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ABSTRACT 

The grade 4 brain tumour glioblastoma multiforme (GBM) is resistant to standard 

treatments and has a 100% recurrence rate. By blocking the main pathways involved in 

tumour feeding and development, GBM can be completely eradicated. The AKTmTOR 

pathway has drawn a lot of attention for GBM therapy because of the higher levels of p-

AKT (Phosphorylated Protein Kinase B) seen in recurrent GBM. By being 

phosphorylated by PDK-1 (3-phosphoinositide-dependent kinase-1), AKT is activated. 

As a result, PDK-1 activity may be targeted and impaired to stop it from activating AKT. 

This study uses in-silico analysis to look at different phytochemicals that may be able to 

target PDK-1. Withania somnifera's phytochemical profile is particularly remarkable in 

this regard. The high antioxidant capacity of withania somnifera is attributed to the 

presence of carotenoids, tannins, and phenolic chemicals in the plant. As a result, it is 

viewed as a viable option for the extraction of anticancer medicinal molecules. The study 

found four compounds with high binding energies (-11.4, -9.4, -9.8, and -10.4 kcal/mol, 

respectively) that are comparable to the standard inhibitor 2-(5-[2R]-2-amino-3-

phenylpropyloxypyridine-3-yl)8,9-dimethoxybenzo[c][2,7]naphthyridine-4-amine (ID-

8I1) compound (-10.1 kcal/mol). Machine learning-based investigations were carried out 

to evaluate the drug similarity, bioactivity, and bioavailability of the chosen 

phytochemicals in order to confirm the docking results, indicating their potential as 

therapeutic agents against GBM. further MACCS descriptors analysis is performed to 

characterize molecular structure and identify key chemical feature for compound 

comparison and classification. 
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CHAPTER 1:                

 INTRODUCTION 

Glioblastoma owes its high chances of recurrence and resistance to therapy to a fraction 

of GBM cells that become highly active and begin to display characteristics resembling 

those of multipotent stem cells. These cells are referred to as Glioma Stem Cells (GSCs) 

[1] [2] Several pathways are involved in imparting tumorigenic potential to GSCs [3]. 

GBM occurrence and resistant to classical drugs like TMZ has been linked to genetic 

mutated or genetically altered (overexpressed) EGFR [4]or increased phosphorylated 

AKT levels [2] 

Studies have shown that GBM tumour cells have much higher levels of AKT protein 

phosphorylation, making the P13/AKT/mTor pathway a possible target for inhibition. 

After receiving the signal from the RTKs, PI3K changes PIP2 into PIP3, which is then 

changed into AKT, the pathway's most important participant. It cannot serve as a 

pharmacological target site since it is quite mutagenic. AKT is phosphorylated by PDK-

1, a regulatory enzyme that supplies the phosphate group. The mTORC1 pathway is then 

activated by this phosphorylated AKT, which results in tumorigenic characteristics.[5] 

AKT is phosphorylated by a variety of proteins, such as PDK-1, PDK-2, or the TORC2 

complex of the mTOR. Although PDK-1 phosphorylation can activate AKT on its own, 

PDK-2 or TORC2 can help with enhanced phosphorylation[2] Withania somnifera-

derived phytochemicals will be used to target PDK-1 in this study since PDK-1 promotes 

oncogenesis and tumour maintenance through AKT [6]. Due to their widespread 

availability, straightforward extraction techniques, and low toxicity, phytochemicals are 

currently largely assumed to be anticancer medicines[7]. Withania somnifera is a species 

of Solanaceae plant that is not only tasty but also has several health advantages. They 

have the potential to be used as therapeutic agents for cancer cells based on their 

phytochemical composition and quantity of polyphenols and antioxidants. [8].  

The phytochemicals with binding affinities similar to 8I1 were chosen using this 

compound as a reference. The in-silico screening process was carried out in a number of 

phases, starting with molecular docking to foresee interactions between phytochemicals 

and PDK-1 and continuing with machine learning to evaluate and confirm the docking 

results. The chosen phytochemicals' drug-likeness was assessed using a variety  
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criteria, including the Lipinski's rule of five, bioavailability radars, and bioactivity 

scores. 

Furthering these efforts, we use MACCS descriptor analysis in combination with machine 

learning methods. We have effectively deciphered the common chemical functional 

groups and structural characteristics shared by active medications using the power of 

MACCS descriptors, enabling us to make educated judgements about compound 

modification and library creation. 

The information gleaned through MACCS descriptor analysis can be used to improve 

phytochemical compounds' pharmacological characteristics or create chemical libraries. 

Additionally, by facilitating comparison and similarity searches inside medication 

databases, this information makes it possible to mine data effectively and find prospective 

lead compounds. By including MACCS descriptor analysis in drug discovery procedures, 

researchers are better equipped to decide how to modify compounds and create libraries, 

which speeds up the creation of new and effective therapeutic agents. 

 

Figure 1: General Workflow of Methodology.  
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CHAPTER 2: 

LITERATURE REVIEW 

2.1   General 

Cancer is becoming more common and is killing more people. Conventional methods of 

treatment, such as chemotherapy and radiation therapy, can sometimes be slightly helpful 

but typically lack specificity and can have major negative consequences. Patients' present 

treatment options are insufficient due to the complexity and variety of cancers, 

necessitating targeted therapy or personalised medication [13]. The direct goal of targeted 

therapy is to impede the biochemical pathways that support the sustenance and growth of 

tumours. In contrast to conventional methods that may influence both healthy and sick 

cells, targeted targeting of specific cells minimises the harm to healthy tissues. The 

molecular and genomic abnormalities that lead to the formation of cancer may now be 

more precisely identified because to advancements in genome sequencing technology. By 

using tumour profiling, oncologists can gain a better understanding of the distinct 

mutations that might cause cancer in various individuals and can consequently administer 

targeted medicines[13], [14]. To assist patients with treatment choices, personalized 

medicine incorporates biomarker use such as genetic mutations or protein level 

expression analysis that can be used to anticipate the reaction of a patient to a therapy or 

determine the patients who are expected to benefit from a specific drug. 

2.2 Glioblastoma 

Grade IV tumours like glioblastoma multiforme (GBM) are notorious for having high 

recurrence rates and being resistant to conventional therapies. A portion of GBM cells 

become extremely active and start to exhibit traits mimicking those of multipotent stem 

cells, which contributes to glioblastoma's high likelihood of recurrence and resistance to 

therapy. Glioma Stem Cells (GSCs) are the name for these cells[1]. Studies show that the 

transcription factors SALL2, SOX2, OLIG2, and POU3F2 as well as markers like Nestin 

and CD133, which contribute to the neoplastic activity of GSCs, are abundant in these 

cells. Nestin, an intermediate filament protein connected to neural stem cells, is a unique 

feature of neural progenitor cells. The properties of stem cells and the formation of 

tumours have been connected to the cell surface glycoprotein CD133, also known as 

Prominin-1 [15] [16]. 
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The aggressive character of GBM, the presence of self-renewing glioma stem cells, the 

blood brain barrier, the low concentration of medications that may penetrate the BBB, the 

poor prognosis, and the 100% recurrence rate are some of the key therapy barriers. Based 

on the bulk tumour transcription profile, expression profiling study has identified four 

primary categories: Mesenchymal (MS), classical (CL), proneural (PN), and neural (NE) 

[17]. While OPC (Oligodendrocytic precursor cell-like) and NPC (Neuronal progenitor 

cell-like) cellular states are prominent in PN and NE, CL and MES tumour types are rich 

in AC (Astrocyte-like) and MES-like states [18] 

Understanding the molecular categories and cellular topologies present in GBM is 

essential for the development of targeted treatments that may effectively eliminate GSCs 

and overcome drug resistance. The complexity of GBM, which includes the presence of 

GSCs and other molecular subtypes, makes it extremely challenging to develop effective 

treatment regimens. Research is now focused on identifying GSC-specific vulnerabilities 

and developing medications that can precisely target and eliminate these cells in order to 

increase survival for GBM patients[16]. 
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2.3 Mutations involved  

Table I: Types of Glioblastomas and the mutations involved and their rate of 

occurrence.  

 

Tumour 

type 

Characteristics Mutations involved Occurrence References  

Primary 

Tumours 

(90%) 

 Extremely 

Aggressive 

tumours. 

 Tend to affect the 

elderly with 

greater 

frequency. 

 Poor prognosis as 

they develop 

without any prior 

symptoms. 

 Found in frontal 

and temporal 

lobes. 

P13KCA 

Loss of RB1 gene 

IDH1/2 mutation 

PDGFR amplification 

GLI1 

TERT promoter 

NF1 deletion/mutation 

MDM2 

PTEN 

mutation/deletion 

TP53 mutation 

CDK2A/B deletion 

MGMT promoter 

methylation 

EGFR amplification 

LOH at 10q 

1% 

2% 

5% 

7% 

5-22% 

10% 

11% 

7-12% 

24-30% 

28-31% 

31% 

36% 

 

22-40% 

65% 

[19] 

[20][21], 

[22] 

[20] 

Secondary 

Tumours 

(<10%) 

 Less prevalent. 

 Arise from LGGs 

(Low Grade 

Glioblastoma) or 

AAs (Anaplastic 

Astrocytoma). 

 Better prognosis. 

 Most frequently 

found in the 

frontal lobe. 

EGFR amplification 

PDGFR amplification 

1p/19q codeletion 

LOH 19q 

IDH1/2 mutation 

TP53 mutation 

MGMT promoter 

methylation 

LOH at 22q 

 

5-7% 

7% 

15-20% 

40-50% 

45-50% 

65% 

75% 

 

70-80% 

[20][19] 

[23] 

[24] 
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2.4 AKT/mTOR pathway 

According to TCGA, RTK/P13K, p53, and Rb pathways are the biological pathways that 

are most often affected in glioblastoma [25]. The WNT/-catenin route, however, is also 

one of the important pathways in GBM, according to certain research, highlighting the 

strong relationship between the P13K/AKT/mTOR and WNT pathways[26]. 

 Two important factors influencing the aetiology of GBM include lost PTEN function and 

increased RTKs, such as EGFR. Both of these characteristics apply to the AKT/mTOR 

pathway, which is negatively regulated by PTEN, which in turn influences PIP3 levels 

and the pathway as a whole. Since the route cannot be monitored when PTEN function is 

lost, it gets elevated. Although studies have shown that individuals with GBM have an 

increased number of receptors (RTKs), which also results in an activated AKT/mTOR 

pathway[22]. 

Figure 2: Depicts the phytochemical mediated inhibition of PDK-1 that affects the 

P13/AKT/mTor pathway in GBM cells resulting in decreased tumorigenic characteristics 

and eventually death of GBM tumour cells.  
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Thus, the AKT/mTOR pathway plays a crucial role in giving cells tumor-promoting 

qualities such as enhanced glioma cell proliferation, increased cellular metabolism, 

cellular susceptibility, and resistance to conventional therapy (TMZ). Studies have shown 

that GBM tumour cells have much higher levels of AKT protein phosphorylation, making 

the P13/AKT/mTor pathway a possible target for inhibition. After receiving the signal 

from the highly amplified RTKs in GBM, PI3K (Phosphoinositide-3-kinase) changes 

PIP2 (Phosphatidylinositol 4,5-bisphosphate) into PIP3 (Phosphatidylinositol (3,4,5)-

trisphosphate), which is then converted to AKT, the pathway's most important player. It 

cannot be employed as a direct drug target site since it is extremely mutagenic. AKT is 

phosphorylated by PDK-1, a regulatory enzyme that supplies the phosphate group. This 

phosphorylated AKT in turn activates the mTORC1 (mammalian target of rapamycin 

complex 1) pathway and induces tumorigenic properties [27] 

2.5 PDK-1 

AKT is phosphorylated by the serine-threonine kinase PDK-1, which functions as a 

regulator. According to studies, PDK-1 and NFkB help GBM cells fight and escape the 

effects of the medication TMZ. The Warburg effect, which occurs whether or not there is 

enough oxygen available, causes GBM cells to preferentially create lactate rather than 

oxidative phosphorylation. Since pyruvate must be converted to lactate for PDK-1 to 

function, the oxidation of glucose is checked at this step[28]. the reversal of the Warburg 

effect and reduced phosphorylation of the AKT protein, which in turn diminishes the 

tumorigenic characteristics and tumour resistance to the conventional TMZ. Therefore, 

PDK-1 of the AKT/mTOR pathway has been chosen as the prospective therapeutic target 

in this investigation. 

Researchers from all around the world are now focusing more on employing natural 

products or phytochemicals to treat cancer due to a rise in the amount of side effects and 

hazardous responses caused by synthetic drugs. In order to treat patients who have no 

other accessible options for treatment, there is a high demand for researching previously 

untapped natural resources in order to produce treatments against particular diseases. 

Phytochemicals owe their potential to be used as drugs against cancer or as adjuvant 

therapy to their non-toxicity, their easy availability and extraction, their efficacy, safety 

as well as mechanisms of action. 
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2.6 Withania somnifera 

Withenia somnifera also famously known as Indian ginseng has great potential for 

treatment of various disease and promoting health benefits. It contains a number of 

different potent phytochemicals enable it to be utilize in significant biological contexts. 

Alkaloids like anahygrine, anaferine, isopelletierine and cuseohygrine are among the 

several physiologically active chemical components found in Withania somnifera (WS). 

it also includes steroidal lactones such withanolides and withaferins as well as saponins. 

Additionally, ashwagandha includes acylsterylglucosides and sitoindosides, two anti-

stress compounds. These chemicals have significant ability to reduce the negative 

impact of stress. The pharmacokinetics studies of various phytochemicals show rapid 

absorption and plasma half-life of 1.36h.  

One of its aspects is inhibiting cancer growth and proliferation in various tumor like 

colon, breast, lung cancer cell and brain cancer. There is various mechanism of 

inhibition of cancer, which involves anti-inflammatory, immunomodulatory. 

Antiangiogenic and anti-mitogenic effect. Phytochemical of Withenia somnifera seen to 

be target various protein molecules such as STAT3, CDK-1, MAPK and COX-2, P53 

inactivation. Most of these proteins have been identified to be upregulated in brain 

cancers.  

2.7 Molecular Docking 

It is feasible to study a molecule's pose—or structure and location—during its interaction 

with a target's binding site by looking at a procedure known as molecular docking. This 

technology has transformed drug design and optimisation by enabling simulated testing 

of compounds, which lowers costs and speeds up the discovery process. The hit-to-lead 

optimisation process's primary method for screening compounds, High Throughput 

Screening (HTS), is based on molecular docking theory. A scoring function that assesses 

the degree of contact between the molecule and the target and structural and orientation-

based search algorithms that determine where the molecule should be positioned within 

the binding site are two essential components employed in the docking process. These 

elements work together to make it easier to find and improve new medication candidates. 

[31] 
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For molecular docking, the software programmes Molegro Virtual Docker, FlexX, 

DockThor, GOLD, AutoDock, and AutoDock Vina are often used. AutoDock Vina and 

AutoDock Perl were employed in this inquiry due of their ability to do rapid and accurate 

analysis. Several databases, including as PubChem, ZINC, and PDB, include the 3D 

structures for the ligands. For this experiment, the PDK-1 protein structure was obtained 

from the PDB database, whereas phytochemical structures were obtained from the 

IMMPAT database [31], [32]. 

The potential for medical research may be greatly expanded by integrating molecular 

docking with a variety of computational biology fields, including as machine learning, 

artificial intelligence, molecular dynamics, pharmacokinetic analysis, and bioavailability 

analysis. By identifying potential interactions between molecular targets and ligands, 

molecular docking makes it easier to identify new targets for existing ligands, predict 

potential negative effects of medications, and investigate the repositioning and 

repurposing of FDA-approved drugs. The procedure is more successful overall because 

to this comprehensive approach, and it also opens up new possibilities for field advances. 
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Table II: Integration of Molecular docking with other computational branches resulting 

in the improved efficiency of the whole process. 

 

 

 

  Integrated 

fields 

Pre-docking 

Screening 

Post-docking 

Screening 

References 

  AI and 

Statistical 

Approaches 

Retrieval of 

protein structures 

for screening 

Optimizing the 

score 

Pose improvement [31], [32] 

  

Molecular 

Docking 

Molecular 

Dynamics 

(MD) 

Selection of 

conformations 

Phytochemical-

target interaction 

evaluation. 

Orientation and 

conformation 

refinement 

[33] 

  Ligand-based 

methods 

Retrieval of 

protein structures 

for screening 

  

Orientation and 

conformation 

selection and 

scoring 

[31], [32] 

  Binding Free 

Energy 

methods 

  Orientation and 

conformation 

refinement 

[32] 
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2.8 Standard/Inhibitor used 

To serve as a reference for the molecular docking scoring analysis, a specific inhibitor is 

retrieved from the PDB database. The comparative analysis of binding affinities of the 

target-inhibitor complex and the target-ligand complex provides an insight about the 

extent to which a particular ligand is interacting with the target protein. This study has 

selected the compound 8,9-dimethoxy-5-(2-aminoalkoxy-pyridin-3-yl)- 

benzo[c][2,7]naphthyridin-4-ylamine as the standard inhibitor. [34] 

2.9 Machine Learning 

Python is a popular programming language in the machine learning industry because of 

its adaptability, sizeable library, and user-friendliness. Using current data from the 

ChEMBL database can be quite beneficial when it comes to evaluating the outcomes of 

machine learning models in the context of ligand-drug interactions. ChEMBL is a 

comprehensive tool that gives users access to a huge library of bioactive compounds, their 

characteristics, and related biological functions. This database offers data on numerous 

medications and how they interact with various proteins. The information includes a 

variety of characteristics, such as ChEMBL IDs, molecular weights, and SMILES 

sequences. (a compact representation of molecular structure), and IC50 values (a measure 

of drug potency). The evaluation of in-silico docking findings can be improved by using 

the ChEMBL data to train machine learning models. With the aid of this dataset, 

researchers can train their models to determine whether or not the interactions between 

ligands and target proteins are accurately reflected in their docking results. [35] 

The procedure normally entails pulling pertinent information from the ChEMBL data, 

including molecular weights, SMILES sequences, and Molecule ChEMBL id. The size 

and mass of the ligands are revealed by their molecular weights, which can reveal whether 

or not they have the ability to interact with proteins. SMILES sequences, in contrast, 

encode the ligands' chemical structures, enabling a more thorough examination of their 

possible binding abilities. The collected features may then be paired with the associated 

IC50 values, which function as the ground truth or labels when training a machine 

learning model. The IC50 values show the amount of a medicine needed to completely 

block a certain biological process. This knowledge can help the model learn to link certain 

characteristics to desirable binding affinities throughout the training phase. It is crucial to 
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divide the ChEMBL dataset into training and testing sets in order to guarantee the 

machine learning model's dependability and generalizability. The model is trained using 

the training set, and its performance on test data is assessed using the testing set. This 

procedure aids in evaluating the model's propensity to generalise and deliver precise 

forecasts for fresh docking outcomes. [36] 

The machine learning model may be used to predict the binding affinity or IC50 values 

for brand-new ligand-protein interactions after it has been trained. The accuracy of the 

docking results may be evaluated by comparing these predictions to experimental data or 

known IC50 values from the ChEMBL database. This validation stage offers insightful 

information on the dependability and efficiency of the in-silico docking method. 

2.10  MACCS fingerprints 

In the field of cheminformatics, one popular technique for producing molecular 

descriptors or fingerprints is the Molecular ACCCESS System (MACCS). The presence 

or absence of preset substructures or structural properties in a molecule is represented by 

MACCS keys, which are binary fingerprints. The 166 keys or bits that make up a MACCS 

fingerprint each stand for a distinct chemical characteristic. Aromatic rings, functional 

groups, atom kinds, and other structural traits are among the qualities represented in 

MACCS keys. If the matching characteristic is present in the molecule, each bit is given 

a value of 1; otherwise, it is given a value of 0 (zero). [37] 

Chemical similarity searches, virtual screening, and drug development are just a few of 

the uses for MACCS fingerprints. Researchers can find related compounds or sift huge 

chemical datasets to prioritise molecules with desirable structural properties by 

comparing the MACCS fingerprints of various molecules. A chemical structure is 

examined and transformed into a binary fingerprint using preset procedures for each 

MACCS key to produce MACCS fingerprints. With the use of similarity metrics like the 

Tanimoto coefficient or Euclidean distance, the generated fingerprint effectively 

compares to other fingerprints by providing a condensed representation of the structural 

characteristics of the molecule. Overall, MACCS descriptors offer a method for 

comparing and capturing molecular structure data in a condensed binary format, which 

makes computer analysis and prediction jobs in cheminformatics and drug development 

easier. [38] 
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Purpose of MACCS analysis 

Drug research and development are greatly aided by the examination of effective 

medications using MACCS fingerprints because it sheds light on the essential 

characteristics and structural characteristics of effective therapeutic agents. In order to 

repurpose currently available pharmaceuticals or create new ones with increased 

efficiency, researchers can find common functional groups, rings, or metals that are 

commonly present by analysing the fingerprints of known effective drugs. 

The capacity of MACCS fingerprints to represent chemical structures in a small binary 

representation is one of its main features. Large chemical datasets may be stored, 

compared, and retrieved effectively using this format. Researchers can find recurrent 

substructures or traits that are connected to therapeutic efficacy by comparing the 

MACCS fingerprints of known effective medications. These characteristics, which might 

have a significant impact on the drug's mode of action or target interaction, may include 

certain functional groups, aromatic rings, or even the presence of certain metals. 

Researchers learn more about the structural and functional traits that contribute to a drug's 

efficacy through MACCS analysis for instance, if a certain functional group frequently 

appears in effective medications, this may indicate that this group is crucial for target 

binding or particular biological interactions. Using this knowledge, medicinal chemists 

can concentrate their efforts on adding or changing these essential functional groups to 

current medications or when developing new drug candidates. [39] 

The existence of particular metal ions may be inferred from MACCS fingerprints in 

addition to functional groups and rings. Metal-containing medications have demonstrated 

substantial therapeutic benefit, such as platinum-based chemotherapeutic treatments or 

metalloenzyme inhibitors. Researchers can use the predominance of particular metal 

characteristics in effective pharmaceuticals to guide the creation of novel metal-based 

treatments or aid in the optimisation of currently available metal-containing drugs by 

analysing MACCS fingerprints.[39] 

Overall, an organised and effective method for identifying the structural and functional 

characteristics of effective medications is the MACCS analysis. Researchers can 

repurpose already available medications, create new ones with better attributes, or 

concentrate on particular functional groups, rings, or metals that are crucial for 
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pharmacological action by discovering the recurrent characteristics linked with their 

efficacy. By rationally designing and optimising medication candidates with the use of 

this information, numerous diseases can eventually be treated more successfully. 

 

CHAPTER 3: MATERIALS 

3.1 IMPPAT database 

Indian Medicinal Plants, Phytochemistry and Therapeutics is a sizable resource that 

focuses on the medicinal plants found in India. IMPPAT may be very helpful to 

researchers, scientists, medical professionals, and anybody else interested in learning 

about or applying the medicinal properties of Indian plants. A variety of plant species are 

covered in-depth in the database, including their botanical names, common names, 

traditional uses, chemical make-up, pharmacological activity, and relevant scientific 

investigations. In view of the growing demand for natural products and conventional 

medicine, IMPPAT is essential in promoting the discovery and usage of Indian medicinal 

plants. It facilitates research on the phytochemical evaluation of plant extracts, the 

identification of bioactive compounds, and the development of plant-based therapies.[40]  

IMPPAT offers a comprehensive library of data on the phytochemical composition of 

Indian medicinal plants, which helps the in-silico drug discovery process. This resource 

contains details about the chemical elements present in many plant species. By using 

computer analysis, researchers may predict the likely biological properties and activities 

of these substances, such as how they interact with certain proteins or enzymes. 

The database also makes it easier to study structure-activity correlations (SAR) using 

computer modelling. By examining the chemical structures of bioactive compounds and 

their associated biological activities, researchers may develop prediction models to 

foresee the biological activities of analogous substances. This allows for the discovery of 

intriguing molecules and their subsequent production or modification to enhance their 

properties, boost their efficacy, and minimise their toxicity. [40] 

Additionally included in IMPPAT's in silico capabilities are molecular docking studies 

and virtual chemical libraries. The database might serve as a starting point for the creation 

of digital collections of chemical compounds obtained from plants. These libraries can be 
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used for screening against specific therapeutic targets or for virtual docking investigations 

where computer algorithms predict the binding affinity between a chemical and a target 

protein. Such simulations aid both the identification of potential drug candidates and the 

enhancement of their binding interactions. 

3.2 PDB 

The protein data bank is a sizable global store of structural information for big molecules 

like protein and nucleic acid.  It was formed in 1971, but there wasn't enough data 

accessible until 1980. As technology advanced via the use of crystallography, nuclear 

magnetic resonance (NMR), cryoelectron microscopy, and theoretical modelling, the 

number of deposited structures began to rise. PDB is crucial for structural genomics, 

structural biology, and bioinformatics. Numerous programmes, such CATH and SCOP, 

employ protein structures that are stored in the PDB. PDB holds more than 180000 

macromolecule structures, including many 3D structures of nucleic acids and 

proteins.[41] 

It provides an extensive and varied variety of protein structure and enables researchers to 

examine an interaction, function, and their folding, making it a useful resource for 

students, researchers, and educators throughout the globe. Structure information has been 

determined and obtained using a variety of methods, including crystallography, magnetic 

resonance spectroscopy, and electron microscopy. To verify the accuracy and 

dependability of the data, many stringent validation processes have been used 

PDB includes ligand and small molecules that are essential to biological activity and 

process in addition to protein and nucleic data. PDB is particularly useful for researching 

protein-protein interactions, complicated molecular interactions, finding new drugs, 

creating enzymes, and basic biological mechanism investigations. The PDB also offers a 

number of tools and resources to help with data analysis and visualisation. PDB offers a 

dynamic molecular viewer, search features, and sophisticated query options. These 

technologies aid scientists and researchers in understanding the functional characteristics 

of nucleic acid and protein molecules by allowing them to compare molecular 

structures.[41] 
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3.3 Autodock vina 

In order to predict the score and mode of binding, protein-ligand docking analysis is 

performed to ascertain a ligand's affinity to a protein molecule.  Since its first release in 

1970, Autodock Vina has sparked active research efforts, aided in the creation of new 

medications, and enhanced ones already on the market. 

Docking programmes are a methodology based on a scoring function and an exploration 

strategy for exploring and sampling both the positional and structural space. An already-

programmed system's free energy is assessed using the scoring function.AutoDock Vina, 

a well-known piece of software, is crucial for computational drug development and 

virtual screening. [42] 

One of AutoDock Vina's primary strengths is how quickly and precisely it searches the 

vast conformational and positional space. It employs a hybrid search algorithm, which 

combines techniques for both global and local optimisation, allowing for a detailed 

analysis of ligand binding poses. By autonomously sampling a range of ligand 

orientations and conformations, AutoDock Vina considerably enhances the likelihood of 

finding energetically favourable binding configurations.[33], [43] 

When creating Vina, researchers looked into a range of stochastic global optimisation 

techniques. These methods included genetic algorithms, particle swarm optimisation, and 

simulated annealing, among others. Additional local optimising processes and specific 

optimisation techniques were applied to hasten the process. Vina chose the Iterated Local 

Search global optimizer as its tactic after doing extensive study. [33], [42] 

The algorithm employs an empirically computed set of parameters and energy terms to 

create a score that represents how effectively the ligand and receptor bind. The scoring 

function used to determine the binding energy takes into account intermolecular forces 

such hydrogen bonds, van der Waals contacts, and electrostatics. By considering these 

factors, AutoDock Vina can effectively rank different ligand poses in accordance with 

their predicted binding affinities. 

Additionally, AutoDock Vina offers a user-friendly interface and a wide variety of 

movable options that let researchers tailor the docking process to their own needs. Due to 

its ability to include many molecular forms, it is compatible with a range of ligand and 
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receptor combinations. With the use of the software's visualisation tools, which are also 

supplied for studying and interpreting the docking data, researchers may identify potential 

binding sites and appreciate how ligands and proteins interact[44]. 

3.4 PLIP 

Protein-Ligand Interaction Profiler (PLIP), a powerful computer technique, is used to 

study and analyse how proteins interact with their small molecule ligands. Due to the 

evolution of structural biology and the increasing accessibility of protein-ligand complex 

structures, it is crucial for drug development, molecular biology, and bioinformatics study 

to comprehend these interactions. PLIP, which is both comprehensive and user-friendly, 

assists in characterising the intricate interactions between proteins and ligands. It 

examines the affinities, sites, and behaviours of ligands as they bind to proteins using a 

range of methods and methodologies. The three-dimensional nature of these interactions 

is crucial information gained via the use of a variety of structural analysis tools, and PLIP 

helps researchers clarify their functional and mechanistic consequences.[45]–[47] 

One of PLIP's important features is its ability to detect and classify ligand-binding regions 

on protein structures automatically. It looks at the protein's surface, finds potential 

binding sites, and then uses sophisticated algorithms to group them into different ligand 

classes. The capacity to swiftly identify potential binding sites and prioritise them for 

further analysis expedites the drug development process. 

PLIP also employs molecular docking techniques to predict the binding poses of ligands 

inside protein structures. By computationally determining the ideal spatial arrangement 

between the protein and ligand, these docking simulations provide crucial insights into 

the binding affinities and likely interaction pathways. This information makes it easier to 

develop novel ligands rationally and to improve existing treatment possibilities.[46] 

Additionally, PLIP offers a robust visualisation feature set that makes it easy for 

researchers to study protein-ligand interactions. By highlighting the essential residues 

involved in ligand binding and providing a complete grasp of the binding modes, it 

provides dynamic 3D protein structure visualisations. These visual representations 

facilitate the dissemination of research findings to a larger scientific community and make 

it simpler to comprehend complex linkages. 
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Any structure from the RCSB PDB service may be processed using a four-letter PDB Id, 

a free text search in the ligand-protein complex, or by loading a PDB file into PLIP. In-

silico docking output files can also be supplied to PLIP for analysis of covalent and non-

covalent interactions. 

The PLIP output generally analyses the ligand-protein complex. In addition to a table 

describing the protein amino acids involved in covalent or hydrogen interactions, PLIP 

provides a 2D and 3D interaction graphic for each ligand-protein interaction. The output 

file from PLIP is also available in PNG and PyMOL formats. You may get the details of 

the interaction pattern by clicking the diagram's high-level view. [46] 

3.5 BioVia Discovery studio 

Exploring and fusing art and science is made simpler with a ground-breaking application 

called Visual Discovery Studio. It provides a collaborative setting for designers, 

scientists, and artists to collaborate on complex ideas, facts, and thoughts. The company 

creates visually appealing and factually accurate visualisations using a variety of methods 

and technologies, including digital design tools and traditional art supplies.[48] 

Visual discovery studio is an effective tool for visualising protein-ligand interactions. In 

preparation for docking analysis, the protein and ligand are visualised. In order to make 

proteins, a poler hydrogen group must be added, water must be removed from protein 

molecules, and extra peptide or ligand chains must be cut. We can distinguish between 

the many types of bonds that the ligand and protein molecules create using the 2D 

depiction of interaction that Visual Discovery Studio provides.  

3.6 ChEMBL Database 

ChEMBL is a helpful and widely used database in the field of medicinal chemistry and 

drug development. It provides a comprehensive collection of information on bioactive 

substances, their targets, and the biological processes associated with them. This resource 

has substantially sped up the process of developing new medications by making it 

possible to conduct research on chemical compounds and their interactions with 

biological systems. 

ChEMBL is a substantial, open-access drug database that seeks to gather data from the 

healthcare and pharmaceutical sectors as well as from the process of studying and creating 
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medications. A large number of medications and ligands have been tested on a variety of 

proteins and biomolecules using ChEMBL. It keeps track of small molecule and 

medication information as well as data on their biological activities from several medical 

chemistry publications. To give researchers access to comprehensive information, 

bioactivity data are shared with other databases including BindingDB and PubChem 

Bioassay[49] 

Research papers from a range of publications, such as Journal of Medicinal Chemistry, 

Bioorganic Medicinal Chemistry Letters, and Journal of Natural Products, are mined for 

vital activity data. The chosen journals have been carefully chosen to ensure the efficient 

use of resources while acquiring a substantial amount of reliable data, even though they 

do not cover every scenario. Each article's database abstracts provide details about the 

tested chemicals, the experiments that were conducted, and any pertinent target data. 

ChEMBL provides researchers with access to a multitude of data, such as details on 

pharmacological profiles, binding affinities, and compound structures. The database 

includes data from a variety of sources, including public databases, patents, and scientific 

publications. With its extensive coverage and continuous updates, ChEMBL offers 

researchers a robust platform for identifying potential drug targets, investigating 

structure-activity relationships, and designing new compounds. [49] 

One of ChEMBL's main benefits is its user-friendly interface, which makes it simple for 

researchers to search for and collect data. Users have the ability to conduct advanced 

searches, filter results using predetermined criteria, and obtain thorough annotations for 

certain substances and targets. The database's capabilities for data visualisation and 

analysis allow researchers to get insights from the vast amount of information available. 

ChEMBL has significantly aided in the advancement of drug development and research. 

By merging information from many sources, it has grown to be a valuable tool for 

researchers all around the world. The database promotes transparency and collaboration 

by making its contents freely accessible, allowing researchers to use the most recent 

information and build upon prior work.[50] 
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Data access form ChEMBL 

Data retrieval is made easier by the ChEMBL interface's simplicity. Users can input a 

keyword, protein name, ChEMBL target identifier, or UniPort accession of an interesting 

target for which a ligand needs to be found in the interface's search tool. 

Once users have obtained a target or a number of targets of interest from the ChEMBL 

database, they may rapidly access the supporting bioactivity data using a drop-down 

menu. Using this user-friendly capability, customers may view all the data that is 

accessible or create filters to choose only particular activity types. Users can choose, for 

example, to focus on specific ADMET endpoints or only include IC50 and Ki data below 

a specific concentration threshold. [50] 

The following bioactivity table, which also contains information on the specific salt form 

used in the experiment, provides a detailed description of each studied medication. 

Additionally, it comprises details about the test, a description of the target (including the 

organism), as well as its description, units, and the type of observed activity. It should be 

noted that the table includes a link that points directly to the article from which the data 

were derived, ensuring accessibility and transparency to the original source. Researchers 

may immediately export the data from this view as a text file or spreadsheet to make 

additional research and analysis easier. Users may utilise this tool to go further into the 

data, conduct their own study, and extrapolate significant findings from the discovered 

bioactivity data.[51], [52] 

3.7 Swiss ADME 

Chemically synthesising, developing, testing, and optimising a medicine requires access 

to a number of factors, including biological activity, toxicity, concentration, etc.  The 

chance of clinical-phase ADME (Absorption, Distribution, Metabolism, Excretion)-

related failures is greatly reduced by pharmacokinetic evaluation at the start of the 

discovery phase. Swiss ADME is a well-known online tool for its dependability and 

robustness as well as for its straightforward result analysis that makes efficient 

incorporation to drug development via molecular design possible. 
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The programme offers a wide range of input possibilities, including chemical structure 

and canonical smiles, analysis of different compounds, the ability to store and share 

results, and user-friendly interactive graphs like the boiled egg and the bioavailability 

radar. The cooked egg is useful in assessing BBB penetration and gastrointestinal 

absorption. The yellow yolk region displays the substances that have a high BBB 

permeability, whereas the white region, also known as the albumin region, displays the 

substances that are most likely to be passively absorbed via the gastrointestinal system. 

On the other hand, the bioavailability radar has a pink region that shows the ideal range 

of characteristics, including flexibility, saturation, solubility, polarity, molecular weight, 

and lipophilicity. A compound’s radar should fall in the pink area for it to be considered 

as a good drug candidate. [53] 

3.8 Molinspiration 

Numerous computational tools are available on the Molinspiration software platform, 

which is designed to help with molecular analysis and modification. These technologies 

support virtual screening, data visualisation, and bioactivity prediction. The bioactivity 

score expectation for therapeutic targets (GPCR, KI, ICM, and NM scores) is the most 

crucial analysis performed by Molinspiration in drug development and optimisation. 

For these studies, Molinspiration accepts input files in the SMILES or SDfile formats. 

SMILES (Simplified Molecular Input Line Entry System), a string-based syntax, and 

SDfile (Structure-Data File), a file format often used to store and communicate chemical 

structures and related data, are used to express the molecular structure of a substance. In 

order to determine the bioactivity scores for the selected therapeutic targets, 

Molinspiration applies its computational methodologies to the input file that has been 

supplied. In order to assess a molecule's potential as a therapeutic candidate, these grading 

systems provide information on the molecule's potential activity or affinity towards the 

target. By prioritising compounds for more experimental testing, this capability helps 

speed up the drug development process. 
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3.9 Lipinski’s rule of five 

The permeability and oral bioavailability of a medicine are two very important parameters 

that help determine a compound's drug similarity or effectiveness. The Lipinki's criteria 

are based on research that shows that characteristics of orally delivered drugs that are 

readily absorbed fit within these restrictions: 500 Da in mass, 5 H-bond donors, 10 H-

bond acceptors, and a 5 LogP value. 

The likelihood of unfavourable pharmacokinetic characteristics such quick metabolism, 

decreased availability, decreased permeability, and failure to penetrate cell membranes is 

higher for substances that stray from these limits. In order to screen out and rank 

compounds according to their propensity to be orally active, the rule of five is a gold 

standard procedure in drug development and optimisation techniques.[54] 

 

 

CHAPTER 4: METHODOLOGY 

 

A.    Selection and preparation of ligands/Retrieving phytochemicals and 

preparation of drug library 

Forty bioactive compounds from Withania somnifera were collected from IMPPAT 

database in pdb format [40]. Using Open Babel GUI, pdbqt formats of the files were 

obtained. 

B.    Protein Preparation  

The structure of target protein PDK-1 (3-Phosphoinositide-dependent kinase 1) 

was retrieved from PDB. Along with the target protein structure, the structure of 

PDK-1 inhibitor 8I1 [34]was also retrieved to be used as a reference[41]. 

Using Autodock Vina 1.7.5, Water molecules were removed as they generally do 

not participate in the binding process. So, in order to simplify the computational 

calculations and get rid of any potential obstructions and pose distortion in the 

binding pocket.Polar hydrogens along with Kollman’s charges were added as the 

pdb files lack hydrogens, so in order to attain accurate optimization and 

calculations, charges and hydrogens were added and pdbqt format of the protein 

was retrieved.  Open Babel GUI was used to convert inhibitor 8i1 from pdb format 

to pdbqt format.  
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C. Molecular docking 
·    Protein-ligand docking using Auto dock Vina: Autodock Vina 1.5.7 employed 

a computational docking strategy by setting the x, y, and z centre dimensions to -

35.04, -26.046, and -1.741, respectively, and the x, y, and z sizes to 58, 48, and 

74, respectively, docking analysis was performed. Number of modes and energy 

ranges were set to 10 and 4 respectively. All phytochemicals are docked against 

the target protein by using Auto dock Vina and Perl. The standard inhibitor 8i1 

was also docked against target protein [44]. 

·    Docking/Interaction analysis:  The downloaded outputs from auto dock were 

analyzed via PLIP and Discovery studio to identify by which amino acid the 

ligand binds to the protein. The binding energies of ligands and standard were 

compared and phytochemicals with high binding energies were selected [46], [48]. 

D. Pharmacokinetic and Drug Likeness Screening of selected Phytochemicals: Only 

phytochemicals that can get past the initial round of binding energy range screening 

are subjected to further analysis based on their drug likeness and pharmacokinetics.   

·    Lipinski’s RO5 analysis: The rule of five assesses drug likeness, or the 

likelihood that a molecule will be active when taken orally. The selected 

phytochemicals were subjected to Lipinski’s RO5 to analyze their oral activity 

[54]. 

·       In-silico bioavailability analysis: To comprehend the pharmacokinetics of a 

drug, it's vital to understand its absorption, distribution, metabolism, and 

excretion. In order to evaluate the bioavailability radars of the phytochemicals, 

SwissADME and admetSAR[53] were employed. By providing canonical 

SMILES of phytochemicals as input, these values can be determined [53]. 

·    Bioactivity score: To determine the druggability characteristics of ligands like 

NRL, PI, and EI, GPCR, ICM and KI, bioactivity score is required. The scores 

can be predicted by providing canonical SMILES of phytochemicals as input to 

Molinspiration. (Molinspiration Cheminformatics free web services, 

https://www.molinspiration.com, Slovensky Grob, Slovakia) 
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E.  Machine learning Validation   

1. Data extraction: The initial step in machine learning is data extraction. In this 

case, the data from the ChEMBL database was extracted using the Python tool 

chembl_webresource_client. The data extraction involves the protein PDK-1, and 

all ligands that have been properly researched and examined in relation to this 

protein have been created. There are 1150 ligands in the gathered dataset. After 

the data extraction is complete, the dataset is filtered using the IC50 values. The 

IC50 value of a medicine, which displays the dose required to 50% block a certain 

biological process, is used to assess its potency. In order to identify ligands that 

significantly interact with the protein PDK-1, the data may be filtered based on 

IC50 values. By filtering the dataset, one may make sure that the machine learning 

model focuses on ligands that are more likely to be effective and relevant for the 

target protein. By focusing on ligands with higher inhibitory potency against the 

target protein, researchers can prioritise them by limiting the dataset based on 

IC50 values. [50] To filter the data, several IC50 filtering criteria may be used, 

depending on the requirements and objectives of the study. Researchers may 

choose to include ligands with IC50 values below a specified threshold, implying 

higher potency, or they may focus on a specific range of IC50 values depending 

on the desired level of protein interaction. It is important to keep in mind that the 

dataset's quality and suitability for subsequent machine learning operations are 

guaranteed by the data extraction and filtering processes. By eliminating data 

specifically related to the target protein and filtering using IC50 values, 

researchers may create a more condensed and curated dataset that is more suited 

for training and validating machine learning models. 

2. Data Classification:  The next step involves categorising the ligands according    

to     their IC50 values once the data from the ChEMBL database has been extracted. In 

this instance, the distinction between active and inactive drugs is made using a threshold 

of 100. A ligand is categorised as active if its IC50 value is less than 100; otherwise, it is 

categorised as inactive. Which drugs are more successful at inhibiting the target protein 

may be ascertained with the use of this classification procedure. By categorising the 

ligands as either active or inert based on their IC50 values, researchers can get additional 

knowledge about the potential usefulness of these drugs. Evaluation of any data bias in 
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the dataset is also crucial. Any systematic inaccuracy or irregularity in the dataset that 

might influence the findings or forecasts produced by the machine learning model is 

referred to as data bias. Data bias needs to be taken care of to guarantee the model's 

reliability and generalizability. To check for data bias, researchers frequently do a 

thorough analysis of the dataset. The distribution of active and inactive medications, the 

distribution of IC50 values, and any potential sources of bias in the data gathering 

procedure are just a few of the variables they look at. 

3. Making descriptors: Based on the ligands' SMILES sequences, the PaDEL 

software has been used to create molecular descriptors or fingerprints. A popular piece of 

software for computational drug design and research is PaDEL. Prediction and Evaluation 

of Drug-likeness and Toxicity Liability is what it stands for. It offers a variety of 

molecular descriptors to explain various aspects of a molecule's structure and properties. 

In this case, 308 descriptors were produced by the PaDEL programme using the structural 

characteristics of the ligands determined from their SMILES sequences. Numerous 

molecular features, including as size, shape, flexibility, electrostatics, and other structural 

traits, are numerically represented in these descriptions. They provide useful information 

that machine learning algorithms may use to identify patterns and connections between 

molecular structures and their biological activity.. Molecular descriptors are crucial in the 

discovery and creation of novel medications. They enable researchers to compare and 

assess the chemical characteristics of various compounds effectively in order to predict a 

variety of molecular and biological attributes, such as drug-likeness, solubility, toxicity, 

and activity against target proteins. By incorporating chemical descriptors produced by 

the PaDEL into the machine learning process, researchers may train algorithms to analyse 

and detect patterns in the data. These models may then be used to predict the activity or 

potency of new ligands based on their chemical structures in order to find potential 

therapeutic possibilities. [8] 

4. Machine Training: The dataset was divided in half throughout the machine 

learning training phase, with 80% of the data used to train the model and 20% used to 

assess its performance. It is feasible to evaluate how well the model generalises to fresh 

data thanks to this split. The data have been trained using the RandomForestClassifier 

model in this specific instance. preferred method of machine learning A collection of 

decision trees are used by RandomForest to forecast results. It is well known for having 
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the ability to handle complex connections and produce consistent results. [55]. After the 

model has been trained with the training data, the accuracy of the model is evaluated using 

the testing data. Accuracy is a common measure used to gauge a classification model's 

performance. Out of all the occurrences in the testing dataset, it calculates the percentage 

of instances that were properly categorised. In this case, the test data performance of the 

RandomForestClassifier model was determined to be 85% correct. This shows that in 

85% of the cases, the model correctly predicted the ligands' activity or inactivity based 

on their chemical descriptors and other properties[56]. The model's accuracy of 85% 

demonstrates how well it predicts the ligands' actions. It is important to undertake a more 

in-depth investigation and consider additional evaluation criteria in order to properly 

understand the model's performance. Other well-known evaluation criteria for 

classification problems include precision, recall, and F1 score. Precision is the proportion 

of precisely predicted positive events among all cases that are expected to be positive. 

Recall, sometimes referred to as sensitivity or the true positive rate, is the ratio of correctly 

predicted positive cases to actual positive occurrences.  

The harmonic mean of recall and accuracy is the F1 score, which is a balanced assessment 

of model performance. [Progress with diffuse large B-cell lymphoma] To gauge the 

model's robustness and generalizability, cross-validation ought to be utilised. The dataset 

is split up into several subsets for cross-validation, and the model is trained using a variety 

of pairings of training and testing sets. By making sure the model functions consistently 

across different data divisions, this reduces the likelihood of model failure. ElasticNet, 

RandomForestClassifier, NuSVC, BaggingClassifier, HistGradientBoostingClassifier, 

SVC, RidgeClassifier, DecisionTreeClassifier, KNeighborsClassifier, MLPClassifier, 

and AdaBoostClassifier are just a few of the models that have been used in the machine 

learning process to train and evaluate the data. Among these models, the 

RandomForestClassifier has provided the best cross-validation result. 

5. Phytochemical data preparation and validation: The IMPPAT database had 80 

phytochemicals from the Withania somnifera plant that were submitted. The chemical 

structures of these drugs were represented in an Excel spreadsheet using SMILES 

sequences. Molecular fingerprints or descriptors were developed using the PaDEL tool in 

order to predict the activity of these phytochemicals and evaluate their potential as 

inhibitors. This technique generated a total of 308 descriptors for each compound, each 
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of which described a unique collection of structural and physicochemical properties. The 

generated descriptors were used to build a machine learning model for activity prediction 

by feeding it into a RandomForestClassifier. To provide accurate predictions, this 

classifier combines many decision trees, an effective ensemble learning approach. It has 

been heavily used in chemoinformatics and drug discovery applications because to its 

ability to manage complex interactions. The trained RandomForestClassifier model was 

then used to predict the activity of the phytochemical compounds based on its descriptors. 

The learned patterns and correlations from the training data were used by the model to 

make predictions about whether the compounds have inhibitory potential. 

F. Mechanism of MACCS analysis 

The data used in this instance for the MACCS analysis came from the ChEMBL database, 

a helpful resource for drug discovery research. Sorting and getting the data ready for more 

analysis were part of purifying the ChEMBL data. One of the initial stages of the 

investigation was classifying the data according to the IC50 value. The half-maximal 

inhibitory concentration (IC50), which quantifies a drug's efficiency in inhibiting a 

specific biological target, is used in research. The typical IC50 values utilised in this case 

to classify the samples ranged from 2.5 to 5 ng. 

These criteria allowed the chemicals in the dataset to be categorised as either active or 

inactive drugs. Depending on whether a drug's IC50 value fell inside or beyond the 

defined range (2.5 to 5 ng), it was classified as either active or inactive. For the MACCS 

study, the molecular structures of the ligands were designed. This effort was aided by the 

RDKit module, a powerful Python cheminformatics toolkit. One of the numerous 

capabilities and tools that RDKit provides for working with molecular structures is the 

capacity to generate and edit chemical structures. [57] [[35], [58], https://www.rdkit.org" 

The RDKit tool was used to generate and show the ligands' molecular structures in a 

manner suitable for MACCS analysis. This procedure is crucial because it underpins 

MACCS fingerprints, which are generated from molecular structures and capture 

important structural components that affect the medication's ability to work. 

Following the creation of the molecular fingerprints, the data was processed using a 

variety of machine learning models, including BaggingClassifier, 

HistGradientBoostingClassifier, GradientBoostingClassifier, ExtraTreesRegressor, 

https://www.rdkit.org/
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RandomForestClassifier, AdaBoostClassifier, NuSVC, and SVC. These models were 

chosen because they could perform classification tasks and were appropriate for the 

dataset that was provided. 

To evaluate the effectiveness of each machine learning model, cross-validation scores 

were computed. Cross-validation is a method for evaluating the model's performance by 

repeatedly training and testing the model on different combinations of the dataset's 

subsets. This approach provides a more trustworthy evaluation of the model's accuracy. 

The RandomForestClassifier, which achieved an accuracy of 80%, had the highest 

efficiency of all the machine learning models examined. With the 

RandomForestClassifier ensemble learning approach, predictions are made using a 

combination of several decision trees. It uses the concept of bagging and random feature 

selection to create a range of powerful models. 

After selecting the most useful model, the following stage was to identify the crucial 

components of the categorisation. The feature_importances function of the 

RandomForestClassifier was employed in this process. This function quantifies how 

important each characteristic is in relation to the other throughout the classification 

process. The graph that follows lists the 40 most important characteristics. 

After using these 40 phytochemical characteristics for training, the Machine model 

performed 89% efficiently, demonstrating the importance of these features to the 

effectiveness and potential of medications. Through MACCS analysis of major 

RandomForestClassifier properties, important knowledge for drug development and 

repurposing is obtained. Researchers can concentrate on certain characteristics that have 

major effects when they are able to identify important chemical descriptors and 

substructures. This focused strategy improves the choice of currently available 

medications for repurposing, saving time and money. 

Understanding of key features helps in generating more effective drug candidates by 

adding or modifying key chemical descriptors and substructures. Utilising biological or 

disease-specific targets, this optimisation strategy expedites the medication development 

process. 
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To identify probable negative reactions and unintended effects, it helps to understand 

important traits. Medicine chemists can improve safety profiles and maximise medication 

prospects by identifying specific chemical properties that lead to unfavourable side 

effects or toxicity. Additionally, comprehending key characteristics helps us grasp how 

drugs work mechanistically. Structure-function links are clarified by correlating 

particular molecular descriptors or substructures with categorization results. The 

effectiveness of medications is improved by using this information to create reasonable 

compounds. 

              Figure 3 : Molecular structures of phytochemicals of Diospyros kaki  
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CHAPTER 6: RESULTS 

Figure 4: Molecular docking of ligands and target protein (PDK-1) retrieved from PLI 
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The binding affinity of numerous phytochemicals, including Solasodine, 17-alpha-

hydroxywithanolide D, Withanolide Q, Withasomidienone, Withasomnine, and 

Anahygrine to a particular target of interest was investigated in this work using a docking 

approach. These phytochemicals acquired binding energies were found to be 11.4 

kcal/mol, 10.4 kcal/mol, 9.8 kcal/mol, 7.6 kcal/mol, and 6.7 kcal/mol, respectively. Each 

phytochemical's interactions with the target protein are indicated by the binding energies 

that were obtained. A better binding affinity and a greater chance of generating stable 

complexes are often suggested by lower binding energies. 

Table III: Molecular docking of phytochemicals against target protein (PDK-1) in-

silico. 

 

 

Following a successful docking analysis, this study evaluated the medications further to 

determine their pharmacodynamics and pharmacokinetics characteristics utilising 

bioinformatics software tools including swisADME and Molinspiration.In accordance 

with the Lipinski rule of five, which assesses drug-likeness based on physicochemical 

features, 17-alpha-hydroxywithanolide D, Withanolide Q, Withanolide E, and 

Withasomnine exhibited no violations. The Lipinski rule of five was shown to be broken 

by Withasomidienone, Solasodine, Somniferine, and Sitoindoside IX, suggesting possible 

difficulties in their absorption, distribution, metabolism, and excretion. Further 

Phytochemical  Binding 

energy(kcal/mol) 

No. of 

bonds 

Amino acid participating  

Solasodine  -11.4 4 LEU88,  VAL96, LEU212, 

ALA162 

17-alpha-

hydroxywithanolide D 

-10.4 4 VAL96, LEU212, THR222,  

LEU88 

Compound 8i1  

(Standard inhibitor) 

-10.1 9 ALA 162, ASN 210, ASP 

223 

Withanolide Q  -9.8 5 LEU88,  VAL96, TYR161, 

GLU166, LEU212 

Withasomidienone  -9.6 3 LEU88,  VAL96,  LEU212 

Withasomnine  -7.1 4 LEU88,   VAL96,  TYR161,  

LEU212 

Anahygrine  -6.7 4 LEU88, VAL96,  THR222, 

ALA109 
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SwisADME analysis revealed that Withasomidienone, Solasodine, and Withasomnine 

can cross the blood-brain barrier. These phytochemicals show potential as effective  

inhibitors of PDK-1 in glioblastoma cancer, highlighting their significance for central. 

Table IV: Lipinski’s Rule of Five Analysis (RO5) Mass<500, H-bond donors<5, 

Hbond acceptors<10, LogP value<5 

 

In addition, the MOLinspiration software's pharmacokinetics analysis included a 

number of aspects, including GPCR, kinase inhibitor, enzyme inhibitor, NRL (Nuclear 

Receptor Ligand), and protease inhibitor. These investigations shed light on the 

inhibitory effect of the medications as well as any potential interactions between them 

and certain biological targets. Withanolide Q, Solasodine, 17-alpha-hydroxywithanolide 

D, Withasomidienone, and Withasomnine's pharmacokinetics and pharmacodynamics 

are all discussed in detail in the generated results from these bioinformatics analysis. 

Understanding the possible effectiveness and safety characteristics of these compounds 

thanks to this thorough assessment will help direct future research and development 

initiatives in medication discovery and optimisation. 

 

 

Phytochemicals  Mass 

g/mol 

Hydrogen  
bond 

donor  

Hydrogen 
bond  
acceptor  

LogP 

value 

Molar 

refractivity  

No. of 

violations  

Withasomidienone 436.8 1 4 4.31  126 1 

Solasodine 413.64 2 3  4.9  127  1 

Withasomnine 184.24 0  1  2.34  56.56  0  

17alpha-hydroxywithanolide 

D 

486.60  3  7  1.95  128.73 0 

Sitoindoside IX 632.74 5 11  0.48  156.87  2 

Somniferine 608.68 2  9  1.67  171  1  

Withanolide Q 470.67 3 6 2.67 129 0 

Withanolide E 486.60 3 7 1.95 128 0 
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Table V: Bioactivity Scores of Phytochemicals retrieved from Molinspiration.  

 

Figure 5: Bioavailability radars of retrieved using swisADME 

Phytochemical GPCR PI EI NRL KI ICM 

Withasomidienone 0.04 0.07 0.73 0.96 -0.66 -0.03 

Solasodine 0.24 0.01 0.60 0.36 -0.66 -0.17 

Withasomnine -0.49 -0.43 0.58 -0.10 0.58 -0.43 

17alpha-

hydroxywithanolide 

D 

0.06 0.18 1.01 0.78 -0.43 0.20 

Sitoindoside IX -0.08 0.11 0.47 0.06 -0.77 -0.49 

Somniferine 0.69 -0.05 -0.16 -0.41 -0.53 -0.57 
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Figure 6: SwisADME analysis reveals phytochemicals Withasomidienone, Solasodine, 

Withasomnine Crossing blood-brain barrier, unlocking therapeutic potential for brain 

health. 

A machine learning study was done on the chosen phytochemicals to verify our docking 

results. The RandomForestClassifier was chosen among the many machine learning 

models because it demonstrated the best accuracy and F1 value, showing its usefulness 

in predicting the activity of the chemicals. The accuracy of the Machine learning model 

came out to be 80%. 

Figure 7: Bar graph Depicting different machine learning model and their accuracy 
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Confusion matrix analysis has been used to evaluate the performance of a classification 

model. It provides a summary of the model's predictions compared to the actual 

outcomes. 

A confusion matrix is a table that displays the counts of true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN) for a binary classification 

problem. The rows of the matrix represent the actual classes, while the columns 

represent the predicted classes. 

The confusion matrix allows us to calculate various performance metrics, including 

accuracy, precision, recall, and F1 score, which provide insights into different aspects of 

the model's performance. 

 

Figure 8: Confusion matrix of Machine Learning accuracy. Depicting True 

Positive=46, True Negative= 56, False Positive= 16, False Negative=9. 
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The research revealed six phytochemicals as possible active medicines for inhibiting the 

PDK-1 protein using the RandomForestClassifier model. Solasodine, 17-alpha-

hydroxywithanolide D, withanolide Q, withasomidienone, and withasomnine were these 

phytochemicals. The machine learning algorithm made predictions about the 

compounds' possible inhibitory action against the target protein using a variety of the 

compounds' properties and traits. This machine learning-based method offers insightful 

information about the potential therapeutic use of these phytochemicals in PDK-1 

protein targeting. The medicines that were shown to be active may make excellent 

candidates for additional experimental testing and development as possible PDK-1 

inhibitors. This protein is very relevant to many biological processes and disease 

pathways. 

In order to optimise and reconstruct pharmaceuticals, we examined the MACCS 

characteristics of active medications with consistent IC50 values. A set of 166 specified 

substructural patterns serve as the foundation for MACCS descriptors, which are binary 

fingerprints that encode structural information. Specific pieces or functional groupings 

are either present or absent in these patterns. We discovered common structural traits 

among the active medicines by looking at the MACCS descriptors. The ability to 

discover important molecular properties that can be improved makes this knowledge 

useful for changing and improving medications. Through the use of the MACCS 

descriptors, we may identify connections between therapeutic action and molecular 

structure that can inform future drug design changes and optimisation techniques. 
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 Table VI: List of MAACS fingerprint keys 

 

MDL MACCS 

Key 

Smart Pattern 42 Aliphatic secondary 

nitrogen 

1 Aromatic ring 43 Aromatic primary 

nitrogen 

2 Aliphatic ring 44 Aliphatic primary 

nitrogen 

3 Double bond 45 Aromatic halogen 

4 Triple bond 46 Aliphatic halogen 

5 Aromatic nitrogen 47 Aromatic ester 

6 Aliphatic nitrogen 48 Aliphatic ester 

7 Aromatic oxygen 49 Aromatic ether 

8 Aliphatic oxygen 50 Aliphatic ether 

9 Aromatic sulfur 51 Aromatic amide 

10 Aliphatic sulfur 52 Aliphatic amide 

11 Aromatic chlorine 53 Aromatic nitrile 

12 Aliphatic chlorine 54 Aliphatic nitrile 

13 Aromatic bromine 55 Aromatic urea 

14 Aliphatic bromine 56 Aliphatic urea 

15 Aromatic iodine 57 Aromatic thioether 

16 Aliphatic iodine 58 Aliphatic thioether 

17 Aromatic hydroxyl 59 Aromatic imide 

18 Aliphatic hydroxyl 60 Aliphatic imide 

19 Aromatic methoxy 50 Aliphatic ether 

20 Aliphatic methoxy 51 Aromatic amide 

21 Aromatic amino 52 Aliphatic amide 

22 Aliphatic amino 53 Aromatic nitrile 

23 Aromatic thiol 54 Aliphatic nitrile 

24 Aliphatic thiol 55 Aromatic urea 

25 Aromatic nitro 56 Aliphatic urea 

26 Aliphatic nitro 57 Aromatic thioether 

27 Aromatic carbonyl 58 Aliphatic thioether 

28 Aliphatic carbonyl 59 Aromatic imide 

29 Aromatic carboxylic 

acid 

60 Aliphatic imide 
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30 Aliphatic carboxylic 

acid 

56 Aliphatic urea 

31 Aromatic sulfonic acid 57 Aromatic thioether 

32 Aliphatic sulfonic acid 58 Aliphatic thioether 

33 Aromatic phosphonic 

acid 

59 Aromatic imide 

34 Aliphatic phosphonic 

acid 

60 Aliphatic imide 

35 Aromatic phosphinic 

acid 

61 Aromatic hydrazine 

36 Aliphatic phosphinic 

acid 

62 Aliphatic hydrazine 

37 Aromatic quaternary 

nitrogen 

63 Aromatic azomethine 

38 Aliphatic quaternary 

nitrogen 

64 Aliphatic azomethine 

39 Aromatic tertiary 

nitrogen 

65 Aromatic azo 

40 Aliphatic tertiary 

nitrogen 

66 Aliphatic azo 

41 Aromatic secondary 

nitrogen 

67 Aromatic Schiff base 

68 Aliphatic Schiff base 111 Aromatic 

acenaphthylene 

69 Aromatic pyrazole 112 Aliphatic 

acenaphthylene 

70 Aliphatic pyrazole 113 Aromatic acenaphthene 

71 Aromatic imidazole 114 Aliphatic acenaphthene 

72 Aliphatic imidazole 115 Aromatic fluorene 

73 Aromatic thiazole 116 Aliphatic fluorene 

74 Aliphatic thiazole 117 Aromatic phenanthrene 

75 Aromatic furan 118 Aliphatic phenanthrene 

76 Aliphatic furan 119 Aromatic anthracene 

77 Aromatic pyrrole   

78 Aliphatic pyrrole 120 Aliphatic anthracene 

79 Aromatic pyridine 121 Aromatic pyrene 

80 Aliphatic pyridine 122 Aliphatic pyrene 



39 
 

81 Aromatic quinoline 123 Aromatic 

benz[a]anthracene 

82 Aliphatic quinoline 124 Aliphatic 

benz[a]anthracene 

83 Aromatic isoquinoline 125 Aromatic chrysene 

84 Aliphatic isoquinoline 126 Aliphatic chrysene 

85 Aromatic carbazole 127 Aromatic 

benzo[a]pyrene 

86 Aliphatic carbazole 128 Aliphatic 

benzo[a]pyrene 

87 Aromatic phthalazine 129 Aromatic 

benzo[b]fluoranthene 

88 Aliphatic phthalazine 130 Aliphatic 

benzo[b]fluoranthene 

89 Aromatic phenanthrene 131 Aromatic 

benzo[k]fluoranthene 

90 Aliphatic phenanthrene 132 Aliphatic 

benzo[k]fluoranthene 

91 Aromatic anthracene 133 Aromatic 

dibenz[a,h]anthracene 

92 Aliphatic anthracene 134 Aliphatic 

dibenz[a,h]anthracene 

93 Aromatic phenanthrene 135 Aromatic 

benzo[ghi]perylene 

94 Aliphatic phenanthrene 136 Aliphatic 

benzo[ghi]perylene 

95 Aromatic chrysene 137 Aromatic indeno[1,2,3-

cd]pyrene 

96 Aliphatic chrysene 138 Aliphatic indeno[1,2,3-

cd]pyrene 

97 Aromatic 

benzo[a]pyrene 

139 Aromatic naphthalene 

98 Aliphatic 

benzo[a]pyrene 

140 Aliphatic naphthalene 

99 Aromatic 

benzo[b]fluoranthene 

141 Aromatic 

acenaphthylene 

100 Aliphatic 

benzo[b]fluoranthene 

142 Aliphatic 

acenaphthylene 
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101 Aromatic 

benzo[k]fluoranthene 

143 Aromatic acenaphthene 

102 Aliphatic 

benzo[k]fluoranthene 

144 Aliphatic acenaphthene 

103 Aromatic 

dibenz[a,h]anthracene 

145 Aromatic fluorene 

104 Aliphatic 

dibenz[a,h]anthracene 

146 Aliphatic fluorene 

105 Aromatic 

benzo[ghi]perylene 

147 Aromatic phenanthrene 

106 Aliphatic 

benzo[ghi]perylene 

148 Aliphatic phenanthrene 

107 Aromatic indeno[1,2,3-

cd]pyrene 

149 Aromatic anthracene 

108 Aliphatic indeno[1,2,3-

cd]pyrene 

150 Aliphatic anthracene 

109 Aromatic naphthalene 151 Aromatic pyrene 

110 Aliphatic naphthalene 152 Aliphatic pyrene 

157 Aromatic 

benzo[a]pyrene 

162 Aliphatic acenaphthene 

158 Aliphatic naphthalene 163 Aromatic fluorene 

159 Aromatic 

acenaphthylene 

164 Aliphatic fluorene 

160 Aliphatic 

acenaphthylene 

165 Aromatic phenanthrene 

161 Aromatic acenaphthene 166 Aliphatic phenanthrene 

 

 

The binding affinity of numerous phytochemicals, including Solasodine, 17-alpha-

hydroxywithanolide D, Withanolide Q, Withasomidienone, Withasomnine, and 

Anahygrine to a particular target of interest was investigated in this work using a docking 

approach. These phytochemicals' acquired binding energies were found to be 11.4 

kcal/mol, 10.4 kcal/mol, 9.8 kcal/mol, 7.6 kcal/mol, and 6.7 kcal/mol, respectively. Each 

phytochemical's interactions with the target protein are indicated by the binding energies 

that were obtained. A better binding affinity and a greater chance of generating stable 

complexes are often suggested by lower binding energies. 
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Figure 9: Contribution of each key based on their presence in the drug/compound.  

 

The intersection of molecular descriptors present in all the drugs includes descriptors 

79, 86, 95, 111, 38, 91, 109, 128, 135, 149, 150, 62, and more. These descriptors 

indicate the presence of specific chemical structures or functional groups in the active 

drug molecules. For instance, aromatic pyridine, aliphatic carbazole, aromatic chrysene, 

aromatic acenaphthylene, aliphatic quaternary nitrogen, aromatic anthracene, aromatic 

naphthalene, aliphatic benzopyrene, aromatic benzo perylene, aliphatic anthracene, 

aliphatic hydrazine, and others. 
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The consistent presence of these descriptors suggests that these structural features, such 

as aromatic rings or specific functional groups, play a significant role in the activity of 

the drugs. These findings provide valuable insights into the importance of certain 

chemical structures or fragments for the activity of our active drugs and can guide 

further drug design and optimization strategies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

CHAPTER 7: CONCLUSION 

 

The adverse side effects and toxicities associated with synthetic drugs commonly used in 

cancer treatment have prompted a shift in focus towards exploring alternative therapeutic 

agents that are both non-toxic and readily available. In this context, phytochemicals 

derived from natural sources have gained attention as potential anti-cancer agents. 

Withania somnifera, a plant known for its various health benefits, possesses a diverse 

array of bioactive compounds within its phytochemical profile. Therefore, a specific 

research endeavor was conducted using computational methods (in-silico study) to 

investigate the potential of utilizing bioactive compounds derived from Withania 

somnifera to suppress the activity of a protein called PDK-1. PDK-1 plays a crucial role 

in the AKT-mTOR pathway, which is involved in cancer progression. 

In addition to targeting PDK-1, the we considered several additional parameters to 

evaluate the suitability of phytochemicals as potential therapeutic drugs. These 

parameters encompassed minimal cytotoxicity (toxic effects on cells), maximum 

bioavailability (ability to reach the target site in the body), bioactivity (capability to 

induce desired biological effects), and blood-brain barrier (BBB) permeation (ability to 

cross the protective barrier surrounding the brain). By considering these factors, the we 

categorized the phytochemicals from Withania somnifera based on their potential as 

therapeutic drugs. Further MACCS analysis of the active compound demonstrated that 

phytochemicals exhibit drug activity-associated fingerprints. Consequently, slight 

structural modifications of phytochemicals hold the potential to enhance their efficacy as 

potent drugs or inhibitors specifically targeting glioblastoma. 

The study also suggests that the approach of inhibiting other proteins involved in the 

AKT-mTOR pathway could be employed, implying a broader application of the research 

findings. Furthermore, the statement emphasizes the importance of further research in this 

field to enhance our understanding of the underlying molecular mechanisms responsible 

for the recurrence and persistence of glioblastoma stem cells (GSCs). By gaining more 

insights, we can precisely identify the specific proteins involved, potentially leading to 

the development of more targeted and effective therapeutic strategies for GSC-related 

cancers. 
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