
AUTOMATIC COMMENT GENERATION USING

DEEP LEARNING TECHNIQUE

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE AWARD OF DEGREE

OF

MASTER OF TECHNOLOGY

 IN

SOFTWARE ENGINEERING

Submitted By

SARANSH SHARMA

 (2K21/SWE/22)

 Under the supervision of

Ms. PRIYA SINGH

ASSISTANT PROFESSOR

DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi - 110042

MAY 2023

M
.T

ech
 (S

o
ftw

are E
n
g
in

eerin
g
)

S
aran

sh
 S

h
arm

a

 2
0
2
3

iv

ABSTRACT

Comment Generation is an emerging field that has attracted significant attention from

researchers. They are actively exploring various methods to address this problem and enhance

the effectiveness of comment generation. Deep learning techniques have gained popularity in

recent times as researchers leverage them to tackle this challenge. The 21st century has

witnessed a substantial increase in software development, resulting in a significant rise in lines

of code. To expedite the process of writing comments for these codes, individuals are

endeavouring to develop automated comment generation systems. Such systems aim to provide

comprehensive comments within the source document, enabling new developers to quickly

comprehend and commence their work. In the competitive industry, organizations strive to

minimize time and maximize productivity. Consequently, comment generation has gradually

gained traction as an intriguing area of interest for researchers.

v

CONTENTS

TABLE OF CONTENTS PAGE NO

DECLARATION i

CERTIFICATE ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

CONTENTS v

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS ix

CHAPTER 1 INTRODUCTION 1

1.1. BACKGROUND AND MOTIVATION 1

 1.2. AUTOMATIC COMMENT GENERATION 3

1.3. RESEARCH OBJECTIVE 5

1.4. ORGANISATION OF THESIS 5

CHAPTER 2 LITERATURE SURVEY 6

 2.1 RESEARCH QUESTIONS FORMATION 6

 2.2 SEARCH STRATEGY AND STUDY SELECTION 7

 2.3 DATA EXTRACTION AND SYNTHESIS 7

 2.4 DESCRIPTION OF PRIMARY STUDIES AND QUALITY ANALYSIS 8

2.5 RELATED WORK 9

CHAPTER 3 RESEARCH METHODOLOGY 20

3.1 EXPERIMENTAL SETUP 20

 3.1.1 HARDWARE USED 20

 3.1.2 SOFTWARE USED 20

 3.2 SAMPLE DATASET 20

 3.3 TECHNIQUE USED 21

CHAPTER 4 RESULTS 27

CHAPTER 5 LIMITATIONS 29

vi

CHAPTER 6 CONCLUSION AND FUTURE SCOPE 30

REFERENCES 32

APPENDICE 34

A. PLAGIARISM REPORT 34

B. LIST OF PUBLICATIONS 35

vii

List of Tables

Table Number Figure Name Page Number

2.1 Research Questions 6

2.2 Quality Assessment

Questions

8

2.3 Summarization recent

models

12

2.4 Comparison of Models 13

2.5 Meritsaand De-Merits

offDLTs
19

viii

List of Figures

Figure Number Figure Name Page Number

1.1 Deep Learning w.r.t ML

& AI

1

1.2 Performance of DL &

ML

2

1.3 Multilayer Network 2

1.4 Computing on Neural

Network

3

1.5 Comment Generation

Process

4

1.6 Comment Generation

Framework

4

2.1 Code RNN 10

2.2 Workflow of model 11

2.3 Architecture of Deep

Code

12

2.4 Basic Seq2Seq 14

2.5 Encoder 14

2.6 Decoder 15

2.7 LSTM Logic 15

2.8 CNN in code generation 16

2.9 RNN 16

2.10 DLT 17

3.1 Encoder Class 22

3.2 Decoder Class 23

3.3 Training Model 25

4.1 BLEU for comments 28

4.2 BLEU for codes 28

ix

LIST OF ABBREVIATIONS

Abbreviation Definition
CNN CONVOLUTIONAL NEURAL NETWROK
RNN RECURRENT NEURAL NETWORK
LSTM LONG SHORT-TERM MEMORY
GRU GRATED RECURRENT UNITS
BLEU BILINGUAL EVALUATION UNDERSTUDY
ROUGE RECALL-ORIENTED UNDERSTUDY FOR GISTING

EVALUTION

1

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Deep learning is a system designed to mimic the way the human brain learns. It draws

inspiration from the architecture of the brain, where neurons are the fundamental building

blocks. Similarly, deep learning architecture includes computational units that can model

nonlinear functions. The key to deep learning lies in the neurons, which, like their biological

counterparts, receive input signals and generate output signals. These neurons are organized

into layers, with each layer responsible for identifying specific patterns in the data. By stacking

multiple layers, the system learns to understand data representations. This layered structure

resembles the network of neurons in the brain, leading to the term "neural networks" or

"artificial neural networks" to describe the deep learning architecture.

Figure 1.1 Deep Learning w.r.t ML and AI

As you can see in figure 1, [6] that deep learning is basically a subset of machine learning

which itself is subset of Artificial Intelligence.

2

Figure 1.2 [5] Performance of DL and ML

As, we can see from above diagram that as the [5] size of data is increasing, the older machine

learning algorithms performance is not increasing with the size of data sets. But with deep

learning algorithms as the size of data sets increases, its ability to learn from it increases and

hence its performance increases as the data size increases.

Figure 1.3 [7] Multilayer Network

As we see in figure 3, [7] basically input is your features and hidden layers are where the

computation take place.

3

Figure 1.4 [4] Computing on Neural Network

For example, in image classification using logistic regression neural network, we need to find

parameters w and b so that we can get better result. In figure 4, [4] we can see that our input is

actually at 0-level, summation is at 1-level, activation is at 2-level. Also called 2-layer neural

network. Different techniques can be utilized to make solid Deep learning models. These

procedures incorporate learning rate rot, move picking up, preparing without any preparation

and dropout. For this we have different algorithms of deep learning. Various scenarios are there

and each procedure is suitable according the situations.

1.2 AUTOMATIC COMMENT GENERATION

Comment generation is basically, generating comments in the source documents so that any

user can read it and understands the document comfortably. Many techniques are used for

generating the comments. Recently, people are started focusing on this problem as nowadays

we have code which are of millions of lines. So, when you have such huge number of lines of

codes, comment generation play an important role to understand the document and also it

reduces the time of developer in writing the comments manually.

4

Figure 1.5 [26] Comment Generation Process

As we can see in the above diagram, the process for generating comments. It is very important

to note that data needs to be prepared properly and should follow standard coding rules and

procedures. If the data is prepared properly and scaled effectively then efficiency of the

technique to generate the comment can be increased significantly. So, once the data is prepared

properly then one choose technique accordingly. Till now researches have many techniques

but since the evolution of deep learning, now researchers are shifting on deep learning

techniques to generate the comments. Deep learning is used because its efficiency increases

with the increase in data set. And as we all know how rapidly software development is

increasing in today’s world. Hence, using deep learning is a good way to tackle the problem of

comment generation.

Figure 1.6 [26] Comment Generation Framework

5

By seeing above diagram, we can say that generating comments is not the only problem that

we are facing, but generating comments with accuracy is a problem. If comments generated

are not meaningful then it is of no use. Hence, we need to take care of the accuracy of the

generated comments about how correctly they are defining the functions. There should be many

questions that must arise in the mind about how to ensure the accuracy of the quality of

comments that are generated. To cover this, we need a big data set comprising thousands of

snippets of code so that our deep learning model can be trained properly. This is the advantage

of using deep learning. Its algorithms learn better and give better performance if the data set is

large.

1.3 RESEARCH OBJECTIVE

Objective of the research is to use deep learning techniques and find a way to generate

comments for a code snippet with a better accuracy. With this, we will be able to reduce the

time for an organization and especially for the developer to not to waste time in writing

comments in a code manually. Using deep learning techniques, we will try to achieve this and

also takes care of the accuracy of the generated comment. Because if comments are not

meaningful then it is of no use. So, the objective is to do comment generation. We will first try

to do this on a particular language until we get good accuracy and then we can explore and do

it for others also and try to create a generalise model which can also be a future work depending

on the success we get.

1.4 ORGANIZATION OF THESIS

The rest of the thesis is divided into the following Chapters.

Chapter 2 consists of a discussion of Literature review of our own work in the field of

automatic comment generation represents Chapter 3 discusses the methodology for the review

where we mention the research questions formed, and the search strategy we have adopted

following that the exclusion and inclusion criteria. Chapter 4 shows the results of our

implementations Chapter 5 talks about the limitations of automatic comment generation which

are still a major drawback Chapter 6 concludes the paper and mentions the future scope.

6

CHAPTER 2

LITERATURE0SURVEY

This systematic literature review follows the guidelines outlined by Kitchenham [21], which

outlines three distinct phases: (1) Planning, (2) Conducting the review, and (3) Reporting. Each

phase holds significance in the process of writing a systematic literature review. During the

planning phase, the research questions are defined. In the second phase, conducting the review,

relevant research is identified, primary studies are selected, and their quality is assessed.

Finally, in the third phase, the review is written based on the research conducted in the first and

second phases.

2.1 Formulation of Research Questions

As advancements continue to occur in comment generation techniques, two aspects that remain

relevant are data extraction and deduction, as well as comment generation utilizing deep

learning methods. To gain a deeper understanding of these topics, the following research

questions have been identified:

 Table 2.1: Research Questions and Objectives

S.

No

.

Research Question Objective

1 WhichaDLTa(deepalearning

techniques)aareautilized

foraautomaticacommenttgeneratio

n innsource-codea(ACG-

SC)iintthe sourceecode?

Tokknow theedifferenttDLTtusediinnACG-SC.

2 Whattperformanceemeasuresaare

usedttoeevaluateetheeperformanc

e offDLTaappliedfforrACG-SC?

TokknowewhichcDLTiisaableetoagiveebetter

results.

3 Whichadatasetsghaveebeennused

acrossaDLTsfforrACG-SC?

Toiidentifyyvariousttypesaoffdataasetsausediin

ACG-SC.a

4 Whataareetheemeritsaandademerit

s

offusingadifferenttDLTsfforrACG

-SC?a

Toaunderstandawhen1andywherefwhichfDLTtc

an beeused.a

7

2.2 SEARCH STRATEGY AND STUDY SELECTION

The selection of primary studies is a crucial step in the second phase of the Kitchenham

guidelines. It ensures that only high-quality papers meeting our criteria are included, while

excluding those that do not align with our objectives. We conducted searches in the following

digital libraries:

• ScienceDirect

• ACM Digital Library

• IEEE Xplore

• Springer Link

Inclusion:

1. Empirical research utilizing deep learning techniques.

2. Literature specifically focusing on comment generation using deep learning techniques.

3. Literature authored by students, researchers, and professional software developers.

4. Literature written in the English language.

Exclusion:

1. Non-empirical studies.

2. Literature not directly related to comment generation using deep learning techniques.

3. Literature authored by individuals outside the scope of students, researchers, and

professional software developers.

4. Literature not written in the English language

2.3 DATA EXTRACTION AND SYNTHESIS

To enhance the accuracy of our research question answers, we have extracted the following

information from the primary studies:

• Methodology employed in the research

• Publication year

• Type of dataset used

• Pre-processing technique utilized

• Primary input utilized

• Technique employed for comment generation

• Criteria employed for evaluation

After doing data extraction and using quality assessment questions, we selected 20 papers out

of 25 selected papers. Excluded 5 papers to not matching the standard set of questions we

created to include only related papers of DLT.

8

2.4 DESCRIPTION OF PRIMARY STUDIES AND QUALITY ANALYSIS

For getting better results, it’s important to have quality assessment questions. Hence, we

designed 10 quality questions as shown in Table 1. for our primary studies to get preeminent

quality of papers.

Table 2.2: Quality Assessment Questions

S.

No

Question Yes Partly No

1 Is the objective stated prominently?

2 Is the method of study stated clearly?

3 Whether data selection, extraction and pre-processing of data

described clearly?

4 Do the study provide related literature?

5 Are the Research Questions formed accordingly?

6 Whether the study clearly justifies the importance of

prediction technique used?

7 If more than one technique is used then comparative study

done or not?

8 Are the constraints of study stated clearly?

9 Are results defining properly?

10 Does performance measures used for evaluating the

predictive performance in the study?

9

2.5 RELATED WORK

Comment Generation is a new field but if we see the history then people started working on it

since 2010. Various methods are being used to generate the comments. But recently people

have shifted on using deep learning methods. Earlier, IR based comment generation algorithms

were supposed to being used which uses various algorithms like latent semantic indexing,

vector space model and other algorithms. But problem was that they were not able to produce

better accuracy. Comments were generated but it was not meaningful. In recent years especially

since 2016, researched shifted on deep learning and started using deep learning algorithms.

One such work was done by [4] Yuding who came up with recurrent neural network. Basically,

recurrent neural network is used when problem is related to sequence. For example, saying

how are you looks good but if your model predicts are how you then it’s not right. So, to solve

such kind of problems recurrent neural network are used. Some researchers came up with long

short-term memory technique which you can say is a type of recurrent neural network only but

it uses the concept of encoders and decoders. There should be many questions that must arise

in the mind about how to ensure the accuracy of the quality of comments that are generated.

To cover this, we need a big data set comprising thousands of snippets of code so that our deep

learning model can be trained properly. This is the advantage of using deep learning. Its

algorithms learn better and give better performance if the data set is large. Till now researches

have many techniques but since the evolution of deep learning, now researchers are shifting on

deep learning techniques to generate the comments. Deep learning is used because its

efficiency increases with the increase in data set. And as we all know how rapidly software

development is increasing in today’s world. Hence, using deep learning is a good way to tackle

the problem of comment generation. Recently, researchers are now moving with deep learning

techniques since its able to generate better accuracy. Many models are being used like recurrent

neural network model, seq2seq model, LSTM model. These models have given better accuracy

then previous techniques. Hence, researches are taking more interest in doing comment

generation with deep learning techniques.

A comparative study was done to understand the current problems and results of various

techniques of comment generation so that we can come up with better approach and with more

features. We will see some of the recent techniques now to understand it.

10

Comment Generation via Code RNN:

It is very hard to read long codes if comments are not present in the source document. To solve

this, [4] Yuding came with code RNN approach which can perform better than other moles to

generate comments more accurately. He used recurrent neural network technique of deep

learning to overcome this problem.

Figure 2.1[2] Code RNN

In this, every subtree of a program is parsed into neural network and represent it as a vector.

Now they break long data into meaningful words. And used the technique of reversive neural

network to train it. So, this approach of recurrent neural network is used because we know our

output needs to be in correct sequence. So, whenever we know output has to be in sequence, in

that case building a model with recurrent neural network can be a good choice.

Comment Generation via Deep Reinforcement Learning:

Comment Generation using deep reinforcement learning is another way to generate the results.

It basically uses the concept of [2] LSTM (long short-term memory) which basically is a type

of recurrent neural network and it over comes one problem offrecurrent neural network that is

recurrent neural network suffers from the long input problem so long short-term memory

overcomes this. This work can be done with better accuracy in long short-term memory then

recurrent neural network.

11

Figure 2.2[2] Workflow of model

Basically, by using deep reinforcement learning what happens is that the system learns with

the experience and by combining it with deep learning, it behaves totally like a brain behaves,

it keeps on learning. But as soon as we connect both the concept, the problem arises as deep

learning basic requirement is to have large amount of data so when we use deep reinforcement

then we need large amount of data. If we don’t have the large amount of data then it will give

less accuracy as model won’t be trained properly.

Comment Generation via A Deep Code Comment Generation Tool with Hybrid Lexical and

Syntactical Information:

[1] Model consists of three stages:

i) Data processing: The Java techniques acquired from GitHub are parsed into equal corpus.

The objective remarks are removed from the relating Javadoc of the Java techniques. To get

familiar with the primary data, the Java techniques are changed over to AST arrangements

before took care of into the model.

ii) Model training: We utilize Tensorflow, which is an open-source profound learning system,

to construct our models.

iii) Online testing: Both Information Retrieval (IR) metrics (e.g., precision, recall, F-score and

F-mean) and Machine Translation (MT) metrics (e.g., BLEU and METEOR) are used to

evaluate the model.”

12

Figure 2.3[4] Architecture of Deep Code

As we see from the above architecture of this model, the input that is sample java methods are

parse from which code sequence and AST sequence are being generated which is being fetched

into their model and then comments are generated. Generated comments are then compared

with the actual comments to see the accuracy of the model. Here both encoder decoder is used

for the training the model as visible from the architecture easily. Attention is also used to focus

on a particular thing to try to improve the accuracy of the generated comments. To summarise,

we have pointed out the advantages and disadvantages of each approach. Each approach is

applicable according to what the requirements of the user is.

Table 2.3 Summarization of recent models

Author Yuding Liang Yao Wan Boao Li

Paper Comment

Generation via Code

RNN

Comment

Generation via Deep

Reinforcement

Learning

Comment

Generation via”A

Deep Code

Comment

GenerationnTool

with Hybrid Lexical

andaSyntactical

Information”

Technique Recurrent Neural

Network

Reinforcement

learning with deep

learning

Deep neural network

combines lexical

syntactical

information

Advantages Good for generating

comments just for

Solves two problems

that is code

Uses attention

mechanismawhich

13

functions in the code

script, take long

inputs easily

representation and

exposure bias

learns lexical and

structural

information, gives

better accuracy.

Disadvantages RNN requiresllarge

amount of data set,

processing canjbe

slow because its

recurrent.

Uses LSTM which

are prone to

overfitting,astates

overloadingpcan

happen.

Similar to seq2seq

model where if long

sequences are there

then it can lose the

initial context,

pretrained data

needs to be large.

As we can see from the above table, each model has their own advantages and disadvantages.

So, according to user requirements one can select what model will work for them. But still a

generalise model is currently missing in the industry which can really help all the developers

so that all the manual work of writing comments can be done automatically.

Results

After going through the above models, we found out that each model has their own advantages

and disadvantages. So, we found out that rather than using recurrent neural network, one can

use long short-term memory technique as it works better when long input is present. Below is

the table which compares the models on ROGUE-2 values. Code-RNN models works better

then Code-NN model and also from models which have used seq2seq models. This shows that

Code-RNN is better when compared with simple neural network.

As we can see from the above table that they used rogue-2 values to measure the efficiency of

their technique so that they can compare it with other models. We can clearly see that their

model is performing better if rogue-2 criteria is taken to measure the performance. Here, we

can see that Deep Code is working better then seq2seq by using hybrid2Seq with Attention and

DRL methods.

Table 2.4 comparison between different models

As seen, using deep reinforcement learning, they were able to achieve better performance

compared to other models in their domain. They used BLEU score as their crtiteria to evaluate.

14

RQ1:”WhichaDLT (deep learning techniques) are utilizedafor automatic comment generation

in source-code (ACG-SC)iin the source code?

The objectiveeof this RQais to find the differentatechniques that are beingaused till now in

ACG-SC. We wereesuccessfully able to find out the differenttDLTs that are being used from

2016-2021. Afterranalysing the 200research papers which used deepllearning techniquesffrom

2016-2021, we foundoout the following results:

Seq2Seq::ThisiDLT is used forr35% of times, it’s basicallyya type of RNNnbut with an

encoder-decoderrarchitecture where both areeLSTM [23].”

Figure 2.4 [24]: Basic Seq2Seqq

In this process, the encoder takes an input and combines it into hidden state and cell state

vectors. The hidden state is calculated, while the output of the encoder is disregarded, and the

focus is solely on the internal state of the encoder.

Figure 2.5 [24]: Encoderr

In this process, we observe a sequential passing of each input to the subsequent time step, with

no consideration given to the output of each step. As previously mentioned, only the internal

state denoted by 'h' and 'c' in Figure 2 holds significance. Now, let's examine the role of the

decoder. In this context, the final state of the encoder is transferred to the initial state of the

decoder. Consequently, the initial states of the decoder are established based on the concluding

15

states of the encoder. Subsequently, the decoder commences the output phase, and these

outputs are also utilized for future outputs.

Figure 2.6 [24]: Decoderr

The seq2seq model functions at a fundamental level and has gained significant popularity for

generating comments in source code. It is currently preferred over alternative methods.

Approximately 25% of the time, the model employs LSTM (Long Short-Term Memory) as a

technique. LSTM incorporates a memory unit that enables it to store and preserve information

instead of merely transferring the output to the next part of the network.

Figure 2.7 [22]: LSTM logicc

LSTM (Long Short-Term Memory) networks possess the ability to learn long sequences due

to their memory cell, also known as the cell state. This cell state ensures the maintenance of

information over time, resembling a conveyor belt through which data flows. When dealing

with lengthy comments or sequences, LSTM can be a preferable choice due to its capacity to

handle them effectively.

CNN (Convolutional Neural Network) is another deep learning technique used approximately

15% of the time. One advantage of CNN is that it requires relatively less pre-processed data

compared to other techniques.

16

Figure 2.8 [25]::CNN in code generationn

In his research paper, Zeyuusun [25] employed CNN (Convolutional Neural Network) to

generate code based on a well-defined structure. While pooling is a step commonly used in

implementing CNN, attentive pooling allows the network to focus on specific patterns,

enabling code generation if the structure is well-defined. However, a drawback arises when the

input is not provided according to the expected structure, leading to incorrect results and

rendering the model ineffective. In such cases, it suffers due to the input not aligning with the

intended structure.

RNN (Recurrent Neural Network) is another deep learning technique used approximately 15%

of the time. This approach involves saving the output and feeding it back as input to the next

part of the network.

Figure 2.9 [15]: RNN

With”the advancement of recurrent neural networks (RNN), other neural networks such as

LSTM and Seq2Seq have emerged. Both LSTM and Seq2Seq are types of RNN that build upon

the fundamental concept of RNN. The core idea behind RNN is to store the output of a layer

and feed it back as input to obtain the layer's output.

GNN (Graph Neural Network)”is a type of deep learning technique used approximately 5% of

the time. It is employed when the objective is to predict outputs without prior knowledge of

the ground truth.

17

Transformer, another type of deep learning technique, is also used around 5% of the time. It

incorporates self-attention mechanisms to selectively assign importance to different parts of

the input.

Overall, LSTM, Seq2Seq, GNN, and Transformer are all variations of neural networks that

have their own specific applications and utilization frequencies.

Figure 2.10: DLTa

RQ2:”What performance measures are used to evaluate the performance of DLT applied for

ACG-SC?”

Automated“machine translation evaluation metrics are utilized to assess the effectiveness of

applying DLT for ACG-SC. These metrics include:

1. BLEU Score: This metric quantifies the similarity between the system output and the

reference translations by counting the occurrence of n-grams or word sequences.

2. METEOR Score: METEOR addresses the limitations of BLEU by considering both

precision and recall scores, merging them through several stages of matching words

that were not previously matched.

3. ROUGE Score: ROUGE is employed to evaluate automatically generated comments

by comparing them with a set of reference translations.

AutomatedamachinettranslationeevaluationnmetricaareffrequentlyyusediinaACG-SC because

they provide a more comprehensive understanding of performance compared to other

techniques.

RQ3:: Which datasets have been used across DLTs for ACG-SC?”

18

The majority of datasets used in research are either sourced from open repositories or obtained

from GitHub. However, a common challenge is that these datasets are often tailored to specific

problems, making it difficult to compare and determine which model is superior to others.

Without a standardized dataset, it is not currently possible to make conclusive judgments about

the superiority of different techniques. In order to assess the performance of ACG-SC

(presumably a specific technique), it is necessary to use a standardized dataset and conduct

empirical research based on the methods mentioned in RQ1 (presumably a research question).

Future work will involve selecting a standard dataset and conducting comprehensive research

to evaluate the techniques.

RQ4:aWhataarettheameritsaandedemerits offusing differenttDLTs foraACG-SC?

The objective of this research questionawasttoiidentifyftheeadvantagesaandfdisadvantagesaof

different Distributed Ledger Technologies (DLTs). By doing so, the intention was to create a

reference point for future researchers, enabling them to address existing issues and enhance the

models effectively. The aim is to establish a foundation of knowledge that can inform and guide

future research, facilitating improvements in DLTs based on the identified merits and demerits.

Deep learning, particularly in the form of recurrent neural networks (RNNs) and generative

models like GPT, has been utilized for automatic comment generation in various applications.

While there are advantages to using deep learning for this task, there are also several

disadvantages to consider. Deep learning models can generate comments that are often fluent

and grammatically correct. They can learn to mimic the patterns and structure of human-

generated comments, making the generated comments more coherent and natural-sounding.

Deep learning models can capture and leverage contextual information from the input text to

generate relevant comments. They can learn to infer meaning and respond appropriately based

on the given context, leading to more contextually relevant comments. Deep learning models

can benefit from large-scale training datasets. With abundant data, they can learn diverse

language patterns and generate comments that cover a wide range of topics and styles. Deep

learning models can automate the process of comment generation, saving time and effort

compared to manual comment writing. They can generate comments at scale and provide

immediate responses to user queries or prompts. Deep learning models often lack true creativity

and originality. While they can generate coherent and contextually relevant comments, they

often rely on patterns and phrases learned from the training data and may produce comments

that are predictable or lack novelty. Deep learning models typically struggle with generating

comments for inputs that are rare, out-of-domain, or significantly different from the training

19

data. They might produce irrelevant or nonsensical comments when faced with such inputs.

Deep learning models learn from data that may contain biases, stereotypes, or offensive

language. If not carefully designed and trained, the models can inadvertently generate

comments that are inappropriate, offensive, or biased, potentially leading to negative

consequences or harmful effects.

Table 2.5: Meritsaand De-Merits offDLTs

Technique Merits De-merits

Seq2Seq Avoids the problem

of vanishing gradient.

It uses RNN or

LSTM or GRU.

Pre-trained data needs to be large.

If long sequences are there then it can

lose initial context.

LSTM Provides many inputs

such as input/output

biases, learning rates.

No need for fine

updates.

It is prone to overfitting.

States overloading can happen.

RNN It can take long

inputs easily.

Good for task which

are time dependent.

Processing can be slow as it is

recurrent.

It requires large amount of data set.

CNN It has less

dependency on pre-

processing.

Easy and quick to

implement.

Can be slow because of maxpool

operation.

It also requires large data set.

GNN Easily able to capture

graph data structure.

Easy to train even

with smaller data set.

Basic GNN are not able to correctly

identify graph structure.

Noise vulnerability in GNN exist.

Transformer It helps in faster

processing.

All elements get

equal attention.

Hard to control the attention in

transformer.

It can repeat or skip words.

20

CHAPTER 3

RESEARCH METHODOLOGY

3.1 EXPERIMENTAL SETUP

In this section, we will provide a concise overview of the hardware and software tools

employed in our research. Additionally, we will delve into the performance measures,

framework, and methodology utilized throughout the study.

3.1.1 HARDWARE USED

The proposed project is based on ML approaches, which revolve around classification; the only

hardware instrument required for implementation is a computer system. The model is created

and run on a laptop with the given minimum hardware requirements.

• System Type Windows 10, Macintosh

• Processor Core i3 processor

• RAM 4GB

• Hard disk 500GB

3.1.2 SOFTWARE USED

The Jupyter Notebook and Anaconda Navigator tools were used to implement each ML model.

3.6 Python Python is a general-purpose, interpreted object-oriented programming language. It

is a language that is open-source and free grown in popularity as a result of its condensed,

straightforward, and extensive library support.

3.2 SAMPLE DATASET

Generating comments for Java code is a challenging task due to the structural and semantic

complexities of the language. We explored the following options to gather a Java code dataset

for comment generation:

21

1. GitHub: You can crawl Java repositories on GitHub and extract Java code along with

associated comments. This process may require significant effort, but it can provide you

with a diverse dataset for comment generation.

2. JavaDoc: Java code often includes comments in the form of JavaDoc, which provides

documentation for classes, methods, and fields. You can collect JavaDoc comments from

popular Java libraries or APIs to create a specialized dataset for comment generation.

3. StackaOverflow:aStackkOverflowiisaappopularrplatformawhereedevelopersaaskaand

answerfquestionsrrelatedttopprogramming.yYouacanasearchfforaJavaccodeasnippets

onnStackaOverflowaand extract the associated comments or discussions as a potential

source for generating comments.

4. Research Datasets: Some academic research projects may have released datasets that

include Java code and associated comments. You can explore research publications and

repositories in the field of natural language processing (NLP) and code generation to find

such datasets.

3.3 Technique Used

We used torch library to implement our model. It is open-source library used for neural

networks. In the above code, device is set to GPU if graphical processing unit is available else

CPU will be used for tensor operations. This is the advantage of using PyTorch as its operations

can be computed via CPU as well as from GPU. Optim module is imported from the

torch.optim, it helps in gaining access to various optimization algorithms like stochastic

gradient descent, Adam, RMSprop and more.

22

Fig 3.1: Encoder Class

This code defines the Encoder class, which is a module in PyTorch used for encoding input

sequences. The Encodercclassiissdefinedaasaaasubclassoofnnn.aModule,awhichiistthetbase

classfforrallaneurallnetworkkmodulesainaPyTorch.

• Intthe __init__ method, the constructor of the class, the input parameters areiinput_dim,

hidden_dim,aembbed_dim, andcnum_layers. These parameters represent the input

dimension, hidden dimension, embedding dimension, and number of GRU layers for the

encoder, respectively.

• The super(Encoder, self).__init__() line ensures that the initialization of the Encoder class

inherits the properties and methods of the nn.Module class.

• The instance variables (self.input_dim, self.embbed_dim, self.hidden_dim,

self.num_layers) store the values of the input dimensions, embedding dimension,

hiddenadimension,aandanumberoofflayersrforttheeencoder.

• The self.embedding variable initializes an embedding layer using nn.Embedding, which is

used to convert input indices into dense vectors of fixed size (embbed_dim).

• The self.gru variable initializes a GRU (Gated Recurrent Unit) layer using nn.GRU. It takes

the embbed_dim as the input size, hidden_dim as the hidden size, and num_layers to

specify the number of GRU layers.

• The forward method defines the forward pass of the encoder. It takes an input tensor src,

which represents the input sequence.

23

• The input tensor src is first passed through the embedding layer (self.embedding(src)) to

convert it into dense embeddings. The view(1, 1, -1) reshapes the tensor to have dimensions

(1, 1, -1) where the first 1 indicates the batch size (here, processing one sequence at a time)

and -1 infers the remaining dimension based on the size of the input tensor.

• The reshaped tensor is then passed through the GRU layer (self.gru(embedded)). The GRU

layer processes the input sequence and returns two outputs: outputs, which contains the

output features from all time steps, and hidden, which represents the final hidden state of

the GRU.

• Finally, the method returns outputs and hidden as the encoder's output.

Overall, this code sets up the Encoder class with an embedding layer and a GRU layer. It

defines the forward pass to process input sequences and produce corresponding output features

and hidden states. The specific dimensions and parameters of the encoder are specified during

initialization.

Fig 3.2 Decoder Class

This code defines the Decoder class, which is another module in PyTorch used for decoding

the hidden representation produced by the Encoder class.

• The Decoder class is defined as a subclass of nn.Module, similar to the Encoder class.

• In thee__init__ method, the constructor of the class, the input parameters are

output_dim,ahidden_dim, embbed_dim, and num_layers. These parameters represent the

output dimension, hiddenedimension, embeddinggdimension, and number of GRU

layersffor the decoder, respectively.

24

• The instance variables (self.embbed_dim, self.hidden_dim, self.output_dim,

self.num_layers) store the values of the embedding dimension, hidden dimension, output

dimension, andanumberrofllayersfforttheedecoder.

• The self.embedding variable initializes an embedding layer using nn.Embedding, which is

used to convert output indices into dense vectors of fixed size (embbed_dim).

• The self.gru variable initializes a GRU layer using nn.GRU. It takes the embbed_dim as

the input size, hidden_dim as the hidden size, and num_layers to specify the number of

GRU layers.

• The self.out variable initializes a linear layer (nn.Linear) that maps the hidden dimension

to the output dimension.

• The self.softmax variable initializes a log softmax activation function (nn.LogSoftmax)

which applies logarithm and softmax operations to normalize the output probabilities along

the specified dimension (dim=1).

• Thefforwardamethodfdefinestthefforwardppassfofttheedecoder. Itttakes an inputtensor

inputaandtthe previous hidden state hidden.

• The input tensor input is reshaped using input.view(1, -1) to have dimensions (1,

batch_size). This allows processing a single time step for a batch of sequences

simultaneously.

• The reshaped tensor is passed through the embedding layer (self.embedding(input)) and

then through the ReLU activation function (F.relu) to obtain the embedded representation.

• The embedded tensor is then passed through the GRU layer (self.gru(embedded, hidden)),

along with the previous hidden state hidden,atoggeneratettheeoutputffeatures

andttheeupdatedhhiddennstate.

• Theeoutputttensor is passed through the linear layer (self.out(output[0])) to map it to the

output dimension.

• The resulting tensor is passed through the log softmax activation function (self.softmax)

tooobtaintthepprediction probabilities.

• Finally,atheemethod returnstthepprediction probabilities and the updated hidden state.

Overall, this code sets up the Decoder class withaaneembeddingllayer, aaGRUllayer, allinear

layer, andaa loggsoftmax activationffunction. It defines the forward pass to process input

tensors, generate output probabilities, and update the hidden state. The specific dimensions and

parameters of the decoder are specified during initialization.

25

Fig 3.3: Training Model

This code defines a function trainModel that trains a given model using a set of source-target

pairs.

• The function trainModel takes the model to be trained, source and target as the language

objects, pairs as a list of training pairs, and num_iteration to specify theenumberrof

trainingiiterations.

• The model is set to training mode using model.train().

• An optimizer (optim.Rprop) is instantiated with the model parameters and a learning rate

of 0.01.

• A criterion (nn.NLLLoss) is instantiated for calculating the loss during training.

• A variable total_loss_iterations is initialized to keep track of the accumulated loss during

iterations.

• training_pairs is a list comprehension that creates pairs of input and target tensors by calling

tensorsFromPair function with random choices from pairs. This creates num_iteration

training pairs.

• A loop iterates over the range from 1 to num_iteration+1.

• In each iteration, a training pair is retrieved from training_pairs based on the current

iteration.

26

• The input tensor and target tensor are assigned from the training pair.

• The clacModel function is called with the model,ainput tensor, targetttensor, optimizer, and

criterion to calculate theeloss.

• The loss is added to total_loss_iterations for tracking the cumulative loss.

• If the current iteration is divisible by 2, an average loss is calculated by dividing

total_loss_iterations by 100 (assuming 100 iterations per average). The

total_loss_iterations is then reset to 0.

• The iteration number and average loss are printed.

• Afterrtrainingiiterationsaareecompleted,tthettrainedamodel'sastateedictionaryyissaved

toaaffile named 'generatemodel.pt' usinggtorch.save.

• Finally, theetrained model isireturned.

27

CHAPTER 4

RESULTS

Comment generation for codeeisaaachallengingttaskkdueetottheccomplex relationship

between code and natural language. Generating meaningful and accurate comments that

describe the functionality, purpose, and design choices of code requires an understanding of

both the code structure and the desired comment style. Sequence-to-Sequence Models: These

models treat comment generation as a language generation task, where the input is the code

and the output is the corresponding comment. Sequence-to-sequence models, such as recurrent

neural networks (RNNs).

It's worth noting that comment generation in Java, or any other programming language, is an

active research area,aand thepperformanceeoffmodels heavilyydependsoonttheequalityyand

diversity oftthe dataset used for training. Evaluating the performance of comment generation

models requires metrics such as comment relevance, informativeness, and readability, which

are subjective and can vary depending on the specific task and application.

BLEU score is typically calculated by comparing the n-grams (contiguous sequences of words)

in the generated comment with those in the reference comment(s). It measures the overlap of

these n-grams and assigns a score between 0 and 1, where a higher score indicates better

similarity. However, BLEU does not capture semantic similarity or assess the quality of the

generated comments in terms of informativeness or relevance.

For code comment generation, there might not be a direct one-to-one correspondence between

generated comments and reference comments. The same code snippet can have multiple valid

and diverse comments, making it challenging to define a single reference comment.

Additionally, code comment generation often involves understanding the code's intent,

functionality, and design choices, which may not be adequately captured by the BLEU metric.

While BLEU can still provide some indication of comment generation quality, it is advisable

to use additional evaluation metrics that focus on the quality and relevance of the generated

28

comments, such as human evaluation or task-specific metrics tailored to the application

domain.

Fig 4.1 BLEU for comments Fig 4.2 BLEU for code

29

CHAPTER 5

LIMITATIONS

After conducting a comparative study on comment generation, we discovered that each model

showed improvements, but several assumptions were made during their development:

• Certain approaches assumed that comments would be generated specifically for functions

and not for the entire code.

• Some methods successfully generated comments for variable declarations but struggled

with generating comments for the entire code.

• Several models were capable of generating comments for the entire script, but their

accuracy was notably low.

• Language limitations posed challenges, as certain approaches performed well for Java but

not for other programming languages.

• The categorization of comments requires a systematic step-by-step process.

Considering these limitations, it becomes evident that there is still ample room for

improvement in comment generation. Exploring alternatives such as modifying activation

functions or combining deep learning with regular expressions could be considered. However,

the existing limitations in current models raise concerns, particularly as scripts continue to

grow in length. Thus, there is a need to develop a fool proof method for generating comments

that can cover all aspects of a script and work effectively across multiple programming

languages. As of now, a generalized model is still missing in this area of research.

30

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

Comment generation has emerged as an area of great interest, with numerous researchers

striving to develop improved approaches. As the IT industry undergoes digital transformation

and advancements, the need for comprehensive code documentation becomes increasingly

crucial. A model that provides high accuracy in generating comments can greatly facilitate

code comprehension, enabling new developers to quickly understand and work on codebases

by relying on theacomments. Moreover, automatinggthe process of writinggcomments can

significantly reduce developerrtime and effort. In conclusion, the Seq2Seq model has

demonstrated superior performance in automatically generating comments within source code.

LSTMsaareaattypeeofrrecurrentaneurallnetworkk(RNN)aspecifically designedttoohandle long

input sequences, which contributes to the Seq2Seq model's effectiveness in generating

comments, particularly when dealing with lengthy comment text. Thus far, Seq2Seq models

have shown prominence in the field of deep learning for comment generation.

To draw more definitive conclusions and gain deeper insights into the effectiveness of different

techniques, further exploration is required, particularly for generating class-level comments

and incorporating inline and outline comments. By expanding the scope of comment generation

beyond method-level comments, a more comprehensive comparison of techniques can be

conducted. With additional data and results, we can determine the state-of-the-arttmodelffor

commentageneration.

To enhance code readability, developers can incorporate both inline and outline comments. By

employing regular expressions, one can generate comments for functions within the code,

assuming the coder follows standard naming conventions. Existing research in this field has

limitations, with some focusing solely on functions or variable declarations. It would be

valuable to overcome these limitations and develop a comprehensive approach. Experimenting

with different activation functions can potentially enhance accuracy, improving overall

efficiency. Presently, there is no generalized model capable of generating comments for all

31

programming languages, indicating a need for further research. Furthermore, none of the

existing models generate comments for every aspect of a code snippet.

We have categorized comment generation as follows:

1. Comment Generation at the Method Level: While most research has focused on this level,

it is recommended to employ Deep Learning Techniques (DLT) in empirical studies,

utilizing specific datasets to gain insights into which DLT methods perform betterrthan

others.

2. Comment Generation at the ClasssLevel: ImplementinggDLT in sourceecode for

generating comments at the class level remains unexplored. Contributing in this area can

be a valuable contribution to the field.

3. Comment Generation withinnMethods: Generatinggcomments for eachhline of code poses

challenges. However, if accomplished, it can greatly benefit the IT industry by making code

comprehension more efficient, potentially saving developers up to 30% of their time.

Despite advancements, the accuracy and results of comment generation models are still

suboptimal. Achieving high accuracy in any of the aforementioned levels can pave the way for

other researchers to explore DLT-based approaches in the same context.

32

REFERENCES

1. Zheng Li, “SeCNN: A semantic CNN parser for code comment generation.” Journal of

Systems and Software

Volume 181, November 2021, 111036

2. Yu Zhou, “Augmenting Java method comments generation with context information

based on neural networks” Journal of Systems and Software Volume 156, October 2019

3. Yuding Liang, “Automatic Generation of Text Descriptive Comments for Code

Blocks”, The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18)

4. Boao Li,” DeepCommenter: A Deep Code Comment Generation Tool with Hybrid

Lexical and Syntactical Information”, In Proceedings of the 28th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event, USA. ACM, New

York, NY, USA, 5 pages

5. Yao Wan, “Improving Automatic Source Code Summarization via Deep

Reinforcement Learning”, In Proceedings of the 2018 33rd ACM/IEEE International

Conference on Automated Software Engineering (ASE’18), September 3–7, 2018,

Montpellier, France. ACM, New York, NY, USA, 11 pages.

6. YunSeok Choi.” Source Code Summarization Using Attention-based Keyword

Memory Networks” 2020 IEEE International Conference on Big Data and Smart

Computing (BigComp)

7. BolinWei. “Retrieve and Refine: Exemplar-based Neural

Comment Generation” In 35th IEEE/ACM International

Conference on Automated Software Engineering (ASE ’20), September 21–25, 2020,

Virtual Event, Australia. ACM, New York, NY, USA, 12 pages.

8. Alexander LeClair,” Improved Code Summarization via a Graph Neural Network”, In

Proceedings of ACM Conference, Washington, DC, USA, July 2017

(Conference’17),12 pages

9. Miltiadis Allamanis,” A Convolutional Attention Network for Extreme Summarization

of Source Code”, arXiv:1602.03001

10. Chen Lin,” Improving Code Summarization with Block-wise

Abstract Syntax Tree Splitting”, 29th IEEE/ACM International Conference on

Program Comprehension (ICPC 2021)

11. Wasi Uddin Ahmad,” A Transformer-based Approach for Source Code

Summarization”, ACL 2020 virtual conference

12. Wenhua Wang,” Reinforcement-Learning-Guided Source Code

Summarization using Hierarchical Attention”, IEEE Transactions on Software

Engineering · March 2020

33

13. DEZE WANG, “Deep Code-Comment Understanding and

Assessment”, IEEE Access (Volume: 7)

14. Jian Zhang,” Automatically Generating Commit Messages

from Diffs using Neural Machine Translation”, IEEE/ACM 41st International

Conference on Software Engineering (ICSE)

15. Uri Alon,” CODE2SEQ: Generating sequences from

structured representations of code”, ICLR'2019

16. Patrick Fernandes,” STRUCTURED NEURAL SUMMARIZATION”, ICLR 2019

17. Xing Hu,” Summarizing Source Code with Transferred API Knowledge”, In

Proceedings of the Twenty-Seventh International Joint Conference on Artificial

Intelligence

18. Xing Hu,” Deep Code Comment Generation”, In Proceedings of IEEE/ACM

International Conference on Program

Comprehension, Gothenburg, Sweden, May 27 - May 28, 2018 (ICPC’18). ACM, New

York, NY, USA, 11 pages.

19. Alexander LeClair,” A Neural Model for Generating Natural

Language Summaries of Program Subroutines”, ICSE '19: Proceedings of the 41st

International Conference on Software Engineering

20. Bolin Wei,” Code Generation as a Dual Task of

Code Summarization”, 33rd Conference on Neural Information Processing Systems

(NeurIPS 2019), Vancouver, Canada

21. B. Kitchenham and S. Charters, “Guidelines for performing systematic literature

reviews in software engineering,” 2007.

22. “What is LSTM? Introduction to Long Short-Term Memory”,

https://intellipaat.com/blog/what-is-lstm/

23. Keith, “A Brief History of Deep Learning”,

https://www.dataversity.net/brief-history-deep-learning, 2022

24. “A Simple Introduction to Sequence-to-Sequence Models”,

https://www.analyticsvidhya.com/blog/2020/08/a-simple- introduction-to-sequence-

to-sequence-models/

25. Zeyu Sun, “A grammar-based structural CNN decoder for Code Generation”,

arXiv:1811.06837v1 [cs.LG] 14 Nov 2018

26. XIAOTAO SONG “A Survey of Automatic Generation of Source Code Comments:

Algorithms and Techniques”, 10.1109/ACCESS.2019.2931579

https://intellipaat.com/blog/what-is-lstm/
https://www.dataversity.net/brief-history-deep-learning,
https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-to-sequence-models/
https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-to-sequence-models/
https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-to-sequence-models/
https://doi.org/10.1109/ACCESS.2019.2931579

List of Publications

Priya Singh, Saransh Sharma, “A Literature Review on Automatic Comment Generation

using Deep Learning Techniques”

Published in: 2022 3rd International Conference on Issues and Challenges in Intelligent

Computing Techniques (ICICT) – Scopus

Date of Conference: 11-12 November 2022

Date Added to IEEE Xplore: 20 March 2023

https://ieeexplore.ieee.org/xpl/conhome/10064384/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10064384/proceeding

PROOF:

