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ABSTRACT 

 

Comment Generation is an emerging field that has attracted significant attention from 

researchers. They are actively exploring various methods to address this problem and enhance 

the effectiveness of comment generation. Deep learning techniques have gained popularity in 

recent times as researchers leverage them to tackle this challenge. The 21st century has 

witnessed a substantial increase in software development, resulting in a significant rise in lines 

of code. To expedite the process of writing comments for these codes, individuals are 

endeavouring to develop automated comment generation systems. Such systems aim to provide 

comprehensive comments within the source document, enabling new developers to quickly 

comprehend and commence their work. In the competitive industry, organizations strive to 

minimize time and maximize productivity. Consequently, comment generation has gradually 

gained traction as an intriguing area of interest for researchers. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 BACKGROUND AND MOTIVATION 

Deep learning is a system designed to mimic the way the human brain learns. It draws 

inspiration from the architecture of the brain, where neurons are the fundamental building 

blocks. Similarly, deep learning architecture includes computational units that can model 

nonlinear functions. The key to deep learning lies in the neurons, which, like their biological 

counterparts, receive input signals and generate output signals. These neurons are organized 

into layers, with each layer responsible for identifying specific patterns in the data. By stacking 

multiple layers, the system learns to understand data representations. This layered structure 

resembles the network of neurons in the brain, leading to the term "neural networks" or 

"artificial neural networks" to describe the deep learning architecture. 

 

Figure 1.1 Deep Learning w.r.t ML and AI 

As you can see in figure 1, [6] that deep learning is basically a subset of machine learning 

which itself is subset of Artificial Intelligence. 
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Figure 1.2 [5] Performance of DL and ML 

As, we can see from above diagram that as the [5] size of data is increasing, the older machine 

learning algorithms performance is not increasing with the size of data sets. But with deep 

learning algorithms as the size of data sets increases, its ability to learn from it increases and 

hence its performance increases as the data size increases. 

 

 

Figure 1.3 [7] Multilayer Network 

As we see in figure 3, [7] basically input is your features and hidden layers are where the 

computation take place.  
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Figure 1.4 [4] Computing on Neural Network 

For example, in image classification using logistic regression neural network, we need to find 

parameters w and b so that we can get better result. In figure 4, [4] we can see that our input is 

actually at 0-level, summation is at 1-level, activation is at 2-level. Also called 2-layer neural 

network. Different techniques can be utilized to make solid Deep learning models. These 

procedures incorporate learning rate rot, move picking up, preparing without any preparation 

and dropout. For this we have different algorithms of deep learning. Various scenarios are there 

and each procedure is suitable according the situations. 

 

1.2 AUTOMATIC COMMENT GENERATION 

Comment generation is basically, generating comments in the source documents so that any 

user can read it and understands the document comfortably. Many techniques are used for 

generating the comments. Recently, people are started focusing on this problem as nowadays 

we have code which are of millions of lines. So, when you have such huge number of lines of 

codes, comment generation play an important role to understand the document and also it 

reduces the time of developer in writing the comments manually. 
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Figure 1.5 [26] Comment Generation Process 

As we can see in the above diagram, the process for generating comments. It is very important 

to note that data needs to be prepared properly and should follow standard coding rules and 

procedures. If the data is prepared properly and scaled effectively then efficiency of the 

technique to generate the comment can be increased significantly. So, once the data is prepared 

properly then one choose technique accordingly. Till now researches have many techniques 

but since the evolution of deep learning, now researchers are shifting on deep learning 

techniques to generate the comments. Deep learning is used because its efficiency increases 

with the increase in data set. And as we all know how rapidly software development is 

increasing in today’s world. Hence, using deep learning is a good way to tackle the problem of 

comment generation. 

 

 

Figure 1.6 [26] Comment Generation Framework 
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By seeing above diagram, we can say that generating comments is not the only problem that 

we are facing, but generating comments with accuracy is a problem. If comments generated 

are not meaningful then it is of no use. Hence, we need to take care of the accuracy of the 

generated comments about how correctly they are defining the functions. There should be many 

questions that must arise in the mind about how to ensure the accuracy of the quality of 

comments that are generated. To cover this, we need a big data set comprising thousands of 

snippets of code so that our deep learning model can be trained properly. This is the advantage 

of using deep learning. Its algorithms learn better and give better performance if the data set is 

large.  

 

1.3 RESEARCH OBJECTIVE 

Objective of the research is to use deep learning techniques and find a way to generate 

comments for a code snippet with a better accuracy. With this, we will be able to reduce the 

time for an organization and especially for the developer to not to waste time in writing 

comments in a code manually. Using deep learning techniques, we will try to achieve this and 

also takes care of the accuracy of the generated comment. Because if comments are not 

meaningful then it is of no use. So, the objective is to do comment generation. We will first try 

to do this on a particular language until we get good accuracy and then we can explore and do 

it for others also and try to create a generalise model which can also be a future work depending 

on the success we get. 

 

1.4 ORGANIZATION OF THESIS 

The rest of the thesis is divided into the following Chapters. 

Chapter 2 consists of a discussion of Literature review of our own work in the field of 

automatic comment generation represents Chapter 3 discusses the methodology for the review 

where we mention the research questions formed, and the search strategy we have adopted 

following that the exclusion and inclusion criteria. Chapter 4 shows the results of our 

implementations Chapter 5 talks about the limitations of automatic comment generation which 

are still a major drawback Chapter 6 concludes the paper and mentions the future scope. 
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CHAPTER 2 

 

LITERATURE0SURVEY 

 

This systematic literature review follows the guidelines outlined by Kitchenham [21], which 

outlines three distinct phases: (1) Planning, (2) Conducting the review, and (3) Reporting. Each 

phase holds significance in the process of writing a systematic literature review. During the 

planning phase, the research questions are defined. In the second phase, conducting the review, 

relevant research is identified, primary studies are selected, and their quality is assessed. 

Finally, in the third phase, the review is written based on the research conducted in the first and 

second phases. 

 

2.1  Formulation of Research Questions  

As advancements continue to occur in comment generation techniques, two aspects that remain 

relevant are data extraction and deduction, as well as comment generation utilizing deep 

learning methods. To gain a deeper understanding of these topics, the following research 

questions have been identified: 

 Table 2.1: Research Questions and Objectives 

 

S. 

No

. 

Research Question Objective 

1 WhichaDLTa(deepalearning 

techniques)aareautilized 

foraautomaticacommenttgeneratio

n innsource-codea(ACG-

SC)iintthe sourceecode? 

Tokknow theedifferenttDLTtusediinnACG-SC. 

2 Whattperformanceemeasuresaare 

usedttoeevaluateetheeperformanc

e offDLTaappliedfforrACG-SC? 

TokknowewhichcDLTiisaableetoagiveebetter 

results. 

3 Whichadatasetsghaveebeennused 

acrossaDLTsfforrACG-SC? 

Toiidentifyyvariousttypesaoffdataasetsausediin 

ACG-SC.a 

4 Whataareetheemeritsaandademerit

s 

offusingadifferenttDLTsfforrACG

-SC?a 

Toaunderstandawhen1andywherefwhichfDLTtc

an beeused.a  



7 
 

2.2 SEARCH STRATEGY AND STUDY SELECTION 

The selection of primary studies is a crucial step in the second phase of the Kitchenham 

guidelines. It ensures that only high-quality papers meeting our criteria are included, while 

excluding those that do not align with our objectives. We conducted searches in the following 

digital libraries: 

• ScienceDirect 

• ACM Digital Library 

• IEEE Xplore 

• Springer Link 

Inclusion: 

1. Empirical research utilizing deep learning techniques. 

2. Literature specifically focusing on comment generation using deep learning techniques. 

3. Literature authored by students, researchers, and professional software developers. 

4. Literature written in the English language. 

Exclusion: 

1. Non-empirical studies. 

2. Literature not directly related to comment generation using deep learning techniques. 

3. Literature authored by individuals outside the scope of students, researchers, and 

professional software developers. 

4. Literature not written in the English language 

2.3  DATA EXTRACTION AND SYNTHESIS 

To enhance the accuracy of our research question answers, we have extracted the following 

information from the primary studies:  

• Methodology employed in the research  

• Publication year  

• Type of dataset used  

• Pre-processing technique utilized  

• Primary input utilized 

• Technique employed for comment generation  

• Criteria employed for evaluation 

After doing data extraction and using quality assessment questions, we selected 20 papers out 

of 25 selected papers. Excluded 5 papers to not matching the standard set of questions we 

created to include only related papers of DLT. 
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2.4  DESCRIPTION OF PRIMARY STUDIES AND QUALITY ANALYSIS  

For getting better results, it’s important to have quality assessment questions. Hence, we 

designed 10 quality questions as shown in Table 1. for our primary studies to get preeminent 

quality of papers. 

Table 2.2: Quality Assessment Questions 

 

 

 

S. 

No 

Question Yes Partly No 

1 Is the objective stated prominently?    

2 Is the method of study stated clearly?    

3 Whether data selection, extraction and pre-processing of data 

described clearly? 

   

4 Do the study provide related literature?    

5 Are the Research Questions formed accordingly?    

6 Whether the study clearly justifies the importance of 

prediction technique used? 

   

7 If more than one technique is used then comparative study 

done or not? 

   

8 Are the constraints of study stated clearly?    

9 Are results defining properly?    

10 Does performance measures used for evaluating the 

predictive performance in the study? 
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2.5 RELATED WORK 

Comment Generation is a new field but if we see the history then people started working on it 

since 2010. Various methods are being used to generate the comments. But recently people 

have shifted on using deep learning methods. Earlier, IR based comment generation algorithms 

were supposed to being used which uses various algorithms like latent semantic indexing, 

vector space model and other algorithms. But problem was that they were not able to produce 

better accuracy. Comments were generated but it was not meaningful. In recent years especially 

since 2016, researched shifted on deep learning and started using deep learning algorithms. 

One such work was done by [4] Yuding who came up with recurrent neural network. Basically, 

recurrent neural network is used when problem is related to sequence. For example, saying 

how are you looks good but if your model predicts are how you then it’s not right. So, to solve 

such kind of problems recurrent neural network are used. Some researchers came up with long 

short-term memory technique which you can say is a type of recurrent neural network only but 

it uses the concept of encoders and decoders. There should be many questions that must arise 

in the mind about how to ensure the accuracy of the quality of comments that are generated. 

To cover this, we need a big data set comprising thousands of snippets of code so that our deep 

learning model can be trained properly. This is the advantage of using deep learning. Its 

algorithms learn better and give better performance if the data set is large. Till now researches 

have many techniques but since the evolution of deep learning, now researchers are shifting on 

deep learning techniques to generate the comments. Deep learning is used because its 

efficiency increases with the increase in data set. And as we all know how rapidly software 

development is increasing in today’s world. Hence, using deep learning is a good way to tackle 

the problem of comment generation. Recently, researchers are now moving with deep learning 

techniques since its able to generate better accuracy. Many models are being used like recurrent 

neural network model, seq2seq model, LSTM model. These models have given better accuracy 

then previous techniques. Hence, researches are taking more interest in doing comment 

generation with deep learning techniques. 

A comparative study was done to understand the current problems and results of various 

techniques of comment generation so that we can come up with better approach and with more 

features. We will see some of the recent techniques now to understand it. 
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Comment Generation via Code RNN:  

It is very hard to read long codes if comments are not present in the source document. To solve 

this, [4] Yuding came with code RNN approach which can perform better than other moles to 

generate comments more accurately. He used recurrent neural network technique of deep 

learning to overcome this problem. 

 

 

Figure 2.1[2] Code RNN 

 

In this, every subtree of a program is parsed into neural network and represent it as a vector. 

Now they break long data into meaningful words. And used the technique of reversive neural 

network to train it. So, this approach of recurrent neural network is used because we know our 

output needs to be in correct sequence. So, whenever we know output has to be in sequence, in 

that case building a model with recurrent neural network can be a good choice. 

Comment Generation via Deep Reinforcement Learning:  

Comment Generation using deep reinforcement learning is another way to generate the results. 

It basically uses the concept of [2] LSTM (long short-term memory) which basically is a type 

of recurrent neural network and it over comes one problem offrecurrent neural network that is 

recurrent neural network suffers from the long input problem so long short-term memory 

overcomes this. This work can be done with better accuracy in long short-term memory then 

recurrent neural network. 

 



11 
 

 

Figure 2.2[2] Workflow of model 

Basically, by using deep reinforcement learning what happens is that the system learns with 

the experience and by combining it with deep learning, it behaves totally like a brain behaves, 

it keeps on learning. But as soon as we connect both the concept, the problem arises as deep 

learning basic requirement is to have large amount of data so when we use deep reinforcement 

then we need large amount of data. If we don’t have the large amount of data then it will give 

less accuracy as model won’t be trained properly. 

Comment Generation via A Deep Code Comment Generation Tool with Hybrid Lexical and 

Syntactical Information:  

[1] Model consists of three stages:  

i) Data processing: The Java techniques acquired from GitHub are parsed into equal corpus. 

The objective remarks are removed from the relating Javadoc of the Java techniques. To get 

familiar with the primary data, the Java techniques are changed over to AST arrangements 

before took care of into the model. 

ii) Model training: We utilize Tensorflow, which is an open-source profound learning system, 

to construct our models. 

iii) Online testing: Both Information Retrieval (IR) metrics (e.g., precision, recall, F-score and 

F-mean) and Machine Translation (MT) metrics (e.g., BLEU and METEOR) are used to 

evaluate the model.” 
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Figure 2.3[4] Architecture of Deep Code 

 

As we see from the above architecture of this model, the input that is sample java methods are 

parse from which code sequence and AST sequence are being generated which is being fetched 

into their model and then comments are generated. Generated comments are then compared 

with the actual comments to see the accuracy of the model. Here both encoder decoder is used 

for the training the model as visible from the architecture easily. Attention is also used to focus 

on a particular thing to try to improve the accuracy of the generated comments. To summarise, 

we have pointed out the advantages and disadvantages of each approach. Each approach is 

applicable according to what the requirements of the user is. 

Table 2.3 Summarization of recent models 

Author Yuding Liang Yao Wan Boao Li 

Paper Comment 

Generation via Code 

RNN 

Comment 

Generation via Deep 

Reinforcement 

Learning 

Comment 

Generation via”A 

Deep Code 

Comment 

GenerationnTool 

with Hybrid Lexical 

andaSyntactical 

Information” 

Technique Recurrent Neural 

Network 

Reinforcement 

learning with deep 

learning 

Deep neural network 

combines lexical 

syntactical 

information 

Advantages Good for generating 

comments just for 

Solves two problems 

that is code 

Uses attention 

mechanismawhich 
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functions in the code 

script, take long 

inputs easily 

representation and 

exposure bias 

learns lexical and 

structural 

information, gives 

better accuracy. 

Disadvantages RNN requiresllarge 

amount of data set, 

processing canjbe 

slow because its 

recurrent. 

Uses LSTM which 

are prone to 

overfitting,astates 

overloadingpcan 

happen. 

Similar to seq2seq 

model where if long 

sequences are there 

then it can lose the 

initial context, 

pretrained data 

needs to be large. 

 

As we can see from the above table, each model has their own advantages and disadvantages. 

So, according to user requirements one can select what model will work for them. But still a 

generalise model is currently missing in the industry which can really help all the developers 

so that all the manual work of writing comments can be done automatically. 

Results 

After going through the above models, we found out that each model has their own advantages 

and disadvantages. So, we found out that rather than using recurrent neural network, one can 

use long short-term memory technique as it works better when long input is present. Below is 

the table which compares the models on ROGUE-2 values. Code-RNN models works better 

then Code-NN model and also from models which have used seq2seq models. This shows that 

Code-RNN is better when compared with simple neural network. 

As we can see from the above table that they used rogue-2 values to measure the efficiency of 

their technique so that they can compare it with other models. We can clearly see that their 

model is performing better if rogue-2 criteria is taken to measure the performance. Here, we 

can see that Deep Code is working better then seq2seq by using hybrid2Seq with Attention and 

DRL methods. 

Table 2.4 comparison between different models 

 
 

As seen, using deep reinforcement learning, they were able to achieve better performance 

compared to other models in their domain. They used BLEU score as their crtiteria to evaluate. 
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RQ1:”WhichaDLT (deep learning techniques) are utilizedafor automatic comment generation 

in source-code (ACG-SC)iin the source code? 

The objectiveeof this RQais to find the differentatechniques that are beingaused till now in 

ACG-SC. We wereesuccessfully able to find out the differenttDLTs that are being used from 

2016-2021. Afterranalysing the 200research papers which used deepllearning techniquesffrom 

2016-2021, we foundoout the following results: 

Seq2Seq::ThisiDLT is used forr35% of times, it’s basicallyya type of RNNnbut with an 

encoder-decoderrarchitecture where both areeLSTM [23].” 

  

 

Figure 2.4 [24]: Basic Seq2Seqq 

 

In this process, the encoder takes an input and combines it into hidden state and cell state 

vectors. The hidden state is calculated, while the output of the encoder is disregarded, and the 

focus is solely on the internal state of the encoder. 

 

Figure 2.5 [24]: Encoderr 

In this process, we observe a sequential passing of each input to the subsequent time step, with 

no consideration given to the output of each step. As previously mentioned, only the internal 

state denoted by 'h' and 'c' in Figure 2 holds significance. Now, let's examine the role of the 

decoder. In this context, the final state of the encoder is transferred to the initial state of the 

decoder. Consequently, the initial states of the decoder are established based on the concluding 
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states of the encoder. Subsequently, the decoder commences the output phase, and these 

outputs are also utilized for future outputs. 

 

Figure 2.6 [24]: Decoderr 

The seq2seq model functions at a fundamental level and has gained significant popularity for 

generating comments in source code. It is currently preferred over alternative methods. 

Approximately 25% of the time, the model employs LSTM (Long Short-Term Memory) as a 

technique. LSTM incorporates a memory unit that enables it to store and preserve information 

instead of merely transferring the output to the next part of the network. 

 

Figure 2.7 [22]: LSTM logicc 

LSTM (Long Short-Term Memory) networks possess the ability to learn long sequences due 

to their memory cell, also known as the cell state. This cell state ensures the maintenance of 

information over time, resembling a conveyor belt through which data flows. When dealing 

with lengthy comments or sequences, LSTM can be a preferable choice due to its capacity to 

handle them effectively. 

CNN (Convolutional Neural Network) is another deep learning technique used approximately 

15% of the time. One advantage of CNN is that it requires relatively less pre-processed data 

compared to other techniques. 
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Figure 2.8 [25]::CNN in code generationn 

In his research paper, Zeyuusun [25] employed CNN (Convolutional Neural Network) to 

generate code based on a well-defined structure. While pooling is a step commonly used in 

implementing CNN, attentive pooling allows the network to focus on specific patterns, 

enabling code generation if the structure is well-defined. However, a drawback arises when the 

input is not provided according to the expected structure, leading to incorrect results and 

rendering the model ineffective. In such cases, it suffers due to the input not aligning with the 

intended structure. 

RNN (Recurrent Neural Network) is another deep learning technique used approximately 15% 

of the time. This approach involves saving the output and feeding it back as input to the next 

part of the network. 

 

 

Figure 2.9 [15]: RNN 

With”the advancement of recurrent neural networks (RNN), other neural networks such as 

LSTM and Seq2Seq have emerged. Both LSTM and Seq2Seq are types of RNN that build upon 

the fundamental concept of RNN. The core idea behind RNN is to store the output of a layer 

and feed it back as input to obtain the layer's output. 

GNN (Graph Neural Network)”is a type of deep learning technique used approximately 5% of 

the time. It is employed when the objective is to predict outputs without prior knowledge of 

the ground truth. 
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Transformer, another type of deep learning technique, is also used around 5% of the time. It 

incorporates self-attention mechanisms to selectively assign importance to different parts of 

the input. 

Overall, LSTM, Seq2Seq, GNN, and Transformer are all variations of neural networks that 

have their own specific applications and utilization frequencies. 

 

 

Figure 2.10: DLTa 

RQ2:”What performance measures are used to evaluate the performance of DLT applied for 

ACG-SC?” 

Automated“machine translation evaluation metrics are utilized to assess the effectiveness of 

applying DLT for ACG-SC. These metrics include: 

1. BLEU Score: This metric quantifies the similarity between the system output and the 

reference translations by counting the occurrence of n-grams or word sequences. 

2. METEOR Score: METEOR addresses the limitations of BLEU by considering both 

precision and recall scores, merging them through several stages of matching words 

that were not previously matched. 

3. ROUGE Score: ROUGE is employed to evaluate automatically generated comments 

by comparing them with a set of reference translations. 

AutomatedamachinettranslationeevaluationnmetricaareffrequentlyyusediinaACG-SC because 

they provide a more comprehensive understanding of performance compared to other 

techniques. 

RQ3:: Which datasets have been used across DLTs for ACG-SC?” 
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The majority of datasets used in research are either sourced from open repositories or obtained 

from GitHub. However, a common challenge is that these datasets are often tailored to specific 

problems, making it difficult to compare and determine which model is superior to others. 

Without a standardized dataset, it is not currently possible to make conclusive judgments about 

the superiority of different techniques. In order to assess the performance of ACG-SC 

(presumably a specific technique), it is necessary to use a standardized dataset and conduct 

empirical research based on the methods mentioned in RQ1 (presumably a research question). 

Future work will involve selecting a standard dataset and conducting comprehensive research 

to evaluate the techniques. 

RQ4:aWhataarettheameritsaandedemerits offusing differenttDLTs foraACG-SC? 

The objective of this research questionawasttoiidentifyftheeadvantagesaandfdisadvantagesaof 

different Distributed Ledger Technologies (DLTs). By doing so, the intention was to create a 

reference point for future researchers, enabling them to address existing issues and enhance the 

models effectively. The aim is to establish a foundation of knowledge that can inform and guide 

future research, facilitating improvements in DLTs based on the identified merits and demerits. 

Deep learning, particularly in the form of recurrent neural networks (RNNs) and generative 

models like GPT, has been utilized for automatic comment generation in various applications. 

While there are advantages to using deep learning for this task, there are also several 

disadvantages to consider. Deep learning models can generate comments that are often fluent 

and grammatically correct. They can learn to mimic the patterns and structure of human-

generated comments, making the generated comments more coherent and natural-sounding. 

Deep learning models can capture and leverage contextual information from the input text to 

generate relevant comments. They can learn to infer meaning and respond appropriately based 

on the given context, leading to more contextually relevant comments. Deep learning models 

can benefit from large-scale training datasets. With abundant data, they can learn diverse 

language patterns and generate comments that cover a wide range of topics and styles. Deep 

learning models can automate the process of comment generation, saving time and effort 

compared to manual comment writing. They can generate comments at scale and provide 

immediate responses to user queries or prompts. Deep learning models often lack true creativity 

and originality. While they can generate coherent and contextually relevant comments, they 

often rely on patterns and phrases learned from the training data and may produce comments 

that are predictable or lack novelty. Deep learning models typically struggle with generating 

comments for inputs that are rare, out-of-domain, or significantly different from the training 
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data. They might produce irrelevant or nonsensical comments when faced with such inputs. 

Deep learning models learn from data that may contain biases, stereotypes, or offensive 

language. If not carefully designed and trained, the models can inadvertently generate 

comments that are inappropriate, offensive, or biased, potentially leading to negative 

consequences or harmful effects.  

 

Table 2.5: Meritsaand De-Merits offDLTs 

Technique Merits De-merits 

Seq2Seq Avoids the problem 

of vanishing gradient. 

It uses RNN or 

LSTM or GRU. 

Pre-trained data needs to be large. 

If long sequences are there then it can 

lose initial context.  

LSTM Provides many inputs 

such as input/output 

biases, learning rates. 

No need for fine 

updates. 

It is prone to overfitting. 

States overloading can happen. 

RNN It can take long 

inputs easily. 

Good for task which 

are time dependent. 

Processing can be slow as it is 

recurrent. 

It requires large amount of data set. 

CNN It has less 

dependency on pre-

processing. 

Easy and quick to 

implement. 

Can be slow because of maxpool 

operation. 

It also requires large data set. 

GNN Easily able to capture 

graph data structure. 

Easy to train even 

with smaller data set. 

Basic GNN are not able to correctly 

identify graph structure. 

Noise vulnerability in GNN exist. 

Transformer It helps in faster 

processing. 

All elements get 

equal attention. 

Hard to control the attention in 

transformer. 

It can repeat or skip words. 
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CHAPTER 3 

 

RESEARCH METHODOLOGY 

 

3.1 EXPERIMENTAL SETUP 

In this section, we will provide a concise overview of the hardware and software tools 

employed in our research. Additionally, we will delve into the performance measures, 

framework, and methodology utilized throughout the study.  

 

3.1.1 HARDWARE USED 

The proposed project is based on ML approaches, which revolve around classification; the only 

hardware instrument required for implementation is a computer system. The model is created 

and run on a laptop with the given minimum hardware requirements. 

•  System Type    Windows 10, Macintosh  

•  Processor    Core i3 processor  

•  RAM    4GB  

•  Hard disk    500GB  

 

3.1.2 SOFTWARE USED 

The Jupyter Notebook and Anaconda Navigator tools were used to implement each ML model. 

3.6 Python Python is a general-purpose, interpreted object-oriented programming language. It 

is a language that is open-source and free grown in popularity as a result of its condensed, 

straightforward, and extensive library support. 

 

3.2   SAMPLE DATASET 

Generating comments for Java code is a challenging task due to the structural and semantic 

complexities of the language. We explored the following options to gather a Java code dataset 

for comment generation: 
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1. GitHub: You can crawl Java repositories on GitHub and extract Java code along with 

associated comments. This process may require significant effort, but it can provide you 

with a diverse dataset for comment generation. 

2. JavaDoc: Java code often includes comments in the form of JavaDoc, which provides 

documentation for classes, methods, and fields. You can collect JavaDoc comments from 

popular Java libraries or APIs to create a specialized dataset for comment generation. 

3. StackaOverflow:aStackkOverflowiisaappopularrplatformawhereedevelopersaaskaand 

answerfquestionsrrelatedttopprogramming.yYouacanasearchfforaJavaccodeasnippets 

onnStackaOverflowaand extract the associated comments or discussions as a potential 

source for generating comments. 

4. Research Datasets: Some academic research projects may have released datasets that 

include Java code and associated comments. You can explore research publications and 

repositories in the field of natural language processing (NLP) and code generation to find 

such datasets. 

 

3.3 Technique Used 

We used torch library to implement our model. It is open-source library used for neural 

networks. In the above code, device is set to GPU if graphical processing unit is available else 

CPU will be used for tensor operations. This is the advantage of using PyTorch as its operations 

can be computed via CPU as well as from GPU. Optim module is imported from the 

torch.optim, it helps in gaining access to various optimization algorithms like stochastic 

gradient descent, Adam, RMSprop and more. 
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Fig 3.1: Encoder Class 

This code defines the Encoder class, which is a module in PyTorch used for encoding input 

sequences. The Encodercclassiissdefinedaasaaasubclassoofnnn.aModule,awhichiistthetbase 

classfforrallaneurallnetworkkmodulesainaPyTorch. 

• Intthe __init__ method, the constructor of the class, the input parameters areiinput_dim, 

hidden_dim,aembbed_dim, andcnum_layers. These parameters represent the input 

dimension, hidden dimension, embedding dimension, and number of GRU layers for the 

encoder, respectively. 

• The super(Encoder, self).__init__() line ensures that the initialization of the Encoder class 

inherits the properties and methods of the nn.Module class. 

• The instance variables (self.input_dim, self.embbed_dim, self.hidden_dim, 

self.num_layers) store the values of the input dimensions, embedding dimension, 

hiddenadimension,aandanumberoofflayersrforttheeencoder. 

• The self.embedding variable initializes an embedding layer using nn.Embedding, which is 

used to convert input indices into dense vectors of fixed size (embbed_dim). 

• The self.gru variable initializes a GRU (Gated Recurrent Unit) layer using nn.GRU. It takes 

the embbed_dim as the input size, hidden_dim as the hidden size, and num_layers to 

specify the number of GRU layers. 

• The forward method defines the forward pass of the encoder. It takes an input tensor src, 

which represents the input sequence. 
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• The input tensor src is first passed through the embedding layer (self.embedding(src)) to 

convert it into dense embeddings. The view(1, 1, -1) reshapes the tensor to have dimensions 

(1, 1, -1) where the first 1 indicates the batch size (here, processing one sequence at a time) 

and -1 infers the remaining dimension based on the size of the input tensor. 

• The reshaped tensor is then passed through the GRU layer (self.gru(embedded)). The GRU 

layer processes the input sequence and returns two outputs: outputs, which contains the 

output features from all time steps, and hidden, which represents the final hidden state of 

the GRU. 

• Finally, the method returns outputs and hidden as the encoder's output. 

Overall, this code sets up the Encoder class with an embedding layer and a GRU layer. It 

defines the forward pass to process input sequences and produce corresponding output features 

and hidden states. The specific dimensions and parameters of the encoder are specified during 

initialization. 

 

Fig 3.2 Decoder Class 

This code defines the Decoder class, which is another module in PyTorch used for decoding 

the hidden representation produced by the Encoder class. 

• The Decoder class is defined as a subclass of nn.Module, similar to the Encoder class. 

• In thee__init__ method, the constructor of the class, the input parameters are 

output_dim,ahidden_dim, embbed_dim, and num_layers. These parameters represent the 

output dimension, hiddenedimension, embeddinggdimension, and number of GRU 

layersffor the decoder, respectively. 



24 
 

• The instance variables (self.embbed_dim, self.hidden_dim, self.output_dim, 

self.num_layers) store the values of the embedding dimension, hidden dimension, output 

dimension, andanumberrofllayersfforttheedecoder. 

• The self.embedding variable initializes an embedding layer using nn.Embedding, which is 

used to convert output indices into dense vectors of fixed size (embbed_dim). 

• The self.gru variable initializes a GRU layer using nn.GRU. It takes the embbed_dim as 

the input size, hidden_dim as the hidden size, and num_layers to specify the number of 

GRU layers. 

• The self.out variable initializes a linear layer (nn.Linear) that maps the hidden dimension 

to the output dimension. 

• The self.softmax variable initializes a log softmax activation function (nn.LogSoftmax) 

which applies logarithm and softmax operations to normalize the output probabilities along 

the specified dimension (dim=1). 

• Thefforwardamethodfdefinestthefforwardppassfofttheedecoder. Itttakes an inputtensor 

inputaandtthe previous hidden state hidden. 

• The input tensor input is reshaped using input.view(1, -1) to have dimensions (1, 

batch_size). This allows processing a single time step for a batch of sequences 

simultaneously. 

• The reshaped tensor is passed through the embedding layer (self.embedding(input)) and 

then through the ReLU activation function (F.relu) to obtain the embedded representation. 

• The embedded tensor is then passed through the GRU layer (self.gru(embedded, hidden)), 

along with the previous hidden state hidden,atoggeneratettheeoutputffeatures 

andttheeupdatedhhiddennstate. 

• Theeoutputttensor is passed through the linear layer (self.out(output[0])) to map it to the 

output dimension. 

• The resulting tensor is passed through the log softmax activation function (self.softmax) 

tooobtaintthepprediction probabilities. 

• Finally,atheemethod returnstthepprediction probabilities and the updated hidden state. 

Overall, this code sets up the Decoder class withaaneembeddingllayer, aaGRUllayer, allinear 

layer, andaa loggsoftmax activationffunction. It defines the forward pass to process input 

tensors, generate output probabilities, and update the hidden state. The specific dimensions and 

parameters of the decoder are specified during initialization. 
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Fig 3.3: Training Model 

This code defines a function trainModel that trains a given model using a set of source-target 

pairs. 

• The function trainModel takes the model to be trained, source and target as the language 

objects, pairs as a list of training pairs, and num_iteration to specify theenumberrof 

trainingiiterations. 

• The model is set to training mode using model.train(). 

• An optimizer (optim.Rprop) is instantiated with the model parameters and a learning rate 

of 0.01. 

• A criterion (nn.NLLLoss) is instantiated for calculating the loss during training. 

• A variable total_loss_iterations is initialized to keep track of the accumulated loss during 

iterations. 

• training_pairs is a list comprehension that creates pairs of input and target tensors by calling 

tensorsFromPair function with random choices from pairs. This creates num_iteration 

training pairs. 

• A loop iterates over the range from 1 to num_iteration+1. 

• In each iteration, a training pair is retrieved from training_pairs based on the current 

iteration. 
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• The input tensor and target tensor are assigned from the training pair. 

• The clacModel function is called with the model,ainput tensor, targetttensor, optimizer, and 

criterion to calculate theeloss. 

• The loss is added to total_loss_iterations for tracking the cumulative loss. 

• If the current iteration is divisible by 2, an average loss is calculated by dividing 

total_loss_iterations by 100 (assuming 100 iterations per average). The 

total_loss_iterations is then reset to 0. 

• The iteration number and average loss are printed. 

• Afterrtrainingiiterationsaareecompleted,tthettrainedamodel'sastateedictionaryyissaved 

toaaffile named 'generatemodel.pt' usinggtorch.save. 

• Finally, theetrained model isireturned. 
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CHAPTER 4 

 

RESULTS  

 

Comment generation for codeeisaaachallengingttaskkdueetottheccomplex relationship 

between code and natural language. Generating meaningful and accurate comments that 

describe the functionality, purpose, and design choices of code requires an understanding of 

both the code structure and the desired comment style. Sequence-to-Sequence Models: These 

models treat comment generation as a language generation task, where the input is the code 

and the output is the corresponding comment. Sequence-to-sequence models, such as recurrent 

neural networks (RNNs). 

It's worth noting that comment generation in Java, or any other programming language, is an 

active research area,aand thepperformanceeoffmodels heavilyydependsoonttheequalityyand 

diversity oftthe dataset used for training. Evaluating the performance of comment generation 

models requires metrics such as comment relevance, informativeness, and readability, which 

are subjective and can vary depending on the specific task and application. 

BLEU score is typically calculated by comparing the n-grams (contiguous sequences of words) 

in the generated comment with those in the reference comment(s). It measures the overlap of 

these n-grams and assigns a score between 0 and 1, where a higher score indicates better 

similarity. However, BLEU does not capture semantic similarity or assess the quality of the 

generated comments in terms of informativeness or relevance. 

For code comment generation, there might not be a direct one-to-one correspondence between 

generated comments and reference comments. The same code snippet can have multiple valid 

and diverse comments, making it challenging to define a single reference comment. 

Additionally, code comment generation often involves understanding the code's intent, 

functionality, and design choices, which may not be adequately captured by the BLEU metric. 

While BLEU can still provide some indication of comment generation quality, it is advisable 

to use additional evaluation metrics that focus on the quality and relevance of the generated 
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comments, such as human evaluation or task-specific metrics tailored to the application 

domain. 

 
Fig 4.1 BLEU for comments         Fig 4.2 BLEU for code 
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CHAPTER 5 

 

LIMITATIONS  

 

After conducting a comparative study on comment generation, we discovered that each model 

showed improvements, but several assumptions were made during their development: 

• Certain approaches assumed that comments would be generated specifically for functions 

and not for the entire code. 

• Some methods successfully generated comments for variable declarations but struggled 

with generating comments for the entire code. 

• Several models were capable of generating comments for the entire script, but their 

accuracy was notably low. 

• Language limitations posed challenges, as certain approaches performed well for Java but 

not for other programming languages. 

• The categorization of comments requires a systematic step-by-step process. 

Considering these limitations, it becomes evident that there is still ample room for 

improvement in comment generation. Exploring alternatives such as modifying activation 

functions or combining deep learning with regular expressions could be considered. However, 

the existing limitations in current models raise concerns, particularly as scripts continue to 

grow in length. Thus, there is a need to develop a fool proof method for generating comments 

that can cover all aspects of a script and work effectively across multiple programming 

languages. As of now, a generalized model is still missing in this area of research. 
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CHAPTER 6 

 

CONCLUSION AND FUTURE SCOPE 

 

Comment generation has emerged as an area of great interest, with numerous researchers 

striving to develop improved approaches. As the IT industry undergoes digital transformation 

and advancements, the need for comprehensive code documentation becomes increasingly 

crucial. A model that provides high accuracy in generating comments can greatly facilitate 

code comprehension, enabling new developers to quickly understand and work on codebases 

by relying on theacomments. Moreover, automatinggthe process of writinggcomments can 

significantly reduce developerrtime and effort. In conclusion, the Seq2Seq model has 

demonstrated superior performance in automatically generating comments within source code. 

LSTMsaareaattypeeofrrecurrentaneurallnetworkk(RNN)aspecifically designedttoohandle long 

input sequences, which contributes to the Seq2Seq model's effectiveness in generating 

comments, particularly when dealing with lengthy comment text. Thus far, Seq2Seq models 

have shown prominence in the field of deep learning for comment generation. 

To draw more definitive conclusions and gain deeper insights into the effectiveness of different 

techniques, further exploration is required, particularly for generating class-level comments 

and incorporating inline and outline comments. By expanding the scope of comment generation 

beyond method-level comments, a more comprehensive comparison of techniques can be 

conducted. With additional data and results, we can determine the state-of-the-arttmodelffor 

commentageneration. 

To enhance code readability, developers can incorporate both inline and outline comments. By 

employing regular expressions, one can generate comments for functions within the code, 

assuming the coder follows standard naming conventions. Existing research in this field has 

limitations, with some focusing solely on functions or variable declarations. It would be 

valuable to overcome these limitations and develop a comprehensive approach. Experimenting 

with different activation functions can potentially enhance accuracy, improving overall 

efficiency. Presently, there is no generalized model capable of generating comments for all 
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programming languages, indicating a need for further research. Furthermore, none of the 

existing models generate comments for every aspect of a code snippet. 

We have categorized comment generation as follows: 

1. Comment Generation at the Method Level: While most research has focused on this level, 

it is recommended to employ Deep Learning Techniques (DLT) in empirical studies, 

utilizing specific datasets to gain insights into which DLT methods perform betterrthan 

others. 

2. Comment Generation at the ClasssLevel: ImplementinggDLT in sourceecode for 

generating comments at the class level remains unexplored. Contributing in this area can 

be a valuable contribution to the field. 

3. Comment Generation withinnMethods: Generatinggcomments for eachhline of code poses 

challenges. However, if accomplished, it can greatly benefit the IT industry by making code 

comprehension more efficient, potentially saving developers up to 30% of their time. 

Despite advancements, the accuracy and results of comment generation models are still 

suboptimal. Achieving high accuracy in any of the aforementioned levels can pave the way for 

other researchers to explore DLT-based approaches in the same context. 
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