
WEB SCRAPING ORWEB CRAWLING:

A COMPILER - BASED APPROACH

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF DEGREE

OF

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

Submitted by:

FAHAD ABDULLAH

2K21/SWE/09

Under the supervision of

MS. SHWETA MEENA

DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road,

Delhi-110042

MAY, 2023

ii

ACKNOWLEDGMENT

The successful completion of this project required the assistance and input of a lot of

people and the organization. I am grateful to all the people who helped me in creating

the final result of this project report. I would like to express my sincere thankfulness to

Ms. Shweta Meena for providing me with the opportunity to take up this project under

their guidance. Without their sincere guidance and knowledge, this project would not at

all have been possible. Their never-ending presence and motivation made me believe

that the process of learning is much more important than the final outcome. I am also

extremely thankful to the panel faculty during all the progress reports and intermediate

evaluations for their directions, constant presence and for encouraging me to complete

this project. They guided me through the whole process with new ideas, provided

necessary information and pushed me to complete this project. I also thank all my

fellow students for helping me in times when I needed it the most. It is because of their

constant support that made me fulfill my academic responsibilities. Last, but not least I

would like to thank my family for being there for me at times when no one is actually

around. They have always tried to make it easier for me. There have also been

numerous other people whom I cannot mention that have been a part of my life, directly

or indirectly. I would like to thank them as well.

iii

ABSTRACT

Data stored on the internet is tremendous and ever-increasing. Billions of users from

around the world use the internet to search through a staggeringly huge number of web

pages present on millions of websites over the web. The content over these web pages is

both structured and unstructured making its analysis difficult as well as

time-consuming. Web crawlers have emerged as a systematic and valuable tool for

extracting data from these websites which helps businesses, researchers, and

organizations to gather and understand huge amounts of data for various beneficial

purposes. Because of the immense size of data on the web and the limitations in terms

of bandwidth, storage, and time, everything that is present on the web cannot be

analyzed due to which various approaches of web crawling and scraping became

popular. Web crawlers are also aggressively used by search engines to index web pages

and by businesses to increase their online presence. The thesis explores the field of web

crawling and web scraping and mainly focuses on the use of the compiler-based

approach of web crawling where a Python package like ‘PLY’ is proposed. The thesis

further explores the advantages of this approach over the traditional web crawling

approaches. Further, the widely used tools and strategies used in the field of web

crawling are discussed. The thesis puts forward a clear overview of the areas where PLY

excels over the traditional approaches. Furthermore, it also focuses on the applications

in the real world where web crawling and web scraping is widely popular and in the end

asserts the legal considerations related to this field.

iv

CONTENTS

Candidate’s Declaration i

Certificate ii

Acknowledgment iii

Abstract iv

Contents v

List of Figures vii

List of Tables viii

1 Chapter 1: Introduction 1

2 Chapter 2: Related Work 3

3 Chapter 3: Proposed Work 6

3.1 Lex usage demonstration 6

3.2 Lex/Yacc usage demonstration 8

4 Chapter 4:Working and Analysis 13

4.1Working 13

4.2 Analysis 15

5 Chapter 5: General Tools and Strategies 17

5.1 Tools 17

5.1.1 Beautiful Soup 17

5.1.2 Regular Expression 17

5.1.3 LXML 18

5.2 Strategies 18

5.2.1 Breadth-First Search 19

5.2.2 Depth First Search 19

5.2.3 Page Rank Algorithm 19

v

5.2.4 Largest Sites Crawling 19

5.2.5 Importance calculation for the web page 19

5.2.6 Focussed Crawling Method 20

6 Chapter 6: Applications and Legality 21

6.1 Applications 21

6.2 Legality 22

7 Chapter 7: Results 24

8 Chapter 8: Conclusion 27

References 28

Appendices 31

Plagiarism Report 31

Paper Acceptance Mail 32

Scopus Index Proof 33

vi

List of Figures

Figure No. Title Page No.

Fig 1.1 General Web Scraping Flowchart 1

Fig. 3.1 Output to extract name from html web content using ply 11

Fig. 3.2 Parse tree to evaluate movie name from html content 12

Fig. 4.1 Working of PLY package flowchart 14

Fig/ 6.1 Legality and Ethics Framework for Web Scraping 23

vii

List of Tables

Table No. Title Page No.

Table 7.1 Comparison between the traditional and proposed approach 25

viii

CHAPTER 1

INTRODUCTION

In the current digital era, web scraping and crawling have become indispensable

strategies and in order for researchers, corporations, and people to fully utilize the

potential of the internet, there are both possibilities and challenges presented by the

massive amount of information that is already available. For several reasons, including

market research, data analysis, sentiment analysis, and content aggregation, it is

essential to extract data from websites. The process of gathering and organizing web

data is complicated and tricky. Fig 1.1 shows a general flowchart explaining how data is

fetched and extracted in general from the web using the web scraping techniques.

Fig. 1.1 General Web Scraping Flowchart [26]

Conventional methods of online scraping frequently rely on tools and libraries, like

Beautiful Soup, that are primarily intended for parsing HTML or XML data. Despite

their widespread usage and shown effectiveness in several situations, these technologies

might not always be the most effective or flexible approach to collect data from the

web. This is where the Python Lex-Yacc (PLY) package comes into play.

PLY provides a robust framework for building lexers and parsers, allowing

programmers to define particular parsing rules and manage different document formats,

1

including non-standard markup languages or domain-specific languages. PLY provides

fine-grained control over the parsing process, making it suited for a variety of scraping

applications in contrast to Beautiful Soup, which depends on the predetermined

structure and tags of HTML or XML documents.

In this thesis, we investigate the benefits of the PLY method over conventional web

scraping methods. We explore the nuances of online scraping and crawling whilst

discussing the challenges faced in extracting relevant information from the vast and

diverse web ecosystem. Then, we present PLY as a versatile and effective tool that can

get around some of the drawbacks of conventional methods.

The goal of the thesis is to emphasize the essential benefits and traits of PLY,

demonstrating its capacity to manage complex web page structures, adapt to

non-standard formats, and offer precise control over the scraping procedure.

Further, we also discuss the applications of web scraping in real world scenarios and

discuss how it can be used for potential benefits and how businesses, researchers and

developers can make use of this technology to bring value to the data-driven

decision-making processes and research endeavors.

The thesis also discusses how web scraping is applied in real-world contexts, its

potential advantages, and how companies, researchers, and developers can benefit from

this technology to advance data-driven decision-making and research projects. The

legality of online scraping is finally explored, along with the necessity of abiding by the

rules while extracting data from the internet, terms of service, and respecting the rights

of website owners. Data privacy, intellectual property rights, and the effects of internet

scraping on performance are all discussed.

The purpose of this thesis is to thoroughly explain the benefits of utilizing PLY for web

scraping and crawling to researchers, developers, and businesses. By embracing PLY's

flexibility and power, new opportunities for gathering crucial data from the huge World

Wide Web may be uncovered.

2

CHAPTER 2

RELATEDWORK

Web crawling in today’s world is most intensely used by search engines to index web

pages and give out the search query results in the most relevant way possible. Google,

the most widely used search engine in the world, claims to have indexed billions of

online pages but largely keeps its indexing process a secret.. Search engines like

Google, so big and advanced, also improves its crawling strategy day by day to have

better search results and improved user satisfaction. These results are to be improved to

avoid a major problem which search engines face these days, “search engine

spamming” which is the exploitation of search engines by website owners to put their

websites in the upper section of search results.

Research in the field improved the way web crawling is done and it is still done to

refine the process even further. Researchers initially proposed the concepts of web

mining on a general architecture [1] and that formed the basis of web crawling. The

taxonomy proposed is still used to understand web crawling even today.

Web crawling mainly deals with huge amounts of data from web pages which is why

big data also forms a significant basis in dealing with web crawling strategies. Big data

analytics helps in obtaining quality results and the chances of its potential use in

decision making also increases. Thus researchers, academicians and industries, also

keep an eye on the technological developments in the big data domain to further

improve the process of web crawling. The study [24] explains how web scraping is done

in the era of big data and its usefulness for companies and governments.

Berendt's breakthrough proposal [2] describes semantic web as a major idea to add

semantic annotations to web documents so that the information is accessed in a

structured manner and managed in an automatic way. This not only helped in accessing

the web information but also set forth methods as to how to make use of that

information and manage it in a semi-automatic way. This brought forth the idea of web

crawling and helped in identifying this area.

3

The use of deep learning methodologies to extract useful data from enormous amounts

of unstructured data on the internet, helped in connecting the dots between big data and

web crawling [3]. The idea of structural crawling of the internet as the data present on

the web is enormous and unordered crawling may lead to confusion and no quality

output [4].

The existing study conducted by researchers [5] helped in classifying web mining

methodologies which in turn assisted in identifying the field of web crawling. The most

important factor which put forth the technology of web crawling in the way it is

perceived today is the development of search strategies for search engines. Search

engines need to index the web pages on the web to give out the most useful and relevant

outputs for the input search query or keyword. In the existing study [6] authors assisted

in locating information of common interest from a large amount of available content

which helped businesses bring out like-minded communities together and increase their

markets, but somehow failed because information integration remained an unsatisfied

property. A method is proposed for indexing the database population of web documents

in the existing experiments [7]. These databases aid search engines in answering queries

given by the user. Due to issues with information integration and the lack of a means to

update and merge newly crawled links with existing ones, this technique also

experienced a setback.

Generic crawlers as their name suggests crawled on different topics of various domains

as mentioned in [8]. On the other hand, another study proposed focused crawlers for

crawling on specific topics with knowledge beforehand[9]. Generic crawlers are

however more useful in real-life applications.

Pre-identifying the query beforehand and then crawling it accordingly was another

useful approach [10] which helped in obtaining specific results related to that query. The

study done [11] analyzed how data repositories are to be built by web crawlers to be

used for page indexing and better search outputs. A few other efficient approaches are

proposed in [12][13] and [14] to crawl the world wide web.

4

APIs in recent years also gained importance to share application data and communicate

easily amongst, but the problem with them is that not all of them are free to use and they

provide only limited data. Thus dependency on APIs cannot guarantee quality data from

the internet and this requires the use of web crawling to make sure that the data obtained

matches business standards and needs [15][16].

Thus, the research in this area, initially began with identifying the significance of web

crawling and furthered towards recognizing the importance of big data in this field. The

methods utilized in this sector have also been enhanced by technological advancements

in deep learning techniques. The results obtained got additional improvements by other

techniques proposed such as structured crawling, generic crawling as well as focused

crawling. It was also found that APIs cannot be relied upon to get quality results from

web crawling.

5

CHAPTER 3

PROPOSEDWORK

As the internet's size began to increase and the number of websites on it increased

significantly, web crawling began to become a technology of immense importance. The

method proposed in this thesis took inspiration from the compilers. The technique was

thought upon while designing a compiler based calculator using Python [27]. The

method was to read the lexems of the language token by token, try to identify them

using regular expressions and then attempt to understand their context and take useful

information out of it using grammars. Similar to compilers which read the high level

language syntax and then try to understand the tokens using a grammar, the method

discussed here tries to explain how web pages can also be parsed the similar way and

read in a thoughtful manner. The grammar is designed such that the contents of the web

page are understood accordingly.

To understand the basis of the proposed work, the explanation below shows how a

compiler is made using python language to calculate basic math expressions. The

following points shows how tokens are defined using python and how they are

interpreted using regular expressions. The identification is done using a python package

called ‘lex’. Later, these tokens are shown to be parsed using the yacc package.

3.1. Only ‘lex’ is used to demonstrate how tokens are identified

The program which is used to identify the tokens is called a Lexer and the module

below shows how it is done. Step 1 is to import the lexer module from the PLY package.

Then the tokens which are going to be present in the input string are identified and

named. Next, the tokens are defined using regular expressions. For simple tokens like

‘+’, ‘-’, ‘*’, ‘/’, ‘%’, ‘(‘ and ‘)’ we interpret them simply by defining the symbol

associated with them. For complex tokens like ‘INT’, ‘FLOAT’ we define them

properly by identifying the regex(short for Regular Expression) associated with them.

Like for defining ‘NAME’, we must identify that the variable name must contain

alphabets, numbers and underscores but it must not start with a digit. We also define that

6

the empty spaces must be ignored and also that for "Illegal Characters” like ‘@’ we

must skip that token and go for the next token. Finally we create the lexer and then get

the input and supply it to the lexer. We then print all the tokens of the lexer one by one

using a loop.

The tokens in the lexer parser system are defined as:

‘’

tokens=['ADD','SUBTRACT']

‘’

And the regular expressions for these tokens are declared as :

‘’

t_ADD= r'\+'

t_SUBTRACT = r'\-'

t_ignore = r' '

‘’

All other math expressions can be shown the same way. Ignore is used to skip characters

which are not required. Further, INT, NAME, FLOAT and error expressions are defined

and when the input string is given to this lexer, the output is the recognition of the lex

tokens defined.

For input:

‘’

data = 'a_123@ = 1 + (2 - 3)'

‘’

The output is shown as:

‘’

LexToken(NAME,'a_123',1,0)

Illegal Characters

7

LexToken(EQUALS,'=',1,7)

LexToken(INT,1,1,9)

LexToken(ADD,'+',1,11)

LexToken(LPAREN,'(',1,13)

LexToken(INT,2,1,14)

LexToken(SUBTRACT,'-',1,16)

LexToken(INT,3,1,18)

LexToken(RPAREN,')',1,19

‘’

In this way. the tokens of the input strings are identified.

3.2. Lex and Yacc both are used to read the input string token by token and parse

the string only PLUS (addition) is shown

Further, to parse an expression, the parser is defined along with lexer. The grammar for

the parser is used to evaluate expressions accordingly.

The function for calculating the entire input string is evaluated as:

‘’

def p_calc(p):

''' calc : expression |

var_assign |

empty '''

print(run(p[1]))

‘’

Other functions are also defined along with their grammars so that the evaluation is

done correctly.

To evaluate an expression, grammars are used as:

‘’

''' expression : expression PLUS expression '''

‘’’ var_assign : NAME EQUALS expression ‘’’

‘’’ expression : INT ‘’’

8

‘’’ expression : NAME ‘’’

‘’

The above grammars when used correctly while parsing evaluate a math expression

correctly and assign the value of the expression to the variable. The output to the string:

‘’

“ x = 2 + 3 “

‘’

is obtained as:

‘’

>> x = 2 + 3

“ , x , (‘ + ‘ , 2 , 3)

>> x

5

‘’

The program not only reads the input token but also evaluates the expression.

Now that the premise is set, the PLY package can be shown to work on web pages

where data can be scraped using this package with the help of grammars based on the

context of the page.

The actual working of the scraper can be shown as:

● First, the ‘urllib’ package helps in obtaining the contents of the webpage. The

contents are first refined and decoded to fit a specific requirement.

‘’ import urllib.request ‘’

9

● Other packages like ‘re’ and PLY are then used to understand and extract the

contents of the webpage and then take out various details of the movie entered

by the user.

‘’ import re

import ply.lex as lex

import ply.yacc as yacc ‘’

● Urllib package crawls to the url given as input.

‘’ response = urllib.request.urlopen(url)

webContent = response.read()

webContent = webContent.decode(‘utf-8’) ‘’

● Re package helps in identifying regular expressions to help lexer(lex) identify

tokens appropriately. Like the “MNAME” token is used to identify the movie

name.

‘’ tokens = [“MNAME”]

<h1\sslot="title"\sclass="scoreboard__title"\sdat

a-qa="score-panel-movie-title">(.*?)</h1> ‘’

● Parser (yacc) generates the parse tree internally using grammar rules and

extracts the information required by the user related to a particular movie.

The grammar used in the parser is shown as:

‘’

‘’’ moviename : MNAME |

empty ‘’’

‘’

● In this way, with suitable grammar a web page can be extracted using only the

lexer and parser approach.

10

Extracting name from a large unstructured HTML webpage:

● Web Content is scraped and regex is defined precisely to extract particularly the

movie name from a large unstructured HTML page.

● Parser then gives suitable grammar to save the movie name in log_movie

dictionary.

This is just a short example of extracting only the name from a set of other values which

could be extracted using the same method and with appropriate grammar rules for each

value extracted.

The output of the above code is shown as:

Fig. 3.1 Output to extract movie name from html web content using ply

As seen clearly, the Lex Tokens for movie_name are accurately fetched and identified

and the parsing of movie name is done. It shows the Movie Name correctly as shown in

the above output.

The grammar to evaluate movie name from the html web content is shown as :

start -> moviename

moviename -> MNAME | empty

empty ->

11

The parse tree is shown as:

Fig. 3.2 Parse tree to evaluate movie name from html content

The parse tree evaluates the html web content based on the grammar shown above. The

exact grammar is used in the code for the above extraction.

The last block in the above diagram shows the regular expression based on which the

movie name is identified.

Other details about the movie name can also be extracted and the complexity of the

grammar as well as parse tree is going to increase accordingly.

12

CHAPTER 4

WORKING AND ANALYSIS

The PLY methodology is an effective method for parsing and information extraction

from structured text, such as web pages. Lexical analysis and parsing are the two steps

involved. The input text is divided into a series of tokens, which stand in for meaningful

units like words, numerals, and symbols throughout the lexical analysis step. After

analyzing the token sequence using a set of grammatical rules, the parsing stage creates

a hierarchical structure that captures the connections and semantics of the input. The

PLY technique provides efficient and reliable extraction of necessary information from

complicated web pages by setting the proper lexer and parser rules.

4.1. WORKING

The exact working of the above approach to extract the useful details from the given

html contents of a webpage can be explained in the following steps:

I. Importing libraries is the first important and necessary step and modules like

ply.lex and ply.yacc are imported to be used for lexical analysis and parsing

respectively. The ‘urllib’ library is used to fetch the HTML content of the

webpage. Package like ‘re’ is used to match the given string with a given regular

expression which is used to recognise the information given in the webpage.

II. Next, the URL is specified and the HTML content is fetched from the given

URL using the request functionality of the ‘urllib’ package.

III. Now that the content is available and decoded to fit the requirements of lexical

and parsing stages, the next step is to specify the lexer and parser rules.

13

Fig 4.1 Working of PLY package flowchart

IV. Lexer Tokens are defined which are going to be used in the lexical analysis

phase. Then, the lexer rules are defined to fetch different types of information,

along with the appropriate lexer rules for newline, error and ignore cases.

V. Now, parser rules are defined to extract the exact information. Most importantly,

correct and well-thought grammar rules are also important to be defined with the

parser rules so that the correct parser tree is built internally without any

ambiguity.

VI. After all the necessary steps are done for the lexer and parser, both can now be

built using the lex.lex() and yacc.yacc() function. This builds the lexer and the

parser instance with the defined token rules, parser rules and error handling

functions.

VII. Now that everything is set up, the web content extracted above can be given to

the parser which will internally create the LALR tables and then the parse tree to

give out all the requested information from a given webpage.

The above steps show the working of the PLY based approach to extract the information

from a given webpage.

The code shown above only shows the extracted movie name but the actual working

version has a series of options which are given to the user to select from. The

14

information extracted is obtained using a series of well defined and well-thought

grammar rules which are defined in the parser.

4.2. ANALYSIS

Although the PLY or the compiler-based method of online scraping is undoubtedly

different from the conventional methods; in some cases it is more effective and useful.

The PLY technique, or compiler-based approach, offers customized parsing rules that

handle the parsing of complex web pages more adeptly than Beautiful Soup. Besides

that, employing beautiful soup can be difficult when dealing with complex data

structures that have intricate and nested configuration. PLY, on the other hand, offers

personalized parsing rules that are effective at handling complex data structures. For

instance, PLY makes it simple to extract specific data from each table cell on a website

with nested tables by allowing users to build parsers that can swiftly navigate through

the layered structure and find the required data efficiently.

PLY has additional applications for non-standard markup languages. On the one hand,

because HTML and XML documents are by definition markups, the beautiful soup and

the scrappy techniques are largely focused on parsing such documents. However, those

approaches have difficulty parsing websites that utilize non-standard markup languages

or domain-specific languages. Due to its flexibility to create customized parsers, PLY

thrives in such situations and makes it possible to effectively extract information from

non-standard websites.

Conventional methods heavily rely on tags and attributes making them ideal only for

those scenarios where the content is available in that form. Situations where target data

is unstructured or semi-structured are handled using PLY with ease.

PLY proves to be even more effective when integrated with external tools like Selenium

or PhantomJS which allows the scraping of dynamically generated or JavaScript-based

content.

15

Another major advantage coming to PLY is that there are packages similar to PLY in

other programming languages which offer similar functionality to build custom lexers

and parsers. While PLY is specific to python, tools like ANTLR(Another Tool for

Language Recognition) which supports languages like Java, C# and JavaScript allows

the user to define grammar and generate lexers and parsers, Jison(JavaScript-based

parsing toolkit uses Bison and Yacc), JavaCC or Java Compiler Compiler (another

popular parsing tool for Java applications) and Lex and Yacc(classical tools for parsing

in c and C++) are available which can help in building the parsers similar to PLY and

thus can help in scraping the web using programming languages other than Python. This

proves the language independence of this compiler-based solution allowing the

implementation of this solution across different programming languages. This allows

specific advantage of this approach making it not only portable but also increases its

consistency and ecosystem integration power.

As a result, the solution for online scraping works extremely well for unstructured or

semi-structured data, allowing for the creation of unique parsing rules, provides

fine-grained control over complex parsing scenarios, and proves to be language

independent and portability. This approach accommodates dynamically created data if

correctly integrated with external tools, making it very effective and practical in some

situations when existing traditional methods are ineffective.

16

CHAPTER 5

GENERAL TOOLS AND STRATEGIES

This section explores several methods for obtaining data from web sites. These include

using regular expressions to look for certain patterns in text, using parsing libraries to

traverse and extract data from HTML or XML documents, and using sophisticated

parsing techniques to extract data accurately and efficiently. It also examines several

web scraping techniques and algorithms. By understanding and employing these tools

and strategies, developers can effectively and efficiently extract the desired data from

websites

5.1. TOOLS

Web Crawling can be done by using methods that read the web document by

downloading it or using some packages which already contain all the methods used for

web crawling. It can be done on HTML and XML web pages. The tools used in web

crawling are explained below-

5.1.1 Beautiful Soup: It is a package in python language which is used to extract

useful data in a structured form from an unstructured web page. It uses HTML or XML

parsers to parse web pages and convert them into complex python object trees. Easy in

its use, it can be used to navigate and examine a parse tree in a few steps. It also

automatically converts the web page into compatible encodings to parse them faster and

thus there is no need to convert the document encoding by the user.

5.1.2. Regular Expression: Python provides a package called ‘re’ to work with

regular expressions to identify patterns in the webpage and match them according to our

requirements. These regular expressions allow the user to work with any web page and

they form the basis of any form of web crawling and scraping. A regular expression is

specified matching the pattern which is to be found on the web page. The example given

below returns a list of numbers present in the given string.

17

Input:
string = """My name is Regular Expression.

My phone number is 912471374123 and my landline number is

4834873"""

A sample regular expression to find digits.

regex = '\d+'

match = re.findall(regex, string)

print(match)

Output:
[‘912471374123’, ‘4834873’]

5.1.3. LXML: Python provides lxml to parse XML and HTML pages. It is easy

to learn and is fastest and rich in features. Its installation is moderately difficult but

when it comes to its ease of use, it is the best parser. It is used widely in the industry

because of its power but the only drawback is its difficult installation.

These three methods are used to exploit their trade-offs according to the user's needs.

Beautiful soup, on one hand can be used to retrieve data from the website if the

constraint lies in downloading the web pages. It is a pure python approach that is

moderately easy to install and use and faster in generating results. Regular expressions

can be easily used to get limited data from the web page but have almost no dependency

on any module/package to work with except for the package which supports regular

expressions like the ‘re’ package in python. Lxml is by far the best and the most popular

approach[17]. It is fast and potent from all aspects while other approaches are limited to

specific settings.

5.2. STRATEGIES

Web crawling starts by giving the algorithm a seed URL that is visited first. The web

page for the seed URL is parsed and links are extracted from it. These links are then

visited algorithmically according to the scheduling policy defined by the search engine.

As the size of the web is huge, not all the links are visited but only the most relevant

18

ones. The relevance of these pages is dependent on search engine methodologies of

indexing. Better the seed URL, the better the search results. The strategy using which

these web pages are downloaded also determines the quality of the output produced.

Some of the most popular web crawling strategies as mentioned in [20] [21] are:

5.2.1. Breadth-First Search:

BFS goes from the seed URL to all neighbor links in the next level. It goes down level

by level until the required URL is found or else accounted as a failure. For searches in

which the desired URL is expected to be found closer to the seed URL, BFS is suited.

5.2.2. Depth First Search:

DFS traverses the URLs in such a manner that it first visits all the child links from one

page, then visits all links extracted from this child page, i.e. children of this child URL.

This way instead of a shallow search it searches deeper. For larger child pages, DFS

fails and remains unterminated [18].

5.2.3. Page Rank Algorithm:

Backlinks and citations are considered an important factor while indexing web pages by

web crawlers. These factors are specifically taken into account while writing page

ranking algorithms. These concepts are also exploited and misused sometimes in

“search engine spamming”. In a specific web page, consider only those input links

which contribute more to a search query.

5.2.4. Largest sites crawling:

A study done[18] shows that crawling larger sites first is a highly useful strategy as it

often gives the most relevant links in a very less time. The crawling algorithm first finds

all the highest priority pages and then visits the largest pages first in this strategy.

5.2.5. Importance calculation for the web page:

To find the importance of a web page, a parameter called cash value is used. Cash value

is dependent on the output links present on a web page.More the output links, more the

importance of a page. This method, however, downloads every page multiple times

which complicates the crawling process and is also time taking.

19

5.2.6. Focussed Crawling method:

Focussed crawling works by assigning similarities to web pages that are identical to a

given search query. This approach first checks the relevance of a web page for a given

query by various similarity indexes and then decides whether to download the web page

or not. The content of already visited pages also acts as a deciding factor for getting to a

new linked page [19].

20

CHAPTER 6

APPLICATIONS AND LEGALITY

The application and legalities section discusses the practical applications of web

scraping in various domains and industries.It examines how data is gathered through

online scraping for things like market research, competitor analysis, content

aggregation, and data analysis. The section also discusses the legal implications and

issues of online scraping, such as the significance of abiding by website terms of

service, comprehending intellectual property and copyright laws, and being aware of

data privacy laws. This section offers insights into the advantages and moral issues

connected with this effective data collecting approach by addressing both the uses and

legality of web scraping.

6.1. APPLICATIONS

Technological advancements are rapidly evolving and improving in today's world. A

huge repository of information present on the world wide web attracts users belonging

to various fields like research, academics, and business intelligence, from around the

world to gather the information and make use of it in a manner useful to them. Web

scraping and crawling assist by making the overall web understandable to them.

Relevance indexes, page indexes, and other approaches help users download the web

pages according to their needs and relevances, understand them with the help of

scraping and crawling methods, and then jump from one URL to another by extracting

links. This helps the users to bypass the problems like storage restrictions, computation

capability restrictions, and time crunches that may be encountered because of the

enormous web size. Web scraping techniques also come in handy with big data

specialists for collecting and analyzing huge amounts of data in ways that were

previously unimaginable. Automatic data collection methods help big data specialists

save a lot of time to examine large numbers of web pages and the data present on them.

Because of the tremendous amounts of data generated daily on the internet, these

techniques are extensively acknowledged and recognized as potent and effective in

21

collecting that data and understanding it. Many manual, ad hoc, and automatic

techniques are identified and accepted in today's world to capture complete web pages

into structured databases and these techniques are improving day by day.

Web scraping methodologies are widely recognized and used in areas like -

● Big Data

● Data Mining

● Cyber Security

● Marketing

● Cloud Computing

● Research

● Business Intelligence

● Business Competition

● Personal tools

6.2. LEGALITY

Researchers are proposing new methods and new tools are designed every now and then

for web scraping but the legality to utilize these tools is a gray area that is often

overlooked and ignored. Various ethical principles are designed for web scraping to

disallow misconducts like “breach of contract”, “copyright infringement”, “damage to a

website”, etc. but specific details about the legal and ethical frameworks is still an area

that needs to be addressed by the courts. The legality issues as mentioned in [22] and

[23] are provided below.

A. Any website owner can legally prohibit programmatic access to their website by

specifically disallowing this in the “terms of use” policies on the website and

any programmer who tries to access such a website results in a “breach of

contract”.

B. Using some websites' images, pictures, or data without adequate access rights,

scraping and publishing it as one’s own may lead to copyright infringement.

Copyrighted material can be used only under the fair use principle.

22

C. It is also protected by law to make use of scraped data in some illegal or

fraudulent activities.

D. “Trespass to chattels” law guarantees the prosecution of users if the web

scraping used by them on a website leads to any type of damage to the website

or server on which the website is hosted, and it is proven in the court. It

guarantees financial compensation to the website owner, depending on the

intensity of the damage done.

Fig 6.1 Legality and Ethics Framework for Web Scraping [22]

Overall, the legality of web scraping tools and methods is still an area that is to be

looked into by the courts to guarantee the safeguarding of content and data of the owner

of the website in a way the owner wants. If the owner allows the website to be open and

scraped, then it can allow programmatic access to their website while if the owner does

not allow it, it is to be mentioned in the terms of use and followed strictly by web

scraping programmers and faulty considerations of these ethics must be guaranteed

lawsuits by the court of law.

23

CHAPTER 7

RESULTS

The purpose of this thesis was to explore the compiler-based approach of web scraping

and compare it with other conventional approaches like Beautiful Soup and Scrapy. The

thesis highlights the advantages of the PLY - based approach and provides detailed

comparison between them. It also explains the scenarios where the conventional

methods find it difficult to perform the task and the helpfulness of compiler-based

approach comes into play.

PLY offers several advantages which are explained below:

I. PLY-based approach allows developers to define their parsing rules using

grammar specifications.Complex parsing tasks involving intricate parsing

scenarios can be handled using PLY. It also provides fine-grained control over

the scraping process making the parsing of large unstructured html pages

seamless.

II. Non-markup and domain-specific languages can also be handled by PLY easily

which the conventional approaches fail to handle. Traditional methods parse

HTML and XML formats because they look for specific tags but when it comes

to non-standard languages, these approaches fail and due to the custom parsing

capabilities of PLY approach, these cases are easy for it to handle.

III. PLY seamlessly integrates with Selenium and can help in scraping dynamic web

content and thus this approach seems to work with external tools in web pages

which require JavaScript rendering.

IV. PLY relies on grammar rules, making it low level and customizable which offers

more flexibility and control while beautiful soup mainly relies on the structure of

HTML and XML documents to navigate and extract data.

V. The method discussed is not restricted to one programming language and almost

all the major programming languages have some compiler toolkit which can

help in parsing web pages. This shows the language independence of this

method and the approach is not restricted to Python programming language.

24

The following table summarizes the differences between the approach proposed and the

approaches available:

Table 7.1 Comparison between traditional and proposed approach

Comparison Factors PLY-based approach Traditional Approaches

Parsing Method LR Parsing HTML Parsing

Flexibility High Medium

JavaScript Execution Seamless Integration with

Selenium

Limited Support

Scalability High Medium

Error Handling Customizable Basic

Ease of Use Moderate High

Performance Efficient Moderate

Automatic Crawling No Yes

Extensibility High Medium

Language Independence Yes No

Customization Capabilities Extensive Limited

Integration with Existing

Tools

Versatile Limited

Additional Frameworks No Yes

Thus the PLY-based technique for online scraping has a number of benefits. It is a

potent tool for extracting data from web pages because of its adaptability, language

independence, effective parsing, and connection with Selenium. The comparison of this

25

approach and other approaches emphasizes the advantages and disadvantages of each

strategy, enabling developers to select the best solution for their particular scraping

requirements. Web scraping projects may be made more successful and efficient by

developers by utilizing the advantages of the PLY - based methodology.

26

CHAPTER 8

CONCLUSION

The thesis initially introduced web crawling and scraping in general and then dived into

an unconventional approach to web scraping.

It investigated the usage of the PLY based approaches as an effective strategy for web

crawling and scraping and focused on the benefits of using PLY instead of more

conventional techniques, such as Beautiful Soup, for collecting data from websites.

The PLY approach's use and analysis throughout the thesis demonstrated its

effectiveness, adaptability, and language independence. PLY's integration with Selenium

and other technologies has proven its capacity to manage dynamic information and

navigate complex web structures. Developers and academics may quickly and easily

extract structured data from webpages by utilizing PLY's robust parsing capabilities in

specific scenarios.

The thesis also covered the legal and moral issues surrounding web scraping,

emphasizing how crucial it is to abide by website terms of service and ask for

permission when required. Understanding these aspects is crucial for conducting

responsible and compliant web scraping activities.

27

REFERENCES

[1] R. Cooley, B. Mobasher and J. Srivastava, “Web mining: information and

pattern discovery on the World Wide Web,” in Proceedings of Ninth IEEE International

Conference on Tools with Artificial Intelligence, 1997, pp. 558-567.

[2] B. Berendt, A. Hotho, D. Mladenic D, M. V. Someren, M. Spiliopoulou, and G.

Stumme, “A roadmap for web mining: From web to semantic web,” European Web

Mining Forum, pp. 1-22, Springer, Berlin, Heidelberg, 2013 Sept. 22.

[3] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar N. Seliya, Wald, and E.

Muharemagic, “Deep Learning Applications and Challenges in Big Data Analytics,”

Journal of Big Data, vol. 2, no. 1, pp. 1-21, Feb. 2015.

[4] G. David, K. Jon, and R. Prabhakar, “Inferring web communities from link

topology,” in Proceedings of the 9th ACM Conference on Hypertext and Hypermedia:

Links, Objects, Time and Space-Structure in Hypermedia Systems, pp. 225–234,

Pittsburgh, Pa, USA, 1998.

[5] R. Kosala, and H. Blockeel, Web mining research: A survey,” ACM Sigkdd

Explorations Newsletter, vol. 2, no. 1, pp. 1-15.

[6] A. Singh, M. Srivatsa, L. Liu, and T. Miller, “Apoidea: a decentralized peer-to-peer

architecture for crawling the world wide web,” in Distributed Multimedia Information

Retrieval: Proceedings of the SIGIR 2003 Workshop on Distributed Information

Retrieval, Toronto, vol. 2924, pp. 126-142, August, 2003.

[7] S. Pandey, and C. Olston, “User-centric web crawling,” in Proceedings of the 14th

International Conference on World Wide Web, pp. 401–411, 2005.

[8] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan, “Searching the

web,” ACM Transactions on Internet Technology, vol. 1, no. 1, pp. 2–43, 2001.

[9] F. Menczer, G. Pant, P. Srinivasan, and M. E. Ruiz, “Evaluating topic-driven web

crawlers,” in Proceedings of the 24th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pp. 241–249, 2001.

[10] S. D. Ramalingam, and D. Manjula, “Survey on comparative analysis of queries

over historical time series,” International Journal of Computer Applications, vol. 106,

no. 6, pp. 34–37, 2014.

[11] S. Balamurugan, N. Rajkumar, and J. Preethi, “Design and implementation of a

new model web crawler with enhanced reliability,” in Proceedings of the World

Academy of Science, Engineering and Technology, vol. 32, Aug. 2008.

28

[12] A. Z. Broder, M. Najork, and J. L. Wiener, “Efficient URL caching for World Wide

Web crawling,” in Proceedings of the 12th International Conference on World Wide

Web, pp. 679–689, May 2003.

[13] J. Cho, H. Garcia-Molina, and L. Page, “Efficient crawling through URL ordering,”

in Computer Networks and ISDN Systems, vol. 30, no. 1–7, pp. 161–172, 1998.

[14] S. Chakrabarti, “Mining the Web: Discovering Knowledge from Hypertext Data,”

Morgan Kaufmann Publishers, 2002.

[15] R. Mitchell, “Web scraping with Python: Collecting more data from the modern

web,” O'Reilly Media, Inc., 2018 Mar. 2021.

[16] S. V. Broucke, and B. Baesens, “Practical Web Scraping for Data Science: Best

Practices and Examples with Python,” Apress, 2018.

[17] R. Lawson, “Web Scraping with Python,” Packt Publishing Ltd., 2015.

[18] C. Castillo, M. Mauricio, and A. Rodriguez, “Scheduling Algorithms for Web

Crawling,” in Proceedings of WebMedia and Latin America Web Conference, Preto,

Brazil. 2004.

[19] S. J. Kim, and S. H. Lee, “An improved computation of the PageRank algorithm,”

in Proceedings of the European Conference on Information Retrieval, pp. 73-85, 2002.

[20] R. Kumar, A. Jain, and C. Agrawal, “Survey of Web Crawling Algorithms” in

Advances in Vision Computing: An International Journal (AVC), vol. 1, no. 2/3,

September 2014.

[21] P. Dahiwale, R. Janbandhu, and M. M. Raghuwanshi, “Analysis of web crawling

algorithms”, in International Journal on Recent and Innovation Trends in Computing

and Communication, vol. 2, pp. 488 – 492, March 2014.

[22] V. Krotov, and L. Silva, “Legality and Ethics of Web Scraping,” 2018.

[23] M. Khder, “Web Scraping or Web Crawling: State of Art, Techniques, Approaches

and Application”, in International Journal of Advances in Soft Computing and its

Applications, vol. 13, pp. 145-168, November 2021.

[24] J. Snell, and N. Menaldo, “Web scraping in an era of big data 2.0,” Bloomberg Law

News, 2016.

[25] Cooper, K.D. and Torczon, L. (2023) ‘Parsers’, in Engineering a compiler, 3rd ed.

Cambridge, MA: Morgan Kaufmann Publishers, ch. 3, pp 91 - 94.

[26]L. R. Julian and F. Natalia, "The use of web scraping in computer parts and

assembly price comparison," 2015 3rd International Conference on New Media

29

(CONMEDIA), Tangerang, Indonesia, 2015, pp. 1-6, doi:

10.1109/CONMEDIA.2015.7449152.

[27]“Making your Own Calculator in Python,” YouTube.

http://www.youtube.com/playlist?list=PLBOh8f9FoHHg7Ed_4yKhIbq4lIJAlonn8

30

APPENDICES

Plagiarism Report

31

Paper Acceptance Mail

32

Scopus Index Proof

33

