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ABSTRACT 

 

The task of generating comprehensive and elaborate descriptions for images, commonly 

referred to as image captioning, presents a formidable challenge. This involves the amalgamation 

of computer vision and natural language processing techniques to establish a connection between 

visual data and textual comprehension. The fundamental goal of image captioning is to develop 

models and algorithms capable of comprehending the information conveyed by an image, thereby 

generating captions that effectively and coherently portray the visual content of the image in a 

manner akin to human-like interpretation. The concept of deep learning is introduced as a potential 

solution for image captioning, with a specific emphasis on the utilization of convolutional neural 

networks (CNNs) to extract salient visual features and recurrent neural networks (RNNs) to 

generate descriptive captions. This approach highlights the integration of CNNs and RNNs within 

the framework of deep learning, enabling the fusion of visual and textual understanding to facilitate 

the image captioning process. Image captioning is far more challenging than tasks like object 

identification and image categorization. Usually, two pipelines are used in the process: the first 

pipeline performs the computer vision task, while the second pipeline covers the natural language 

processing task. Deep learning approaches can manage the aforementioned pipelines and can 

create captions for images that are more robust. For visually impaired people, image captioning is 

immensely helpful. Image captioning makes things more accessible and entertaining for users, and 

it may be utilized to improve intelligent systems in a variety of ways. This research proposes a 

attention based image captioning method based upon the encoder decoder architecture. The 

proposed methodology firstly extract the image features. The image features is passed to the 

attention layer which applies attention to the different region of images. Later, the decoder layer 

receives the attention vector and context vector to produce the caption.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction  

In the era of information, a plethora of sources provide access to images, such as the 

internet, television, and various other mediums. However, human beings possess the remarkable 

ability to interpret visual stimuli even in the absence of explicit explanations. In contrast, for 

machines, generating accurate descriptions necessitates not only the identification of objects 

within an image but also the comprehension of their interrelationships, attributes, and associated 

activities. Achieving this level of understanding requires a profound contextual understanding of 

the image for machines. Image captioning involves the generation of a descriptive narrative to 

accompany an input image. Hence, it can be regarded as a problem encompassing the entire 

sequence-to-sequence process. Image captioning plays a crucial role in aiding individuals who are 

blind or visually impaired by providing them with valuable insights into the content of images 

displayed on websites and other platforms. Furthermore, in the realm of e-commerce applications, 

image captioning proves to be beneficial for describing the visual content of products and 

facilitating their organization based on relevant categories. Image captioning holds significant 

potential for various multi-modal applications, such as cross-modal image retrieval, multi-modal 

event extraction, video captioning, and visual question answering. These diverse domains can 

greatly benefit from the capabilities offered by image captioning techniques. 

An image caption is generated by leveraging the fusion of computer vision and natural 

language processing techniques, enabling the creation of a descriptive caption for every incoming 

image. A lot of research was done in previous years to create an image caption. The process of 

classifying images and extracting their properties has seen significant advancement thanks to Deep 

Learning (DL)-based models. When it comes to designs based on convolutional neural networks 

(CNNs), the widely recognized ImageNet dataset is commonly employed as a benchmark for 

evaluation. This influential advancement in deep learning has also stimulated research endeavors 

aimed at modeling temporal data. Presently, numerous studies are underway to enhance our 

understanding of image semantics and the intricate relationships existing among objects within an 

image. 
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Initially, the researcher proposed [3] a methodology based on recurrent neural networks 

(RNNs) to discern image features and generate corresponding captions. Two pipelines make up 

the model: one for capturing visual features and the other for language generation. Firstly, the input 

image is passed through CNN for feature extraction. The RNN is used to generate the titles from 

the CNN input feature vector instead of the language generation model. Another study [4] employs 

an LSTM [5] network to generate language because RNNs struggle to grasp dependencies in 

lengthy sequences, and as a result, this model outperforms others on test datasets. Several studies 

have been conducted to upgrade and expand over these baseline language generation and CNN 

models. 

1.2 Problem Statement  

The challenge of automatically creating semantically relevant and detailed captions for 

photos requires the development of precise and coherent algorithms. Despite recent improvements 

in deep learning-based methods, this field still faces a number of difficulties. The management of 

complex visual sceneries with numerous objects, the handling of ambiguity and context 

understanding, and the achievement of human-level language creation are some of these 

difficulties. Furthermore, bias in datasets and generalisation across many image categories 

continue to be major issues. For image captioning systems to develop their capabilities and 

improve their useful applications in fields like accessibility, content retrieval, and social media 

enrichment, these obstacles must be overcome. This project main objective is to create an attention-

based system for producing pertinent captions for photographs.  

1.3 General Concepts Involved  

1.3.1 Convolutional Neural Networks (CNNs) 

Humans can outperform in a variety of tasks, like object recognition, image segmentation 

and classification. CNNs have caused a paradigm change in the field of computer vision. This 

remarkable achievement has revolutionized the landscape of computer vision research. CNNs is 

created specifically to process and analyse visual input by taking use of spatial relationships seen 

in images. The fundamental benefit of CNNs is their automatic learning of representations of 

images, which is made possible by a series of convolutional, pooling, and non-linear layers. These 
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layers can capture high-level semantic information, such as object shapes and structures, and low-

level visual data, such as edges and textures.  

1.3.1.1 Input Layer 

The input layer of a CNN is in charge of ingesting input data, which is typically a picture 

or a series of pictures. The input layer of applications that use images accepts the image's pixel 

values as input. The dimensions of the input layer depend on the size of the input image, which is 

often given as height, width, and number of channels (for instance, RGB channels). The input layer 

acts as the picture data's entry point, making it easier to transmit the input image to later layers for 

the purposes of feature extraction and learning. Pre-processing methods like normalisation and 

scaling can be used in the input layer to ensure an ideal input data format for later processing steps, 

which will optimise the data representation within the CNN. These challenges have witnessed the 

utilization of deep CNN architectures such as AlexNet [6], VGGNet [7], GoogLeNet [8], and 

ResNet [9], which have exhibited exceptional performance and garnered significant attention 

within the research community. With the development of video-based CNNs [10] and 3D CNNs 

[11], which enable powerful video interpretation and action recognition, CNNs have also advanced 

beyond static picture analysis. Fig 1. shows the abstract architecture of CNN. 

 

 

Figure 1. CNN abstract architecture [45] 



 

4 
 

1.3.1.2 Convolutional Layer 

A major part of a CNN, for feature extraction convolution layers plays a very important 

role. This layer is made up of a number of trainable filters, sometimes known as kernels, that 

convolutionally navigate the input data using a sliding window method. The filters identify local 

relationships and trends in the input, allowing the network to gather significant characteristics. 

Convolutional layers make use of common weights to find patterns that are similar across diverse 

input areas. The extracted features are spatially arranged to from the various features at the 

convolution layer. The effectiveness of CNNs in a variety of computer vision tasks and 

applications is greatly enhanced by this hierarchical feature extraction approach. 

1.3.1.3 Pooling Layer 

This layer follows the convolutional layer in CNNs, is crucial. The task aim of this layer is 

to down sample feature maps acquired from the prior layer, hence reducing their spatial 

dimensions. Mostly max pooling is used, this chooses the highest value present in a particular 

region and discarding all other values. Pooling assists in lowering the network's computational 

complexity while preserving the most important properties by lowering the spatial resolution. 

Additionally, by capturing the existence of significant features independent of their specific 

location in the input, pooling helps achieve translation invariance. Improved robustness, 

generalisation, and efficiency are results of this down sampling process in CNN designs. 

1.3.1.4 Fully Connected Layer 

After one or more pooling layers, CNN architecture often contains a fully connected layer, 

also referred as dense layer. The final layer of the network performs high-level categorization and 

reasoning using the features that were gathered from earlier layers. Each neuron in the completely 

connected layer forms connections with every neuron in the layer above, making it easier to 

analyse the learnt features thoroughly. Leveraging weighted connections and activation functions, 

this layer assigns the acquired features to specific output classes or predictions. The fully 

connected layer equips the CNN to reach firm conclusions and generate precise predictions by 

utilising the hierarchical characteristics obtained from earlier convolutional and pooling layers. 
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1.3.1.5 Output Layer 

In a CNN, output layer is placed after the fully connected layer. This layer utilizes the 

computations and learned features from the preceding layers to generate the desired output or 

predictions. It is essential to the network's final phase since it allows CNN to produce the desired 

output using the data gathered from across the whole network. The output layer's configuration is 

determined by the current task. For problems involving classification, the output layer typically 

comprises of neurons corresponding to various classes, with each neuron expressing the likelihood 

or confidence score that the input belongs to a specific class. Commonly used to obtain normalised 

class probabilities is SoftMax activation. A single neuron or a number of neurons representing 

various regression goals may make up the output layer in regression tasks. 

1.3.2 Long Short Term Memory 

The LSTM architecture, a type of RNNs, successfully captures long-term dependencies in 

sequential input data while addressing the issue of disappearing gradients. This is achieved through 

the utilization of memory cells and gating mechanisms. Essential parts like the forget gate, output 

gate, input gate and memory cell make up an LSTM unit. The following equations regulate each 

gate in an LSTM unit, establishing its functionality and behaviour: 

1. Input Gate (𝑖) : 

𝑖(𝑡) = σ(𝑊𝑖 ⋅ [ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑖)              (1.1) 

 In this equation, the notations are as follows: 

• 𝑖(𝑡) represents the input gate activation at time step 𝑡 

• 𝜎 represents the input gate activation at time step 𝑡 

• 𝜎 denotes the sigmoid activation function. 

• 𝑊𝑖 represents the weight matrix associated with the input gate. 

• ℎ(𝑡 − 1) represents the hidden state from the previous time step. 

• 𝑥(𝑡) represents the input at time step. 

• [ℎ(𝑡 − 1), 𝑥(𝑡)] denotes the concatenation of the hidden state and input. 
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• 𝑏𝑖 represents the bias term associated with the input gate. 

The calculation of the input gate activation in an LSTM network, determining the extent to 

which new input data should be allowed to update the memory cell, is governed by the provided 

equation. To regulate the flow of information, the sigmoid activation function is applied, 

ensuring that gate activation remains within range of 0 to 1. This mechanism guarantees 

controlled and precise handling of input data within the LSTM network. 

1. Forget Gate (𝑓) : 

   𝑓(𝑡) = σ(𝑊𝑓 ⋅ [ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑓)                           (1.2) 

In this equation, the notations are as follows: 

• 𝑓(𝑡) represents the forget gate activation at time step 𝑡. 

• 𝜎 denotes the sigmoid activation function. 

• 𝑊𝑓 represents the weight matrix associated with the forget gate. 

• ℎ(𝑡 − 1) represents the hidden state from the previous time step. 

• 𝑥(𝑡) represents the input at time step 𝑡. 

• [ℎ(𝑡 − 1), 𝑥(𝑡)] denotes the concatenation of the hidden state and input. 

• 𝑏𝑓 represents the bias term associated with the forget gate. 

The computation of the forget gate activation in an LSTM network, governing the extent to 

which the previous memory cell state should be retained or discarded, follows the provided 

equation. The information flow is regulated by the sigmoid activation function, which 

guarantees that the gate activation remains within the range of 0 to 1. This mechanism allows 

precise control over the retention or removal of information from the memory cell state within 

the LSTM network. 

2. Output Gate (𝑜): 

𝑜(𝑡) = 𝜎(𝑊𝑜 ⋅ [ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑜)            (1.3) 

In this equation, the notations are as follows: 
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• 𝑜(𝑡) represents the forget gate activation at time step 𝑡. 

• 𝜎 denotes the sigmoid activation function. 

• 𝑊𝑜 represents the weight matrix associated with the forget gate. 

• ℎ(𝑡 − 1) represents the hidden state from the previous time step. 

• 𝑥(𝑡) represents the input at time step 𝑡. 

• [ℎ(𝑡 − 1), 𝑥(𝑡)] denotes the concatenation of the hidden state and input. 

• 𝑏𝑜 represents the bias term associated with the output gate. 

The calculation of the output gate activation in an LSTM network, determining the portion of 

the memory cell state to be revealed as the network's output, is performed using the provided 

equation. The information flow is regulated by the sigmoid activation function, ensuring that 

the gate activation remains within the range of 0 to 1. This mechanism facilitates precise 

control over the exposure of the memory cell state as the final output of the LSTM network. 

3. Memory Cell (𝑐): 

𝑐(𝑡) = 𝑓(𝑡) ⋅ 𝑐(𝑡 − 1) + 𝑖(𝑡) ⋅ 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [ℎ(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑐)                   (1.4) 

In this equation, the notations are as follows: 

• 𝑐(𝑡) represents the memory cell state at time step 𝑡. 

• 𝑓(𝑡) represents the forget gate activation at time step 𝑡. 

• 𝑖(𝑡) represents the input gate activation at time step 𝑡. 

• 𝑡𝑎𝑛ℎ denotes the hyperbolic tangent activation function. 

• 𝑊𝑐 represents the weight matrix associated with the memory cell. 

• ℎ(𝑡 − 1) represents the hidden state from the previous time step. 

• 𝑥(𝑡) represents the input at time step 𝑡. 

• [ℎ(𝑡 − 1), 𝑥(𝑡)] denotes the concatenation of the hidden state and input. 

• 𝑏𝑐  represents the bias term associated with the output gate. 

The updated memory cell state in an LSTM network is determined by this equation. The 

amount of the prior memory cell state that is kept depends on how the forget gate is activated, 

whereas the amount of fresh input data that is assimilated depends on how the input gate is 



 

8 
 

activated. The application of the hyperbolic tangent activation function results in the nonlinear 

transformation of weighted sum of input and hidden state. This transformation empowers the 

LSTM to discern intricate patterns and features within the data. The LSTM can recognize and 

capture subtle patterns and complex characteristics by utilizing the hyperbolic tangent 

activation function, which improves the efficiency of its information analysis and 

interpretation. 

4. Hidden State (ℎ): 

ℎ(𝑡) = 𝑜(𝑡) ⋅ 𝑡𝑎𝑛ℎ(𝑐(𝑡))             (1.5) 

In this equation, the notations are as follows: 

• ℎ(𝑡) represents the hidden state at time step 𝑡. 

• 𝑜(𝑡) represents the output gate activation at time step 𝑡. 

• 𝑡𝑎𝑛ℎ denotes the hyperbolic tangent activation function. 

• 𝑐(𝑡) represents the memory cell state at time step 𝑡. 

The LSTM network utilizes encoded data, represented by the hidden state, to identify and retain 

relevant dependencies and patterns in sequential input data. By employing the memory cell state 

and output gate activation, this equation calculates the updated hidden state within LSTM network. 

Memory cell state is subjected to a non-linear change by the hyperbolic tangent activation function, 

which captures the pertinent data for current time step. Simultaneously, output gate activation 

governs the extent to which memory cell state is accessible as the network's output. This 

mechanism ensures effective information processing and controlled output generation within the 

LSTM network. 

1.3.3 Attention Mechanism 

When creating captions, a model can use attention mechanism to focus on various regions 

of image. This accomplished by dynamically evaluating the significance of various image 

characteristics during the captioning process. The attention mechanism enhances the alignment 

between visual and textual information, producing captions that are more correct and pertinent to 
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the context by focusing on pertinent image regions. The initial step in the attention mechanism's 

operation is decoding the image into a series of features. Following that, a probability distribution 

over every potential region in the image is created using this sequence. The next word in the 

caption is then generated using the attributes of the region with the highest likelihood. Until the 

caption is finished or maximum length of caption is targeted or end of token is generated, this 

process is repeated. Attention mechanism is used to enhance the efficiency of image captioning 

models has been demonstrated. The attention process can also provide captions that are more 

elaborative and thorough. The attention mechanism is a formidable method that has the potential 

to completely change the industry of image captioning. The attention mechanism can assist models 

in producing more precise, contextually relevant, and descriptive captions by efficiently 

integrating visual context. The "Show, Attend and Tell: Neural Image Caption Generation with 

Visual Attention" research paper by Xu et al. [1] is widely recognized as a significant milestone 

in the field of image captioning using attention mechanisms. This paper not only introduced the 

concept of attention mechanisms in image captioning but also demonstrated their effectiveness in 

generating more accurate and descriptive captions by focusing on relevant image regions. 
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CHAPTER 2 

LITERATURE REVIEW 

In recent times, there has been a notable surge in research interest and activity within the 

domain of image captioning. This increased attention has led to a proliferation of research projects 

focused on exploring various aspects of this field. CNNs, among other deep learning architectures, 

have been extensively studied in the context of their application to the extraction of visual features. 

The use of RNNs, in particular LSTM networks, for producing captions in picture captioning tasks 

has also received substantial study attention. Attention techniques have been frequently used to 

improve the alignment between visual and textual information, enabling models to concentrate on 

pertinent image regions during caption production. Researchers have also looked into using 

reinforcement learning and reinforcement learning-based techniques to enhance caption quality. 

The previous research in the area of image captioning that uses various encoder decoder models is 

examined in this chapter. 

2.1 Related Work  

2.1.1 Methods based on templates and retrieval that make use of neural networks 

Deep neural networks is used generate captions for images. By incorporating retrieval-

based methods, we can address challenges related to embedding and ranking, thereby facilitating 

the utilization of researchers' proposed deep models for image captioning as a multi-modal input. 

Socher et al. [12] introduced a dependency tree recursive neural network, which represents phrases 

or sentences as compositional vectors in order to facilitate description retrieval. The obtained 

multimodal feature is mapped into a shared space with the aid of a max-margin. Due to innovation 

and adaptability of new models, deep neural networks ultimately improve performance captioning 

of picture approaches. The drawbacks of phrases constructed using template-based and retrieval 

techniques persisted. 
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2.1.2 Multimodal learning based Image Captioning 

 The application of methods like retrieval-based and template-based approaches 

encountered several restrictions in the step of producing sentences for image captioning. No matter 

how sophisticated the neural networks used to label the photos are, they do not rely on existing 

descriptions or make any assumptions about sentence organization. These techniques could result 

in better, more expressive, flexible, and well-structured phrases. The use of multi-model neural 

networks relies solely on learning to generate captions for images. Fig 2. depicts a typical setup 

for multimodal learning-based picture captioning techniques. 

Kiros et al. [13] present a neural language model designed for generating captions for 

images, utilizing a log-bilinear language approach. On the other hand, Mao et al. [3] apply an RNN 

language model in multimodal scenarios to directly estimate the probability of obtaining a word 

given an image and the previously generated words, resulting in caption generation. Their method 

uses a deep CNN to extract picture features while modelling distribution of words based on both 

image data and contextual words using an RNN and a multimodal component. Output, input, and 

recurrent layers make up the majority of the RNN language model. 

 

 

Figure 2. Model abstract architecture of methods based on templates and retrieval that make use 

of neural networks [48] 
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2.1.3 Encoder-Decoder Framework based Image Captioning 

In their investigation on image captioning, Kiros et al. [13] employed an encoder and 

decoder framework to describe natural scenes. This approach combines a multi-modal sentence 

generation model with an image-text embedding model to produce a description for a given query 

image that is generated step-by-step, much like a language translation. They used LSTM to encrypt 

textual input in order to encode textual data. To encrypt visual data, a deep CNN was used. The 

textual data is stored by LSTM hidden states, which are used to extend the embedding space after 

the visual content has been optimised by a pair-wise ranking loss. A structural content neural 

language that is conditioned on the feature vector of the backdrop word is used to decode image 

features in this embedding space. This allows for generation of caption, word by word. The 

approach was inspired by neural machine translation, where Vinyals et al. [4] used a deep CNN 

[7] as an encoder for image encoding and an LSTM [14] as a decoder for generating descriptions 

from image features. Fig. 3. shows the abstract architecture of encoder decoder based models. 

Typically, the encoder part of the model involves a visual encoder, which processes visual data, 

while the decoder part contains a language model responsible for generating textual descriptions. 

However, the specific architecture of the language model and visual encoder can vary depending 

on the chosen model architectures and approaches. 

 

 

Figure 3. A common approach for picture captioning is the encoder-decoder architecture. 
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2.1.4 Image Captioning with Attention Mechanism 

Attention mechanisms can be incorporated at different stages within image captioning 

models. To simplify the discussion, we will consider the encoder-decoder model as the 

fundamental architecture. The following subsections will explore different attention mechanisms 

and their respective areas of application. 

 

2.1.4.1 Attention Over Grid of CNN Features 

In response to the limitations associated with global representations, numerous subsequent 

methods have opted to enhance the level of detail in visual encoding [15], [1], [16]. Dai et al. [17] 

exemplify this by substituting 1D global feature vectors with 2D activation maps, effectively 

integrating spatial structure directly into the language model. A sizable segment picture captioning 

researchers has also embraced additive attention technique, taking inspiration from the field of 

machine translation. This approach provides dynamic encoding of visual information over time to 

image captioning structures, enhancing flexibility and enabling finer-grained control. 

In the original proposal presented by Bahdanau et al. [18], referred to as additive attention, 

attention weights are computed using a single-layer feed-forward neural network incorporating a 

hyperbolic tangent non-linearity. The following equation is used to determine the additive attention 

score between ℎ𝑖 and 𝑥𝑗 when two sets of vectors, {𝑥1, . . . , 𝑥𝑛} and {ℎ1, . . . , ℎ𝑚}, are provided: 

𝑓att(ℎ𝑖 , 𝑥𝑗) = 𝑊3
⊤ tanh(𝑊1ℎ𝑖 + 𝑊2𝑥𝑗)                 (2.1) 

Where 𝑤1 and 𝑤2 are weights matrices, and 𝑤3 is a weight vector used to carry out a linear 

combination. Subsequently, a SoftMax function is employed to derive a probability distribution, 

𝑃(𝑥𝑗|ℎ𝑖), which signifies the degree of relevance between the element encoded by ℎ𝑖 and 𝑥𝑗. 

Xu et al. [1] introduced a ground-breaking approach that employs additive attention on the 

spatial output grid of a convolutional layer. By choosing a subset of the properties related to each 

word, this strategy enables the model to selectively pay attention to specific grid elements. 
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Specifically, their method retrieves the activation values from the ultimate convolutional layer of 

a VGG network [19]. The weight allocated to each piece on the grid is then decided via an additive 

attention method, indicating its proportional importance in creating the next word. To enhance the 

encoder-decoder framework, Yang et al. [20] introduced a recurrent review network. 

By paying close attention to the encoder's hidden states, this network completes a preset 

amount of review iterations. It produces a "thought vector" after each iteration, which is 

subsequently used by the decoder's attention mechanism. Chen et al. [21] pioneered the 

implementation of channel-wise attention on convolutional activations, alongside the traditional 

application of spatial attention. They further conducted experiments involving multiple 

convolutional layers to harness the benefits of multi-level features. Likewise, Jiang et al. [22] 

proposed the utilization of multiple CNNs to leverage the complementary information captured by 

each network. These networks were subsequently fused together using a recurrent process to 

enhance the representations they collectively encode. Several research studies have integrated 

saliency information, which refers to the elements in a scene that capture human attention, into the 

process of generating captions. This incorporation of stimulus-based attention using saliency 

information aims to enhance the generation of captions. The concept was initially investigated by 

Sugano and Bulling [23], who employed human eye fixations as a basis for image captioning. They 

accomplished this by integrating normalized fixation histograms as an input into the soft-attention 

module of the existing [1] approach. Additionally, they gave the fixated or unfixated portions of 

the attended image different weights. 

2.1.4.2 Attention Over Visual Regions 

In distinction to saliency-based methodologies [23], Anderson et al. [24] introduced an 

alternative solution that combines both bottom-up and top-down mechanisms for attention. Their 

method proposed a bottom-up channel using object detection technique which is in charge of 

producing most probable regions to focus on in an image. Subsequently, these regions undergo a 

top-down mechanism to determine their respective weights during the word prediction process. To 

realize the bottom-up pathway, the Faster R-CNN [25] framework is utilized for object detection, 

generating pooled feature vectors for each proposed region. This allows the model to capture 

pertinent visual information at a granular level, focusing on regions. The pre-training methodology 
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of this approach is a key component. During the pre-training phase, an auxiliary training loss is 

incorporated, which involves predicting attribute classes in addition to object classes, utilizing the 

Visual Genome dataset [26]. The model's ability to learn more reliable feature representations is 

improved by this additional training objective, which gives the model the ability to focus on a wide 

range of detections that includes both surrounding regions and prominent objects. As a result, the 

model becomes proficient in capturing abundant and densely-packed visual information, thereby 

yielding enhanced performance. 

2.1.4.3 Self-Attention Encoding 

Self-attention refers to an attention mechanism that establishes connections between every 

element within a given set. This mechanism facilitates the computation of an improved 

representation for the set of elements by leveraging residual connections. First introduced by 

Vaswani et al. [27] as a solution for machine translation and language comprehension tasks, this 

concept laid the foundation for the emergence of the Transformer architecture and its diverse 

adaptations. These advancements have had a profound impact in the field of NLP and subsequently 

extended their influence to the domain of Computer Vision.  

To analyse three sets of vectors: a set of 𝑛𝑞 query vectors 𝑄, a set of key vectors K, and a 

set of value vectors 𝑉, each set comprising 𝑛𝑘 elements, self-attention uses scaled dot-product 

mechanism, and multiplication-based attention operator. Using similarity distribution formed 

between the key vectors and query, this operator calculates weighted sum of values of vectors. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉              (2.2) 

The scaling factor, 𝑑𝑘, is used to scale the dot product in the self-attention mechanism. In self-

attention, the linear projections of same set of input items yield query vectors, key vectors, and 

value vectors. The remarkable achievements of the Transformer architecture serve as evidence that 

leveraging self-attention leads to superior performance in comparison to attentive RNNs. 

 Huang et al. [28] proposed an extension to the attention operator that incorporates a gating 

mechanism guided by the context. This mechanism determines the weighting of the final attended 
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information. Their method concatenates the inquiries with the output of the self-attention action. 

A gate vector and an information vector are then calculated and multiplied together. This 

mechanism was implemented in their encoder to augment the visual features. Consequently, 

subsequent models, including [29], have adopted this approach. Pan et al. [30] proposed the 

application of bilinear pooling techniques to further enhance the representational capacity of the 

attended feature output. This method, which produces set of improved region-level and image-

level characteristics, distinguishes itself by integrating higher-order interactions to encode 

properties at the region level. By incorporating the bilinear pooling mechanism, the encoding of 

region-level features is strengthened through the consideration of pairwise interactions. As a result, 

both the region-level and image-level representations are significantly improved. Li et al. [31] 

proposed OSCAR, an architecture inspired by BERT, that leverages object tags as anchor points 

to enable semantic alignment between images and text. To do this, they pre-trained extensively 

huge dataset made up of 6.5 million image and text pairs. During the pre-training process, Li et al. 

[31] employed a masked token loss, akin to BERT's mask language loss, along with a contrastive 

loss. The contrastive loss was used to differentiate between aligned word-tag-region triples and 

non-aligned ones. Expanding on the OSCAR framework, Zhang et al. [32] proposed VinVL, which 

introduced a novel object detector capable of extracting enhanced visual features. Additionally, 

changes were made to the VinVL model's vision-and-language pre-training objectives. Following 

a similar approach, Hu et al. [33] further improved the VinVL model by increasing its size and 

leveraging larger-scale noisy data for pre-training. 

2.1.4.4 Attention In Language Models 

When it comes to improving language models' performance in captioning images, attention 

mechanisms are crucial. They enable precise fusion of visual and textual information, leading to 

improved quality and coherence of the generated captions. The additive attention mechanism, 

introduced by Xu et al. [1], incorporates the previous hidden state to guide the attention process 

over the visual features X. A Multilayer Perceptron (MLP) that creates the expected output word 

is fed a context vector that is computed by the system. Context modelling might use some 

improvement, Ge et al. [34] utilize a bidirectional LSTM with an auxiliary module. This module 

estimates the hidden state of the LSTM in reverse direction. The two sentences obtained from the 

bidirectional LSTM are combined with grid visual data as part of a cross-modal attention 
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mechanism. This combination of textual and visual data makes it possible to produce a finished 

caption that is thorough and well-written. 

Anderson et al. [24] introduced a specialized approach that involves two distinct layers 

dedicated to visual attention and language modelling. An LSTM is used as the first layer's top-

down visual attention model. It contains elements from the mean-pooled image as well as the 

previously created word and concealed state. The present hidden state computes a probability 

distribution across the regions of the image via additive attention mechanism. Following first 

LSTM layer, attended image feature vector sent to second layer of LSTM, where it is combined 

with hidden state of first layer. The language modelling effort is made easier by the merging 

process, which creates a probability distribution over the vocabulary. Huang et al. [35] proposed 

an adaptive attention time mechanism, enabling the decoder to take a variable number of attention 

steps for each word generated. A confidence network linked with the second-layer of LSTM which 

determines degree of attention variability. The model can dynamically change the attention 

mechanism depending on the environment and unique needs of the generated word thanks to this 

confidence network, which assesses the requirement and duration of attention for each word. This 

adaptive approach enhances the flexibility and precision of the attention mechanism, ultimately 

leading to improved language generation capabilities. 
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CHAPTER 3 

PROPOSED METHOD 

3.1 THEORY OF THE PROPOSED METHOD  

 The proposed model in this study is based on the CNN and attention mechanisms. The 

suggested model makes advantage of the newly put forth CNN technique by Liu et al. [2], which 

performs significantly better than other methods for classifying images on the ImageNet dataset. 

3.1.1 Encoder Block 

CNNs are frequently used as the encoder in image captioning, with the task of processing 

the input image. Its main purpose is to successfully capture the image's visual content by extracting 

the image's high-level characteristics. Layers of the CNN gradually examine the image at various 

scales while learning to identify patterns, objects, and their spatial relationships. These 

characteristics compactly represent the image's relevant visual information. It is the responsibility 

of the encoder to convert the pixels from input to feature vector, which is subsequently sent to the 

decoder. The encoder effectively encodes the image, allowing the decoder to provide precise and 

contextually appropriate captions depending on the visual content. The subsequent subsections 

will provide a detailed explanation of this specific block. 

Figure 4. Model abstract architecture 
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3.1.1.1 Pre-Trained Image-Classification CNN Block 

The fundamental objective of this module is to extract visual attributes from incoming 

images. Through the utilization of multiple convolutional layers, the CNN block learns to discern 

significant patterns and shapes within the image. The subsequent layers receive these extracted 

features for further processing and interpretation. The CNN block can interpret the visual content 

of an image and extract pertinent information necessary for creating correct captions by acquiring 

hierarchical representations. The inclusion of convolutional operations within the CNN block 

significantly enhances the effectiveness and robustness of image captioning models. The final 

layer of the CNN is removed in this model to extract picture characteristics which is typically a 

classification layer. The CNN architecture employed is ConvNeXt-Xlarge-384-22k-1k [2], known 

for delivering superior results in image classification tasks. 

3.1.1.1.1 ConvNeXt Model 

The authors commence their research by utilizing a standard ResNet model, such as 

ResNet50, as the baseline architecture. Subsequently, they incrementally enhance the architecture 

to construct a hierarchical vision Transformer model, such as Swin-T [36]. Fig. 5 illustrates the 

evolutionary process of ConvNeXt, highlighting the design progression from the initial ResNet 

model to the final Swin-T model. 

Swin Transformers adopt ConvNets as their foundation and employ a multi-stage 

framework with varying feature map resolutions. There are two key considerations in their design: 

1. Stage compute ratio: The proportion of computational resources allocated to each stage. 

2. "Stem cell" structure: The initial stage that serves as the foundation for subsequent stages. 
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The "res4" stage, a resource-intensive component of the original ResNet architecture, was 

created especially to enable operations like object detection. Swin-T employs a comparable 

philosophy but adds a slightly altered stage compute ratio of 1:1:3:1. Similarly, ConvNeXt 

modifies the amount of blocks inside each stage, taking a cue from Swin-T. For instance, the 

original ResNet-50 configuration of (3, 4, 6, 3) is modified to (3, 3, 9, s3) in ConvNeXt. 

 

Compared to a standard ResNet, ResNeXt offers an improved trade-off between floating 

point operations (FLOPs) and accuracy. The key feature of ResNeXt is the utilization of grouped 

convolution, which involves dividing the convolutional filters into distinct groups. In essence, the 

guiding principle behind ResNeXt [37] is to "increase the number of groups while expanding the 

width." By employing this approach, ResNeXt achieves enhanced performance by effectively 

increasing model capacity without a significant increase in computational complexity. This 

strategy allows for improved representation learning and better utilization of network parameters, 

resulting in improved accuracy while maintaining a reasonable FLOPs efficiency. 

Figure 5. The design Journey of ConvNeXt 
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 An essential component found in the Transformer block is a phenomenon known as a 

"inverted bottleneck," which is characterised by a concealed MLP block width that is four times 

wider than the input dimension. Although this design decision increases the depthwise convolution 

layer's floating-point operations (FLOPs), it actually lowers the ConvNeXt network's overall 

FLOPs to 4.6G. This reduction is primarily attributed to a significant decrease in FLOPs achieved 

by the 1×1 convolution layer within the down sampling residual blocks. Intriguingly, this FLOPs 

reduction also leads to a marginal improvement in performance, elevating it from 80.5% to 80.6%. 

ConvNeXt exhibits remarkable performance when compared to robust ConvNet baselines 

such as RegNet [38] and EfficientNet [39], particularly in terms of the trade-off between accuracy 

and computational requirements, as well as inference throughputs on the ImageNet-1K dataset. 

ConvNeXt also performs better than Swin Transformers without the need for specialised modules 

like shifting windows or relative position bias. Furthermore, ConvNeXt achieves a higher 

throughput of 774.7 images/s compared to Swin Transformers' throughput of 757.9 images/s. 

Despite the prevailing belief that transformers outperform ConvNets on larger scales due to their 

reduced inductive biases, this notion is challenged by the exceptional accuracy of ConvNeXt-Xl. 

It achieves an accuracy of 87.8% on the more extensive ImageNet-22K dataset, surpassing the 

performance of Swin Transformers. 

3.1.2 Decoder Block 

 The extracted features are then sent through the embedding layer after being extracted by 

the CNN. The embedding layer's primary duty is to give the decoder block the appropriate input. 

3.1.2.1 Attention layer 

The utilization of the attention layer in this model draws inspiration from the approach 

introduced by Xu et al. [1]. The attention mechanism gives ability model to choose focus on 

different sections of the image during caption generation process by simulating the operation of 

the human visual system. When integrated into the LSTM network, this attention layer facilitates 

the alignment of the generated words with the corresponding visual content at each time step, 

enhancing the model's ability to generate contextually relevant captions. Through its ability to 

attend to diverse regions within an image, the model achieved notable advancements in 
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localization accuracy and the overall quality of generated captions. The subsequent sections will 

provide a detailed explanation of the various components comprising the attention mechanism. 

1. Inputs: The input to model is RGB a channel image, contains three channel i.e. red green 

and blue. 

2. Visual Feature Extraction: A pre-trained CNN, such as ConvNeXt, performs convolutional 

operations on the input picture. These techniques allow for the effective capture of the 

image's important information by performing feature extraction. 

3. Encoding: The visual features that were obtained undergo a linear transformation, which 

creates an encoded representation specifically designed to meet the needs of the LSTM 

network. This stage makes sure that visual data is seamlessly included into the sequential 

processing architecture of the LSTM. 

4. Attention Calculation: During each time step, the attention layer calculates the weights 

assigned to various regions of the image. In order to do this calculation, the encoded visual 

attributes are compared to the LSTM network's previous hidden state. The generated 

attention weights are used to indicate the importance or relevance of various image regions 

while coming up with the current phrase for the caption. 

5. Context Vector: The attention weights play a crucial role in the creation of the context 

vector, which is formed by combining the encoded visual information's weighted sum. 

Selective and focused information from the image that is determined to be relevant based 

on the attention weights is successfully captured by this context vector. The model acquires 

more contextual knowledge by adding this context vector, which helps it generate the next 

word in the caption. 

6. Integration with LSTM: After being created, the context vector is joined with the preceding 

word's embedding and supplied as input to the LSTM network. The LSTM processes this 

input, leading to the generation of the subsequent hidden state. This following concealed 

state then serves as the foundation for computing the attention weights during the following 

time step. 

7. Caption Generation: The sequential, word-by-word creation of the caption is made easier by 

the LSTM network. The attention mechanism is utilized by the network to focus on different 
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parts of the image during each stage. This process continues until the model generates the end-

of-sentence token or reaches the predetermined maximum length for the caption. 

3.1.2.2 LSTM Layer 

Detailed explanation about LSTM is already covered in section 1.3.2. The LSTM is trained 

using a sequence-to-sequence approach, where a feature, denoted as 𝑎𝑡, is sampled from location 

𝑠𝑡 at time t, and then provided as input to the LSTM for word generation. This procedure is iterated 

K times, resulting in the generation of an image caption composed of K words. 

𝑒𝑡𝑖 = 𝑓𝑎𝑡𝑡(𝑎𝑖, ℎ𝑡−1)            (3.1) 

𝛼𝑡𝑖  =  
𝑒𝑥𝑝(𝑒𝑡𝑖)

∑ 𝑒𝑥𝑝(𝑒𝑡𝑘)𝐿
𝐾=1

                                                      (3.2) 

The model generates the final caption by selecting the word with the highest probability from the 

vocabulary and adding it to the output caption. This process of caption creation continues until 

either the end token is generated or the maximum length for the sentence is reached. 
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CHAPTER 4 

DATASETS 

The performance of deep learning models must be improved, which calls for a large amount 

of data. Image captioning datasets encompass images captured from diverse perspectives, with 

multiple captions associated with each image. To ensure comprehensive model training, it is 

advantageous to provide multiple ground truth captions. When selecting a dataset for the model, it 

is crucial to consider various dataset characteristics, including the average caption length and 

vocabulary size, to ensure appropriate coverage and representation. Researchers often leverage 

commonly employed datasets as a baseline for benchmarking their models against established 

standards in the field. These datasets encompass a considerable number of photographs spanning 

diverse domains, with each image being associated with multiple captions. Table 1 presents an 

overview of the prevalent datasets utilized in image captioning, along with pertinent details such 

as the distribution of caption lengths. 

1.1 Benchmark Datasets 

The MS-COCO Dataset [40] comprises a vast collection of photographs capturing 

everyday objects in their natural environments, showcasing intricate scenarios from various facets 

of ordinary life. The dataset encompasses approximately 1.5 million images, with approximately 

82,000 images earmarked for training purposes and an additional 40,000 images reserved for 

validation. Significantly, each image in the training and validation sets is accompanied by five 

distinct captions written by humans. It is worth mentioning that the test image captions remain 

inaccessible to the general public. Given its diverse and complex nature, this dataset poses 

substantial challenges for image captioning tasks. 

Flickr30k [41] data set the automatic picture captioning and context-sensitive language 

interpretation tasks are the focus of this dataset. The dataset contains 158K captions that were 

contributed by people, together with roughly 31K photographs that were downloaded from the 

Ficker website. The dataset serves as a standard for sentence-based picture descriptions, and it is 
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frequently used to research the connection between visual media (images) and verbal expressions 

(image descriptions). 

The NoCaps Dataset [42] encompasses a collection of 15,100 photos sourced from the 

validation and test sets of Open photos. Each photo within the dataset is associated with 11 

manually crafted captions. The validation and test groups of the dataset, each comprising 4,500 

and 10,600 images, respectively, are the two primary groups. The collection of photos can be 

categorized into three subgroups: in-domain, near-domain, and out-of-domain images, depending 

on their similarity to the MS-COCO dataset. The categorization is determined by how closely the 

photos resemble the dataset. This dataset provides a diverse range of images, allowing for 

comprehensive evaluation across different domains and levels of similarity to MS-COCO. The 12 

million image text pairs in the CC12M Dataset [43] were created specifically for the purpose of 

pretraining vision and language. The size of this dataset exceeds that of the CC3M cite Sharma 

2018 conceptual dataset by nearly 4 times. 20.2 to 16.3 words make up the average caption. This 

dataset includes JPEG photos with a minimum size of 400 pixels. Word repetition is limited to 0.2 

percent at most. 

MSRCG [44], a Microsoft Research Concept Graph: This dataset, which has more than 2 

million photos with comprehensive semantic annotations and natural language captions, is 

frequently used for testing and refining image captioning algorithms. Visual Genome dataset [26], 

which has over 108,000 images with strong semantic and visual annotations, is frequently used for 

computer vision applications like image captioning. 

Table 1. Several benchmark datasets for the visual question-answering job and picture captioning 

SNo. Dataset Year Total Samples / Caption per Image 

1 MSCOCO 2014 1.5M / 5 

2 Flickr30k 2015 30K / 5 

3 Flickr8k 2015 8K / 5 

4 NoCaps 2019 166K / 11 

5 CC12M 2021 12M / 11 

6 Visual Genome 2017 2 million / 1 to 10 
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CHAPTER 5 

METHODOLOGY 

5.1 Training Metrics 

 The training of our model is conducted on a Google Colab platform using an Intel Core i7 

CPU @3.20 GHz. The experiment is performed using the PyTorch and TensorFlow deep learning 

frameworks. To process the data, the extracted features are saved in .npy files and subsequently 

passed to encoder for further analysis. The decoder takes in the encoder output, uses the start token 

as its input, and initializes the hidden state to zero. This input is processed by the decoder, which 

also generates predictions and a new hidden state. Afterwards, the model is revised using the 

decoder's hidden state, and the loss is computed based on the predictions. The teacher-forcing 

technique is employed to determine the subsequent input for the decoder. Teacher forcing entails 

feeding the decoder the target word as input. The computation of the gradients, their application 

to the optimizer, and backpropagation constitute the final phase. 

The training loop and the evaluate function are similar, however the evaluate function 

varies in that it does not use instructor forcing. Contrarily, the decoder utilizes the hidden state, 

encoder output, and previous predictions as inputs during each time step. The prediction process 

comes to an end when the model produces the end token. The attention weights for each time step 

are also saved for future use. 

5.2 Performance Metrics 

 By comparing the generated captions to the actual captions, the Bilingual Evaluation 

Understudy (BLUE) scores, which measure the effectiveness of attention-based image captioning 

model, were computed. Quality of machine-generated image captions is frequently assessed using 

the BLUE score. It was first created for machine translation, but it has been modified for 

evaluations of image captions. The BLUE score gauges how closely a produced caption resembles 

reference captions offered by human reviewers. The occurrence of n-grams, which are consecutive 

sequences of n words, is compared to determine how well the generated and reference captions 
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align. It penalises inconsistencies like excess or missing words and rewards exact matches with 

higher scores. The resulting score, which ranges from 0 to 1, is a representation of how well the 

generated and reference captions align. Higher values denote a stronger alignment. The 

performance and developments of image captioning algorithms can be assessed and tracked by 

researchers and practitioners using the useful quantitative indicator known as the BLUE score. 

They can evaluate the calibre of generated captions and make wise decisions to improve their 

methods in the area of picture captioning by using the BLUE score. The BLUE score formula is 

show below 

𝐵𝐿𝑈𝐸 =  𝐵𝑃 ×  𝑒𝑥𝑝 ( ∑ 𝑤𝑛𝑙𝑜𝑔 𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑛
𝑁
𝑛=1 )              (5.1) 

Where  

• The BP (Brevity Penalty) is a penalty term incorporated into the BLUE score calculation 

to address the potential discrepancy in length between the obtained caption and the 

reference captions. It takes into account the difference in length to ensure a fair evaluation 

and comparison of the captions. 

• N represents the maximum order of n-gram considered when calculating the BLUE score. 

• 𝑤𝑛 represents the weights assigned to each n-gram order. 

• 𝑝𝑟𝑒𝑠𝑖𝑜𝑛𝑛 is the precision of the generated caption for the n-gram order. 

 The model undergoes training for 20 epochs using a batch size of 64. Figure 6 illustrates the loss 

curve across epochs. 

Figure 6. Loss curve with respect to number 

of epochs 
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5.3 Qualitative and Quantitative Evaluation  

In comparison to other cutting-edge methods in the field, we thoroughly assessed our 

suggested methodology. The evaluation was conducted using well-known datasets, with an 

emphasis on the MS-COCO dataset. To evaluate the performance of our model, we utilized the 

BLUE score as a metric to measure the similarity between the generated captions and the ground 

truth captions. Due to the high-dimensional nature of the extracted image features from ConvNeXt, 

truncation becomes necessary. Regrettably, this truncation process has negatively impacted the 

performance of our model. Additionally, as ConvNeXt is specifically designed for RGB channel 

images, the inclusion of an extra channel for grayscale images is required as input. Due to these 

inherent limitations, our model exhibits a relatively lower performance compared to the current 

state-of-the-art models. The results of the experiment can be observed in Figure 7 and Figure 8. 

Figure 7. Input image for caption generation with 

generated captions [46] 
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Figure 8. Model caption generation at different region of image 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In the domain of Image captioning, researchers have explored and developed various 

models, many of which employ the encoder-decoder architecture. In our research project, we have 

devised an image captioning model that integrates ConvNeXt and an attention mechanism. Our 

method makes use of ConvNeXt to extract useful information from the input image, allowing the 

creation of insightful captions. Nevertheless, the extracted features from the ConvNeXt block 

exhibit a surplus of intricate details, which may hinder the captioning process. To mitigate this 

challenge, we integrated an attention mechanism into our model. This approach helps the model 

to focus its attention on the most pertinent areas of the photos, improving the calibre of the captions 

that are created. We conducted analyses using the Blue score metric on well-known datasets like 

MS-COCO and Flicker to gauge the effectiveness of our technique. Although our model exhibits 

potential, it is important to acknowledge its limitations, which hinder its performance when 

compared to state-of-the-art models. It is worthwhile to investigate alternate architectures for both 

the encoder and decoder blocks in order to get around these restrictions and boost the model's 

effectiveness. By carefully considering and implementing these architectural advancements, we 

can potentially enhance the overall performance of our model. 

6.2 Future Work 

The potential of this research extends to numerous attention-related possibilities. Attention 

can also be employed in language modelling. Additionally, a bi-directional attention mechanism 

can be implemented, calculating attention in both directions: from the image to the caption and 

from the caption to the image. Moreover, an Attention over Attention approach can be applied 

while maintaining the proposed encoder architecture. Furthermore, utilizing pre-trained word 

embeddings from a vast corpus can yield significant benefits. Lastly, training the model on 

multiple datasets can enhance the generation of more robust captions. 
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