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ABSTRACT

In today’s time, the systems have become very complex and very big in size because of

which manual testing can be a hugely daunting task which is not only very expensive but

also very time-consuming. Many new approaches have come up for easing the task of test

case generation and testing software systems. So there is a need for new techniques

through which we can automate the process of

To find the solution to the above issue new search-based techniques have been introduced,

Search Based Software Testing(SBST) is used in this. These techniques have become very

popular for the automation of test data creation. Through this report, we aim to provide an

approach based on Search-Based Software Testing in which we will be using a technique

based on Genetic Algorithm(GA) and observe how effective that is in generating test data

compared to the classic Genetic Algorithm.

In this Thesis, we will work on a modified version of the Genetic Algorithm(GA) to try to

automate the process of Test data creation and we will also compare this modified

algorithm to the classic version of the Genetic Algorithm.

This work will help the future researchers who want to research and work in this field of

Automation of test cases using Search-Based Techniques.

.
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CHAPTER 1

INTRODUCTION

As time is passing our systems are becoming very complex and very big in size and of

which manual testing can be a hugely daunting task which does not only very expensive

but also very time-consuming. Many new techniques have cropped up in recent times

through which we can automatically generate test case data and test our systems/software.

Search Based software testing is one such field in which we can use search/optimisation

techniques to find the solution to the above-given issue in the software testing domain.

The main reason for increased interest in these techniques is that data generation for test

case problems can often be reduced to optimization or search problems.We can often start

with some random solutions to a problem and optimise them to get more optimised

solutions to our problems. These Problems can be solved using Meta-Heuristic algorithms

as these are search algorithms which can optimise a random solution to more optimised

solutions for a particular problem.

Different categories of Meta-Heuristic algorithms are given in Figure-1. Search Based

algorithms have become very famous in these times in testing and to automate the activity

of the creation of test data. Testing is done to find software bugs so we can fix them. In

recent years we have observed the rise of Search-Based Software Testing (SBST) and

especially the techniques of generating test data that is based on given criteria. We can

ensure that the software is bug-free with the help of testing.
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Fig. 1. Different categories of Meta-Heuristic algorithms [1].

In this thesis, we will be defining and using a modified version of the Genetic Algorithm

which we have named as GenTest to automate the process of test creation. We will also

be comparing the performance of this GenTest to the classic version of Generic Algorithm

Using the fitness of the solutions created by both of them.

We will be applying this modified Algorithm to two problems (Triangle problem, Next

date problem) and we will be getting the optimised test cases for these problems which are

generated by our GenTest Algorithm and we will compare the performance of this

algorithm on these problems with the classic version of GA.
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CHAPTER 2

BACKGROUND STUDY

2.1 Genetic Algorithm

“Genetic Algorithm (GA) is an evolutionary searching algorithm used to search results for

optimization and search problems” [2]. GA has part of the evolution such as generation of

population, mating, cross over and mutation which proceeds towards the generation of

fitter offspring or solutions. It starts with the Initialization of the population by randomly

generating solutions.

The next step is that of Selection in which solutions which are individual are picked

through a process. The next step after this is of Reproduction of the next generation of

solutions from those which are picked with the help of genetic operators: crossover and

mutation. After this process of making the next solution is in the loop till the time

termination condition has been met.

The genetic algorithm Flowchart is given in figure-2.1

Fig. 2.1 Flowchart of the Genetic Algorithm [3].
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Instead of being an algorithm for a particular problem, genetic algorithms are a type of a

methodology for tackling optimisation problems. In other words, it's crucial to comprehend

the fundamentals of genetic algorithms and implement it to the challenges you need

because there isn't a single algorithm or source code that can be used to solve all problems.

G.A. has terms like chromosome, gene, offspring, and fitness which are prevalent when

using G.A.A group of biologically genetic material known as a chromosome expresses a

response to a genetic algorithm. A gene is a component of a chromosome that holds a

single piece of genetic data. For instance, if a chromosome has the values [X Y Z], it has

three genes, each of which has the letters X, Y, and Z. The term "offspring" refers to

chromosomes produced by the mating of those in the preceding generation.

The genetic makeup of the progeny is carried over into the descendants. The offspring

share information present in the genes of the previous generation. Fitness is a value of a

chromosome that indicates how suited is the chromosome as a solution to the challenge.

The way the G.A. works is to pick the chromosome that fits the best out of a group of

chromosomes from a particular generation, and then repeat searches in that direction until

an ideal answer is found.

The genetic algorithm progresses through a series of stages. Initially, we establish a

collection of starting chromosomes. Subsequently, we evaluate the fitness of these initial

chromosomes. Next, the algorithm generates offspring based on the existing chromosomes

we also mutate the offspring so that there can be genetic diversity in the solutions and after

that, we assess the fitness of the offspring. .Once we establish the termination condition, if

it is determined to be false, the process of creating offspring from the current chromosomes

is repeated. However, if the termination condition is found to be true, the algorithm

concludes and terminates.
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The Pseudocode of Classic GA is given in figure-2.2.

Fig. 2.2. Pseudo Code of the Classic Genetic Algorithm [4].
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CHAPTER 3

LITERATURE SURVEY

B. T. M. Anh in [5] has proposed an enhanced genetic algorithm which is given in

Figure-3.In this algorithm, we first find the targets which are to be present for each method

of the class which is under the test. Following this, there will be initial population will be

created which will be random. This population is predefined in this generation. A test case

is each individual in the population. The evolution step takes place in a loop until a

solution is found that covers the set of targets which need to be covered or the resources

which were being used have been fully used (execution time, number of generations). We

check if the current target is covered or not in every iteration of the evolution. The test case

which takes care of the target is stored for the output. For each run of the loop of evolution,

a new generation is then built and is mixed with the fittest individuals from the current

population. The genetic operators (selection, crossover and mutation) are used in

accordance with the fitness value of test cases.

Na Zhang, B. Wu and X. Bao have also introduced a new technique known as a

multi-population genetic algorithm[6]. Simple genetic algorithm has some issues in it like

being stuck in local Optimal or the convergence which is not mature. To fix the local

optimal issue we can use a multi-population algorithm which helps us to get more quality

test cases as a result. To test this method 10 C language programs were used as the tests.

This method was tested against the normal genetic algorithm and the random algorithm for

the generation of test suites. The results showed that the test suites produced by the above

method had more code coverage than both the genetic algorithm and the random algorithm

and the size of the test suites of the above method was also lower than the other two

methods, which shows that test suites of this methods were covering more code having

lesser test cases than the other two methods.
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Test data generation is a pricey, tedious, and error-prone activity, according to Harsh

Bhasin[7]. Making the automation of the method used to generate test cases as efficient

and potent as possible is therefore urgently required. The work that was presented aimed to

achieve maximum coverage by automating the test generation method. They chose

programmes based on their lines of code and function, and these programmes served as the

basis for testing their methodology. The outcomes of their research have been confirmed.

Their ideas can be used to create a bigger system.

In [8], Jungsup Oh employed a messy GA to cover transitions in Simulink/Stateflow

models. They unveiled a programme that applies their strategy and tests it against three

standard Simulink models for embedded software. Compared to a professional tool for

State Flow testing and random search, their messy GA can obtain statistically higher

coverage.

A Ruby Test case Generator (RuTeG) tool was created by Mairhofer, S. in [9] and uses

prior work on OOP test generation to produce test cases that maximise the coverage

requirement with the help of a genetic algorithm. The results of this tool were compared

with a random test generator tool and it showed significantly more code coverage than the

random generator tool.

In a study presented by Alsmadi [10], the authors optimise the production of test cases

from application UI by using genetic algorithms. This is accomplished by creating the

graphical user interface controls graph and encoding each control's location in the

graphical user interface graph to be uniquely represented.
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R. Khan and A.K. Srivastava have introduced a new method for the generation of

automatic test case formulation testing [11] using a Hybrid genetic algorithm.

The termination condition for this algorithm is to either get all the coverage to all the paths

which are identified in a CFG or to cross 1000 iterations. To test this Hybrid Genetic

Algorithm, Mutants were injected into the initial Programs, so to get the mutation score.

In this experiment, they had taken 10 test suits of different sizes and had done mutation

analysis. The results were compared to the results which were gathered by using different

algorithms(Random Algorithm, Genetic Algorithm and the proposed Hybrid Genetic

Algorithm).

The results showed that the mutation score achieved by Hybrid Genetic Algorithm is far

better than the other two algorithms.
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CHAPTER 4

METHODOLOGY

4.1 GenTest Algorithm

GenTest algorithm is a slightly enhanced version of the Classic Genetic Algorithm which
we discussed earlier. This Enhanced version of the Genetic Algorithm has two main
differences from the classic genetic algorithm stated below.

This algorithm has adaptive mutation because of which the mutation rate depends upon the
fitness value of the best individual in the population in comparison to the classic version of
the algorithm in which the mutation rate is fixed and not dynamic.

In this algorithm, we also store the best individual with the highest fitness in the current
generation to be part of the next generation. As we store the best individual across all the
generations and also make it part of the forthcoming generation we can converge to an
optimal solution more timely as compared to the classic version of the algorithm we do not
have a guarantee that the best individual from a particular generation would pass on to the
next generations.

The Psuedo Code for the GenTest algorithm is presented in figure-4.1

Fig. 4.1 Pseudo Code of the GenTest Algorithm
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The algorithm has the following steps:-

1. Initialization: The algorithm starts by generating an initial population of individuals,

where each individual represents a potential solution to the problem.

2. Fitness Calculation: The fitness values of the individuals in the population are calculated

using a fitness function. In this case, the fitness function determines the quality or

suitability of each individual's solution to the problem.

3. Tracking the Best Individual: The algorithm keeps track of the best individual found so

far (best_individual) and its corresponding fitness value (best_fitness). Initially, these

variables are set to None and 0, respectively.

4. Adaptive Mutation Rate: The mutation rate is determined dynamically based on the

fitness of the best individual. A lower fitness value corresponds to a higher mutation

rate, allowing for more exploration and diversification in the early stages of it.

The adaptive mutation rate is calculated using the formula `mutation_rate =1/

(best_fitness + 1)`.

5. Selection: The selection process chooses parents from the population to create the next

generation. In this code, the selection is performed by randomly selecting individuals

from the population as parents.

6. Crossover: Crossover is applied to the selected parents to produce offspring. The

crossover operation combines the genetic information of the parents to create new

solutions.
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7. Mutation: Mutation introduces small random changes in the offspring's genetic

information. In this algorithm, the mutation operation is applied to the offspring

with a probability determined by the adaptive mutation rate. The mutation allows

for exploration and the introduction of new genetic material into the population.

8. Elitisism: The best individual found so far (best_individual) is preserved and added

to the new population.This ensures that the best solution is not lost during the evolution

process.

9. Next Generation: The new population is created by combining the best individual from

the previous generation (elitism) and the offspring generated through crossover and

mutation.

10. Termination: The algorithm proceeds for a fixed number of generations. In this code,

the termination condition is defined by the value of the GENERATIONS constant.

11. Best Fitness Tracking: The best fitness value of each generation (best_fitness) is stored

in a list (best_fitnesses) to track the progress of the algorithm over time.

12. Return: The algorithm returns the list of best individuals based on the best fitness value

generations.

11



4.2 Advantages of GenTest over Classic G.A

Adaptive Mutation: The GenTest algorithm incorporates adaptive mutation, where the

mutation rate is dynamically adjusted based on the fitness of the best individual. This

adaptive mutation strategy provides several advantages:

a. Exploration-Exploitation Balance: By adjusting the mutation rate based on the fitness,

the algorithm can strike a better balance between exploration and exploitation. In the early

stages of the algorithm, when the fitness is low, a higher mutation rate promotes

exploration, allowing the algorithm to search a wider range of solutions. As the fitness

improves, the mutation rate decreases, enabling a more focused search around promising

regions. This adaptive approach helps the algorithm efficiently explore the search space

while also exploiting good solutions.

b. Avoiding Premature Convergence: The adaptive mutation rate helps prevent premature

convergence by maintaining a higher mutation rate when the fitness is low. This ensures

that the algorithm continues to explore the search space, avoiding getting trapped in local

optima. By allowing for a higher exploration rate, the GenTest algorithm has a better

chance of finding optimal or near-optimal solutions.

Tracking the Best Individual: In the GenTest algorithm, the best individual found so far

(best_individual) and its corresponding fitness value (best_fitness) are stored and tracked

throughout the generations. This tracking mechanism provides several benefits:

a. Preserving the Best Solution: By storing the best individual and its fitness value, the

algorithm ensures that the best solution is not lost during the evolution process. The best

individual is preserved and carried forward to subsequent generations, guaranteeing that

the algorithm continues to improve upon the best solution found so far.

12



b. Monitoring Progress: Keeping track of the best individual and its fitness value allows

for monitoring the progress of the algorithm over time. By examining the changes in the

best fitness value across generations, it becomes possible to assess the performance of the

algorithm and determine whether it is converging or stagnating.

c. Better Final Solution: The ability to track the best individual and its fitness value helps

ensure that the algorithm converges to a high-quality solution. By retaining the best

individual throughout the generations, the algorithm maintains a reference to the best

solution found, which can lead to better final results.

In summary, the enhanced genetic algorithm with adaptive mutation improves the

exploration-exploitation balance by adjusting the mutation rate based on fitness, thereby

avoiding premature convergence and improving the chances of finding optimal or

near-optimal solutions. Additionally, tracking the best individual throughout the

generations ensures the preservation of the best solution and allows for monitoring the

algorithm's progress, ultimately leading to better final solutions.

13



CHAPTER 5

IMPLEMENTATION

In this section, we present the implementation details of the GenTest Algorithm. We have

applied this algorithm to two problems(Triangle Problem and Next Date Problem). The

implementation is done using Python programming language. The code provided below

incorporates the modifications discussed in the methodology section, including adaptive

mutation and tracking the best individual.

Programming Language: Python

5.1. Code Implementation:

The figure-5.1 shows the code implementation of the GenTest Algorithm with adaptive

mutation for test data generation in the Next Date Problem problem:

Fig. 5.1 Implementation of the GenTest Algorithm
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5.2. Considerations:

In the implementation, we have adhered to the principles of genetic algorithms, including

representation, fitness calculation, selection, crossover, and mutation. The modifications

introduced in the enhanced algorithm are as follows:

Adaptive Mutation: The calculate_adaptive_mutation_rate function dynamically adjusts

the mutation rate based on the fitness of the best individual. The formula mutation_rate = 1

/ (best_fitness + 1) is used to calculate the adaptive mutation rate.

Tracking the Best Individual: The best individual found so far and its corresponding fitness

value are stored in the best_individual and best_fitness variables, respectively. The

best_fitnesses list is used to track the best fitness values across generations.

The implementation also includes other necessary functions and code snippets to support

the main algorithm, such as generating the initial population, calculating fitness values,

selecting parents, performing crossover and mutation operations, and generating random

individuals.

5.3. Parameter Tuning:

In the implementation, certain parameters need to be tuned to achieve optimal results.

These parameters are need to be configured according to the type of problem we are

solving. These parameters include the population size, the number of generations, and the

specific ranges for generating random individuals (e.g., day, month, year). The values of

these parameters can be adjusted based on the specific requirements and characteristics of

the triangle problem/next date problem or the test data generation scenario.

15



CHAPTER 6

RESULT AND ANALYSIS

In this section, we present the results and analysis obtained from running the enhanced

genetic algorithm with adaptive mutation for test data generation in the triangle problem.

The algorithm was implemented using Python programming language, incorporating the

modifications discussed in the methodology section.

6.1. Experimental Setup:

Triangle Problem:-

Population Size: 100

Number of Generations: 800

Next Date Problem:-

Population Size: 100

Number of Generations: 300

6.2. Results:

The results of the GenTest algorithm with the adaptive mutation are compared with

the classic genetic algorithm for the test data generation in the triangle problem and

the next date problem. The performance metrics considered are the best fitness values

achieved over generations and the time taken for execution.

6.3. Performance Comparison:

The following figures shows the graph of the comparison of the best fitness values

achieved by the GenTest algorithm and the classic genetic algorithm for both of the

Problems.
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Fig. 6.1 Comparison of the GenTest Algorithm with Classic G.A(Triangle Problem)

Fig. 6.2 Comparison of the GenTest Algorithm with Classic G.A(Next Date Problem)
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6.4. Analysis

Fitness Values: The comparison graph demonstrates that the GenTest algorithm with

adaptive mutation consistently outperforms the classic genetic algorithm in terms of fitness

values. The best fitness achieved by the GenTest algorithm improves at a faster rate and

converges to a higher value compared to the classic algorithm. This indicates that the

adaptive mutation and best individual tracking mechanisms enhance the algorithm's ability

to find better solutions.

Convergence Rate: The GenTest algorithm shows a faster convergence rate compared to

the classic algorithm. It converges towards the optimal or near-optimal solutions more

efficiently, thanks to the adaptive mutation that allows a better exploration-exploitation

balance throughout the optimization process.

Solution Quality: The GenTest algorithm, with its ability to track the best individual,

consistently produces better solutions compared to the classic algorithm. By preserving

and carrying forward the best individual, the GenTest ensures continuous improvement

and a higher probability of finding the optimal solution.

18



CHAPTER 7

CONCLUSION AND FUTUREWORKS

7.1. Conclusion

In this project, we implemented an enhanced genetic algorithm known as GenTest

Algorithm with adaptive mutation for test data generation in the triangle problem and next

date problem. The algorithm was compared with the classic genetic algorithm to evaluate

its performance and effectiveness. The implementation was done using Python

programming language, incorporating the modifications discussed in the methodology

section.

Through our implementation and analysis, we have arrived at the following conclusions:

1. Performance Improvement: The GenTest algorithm with adaptive mutation outperforms

the classic genetic algorithm in terms of fitness values, convergence rate, and solution

quality. The adaptive mutation and best individual tracking mechanisms contribute to

better exploration-exploitation balance, faster convergence, and higher-quality solutions.

The adaptive mutation ensures efficient exploration in the early stages and focused

exploitation around promising regions as the fitness improves, leading to improved

optimization outcomes.

2. Solution Preservation: The best individual and it’s fitness value are tracked throughout

the generations in the GenTest algorithm. This tracking mechanism guarantees that the best

solution found so far is preserved and carried forward. By maintaining a reference to the

best individual, the algorithm continuously improves upon the best solution and increases

the chances of finding optimal or near-optimal solutions.

19



3. Computational Efficiency: The GenTest algorithm, with its adaptive mutation and best

individual tracking, may have a slightly higher execution time compared to the classic

algorithm due to the additional computation involved in adapting the mutation rate.

However, the difference in execution time is generally negligible and does not significantly

impact the overall computational efficiency.

In conclusion, the GenTest algorithm with adaptive mutation provides significant

improvements over the classic genetic algorithm for test data generation in the triangle

problem. By dynamically adjusting the mutation rate and tracking the best individual, the

algorithm achieves better optimization outcomes, faster convergence, and higher-quality

solutions. The GenTest algorithm can be applied in various software testing scenarios

where test data generation is required.

7.2. Future Works

Future research directions could include exploring additional enhancements to the

algorithm, such as incorporating other evolutionary operators, exploring different

adaptation strategies for mutation, or applying the GenTest to other test data generation

problems. Further optimization and experimentation could also be conducted to fine-tune

the algorithm's parameters and assess its performance on larger and more complex test data

generation scenarios.

Overall, the GenTest algorithm with adaptive mutation presents a promising approach to

address the test data generation challenges in the triangle problem and has the potential to

be applied in real-world software testing scenarios, contributing to improved software

quality and reliability.
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