
1

2

3

4

5

iv

ABSTRACT

As technology advances at an exponential rate every day, the development and testing

teams do their utmost to address problems as soon as they arise in order to meet customer

deadlines. Finding the appropriateedeveloper to address a specificbbug is typically simple

and quick in small organisations, but it can be challenging for large organisations to find

the developer who will be able to address the bug quickly, which is2one of the main tasks

of bug triaging. In this report, we2will examine numerous methods for automatically

triaging bugs and attempt to identify the optimal method based on a series of research

questions that will enable us to understand the statistical analysis of these methods.

v

CONTENTS

TABLE OF CONTENTS PAGE NO

CANDIDATE’S DECLARATION i

CERTIFICATE ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

CONTENTS v

LIST OF TABLES vii

LIST OF FIGURE viii

LIST OF ABBREVIATIONS ix

CHAPTER 1 INTRODUCTION 1

 1.1 BACKGROUND AND MOTIVATION 1

 1.2 BUG TRIAGING 2

 1.3 RESEARCH OBJECTIVE 3

 1.4 ORGANISATION OF THESIS 3

CHAPTER 2 LITERATURE SURVEY 4

 2.1 RESEARCH QUESTIONS FORMATION 4

 2.2 SEARCH STRATEGY AND STUDY SELECTION 5

 2.3 DATA EXTRACTION AND SYNTHESIS 6

 2.4 DESCRIPTION OF PRIMARY STUDIES AND QUALITY ANALYSIS 6

 2.5 YEAR-WISE DISTRIBUTION OF SELECTED PRIMARY STUDIES 6

CHAPTER 3 RESEARCH METHODOLOGY 18

 3.1 EXPERIMENTAL SETUP 18

 3.1.1 HARDWARE USED 18

 3.1.2 SOFTWARE USED 18

 3.2 SAMPLE DATASET 19

 3.3 TECHNIQUES USED 22

 3.3.1 TEXT CLASSIFICATION NAÏVE BAYES ALGORITHM 23

 3.3.2 MULTINOMIAL NAIVES BAYES ALGORITHM 23

 3.3.3 LINEAR SUPPORT VECTOR MACHINE 24

vi

CHAPTER 4 RESULTS AND DISCUSSIONS 26

CHAPTER 5 LIMITATIONS 28

CHAPTER 6 CONCLUSION AND FUTURE SCOPE 29

REFERENCES 30

APPENDICES 31

A. PLAGIARISM REPORT 31

B. LIST OF PUBLICATIONS 32

C. PROOF OF SCOPUS INDEXING 33

vii

LIST OF TABLES

Table No. Title Page No.

Table 2.1 Research Questions 4

Table 2.2 Description of Primary Studies 8

Table 2.3 Strengths and weakness of frequently used ML Techniques 15

viii

LIST OF FIGURE

Figure No. Title Page No.

Figure 1.1 Bug Triage flow 1

Figure 1.2 Big Triaging Framework 2

Figure 2.1 Year Wise Distribution offprimary studies 8

Figure 2.2 Different Bug Triaging Approaches 11

Figure 2.3 Different Machine Learning Techniques 12

Figure 2.4 Different Types of dataset used 14

Figure 2.5 Different Statistical Tests used 17

Figure 3.1 Sample Dataset 20

Figure 3.2 Shortddescription of the bug report submitted by therreporter 21

Figure 3.3 Short description of the assigned bug to developer 22

Figure 4.1 Accuracy bar graph of different techniques used 27

Figure 4.2 Experiment Output 27

ix

LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

RNN Recurrent Neural Network

SVM Support Vector Machine

DBRNN Deep Bidirectional Recurrent Neural Network with Attention

LDA Latent Dirichlet Allocation

1

Chapter 1

INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

In order to deliver2the customer's product2on schedule and to ensure that it has the

fewest possible flaws that won't ruin the customer experience, bug fixing has become

a crucial component for large organisations. Nowadays, practically all small and large

businesses use bug repositories (like Bugzilla),2which provide all the specific details

about the problems that are open, fixed, need to be rechecked, etc.Although2bug

repositories offer a wide range of services such as bug2status, bug2description, bug

summary, etc., there are still2two significant limitations that limit their use: big scale

bug2data, and bad quality2bug data.

According to [2], approximately 34,917 developers and2users reported 333,371

problems to Eclipse between 2001 and 2010. Therefore, handling2such a vast amount

of2data manually becomes2extremely difficult. Low2quality bug data, on the2other

hand, is made up2of noisyyand redundant data. These2two factors are extremely

important, and developers should make sure they are taken out of the dataset2during

the2pre-processing step itself to avoid noisy data misleading them and redundant data

wasting valuable development time when managing bugs. So, these factors made us

realise that there is a need to work upon this field and research on different techniques

to automate this process.

 Figure 1.1[5] Bug Triage flow

2

1.1 BUG TRIAGING

A human triager selects the recipient of each bug after it has been reported on the bug

repository. If theedesignated developerris able to solve the bug, it is listed as resolved;

however, if the developer was unsuccessful or left the firm during that period, then a

new or another developer is assigned to resolve it. Bug triaging is the full process of

selecting a developer to address a bug. Figure 1.1 depicts an overview of it. Manually

assigning the bug is a difficult task. It is challenging to examine the numerous

descriptions of bugs before appointing the appropriate developer to work on them as

you can see in Figure 1.2.Additionally, because developers' profiles frequently

change from one project to another, it is unknown if they are still working on that

particular project.

Figure 1.2[3] Bug triaging framework

Over time, it became apparent that Automatic Bug triaging was necessary to address

all of these issues. Automatic bug triaging will do away with the need for human

triagers to actively assign bugs to the appropriate developers. In this review study, we

3

reviewed a number of bug triaging strategies that have been used by different

academics. Our objective is to find the best approach that will work quickly and with

minimal error.

1.2 RESEARCH OBJECTIVE

This research project's objective is to provide a thorough literature review to address

queries about automatic bug triaging using machine learning algorithms. Through

this review effort, we have looked at a number of strategies that have been put out by

different scholars and have statistically determined which one is the best and least

time- and error-consuming.

 1.3 ORGANIZATION OF THESIS

The remaining chapters of the thesis are as follows:

Chapter 2 consists of a discussion of Literature review of our own work in2the field

of bug triaging represents Chapter 3 discusses the methodology for the review where

we mention the research questions formed, and the search strategy we have adopted

following that the exclusion and inclusion criteria. Chapter 4 shows the results of

our implementations Chapter 5 talks about the limitations of bug triaging which are

still a major drawback Chapter 6iconcludes the paper and mentions the futureiscope.

4

Chapter 2

LITERATURE SURVEY

2.1. RESEARCH QUESTION FORMULATION

The major goal oftthe review is to look at several strategies that have been put out by

different scholars and statistically determine which technique is the besttamong them

and will be the least time-consuming and error-prone. As indicated in table 2.1, we

have developed the following research questions to help us examine and comprehend

automatic bug triaging technique. Firstly, we identify different type of2techniques

usedifor bug triaging (RQ1). Similar to this in RQ2, we identified variousitypes of

datasets used2for bug triaging. In2RQ3, we concentrated on understanding the

benefits and drawbacks of the various strategies employed thus far.

 Table 2.1. ResearchiQuestions

RQ. No Research2Questions Objectivee

RQ1) What2are2the2different2categories

of2bug2triaging2approaches

proposed?

To list the many approaches

currently being utilised for bug

triaging.

RQ2) WhichhDatasets are most

commonlyuused?

For the purpose of identifying the

various dataset types used2for

bug triaging.

RQ2.1) What is2the effect on2results based

upon2the dataset2used?

To identify2whether a particular

type of2dataset gives

better2results and

performance2than other2for bug

triaging.

5

2.2. SEARCH0STRATEGY AND STUDY0SELECTION

While conducting our review we focused mostly on the latest and all the advanced

techniques. After conducting a thorough search and analysing the papers that were

found afterithe initialiretrieval, we chose the most promising research to be

examined.

Triage AND (Bug2OR2Defect) AND2Machine Learning (classification OR

regression) AND2Information Retrieval2AND Developer2Recommendation AND

Severity2Prediction AND Topic2modelling AND Graph model2AND Tossing

(support0vector machine-OR9decision tree OR9neural network OR2linear

regression9OR-multiple regression7OR multivariate regression OR

genetic5algorithm OR-search-based techniques)

We chose fiveIdatabases to search based on the access that was accessible to the

databases:

ACM Digital Library

 IEEE Xplore

 Springer

 Science Direct

 John Wiley Inc.

For insect triaging in the SLR, we incorporated empirical investigations employing

machine learning, tossing, information retrieval, topping, and graph approaches. We

therefore used our own inclusioniand exclusionacriteria to effectively choose these

research, which enabled us to choose the papers in line with the standards we used to

evaluate the investigations.

RQ3) What are theestrengths and

weaknesses offML modelsuused

for Bugttriaging?

To identify2the advantages2and

disadvantages of2the techniques

used.

RQ4) What2are the mostly2used

statistical test2to evaluate2Bug

triaging using2ML models?

To identify2studies in

which2results of automated2bug

triaging using various2techniques

are validated using2statistical

tests.

6

InclusionCCriteria

1. Research on automatic bug triaging utilising a mix of two or more strategies.

2. Research projects that evaluate the effectiveness of various machine learning

methods.

3. Research projects that involved developer involvement in bug repositories.

4. Research that describes the technique andeexperimental testing of pproposed

algorithms.

 ExclusionCCriteria

1. Research based on estimation of bug severity.

2. Research that are without any experimental9results or empirical6analysis.

3. Research that are focusing on bug9classification rather than9severity prediction.

4. Studies without the right performance metrics and dataset

2.3. DATA EXTRACTION AND SYNTHESIS

In order to answer the RQs, after selecting the primary studies, we made a data

extraction sheet to store all the important information related to these studies.

Prepared different fields in the sheet were we mentioned following details related to

studies: Study title; year of publication, name of journal or conference, dataset type,

techniques used for bug triaging, statistical test used, performance measure and

merits/demerits of that study.

While analysing the data we focused on both quantitative and qualitative viewpoints.

We considered this as an important perspective because through qualitative analysis

one get to know about statistical measures takes, validation methods adopted, type of

dataset used and usage of metrics whereas quantitative analysis consists of

performance measures adopted for a type of data set. Summary of all the RQs are

showcased in further sections with the help of charts, graphs, plots and tables.

2.4. DESCRIPTION5OF PRIMARY STUDIES9AND

QUALITY0ANALYSIS

Following the application of inclusion and exclusion criteria on 48 studies, we were

able to consider thirty-six studies as mentioned in Sect II. Now scoring of these

7

studies was done where 14 being assigned as highest score and 0 as the lowest. In

order to select good quality papers, studies having score equal to or greater than 8.5

were selected for answering our RQs while less than 8.5 score studies were rejected.

Studies which were not having an ample citation count and didn’t considered good

amount of references, where rejected (N. Sreenivas [35], A. Goyal[36] and R.

Jaiswal[37]) after the quality assessment phase. The accepted studieswwere sorted

yearlywwise and arranged inaascending order as listed innTable 2.2. Out of the 33

primary studies selected, 27 % of the selected2primary studies are published2in

journals, and 73 % are published in conference proceedings.

2.5. YEAR-WISE0DISTRIBUTION OF SELECTED7PRIMARY

STUDIES

From6January 2003 to January 2022, the year-wise0distribution of7primary studies

in shown in figure 2.1. We haveeonly considered lastttwo decades’ studies tottrack

the change in technology. [4] used the technique of text categorization for bug

triaging. Text categorization is one of the most traditional and popular technique

which is still used where the combination2of feature selection and2instance selection

is used to reduce the dataset for bug triaging. Till 2010 studies mainly focused using

machine learning solely or in combination with other technique. [17] proposed a new

approach of recommendation system for developers.

Figure 2.1. Year Wise8Distribution of Primary0Studies

2002

2004

2006

2008

2010

2012

2014

2016

2018

2020

2022

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Year-Wise Distribution

8

Table 2.2 Descriptionnof Primary Studies

Primaryy

Study

Authorr Referencess

Primaryy

Study

Authorr Referencess

PS1 Davor

Cubranic

(2004)

[4] PS18 Xin Xia (2016) [5]

PS2 John

Anvik

(2006)

[6] PS19 V Govindasamy

(2016)

[7]

PS3 Gaeul

Jeong

(2009)

[8] PS20 Sun-Ro Lee (2017) [9]

PS4 Syed

Nadeem

Ahsan

(2009)

[10] PS21 Snehal Chopade

(2017)

[11]

PS5 Shivkumar

Shivaji

(2009)

[12] PS22 Ying Yin (2018) [13]

PS6 Jifeng

Xuan

(2010)

[14] PS23 Senthil Mani (2019) [15]

PS7 John

Anvik

(2011)

[16] PS24 Sheng-Qu Xi

(2019)

[17]

PS8 Weiqin

Zou

(2011)

[18] PS25 Cícero Augusto De

Lara Pahins (2019)

[19]

PS9 Huzefa

Kagdi

(2012)

[20] PS26 Aindrila Sarkar

(2019)

[21]

PS10 Jifeng

Xuan

(2012)

[2] PS27 Shikai Guo (2020) [22]

PS11 Xin Xie

(2012)

[23] PS28 Wei Zhang (2020) [24]

PS12 Tao Zhang

(2014)

[25] PS29 Iyad Alazzam

(2020)

[26]

PS13 Hao Hu

(2014)

[27] PS30 Raf Almhana(2020) [28]

PS14 Geunseok

Yang

(2014)

[29] PS31 Syed Farhan
Alam Zaidi (2020)

[30]

PS15 Tao Zhang

(2014)

[31] PS32 Syed Farhan
Alam Zaidi
(2021a)

[32]

PS16 Ali Sajedi

Badashian

(2015)

[33] PS33 Syed Farhan
Alam Zaidi
(2021b)

[34]

9

Various surveys that are closelyyrelated to bugttriaging approaches have been

conducted in the past [38 - 42] and have classified the various techniques based on

their own criteria for classifying bug reports and carrying out automatic bug triaging..

[38] classified2the bug triaging2techniques into three2categories namely; Metadata

approach,2Profile based and MachineLLearning based approach where Metadata

includes time stamp of bug and bug history which is used to allot appropriate

developer to bug report, profile based approach recommend the bug report to

developer on the basis of Developers profile history where on the other hand Machine

learning algorithm uses already existing bug report to9train a classifier and9then use

this classifier to assign new9bug reports to developer.

Anotherrsurvey on bug triagingiis provided by [39], who classified different bug

triaging techniques into categoriesllike Text categorization,TTossing Graph, -

Recommendation,RRole-Based, and Text Mining. In contrast, [40] focused primarily

on the application of differentMMachine learning algorithms (Nave Bayes,dDecision

Tree, K-Nearest-Neighborr, Neural Network)ffor bugttriaging.

According to [41], there are only two categories that may be used to classify bug

assignment and evaluation: machine learning and information retrieval. While [42]

concentrated on conducting surveys basedoon bug prioritisation rather thanbbug

triaging, they conducted a comparativeaanalysis of both techniquesaand came to the

conclusiontthat information retrieval methods are more accurate thanmmachine

learning algorithms. Bug prioritising, according to Jamal Uddin et al. [42], is a

difficult and error-prone process because any poor choice here would result in

inefficient resource use and additional time loss.

[43 - 46] worked upon predicting severity of bug using Machine Learning algorithms

where [43] built and designed a tool named SEVERIS that effectively predict

the9severity of bug based on9rule-learning technique. On the hand [44] make the use

of Naïve9Bayes classifier to9predict whenever a new bug arrives whether it belongs

to a “severe” or “non-severe” category. [45] used BM25 textual similarity function

to measure9the similarity between the bugs in bug repository and used KNN to

PS17 Jifeng

Xuan

(2015)

[1]

10

determine 9the severity of the bugs. [46] focused on using Graph approachhto

determine the severityyof bug reportssbased on graph metrics.

 The following studies [47], [48], [49], and [50] have been eliminated from ourrreview

based on ourrinclusion-and-exclusion criteria since they do not meet our strict

research standards. Despite the fact that we discovered a sizable number of articles

on buggtriaging and severity prediction, we found mosttof them were related to

survey papers only. To the best of our knowledge regarding searching paper we

didn’t find any paper that provide the systematic review related to automatic bug

triaging. So, we decided to write a systematic literature review related to automatic

bug triaging so that we can get the detailed analysis regarding the technique used till

now and can contribute further to improve it.

Now we summarises the methods employed, presents the findings of thepprimary

studies as the researchqquestions we have developed, compares them in light of

several criteria, and identifies any research gaps.

RQ1: What areethe different state-of-the-artpproposed for bug triaging?

To adopt the Automatic Bug triaging, wide range of techniques have been used by

practitioners and researchers over the past 20 years. The purposeeof these methodssis

to do awayywith manual bugttriaging, which is a time-consuminggand error-prone

waytto assign a suitableddeveloper tooa bug report. After analysing 33 papers, we

categorise the techniques into the following groups;

 Text Classification and Machine Learning(TC+ML)

 Tossing Graph (TG)

 Topic Modelling (TM)

 Machine Learning (ML)

 RecommendationSSystem and Machine Learning (RS+ML)

 RecommendationSSystem and Information Retrieval (RS+IR)

 Graph and Machine Learning (Graph + ML)

 Ensemble Learning Machine

Theffigure 2.2 clearly showstthat machine learning algorithms account for around

33% of the techniques utilised for automatic bug triaging. A subject modelling

approach has been selected over the deployment of a recommendation system

11

together with a machine learning algorithm. We also discovered that the accuracy of

the output we get from the ML method, Graph, and Tossing Graph is nearly identical,

despite a small variance in percentage.

 Figure 2.2. Different bug triaging approaches

[1 - 3], [7], [8], [11], [12], [16], [22 - 24], [29 - 30], [38], [39], [41] used Machine

Learning Algorithms as shown in figure 2.3 tooassign a bug tooan appropriate

Developer where [1], [7], [16], [22] models are based on Text categorisation

technique where they have used the combinationnof feature selectionnand instance

selection to reduce the dataset for buggtriaging whereas [39] only focused on feature

selection to reduce the dataset and predict bug performance using Naıve Bayes and

Support Vector Machine.

[30] suggested a method for automatically triaging bugs that is similarly based on text

categorization. Text categorization, sometimes referred to as textcclassification, is a

method for automatically classifying a group of documentsiinto groups based on a

preset set of categories. Using the bug's description, developers will be anticipated in

this paper. In order to forecast the correct developer, this work used supervised

machineelearning technique with a Nave Bayescclassifier.

[3] used DBRNN-A that focused on syntactic and semantic features using

unsupervised Machine learning.

0

2

4

6

8

10

12

14

ELM Graph +
ML

ML RS + IR RS + ML TC + ML TG TM

Countoof Papers byyTechnique used

12

 Figure 2.3. Different Machine Learning techniques

[2] focused on using Prim’s method, [8] created ML based recommender system to

deal bug whereas [11] used SVM that trains a classifier for each new Developer to

resolve the bug. [12] proposed a ML based recommender system called as BugFixer

which recommends bugs to new developer on the basis of historical bug information.

[16] focused on dealing noisy data by using feature selection which improved the

performance by 5%. [22] introduces a model that-focus9on reducing-the data9scale

and-improving the quality. To avoid random grouping of data they used clustering in

this approach to group9the-similar bug9reports which make it easy9to assign the9bug

to the appropriate9developer whereas [23] used valid9time split-evaluation

where9sequentially train9and-test on a0large-industrial data set-is done.

[24] and [38] proposed deep learning based bug triaging technique using CNN where

[24] focused on finding technique best for word representation by comparing

three8embedding techniques: 9two context-insensitive; Word2Vec (Word to Vector),

GloVe (Global Vector) and one context-sensitive; ELMo (Embedding’s from

Language Models) and [38] used word2vec9method in-combination9with CNN

(CNNDA)-and9One-Hot word vector9methods in conjunction9CNN for the same.

[29] proposed a semi-automated approach using machine learning. It is a type of text

categorisation technique where bug reports are called as text documents and

document label are the developers names appropriate to resolve the bug reports.

27%

32%

9%

23%

4%
5%

Percentage

Naïve Bayes SVM RNN

CNN Logistic Regression Clustering

13

A8supervised machine-learning9algorithm takes-a9set offinstances-as9input with

known-labels9and generates-a classifier and then suggests the future bug reports to

an appropriate developer based on the classifier used.

[41] focused to train a quality Developer recommender system by choosing four

developer features, namely9network-centrality, developer9workspace, developer

expertise, and9transmissibility of9developers to know among them which is crucial

for the bug reassignment and then predict the potential developer by applying that

feature to six Machine learning algorithms.

[4] and [5] introduced new techniques to reduce the bug tossing time where [4] used

Markov chain based graph model that detect the tossing history of bug and then find

the potential developer whereas [5] focused on improving the bug triaging efficiency

by integrating three important aspects, the9textual content in the9bug-reports,

the9metadata in the9bug9reports, and the9tossing sequence-of9the bug reports.

[6] used Graph based RFSH Algorithm and [28] used Information retrieval

techniques to solve the bugs.

[15] proposed an approach that combined topic modelling and9multi-feature (i.e.

component, product, severity and priority) where topic modelling is used to extract

topic from bug repository using LDA and multi-feature is used to identify

corresponding reports9that have same multi-feature with the new bug reports. On the

basis of this user is able to recommend9the appropriate developer9to fix the bug

and9predict its9severity also.

 RQ2: Whichhdatasets are mosttcommonly used for Bug Triaging?

Over the years, scientists have carried out a wide variety of experiments. Typically,

open source to commercial data sets are used for these experiments. 33 original papers

were examined, and it was discovered that just two employed industrial data sets

while the others conducted experiments using open-source datasets. The proportion

of primary research using various open bug repositories is shown in Figure 2.4.

14

Figure 2.4. Differentttypes of Datasetuused

RQ2.1: Whatiis the effect of different types of Dataset on the performance of Bug

Triaging?

Only a few experiments [9], [27] that employed industry data sets yielded findings

that were superior to those of the openssource dataset. Few factors are mostly

determined to be in charge of its performance. First off, compared to open source, the

quality ofbbug reports for commercial applications is carefully maintained. Since bug

reports are created byyusers, contributorss, and project participants for open-source

projects. Because there are so many different types of open source system issue

reports, it is more likely that they will be of lesser quality and contain more duplicates.

On the other side, the Quality Assurance team writes and properly structures the bug

reports for industrial projects. Second, since the open source development community

is very broad and unstable. In contrast to industrial projects, which are more

structured and solid, open source projects allow for any developer to join or leave at

any time. Last but not least, compared to a balanced dataset of industry projects, the

performance accuracy of open source is hampered by more imbalanced data..

RQ3: What areethe strengthssand weaknesses of frequently used ML models for

Bug triaging?

0

10

20

30

40

50

60

Mozilla Eclipse GCC OpenOffice Local Dataset

Distribution of Database

Percentage of Studies Papers

15

DifferentMMachine learning algorithms vary in their advantages and drawbacks.

Knowing them is essential since it aids in choosing the right algorithmffor the bug

report. After knowing the strength and weaknesses of the algorithm new researchers

and software developers would be able to select the algorithm suitably to perform

automatic bug triaging easily, efficiently and effectively. Strengths and weaknesses

of various machine9learning techniques used are depicted in table 2.3.

Table 2.3. Strengths and Weaknesses of frequently used ML techniques

ML

Algorithm

Strength Weaknesses

Logistic

Regression

In terms of output, logistic

regression provides high

probabilistic interpretation

capabilities, and overfitting can

be avoided. Updates to any new

data often use stochastic gradient

descent.

Logistic regression typically

performs poorly for non-linear

decision boundaries. It is

inappropriate for really

complex partnerships.

Support

Vector

Machines

(SVM)

The SVM algorithm, a subset of

supervised machine learning,

may also simulate non-linear

decision boundaries. In n-

dimensional space in particular, it

is resistant to overfitting.

Compared to the majority of the

othermmachine learning

algorithms, provides more

accurate results.

Scalability of huge datasets is a

major issue with SVM, and it is

also more memory-intensive,

making it difficult to tune by

choosing the right Kernel.

Naive Bayes

(NB)

Another sort of supervised

machinellearning method that is

simple to use, predicts results

accurately, and is easy to execute

is naive Bayes.

When the dataset is huge, it

occasionally fails to forecast the

outcomes accurately. Because it

assumes that all features tend to

be independent, it is not

16

appropriate for situations found

in real life.

Clustering

Due of its ease of use and

simplicity, K-means is frequently

employed as a clustering

algorithm for bug reporting.

Occasionally, it becomes

challenging to mention the

clusters' number. K-means can

onlyyhandle numerical data, as

well. Therefore, converting bug

reports into numerical format

becomes a time-consuming

process for analysis.

RQ4: What areethe mostly useddstatistical test tooevaluate Bug triaginggusing ML

models?

The use of statistical tests in research for modelpprediction serves as a technique to

reinforce the model's predictions by statistically analysing them. Only 27% of the 33

primary studies [4, [9], [11–13], [17], [18], and [20–22] that we chose for review used

statistical testing. Figure 2.5 illustrates the application of statistical test distribution. The

Friedmanttest, t-test, andCChi-squared test were each employed by two investigations,

whilst fiveestudies used theeWilcoxon signed-rankktest for comparative statistical

analysis. It is notable that more studies have concluded that nonparametric tests, suchhas

the Wilcoxonnsigned-rank test, are appropriate for statistical testing than parametric t-

tests. Bonferroni-Dunn test and Nemenyi test are both only applied in one study each.

17

Figure 2.5. DifferenttStatistical testtused

0 1 2 3 4 5 6

Wilcoxon Signed-rank Test

t-test

Friedman Test

Nemenyi test

Chi-Squared Test

Bonferroni-Dunn test

No. of Studies

18

Chapter 3

 RESEARCH METHODOLOGY

3.1 EXPERIMENTAL SETUP

In this section, we will provide a concise overview of the hardware and software tools

employed in our research. Additionally, we will delve into the performance measures,

framework, and methodology utilized throughout the study.

3.1.1 HARDWARE USED

The proposed project is based on ML approaches, which revolve around classification;

the only hardware instrument required for implementation is a computer system. The

model is created and run on a laptop with the given minimum hardware requirements.

 System Type Windows 10, Macintosh

 Processor Core i3 processor

 RAM 4GB

 Hard disk 500GB

3.1.2 SOFTWARE USED

The Jupyter Notebook and Anaconda Navigator tools were used to implement each ML

model. 3.6 Python Python is a general-purpose, interpreted object-oriented programming

language. It is a language that is open-source and free grown in popularity as a result of

its condensed, straightforward, and extensive library support.

19

3.2 SAMPLE DATASET

This section describes the dataset and ML methods that we employed to complete the task

at hand. The dataset will be covered in detail in the first section of this chapter, and all

the machine learning and optimisation approaches that we employed in this study will be

covered in the second half.

Input: A bug report in natural language prose that the reporter submits after describing

the issue.

Output: The component in which the bug might possibly exist, together with the

developer (or list of developers) who could be given responsibility for fixing it.

A problem is reported by a user through the software's buggtracker. Since the description

of the bug provided by the user is a natural language text, natural language processing is

utilised to extractppertinent keywords frommthe bug report thatwwould explain the bug

the user has experienced. Stop-word elimination and stemming are used during

processing to extract pertinent keywords from the bug report's description. Based on the

previously learned dependencies, these extracted keywords are utilized to pinpoint the

component that is most likely to be problematic. A list of developers will then be informed

of this bug's resolution based on their faulty Component and Tossing History. It is

important to choose the developers on the list such that there is the least possible chance

that the bug will be reassigned. The developer and the component involved in the bug are

noted/labelled in the bug report after it has been fixed. For the purpose of supervised

learning from the repaired bugs, a dependency structure gradually develops.

An open source software bug tracker tool's dataset is a collection of bug reports that have

been repaired and contain the relevant details about the components, developers, and

reassignments. This data is classed, categorised, and partially organised. The bug tracker

programme stores a user-submitted bug report, which is often a natural language text, in

XML format. Detailed information in the dataset

• Severity: How serious the bug is determined how quickly it needs to be corrected.

• Product: The specific software program to which the bug relates.

• Component: The product's pertinent subsystem for the bug that was reported.

20

• Assigned to: The name of the developer who was given responsibility for fixing the bug.

• Brief description: Incorporates user-embedded natural language text.

• Bug status: A bug's condition as of each update. REOPENED, NEW, ASSIGNED,

RESOLVED, VERIFIED.

• Fix: Marking the bug report as needing maintenance. WORKSFORME, REMIND,

INVALID, FIXED.

These details enable the establishment of dependencies between the developers,

components, and reassignment.

Figure 3.1 Sample Dataset

An illustration of a report in an assignedto.xml data set. Along with the date and time of

each update, it identifies the developer to whom it was allocated.

21

Figure 3.2 Short description of the bug report submitted by the reporter.

We used a dataset in JSON format with roughly 1,60,000 well-structured reports in order

to increase efficiency. The training data set in JSON format compares each report-id's

update("when") in the relevant files, together with the "what" content present in the brief

description (to get the bug report), component (to get the component), and assigned to

(the developer). The pre-processed file is converted into a feature-vector pair, with the

developer serving as the vector and the bug report and the component in question as the

feature. When receiving problem reports, the classifier uses the feature-vector pair as

input to choose the appropriate developer. With the aid of an additional feature-vector

pair (component and developer) collected by the classifier, graphs are generated.. The

next likely developer who can repair the bug is identified by combining the probabilities

of a developer fixing a bug in a specific component and passing responsibility to another

developer.

22

Figure 3.3 Short description of the assigned bug to developer

3.3 TECHNIQUES USED

The dataset being used affects the different Automatic Bug Triaging techniques. After

parsing, the training dataset was processed through stop-word removal and stemming.

Stop-word elimination and stemming are accomplished using the Snowball Stemming

algorithm. The data set is transformed into feature vectors using a multinomial NB

classifier.

Using an XSLT parser, the product, component, and brief description of each bug from

the Training data set are parsed to create a uniform text file. Each bug's report ID is

extracted from theeassigned-to.xml file, together with the "when" attribute of each

update, and compared to the corresponding entries in the short-desc.xml, product.xml,

and component.xml files. The extracted data is then exportedtto a text file in aatext

processing-friendly format.

23

3.3.1 TEXT CLASSIFICATION NAÏVE BAYES ALGORITHM

Algorithm: NAIVE BAYES CLASSIFIER - Text classification

Input: T - Training corpus

B - New Bug Report

Output: dj - The developerrwith the highest probabilityyto whom the bug will be

assigned

1. From Training corpus T, extract Vocabulary V (collect unique words from all

bug reports)

2. Initialize P(dj) as an empty dictionary for each developer dj in D

3. for each developer dj in D do

 reportsj ← all bug reports in developer dj from T

P(dj) ← |reportsj| / |total no. reports| (calculate the prior probability P(dj)

for developer dj) end for

4. Textj ← concatenate all bug reports in T for each developer dj

5. Initialize P(wk|dj) as an empty dictionary for each word wk in Vocabulary V

6. for each word wk in Vocabulary V do

 nk ← count the number of occurrences of word wk in Textj

P(wk|dj) ← (nk + const) / (n + const * |Vocabulary|) (calculate the

conditional probability P(wk|dj) with Laplacian Smoothing) end for

7. Calculate the probability P(B|dj) for each developer dj using the words in the

New Bug Report B:

 Initialize P(B|dj) as 1

 for each word in B do

 if the word exists in Vocabulary V then

 P(B|dj) *= P(w|dj) (multiply the conditional probability of

each word in B) end for

8. Select the developer dj with the highest probability P(B|dj) and assign it to dj

9. return dj as the developer with the highest probability to whom the bug will be

assigned

3.3.2 MULTINOMIAL NAIVES BAYES ALGORITHM

Algorithm: TRAIN MULTINOMIALNB - Text classification

Input: R - Training Corpus (List of bug reports)

24

C - List of developers

Output: V - Vocabulary prior - Prior probabilities

 condprob - Conditional probabilities

1. V ← extract Vocabulary from R (collect unique words from all bug reports)

2. N ← count the total number of bug Reports in R

3. Initialize prior as an empty dictionary

4. Initialize condprob as an empty dictionary

5. for each developer d in C do

6. Nc ← count the number of bug reports in developer d from R

prior(d) ← Nc / N (prior probability of developer d)

wordsc ← collect all words from all bug reports in developer d

Initialize T0_c as the count of words in wordsc

Initialize condprob[d] as an empty dictionary

for each word w in V do 12. Tc ← count the occurrences of word w in

wordsc

T0_c ← count the total number of words in wordsc

condprob[d][w] ← (Tc + 1) / (T0_c + |V|) (apply Laplacian

Smoothing) end for end for

7. return V, prior, and condprob

3.3.3 LINEAR SUPPORT VECTOR MACHINE

Algorithm: Linear SVM

Input: X - Training data (features)

 y - Training labels

C - Regularization parameter

Output: w - Weight vector b - Bias term

1. Initialize the Lagrange multipliers α to zeros for each training example.

2. Define the learning rate η and the number of iterations.

3. for t = 1 to number of iterations do

 4. Select a training example (xi, yi) randomly from X and y.

5. Compute the decision function: f(xi) = Σ(α * yi * xi) + b.

25

6. Compute the margin: margin = yi * f(xi).

7. if margin < 1 then 8. Update the weight vector: w = w + η * (yi * xi).

9. Update the bias term: b = b + η * yi.

10. Update the Lagrange multiplier: α = α + η * C.

8. else 12. Update the Lagrange multiplier: α = α + η * C.

9. end if end for

4. return w, b as the learned weight vector and bias term for the linear SVM.

26

Chapter 4

RESULT AND DISCUSSION

To evaluate the effectiveness of our proposed algorithm, we utilized bug data from

Mozilla and Eclipse. We performed a comprehensive analysis of the entire lifespan of

both applications. To ensure thorough coverage, we divided the bug data into 10 folds

and conducted 9 iterations. During the data collection process, we gathered four types of

information from the bug reports:

1. Keywords: We extracted keywords from the bug descriptions and comments provided

in the bug reports. These keywords were useful for classification and analysis

purposes.

2. Bug source: We retrieved details about the product and component to which each bug

was assigned, as mentioned in the bug reports. This information aided in categorizing

the bugs based on their respective areas within the software.

3. Temporal information: We recorded the dates when the bugs were reported and when

they were fixed. This temporal data helped us analyze the timeline and duration of bug

resolution.

4. Developers assigned: We compiled a list of developer IDs assigned to each bug. This

information allowed us to examine developer involvement and assignment patterns

throughout the bug resolution process.

In our studies, we changed the amount of the vocabulary and test set. Figure 4.1 shows

that when 90% of the document corpus is utilised asitraining andi10% as theitest set, the

algorithm accurately assigns just under 75% of the bugs. As the test corpus size2is

increased to 50, the accuracy gradually decreases to 65%.

27

Figure 4.1 Accuracy bar graph of different techniques used

Figure 4.2 Experiment Output

Finally, accuracy of around 67.12% is reached with 10ifold cross validation, while

accuracy of 67.00% is attained with linear SVM as shown in Figure 4.2.

28

Chapter 5

LIMITATIONS

After doing comparative9study of Machine9learning techniques used for automatic bug

triaging, we found that there are some limitations in the current Machine learning

technique which are as follows;

 Natural Language is used to write bug reports. Consequently, if bug reports are of poor

quality, a useriwill not beiable to obtain enough information.

 Because trials are typically conducted on open source projects, it is questionable

whether or not identical results will also be obtained through industrial projects.

 Manual selection of the dataset and application of the proper algorithm is used to test

the outcomes. Therefore, there is a potential that the experiments will be biassed or

mistaken.

 When assigning developers, there is a possibility to eliminate a candidate by looking

at their bug-resolving history. If they haven't fixed more than five issues, they may be

able to in the future.

 Only a select few algorithms are tested for bug severity predictions. Therefore, it

should be conducted and evaluated against other algorithms in order to gain higher

accuracy.

29

Chapter 6

CONCLUSIONNAND FUTURE

SCOPE

The main goal of automatic2bug triaging is to use a method that takes less time and is

less prone to mistakes. Over the2past 20 years, academics have developed a variety of

machine learning techniques to solve these issues and have attempted to remove the

reliance on human triage to assign bugs to the right developer. Accordingly, the analysis

of these methods showed us how manual issue triaging may be substituted by

automatic2bug triaging using2a suitable ML system that can precisely predict developers'

responses to incoming bug reports. Automatic2bug triaging will do away with the need

for human triagers to actively assign bugs to the appropriate developers. Our objective is

to identify the optimum method that will take less time andbbe less pronetto error.

After reviewing these methods, we think that Automatic2Bug Triaging in macro

organisation utilising Machine learning algorithm will be necessary in the near future.

Implementing these techniques doesn't call for major hardware modifications; instead, it

opens up the possibility of handling bug reports independently of other2software bug

repositoriesulike Bugzilla, Jira, etc., and helps the organisation to manage bugs more

quickly. Although the majority of organisations have access to and utilise bug tracking

repositories, the cost of using these repositories will likely rise in the near future as data

volumes rise. The goal of organisations is to maximise profits while maintaining tight

control over costs, allowing for the best possible resource utilisation. By using this

automated2bug triaging technique, it will be possible to meet the deadline for the client's

project and save enough money to make the business profitable and both employers and

employees satisfied with the compensation received. According to us there is still some

possibility of performance enhancement and we will be comparing most frequently used

Machine Learning techniques on some specific performance metrics.

30

REFERENCES

[1] J. Xuan et al., “Towards effective bug triage with software data reduction

techniques,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 1, pp. 264–280, 2015,

doi: 10.1109/TKDE.2014.2324590.

[2] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in bug

repositories,” Proc. - Int. Conf. Softw. Eng., pp. 25–35, 2012, doi:

10.1109/ICSE.2012.6227209.

[3] Barbara Kitchenham and S. Charters, “Методи за автоматично управление на

подемни устройства при Jack-up системите,” 2007, doi:

10.1145/1134285.1134500.

[4] D. Cubranic and G. C. Murphy, “Automatic bug triage using text categorization,”

16th Int. Conf. Softw. Eng. Knowl. Eng., pp. 92–97, 2004.

[5] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang, “Improving

Automated Bug Triaging with Specialized Topic Model,” IEEE Trans. Softw. Eng.,

vol. 43, no. 3, pp. 272–297, 2017, doi: 10.1109/TSE.2016.2576454.

[6] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,” Proc. - Int.

Conf. Softw. Eng., vol. 2006, pp. 361–370, 2006, doi: 10.1145/1134285.1134336.

[7] V. Govindasamy, V. Akila, G. Anjanadevi, H. Deepika, and G. Sivasankari, “Data

reduction for bug triage using effective prediction of reduction order techniques,”

2016 Int. Conf. Comput. Power, Energy, Inf. Commun. ICCPEIC 2016, pp. 85–90,

2016, doi: 10.1109/ICCPEIC.2016.7557229.

[8] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug tossing

graphs,” ESEC-FSE’09 - Proc. Jt. 12th Eur. Softw. Eng. Conf. 17th ACM SIGSOFT

Symp. Found. Softw. Eng., pp. 111–120, 2009, doi: 10.1145/1595696.1595715.

[9] S. R. Lee, M. J. Heo, C. G. Lee, M. Kim, and G. Jeong, “Applying deep learning

based automatic bug triager to industrial projects,” Proc. ACM SIGSOFT Symp.

Found. Softw. Eng., vol. Part F1301, pp. 926–931, 2017, doi:

10.1145/3106237.3117776.

[10] S. N. Ahsan, J. Ferzund, and F. Wotawa, “Automatic software bug triage system

(BTS) based on latent semantic indexing and support vector machine,” 4th Int.

Conf. Softw. Eng. Adv. ICSEA 2009, Incl. SEDES 2009 Simp. para Estud. Doutor.

em Eng. Softw., pp. 216–221, 2009, doi: 10.1109/ICSEA.2009.92.

[11] S. Chopade and P. More, “Effective bug triage with Prim’s algorithm for feature

selection,” Proc. IEEE Int. Conf. Signal Process. Commun. ICSPC 2017, vol.

2018-Janua, no. July, pp. 217–220, 2018, doi: 10.1109/CSPC.2017.8305842.

[12] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim, “Reducing features to improve

bug prediction,” ASE2009 - 24th IEEE/ACM Int. Conf. Autom. Softw. Eng., no.

Section II, pp. 600–604, 2009, doi: 10.1109/ASE.2009.76.

31

[13] Y. Yin, X. Dong, and T. Xu, “Rapid and Efficient Bug Assignment Using ELM

for IOT Software,” IEEE Access, vol. 6, no. c, pp. 52713–52724, 2018, doi:

10.1109/ACCESS.2018.2869306.

[14] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, “Automatic bug triage using semi-

supervised text classification,” SEKE 2010 - Proc. 22nd Int. Conf. Softw. Eng.

Knowl. Eng., no. 60805024, pp. 209–214, 2010.

[15] S. Mani, A. Sankaran, and R. Aralikatte, “Deeptriage: Exploring the effectiveness

of deep learning for bug triaging,” ACM Int. Conf. Proceeding Ser., pp. 171–179,

2019, doi: 10.1145/3297001.3297023.

[16] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:

Recommenders for development-oriented decisions,” ACM Trans. Softw. Eng.

Methodol., vol. 20, no. 3, 2011, doi: 10.1145/2000791.2000794.

[17] S. Q. Xi, Y. Yao, X. S. Xiao, F. Xu, and J. Lv, “Bug Triaging Based on Tossing

Sequence Modeling,” J. Comput. Sci. Technol., vol. 34, no. 5, pp. 942–956, 2019,

doi: 10.1007/s11390-019-1953-5.

[18] W. Zou, Y. Hu, J. Xuan, and H. Jiang, “Towards training set reduction for bug

triage,” Proc. - Int. Comput. Softw. Appl. Conf., pp. 576–581, 2011, doi:

10.1109/COMPSAC.2011.80.

[19] C. A. De Lara Pahins, F. D’Morison, T. M. Rocha, L. M. Almeida, A. F. Batista,

and D. F. Souza, “T-REC: Towards accurate bug triage for technical groups,” Proc.

- 18th IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2019, pp. 889–895, 2019, doi:

10.1109/ICMLA.2019.00154.

[20] M. Zanoni, F. Perin, F. A. Fontana, and G. Viscusi, “Pattern detection for

conceptual schema recovery in data-intensive systems,” J. Softw. Evol. Process,

vol. 26, no. 12, pp. 1172–1192, 2014, doi: 10.1002/smr.

[21] A. Sarkar, P. C. Rigby, and B. Bartalos, “Improving Bug Triaging with High

Confidence Predictions at Ericsson,” Proc. - 2019 IEEE Int. Conf. Softw. Maint.

Evol. ICSME 2019, pp. 81–91, 2019, doi: 10.1109/ICSME.2019.00018.

[22] S. Guo et al., “Developer Activity Motivated Bug Triaging: Via Convolutional

Neural Network,” Neural Process. Lett., vol. 51, no. 3, pp. 2589–2606, 2020, doi:

10.1007/s11063-020-10213-y.

[23] X. Xie, W. Zhang, Y. Yang, and Q. Wang, “DRETOM: Developer

recommendation based on topic models for bug resolution,” ACM Int. Conf.

Proceeding Ser., pp. 19–28, 2012, doi: 10.1145/2365324.2365329.

[24] W. Zhang, “Efficient Bug Triage for Industrial Environments,” Proc. - 2020 IEEE

Int. Conf. Softw. Maint. Evol. ICSME 2020, pp. 727–735, 2020, doi:

10.1109/ICSME46990.2020.00082.

[25] T. Zhang and B. Lee, “A hybrid bug triage algorithm for developer

recommendation,” Proc. ACM Symp. Appl. Comput., pp. 1088–1094, 2013, doi:

10.1145/2480362.2480568.

32

[26] I. Alazzam, A. Aleroud, Z. Al Latifah, and G. Karabatis, “Automatic Bug Triage

in Software Systems Using Graph Neighborhood Relations for Feature

Augmentation,” IEEE Trans. Comput. Soc. Syst., vol. 7, no. 5, pp. 1288–1303,

2020, doi: 10.1109/TCSS.2020.3017501.

[27] H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effective bug triage based on historical

bug-fix information,” Proc. - Int. Symp. Softw. Reliab. Eng. ISSRE, pp. 122–132,

2014, doi: 10.1109/ISSRE.2014.17.

[28] R. Almhana and M. Kessentini, “Considering dependencies between bug reports

to improve bugs triage,” Autom. Softw. Eng., vol. 28, no. 1, pp. 1–26, 2021, doi:

10.1007/s10515-020-00279-2.

[29] G. Yang, T. Zhang, and B. Lee, “Towards semi-automatic bug triage and severity

prediction based on topic model and multi-feature of bug reports,” Proc. - Int.

Comput. Softw. Appl. Conf., pp. 97–106, 2014, doi: 10.1109/COMPSAC.2014.16.

[30] S. F. A. Zaidi, F. M. Awan, M. Lee, H. Woo, and C. G. Lee, “Applying

Convolutional Neural Networks with Different Word Representation Techniques

to Recommend Bug Fixers,” IEEE Access, vol. 8, pp. 213729–213747, 2020, doi:

10.1109/ACCESS.2020.3040065.

[31] T. Zhang, G. Yang, B. Lee, and E. K. Lua, “A novel developer ranking algorithm

for automatic bug triage using topic model and developer relations,” Proc. - Asia-

Pacific Softw. Eng. Conf. APSEC, vol. 1, pp. 223–230, 2014, doi:

10.1109/APSEC.2014.43.

[32] S. F. A. Zaidi and C. G. Lee, “Learning Graph Representation of Bug Reports to

Triage Bugs using Graph Convolution Network,” Int. Conf. Inf. Netw., vol. 2021-

Janua, pp. 504–507, 2021, doi: 10.1109/ICOIN50884.2021.9333902.

[33] K. Somasundaram and G. C. Murphy, “Automatic categorization of bug reports

using latent Dirichlet allocation,” Proc. 5th India Softw. Eng. Conf. ISEC’12, pp.

125–130, 2012, doi: 10.1145/2134254.2134276.

[34] S. F. A. Zaidi and C. G. Lee, “One-Class Classification Based Bug Triage System

to Assign a Newly Added Developer,” Int. Conf. Inf. Netw., vol. 2021-Janua, pp.

738–741, 2021, doi: 10.1109/ICOIN50884.2021.9334002.

[35] N. Sreenivas and S. J. Saritha, “Enhancement towards efficient bug triage with

software data reducing methods,” 2017 Int. Conf. Energy, Commun. Data Anal.

Soft Comput. ICECDS 2017, pp. 3649–3652, 2018, doi:

10.1109/ICECDS.2017.8390144.

[36] A. Goyal, “Effective bug triage for non-reproducible bugs,” Proc. - 2017

IEEE/ACM 39th Int. Conf. Softw. Eng. Companion, ICSE-C 2017, pp. 487–488,

2017, doi: 10.1109/ICSE-C.2017.41.

[37] R. Jaiswal, M. Sahare, and U. Lilhore, “Genetic Approach based Bug Triage for

Sequencing the Instance and Features,” 2018 Int. Conf. Comput. Commun.

33

Informatics, ICCCI 2018, pp. 1–7, 2018, doi: 10.1109/ICCCI.2018.8441350.

[38] A. Yadav and S. K. Singh, “Survey Based Classification of Bug Triage

Approaches,” APTIKOM J. Comput. Sci. Inf. Technol., vol. 1, no. 1, pp. 1–11,

2016, doi: 10.34306/csit.v1i1.37.

[39] V. B. Sawant and N. V. Alone, “A Survey on various Techniques for Bug Triage,”

Int. Res. J. Eng. Technol., vol. 02, no. 09, pp. 917–920, 2015, [Online]. Available:

http://www.academia.edu/download/54836058/IRJET-V2I9157.pdf

[40] N. Bhardwaj and A. . Bhattacharya, “Survey on General Classification Techniques

for Effective Bug Triage,” Int. J. Comput. Sci. Eng., vol. 2, no. 11, pp. 6–10, 2015,

doi: 10.14445/23488387/ijcse-v2i11p102.

[41] A. Goyal and N. Sardana, “Machine learning or information retrieval techniques

for bug triaging: Which is better?,” E-Informatica Softw. Eng. J., vol. 11, no. 1, pp.

117–141, 2017, doi: 10.5277/e-Inf170106.

[42] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, and H. Shah, “A survey on bug

prioritization,” Artif. Intell. Rev., vol. 47, no. 2, pp. 145–180, 2017, doi:

10.1007/s10462-016-9478-6.

[43] T. Menzies and A. Marcus, “Automated severity assessment of software defect

reports,” IEEE Int. Conf. Softw. Maintenance, ICSM, pp. 346–355, 2008, doi:

10.1109/ICSM.2008.4658083.

[44] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity of a

reported bug,” Proc. - Int. Conf. Softw. Eng., pp. 1–10, 2010, doi:

10.1109/MSR.2010.5463284.

[45] Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest neighbor

classification for fine-grained bug severity prediction,” Proc. - Work. Conf.

Reverse Eng. WCRE, pp. 215–224, 2012, doi: 10.1109/WCRE.2012.31.

[46] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-based

analysis and prediction for software evolution,” Proc. - Int. Conf. Softw. Eng., pp.

419–429, 2012, doi: 10.1109/ICSE.2012.6227173.

[47] A. Yadav and S. Kumar Singh, “An Information-Theoretic Approach for Bug

Triaging,” Proc. 8th Int. Conf. Conflu. 2018 Cloud Comput. Data Sci. Eng. Conflu.

2018, pp. 7–13, 2018, doi: 10.1109/CONFLUENCE.2018.8442506.

[48] T. S. Mian, “Automation of Bug-Report Allocation to Developer using a Deep

Learning Algorithm,” 2021 Int. Congr. Adv. Technol. Eng. ICOTEN 2021, 2021,

doi: 10.1109/ICOTEN52080.2021.9493515.

[49] K. Inkpen, ACM Digital Library., and ACM Special Interest Group on Computer-

Human Interaction., “Proceedings of the 2010 ACM conference on Computer

supported cooperative work.,” p. 450, 2010.

[50] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate retrieval of

 duplicate bug reports,” 2011 26th IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE

 2011, Proc., pp. 253–262, 2011, doi: 10.1109/ASE.2011.6100061.

1

LIST OF PUBLICATIONS

Rishabh Sirohi, Priya Singh, “Automatic Bug Triaging Analysis using Machine Learning

Techniques: A Review”

Name of Conference: 2022 3rd International Conference on Issues and Challenges in

Intelligent Computing Techniques (ICICT)

Date of Conference: 11-12 November 2022

Date of paper publication: 20 March 2023

https://ieeexplore.ieee.org/xpl/conhome/10064384/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10064384/proceeding

PROOF OF SCOPUS INDEXING

