the reliability index is normalized by 

dividing by the number of trials. 

 The reliability index variations for each threshold are stored in the 

reliability_index vector. 

 The code then shows the fluctuation of the reliability index as an outcome of the 

thresholds that have been chosen.  

 

 

 

 

 

 

 

The complementary cumulative distribution function (CCDF) represents the probability 

that a random variable exceeds a certain threshold. In the context of the variation of 

CCDF with threshold, it refers to how the probability of exceeding the threshold changes 

as the threshold value varies.  

If the tail probability in the cumulative distribution function (CDF) goes straight, it 

indicates that the probability of exceeding a certain threshold decreases rapidly or 

approaches zero as the threshold value increases. This behavior is often observed in 

distributions with heavy tails or extreme value distributions. 

 Fig.10.10 Variation of complementary cdf with threshold 
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 The code then performs the Monte Carlo simulation for each threshold value. It 

generates white noise excitation and simulates the SDOF system response using 

the Tail Equivalent Linearization method. If the maximum response exceeds the 

threshold, it counts it as a failure. 

 The failure probability are obtained by dividing the full amount of simulations 

with the amount of failures. The complementary density function (CDF) is then 

obtained by subtracting the failure probabilities from 1. 

 Finally, the code plots the variation of the CDF with the threshold. 

 You can adjust the system parameters, range of thresholds, and number of 

simulations to suit your specific requirements. 

 

 

 

 

 

 

The probability density function (PDF) expresses the chance of a random variable taking 

on a specific value. In the context of the variation of the PDF with threshold, it refers to 

how the shape and magnitude of the PDF change as the threshold value varies. 

The variation of the PDF with threshold depends on the characteristics of the underlying 

distribution. In some cases, as the threshold increases, the PDF may exhibit a shift 

towards lower values and a decrease in magnitude. This indicates a decrease in the 

probability of observing values above the threshold. 

If a system's adaptation has a Gaussian distribution, the curve representing the 

relationship between the response and the threshold value would take a parabolic shape. 

This is because Gaussian distributions exhibit a symmetric bell-shaped curve. 

Fig.10.11 Variation of probability density function with threshold 
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Similarly, for linear responses, which are a special case of Gaussian responses, the curve 

would also be parabolic. This is due to the linear relationship between the response and 

the input, resulting in a symmetric distribution. 

However, in the specific scenario mentioned above, the curve shown does not conform 

to a parabolic shape. Instead, it displays a straight line in the tail region, indicating 

deviations from a Gaussian distribution and the presence of nonlinearity or complex 

response behavior. 

Regarding the Tail Equivalent Linearization Method (TELM), when dealing with 

stationary responses, the method remains unchanged regardless of the specific time point. 

This means that TELMs determined for a single time point are adequate for evaluating 

various statistical properties of the response, such as the point-in-time distribution Pr[x 

X(t,u)], the mean up crossing rate, and the probability distribution of the maximum 

response over a given time interval.  

While the point-in-time distribution focuses on the probability of the response meeting a 

threshold at a particular time, TELM aims to analyze the overall distribution of the 

response throughout the entire time interval. This comprehensive approach provides a 

deeper understanding of the system's behavior and response characteristics. 

Furthermore, without changing the amount of random variables, TELM can be easily 

expanded to Multi-Degree-of-Freedom (MDoF) systems. Because of its versatility, 

TELM may be used to analyse the reactions of complex systems with numerous degrees 

of freedom, taking nonlinearity and other unique properties into account. 

 The code performs the Monte Carlo simulation for each threshold value. It 

generates white noise excitation and simulates the SDOF system response using 

the Tail Equivalent Linearization method. If the maximum response exceeds the 

threshold, it counts it as a failure. 

 The failure probability are obtained by dividing the total number of simulations 

with the number of failures. Taking the numerical derivative of the failure 

probabilities with respect to the threshold yields the probability density function 

(PDF). 

 Finally, the code plots the variation of the PDF with the threshold. 
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CHAPTER – 9 LIMITATIONS AND SHORTCOMINGS OF 

TELS 

 

 

The Tail Equivalent Linearization (TELS) method, like any approximation technique, has 

its limitations and shortcomings. Here are some important considerations: 

 

1. Accuracy of Linearization: TELS approximates a nonlinear system with an 

equivalent linear system. The accuracy of this approximation depends on the specific 

characteristics of the nonlinear system. However, there is no measure of the error 

introduced by the linearization approximation in advance. Therefore, the accuracy of 

TELS cannot be estimated beforehand, and there may be cases where the linearized 

approximation is not sufficiently accurate. 

2. Limited Excitation Range: TELS is typically valid within a certain range of excitation 

levels. As the excitation amplitude increases, the nonlinear effects become more 

pronounced, and the linearized approximation may deviate further from the true response. 

Thus, TELS is most reliable for small to moderate excitation levels and may not provide 

accurate results for highly nonlinear or extreme excitation scenarios. 

3. Simplified Frequency Dependency: TELS assumes that the system parameters, such 

as stiffness and damping, are not frequency-dependent. However, in reality, the behavior 

of nonlinear systems can vary with the frequency and amplitude of the excitation. TELS 

may not fully capture these frequency-dependent variations, leading to discrepancies in 

the predicted response. 

4. Energy Dissipation Modeling: Nonlinear systems often exhibit unique energy 

dissipation characteristics that differ from linear systems. TELS approximates the energy 

dissipation behavior by adjusting the damping parameters of the linearized system. While 

this can yield reasonable estimations in some cases, it may not fully capture the intricate 

energy dissipation mechanisms of the nonlinear system. 

 



55 

 

55 

 

5. Applicability to Complex Systems: TELS is commonly applied to single-degree-of-

freedom (SDOF) systems or simplified models of more complex structures. It may not 

be as applicable to highly complex or multi-degree-of-freedom (MDOF) systems, where 

nonlinear behavior is more intricate and challenging to capture accurately through 

linearization techniques. 

 

6. Computational Requirements: TELS can require significant computational effort, 

particularly when considering multiple threshold values or conducting probabilistic 

analysis. The repeated computations involved in determining the equivalent linear 

systems or evaluating response statistics can increase computational time and resource 

demands. 

 

Considering these limitations is crucial when utilizing TELS and interpreting its results. 

It is important to carefully assess the characteristics of the nonlinear system, the 

excitation conditions, and the desired level of accuracy to ensure appropriate application 

of TELS and obtain reliable findings. 
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CHAPTER – 10 CONCLUSIONS 

 

TELM distinguishes itself as a non-parametric method, eliminating the need for explicit 

parameter definitions or optimization computations. This attribute grants TELM a higher 

level of simplicity and flexibility in its application. 

A notable advantage of TELM is its ability to effectively capture the non-Gaussian 

distribution commonly exhibited in nonlinear response. Unlike linearization methods that 

assume Gaussian behavior, TELM accounts for deviations from Gaussianity, providing 

a more accurate representation of response statistics. 

The estimation of tail probabilities, critical for evaluating rare events and failure 

probabilities associated with extreme response levels, is an area where TELM excels. Its 

capacity to accurately capture tail behavior makes it well-suited for reliability analysis 

and fragility assessment, enhancing the understanding of system performance under 

varying loading conditions. 

TELM proves particularly advantageous for fragility analysis, offering a convenient 

means to assess a system's vulnerability to different excitation levels. Its ability to handle 

non-Gaussian and tail behaviors with accuracy facilitates valuable insights into system 

behavior. 

TELM accommodates both stationary and non-stationary response conditions, making it 

applicable in a broader range of scenarios. While stationary response pertains to 

properties that remain constant over time, non-stationary response involves time-varying 

characteristics. TELM's flexibility enables analysis in both situations. 

Expanding its scope, TELM can be extended to multi-degree-of-freedom (MDoF) 

systems, which consist of interconnected components. It also caters to multi-component 

excitations, where multiple sources of excitation act on the system concurrently. This 

versatility extends the applicability of TELM to various structural and mechanical 

systems. 

TELM requires the nonlinear response of the system to exhibit continuous 

differentiability, ensuring smooth and well-behaved behavior without abrupt changes or 

discontinuities. This condition is essential for accurately defining the tangent plane 

employed in TELM. 
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The accuracy of TELM is subject to the nature of the nonlinearity within the system. 

Complex or strongly nonlinear behaviors may pose challenges, potentially impacting the 

precision of the linearized approximation. It is crucial to consider the characteristics of 

the nonlinearity when assessing the accuracy of TELM. 

 

In summary, TELM presents a valuable approach for analyzing nonlinear stochastic 

dynamic systems. Its ability to capture non-Gaussian behaviors, estimate tail 

probabilities, and facilitate fragility analysis establishes it as a versatile and effective 

methodology. However, it is important to be mindful of the continuous differentiability 

requirement and to assess the compatibility of TELM with the specific nonlinear 

characteristics of the system at hand. 
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APPENDIX-I 

 

Matlab code for numerical example solved in chapter 10: 
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