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ABSTRACT 

 
 

Human skeleton modelling has gained popularity in recent years. As skeleton data 

successfully handles dynamic settings and complicated backdrops, the human skeleton 

dynamics include essential information for the identification of human actions. GCNs 

have shown substantial effectiveness in modelling the non-Euclidean character of human 

skeleton structures. Human skeleton structures are present in the form of spatiotemporal 

graphs depicting sequences of body skeletons during an action. We present an attention-

based human action recognition model that uses the mechanism of temporal and spatial 

attention modules to improve identification. The temporal attention module captures the 

most informative frames from a sequence of skeletons. The spatial attention mechanism 

then emphasizes the most informative joints from the frames highlighted. Frame selection 

is then performed to select the skeletons with the highest attention scores. Spatial and 

temporal modules are incorporated into the graph convolutional network. Both attention 

modules improve the model's effectiveness and the efficiency of skeleton-based human 

action identification when used together. The model is evaluated on two benchmarks of 

the NTURGB+D dataset, i.e., cross-view benchmark and cross-subject benchmark. The 

top-1 accuracy of both models is compared with existing benchmark techniques. The 

experimental findings show that our model exceeded the current benchmark 

methodologies, providing a considerable improvement over the baseline technique. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 
 

Human action recognition (HAR) [3] is one of the most crucial and active research 

areas. HAR is concerned with predicting or classifying the action being performed by 

human beings.  In the past few years, several approaches have been explored to efficiently 

understand the human actions performed. Predicting human actions help in many real-

world applications like behavior analysis, gaming, video understanding, video retrieval, 

and human-robot interaction. There are different data modalities [4] [5] [6] [7] that are 

explored to improve the prediction for human actions, which include optical flow, RGB 

images, depth, and body skeletons [8]. Among them, body skeletons are increasingly used 

due to their compact and action-focused nature. Skeletons are three-dimensional or two-

dimensional coordinate representations of human body joints. Skeletons are found in 

graph formations, where the graph’s node reflect the skeleton's joints whereas the edges 

of the graph indicate the many connections between various body joints. Actions can be 

identified from the different motion patterns of the joints of the body by leveraging the 

graphical nature of the skeletons.  

 

Deep Learning (DL) based techniques are widely investigated to effectively predict 

and recognize human actions. DL approaches include exploring Recurrent Neural 

Networks (RNN), Graph Convolutional Networks (GCN) [9], long short-term memory 

(LSTM) networks, Convolutional Neural Networks (CNN), etc. Models using RNN or 

LSTM [8] [10] [11] architectures suitably model temporal dynamics. Architectures using 

CNNs [12] [13] [14] [15] reorganize the body joint coordinates into a 2D map. Both types 

of architectures result in high model complexity and 

are unable to profit from the skeleton data's non-Euclidean nature. GCNs are formulated 

from CNNs and work on graphs by inspecting the neighboring graph nodes. The skeletons 

are present in a spatiotemporal graphical format. The spatial nature is represented by the 

natural joint relations, while the connection of the same joints over multiple time frames 

represents the temporal nature of the skeleton. GCNs can model skeleton-based data in 

the form of graphs and help to recognize human actions. 
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GCNs [16] [17] [1] have become quite prominent in the field of skeleton-based 

action recognition. Using deep feed-forward architectures, these approaches use graph 

convolutional networks to successfully capture the spatiotemporal characteristics 

inherent in human skeletons. The substantial memory usage and computational overhead 

required by GCN-based techniques, on the other hand, provide a considerable problem. 

To address these difficulties, researchers have investigated a variety of strategies targeted 

at improving GCN memory efficiency. Weight pruning, network compression, 

quantization, and low-rank approximation are examples of these methodologies. These 

strategies are designed to decrease the number of parameters and processes, hence 

increasing memory utilization and computing performance. While all the strategies have 

shown promise in terms of improving efficiency, action recognition is still 

computationally expensive when a large number of body skeletons are processed. There 

is a rising demand for the development of compact and lightweight network architectures 

especially optimized for action recognition based on skeletons to solve memory and 

computational efficiency constraints. Such architectures should find a balance between 

model complexity and performance, allowing for efficient body skeleton processing 

while retaining high accuracy in action recognition tasks.    

 

We present an attention-based model for human action recognition in this study that 

uses both temporal and spatial attention modules to improve identification accuracy. The 

temporal attention module selects the most informative frames from a sequence of 

skeletons, capturing the action's critical temporal dynamics. Following that, the spatial 

attention mechanism highlights the most significant joints within the selected frames, 

emphasizing their distinguishing characteristics. The computed attention scores are then 

used to select frames, allowing the identification of the skeletons with the highest 

attention values. We efficiently utilize both temporal and spatial relationships in the 

skeletal data by incorporating the attention modules into a graph convolutional network. 

The temporal and spatial attention mechanisms together improve the efficiency of human 

action recognition based on skeletons, resulting in further accurate and robust 

identification results. 
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1.2 Problem Statement 
 

The major goal is to build and improve a model that can recognize and interpret 

human actions using skeletal data. Human action recognition is significant in a variety 

of applications, including sports analysis, human-computer interaction, and video 

surveillance. Traditional techniques frequently depend on RGB video data, which can 

be affected by lighting and occlusions. By capturing human actions using the spatial 

configuration of joints, action recognition based on skeletons provide a more robust 

and efficient alternative. However, skeleton-based action identification faces a number 

of obstacles. It is still difficult to extract relevant information from skeletal data and 

properly capture the spatiotemporal dynamics of human motions. Furthermore, 

existing approaches usually process the body skeletons in the entire sequence that 

represents the action performed. This strategy, however, is inefficient in terms of 

computing time and memory utilization. Our primary focus will be to thoroughly 

investigate and analyze various Graph Convolutional Network (GCN) approaches in 

order to provide novel solutions to the problem. We shall aim to bring about novel 

changes to overcome these challenges by digging into the intricacies of GCN-based 

techniques. 

 
1.3 General Concepts Involved 

 
 In this section, we will discuss the key principles that will serve as the foundation 

for our analysis: skeleton-based data, graph convolutional networks, and attention 

processes. Our goal in diving into these concepts is to lay a solid foundation for the 

subsequent analysis of our proposed model. By understanding the complexity of 

skeleton-based data representation, the principles of graph convolutional networks, and 

the importance of attention approaches in improving model performance, we can lay the 

groundwork for a comprehensive study of our novel approach. 
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1.3.1 Skeleton-based data 

 

Figure 1: (a) Spatial and (b) temporal representation of skeleton data [8].  

   

 Action recognition using skeleton-based data [1] has gotten a lot of attention lately. 

Skeleton-based data depicts the human body as a collection of linked joints that create a 

skeletal framework. The spatial coordinates of the joints, which can be either 3D 

locations or 2D projections depending on the sensor used to record the data, are utilized 

to represent them. Each joint in 3D skeleton data is represented by a three-dimensional 

coordinate (x, y, z) indicating its position in 3D space. This picture indicates the relative 

locations and orientations of the bodily components. The joints in 2D skeleton data are 

represented by their 2D projections on a plane, which are commonly collected through 

a depth sensor or a camera. Each joint's (x, y) coordinates show its position on the picture 

plane. Skeleton-based data is usually gathered across time, yielding a temporal series of 

frames. Each frame depicts the skeletal structure's state at a certain point in time. The 

frames are taken at regular intervals, resulting in a time series of joint locations. The 

temporal aspect of skeleton-based data is critical for capturing human body dynamics 

and motion patterns. Recognition of movements, gestures, and postures is possible by 

analyzing the time dynamics of joint positions and spatial interactions.  
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 Skeletons are represented as graphs, with joints represented by nodes and edges 

representing natural connectedness between joints. Every joint in the skeletal sequence 

is represented by the node set. Every joint represents a different component of the body, 

such as the head, elbows, wrists, hips, shoulders, knees, and ankles. The edge set is 

subdivided into two splits. The first split contains edges that connect joints inside the 

same frame, showing immediate or natural connectedness between joints within a single 

snapshot of the skeletal data. Edges, for example, connect nearby joints within a single 

frame, such as the shoulder and elbow or the knee and ankle. The second edge set split 

captures connections between the same joint in successive frames. These edges illustrate 

the time-dependent interactions between the joint locations. An edge, for example, may 

connect the shoulder joint in frame (t) to the shoulder joint in frame (t+1), illustrating 

the joint's movement. Skeleton-based data is resistant to lighting, motion rates, scene 

modification, and camera views, and is therefore increasingly utilized. The underlying 

structure and connectedness of the human body are conveyed by representing skeletal 

data as a graph. This graph-based model is helpful because it is resistant to changes in 

illumination, motion rates, scene changes, and camera views. This robustness enables 

strong analysis and identification of human movements and postures even in diverse and 

difficult contexts. Skeleton-based data has grown in popularity because of its capability 

to capture important aspects of human movement while remaining unaffected by 

external variables. 

 
1.3.2 Graph Convolutional Network 

 

 

 
 

Figure 2: Graph Convolutional Network [9].  



6  

 

 Graph convolutional networks (GCNs) [9] are a variant of Convolutional Neural 

Networks (CNN), which help to generalize graph-structured data. GCNs operate in a 

manner similar to CNNs by inspecting the neighboring nodes. However, the input is in 

non-Euclidean structural form data, with each node having varying numbers of 

connections. Nodes and their connections (edges) with other nodes are represented with 

the help of an adjacency matrix, which is then introduced to the forward propagation 

equation. The model learns information about node connection by adding an adjacency 

matrix to the equation of forward propagation. As shown in fig 2, the different layers of 

GCN are defined as follows:  

1) Input Layer: 

The initial input to the GCN is the graph's node features. These characteristics 

can include node labels, attributes, or embeddings, which indicate the qualities 

of every node in the graph. Along with the node features, adjacency matrix is 

given as the input. The adjacency matrix represents the graph's connectedness 

by stating which nodes are related to each other. 

2) Graph Convolution Layer:  

Neighborhood aggregation is used in each GCN layer to acquire information 

from a node's adjacent nodes. To aggregate the characteristics of nearby 

nodes, an adjacency matrix is utilized. A weighted sum or concatenation of 

the surrounding node characteristics can be used in the aggregation procedure. 

The same set of weights is shared across all nodes during neighborhood 

aggregation, allowing parameter efficiency for the model to generalize well to 

unseen nodes. A learnable weight matrix is then used to convert the 

aggregated features. The aggregated features are subjected to linear operations 

in this transformation, allowing the model to learn more expressive 

representations. To induce non-linearity, a non-linear activation function, like 

ReLU, is frequently applied after the transformation. 

3) Hidden Layers:  

To record more intricate interactions, many GCN layers can be placed on top 

of each other. Each GCN layer's output is considered as the input to the 

following layer. The model may capture information from nodes at increasing 

distances in the network by stacking multiple layers. 

4) Output Layer 
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The GCN creates a representation for the entire graph after the graph 

convolutional layers, capturing the relationships and characteristics of the 

nodes in the frame sequence. The layers' output is then sent into a fully 

connected layer, which is followed by a SoftMax activation function. This 

enables the model to categorize the action in the video sequence. The number 

of action classes are represented by the number of units in the fully connected 

layer. 

 

For propagation of information through a graph with lth hidden layer, denoted by H[l], 

the equation of forward pass is represented as:  

 

H[l + 1] =  σ(W[l]H[l]A′)     (1.1) 

 

In eq 1.1, the next and the current hidden layers are represented by H[l+1] and H[l] 

respectively, A′ represent the normalized adjacency matrix. W[l] depicts the weight 

matrix. The adjacency matrix is required to be normalized to prevent exploding/ 

vanishing gradients and numerical instabilities. The skeletal data is presented as graphs, 

with nodes as joints and the natural connectivity between nodes as edges, which are 

modeled with the help of GCNs. Neighbor nodes of each joint in the skeleton are divided 

into three partitions: a) the nodes that are nearer to the center of gravity and associated 

to the root nodes, b) the actual root node and c) the remaining nodes connected to the 

root nodes.  

 

 In a basic Graph Convolutional Network (GCN) architecture with 2 hidden layers, 

both hidden layers are placed on top of each other. To enhance the node representations, 

each hidden layer performs neighborhood aggregation, weight sharing, and feature 

modification. The initial input to the first hidden layer consists of graph node 

characteristics and the adjacency matrix. Using the adjacency matrix, the first hidden 

layer aggregates the characteristics of surrounding nodes. It records local connection 

patterns as well as information from surrounding nodes. The aggregated node features 

are applied with the weight matrix. This operation changes the node representations and 

transforms the aggregated features. It is multiplied by the aggregated features to compute 

the modified features for each node. This transformation facilitates the model to learn 

the significance and combination of neighbor information for each node in the graph. 
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Finally, non-linear activation function is applied to obtain updated node representations. 

The updated node representations are then served as the second hidden layer input, along 

with the adjacency matrix. A similar process is used in the second hidden layer as the 

first hidden layer. The adjacency matrix is used to perform neighborhood aggregation, 

which takes into account the updated node representations received from the previous 

layer. The neighborhood features are then combined and modified using a learnable 

weight matrix and non-linear activation function. This transformation phase aids in the 

capturing of higher-order dependencies and more complicated node interactions.  

 

1.3.3 Attention 

 

 Attention mechanisms are effective deep learning approaches for increasing focus 

on select components or areas of input data and capturing their relevance. These 

mechanisms seek to simplify complicated tasks by selectively attending to relevant 

sections of input while discarding less significant information.  Attention may be seen 

as a method of allocating resources or cognitive emphasis to select sections of the 

information. Instead of equally processing all input, attention mechanism facilitates the 

model to focus its computing resources on the most relevant or salient components. The 

basic principle of attention is to give weights or priority scores to various portions of the 

information depending on their relevance to the task in hand. These weights represent 

the value or significance of each input component. Attention processes prioritize 

relevant information by assigning greater weights to essential components and lower 

weights to less important ones. Attention modules were initially utilized in encoder-

decoder designs, such as machine translation jobs. When creating the target sequence, 

the attention mechanism enables the decoder to selectively focus on distinct regions of 

the source sequence. This increases the model's capacity to capture long-term 

relationships and successfully align input-output combinations. However, attention 

mechanisms have gained popularity and are now used in a variety of fields, including 

human action recognition. In the context of action recognition, attention mechanisms 

can be used to emphasize key spatial or temporal portions of the input video frames or 

skeleton-based data that are most significant for detecting distinct actions. Attention 

models can successfully capture essential features or motion patterns critical for 

discriminating between distinct actions by focusing on distinguished body parts or 

temporal segments.  



9  

CHAPTER 2 

RELATED WORK 

 

2.1 Related Work 

 
Recently, there have been many advancements made for the task of human action 

recognition based on skeletal data [1] [18] [19]. Graph convolutional networks (GCN) 

have contributed enormously to generalizing graph-based skeleton data. Convolution 

operations cannot exploit the non-Euclidean nature of the skeleton graphs and 

therefore, are not that well-defined. However, GCNs utilize the graphical nature and 

model dynamic graphs for large-scale human skeleton data. Initially, Spatial-Temporal 

Graph Convolutional Networks (ST-GCN) is introduced by Yan et al. [1] to model the 

dynamics of data based on skeletons. ST-GCN was developed through a series of 

skeletal graphs, in which the nodes depict the skeleton's joints. Temporal and spatial 

edges are introduced, where the inherent connectivity of the joints is highlighted by 

spatial edges and the connection of the same joints throughout subsequent time steps 

is denoted by temporal edges. For implementing graph convolutions, the weights 

exchanged are defined using an adjacency matrix by the different nodes of the graph. 

ST-GCN contains 9 layers of spatial-temporal graph convolutions and takes the 

skeleton graphs as input. ST-GCN is the initial model to model skeleton-based data 

using graph convolutions. 

 

 
 

Figure 3: ST-GCN applied to analyze spatiotemporal skeleton sequences of videos [1]. 
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Shi et al. [18] proposed a technique called two-stream adaptive graph 

convolutional network (2s-AGCN) to improve the performance of spatiotemporal 

graph convolutional networks (ST-GCNs) for skeleton-based action recognition. The 

goal of 2s-AGCN was to enable flexible learning of the graph structure for different 

GCN layers, enhancing accuracy in detecting human actions. 2s-AGCN uses 

information from the bones that connect two joints in addition to the joint information 

provided by the skeleton joints. Joint information, which represents the locations and 

orientations of particular joints, is called first-order information. Bone-related 

information, on the other hand, is called second-order information since it captures the 

lengths and orientations of the bones that connect the joints. Since the model 

incorporates both first and second-order information, it is able to efficiently represent 

the skeleton-based data, capturing both the local interactions between joints and the 

global structural properties of the human body. 2s-AGCN improves the model's 

flexibility and efficiency by taking into account both first and second-order 

information. It allows the model to incorporate the discriminative characteristics and 

temporal dynamics that are critical for action recognition. By allowing the network to 

adapt to the hierarchical relationships of different GCN layers, the model's performance 

is increased even more. 

 
Shi et al. [20] proposed directed graph neural networks (DGNN) in w hich a 

directed acyclic graph (DAG) is used to represent the skeleton data based on bones and 

joints. Information related to joints, bones, and their relationships are modeled using 

DGNN. DGNN has numerous layers that are supplied vertices and edges' 

characteristics. The properties of vertices and edges are modified in each layer based 

on their nearby vertices and edges. The lowest layers retrieve local vertex and edge 

information, whereas the higher layers retrieve more global information. Further, the 

input graphs to the directed graph block are adaptively learned for flexible graph 

construction and enhancing action recognition. Finally, motion information is extracted 

from consecutive frames and a two-stream framework is formed which accesses the 

information related to bone and joint, which is then fused together to give the output.   

 
Cheng et al. [21] proposed Shift-GCN which explored the shift operations on 

the graph convolutions. Flexible receptive fields are provided with Shift-GCN for both 

temporal and spatial graphs. The information on surrounding nodes is shifted to the 
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present node using shift graph operation which is non-local, in which a node's field of 

reception includes the whole skeleton graph. For the temporal graph, the adaptive shift 

operation is used to adaptively adjust the receptive field. STGCN is used as the 

backbone network for Shift-GCN in which the regular temporal graph convolution is 

replaced by the temporal shift graph and the conventional spatial graph convolution is 

replaced by spatial shift graph.  

 

To further boost the efficiency, ShiftGCN++ [22] is proposed, which is a 

lightweight action recognition model. ShiftGCN++ incorporates 4 techniques namely 

lightweight architecture search, dynamic shift graph convolution, explicit spatial 

position encoding, and margin ReLU distillation. Lightweight architecture search aids 

in the development of lightweight architecture. Spatial modeling is enhanced using 

spatial location encoding explicitly. Dynamic shift graph helps to reduce the 

computational cost while margin ReLU distillation helps to increase the model 

performance by knowledge transfer from a big instructor network to a small student 

network, where ShiftGCN is considered as the instructor network.  

 

Chen et al. [23] proposed a technique in which posture information is integrated 

with graph convolutional networks. The authors address the problem of successfully 

exploiting the intrinsic posture information in skeleton sequences to enhance 

discriminative ability of GCN-based models. The suggested technique includes the 

usage of a pose-guided graph convolutional network (PG-GCN) to direct the graph 

creation process. In particular, the posture information is utilized to determine the 

graph's edge connections, reflecting the spatial interactions between skeletal joints. To 

capture local and global relationships through time, the PG-GCN design combines both 

spatial and temporal GCN layers. Furthermore, during the feature aggregation phase, a 

pose-guided attention method is used to attend to important joints while inhibiting 

irrelevant ones. The authors demonstrate the efficiency of combining posture 

information and applying GCNs in capturing temporal and spatial correlations, resulting 

in enhanced recognition accuracy. The technique provided by the authors open up new 

possibilities for human action recognition tasks using pose-guided graph convolutional 

networks. 
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Miao et al. [24] proposed a unique graph convolutional operator optimized for 

skeleton-based action recognition challenges. By including the central difference 

operation into the graph convolution operation, the authors solve the difficulty of 

properly capturing the dynamic information found in skeletal sequences. This operator 

combines the difference between neighboring frames into the graph convolution 

process, allowing the model to capture motion-related details. To manage the variable 

number of nodes (joints) in different actions, the suggested technique additionally 

makes use of graph pooling and graph un-pooling processes. The authors emphasize the 

necessity of taking both temporal and spatial information into account in skeleton-based 

action identification, and gives insights into the efficiency of the central difference 

operator in capturing motion dynamics from series of skeletons. 

 

Shi et al.  [25] proposed a skeleton-based action recognition model using a multi-

stream adaptive graph convolutional network (AGCN). An adaptive graph 

convolutional operation-based approach is proposed by the authors to handle the 

difficulty of properly capturing both spatial and temporal connections in skeletal 

sequences. The proposed AGCN architecture is made up of numerous streams, each of 

which focuses on a different component of the data. By leveraging various graph 

architectures and graph convolutional layers, these streams capture various degrees of 

spatial and temporal information. The adaptive graph convolutional operation alters the 

graph connections dynamically based on the input data, letting the model to understand 

the relevance of distinct joints and their interactions in an adaptable manner. 

Furthermore, the authors discuss a self-attention mechanism that improves the 

discriminative strength of learnt characteristics by highlighting significant joints and 

suppressing irrelevant ones. The model highlights the usefulness of adaptive graph 

convolutions and multi-stream architectures in capturing spatial and temporal 

connections, as well as the importance of self-attention mechanisms in boosting 

recognition accuracy. 

 

Zhang et al. [19] proposes Graph Edge Convolutional Neural Networks 

(GECNs) as a unique solution for skeleton-based action recognition. The authors 

address the problem of describing the interactions between edges in skeletal data in 

order to reflect spatial interdependence. The GECN design uses graph convolutional 

layers to gather information from surrounding edges and spread it throughout the graph. 
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The model can collect fine-grained spatial information and develop discriminative 

features for action detection by taking edge connections into account. The authors also 

present an attention mechanism that weights the value of individual edges according to 

their relevance to the action being done, allowing the network to focus on discriminative 

inputs. The authors emphasize the importance of modelling edge interactions in skeleton 

data, as well as the efficiency of graph convolutional neural networks and attention 

mechanisms for capturing spatial dependencies and boosting action detection accuracy. 

 

Song et al. [26] presented a novel technique termed richly activated Graph 

Convolutional Network (RA-GCN) to improve the resilience of action recognition 

models. The technique employs a multi-stream architecture to investigate discriminative 

characteristics across all skeleton joints, hence decreasing susceptibility to non-standard 

skeletons. When opposed to previous streams, each stream in the GCN is in charge of 

learning characteristics from less active joints. Class activation maps (CAM) are utilized 

to measure the activation degrees of skeletal joints, and data from inhibited joints is only 

passed to the next stream. This method yields extensive characteristics that cover all 

active joints. The presented technique considerably reduces performance deterioration 

due by synthetic occlusion and jittering, managing occluded and disturbed joints well. 

 

Peng et al. [27] uses a Spatial Temporal Graph Deconvolutional Network 

(STGDN) to provide a unique technique for skeleton-based human action recognition. 

The authors use a graph deconvolutional technique to solve the difficulty of capturing 

both temporal and spatial connections in skeleton sequences. The STGDN design 

encodes spatial information with graph convolutional layers and captures temporal 

dynamics with deconvolutional layers. By propagating information backward in time, 

the deconvolutional layers are responsible for recreating the temporal evolution of the 

skeletal data. The model can successfully capture fine-grained motion patterns and 

discriminative characteristics for action detection by taking both temporal and spatial 

elements into account. Furthermore, the authors suggest a spatial temporal graph 

pooling method that minimizes dimensionality while keeping critical information. The 

authors underline the necessity of adding graph deconvolutional layers for capturing 

temporal dynamics in skeletal sequences and underscores the efficiency of the suggested 

spatial temporal graph pooling procedure. 
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Lee et al. [28] presented an architecture named as Hierarchically Decomposed 

Graph Convolutional Network (HD-GCN) as well as a unique Hierarchically 

Decomposed Graph (HD-Graph). Each joint node in the HD-GCN architecture is 

efficiently decomposed into numerous sets, allowing the extraction of important 

architecturally nearby and distant edges. These edges are then used to build an HD-

Graph, which includes them in the same semantic areas as the human skeleton. The 

authors develop an attention-guided hierarchy aggregation (A-HA) module to 

emphasize the HD-prominent Graph's hierarchical edge sets. Furthermore, they use a 

six-way ensemble technique that only uses the joint and bone streams, ignoring any 

motion stream.  

 

Su et al. [29] presented demonstrates an unsupervised method to skeleton-based 

action recognition. The authors suggest a two-step approach that includes the PREDICT 

and CLUSTER phases. They develop a unique unsupervised prediction method in the 

PREDICT phase that learns motion patterns from unlabeled skeletal sequences. This 

technique uses a temporal encoder-decoder network to estimate future frames based on 

previous frames, making it easier to acquire discriminative motion representations. They 

use clustering techniques in the CLUSTER phase to organise the expected motion 

patterns into action clusters. Following that, the clusters are labelled depending on the 

majority voting of the associated acts. By utilizing temporal prediction and clustering 

techniques, the proposed framework presents a viable strategy for unsupervised action 

recognition, bypassing the requirement for labelled training data. 

 

Zhang et al. [30] incorporates context-aware graph convolutions for skeleton-

based action recognition. The authors aim to improve identification accuracy by 

leveraging contextual information surrounding joints in skeletal data. They presented a 

context-aware graph convolutional network (CAGCN) architecture that takes into 

consideration both local and global contexts in the skeleton's graph representation. By 

utilizing a dynamic context-aware adjacency matrix, the CAGCN efficiently captures 

the spatial interdependence between joints. This matrix is dynamically updated to 

weight joint connections based on their contextual importance. In addition, the authors 

present a context-aware aggregation module that aggregates the properties of 

surrounding joints while taking their context into account. This allows the model to 

focus on important data while suppressing noise or unnecessary data. The CAGCN 
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model improves recognition accuracy by effectively capturing and exploiting contextual 

information in the skeletal data by introducing context-awareness into graph 

convolutions. 

 

Zhang et al. [31] The authors propose a Semantics-Guided Neural Network 

(SGNN) architecture that uses semantic information in skeletal sequences to increase 

recognition performance while decreasing computational complexity. The Spatial 

Temporal Graph Convolutional Network (ST-GCN) and the Semantic-Guided Module 

are the two main components of the SGNN (SGM). The ST-GCN detects spatial and 

temporal correlations in skeletal data, allowing for successful feature extraction. The 

SGM makes use of semantic information by assigning a semantic label to each joint, 

offering direction to the network during training. This semantic guidance directs the 

network's attention to discriminative characteristics while reducing feature extraction 

redundancy. In addition, the authors present an efficient inference technique that uses 

semantic guidance to accomplish action recognition with low computing complexity. 

The SGNN is an effective solution for efficient and accurate skeleton-based human 

action recognition applications due to the merging of semantics-guided modules with 

an efficient inference method. 

 

Heidari and Iosifidis [2] proposed a temporal attention block (TAM), which 

extracts the skeletons that are the most informative. The architecture was based on ST-

GCN, with spatial convolutions in the initial layers and spatiotemporal convolutions in 

the later part. In TAM, attention maps are produced which extract each skeleton's average 

feature value in the series. The attention maps are then sorted in a decreasing order to 

determine the most informative skeletons, which are then introduced in the further layers. 

Extracting the most informative skeletons helps to improve computational efficiency.  

Duan et al. [32] proposed a Dynamic Group SpatioTemporal GCN (DG-STGCN) 

consisting of spatial and temporal modules, DG-GCN and DG-TCN. Skeleton data is 

dynamically modeled spatially and temporally in a group-wise manner. For DG-GCN, 

learnable coefficient matrices are enabled for inter-joint spatial modeling while for DG-

TCN, different receptive fields are adopted which further fuses joint-skeleton motion 

patterns to model dynamic temporal information. Additionally, uniform sampling is 

explored for temporal data augmentation which substantially improved the performance 

of the model and avoided the possibility of overfitting.
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CHAPTER 3 

PROPOSED MODEL 

 
3.1 About the Model 

In the below section, the proposed human action recognition model which is based 

on skeletal data is discussed. The model leverages a graph-based representation of the 

skeleton data and graph convolutional layers to capture temporal and spatial connections 

between joints. To improve its ability to focus on salient and relevant aspects in the 

skeletal data, the model utilizes an attention module. The model uses the mechanism of 

temporal and spatial attention modules to improve recognition. The temporal attention 

module captures the most informative frames from a sequence of skeletons. The spatial 

attention mechanism emphasizes the most informative joints from the frames highlighted. 

Frame selection is then performed to select the skeletons with the highest attention scores. 

By including the attention mechanism, the model is able to gather and leverage the most 

relevant information, boosting its overall performance in skeleton-based action 

recognition. In the following subsections, the network’s components are discussed along 

with the network architecture and loss function.   

 

 
 

Figure 4: Network architecture representing the different blocks in the model proposed.  
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3.1.1 Spatial Graph Convolution Block 
 

Spatial Graph Convolution block focuses on capturing spatial relationships. It 

operates by considering the nodes in the network as skeletal joints and the edges as 

connections that describe spatial interactions between these joints. The block 

aggregates information from nearby nodes in order to capture local interactions and 

dependencies. Input to the spatial graph convolution block is a set of joint 

characteristics. Spatial convolution for input joint i, having input feature fin, is defined 

as:   

 

fout (vi) =  ∑ (
1

Zik
) f in(v𝑘)w(li(vk))

vk∈Ni

   (3.1) 

 

In eq 3.1, Ni represents the set of neighboring vertices that are connected to vertices across 

different frames. The output features are represented by fout for the node vi. li(vk) maps 

the neighborhood nodes of vertex vi to one of the three partitions. Zik is the normalization 

factor, used to normalize the contribution of all the neighborhood sets. The weight matrix 

w is a unique matrix associated with all the neighborhood sets. The block accepts as input 

the joint characteristics, which are commonly depicted as a tensor of shape (N, Cin, T, V), 

where N denotes the batch size, T represents the sequence length, Cin represents the 

number of input channels, and V represents the number of joints. The first step is to define 

the joint's spatial connections. Typically, an adjacency matrix is used to depict pairwise 

interactions between the joints. The adjacency matrix specifies which joints are linked 

and how strong those links are. The block then runs a graph convolution operation, which 

updates the characteristics of each joint by aggregating information from its nearby joints. 

Non-linear transformations are used after the graph convolution function to incorporate 

non-linearity and improve discriminative capability of the features. The feature vector, 

𝑋 ∈ 𝑅𝑁×𝐶𝑖𝑛×𝑇×𝑉 , is given as the input, where N represents the batch size, Cin represents 

the channels used as input, V denotes the count of body joints, and T denotes the count 

of skeleton frames. Therefore, spatial convolution is defined as:  

 

X′ = ReLU ( ∑ (A′p    ⊗   Dp)XWpp  )    (3.2) 

 

In eq 3.2, 𝐴′𝑝    is the adjacency matrix that is normalized and is established by combining 

the 3 neighboring subsets. The learnable attention map, 𝐷𝑝 , emphasizes the adjacency 
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matrix components, the weight matrix 𝑊𝑝 is responsible for transforming the node 

features in each partition. Finally, X' is the output obtained after the spatial convolution 

of the input feature, X.   

 
3.1.2 Temporal Convolution Block 

 

To capture the dynamics of temporal information in the skeletal data, the 

temporal convolution block is introduced in the model. The block takes as input the 

output of the spatial graph convolution block. To include each node's temporal 

neighbors, the neighborhood of each vertex is extended to include the temporal 

dimension. In particular, each node in the preceding and following skeleton frames is 

linked to the same node, resulting in a temporal neighborhood size of 2 for each node. 

To process this expanded neighborhood, a 2D convolution is performed to output of the 

spatial convolution block, denoted as X'. The inserted kernel size, represented as Kt, 

determines the convolution operation's temporal receptive field. The temporal 

convolution block aggregates the features of each individual body joint at various time 

steps by using a fixed kernel size, allowing the model to capture the dynamics of 

temporal dimension and patterns contained in the skeletal data. The temporal 

convolution block is essential for simulating the dynamics of temporal information 

within skeletal data. The block improves the model's capacity to capture and evaluate 

the temporal dependencies and the changes of the skeletal sequences by adding the 

temporal neighbors and using the 2D convolution operation with a predefined kernel 

size. 

 
3.1.3 Temporal Attention Module 

 

 Temporal attention is used to detect relevant frames within a sequence of frames. 

The focus is on recognizing critical frames within a sequence of frames. Its goal is to 

emphasize and recognize the frames that make a significant contribution to the overall 

interpretation of an action. To accomplish this, the temporal attention module computes 

the average activation over all joints and channels for each frame. This stage aggregates 

the collective information inside each frame, indicating its overall significance. The 

model learns the weights associated with each frame by passing the aggregated frame-

level activations through a linear layer. A sigmoid activation function is then applied to 

these weights which produces attention weights for each frame. These attention weights 
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serve as a mask, selectively amplifying or suppressing specific frame activations. The 

model can successfully focus on the frames that are deemed significant or informative 

for the given action by applying attention weights to the input tensor.  

 

At = Sigmoid(Wt H(l))    (3.3) 

 

where Wt  is the learnable transformation matrix for temporal attention, the lth hidden 

layer output is denoted as H(l) and the temporal attention tensor is At. The input tensor 

is given the temporal attention tensor to modulate the activations of frames according to 

their attention weights. 

 

3.1.4 Spatial Attention Module 

 

 Spatial attention is concerned with identifying important joints within the attended 

frames received through the temporal attention mechanism. The objective is to identify 

the joints in the temporal attention module-highlighted frames that contain the most 

discriminative information for identifying distinct actions. The spatial attention module 

accomplishes this by computing the average activation for each joint over all frames and 

channels. The module captures the joint's total contribution by aggregating information 

across frames. The joint-level activations are then transferred to a linear layer, which 

allows the model to learn the weights associated with each joint. These weights are then 

fed into a sigmoid activation function, which produces attention weights that indicate 

the relative significance of each joint. The generated attention weights operate as a mask, 

selectively adjusting the activations of the attended frames.  The model can dynamically 

enhance or lessen the activations of individual joints based on their relevance by adding 

attention weights to the attended frames. 

 

As = Sigmoid(Ws 𝑀(𝑙))    (3.4) 

 

In eq 3.4, M(l) is the temporal attention output, Ws is learnable transformation matrix 

for spatial attention, and As is spatial attention tensor. To find a subset of most 

informative skeletons from a given sequence of skeletons, the skeletons are sorted in a 

decreasing order according to their attention weights. These selected skeletons are then 

incorporated into the network's subsequent layers for additional processing and analysis. 
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The model prioritizes and focuses on the most relevant and informative skeletons within 

the sequence by identifying the skeletons with the highest attention values. This enables 

the network to focus on the skeletons that contribute the most to the understanding and 

identification of the action being conducted. 

 

 
3.1.5 Network Architecture  

 

 
Skeleton data is fed as the input to the model, which comprises the coordinate 

locations of all the joints of the skeleton. The model proposed is made up of six graph 

convolutional layers and one attention module. Initially, the 2 spatial graph 

convolutional layers perform spatial convolutions on the data, converting it to a 64-

dimensional feature space. The attention module consists of temporal and spatial 

attention mechanism that selects discriminative features from a subset of skeletons 

based on the 2nd graph convolutional layer’s output. The feature dimension goes from 

64 to 128 and finally to 256 in the final two levels of the model, increasing the 

representation capability. The last four graph convolutional layers combine spatial and 

time convolutions, following that, batch normalization and ReLU activation is 

performed. The model incorporates the ResNet module into the last four graph 

convolutional layers to effectively utilize the input skeleton data. With a stride of 2, the 

third and fifth graph convolutional layers, which incorporate temporal convolution, 

serve as pooling layers. Each skeleton sequence's enhanced spatiotemporal 

characteristics are routed via a pooling layer with a global average, yielding a 256-

dimensional output feature vector. Finally, human actions are classified using a fully 

linked layer that includes a SoftMax classifier. To reduce classification error, the model 

trains end-to-end via backpropagation. 
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3.2 Loss Function 
 

Cross entropy loss is also known as log loss, that is commonly employed in deep 

learning and machine learning, particularly for classification problems requiring many 

mutually exclusive classes. It calculates the difference between the predicted probability 

distribution and the actual probability distribution. In binary classification scenarios, 

cross entropy loss computes the negative logarithm of the anticipated probability for the 

true class. It extends to average the loss over all classes in multi-class classification by 

comparing the projected probability distribution with the one-hot encoded actual label 

distribution. This loss function aggressively penalizes confident inaccurate predictions, 

pushing models to learn precise and well-calibrated probability distributions across 

classes. Models try to improve classification performance by decreasing cross entropy 

loss during training. It is represented as:  

ℒ =  − ∑ ∑ 𝑦𝑖𝑗lo g(𝑝𝑖𝑗)𝐶
𝑗=1

𝑁
𝑖=1     (3.5) 

 

In eq 3.5, N is the count of samples in the batch, C is the count of classes, 𝑦𝑖𝑗 is the ground 

truth for the ith sample and jth class, and 𝑝𝑖𝑗 is the forecasted probability of the ith sample 

belonging to the jth class.   
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CHAPTER 4  

METHODOLOGY 

4.1 Dataset 

 
We experiment with the model on a large-scale indoor action recognition dataset, 

NTU-RGB+D [32]. It is the most comprehensive datasets for annotations in 3D for 

human action recognition tasks. The RGB and depth video clips acquired by Microsoft 

Kinect v2 sensors are included in the dataset. It covers 60 action classes covering over 

56,880 action samples, with the actions carried out by 40 distinct test participants. The 

action classes cover a wide variety of daily actions, including walking, waving, 

clapping, sitting down, getting up, and playing musical instruments. It consists of both 

individual actions and interactions between two subjects. The annotations that are 

obtained by the Kinect depth sensors offer 3D joint positions (X, Y, Z). A total of 25 

joints is present in each subject in the skeleton series. 

 

 
 

Figure 5: NTU-RGB+D dataset samples [32]. 
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The authors recommend for 2 evaluation benchmarks.: 

1. Cross-view (X-view): In the X-view benchmark, three different cameras are 

used to capture the videos. The training set comprises of clips captured from 

camera 3 and camera 2 and consist of 37, 820 video clips. The test set involves 

videos captured from camera 1 and consists of 18, 960 video clips.  

2. Cross-subject (X-sub): X-sub benchmark focuses on cross-subject action 

recognition. The dataset is split into two parts: training and testing, with every 

part including distinct participants. The test set contains 16560 videos while the 

training set has 40320 videos.  

 

For each sample in the dataset, there are 300 frames. If there are less than 300 frames 

in the sample, the sequence of frame is replicated until the sample has 300 frames. A 

tensor with the size of (3x300x25) is taken as the input information where 3 is the 

number of channels of RGB videos, 25 is the count of skeletal joints and 300 is the frame 

count. 

 
 

Figure 6:  NTU-RGB+D skeleton data with 25 joint coordinates [32].  

 

4.2 Training Metrics 

 

Our model is trained on an Intel Xeon CPU @2.30GHz with NVIDIA TESLA 

P100 GPU. Pytorch deep learning frameworks are used to carry out the experiments. 

Initially, a learning rate of 0.1 is set. The learning rate is then gradually lowered at 

epochs 30 and 40 by 10, with the total count of epochs set as 50. Through 
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backpropagation, the SGD optimizer is utilized to improve the model's parameters at 

the time of training with a cross-entropy loss function. A weight decay of 0.0001 is 

applied. The NTU-RGB+D dataset uses a batch size of 32.  

 

4.3 Performance Metrics 

 

We assess action recognition performance using the NTU-RGB+D dataset's Top-

1 and Top-5 accuracies for cross-view and cross-subject benchmarks both. The training 

sets of both benchmarks are used to train the model and the accuracies are reported on 

the validation sets. The Top-1 and Top-5 accuracies and weights in each epoch for both 

benchmarks are continuously stored, using which model checkpoints are created. On the 

cross-subject benchmark, our method produced Top-1 and Top-5 accuracy of 83.58 

percent and 97.07 percent, respectively, and Top-1 and Top-5 accuracy of 91.22 percent 

and 98.85 percent on the cross-view benchmark. The change in accuracy is very obvious 

at epoch 30, and after epoch 40, the accuracy gradually stabilizes.   

  

 

Figure 7: Top-1 and Top-5 accuracy of NTU-RGB+D’s cross-subject benchmark. 
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Figure 8: Top-1 and Top-5 accuracy for NTU-RGB+D’s a cross-view benchmark.  

 

4.4 Qualitative and Quantitative Evaluation 

 
On the NTU-RGB+D dataset, the performance of our proposed method is 

compared with other skeleton-based techniques. The performance is estimated using the 

dataset’s cross-view and cross-subject benchmarks. The top-1 accuracy of both 

benchmarks is compared with other methods. The proposed model’s accuracy is 

compared with DeepLSTM [32], TCN [13], C-CNN+MTLN [33], STA-LSTM [34], 

ST-GCN [1] and DPRL+GCNN [35]. Table 1 shows the outcomes of the suggested 

approach on the NTU-RGB+D dataset, which shows that our method surpassed all the 

other methods by a considerable proportion. Our technique greatly surpasses the other 

methods. RNN-based and CNN-based methods are highly complex and are unable to 

model the non-Euclidean nature of skeletal data adequately. As a result, RNN-based 

DeepLSTM and STA-LSTM utilize LSTMs to model temporal information. However, 

the methods overlook the rich spatial information that is critical for human action 

recognition. Conversely, CNN-based TCN and C-CNN+MTLN methods fail to capture 

fine-grained spatial information, and hence limit the accuracy of the models. 
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Table 1: Quantitative comparison of existing notable methods with the model. 
 

Model Cross-subject 

(%) 

Cross-view (%) 

DeepLSTM [32]. 59.8 66.8 

TCN [13]. 74.3 83.1 

STA-LSTM [34]. 73.4 81.2 

ST-GCN [1]. 81.5 88.3 

DPRL+GCNN [35]. 83.5 89.8 

C-CNN+MTLN [33]. 79.6 84.8 

Ours 83.6 91.2 

 

 

Furthermore, GCN-based methods outperform RNN and CNN-based methods. ST-GCN 

is recognized as the benchmark for GCN-based methods and exhibits significant 

advancements compared to CNN and RNN-based approaches. It serves as a foundational 

reference point, showcasing substantial improvements in performance within the research 

field. However, ST-GCN is outperformed by our method over a large margin in cross-

view and cross-subject benchmarks both. While our method is comparable to the 

DPRL+GCNN method on the cross-subject benchmark, it outperforms the NTU-RGB+D 

dataset’s cross-view benchmark. In comparison with other methods, our method yields a 

good result which showcases that the usage of attention modules significantly enhances 

the performance of the human action recognition model based on skeletons. Our model 

successfully acquires dynamic features and enhances the accuracy of human action 

recognition. 
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CHAPTER 5 

CONCLUSION 

 
We developed an attention-based graph convolutional network for human action 

recognition. Utilization of temporal and spatial attention mechanisms helped in 

enhancing the model’s performance. The temporal module captures the important 

frames within a sequence of skeletal frames. The spatial module focuses on identifying 

important joints from the attended frames obtained from the temporal attention module. 

Graph convolutional network (GCNs) is applied to capture the spatiotemporal 

dynamics of data based on skeletons for human action recognition. We evaluated the 

model on a widely used NTU-RGB+D benchmark, assessing its top-1 and top-5 

accuracies on the dataset’s cross-view and cross-subject benchmarks. In comparison to 

other skeleton-based models, our model performed better. We observed a significant 

difference in performance between RNN and CNN-based methods and our method. 

Furthermore, our method outperformed other GCN-based models, demonstrating the 

benefit of incorporating spatial and temporal attention mechanisms to graph 

convolutional network which enhanced the model's accuracy and efficiency. 
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