(SuueauiBuyg a1emiyos) Yoo L'

Ijoais yqeysry

£20¢

AN EFFICIENT MACHINE LEARNING TOOL FOR
AUTOMATIC BUG TRIAGING

A DISSERTATION
SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE AWARD OF DEGREE
OF
MASTER OF TECHNOLOGY
IN

SOFTWARE ENGINEERING

Submitted By

RISHABH SIROHI
(2K21/SWE/19)

Under the supervision of

Ms. PRIYA SINGH
ASSISTANT PROFESSOR

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi - 110042

MAY 2023

~ .

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi - 110042

CANDIDATE’S DECLARATION

L, Rishabh Sirohi, Roll No 2K21/SWE/19 a student of M. TECH (Software Engineering)
declare that the project Dissertation titled “An Efficient Machine Learning Tool for
Automatic Bug Triaging” which is submitted by me to Department of Software
Engincering, Delhi Technological University, Delhi in partial fulfilment of the
requirement for the award of the degree of Master of Technology, is original and not
copied from any source without proper citation. This work has not previously formed the
basis for the award of any Degree, Diploma, Fellowship or other similar title or
recognition.

Date: 30/05 /2023 (2K21/SWE/19)

I~

DECLARATION

We/l hereby certify that the work which is presented in the Major Project-1l/Research Work entitled
Fﬁ@h‘uﬁf Mag bo e * Bua Triagusg in fullilment of the requirement for the award
of the Degree of Bachelor/Master of Technology in __ Sofrerasd SEng i neerrgand submitted Lo the
Department of Seffwarw Snginesving . Delhi Technological Udiversity, Delhi is an
authentic record of my/our own, camicd out during a period from 2p2/-2023 , under the
supervision of __//s- /"&‘igﬁ SC-I‘HJIA . [

The matter presented in this report/thesis has not been submiticd by us/me for the award of any other
degree of this or any other Institute/University. The work has been puhl|thcd.-‘:n:n:-.:pll:dft:nmmunil:il'lcd- |
in SCI SC1 expanded/SSCI/Scopus indexed journal OR peer reviewed Scopus indexed conference with

the following details:

Title of the Paper: Ao matic. Bug Teragumg Andygres sy Machuns ifah;;-“j Jﬁ:ﬁ
Author names (in sequence as per rescarch paper) Ruishabh Stnodi , P g";’“f'i" A e
Name of Conference/Journal: 2022 3ud Tikerndtimal Conferumer om ~ TAAULA amd. C "“u“ﬁ“
Conference Dates with venue (il applicable): 11 Novewben 2022 kg I"&".U'iauct Sy <
Have you registered for the conference (Yes/No)T: Yer, . _rﬁ"—“'“"l urd (IC'ICT)
Status of paper (Accepted/Tu bti;hrdﬁ(‘ommuniralcd}: Pu ﬁ'&m!\w{

Date of paper communication: 3¢ SepTembert 2022 |
Date of paper acceptance: 2| 0cto bex 2022 !
Date of paper publication: 2¢ Marnch 2023

R wLMmJL
2K21 [SWE /19
Student(s) Roll No., Name and Signature

SUPERVISOR CERTIFICATE

To the best of my mlhllhnmthuwhmwhmimd in part or full for any Degree or
Diploma 10 this University or elsewhere. I, further cenify that the publication and indexing information
given by the students is correct.

Mﬁ
: - WU Name and Signature

 Ma. PRIvA SINGH
 AssISTANT (ROFESSOR |

! ACCEPTANCE/
PUS INDEXING PROOF

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi — 110042

CERTIFICATE

I, hereby certify that the Project titled “An Efficient Machine Learning Tool for
Automatic Bug Triaging” which is submitted by Rishabh Sirohi, Roll No:
2K21/SWE/19, Department of Software Engineering, Delhi Technological University,
Delhi in partial fulfilment of the requirement for the award of the degree of Master of
Technology, is a record of project work carried out by the student under my supervision.
To the best of my knowledge, this work has not been submitted in part or full for any

Degree or Diploma to this University or elsewhere.

AR

Place: DTU, Delhi Ms. PRIYA SINGH
Date: 30/05 (2023 SUPERVISOR

(Assistant Professor, SE, DTU)

ACKNOWLEDGEMENT

1 'am very thankful to Ms. Priya Singh (Assistant Professor, Software Eng. Dept.) and all
the faculty members of the Software Engineering Department of DTU. They all provided
immense support and guidance for the completion of the project undertaken by me. It is
with their supervision that this work came into existence,

I would also like to express my gratitude to the university for providing the laboratories,
infrastructure, test facilities, and environment which allowed me to work without any
obstructions.

I might likewise want to see the value in the help gave to us by our lab partners, seniors
and our companion bunch who supported us with all the information they had in regards

to different subjects

LTI RISHABH SIROHI
ey sy M.TECH (SWE)
e, 2K21/SWE/19

ABSTRACT

As technology advances at an exponential rate every day, the development and testing
teams do their utmost to address problems as soon as they arise in order to meet customer
deadlines. Finding the appropriate developer to address a specific bug is typically simple
and quick in small organisations, but it can be challenging for large organisations to find
the developer who will be able to address the bug quickly, which is one of the main tasks
of bug triaging. In this report, we will examine numerous methods for automatically
triaging bugs and attempt to identify the optimal method based on a series of research

questions that will enable us to understand the statistical analysis of these methods.

CONTENTS

TABLE OF CONTENTS PAGE NO

CANDIDATE’S DECLARATION i
CERTIFICATE ii
ACKNOWLEDGEMENT iii
ABSTRACT iv
CONTENTS v
LIST OF TABLES vii
LIST OF FIGURE viii
LIST OF ABBREVIATIONS
CHAPTER 1 INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

3

1.2 BUG TRIAGING
1.3 RESEARCH OBJECTIVE
1.4 ORGANISATION OF THESIS
CHAPTER 2 LITERATURE SURVEY
2.1 RESEARCH QUESTIONS FORMATION
2.2 SEARCH STRATEGY AND STUDY SELECTION
2.3 DATA EXTRACTION AND SYNTHESIS
2.4 DESCRIPTION OF PRIMARY STUDIES AND QUALITY ANALYSIS

oo o oo o B~ B~ W oW N R

2.5 YEAR-WISE DISTRIBUTION OF SELECTED PRIMARY STUDIES
CHAPTER 3 RESEARCH METHODOLOGY

[EY
(o]

3.1 EXPERIMENTAL SETUP

-
(00]

3.1.1 HARDWARE USED

iy
oo

3.1.2 SOFTWARE USED

[EY
(o]

3.2 SAMPLE DATASET

N
N ©

3.3 TECHNIQUES USED
3.3.1 TEXT CLASSIFICATION NAIVE BAYES ALGORITHM

N
w

3.3.2 MULTINOMIAL NAIVES BAYES ALGORITHM

N
w

3.3.3 LINEAR SUPPORT VECTOR MACHINE

)
=

CHAPTER 4 RESULTS AND DISCUSSIONS
CHAPTER 5 LIMITATIONS

CHAPTER 6 CONCLUSION AND FUTURE SCOPE
REFERENCES

APPENDICES

A. PLAGIARISM REPORT
B. LIST OF PUBLICATIONS
C. PROOF OF SCOPUS INDEXING

vi

26
28
29
30
31

31
32
33

LIST OF TABLES

Table No. Title Page No.
Table 2.1 Research Questions
Table 2.2 Description of Primary Studies
Table 2.3 Strengths and weakness of frequently used ML Techniques 15

vii

LIST OF FIGURE

Figure No. Title Page No.
Figure 1.1 Bug Triage flow 1
Figure 1.2 Big Triaging Framework 2
Figure 2.1 Year Wise Distribution offprimary studies 8
Figure 2.2 Different Bug Triaging Approaches 11
Figure 2.3 Different Machine Learning Techniques 12
Figure 2.4 Different Types of dataset used 14
Figure 2.5 Different Statistical Tests used 17
Figure 3.1 Sample Dataset 20
Figure 3.2 Short description of the bug report submitted by the reporter 21
Figure 3.3 Short description of the assigned bug to developer 22
Figure 4.1 Accuracy bar graph of different techniques used 27
Figure 4.2 Experiment Output 27

viii

CNN

RNN

SVM

DBRNN

LDA

LIST OF ABBREVIATIONS

Convolutional Neural Network

Recurrent Neural Network

Support Vector Machine

Deep Bidirectional Recurrent Neural Network with Attention

Latent Dirichlet Allocation

Chapter 1

INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

In order to deliver the customer's product on schedule and to ensure that it has the
fewest possible flaws that won't ruin the customer experience, bug fixing has become
a crucial component for large organisations. Nowadays, practically all small and large
businesses use bug repositories (like Bugzilla), which provide all the specific details
about the problems that are open, fixed, need to be rechecked, etc.Although bug
repositories offer a wide range of services such as bug status, bug description, bug
summary, etc., there are still two significant limitations that limit their use: big scale

bug data, and bad quality bug data.

According to [2], approximately 34,917 developers and users reported 333,371
problems to Eclipse between 2001 and 2010. Therefore, handling such a vast amount
of data manually becomes extremely difficult. Low quality bug data, on the other
hand, is made up of noisy and redundant data. These two factors are extremely
important, and developers should make sure they are taken out of the dataset during
the pre-processing step itself to avoid noisy data misleading them and redundant data
wasting valuable development time when managing bugs. So, these factors made us
realise that there is a need to work upon this field and research on different techniques

to automate this process.

Defect ’ Defect
Assessment Assignment

REE

Figure 1.1[5] Bug Triage flow

1.1 BUG TRIAGING

A human triager selects the recipient of each bug after it has been reported on the bug
repository. If the designated developer is able to solve the bug, it is listed as resolved,;
however, if the developer was unsuccessful or left the firm during that period, then a
new or another developer is assigned to resolve it. Bug triaging is the full process of
selecting a developer to address a bug. Figure 1.1 depicts an overview of it. Manually
assigning the bug is a difficult task. It is challenging to examine the numerous
descriptions of bugs before appointing the appropriate developer to work on them as
you can see in Figure 1.2.Additionally, because developers' profiles frequently
change from one project to another, it is unknown if they are still working on that

particular project.

Developers

Recommendation

step 6

step | step 3

Relevant Bug

Reports

ID, Component,
Product, summary,
description

ID., Component,
Product, summary,
description

step 5

step 2 - step 4

Index

Figure 1.2[3] Bug triaging framework

Over time, it became apparent that Automatic Bug triaging was necessary to address
all of these issues. Automatic bug triaging will do away with the need for human
triagers to actively assign bugs to the appropriate developers. In this review study, we

reviewed a number of bug triaging strategies that have been used by different
academics. Our objective is to find the best approach that will work quickly and with

minimal error.

1.2 RESEARCH OBJECTIVE

This research project's objective is to provide a thorough literature review to address
queries about automatic bug triaging using machine learning algorithms. Through
this review effort, we have looked at a number of strategies that have been put out by
different scholars and have statistically determined which one is the best and least

time- and error-consuming.

1.3 ORGANIZATION OF THESIS

The remaining chapters of the thesis are as follows:

Chapter 2 consists of a discussion of Literature review of our own work in the field
of bug triaging represents Chapter 3 discusses the methodology for the review where
we mention the research questions formed, and the search strategy we have adopted
following that the exclusion and inclusion criteria. Chapter 4 shows the results of
our implementations Chapter 5 talks about the limitations of bug triaging which are

still a major drawback Chapter 6 concludes the paper and mentions the future scope.

Chapter 2

LITERATURE SURVEY

2.1. RESEARCH QUESTION FORMULATION

The major goal of the review is to look at several strategies that have been put out by

different scholars and statistically determine which technique is the best among them

and will be the least time-consuming and error-prone. As indicated in table 2.1, we

have developed the following research questions to help us examine and comprehend

automatic bug triaging technique. Firstly, we identify different type of techniques

used for bug triaging (RQ1). Similar to this in RQ2, we identified various types of

datasets used for bug triaging. In RQ3, we concentrated on understanding the

benefits and drawbacks of the various strategies employed thus far.

Table 2.1. Research Questions

RQ. No | Research Questions Obijective

RQ1) What are the different categories | To list the many approaches
of bug triaging approaches currently being utilised for bug
proposed? triaging.

RQ2) Which Datasets are most For the purpose of identifying the
commonly used? various dataset types used for

bug triaging.
RQ2.1) | What is the effect on results based | To identify whether a particular

upon the dataset used?

type of dataset gives
better results and
performance than other for bug

triaging.

RQ3) What are the strengths and To identify the advantages and
weaknesses of ML models used disadvantages of the techniques

for Bug triaging? used.

RQ4) What are the mostly used To identify studies in
statistical test to evaluate Bug which results of automated bug
triaging using ML models? triaging using various techniques

are validated using statistical

tests.

2.2. SEARCH STRATEGY AND STUDY SELECTION

While conducting our review we focused mostly on the latest and all the advanced
techniques. After conducting a thorough search and analysing the papers that were
found after the initial retrieval, we chose the most promising research to be
examined.

Triage AND (Bug OR Defect) AND Machine Learning (classification OR
regression) AND Information Retrieval AND Developer Recommendation AND
Severity Prediction AND Topic modelling AND Graph model AND Tossing
(support vector machine OR decision tree OR neural network OR linear
regression OR multiple regression OR multivariate regression OR
genetic algorithm OR search-based techniques)

We chose five databases to search based on the access that was accessible to the
databases:

ACM Digital Library

IEEE Xplore

Springer

Science Direct

John Wiley Inc.

For insect triaging in the SLR, we incorporated empirical investigations employing
machine learning, tossing, information retrieval, topping, and graph approaches. We
therefore used our own inclusion and exclusion criteria to effectively choose these
research, which enabled us to choose the papers in line with the standards we used to

evaluate the investigations.

H w e

Inclusion Criteria

Research on automatic bug triaging utilising a mix of two or more strategies.
Research projects that evaluate the effectiveness of various machine learning
methods.

Research projects that involved developer involvement in bug repositories.
Research that describes the technique and experimental testing of proposed

algorithms.
Exclusion Criteria

Research based on estimation of bug severity.
Research that are without any experimental results or empirical analysis.
Research that are focusing on bug classification rather than severity prediction.

Studies without the right performance metrics and dataset

2.3. DATA EXTRACTION AND SYNTHESIS

In order to answer the RQs, after selecting the primary studies, we made a data
extraction sheet to store all the important information related to these studies.
Prepared different fields in the sheet were we mentioned following details related to
studies: Study title; year of publication, name of journal or conference, dataset type,
techniques used for bug triaging, statistical test used, performance measure and
merits/demerits of that study.

While analysing the data we focused on both quantitative and qualitative viewpoints.
We considered this as an important perspective because through qualitative analysis
one get to know about statistical measures takes, validation methods adopted, type of
dataset used and usage of metrics whereas quantitative analysis consists of
performance measures adopted for a type of data set. Summary of all the RQs are
showcased in further sections with the help of charts, graphs, plots and tables.

2.4. DESCRIPTION OF PRIMARY STUDIES AND
QUALITY ANALYSIS

Following the application of inclusion and exclusion criteria on 48 studies, we were

able to consider thirty-six studies as mentioned in Sect Il. Now scoring of these

6

studies was done where 14 being assigned as highest score and 0 as the lowest. In
order to select good quality papers, studies having score equal to or greater than 8.5
were selected for answering our RQs while less than 8.5 score studies were rejected.
Studies which were not having an ample citation count and didn’t considered good
amount of references, where rejected (N. Sreenivas [35], A. Goyal[36] and R.
Jaiswal[37]) after the quality assessment phase. The accepted studies were sorted
yearly wise and arranged in ascending order as listed in Table 2.2. Out of the 33
primary studies selected, 27 % of the selected primary studies are published in

journals, and 73 % are published in conference proceedings.

2.5. YEAR-WISE DISTRIBUTION OF SELECTED PRIMARY
STUDIES

From January 2003 to January 2022, the year-wise distribution of primary studies
in shown in figure 2.1. We have only considered last two decades’ studies to track
the change in technology. [4] used the technique of text categorization for bug
triaging. Text categorization is one of the most traditional and popular technique
which is still used where the combination of feature selection and instance selection
is used to reduce the dataset for bug triaging. Till 2010 studies mainly focused using
machine learning solely or in combination with other technique. [17] proposed a new

approach of recommendation system for developers.

Year-Wise Distribution
2022

2020 e ° ° o

2018 °

2016 o ° °

2014 [3) °

2012] [3)
2010 o

2008

2006 °

2004 °

2002
123456 7 8 95101112131415161718192021222324252627282930313233

Figure 2.1. Year Wise Distribution of Primary Studies

Table 2.2 Description of Primary Studies

Primary Author References | Primary Author References

Study Study

PS1 Davor [4] PS18 Xin Xia (2016) [5]
Cubranic
(2004)

PS2 John [6] PS19 V Govindasamy | [7]
Anvik (2016)
(2006)

PS3 Gaeul [8] PS20 Sun-Ro Lee (2017) | [9]
Jeong
(2009)

PS4 Syed [10] PS21 Snehal Chopade [11]
Nadeem (2017)
Ahsan
(2009)

PS5 Shivkumar | [12] pPS22 Ying Yin (2018) [13]
Shivaji
(2009)

PS6 Jifeng [14] PS23 Senthil Mani (2019) | [15]
Xuan
(2010)

pPS7 John [16] PS24 Sheng-Qu Xi | [17]
Anvik (2019)
(2011)

PS8 Weigin [18] PS25 Cicero Augusto De | [19]
Zou Lara Pahins (2019)
(2011)

PS9 Huzefa [20] PS26 Aindrila Sarkar | [21]
Kagdi (2019)
(2012)

PS10 Jifeng [2] PS27 Shikai Guo (2020) | [22]
Xuan
(2012)

PS11 Xin Xie | [23] PS28 Wei Zhang (2020) | [24]
(2012)

PS12 Tao Zhang | [25] PS29 lyad Alazzam | [26]
(2014) (2020)

PS13 Hao Hu | [27] PS30 Raf Almhana(2020) | [28]
(2014)

PS14 Geunseok | [29] PS31 Syed Farhan | [30]
Yang Alam Zaidi (2020)
(2014)

PS15 Tao Zhang | [31] PS32 Syed Farhan | [32]
(2014) Alam Zaidi

(2021a)

PS16 Ali Sajedi | [33] PS33 Syed Farhan | [34]
Badashian Alam Zaidi
(2015) (2021b)

PS17 Jifeng [1]
Xuan
(2015)

Various surveys that are closely related to bug triaging approaches have been
conducted in the past [38 - 42] and have classified the various techniques based on
their own criteria for classifying bug reports and carrying out automatic bug triaging..
[38] classified the bug triaging techniques into three categories namely; Metadata
approach, Profile based and Machine Learning based approach where Metadata
includes time stamp of bug and bug history which is used to allot appropriate
developer to bug report, profile based approach recommend the bug report to
developer on the basis of Developers profile history where on the other hand Machine
learning algorithm uses already existing bug report to train a classifier and then use

this classifier to assign new bug reports to developer.

Another survey on bug triaging is provided by [39], who classified different bug
triaging techniques into categories like Text categorization, Tossing Graph, -
Recommendation, Role-Based, and Text Mining. In contrast, [40] focused primarily
on the application of different Machine learning algorithms (Nave Bayes, Decision
Tree, K-Nearest-Neighbor , Neural Network) for bug triaging.

According to [41], there are only two categories that may be used to classify bug
assignment and evaluation: machine learning and information retrieval. While [42]
concentrated on conducting surveys based on bug prioritisation rather than bug
triaging, they conducted a comparative analysis of both techniques and came to the
conclusion that information retrieval methods are more accurate than machine
learning algorithms. Bug prioritising, according to Jamal Uddin et al. [42], is a
difficult and error-prone process because any poor choice here would result in

inefficient resource use and additional time loss.

[43 - 46] worked upon predicting severity of bug using Machine Learning algorithms
where [43] built and designed a tool named SEVERIS that effectively predict
the severity of bug based on rule-learning technique. On the hand [44] make the use
of Naive Bayes classifier to predict whenever a new bug arrives whether it belongs
to a “severe” or “non-severe” category. [45] used BM25 textual similarity function

to measure the similarity between the bugs in bug repository and used KNN to

9

determine the severity of the bugs. [46] focused on using Graph approach to
determine the severity of bug reports based on graph metrics.

The following studies [47], [48], [49], and [50] have been eliminated from our review
based on our inclusion-and-exclusion criteria since they do not meet our strict
research standards. Despite the fact that we discovered a sizable number of articles
on bug triaging and severity prediction, we found most of them were related to
survey papers only. To the best of our knowledge regarding searching paper we
didn’t find any paper that provide the systematic review related to automatic bug
triaging. So, we decided to write a systematic literature review related to automatic
bug triaging so that we can get the detailed analysis regarding the technique used till

now and can contribute further to improve it.

Now we summarises the methods employed, presents the findings of the primary
studies as the research questions we have developed, compares them in light of

several criteria, and identifies any research gaps.
RQ1: What are the different state-of-the-art proposed for bug triaging?

To adopt the Automatic Bug triaging, wide range of techniques have been used by
practitioners and researchers over the past 20 years. The purpose of these methods is
to do away with manual bug triaging, which is a time-consuming and error-prone
way to assign a suitable developer to a bug report. After analysing 33 papers, we

categorise the techniques into the following groups;

Text Classification and Machine Learning(TC+ML)

Tossing Graph (TG)

Topic Modelling (TM)

Machine Learning (ML)

Recommendation System and Machine Learning (RS+ML)
Recommendation System and Information Retrieval (RS+IR)
Graph and Machine Learning (Graph + ML)

Ensemble Learning Machine

The figure 2.2 clearly shows that machine learning algorithms account for around
33% of the techniques utilised for automatic bug triaging. A subject modelling

approach has been selected over the deployment of a recommendation system

10

together with a machine learning algorithm. We also discovered that the accuracy of
the output we get from the ML method, Graph, and Tossing Graph is nearly identical,

despite a small variance in percentage.

Count of Papers by Technique used
14
12

10

guuH Uuu

ELM Graph + ML RS+IR RS+ML TC+ ML
ML

Figure 2.2. Different bug triaging approaches

[1-3], [71, [8], [11], [22], [16], [22 - 24], [29 - 30], [38], [39], [41] used Machine
Learning Algorithms as shown in figure 2.3 to assign a bug to an appropriate
Developer where [1], [7], [16], [22] models are based on Text categorisation
technique where they have used the combination of feature selection and instance
selection to reduce the dataset for bug triaging whereas [39] only focused on feature
selection to reduce the dataset and predict bug performance using Naive Bayes and

Support Vector Machine.

[30] suggested a method for automatically triaging bugs that is similarly based on text
categorization. Text categorization, sometimes referred to as text classification, is a
method for automatically classifying a group of documents into groups based on a
preset set of categories. Using the bug's description, developers will be anticipated in
this paper. In order to forecast the correct developer, this work used supervised

machine learning technique with a Nave Bayes classifier.

[3] used DBRNN-A that focused on syntactic and semantic features using

unsupervised Machine learning.

11

Percentage

4%\°%
27%

23%

9%
32%

@ Naive Bayes SVM RNN

CNN Logistic Regression M@ Clustering

Figure 2.3. Different Machine Learning techniques

[2] focused on using Prim’s method, [8] created ML based recommender system to
deal bug whereas [11] used SVM that trains a classifier for each new Developer to
resolve the bug. [12] proposed a ML based recommender system called as BugFixer

which recommends bugs to new developer on the basis of historical bug information.

[16] focused on dealing noisy data by using feature selection which improved the
performance by 5%. [22] introduces a model that focus on reducing the data scale
and improving the quality. To avoid random grouping of data they used clustering in
this approach to group the similar bug reports which make it easy to assign the bug
to the appropriate developer whereas [23] used valid time split evaluation

where sequentially train and test on a large industrial data set is done.

[24] and [38] proposed deep learning based bug triaging technique using CNN where
[24] focused on finding technique best for word representation by comparing
three embedding techniques: two context-insensitive; Word2Vec (Word to Vector),
GloVe (Global Vector) and one context-sensitive; ELMo (Embedding’s from
Language Models) and [38] used word2vec method in combination with CNN

(CNNDA) and One-Hot word vector methods in conjunction CNN for the same.

[29] proposed a semi-automated approach using machine learning. It is a type of text
categorisation technique where bug reports are called as text documents and

document label are the developers names appropriate to resolve the bug reports.

12

A supervised machine learning algorithm takes a set of instances as input with
known labels and generates a classifier and then suggests the future bug reports to

an appropriate developer based on the classifier used.

[41] focused to train a quality Developer recommender system by choosing four
developer features, namely network centrality, developer workspace, developer
expertise, and transmissibility of developers to know among them which is crucial
for the bug reassignment and then predict the potential developer by applying that
feature to six Machine learning algorithms.

[4] and [5] introduced new techniques to reduce the bug tossing time where [4] used
Markov chain based graph model that detect the tossing history of bug and then find
the potential developer whereas [5] focused on improving the bug triaging efficiency
by integrating three important aspects, the textual content in the bug reports,

the metadata in the bug reports, and the tossing sequence of the bug reports.

[6] used Graph based RFSH Algorithm and [28] used Information retrieval
techniques to solve the bugs.

[15] proposed an approach that combined topic modelling and multi-feature (i.e.
component, product, severity and priority) where topic modelling is used to extract
topic from bug repository using LDA and multi-feature is used to identify
corresponding reports that have same multi-feature with the new bug reports. On the
basis of this user is able to recommend the appropriate developer to fix the bug

and predict its severity also.

RQ2: Which datasets are most commonly used for Bug Triaging?

Over the years, scientists have carried out a wide variety of experiments. Typically,
open source to commercial data sets are used for these experiments. 33 original papers
were examined, and it was discovered that just two employed industrial data sets
while the others conducted experiments using open-source datasets. The proportion

of primary research using various open bug repositories is shown in Figure 2.4.

13

Distribution of Database

60

50
40
30
20
10
0 . (| -

Mozilla Eclipse GCC OpenOffice Local Dataset

M Percentage of Studies Papers

Figure 2.4. Different types of Dataset used

RQ2.1: What is the effect of different types of Dataset on the performance of Bug
Triaging?

Only a few experiments [9], [27] that employed industry data sets yielded findings
that were superior to those of the open source dataset. Few factors are mostly
determined to be in charge of its performance. First off, compared to open source, the
quality of bug reports for commercial applications is carefully maintained. Since bug
reports are created by users, contributors , and project participants for open-source
projects. Because there are so many different types of open source system issue
reports, it is more likely that they will be of lesser quality and contain more duplicates.
On the other side, the Quality Assurance team writes and properly structures the bug
reports for industrial projects. Second, since the open source development community
is very broad and unstable. In contrast to industrial projects, which are more
structured and solid, open source projects allow for any developer to join or leave at
any time. Last but not least, compared to a balanced dataset of industry projects, the

performance accuracy of open source is hampered by more imbalanced data..

RQ3: What are the strengths and weaknesses of frequently used ML models for
Bug triaging?

14

Different Machine learning algorithms vary in their advantages and drawbacks.

Knowing them is essential since it aids in choosing the right algorithm for the bug

report. After knowing the strength and weaknesses of the algorithm new researchers

and software developers would be able to select the algorithm suitably to perform

automatic bug triaging easily, efficiently and effectively. Strengths and weaknesses

of various machine learning techniques used are depicted in table 2.3.

Table 2.3.

Strengths and Weaknesses of frequently used ML techniques

ML
Algorithm

Strength

Weaknesses

Logistic
Regression

In terms of output, logistic
regression provides high
probabilistic interpretation
capabilities, and overfitting can
be avoided. Updates to any new
data often use stochastic gradient

descent.

Logistic regression typically
performs poorly for non-linear
decision boundaries. It is
inappropriate for really
complex partnerships.

Support
Vector
Machines
(SVM)

The SVM algorithm, a subset of
supervised machine learning,
may also simulate non-linear
decision boundaries. In n-
dimensional space in particular, it
IS resistant to overfitting.
Compared to the majority of the
other machine learning
algorithms, provides more

accurate results.

Scalability of huge datasets is a
major issue with SVM, and it is
also more memory-intensive,
making it difficult to tune by
choosing the right Kernel.

Naive Bayes
(NB)

Another sort of supervised
machine learning method that is
simple to use, predicts results
accurately, and is easy to execute

is naive Bayes.

When the dataset is huge, it
occasionally fails to forecast the
outcomes accurately. Because it
assumes that all features tend to

be independent, it is not

15

appropriate for situations found

in real life.

Clustering

Due of its ease of use and
simplicity, K-means is frequently
employed as a clustering

algorithm for bug reporting.

Occasionally, it becomes
challenging to mention the
clusters' number. K-means can
only handle numerical data, as
well. Therefore, converting bug
reports into numerical format
becomes a time-consuming

process for analysis.

RQ4: What are the mostly used statistical test to evaluate Bug triaging using ML

models?

The use of statistical tests in research for model prediction serves as a technique to
reinforce the model's predictions by statistically analysing them. Only 27% of the 33
primary studies [4, [9], [11-13], [17], [18], and [20-22] that we chose for review used
statistical testing. Figure 2.5 illustrates the application of statistical test distribution. The
Friedman test, t-test, and Chi-squared test were each employed by two investigations,
whilst five studies used the Wilcoxon signed-rank test for comparative statistical
analysis. It is notable that more studies have concluded that nonparametric tests, such as

the Wilcoxon signed-rank test, are appropriate for statistical testing than parametric t-

tests. Bonferroni-Dunn test and Nemenyi test are both only applied in one study each.

16

Bonferroni-Dunn test

Chi-Squared Test

Nemenyi test

Friedman Test

t-test

Wilcoxon Signed-rank Test

No. of Studies

Figure 2.5. Different Statistical test used

Chapter 3

RESEARCH METHODOLOGY

3.1 EXPERIMENTAL SETUP

In this section, we will provide a concise overview of the hardware and software tools
employed in our research. Additionally, we will delve into the performance measures,

framework, and methodology utilized throughout the study.

3.1.1 HARDWARE USED

The proposed project is based on ML approaches, which revolve around classification;
the only hardware instrument required for implementation is a computer system. The

model is created and run on a laptop with the given minimum hardware requirements.

e System Type Windows 10, Macintosh
e Processor Core i3 processor

e RAM 4GB

e Hard disk 500GB

3.1.2 SOFTWARE USED

The Jupyter Notebook and Anaconda Navigator tools were used to implement each ML
model. 3.6 Python Python is a general-purpose, interpreted object-oriented programming
language. It is a language that is open-source and free grown in popularity as a result of

its condensed, straightforward, and extensive library support.

18

3.2 SAMPLE DATASET

This section describes the dataset and ML methods that we employed to complete the task
at hand. The dataset will be covered in detail in the first section of this chapter, and all
the machine learning and optimisation approaches that we employed in this study will be

covered in the second half.

Input: A bug report in natural language prose that the reporter submits after describing
the issue.

Output: The component in which the bug might possibly exist, together with the
developer (or list of developers) who could be given responsibility for fixing it.

A problem is reported by a user through the software's bug tracker. Since the description
of the bug provided by the user is a natural language text, natural language processing is
utilised to extract pertinent keywords from the bug report that would explain the bug
the user has experienced. Stop-word elimination and stemming are used during
processing to extract pertinent keywords from the bug report's description. Based on the
previously learned dependencies, these extracted keywords are utilized to pinpoint the
component that is most likely to be problematic. A list of developers will then be informed
of this bug's resolution based on their faulty Component and Tossing History. It is
important to choose the developers on the list such that there is the least possible chance
that the bug will be reassigned. The developer and the component involved in the bug are
noted/labelled in the bug report after it has been fixed. For the purpose of supervised
learning from the repaired bugs, a dependency structure gradually develops.

An open source software bug tracker tool's dataset is a collection of bug reports that have
been repaired and contain the relevant details about the components, developers, and
reassignments. This data is classed, categorised, and partially organised. The bug tracker
programme stores a user-submitted bug report, which is often a natural language text, in

XML format. Detailed information in the dataset

* Severity: How serious the bug is determined how quickly it needs to be corrected.
* Product: The specific software program to which the bug relates.

» Component: The product's pertinent subsystem for the bug that was reported.

19

« Assigned to: The name of the developer who was given responsibility for fixing the bug.
« Brief description: Incorporates user-embedded natural language text.

* Bug status: A bug's condition as of each update. REOPENED, NEW, ASSIGNED,
RESOLVED, VERIFIED.

 Fix: Marking the bug report as needing maintenance. WORKSFORME, REMIND,
INVALID, FIXED.

These details enable the establishment of dependencies between the developers,

components, and reassignment.

version="1.8"

Mg gy g™
.'.'_u' .

1136214788

cdt-core-inboxgeclipse.org

L™

Figure 3.1 Sample Dataset

An illustration of a report in an assignedto.xml data set. Along with the date and time of

each update, it identifies the developer to whom it was allocated.

20

Nanual chenge 1 ewory View 55 not propagated to other views Like Variable view an Expression View

138504

Nanual change 1 enory or Vardadles view 15 not propagated to Expressions view

Figure 3.2 Short description of the bug report submitted by the reporter.

We used a dataset in JSON format with roughly 1,60,000 well-structured reports in order
to increase efficiency. The training data set in JSON format compares each report-id's
update("when") in the relevant files, together with the "what" content present in the brief
description (to get the bug report), component (to get the component), and assigned to
(the developer). The pre-processed file is converted into a feature-vector pair, with the
developer serving as the vector and the bug report and the component in question as the
feature. When receiving problem reports, the classifier uses the feature-vector pair as
input to choose the appropriate developer. With the aid of an additional feature-vector
pair (component and developer) collected by the classifier, graphs are generated.. The
next likely developer who can repair the bug is identified by combining the probabilities
of a developer fixing a bug in a specific component and passing responsibility to another

developer.

21

Figure 3.3 Short description of the assigned bug to developer

3.3 TECHNIQUES USED
The dataset being used affects the different Automatic Bug Triaging techniques. After

parsing, the training dataset was processed through stop-word removal and stemming.
Stop-word elimination and stemming are accomplished using the Snowball Stemming
algorithm. The data set is transformed into feature vectors using a multinomial NB
classifier.

Using an XSLT parser, the product, component, and brief description of each bug from
the Training data set are parsed to create a uniform text file. Each bug's report ID is
extracted from the assigned-to.xml file, together with the "when" attribute of each
update, and compared to the corresponding entries in the short-desc.xml, product.xml,
and component.xml files. The extracted data is then exported to a text file in a text

processing-friendly format.

22

3.3.1 TEXT CLASSIFICATION NAIVE BAYES ALGORITHM
Algorithm: NAIVE BAYES CLASSIFIER - Text classification

Input: T - Training corpus

B - New Bug Report

Output: dj - The developer with the highest probability to whom the bug will be
assigned

1. From Training corpus T, extract Vocabulary V (collect unique words from all
bug reports)

2. Initialize P(dj) as an empty dictionary for each developer dj in D
3. for each developer dj in D do
reportsj «— all bug reports in developer dj from T

P(dj) < [reportsj| / [total no. reports| (calculate the prior probability P(dj)
for developer dj) end for

4. Textj « concatenate all bug reports in T for each developer dj
5. Initialize P(wk|dj) as an empty dictionary for each word wk in Vocabulary V
6. for each word wk in Vocabulary V do

nk «— count the number of occurrences of word wk in Text;

P(wk|dj) < (nk + const) / (n + const * [Vocabulary|) (calculate the
conditional probability P(wk|dj) with Laplacian Smoothing) end for

7. Calculate the probability P(B|dj) for each developer dj using the words in the
New Bug Report B:

« Initialize P(BJdj) as 1
o foreach word in B do
« if the word exists in Vocabulary V then

o P(BJ|dj) *= P(wl|dj) (multiply the conditional probability of
each word in B) end for

8. Select the developer dj with the highest probability P(B|dj) and assign it to dj

9. return dj as the developer with the highest probability to whom the bug will be
assigned

3.3.2 MULTINOMIAL NAIVES BAYES ALGORITHM
Algorithm: TRAIN MULTINOMIALNB - Text classification
Input: R - Training Corpus (List of bug reports)

23

C - List of developers
Output: V - Vocabulary prior - Prior probabilities
condprob - Conditional probabilities
V « extract Vocabulary from R (collect unique words from all bug reports)
N « count the total number of bug Reports in R
Initialize prior as an empty dictionary
Initialize condprob as an empty dictionary

for each developer d in C do

© o & W o=

Nc <« count the number of bug reports in developer d from R
prior(d) «<— Nc / N (prior probability of developer d)
wordsc « collect all words from all bug reports in developer d
Initialize TO_c as the count of words in wordsc
Initialize condprob[d] as an empty dictionary

for each word w in V do 12. T¢ « count the occurrences of word w in
wordsc

TO_c « count the total number of words in wordsc

condprob[d][w] «— (Tc+ 1)/ (T0_c + |V|) (apply Laplacian
Smoothing) end for end for

7. returnV, prior, and condprob

3.3.3 LINEAR SUPPORT VECTOR MACHINE
Algorithm: Linear SVM
Input: X - Training data (features)
y - Training labels
C - Regularization parameter
Output: w - Weight vector b - Bias term
1. Initialize the Lagrange multipliers a to zeros for each training example.
2. Define the learning rate n and the number of iterations.
3. for t =1 to number of iterations do
4. Select a training example (xi, yi) randomly from X and y.

5. Compute the decision function: f(xi) = Z(a * yi * xi) +b.

24

6. Compute the margin: margin = yi * f(xi).

7. if margin <1 then 8. Update the weight vector: w =w +n * (yi * xi).
9. Update the bias term: b=b +n * yi.
10. Update the Lagrange multiplier: a =a +n * C.

8. else 12. Update the Lagrange multiplier: a = o +n * C.

9. endif end for

4. return w, b as the learned weight vector and bias term for the linear SVM.

25

Chapter 4
RESULT AND DISCUSSION

To evaluate the effectiveness of our proposed algorithm, we utilized bug data from
Mozilla and Eclipse. We performed a comprehensive analysis of the entire lifespan of
both applications. To ensure thorough coverage, we divided the bug data into 10 folds
and conducted 9 iterations. During the data collection process, we gathered four types of

information from the bug reports:

1. Keywords: We extracted keywords from the bug descriptions and comments provided
in the bug reports. These keywords were useful for classification and analysis

purposes.

2. Bug source: We retrieved details about the product and component to which each bug
was assigned, as mentioned in the bug reports. This information aided in categorizing

the bugs based on their respective areas within the software.

3. Temporal information: We recorded the dates when the bugs were reported and when
they were fixed. This temporal data helped us analyze the timeline and duration of bug

resolution.

4. Developers assigned: We compiled a list of developer IDs assigned to each bug. This
information allowed us to examine developer involvement and assignment patterns

throughout the bug resolution process.

In our studies, we changed the amount of the vocabulary and test set. Figure 4.1 shows
that when 90% of the document corpus is utilised as training and 10% as the test set, the
algorithm accurately assigns just under 75% of the bugs. As the test corpus size is
increased to 50, the accuracy gradually decreases to 65%.

26

Bar Chart Example

MultinomialNB Kfold MuitinomialNB Linear SVM
Categories

Figure 4.1 Accuracy bar graph of different techniques used

6]: !python run.py

Checking for output directory “OutputFiles’

Formatting input... STARTED

Formatting input... COMPLETED

Stemming and stop-word removal... STARTED

Stemming and stop-word removal... COMPLETED

Saving Data... STARTED

Saving Data... COMPLETED

Extracting Toss Data... STARTED

Extracting Toss Data... COMPLETED

Preparing Tossing Graph... STARTED

Preparing Tossing Graph... COMPLETED

Running Classifier...

Training dataset : 68723

Testing Dataset : 6688

The accuracy for MultinomialNB is : ©.6388333333333334
The accuracy for Kfold MultinomialNB Classifier is : ©.6712244818062986
The accuracy of LinearSVM is @ 8.6781666666666667

The predicted developer is : jdt-text-inbox@eclipse.org
8.364238410859682646

232

Max possibility is for tossing from jdt-text-inbox@eclipse.org -» jdt-core-inboxfeclipse.org
Classifier run completed!

Figure 4.2 Experiment Output

Finally, accuracy of around 67.12% is reached with 10 fold cross validation, while

accuracy of 67.00% is attained with linear SVM as shown in Figure 4.2.

27

Chapter 5

LIMITATIONS

After doing comparative study of Machine learning techniques used for automatic bug
triaging, we found that there are some limitations in the current Machine learning

technique which are as follows;

e Natural Language is used to write bug reports. Consequently, if bug reports are of poor
quality, a user will not be able to obtain enough information.

e Because trials are typically conducted on open source projects, it is questionable
whether or not identical results will also be obtained through industrial projects.

e Manual selection of the dataset and application of the proper algorithm is used to test
the outcomes. Therefore, there is a potential that the experiments will be biassed or
mistaken.

e When assigning developers, there is a possibility to eliminate a candidate by looking
at their bug-resolving history. If they haven't fixed more than five issues, they may be
able to in the future.

e Only a select few algorithms are tested for bug severity predictions. Therefore, it
should be conducted and evaluated against other algorithms in order to gain higher

accuracy.

28

Chapter 6

CONCLUSION AND FUTURE
SCOPE

The main goal of automatic bug triaging is to use a method that takes less time and is
less prone to mistakes. Over the past 20 years, academics have developed a variety of
machine learning techniques to solve these issues and have attempted to remove the
reliance on human triage to assign bugs to the right developer. Accordingly, the analysis
of these methods showed us how manual issue triaging may be substituted by
automatic bug triaging using a suitable ML system that can precisely predict developers'
responses to incoming bug reports. Automatic bug triaging will do away with the need
for human triagers to actively assign bugs to the appropriate developers. Our objective is

to identify the optimum method that will take less time and be less prone to error.

After reviewing these methods, we think that Automatic Bug Triaging in macro
organisation utilising Machine learning algorithm will be necessary in the near future.
Implementing these techniques doesn't call for major hardware modifications; instead, it
opens up the possibility of handling bug reports independently of other software bug
repositories like Bugzilla, Jira, etc., and helps the organisation to manage bugs more
quickly. Although the majority of organisations have access to and utilise bug tracking
repositories, the cost of using these repositories will likely rise in the near future as data
volumes rise. The goal of organisations is to maximise profits while maintaining tight
control over costs, allowing for the best possible resource utilisation. By using this
automated bug triaging technique, it will be possible to meet the deadline for the client's
project and save enough money to make the business profitable and both employers and
employees satisfied with the compensation received. According to us there is still some
possibility of performance enhancement and we will be comparing most frequently used

Machine Learning techniques on some specific performance metrics.

29

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

J. Xuan et al.,, “Towards effective bug triage with software data reduction
techniques,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 1, pp. 264-280, 2015,
doi: 10.1109/TKDE.2014.2324590.

J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in bug
repositories,” Proc. - Int. Conf. Softw. Eng., pp. 25-35, 2012, doi:
10.1109/ICSE.2012.6227209.

Barbara Kitchenham and S. Charters, “Meroau 3a aBTOMaTU4YHO yIpPaBJICHUE HA

MOJICMHU yCTpOICTBa npu Jack-up cucremure,” 2007, doi:
10.1145/1134285.1134500.

D. Cubranic and G. C. Murphy, “Automatic bug triage using text categorization,”
16th Int. Conf. Softw. Eng. Knowl. Eng., pp. 92-97, 2004.

X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang, “Improving
Automated Bug Triaging with Specialized Topic Model,” IEEE Trans. Softw. Eng.,
vol. 43, no. 3, pp. 272-297, 2017, doi: 10.1109/TSE.2016.2576454.

J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,” Proc. - Int.
Conf. Softw. Eng., vol. 2006, pp. 361-370, 2006, doi: 10.1145/1134285.1134336.

V. Govindasamy, V. Akila, G. Anjanadevi, H. Deepika, and G. Sivasankari, “Data
reduction for bug triage using effective prediction of reduction order techniques,”
2016 Int. Conf. Comput. Power, Energy, Inf. Commun. ICCPEIC 2016, pp. 85-90,
2016, doi: 10.1109/ICCPEIC.2016.7557229.

G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug tossing
graphs,” ESEC-FSE 09 - Proc. Jt. 12th Eur. Softw. Eng. Conf. 17th ACM SIGSOFT
Symp. Found. Softw. Eng., pp. 111-120, 2009, doi: 10.1145/1595696.1595715.

S. R. Lee, M. J. Heo, C. G. Lee, M. Kim, and G. Jeong, “Applying deep learning
based automatic bug triager to industrial projects,” Proc. ACM SIGSOFT Symp.
Found. Softw. Eng., wvol. Part F1301, pp. 926-931, 2017, doi:
10.1145/3106237.3117776.

S. N. Ahsan, J. Ferzund, and F. Wotawa, “Automatic software bug triage system
(BTS) based on latent semantic indexing and support vector machine,” 4th Int.
Conf. Softw. Eng. Adv. ICSEA 2009, Incl. SEDES 2009 Simp. para Estud. Doutor.
em Eng. Softw., pp. 216-221, 2009, doi: 10.1109/ICSEA.2009.92.

S. Chopade and P. More, “Effective bug triage with Prim’s algorithm for feature
selection,” Proc. IEEE Int. Conf. Signal Process. Commun. ICSPC 2017, vol.
2018-Janua, no. July, pp. 217-220, 2018, doi: 10.1109/CSPC.2017.8305842.

S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim, “Reducing features to improve
bug prediction,” ASE2009 - 24th IEEE/ACM Int. Conf. Autom. Softw. Eng., no.
Section 11, pp. 600-604, 2009, doi: 10.1109/ASE.2009.76.

30

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Y. Yin, X. Dong, and T. Xu, “Rapid and Efficient Bug Assignment Using ELM
for IOT Software,” IEEE Access, vol. 6, no. ¢, pp. 52713-52724, 2018, doi:
10.1109/ACCESS.2018.2869306.

J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, “Automatic bug triage using semi-
supervised text classification,” SEKE 2010 - Proc. 22nd Int. Conf. Softw. Eng.
Knowl. Eng., no. 60805024, pp. 209-214, 2010.

S. Mani, A. Sankaran, and R. Aralikatte, “Deeptriage: Exploring the effectiveness
of deep learning for bug triaging,” ACM Int. Conf. Proceeding Ser., pp. 171-179,
2019, doi: 10.1145/3297001.3297023.

J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Trans. Softw. Eng.
Methodol., vol. 20, no. 3, 2011, doi: 10.1145/2000791.2000794.

S. Q. Xi, Y. Yao, X. S. Xiao, F. Xu, and J. Lv, “Bug Triaging Based on Tossing
Sequence Modeling,” J. Comput. Sci. Technol., vol. 34, no. 5, pp. 942-956, 2019,
doi: 10.1007/s11390-019-1953-5.

W. Zou, Y. Hu, J. Xuan, and H. Jiang, “Towards training set reduction for bug
triage,” Proc. - Int. Comput. Softw. Appl. Conf., pp. 576-581, 2011, doi:
10.1109/COMPSAC.2011.80.

C. A. De Lara Pahins, F. D’Morison, T. M. Rocha, L. M. Almeida, A. F. Batista,
and D. F. Souza, “T-REC: Towards accurate bug triage for technical groups,” Proc.
- 18th IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2019, pp. 889-895, 2019, doi:
10.1109/ICMLA.2019.00154.

M. Zanoni, F. Perin, F. A. Fontana, and G. Viscusi, ‘“Pattern detection for
conceptual schema recovery in data-intensive systems,” J. Softw. Evol. Process,
vol. 26, no. 12, pp. 1172-1192, 2014, doi: 10.1002/smr.

A. Sarkar, P. C. Rigby, and B. Bartalos, “Improving Bug Triaging with High
Confidence Predictions at Ericsson,” Proc. - 2019 IEEE Int. Conf. Softw. Maint.
Evol. ICSME 2019, pp. 81-91, 2019, doi: 10.1109/ICSME.2019.00018.

S. Guo et al.,, “Developer Activity Motivated Bug Triaging: Via Convolutional
Neural Network,” Neural Process. Lett., vol. 51, no. 3, pp. 2589-2606, 2020, doi:
10.1007/s11063-020-10213-y.

X. Xie, W. Zhang, Y. Yang, and Q. Wang, “DRETOM: Developer
recommendation based on topic models for bug resolution,” ACM Int. Conf.
Proceeding Ser., pp. 19-28, 2012, doi: 10.1145/2365324.2365329.

W. Zhang, “Efficient Bug Triage for Industrial Environments,” Proc. - 2020 IEEE
Int. Conf. Softw. Maint. Evol. ICSME 2020, pp. 727-735, 2020, doi:
10.1109/1ICSME46990.2020.00082.

T. Zhang and B. Lee, “A hybrid bug triage algorithm for developer
recommendation,” Proc. ACM Symp. Appl. Comput., pp. 1088-1094, 2013, doi:
10.1145/2480362.2480568.

31

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

I. Alazzam, A. Aleroud, Z. Al Latifah, and G. Karabatis, “Automatic Bug Triage
in Software Systems Using Graph Neighborhood Relations for Feature
Augmentation,” IEEE Trans. Comput. Soc. Syst., vol. 7, no. 5, pp. 1288-1303,
2020, doi: 10.1109/TCSS.2020.3017501.

H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effective bug triage based on historical
bug-fix information,” Proc. - Int. Symp. Softw. Reliab. Eng. ISSRE, pp. 122-132,
2014, doi: 10.1109/ISSRE.2014.17.

R. Almhana and M. Kessentini, “Considering dependencies between bug reports
to improve bugs triage,” Autom. Softw. Eng., vol. 28, no. 1, pp. 1-26, 2021, doi:
10.1007/s10515-020-00279-2.

G. Yang, T. Zhang, and B. Lee, “Towards semi-automatic bug triage and severity
prediction based on topic model and multi-feature of bug reports,” Proc. - Int.
Comput. Softw. Appl. Conf., pp. 97-106, 2014, doi: 10.1109/COMPSAC.2014.16.

S. F. A. Zaidi, F. M. Awan, M. Lee, H. Woo, and C. G. Lee, “Applying
Convolutional Neural Networks with Different Word Representation Techniques
to Recommend Bug Fixers,” IEEE Access, vol. 8, pp. 213729-213747, 2020, doi:
10.1109/ACCESS.2020.3040065.

T. Zhang, G. Yang, B. Lee, and E. K. Lua, “A novel developer ranking algorithm
for automatic bug triage using topic model and developer relations,” Proc. - Asia-
Pacific Softw. Eng. Conf. APSEC, vol. 1, pp. 223-230, 2014, doi:
10.1109/APSEC.2014.43.

S. F. A. Zaidi and C. G. Lee, “Learning Graph Representation of Bug Reports to
Triage Bugs using Graph Convolution Network,” Int. Conf. Inf. Netw., vol. 2021-
Janua, pp. 504-507, 2021, doi: 10.1109/ICOIN50884.2021.9333902.

K. Somasundaram and G. C. Murphy, “Automatic categorization of bug reports
using latent Dirichlet allocation,” Proc. 5th India Softw. Eng. Conf. ISEC’12, pp.
125-130, 2012, doi: 10.1145/2134254.2134276.

S. F. A. Zaidi and C. G. Lee, “One-Class Classification Based Bug Triage System
to Assign a Newly Added Developer,” Int. Conf. Inf. Netw., vol. 2021-Janua, pp.
738-741, 2021, doi: 10.1109/1COIN50884.2021.9334002.

N. Sreenivas and S. J. Saritha, “Enhancement towards efficient bug triage with
software data reducing methods,” 2017 Int. Conf. Energy, Commun. Data Anal.
Soft ~ Comput. ICECDS 2017, pp. 3649-3652, 2018, doi:
10.1109/ICECDS.2017.8390144.

A. Goyal, “Effective bug triage for non-reproducible bugs,” Proc. - 2017
IEEE/ACM 39th Int. Conf. Softw. Eng. Companion, ICSE-C 2017, pp. 487-488,
2017, doi: 10.1109/ICSE-C.2017.41.

R. Jaiswal, M. Sahare, and U. Lilhore, “Genetic Approach based Bug Triage for
Sequencing the Instance and Features,” 2018 Int. Conf. Comput. Commun.

32

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Informatics, ICCCI 2018, pp. 1-7, 2018, doi: 10.1109/ICCC1.2018.8441350.

A. Yadav and S. K. Singh, “Survey Based Classification of Bug Triage
Approaches,” APTIKOM J. Comput. Sci. Inf. Technol., vol. 1, no. 1, pp. 1-11,
2016, doi: 10.34306/csit.v1i1.37.

V. B. Sawant and N. V. Alone, “A Survey on various Techniques for Bug Triage,”
Int. Res. J. Eng. Technol., vol. 02, no. 09, pp. 917-920, 2015, [Online]. Available:
http://www.academia.edu/download/54836058/IRJET-V219157.pdf

N. Bhardwaj and A. . Bhattacharya, “Survey on General Classification Techniques
for Effective Bug Triage,” Int. J. Comput. Sci. Eng., vol. 2, no. 11, pp. 6-10, 2015,
doi: 10.14445/23488387/ijcse-v2i11p102.

A. Goyal and N. Sardana, “Machine learning or information retrieval techniques
for bug triaging: Which is better?,” E-Informatica Softw. Eng. J., vol. 11, no. 1, pp.
117-141, 2017, doi: 10.5277/e-1nf170106.

J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, and H. Shah, “A survey on bug
prioritization,” Artif. Intell. Rev., vol. 47, no. 2, pp. 145-180, 2017, doi:
10.1007/s10462-016-9478-6.

T. Menzies and A. Marcus, “Automated severity assessment of software defect
reports,” IEEE Int. Conf. Softw. Maintenance, ICSM, pp. 346-355, 2008, doi:
10.1109/ICSM.2008.4658083.

A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity of a
reported bug,” Proc. - Int. Conf. Softw. Eng., pp. 1-10, 2010, doi:
10.1109/MSR.2010.5463284.

Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest neighbor
classification for fine-grained bug severity prediction,” Proc. - Work. Conf.
Reverse Eng. WCRE, pp. 215-224, 2012, doi: 10.1109/WCRE.2012.31.

P. Bhattacharya, M. lliofotou, I. Neamtiu, and M. Faloutsos, “Graph-based
analysis and prediction for software evolution,” Proc. - Int. Conf. Softw. Eng., pp.
419-429, 2012, doi: 10.1109/1CSE.2012.6227173.

A. Yadav and S. Kumar Singh, “An Information-Theoretic Approach for Bug
Triaging,” Proc. 8th Int. Conf. Conflu. 2018 Cloud Comput. Data Sci. Eng. Conflu.
2018, pp. 7-13, 2018, doi: 10.1109/CONFLUENCE.2018.8442506.

T. S. Mian, “Automation of Bug-Report Allocation to Developer using a Deep
Learning Algorithm,” 2021 Int. Congr. Adv. Technol. Eng. ICOTEN 2021, 2021,
doi: 10.1109/ICOTEN52080.2021.9493515.

K. Inkpen, ACM Digital Library., and ACM Special Interest Group on Computer-
Human Interaction., “Proceedings of the 2010 ACM conference on Computer
supported cooperative work.,” p. 450, 2010.

C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate retrieval of
duplicate bug reports,” 2011 26th IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE
2011, Proc., pp. 253-262, 2011, doi: 10.1109/ASE.2011.6100061.

33

E] turnltln Similarity Report ID. 0id:27535:36490817

PAPER NAME

r_final.pdf

WORD COUNT CHARACTER COUNT

7777 Words 43108 Characters

PAGE COUNT FILE SIZE

35 Pages 1.1TMB

SUBMISSION DATE REPORT DATE

May 30, 2023 11:42 AM GMT+5:30 May 30, 2023 11:43 AM GMT+5:30

@ 10% Overall Similarity 9“‘6@(o

The combined total of all hatches, including overlapping sources, for each database.

« 2% Internet database « 7% Publications database
« Crossref database +» Crossref Posted Content database

« 2% Submitted Works database

@® Excluded from Similarity Report

« Bibliographic material * Quoted material
» Cited material « Small Matches (Less then 8 words)

LIST OF PUBLICATIONS

Rishabh Sirohi, Priya Singh, “Automatic Bug Triaging Analysis using Machine Learning
Techniques: A Review”

Name of Conference: 2022 3rd International Conference on Issues and Challenges in
Intelligent Computing Techniques (ICICT)

Date of Conference: 11-12 November 2022
Date of paper publication: 20 March 2023

IEEE prure' Browse v My Settings w Help w Institutional Sign In

Confererces > 2022 3rd Inlemational Confer.. @)

Automatic Bug Triaging Analysis using Machine Learning Techniques: A Review

Fublisher: IEEE

Rishabh Sirchi; Priya Singh All Authors

28
Ful L) < © a

Text Views

Abstract Abstract:

As tzchnology iz ex tially expanding day by day, the de

Document

earliest 25 possible hey can deliver the product to o

cmer on time. Generally, in micro o Zations, identifying the

& 3 paricular bug is essy and not much time consuming but for big crganization it is ssill

|- Infroduction
veloper having the potential to resolve the bug on time which is one of the major task of bug
Il Research Methuduiog s that will help in performing Autamatic bug tiaging and will try
[—— gus on the basis of some sel of Ressanch Questions, which will help in knowing the statsbcal analyss of
these technigues
V. Resulis and Discussio
Tt T Ve Published in: 2022 3rd International Conference on Issuss and Challenges in Intelligent Computing Technigues {ICICT)
Shiciw Full Cutlins
Date of Conference: 11-12 Movernber 2022 INSPEC Accession Number: 22317457
Authors
Date Added to IEEE Xplore: 20 March 2023 DOl: 10.1108ICICTE5121.2022.10054588
Figuras i L
* |SEN Informaticn: Publisher: |IEEE
References Electronic |SBM:078-1-6654-2268-4

Pri D= dIFoD] ISEN:0T 2135423501 Conference Location: Ghaziabad, India
Keywords rint on Demand{PoD) :078-1-0354-8209-

https://ieeexplore.ieee.org/xpl/conhome/10064384/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10064384/proceeding

PROOF OF SCOPUS INDEXING
ICICT .2022 Homev Submission v Speakersv Committees Program~ Supportv Sponsors v

Manuscript submission date extended till 03 September 2022

Accepted papers will be submitted for the possible inclusion into IEEE Xplore.

WELCOME TO ICICT-2022

Department of Information Technology, KIET Group of Institutions, Ghaziabad, India in association with IEEE UP Section is organizing 3" International
Conference on Issues and Challenges in intelligent Computing Techniques (ICICT-2022) on November 11-12, 2022, ICICT-2022 is technically co-
sponsored by IEEE UP Section and IEEE USA. All accepted and presented papers will be submitted to IEEE for inclusion in IEEE Xplore Digital Library.

The main objective of the Conference is to stimulate and facilitate active exchange, interaction and comparison of approaches, methods and ideas
related to specific topics, both theoretical and applied, in the general areas related to the Intelligent Computing, Communication, intelligent
techniques, computing technologies, Software Engineering and other contemporary issues like High Performance Computing, Distributed Computing
and Grid Computing to foster the exchange of concepts and ideas. The main aim of this International Conference is to contribute to academic arena,
business world, and industrial community and in turn to the society.

Targeted audience of this conference would be representatives from Academia, Industry and Government Organizations who are involved or have
interest in Computing Technologies and its Applications. Overall the conference will provide the researchers and attendees with prospects for
national and international collaboration and networking amang universities and institutions from India and Abroad for promoting research.

Conference proceedings that meet IEEE quality review standards may be eligible for inclusion in the IEEE Xplore Digital Library. IEEE reserves the right
not to publish any proceedings that do not meet these standards. Conference related communications such as conference website, email, direct mail
solicitation, etc. may not reference or guarantee inclusion in the IEEE Xplore Digital Library. The objective of the conference is to bring together
researchers in the academic institutions and industries working in the related fields.

Indexing: The series will be submitted for inclusion to the leading indexing services including ISI Proceedings, El-Compendex, DBLP, SCOPUS, Google
Scholar and Springerlink.
_____d'

Paper Submission Link: Easy Chair Submission Portal

