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Abstract

Hazy environments significantly reduce the quality of digital images since haze varies

with the scene depth. Consequently, the removal of haze from original images assumes

great importance. Deep learning approaches have greatly improved the e�ciency of the

dehazing process for images. This work aims to provide a detailed analysis of various

deep learning-based approaches employed for image dehazing. The techniques employed

are examined in detail, encompassing their respective methodologies and the utilization

of specific loss functions. Furthermore, this work also delves into an exploration of diverse

datasets that are available and commonly used for image dehazing tasks. By expanding

our understanding of the methodologies, loss functions, and datasets associated with de-

hazing, we can advance the field and facilitate the development of more e↵ective dehazing

algorithms.

In this work, we proposed a model known as FAG-Net for image dehazing. We also

proposed a new generator architecture which consists of a dense block, a transition block

and a new feature attention (FA) block at each layer which enhance the realistic nature of

the haze-free image. FA block consists of one channel attention (CA) and one pixel atten-

tion (PA) block. Channel attention aims to enhance the relevant information in di↵erent

color channels of the input image, while pixel attention aims to selectively emphasize

or suppress certain pixels in the image, which helps the models to concentrate on the

most a↵ected areas of an image by haze. Perceptual loss and reconstruction loss are used

along with adversarial loss to give more attention to the pixel which contains more haze

and to maintain the realistic nature of generated haze-free image. Our FAG-Net trained

on RESIDE(ITS), O-HAZE and I-HAZE datasets to conduct the experimental analy-

sis. Extensive experimental study demonstrates that our FAG-Net better than previous

state-of-the-art methods.
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Chapter 1

INTRODUCTION

Dehazing is quite a significantly challenging thing to do in computer vision. The quality

of a digital image degraded in a hazy environment. Whenever, we capture an image

using a digital device like a smartphone, digital camera, or any other. Haze occurs due

to the availability of tiny particles, mist, smog, fog, and moisture in the surrounding

that can depreciate the quality of the image. There are numerous uses for dehazing,

including, outdoor photography, object detection [33], outdoor surveillance [34], video

data compression [35] etc.

Figure 1.1: Image captured in the presence of illuminating source

Hazy environments pose a significant challenge to digital image quality, as the presence

of haze varies across di↵erent depths within a scene. Consequently, the removal of haze

from original images becomes crucial to restore their visual clarity and enhance their

overall appeal. Deep learning approaches have recently revolutionised the field of image

dehazing by making it possible for more e↵ective and e�cient solutions.

Deep learning-based approaches have shown remarkable promise when tackling the
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complex task of dehazing. These techniques leverage the power of neural networks to

learn intricate patterns and relationships within hazy images, allowing them to e↵ectively

remove unwanted haze and reveal hidden details. By training on huge datasets of hazy im-

ages and corresponding dehazed images, deep learning models can capture the underlying

characteristics of haze and learn to generate visually pleasing dehazed outputs.

One of the key advantages of deep learning-based dehazing techniques is their ability

to handle a wide range of haze conditions and scene complexities. Whether it’s a light

haze that mildly obscures the image or a dense fog that significantly degrades visibility,

these models can adapt and produce satisfying results. This adaptability is particularly

useful in real-world scenarios where atmospheric conditions can vary greatly.

Network architectures and loss functions must be carefully designed in order for deep

learning-based dehazing techniques to be successful. Researchers have proposed various

architectures, such as single-image-based models and multi-scale models, each with their

unique strengths and limitations. Additionally, the choice of loss functions plays a crucial

role in guiding the training process and ensuring the preservation of important image

features during dehazing.

To facilitate the evaluation and benchmarking of dehazing algorithms, several datasets

specifically designed for image dehazing have been made available. These datasets consist

of pairs of hazy images and their corresponding ground truth haze-free images, allow-

ing researchers to assess the performance of their dehazing models quantitatively. Some

datasets also include images captured in di↵erent weather conditions and diverse scenes,

enabling the evaluation of algorithm robustness.

As the field of image dehazing continues to evolve, researchers are continuously ex-

ploring novel techniques and methodologies to further improve the quality and e�ciency

of dehazing algorithms. By leveraging the power of deep learning and utilizing compre-

hensive datasets, we can expect significant advancements in dehazing technology, leading

to visually stunning images with enhanced clarity and detail, even in the challenging

atmospheric conditions.

The atmospheric scattering model [25], defines a relationship between the captured
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scene, atmospheric light and as:

I(y) = J(y)t(y) + A(1� t(y)) (1)

wherein I represent intensity of an image at y, J represents scene radiance. T repre-

sents transmission map and A represents atmospheric light. When homogeneous atmo-

sphere is there, transmission map of an image can be defined by:

t(z) = e��·d(z) (2)

here � signifies the scattering coe�cient. The value � is constant when there is a

homogeneous haze. d(z) indicates the scene depth of the captured image with haze.

Generally, atmospheric light along with the transmission map is unknown. Many

attempts are made to calculate the transmission map. Some successful attempts which

researchers came up with are Color attenuation prior [8], Non-local prior [1], Haze line

prior [2], dark channel prior [6] and others [37, 38]. However, the prior-based solutions

show inconsistent results in real-world situations due to the restriction of the priors. The

priors sometimes lead to incorrect values for atmospheric light or transmission maps.

Some approaches [1, 2, 6, 8, 15] fail to account for similarities to actual lightning, which

leads to poor dehazing performance for bright items.

Using deep learning techniques [3–5, 10, 11], the evaluation of transmission map and

atmospheric light becomes much easier. Some of the Deep learning techniques like cycle-

dehaze [5], and AECR-Net [16] didn’t even need the estimations map to yield results. We

begin by discussing the fundamentals of haze and its various forms before performing a

comparative examination of various deep learning-based dehazing methods. The history

of the haze is then provided. Finally, we discuss the related work with respect to dehazing

like datasets, work done in image dehazing till now, performance metrics etc.
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Constituent Mole percent
Oxygen 20.9
Nitrogen 78
CO2 0.035
Argon 0.934
Methane 0.00017
Hydrogen 0.00053
Neon 0.001818

Table 1.1: The constituents of the dry air [47].

Weather condition Particle type Radius (µm) Concentration (cm�3)
Haze Aerosol 10�2 - 1 103 - 10
Rain Water drop 102 - 104 10�2 - 10�5

Cloud Water droplet 1 - 10 300 - 10
Fog Water droplet 1 - 10 100 - 10
Air Molecule 10�4 1019

Table 1.2: Various atmospheric conditions and the corresponding sizes, types and con-
centrations of particles [48].

Haze occurs as a result of many particles present in the air like fog, smoke, mist, snow

etc as shown in Table 1.1 and Table 1.2. In general, the air is composed of around 78%

of NO2, 20% O2 gas, 0.04% of CO2 gas, and small quantities of other gases. Fig. 1.1

depicts the photos taken during adverse weather.

Haze deteriorates the image quality, however, haze is not homogenous in nature. In

nature [35] haze can be found in three forms as given below:

(i) Uniform Haze: In this type, the haze in an image is uniformly distributed. The

hazy images look homogeneous distributed with haze from every single pixel.

(ii) Plumes: These are created when air flows steadily for local reasons.

(iii) Layered Haze: It occurs when a temperature inversion happens very close to

the ground.

1.1 RELATED WORK

This section provides an introduction to di↵erent techniques used for single-image dehaz-

ing. We also provide information regarding the di↵erent image datasets, both real-world

and synthetic, available for dehazing.
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Figure 1.2: Various single Image dehazing techniques

1.1.1 Image Dehazing Techniques

Obtaining a dehazed image from the hazy one poses a significant challenge. Researchers

have introduced many methods to tackle this task (Fig 1.2). Deep learning-based methods

and statistical-based methods are the two main categories into which image dehazing tech-

niques may be divided. Deep learning-based can further divided into two subcategories:

(i) CNN-based and (ii) GANs based.

Statistical based methods

Statistical-based methods use assumptions to estimate statistical models and mitigate the

e↵ects of haze in images. These approaches involve analyzing the statistical properties of

haze and employing algorithms to calculate parameters such as transmission and ambient

light. By utilizing these estimations, the haze can be e↵ectively reduced or removed, re-

sulting in a clearer image. However, statistical-based methods may struggle when dealing

with complex scenes and varying levels of haze.

Tan [15] proposed a model for the contrast maximization of an image since it is ob-

served that the dehazed images show stronger contrast. A depth estimation method for

transmission maps was introduced by He et al. [6] by using a DCP. [6] When the image is

haze-free, DCP assumes that each pixel in one colour channel is near to zero. A technique

for calculating information from scene depth was proposed by Zhu et al. [8] using a color

attenuation prior. A technique which assumes that an image with no haze can be roughly

represented using a haze line prior [2]. The prior-based methods produce positive out-
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comes, however, the priors are dependent on the target scene and relative assumptions,

and they are less robust in the real complicated scenario. For instance, dark channel

prior [6] cannot e↵ectively dehaze the sky area.

CNN-based methods

Deep learning-based techniques have gained significant attention and success in recent

years. These techniques use neural networks’ direct learning capabilities to identify and

extract valuable elements from hazy images. Deep-learning-based techniques didn’t use

priors to calculate atmospheric light as well as the transmission map. Deep learning-

based approaches can be further categorized into two subcategories: CNN-based methods

and GANs-based methods. To calculate the transmission map for image dehazing, a

CNN-based model is used by Cai et al. [3]. A multi-scale model was proposed by Ren et

al. [26] that estimates transmission map by learning a mapping between transmission map

and hazy inputs using a coarse-to-fine learning technique. AOD-Net [7] reformulated the

physical scattering model. A fusion-based technique known as ”Gated Fusion Network”

was introduced by Ren et al. [13] that recovered the dehazed image from the hazy one.

GAN-based methods

Recently, Adversarial-based techniques, i.e., GAN has made significant development [27].

The discriminator and the generator are the two components of GAN. Both are trained

concurrently to create a realistic image that confounds the discriminator. Many computer

vision applications make use of GAN. In particular, GAN has shown promise in image

synthesis [28–30]. The Success of generative adversarial networks gives us the motivation

so that, we can use them for dehazing images. Zhang et al. [11] introduced a new model

named DCPDN, i.e., “Densely connected pyramid dehazing network” for transmission

map estimation. The disentangled dehazing network, which makes use of unpaired super-

vision, was proposed by Yang et al. [9]. A total of Three generators are included in the

given adversarial model suggested by Yang et al. [9] one for haze-free image, one for the

atmospheric light and one for the transmission map. DehazeGAN [31] uses a generative
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adversarial network for the simultaneous estimation of atmospheric light and the trans-

mission map. Single-image dehazing using di↵erent GANs is still in the initial stages. For

all of the present dehazing techniques using GAN, the physical scattering model [25] is

still a prerequisite. Little has been said about handling image dehazing without including

the physical scattering model [25].

Both CNN-based and GAN-based methods possess their own strengths and limitations.

CNN-based methods excel in accurately estimating the haze removal process but may

encounter challenges in preserving fine details. GAN-based methods, on the other hand,

excel in generating visually pleasing outputs but may introduce certain artifacts. Ongoing

research and development e↵orts are focused on refining and improving both approaches

to achieve better performance and address the specific challenges associated with each

method.

In conclusion, the task of obtaining a dehazed image from the hazy one is a complex

problem and researchers have introduced various techniques to address this challenge.

These techniques can be broadly categorized into statistical-based techniques and deep

learning-based techniques, which are later further divided into CNN-based and GAN-

based approaches. Continued progress in these fields will help to improve dehazing tech-

niques, enabling the creation of clearer and more aesthetically pleasing images even when

haze is present.

1.2 Dataset available for image dehazing task

Deep learning methods often improve accuracy since the volume of training data increases

drastically. In the case of single-image dehazing, there is various dataset available which

can be used for testing as well as training the model.

(i) HazeRD dataset [19]: A collection of 14 clear outdoor images which are captured

in five di↵erent conditions. All the dehazed images are captured along with the actual

depth.

(ii) I-Haze Dataset [20]: Ancuti et al. introduced a collection of 35 indoor hazy

images. For validation, the ground truth images are given with exactly five correspond-
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Figure 1.3: Sample images from di↵erent dehazing datasets

ing hazy images with di↵erent levels of haze depth. Resolution for both the pair of

images(hazy and non-hazy) is 2833 x 4657 pixels.

(iii) O-Haze dataset [21]: Ancuti et al. introduced a collection of 35 outdoor hazy

images. For validation, the ground truth images are given with exactly five corresponding

hazy images with di↵erent levels of haze depth. A professional haze machine is used to

generate hazy environment. The resolution for both the pair of images(hazy and non-

hazy) is 2833 x 4657 pixels.

(iv) Dense-Haze dataset [22]: Ancuti et al. introduced a new dataset with 33 real

hazy images. Both images contain the same visual information recorded under the same

lighting conditions.

(v) NH-Haze dataset [23]: Ancuti et al. introduced a collection of 55 outdoor hazy

images. The given hazy images are non-homogenous in nature which means the haze

is non-uniformly distributed. The non-homogenous nature provides a greater depth for

image dehazing tasks.

(vi) RESIDE dataset [24]: The dataset becomes the latest benchmark for image

dehazing tasks which contains five categories of images for testing and training.

1.3 Performance Metrics

The following are the most often used Validation Metrics for quantitatively comparing

models:
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(i) PSNR Score: PSNR is a metric which compares the haze-free image created by

a dehazing technique to the actual image. When PSNR value becomes high, the quality

of the reconstructed image gets increases. Mathematically it can be represented as,

PSNR = 10 log10
(2d � 1)

MSE
(3)

Where d represents the maximum bit value in an image. MSE is the Mean Square

Error. It evaluates the level of statistical model accuracy. Calculated is the average

squared di↵erence between observed and predicted values. Mathematically it can be

represented as:

MSE =
1

nm

nX

i=1

mX

j=1

(I(z)� J(z))2 (4)

Where n and m represent height and width of an image respectively. I represent the

ground truth and J represent the output. The quality of the reconstructed image will

improve with greater PSNR values.

(ii) SSIM Score: The Structural Similarity Index (SSIM) is a metric used to as-

sess the degradation of an image caused by processes like data compression or image

reconstruction. It evaluates the similarity between two images based on their contrast,

structure, and lighting. he SSIM score goes from -1 to 1, with a score of 1 denoting

complete identity between the images. Mathematically, it can be represented as follows:

SSIM = f(l(z), c(z), s(z)) (5)

Where l(z) represents lightning in an image, c(z) represents the contrast and s(z)

represents the structure of an image.
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Chapter 2

LITERATURE REVIEW

Figure 2.1: Deep learning-based image dehazing models’ timeline

In this chapter, various learning-based approaches proposed so far for single-image

dehazing are discussed (Fig. 2.1). The following approaches are discussed in terms of

intuition, methodology, and loss functions. The popular dehazing methods discussed

below are Dehaze-Net [3], AOD-Net [7] , FFA-Net [10], EPDN(i.e. Enhanced Pix2pix

Dehazing Network) [12], DCPDN (i.e. Densely Connected Pyramid Dehazing Network)

[11], Cycle-Dehaze [5], Domain Adaptation for Image Dehazing [14], RefineDNet [17],

FD-GAN [4], AECR-Net [16].

2.1 DehazeNet method

An end-to-end network was proposed by Cai et al. [3] for calculating the transmission

map which is used to construct dehazed image. It used a CNN based architecture which

generates all the features which are relevant to hazy images. To imropve the reconstructed

image quality, a bilateral rectified linear unit is also introduced.
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Figure 2.2: Dehaze-Net Architecture [3]

DehazeNet uses four main components to calculate transmission map: a feature ex-

traction component, local extremum, a multi-scale mapping component and a nonlinear

regression component. A maxout layer [18] is used by the feature extraction component

which reduces the dimensionality. Multiple-scale mapping is used which extracts dense

features in an input image at multiple levels. Local Extremum is used to reduce the noise

in the network. For the non-linear regression component, Cai et al. [3] also introduced a

BreLu(Bilateral Rectified Linear Unit) to increase the convergence rate.

The Dehaze-Net architecture (Fig. 2.2) is made up of several pooling and convolutional

layers. SGD (Stochastic Gradient Descent) is used to train DehazeNet. MSE is utilised

to calculate the loss.

2.2 AOD-Net method

Figure 2.3: K-estimation components of AOD-Net [7].

A CNN-based dehazing technique is introduced by Li et al. [7]. AOD-Net generates

the dehazed image without calculating transmission map or atmospheric light. [7] propose

a k-estimation component which directly estimates the errors occurs while reconstructing
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a dehazed image. The introduction of k-estimation will update the (1) as:

J(z) = K(z)I(z)�K(z) + b (6)

K(z) =
1

t(z)(I(z)� A) + (A� b)

I(z)� 1
(7)

Here k(z) is the k-estimation module. I(z) is the given dehazed image. b is the

bias with 1 as the default value. A is the air light. t(z) is the transmission map. The

architecture of AOD-net consists five convolution layers with di↵erent filter sizes and

concat these layers as shown in Fig. 2.3. Since this model can generate image in a single

run, it can be used in other image enhancement-related tasks.

2.3 Feature Fusion Attention Network(FFA-Net) method

A feature fusion attention network was introduced by Qin et al. [10] for directly generating

dehazed images. This feature attention module treats pixels and features of an image

di↵erently. This feature attention module contains two components: channel attention

and pixel attention (Fig. 2.4).

Figure 2.4: Channel and Pixel attention architecture of FFA-Net [10].

The concept behind the channel attention module is that di↵erent channels in an image

contain various types of information. In order to get this spatial and feature information,

12



global average pooling is used. Mathematically, channel attention can be represented as:

gc = Hp(Fc) =
1

H ⇤W

WX

m=1

HX

n=1

Ic(m,n) (8)

CAc = �(Conv(�(Conv(gc)))) (9)

F ⇤
c = Fc ⌦ CAc (10)

Here, Ic represents a pixel of an Image at (i, j) in cth channel. Fc represents the

input. Hp represents global average pooling. � signifies sigmoid functions. � signifies

ReLu function. CAc represents the channel weights.

Pixel attention module is introduced to deal with thick hazy pixels in an image. It

takes the output generate by channel attention as input and performs two convolution

operation followed by the activation functions.

PA = �(Conv(�(Conv(F ⇤)))) (11)

F̃ = F ⇤ ⌦ PA (12)

Here, F ⇤ represent input which is coming from chanel attention’s output. PA denotes

the pixel attention’s output and F̃ is the output of FA module.

2.4 Enhanced Pix2pix Dehazing Network method

EPDN [12] is a GAN-based technique which uses pix2pixHD GAN [32] architecture that

converts an image dehazing problem into an image-to-image translation problem. How-

ever, the dehazed image is not directly provided to pix2pixHD [32] GAN. EPDN first

provides some modification to the original code by introducing an enhancer block to the

generator part. This method doesn’t rely on the estimation of transmission maps or

atmospheric light for generating haze-free images.

Three main components comprise the architecture of EPDN: a multi-scale discrimina-

tor module, an enhanced module, and a multi-resolution generator module.
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Multi-resolution generator: The multi-resolution generator of EPDN is a two-

generator architecture. The first one is a global sub-generator, G1, and the other one is

a local sub-generator, G2. G1 is incorporated in G2. A coarse-scale image is generated

G1 while G2 generates an image on a fine-scale. A coarse-to-fine image is generated when

the two generators combine.

Enhanced block: Due to the overcolored and lacked details dehazed images produced

by the pix2pixHD, an enhancing block was introduced by Que et al. [12]. The enhancing

block can extract information on a fine scale by using a receptive field model.

Multi-scale Discriminator: The discriminator of the networks also follows a two-

discriminator architecture D1 and D2. Both follow similar architecture. However, D1

guides the generator to generate the result on coarse scale whereasD2 directs the generator

to produce the fine-scale images. The overall loss of the EPDN architecture is shown in

equation (3).

Ltotal = LA + �LFM + �LV GG + LF (13)

Here, LA refers to the adversarial loss of generative adversarial networks. LFM refers

to feature matching loss which helps the generator to create realistic multi-scale statistical

data. LV GG is the perceptual loss. LF is the fidelity loss which provides euclidean distance

between actual and generated haze-free images. EPDN didn’t rely on the scattering

model [25] for generating the haze-free image. When the method runs on heavily hazed

images, the performance of the model falls.

2.5 Densely Connected Pyramid Dehazing Network

By predicting ambient light and transmission map, Zhang et al. [11] presented a GAN-

based network that creates haze-free images. The architecture of DCPDN majorly divides

into these categories: A joint discriminator, a densely connected pyramid network and an

atmospheric light estimation network. Fig. 2.5 shows the architecture of DCPDN. This

architecture is used to calculate the transmission map and a U-net architecture [39] is used

to estimates the atmospheric light. After estimating both ambient light and transmission
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Figure 2.5: Architecture of DCPDN [11]

map, we generate the dehazed image using the atmospheric scattering equation (1). The

joint discriminator determines if the created image is fake or real by computing the loss.

[11] first combined both the transmission map and the dehazed image before feeding it to

a joint discriminator for training. The total loss of the DCPDN architecture is given as.

Ltotal = �jL
j + Lt + Ld + La (14)

Here, Lj refers to the joint-discriminator loss from generative adversarial networks,

where the generator produces haze-free image and discriminator is trained to verify if an

image is real or false. La refers to the traditional MSE loss, which is used to calculate

transmission map. Lt refers edge-preserving loss. I is the newly introduced loss by the

author which inside uses three di↵erent losses: L2 loss, feature loss and two-directional

gradient loss. Ld represents the dehazing loss.

2.6 Cycle-Dehaze method

Engin et al. proposed a Cycle-Dehaze technique which is based on the concept of Cycle

GAN [30]. An entire architecture that doesn’t require combining the corresponding ground

truth image with the real ground truth image for model training. The transmission map

for estimation is not necessary since the method is based on GANs.

The cycle-dehaze method train on an unpaired set of hazy and clean images. As we

know, the deep learning method generally works on low-resolution images. So, this model
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downsamples the high-quality images first as cycle-GAN works better on low-resolution

images. For down-sampling bicubic downsampling is used and for up-sampling Laplacian

pyramid is used. Cycle-dehaze consists of two generators along with two discriminators.

The architecture of cycle-dehaze is shown in Fig 2.6.

Figure 2.6: Architecture of cycle-dehaze [5]

To improve the quality of an image cycle-consistency and perceptual loss are used.

The overall loss for the cycle-dehaze architecture can be written as:

L(F, G, Dy, Dx) = � ⇤ LPerceptual(F, G) + LCycleGAN(F, G, Dy, Dx) (15)

Here, F and G represent the generator-one and generator-two respectively. Dx, Dy

represents discriminators one and two. LPerceptual represents perceptual loss and LCycleGAN

represents cycle-gan loss. The L1-regularization is computed by perceptual-consistency

loss. The following model compares the reconstructed image to the original image. To

preserve the sharpening of an image, perceptual loss is used and to ensure a higher PSNR

value, consistency loss is used.

2.7 Domain Adaptation for Image Dehazing

A domain adaptation technique was proposed by Shao et al. [14]. Domain adaptation

method for image dehazing [14] tries to lessen the discrepancy across various domains

because the majority of approaches [?,3,12] typically employed synthetic hazy images for
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training. The aim of domain adaptation in this case is to lessen disparity across various

domains.

This method is composed of two components: an image translation component and

two dehazing components (one for the real hazy inputs and the other for the synthetic

hazy inputs). At first, the image is translated from one domain to another and then uses

the resultant images with the actual image in order to conduct dehazing on both the

synthetic domain as well as the real domain.

The overall loss function for the domain adaptation [14] architecture can be written

as:

L = �d(Lrd + Lsd) + �m(Lrm + Lsm) + �t(Lrt + Lst) + �cLc + Ltran (16)

Here, Ltrans represents the translation loss. Lrm and Lsm represent the mean squared

error loss for dehazed images, both real and synthetic respectively. Lrd, Lsd represents

the dark channel loss for both real as well as synthetic dehazed images respectively. Lrt,

and Lst represents the total variation loss for synthetic hazy images along with the real

ones respectively. Lc represents a cyclic-consistency loss.

2.8 RefineDNet

Zhao et al. [17] proposed a refinement architecture which is weakly supervised in nature.

As we know GAN methods produce more realistic results. However, the capabilities of

earlier haze removal systems are constrained owing to the absence of real-world paired

datasets (both actual and hazy). The weakly supervision help to generate the good results

and also outperformed many deep learning approaches based on supervision.

The method combines the advantages of both the learning-based as well as statistical-

based techniques by categorizing the dehazing task into two sub-problem: realness im-

provement and visibility restoration. The weakly supervised dehazing method has two

stages. In stage I author uses DCP [6] to restore image visibility. In stage II GANs-

based learning with an unpaired dataset is used to improve the realness of an image. The

method also proposes a strategy, known as perceptual fusion, to blend the refined and
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reproduced dehazed image, to get more qualified results. The strategy assigns weights

which are close to the natural images. Fig. 2.7 illustrates the working of the perceptual

fusion strategy.

Figure 2.7: Working of perceptual fusion strategy in RefineDnet [17]

The overall loss for the refineDnet architecture can be written as:

Ltotal = arg min
RT ,RJ

max
D

�LG + Lrec + Lidt (17)

Here, Lrec represents the reconstruction loss which is used to normalize the recon-

structed hazy images. LG represents the adversarial loss. Mean absolute error is used

to calculate the error between real and reconstructed hazy images. Litd represents the

identity loss which is to decrease the number of artefacts in the dehazed image which got

introduced after the refinement part. � represents the weights as a hyperparameter.

2.9 AECR-Net

A contrastive learning-based approach was proposed by Wu et al. [16] in 2021. For

positive samples, previous deep learning-based techniques primarily used clear images to
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train dehazing network, leaving negative information unexploited. Wu et al. uses an auto-

encoder and contrastive regularization, in short AECR-net, to deal with both negative

and positive samples of an image.

The ground truth image is portrayed by the authors as positive, the fuzzy image as

negative, and the reconstructed images are used as an anchor. The suggested contrastive

regularisation approach makes sure that the reconstructed picture is pushed further away

from the original hazy image while being moved closer to the ground truth image. The

autoencoder (AE) architecture also contains an adaptive mixing operation and a dynamic

feature enhancement module, both of which are used to improve network transformabil-

ity. Contrastive regularization is frequently employed in self-supervised learning and can

enhance the quality of translation from unpaired images to images. The overall loss for

the AECR-net architecture can be written as,

Ltotal = � · ⇢(G(�(I, w)), G(I), G(J)) + min kJ � �(I, w)k (18)

Here, J represents dehazed image, I represents a hazy image and G represents the

actual ground truth. min ||J � �(I, w)|| represents reconstruction loss that is used to find

displacement between the original image and the restored image. The �(I, w), J and I

represents the contrastive regularization term.
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Chapter 3

METHODOLOGY

In this work, we proposed a new FAG-Net for single-image dehazing. When the dense

haze is present, FAG-Net outperforms existing state-of-the-art dehazing techniques. The

recovered image not only surpasses the previous models quantitatively but also generates

visually appealing and highly detailed images. In FAG-Net, a new generator architecture

is introduced to dehaze the images.

Figure 3.1: Hazy image (left) and its corresponding clean image (right) generated from
our proposed model on RESIDE [24] ITS and I-Haze [20] datasets respectively.

The new generator consists of transition block, dense block (Fig. 3) and a new block

known as feature attention (FA) block at each layer to enhance the realistic nature of haze-

free image. FA block consists one channel attention (CA) block and one pixel attention

(PA) block [10]. Channel attention enhance the relevant information in di↵erent color

channels of the input image. While pixel attention aims to selectively emphasize or

suppress certain pixels in the image which helps the models to concentrate on the most

a↵ected areas of an image by haze. A traditional CNN-based discriminator [28] is used,
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which checks whether the output image generated by our FAG-Net is near to the actual

dehazed image or not.

The following section discusses the proposed FAG-Net, which can compete with signif-

icant existing research approaches and perform considerable dehazing. The components

of the network, in particular generator and discriminator components, are discussed in

the subsections along with the loss functions. A dense block, transition block, and feature

attention (FA) block are the three di↵erent sorts of blocks in our model.

3.1 Dense Block

The utilization of a dense block proves beneficial in extracting intricate features from

hazy images, thereby enhancing the accuracy of transmission map estimation. Within

the encoder part, a dense block encompasses a sequence of convolution layers, ReLU acti-

vation, Batch Normalization, and a dropout layer. Conversely, the decoder section of the

network consists of a series of ReLU activation and Convolution Layers, forming the dense

block. The incorporation of skip connections addresses the challenge of vanishing gradi-

ents, ensuring that crucial features are not disregarded during the learning process. By

employing skip connections, the network can e↵ectively propagate gradients and preserve

vital information, leading to improved performance in haze removal tasks.

Figure 3.2: DenseBlock Architecture [50].
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3.2 Transition Block

It is used to lower the spatial dimension of output feature maps from the convolution

layers. It consists of convolution layers, ReLu, average pooling and Batch normalization.

The components of the transition Block are the convolution layer, Batch normalization,

ReLu and average pooling. The main advantage of using a transition block in image

dehazing is that the number of parameters gets reduced drastically in a network, which

can improve the speed of training and reduce the risk of overfitting. A transition block

in the decoder part is used for upscaling an image which helps in gradually restoring the

feature map’s size.

3.3 Feature Attention (FA) Module

The FAG-Net uses a feature attention (FA) block which uses channel attention (CA) and

pixel attention (PA) [10]. Combining both can provide us with a mechanism which can

deal with the images which have non-uniform haze distribution. The main aim of channel

attention is to enhance the relevant information in di↵erent color channels of the input

image. Channel Attention performs a global average pooling at each channel and at each

pixel. The Pixel attention aims to selectively emphasize or suppress certain pixels in the

image which helps in aiming the most a↵ected areas by haze. It targets the dense haze

regions in a hazy image and tries to pass the information to the next layer of our model.

Mathematically, the output of our feature-fusion block can be represented as:

Õff = (CAo ⌦ I)⌦ PAo (19)

CAo = �(Conv(�(Conv(Ig)))) (20)

PAo = �(Conv(�(CAo ⌦ I)))) (21)

where Õff represents the output of the feature attention block which is of shape

1 ⇥ H ⇥ W . I represent input hazy image. CAo represents channel attention’s output.

CAo is the combination of sigmoid, ReLu and two convolution layers applied on Ig. Here,
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Ig represents the input image after the global average pooling of shape C ⇥ 1 ⇥ 1. PAo

is the pixel attention’s output. It is an element-wise multiplication of the actual input

image and channel attention’s output followed by the combination of the sigmoid, ReLU

and convolution layer.

3.4 Generator

Figure 3.3: Generator architecture for FAG-Net.

Our new generator uses an encoder-decoder architecture [4] that input’s a hazy image

and output’s a dehazed image. Both the encoder and the decoder consist of dense Blocks,

transition Blocks and feature attention (FA) blocks. The encoder consists of three dense

blocks and three transition blocks followed by a feature attention (FA) block. Dense block

and transition block use DenseNet-121 CNN architecture’s pre-trained weights [51]. The

encoder blocks downscale input image size while extracting the important information.

The feature-fusion (FA) block is used to enhance realistic nature of dehazed image after

each transition block. The decoder architecture converts the encoded image to its original

shape and size. The transition block in the decoder also contains a upsample block which

progressively upscales the image to its original size. Tanh is used as an activation function

at the end of the decoder to provide non-linearity and produce more accurate results.
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Figure 3.4: Discriminator Architecture

3.5 Discriminator Architecture

The discriminator (Fig. 4) takes the real dehaze images from the dataset and the generated

dehaze images from the proposed generator as inputs and checks whether the generated

image is real or fake. Then give this feedback to the generator which again produces a fake

dehaze image. And this process will go on and on until we get some pleasant eye-catching

results. The discriminator uses a general CNN patched-based discriminator which is used

in conditional-gan [6]. The discriminator consists of six convolution Layers, 5 leaky ReLu,

3 batch normalization and softmax. In each input image, the discriminator uses 14 × 14

patches to determine whether it is real or fake.

To determine the authenticity of the images, the discriminator employs a combination

of di↵erent loss functions, including pixel-wise loss, adversarial loss, and perceptual loss.

These diverse loss functions enable the discriminator to comprehensively evaluate the

similarity between the generated images and the real images within the dataset. By

integrating multiple loss functions, the discriminator provides a holistic assessment of the

realism and quality of the generated dehazed images.

3.5.1 Loss Functions

a) Adversarial Loss: The generative networks employ adversarial loss to enhance the

realism of the dehazed images they produce. The objective of the generator is to gen-

erate dehazed images that closely resemble real ones, while the discriminator’s role is

to di↵erentiate between genuine dehazed images and those generated by the generator.
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Mathematically, the adversarial loss can be expressed as follows:

Ladv = r✓adv(1/n)
nX

j=1

[log(1�D(G(zi))) + logD(xi)] (22)

Here G(zi) signifies the generator’s output when at ith pixel, noise z is given, log(D(x))

signifies the probability estimate of discriminator that an actual data instance is real and

D(G(z)) represents discriminator’s probability estimate that a generated instance is actual

or not.

b) Reconstruction Loss: The given loss measures how well the reconstructed de-

hazed images match the actual dehazed image by examining the pixel-wise di↵erence.

To determine how well an image has been reconstructed from the input, it compares the

pixels between the clear and dehazed images. Since it reduces the impact of large errors,

we select mean absolute error loss (MSE) as reconstruction loss. Mathematically, we can

represent reconstruction loss as:

Lrecon =
nX

j=1

kG(Ii)� Jik (23)

where G(Ii) is the generator’s output, Ji the actual ground truth, Ii represents the

given input hazy image.

c) Perceptual Loss: This loss is used when we are comparing two di↵erent images which

look identical and only shifted by just one pixel. Perceptual loss examines semantic and

perceptual di↵erences between images at the highest level. It determines the di↵erence

between generated dehazed images and the original ones using features derived from a

pre-trained network.
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Chapter 4

RESULTS and DISCUSSION

4.1 Experimental Analysis

4.1.1 Datasets

We utilised the following datasets to train our FAG-Net:

1) I-Haze Dataset [20]: It is a collection of 35 indoor hazy images. For validation, the

ground truth images are given with exactly five corresponding hazy images with di↵erent

levels of haze depth. Resolution for both the pair of images(hazy and non-hazy) is 2833

x 4657 pixels.

2) O-Haze dataset [21]: Ancuti et al. introduced a collection of 35 outdoor hazy

images. For validation, the ground truth images are given with exactly five corresponding

hazy images with di↵erent levels of haze depth. A professional haze machine is used to

generate hazy environment. The resolution for both the pair of images(hazy and non-

hazy) is 2833 x 4657 pixels.

2) RESIDE-ITS dataset(Indoor Training Set) [24]: It becomes a benchmark

dataset which contains indoor images (Indoor Training Dataset). We select 1400 images

which covered the majority of hazy cases.

4.1.2 Training Details

We used google colab pro to train our proposed FAG-Net. The GPU used is a Tesla T4

with 32GB of RAM. We trained our model for 104 epochs for each dataset. Each dataset

set takes 2 days to train. We set the learning rate to 2 ⇥ 10�4and gets decayed by 0.5
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Figure 4.1: Results generated on di↵erent datasets: I-HAZE [20], RESIDE(ITS) [24],O-
HAZE [21](Top to bottom).

after every 2000 epochs. After thorough analysis, the adversarial loss and perceptual loss

weight values are set to 0.5. Adam optimizer [49] is used to train FAG-Net with a batch

size of 1.

4.1.3 Qualitative and Quantitative Evaluation

We evaluate the FAG-Net both quantitatively and qualitatively against following state-

of-the-art methods: DCP [6], CAP [8], FFA-Net [10], AOD-Net [7]. For measuring our

FAG-Net quantitatively, PSNR and SSIM scores are used. PSNR compares the haze-

free image created by a dehazing technique to the actual image. SSIM evaluates image

degradation induced by processing such as data compression or image reconstruction.

Table 4.1: Quantitative comparisons with O-HAZE [21], I-HAZE [20] and RESIDE(ITS)
[24] Datasets.
Methods O-HAZE I-HAZE RESIDE(ITS)

SSIM PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB)
DCP [2] 0.65 16.78 0.75 14.42 15.20 0.82
CAP [11] 0.59 16.08 0.62 12.23 13.36 0.75
FFA-Net [5] 0.86 17.1 1.73 12.36 14.45 0.78
AOD-Net [14] 0.82 15.20 0.67 11.72 13.98 0.73
Ours 0.86 15.20 0.92 24.3 0.85 19.2
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Table I shows the quantitative performance of the FAG-Net with other state-of-the-art

models. From the table, we can clearly observe that our model performs quantitatively

on par with other dehazing methods. Fig. 5 shows the qualitative comparison of FAG-

Net with other dehazing models [2, 5, 10, 14]on di↵erent datasets [20, 21, 24]. For indoor

datasets [20, 24], our model outperforms all the datasets by producing visually great

results. However, for the outdoor dataset [21] further improvement is still required as the

output result has some low contrast.
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Chapter 5

CONCLUSION AND FUTURE SCOPE

The research focused on exploring multiple deep-learning-based approaches for image

dehazing. These approaches were discussed briefly, shedding light on their respective

methodologies and mathematical equations from various perspectives. Examining di↵er-

ent techniques o↵ers valuable insights into the strengths and limitations of image dehazing

methods. Deep learning has brought about a revolutionary impact on image dehazing

tasks in recent years, and the introduction of generative adversarial networks (GANs) has

further spurred researchers to generate new ideas for tackling image dehazing challenges.

Deep learning has demonstrated remarkable results in image dehazing; however, there

is still room for improvement in terms of space and time complexity. Further e↵orts are

required to combine the advantages of di↵erent proposed statistical-based methods with

deep learning approaches. This is because certain models perform well in specific environ-

ments, and researchers aim to develop weakly supervised methods capable of producing

excellent results in both real hazy and synthetic environments.

The development of e↵ective weakly supervised methods is an area of research. The

weakly supervised methods aim to leverage limited or imperfect annotations to train deep

learning models for image dehazing. Researchers might lessen their dependency on fully

annotated datasets, which are often time-consuming and costly to develop, by investi-

gating weak supervision strategies. This enables more realistic and scalable solutions in

real-world circumstances.

Furthermore, combining statistical-based methods with deep learning approaches has

the potential to improve the performance and robustness of dehazing algorithms. Re-

searchers might potentially transcend the limitations of individual methodologies and
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generate more complete and e↵ective solutions by using the strengths of both paradigms.

To summarise, while deep learning has greatly advanced image dehazing jobs, there is

still much work to be done. Improving the space and time complexity, exploring weakly

supervised methods, and combining statistical-based and deep learning approaches are

key areas of focus for researchers. By addressing these challenges, the goal is to develop

innovative techniques that can generate high-quality dehazed images in a variety of real-

world environments.

In this work, we also introduced a new feature attention generative network (FAG-Net)

for image dehazing and demonstrated its visual capabilities. To extract more information

and to give the results much more depth, a newly proposed feature-fusion (FA) block is

introduced in the generator. Perceptual Loss and reconstruction Loss along with adver-

sarial loss are used to provide more visually attractive natural outcomes including superior

structure and edge identification while also considerably reducing the appearance of arte-

facts. Our proposed FAG-Net generated aesthetically appealing dehazed images with

less color distortion surpassing existing state-of-the-art dehazing techniques. Extensive

experimental analysis demonstrates that our FAG-Net surpasses existing state-of-the-art

models both quantitatively and qualitatively. In the future, this work can be extended

for other image enhancement tasks like low-light image enhancement, image denoising,

image deraining etc.
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