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Abstract

In the natural sciences and engineering, a range of phenomena are modelled using
mathematical equations. These equations in mathematics have different parameters.
Minor adjustments to these parameters have an impact on the answers of these equa-
tions. The perturbation parameter corresponds to this slight modification, which is
referred to as a perturbation.
Finding these mathematical equations’ exact solutions is challenging. Finding their
approximations is therefore the alternate method. The approximation techniques are
used to arrive at these solutions. These perturbation methods pave the door for per-
turbation theory even more.
This paper mainly focuses on the derivation of analytic solutions that accurately
capture the physical relevance of the nonlinear phenomena involved, which can be
difficult to solve explicitly using numerical schemes, especially when the equations
are stiff.
To solve this problem, we provide an iterative analytical strategy based on the La-
grange multiplier method. The Lagrange multiplier can be obtained more accurately
and efficiently using variational theory and Liouville-Green transforms in a general
setting. This method has been demonstrated to be highly accurate and efficient
through illustrative examples. The suggested method provides a clear and succinct
answer to the problems with numerical methods and is applicable to various nonlinear
evolution equations in mathematical physics.
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Chapter 1

Introduction

Mathematics has become an indispensable aspect of our daily lives, finding its way
into almost every sphere. The progress in applied mathematics can be attributed
to the evolution and refinement of various fundamental techniques and approaches.
One of the crucial and wide-ranging branches of mathematics today is differential
equations. Calculus, has been a subject of both theoretical and functional research
for a long time, continues to be an indispensable tool in modern mathematics.

1.1 Differential Equation

Definition 1.1.1 A differential equation pertains to an equation containing differ-
entials or differential coefficients. In other words, it is an equation that relates a
dependent variable and an independent variable with the derivative of the dependent
variable with respect to the independent variable.

In addition, differential equations can be classified into two main categories, each
with its own set of subcategories. The two most significant subcategories are ordinary
differential equations and partial differential equations.

1.1.1 Ordinary Differential Equation

Definition 1.1.2 An ordinary differential equation is a type of differential equation
where the ordinary derivatives of one or more dependent variables are compared to a
single independent variable.

Example 1.1.1

2
d2u

dt2
+ tu2

du

dt
= 0 (1.1.1)
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1.1.2 Partial Differential Equation

Definition 1.1.3 Partial differential equations, which are a specific type of mathe-
matical equation, involve the computation of partial derivatives of one or more de-
pendent variables with respect to several independent variables.

Example 1.1.2
δv

δx
− 2

δv

δt
= v2 (1.1.2)

It is important to distinguish between linear and non-linear differential equations
because the methods used to solve them can differ significantly. Linear differential
equations are generally simpler to solve and have well-known analytical solutions,
while non-linear differential equations often require numerical techniques or approxi-
mations to obtain solutions. Understanding the type of differential equation at hand
is crucial in choosing the appropriate solution method.
After categorizing differential equations in various ways, it is important to understand
their origin and applications. By doing this, we may better comprehend differential
equations’ wide range of applications and the adaptability of its techniques for han-
dling practical issues.
The applications of differential equations span across a wide range of fields in science
and engineering, where they are utilized to solve various mathematical models and
problems. We will only mention a handful of these issues in this context, which have
the potential to be extensively explored in many pages.

1. The difficulty of figuring out how a projectile, rocket, satellite, or planet moves.

2. In an electric car, determining the proper level of charge or current can be very
difficult.

3. Examining the population’s growth rate or the pace at which radioactive com-
pounds decay.

4. Recognising curves with specific geometric characteristics.

Differential equations arise from mathematical modeling of various real-world prob-
lems. Numerous applications use Ordinary Differential Equations (ODEs) with vari-
able coefficients., such as the Euler, Bessel, Legendre, and Laguerre equations. Non-
linear ODEs with variable coefficients, including the Duffing, Thomas-Fermi, and Van
der Pol equations, have also received a lot of research in the literature. In practical
mathematics, physics and engineering, these linear and nonlinear ODEs with variable
coefficients are extremely important.
Researchers sought to develop exact methods for solving a wide range of integral
equations and linear and nonlinear equations without any concrete assumptions or
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variable discretization. In the 1940s, the idea of singular disturbance first appeared,
and has since evolved to approximate solutions to intricate problems.
Mathematical equations used to model natural phenomena and engineering prob-
lems often involve parameters, and these issues are frequently expressed in terms of
differential equations, usually with at least one minor parameter.

1.2 Perturbation

The concept of small parameter was first introduced by J.H. Poincare. In mathemat-
ics, perturbation refers to the study of a system in which some parameters or variables
are slightly modified from their known values. This concept is particularly relevant
in the context of differential equations, which describe the relationship between a
function and its derivatives.

In the case of differential equations, perturbation theory involves analyzing the
behavior of a solution to a perturbed differential equation as the perturbation pa-
rameter approaches zero. This can be used to investigate how small changes in the
system affect the overall behavior of the solution.

Perturbation, a minor alteration in a parameter that affects the solution of these
equations, is a common occurrence. To avoid the difficulty of finding exact solutions
of mathematical equations, we can instead use approximation techniques, including
Perturbation techniques which lead to Perturbation theory. In this theory, the per-
turbation parameter (ϵ) is a small, dimensionless quantity that is introduced to study
the behaviour of solutions and expressing the approximate solution as a formal power
series of this parameter. By measuring the effect of small disturbances, Perturbation
theory provides an approach to solving problems through local analysis.
Two classes—regular perturbation and singular perturbation—are used to categorise
the perturbation.

The classification of perturbations is determined by their impact on the system,
with those causing minimal effects being labeled as regular, while those with signifi-
cant influences are considered singular.

The two problems, i.e., regularly and singularly perturbed are best described as
follows-

3



1.2.1 Regular Perturbation Problem

Definition 1.2.1 A Regular Perturbation Problem is a type of mathematical prob-
lem that involves a small perturbation parameter ϵ in a function f(y(x), ϵ) = 0. The
solution of the perturbed problem, yϵ(x), uniformly converges to the solution of the
unperturbed problem y0(x) = f(y(x), 0) over the domain of existence as ε → 0. This
means that the perturbation has a minimal effect on the solution of the problem, and
the behavior of the system can be accurately approximated using standard mathemat-
ical techniques.

1.2.2 Singular Perturbation Problem

Definition 1.2.2 A Singular Perturbation Problem is a type of mathematical problem
that involves a perturbation parameter ϵ in a function f(y(x), ϵ) = 0. The solution
of the perturbed problem yϵ(x) does not converge uniformly to the solution of the
unperturbed problem y0(x) = f(y(x), 0) as ε → 0. This means that the perturbation
has a significant effect on the behavior of the system, and standard mathematical
techniques may not accurately capture its effects. Therefore, specialized methods need
to be developed to analyze and solve such problems.

Initial value problems involving mathematical models are essential in various fields
such as science and engineering. Singular perturbation problems with thin bound-
aries and inner layers are frequently produced by these models, which quantify the
relative strength of the highest-order derivative term using a dimensionless parame-
ter. Such problems arise in diverse applications, including chemical reactions, fluid or
gas dynamics, heat transfer, the theory of plates and shells, magnetohydrodynamic
flow, and neuron variability. The same issues come up when it comes to groundwater
transport, turbulence, atmospheric pollution, and vorticity transfer in incompressible
Navier-Stokes equations. Nonlinear convection diffusion problems have also gained
considerable attention among mathematicians and engineers because of their frequent
appearance in various applications in physics, engineering, and biology, such as fluid or
gas dynamics, heat transfer, the theory of plates and shells, magneto-hydrodynamic
flow, neuron variability, and the study of traveling wave solutions. When dealing
with initial value problems, it is not uncommon to encounter dimensionless param-
eters that measure the relative strength of the highest-order derivative term, which
are typically quite small. As a result, the solution often exhibits thin boundary and
interior layers, leading to singular perturbation problems. However, using standard
higher-order methods such as Galerkin finite elements or central differencing on uni-
form meshes can result in nonphysical oscillations in the computed solution, which
indicates a loss of stability unless the mesh diameter is exceedingly small, making it
computationally expensive.
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Many researchers have proposed adaptive numeric or asymptotic techniques to ad-
dress this issue, including non-conforming finite elements, monotone difference meth-
ods, local projection stabilization, streamline diffusion methods, fitted schemes, finite
volume approximations, and weighted schemes. In recent years, attention has been
directed towards problems with a dominant convection term, which pose challenges
in accurately resolving the boundary layers. To achieve consistent numerical approx-
imations of layer solutions, locally refined meshes that are standard on the outside
and fine in the layer regions are necessary. However, if the locations and widths of the
layers are not known in advance, adaptive algorithms are essential to adapt the mesh
based on intermediate computed solutions and eventually identify the precise loca-
tions and widths of the layers. While nonconforming finite element approximations
offer practical benefits such as cheap local communication and efficient paralleliza-
tion on MIMD machines, stability and convergence problems may arise when using
streamline diffusion finite element methods with nonconforming trial spaces. Further-
more, if crucial characteristics like boundary layers are not sufficiently resolved by the
underlying mesh, local error estimation may not be accurate. As a result, the use
of local error indicators in adaptive refinement algorithms remains an active research
area, with issues such as the role of stabilization and the degradation of accuracy with
decreasing perturbation parameter values requiring further investigation. In conclu-
sion, traditional numerical techniques are frequently insufficient for solving singularly
perturbed situations, as they can exhibit disappointing behavior or be prohibitively
expensive in terms of computer memory and processor time.
This paper aims to provide closed-form solutions for nonlinear singularly perturbed
initial value problems using the variation iteration method. The method is based
on a Lagrange multiplier technique introduced by Inokuti et al., where the Lagrange
multiplier is a function rather than a constant. In their work, Inokuti et al. construct
ad-joint operators and claim that the Lagrange multiplier can be viewed as a Greens
function. This claim is validated, which also shows that Inokuti et al.’s variational
technique and He’s variation iteration method can be derived using ad-joint opera-
tors, Greens function, integration by parts, and the method of weighted residuals.
This technique has been successfully used to solve a variety of linear and nonlinear
models, such as nonlinear singularly perturbed initial value problems, Burger’s equa-
tion, and coupled Burger’s equation, generalized KdV and coupled Schrodinger-KdV,
delay differential equations, autonomous ordinary differential systems, solitary solu-
tions, nonlinear systems of partial differential equations, and nonlinear differential
equations of fractional order. Examples with quadratic nonlinear convection terms
and quasi-linear terms are provided to demonstrate the accuracy and effectiveness of
the approach. The method presented in this paper is highly accurate, brief, and can
also be applied to other nonlinear evolution equations of mathematical physics.
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Chapter 2

Variation Iteration Method for
Ordinary Differential Equation

2.1 Overview of Variation Iteration Method

Ji-huan He, a Chinese mathematician, was the first to introduce the variational iter-
ation approach in 1999. One can employ this method to solve partial and ordinary
differential equations, without resorting to unrealistic assumptions that may change
the fundamental nature of the solution. The variational iteration method is the most
practical and effective for both weak and strong nonlinear equations. Compared to
other approaches like the Adomian method, perturbation method, and others, this
strategy is also more effective. This method offers successive, rapidly convergent ap-
proximations of the exact solution if one exists; in the absence of an exact solution, a
few approximations can be employed numerically. Current numerical algorithms have
a problem with the treatment of nonlinear components due to limiting assumptions.
The VIM lacks a specific criterion for nonlinear operators, such as linearization, small
parameters, Adomian polynomials, etc. One of the key advantages of the VIM ap-
proach is its ability to reduce calculation size while maintaining excellent numerical
accuracy. The approach is also capable of handling a wide variety of theoretical and
computational applications in practical issues.

By He’s method we introduce the following correction functional corresponding
to:

un+1(x) = un(x) +

∫ x

0

λ(x, t){ϵu′′(t) + r(t)u′(t) + s(t)u(t)− g(t)}dt, (2.1.1)

where λ is the Lagrange multiplier which can be identified optimally via variational
theory. By making the correction functional stationary with restricted variations
δun(x) = 0, δu′n(x) = 0, we obtain:

δun+1(x) = δun(x) + δ

∫ x

0

λ(x, t){ϵu′′(t) + r(t)y′(t) + s(t)u(t)− g(t)}dt

6



δun+1(x) = δun(x)+ϵ

∫ x

0

λ(x, t)
d2

dt2
δun(t)dt+

∫ x

0

λ(x, t)
d

dt
r(t)δun(t)+

∫ x

0

λ(x, t)δs(t)un(t)dt.

Integrating by parts, we get:

δun+1(x) =

(
1− ϵ

∂λ(x, t)

∂t
+ r(t)λ(x, t)

)
δun(t)↓t=xϵλ(x, t)

d

dt
δun(t)↓t=x

+

∫ x

0

(
ϵ
∂2λ(x, t)

∂t2
− r(t)

∂λ(x, t)

∂t
+ s(t)λ(x, t)

)
δun(t)dt.

Therefore, by imposing the above restricted variation terms to the above equation,
we obtain the following Euler Lagrange equation:

ϵ
∂2λ(x, t)

∂t2
− r(t)

∂λ(x, t)

∂t
+ s(t)λ(x, t) = 0,

(
1− ϵ

∂λ(x, t)

∂t
+ r(t)λ(x, t)

)
↓t=x

= 0,

λ(x, t)↓t=x = 0. (2.1.2)

Example 2.1.1 We consider the following simple example:

ϵu′′(x) = 2, u(0) = 1, u(1) = 2.

Solving (2.1.2), using the coefficients r(x) = 0, s(x) = 0, then λ can easily identified
as:

λ(x, t) =
t− x

ϵ
Therefore, we have the following iteration formula

un+1(x) = un(x) +

∫ x

0

λ(x, t){ϵu′′n(t)− 2}dt.

Now we begin with the following initial approximation

u0(x) = A+Bx,

where A and B are constants to be determined. By the above iteration formula we
have,

u1(x) = A+Bx+
x2

ϵ
.

Applying boundary conditions yield A = 1 and B = 1− 1
ϵ
. Thus

u1(x) = 1 +

(
1− 1

ϵ

)
x+

x2

ϵ
,

which is the exact solution.
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Example 2.1.2 As a second example we study the singularity equation

ϵu′′(x)− u(x) = 0;u(0) = 1, u(1) = 0.

Solving (2.1.2), using the coefficients r(x) = 0, s(x) = −1, then λ can easily identified
as

λ(x, t) =
e

t−x√
ϵ − e

x−t√
ϵ

2
√
ϵ

.

Therefore, we have the following iteration formula

un+1(x) = un(x) +

∫ x

0

λ(x, t){ϵu′′n(t)− un(t)}dt.

Now we begin with the following initial approximation

u0(x) = Ce
x√
ϵ +De

−x√
ϵ ,

where C and D are constants to be determined. By the above iteration formula we
have,

u1(x) = Ce
x√
ϵ +De

−x√
ϵ .

Applying boundary conditions yield

C = −D =
e

1√
ϵ

e
2√
ϵ

− 1.

Thus,

u1(x) =
e

1−x√
ϵ

(
e

1−x√
ϵ − 1

)
e

1−x√
ϵ − 1

,

which is the exact solution.
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2.2 Variation Iteration Method for Ordinary Dif-

ferential Equation

2.2.1 Brief analysis of the method

In this section, we’ll cover the fundamental ideas that guide the variation-iteration
process. Look at the nonlinear equation that follows:

Lu(x) ≡ L(u(x)) +N(u(x)) = g(x) (2.2.1)

where L, in this instance, stands for linear, N is for nonlinear, and g(s) stands for
the specified analytic non-homogeneous term. Using variation theory, we can also
construct the following correction functional:

un+1(x) = un(x) +

∫ x

0

λ(t){Lun(t) +Nũn(t)− g(t)}dt, n ≥ 0 (2.2.2)

where λ denotes Lagrange’s multiplier, which may be determined with ease by ap-
plying Liouville-Green transforms, integration by parts, and variation theory. Addi-
tionally, un(x) represents the nth approximation of u(x), and ũn(x) represents the
variation which is restricted, signifying δũn = 0. Therefore, in the initial stage, we’ll
determine the Lagrange multiplier’s value, λ, and then choose u0 as a suitable initial
function that meets the boundary requirements, then using a correction functional,
consecutive approximations, un(x) of the function u(x) can be easily obtained. There-
fore, exact solution of the problem (2.2.1) :

u(x) = lim
n→∞

un(x)

2.2.2 Variation iteration method for Ordinary differential equa-
tions

Using the variation iteration method, autonomous ordinary differential equations were
first solved in 2000. Most differential equations do not have an exact solution that can
be expressed in terms of known functions. Therefore, numerical methods are often
used to approximate solutions of differential equations. These methods are helpful for
addressing nonlinear and linear problems because they provide analytical solutions
and have significant advantage over standard numerical techniques. Applying the
Variation Iteration Method on the Singularly perturbed problem;
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Example 2.2.1 Consider the following problem that has two boundary conditions:

ϵ
d2u(t)

dt2
− 4

du(t)

dt
= 0, t ∈ (0, 1); u(0) = A0, u(1) = A1, (2.2.3)

here ϵ, is a small perturbation.Then the exact solution, with regard to the root (0, 4/ϵ),
of the relevant characteristic polynomial is stated as:

u(t) =
−A1 + A0 exp (4/ϵ)

−1 + exp (4/ϵ)
− A0 − A1

−1 + exp (4/ϵ)
exp (4t/ϵ)

=
exp (4t/ϵ)− exp (4/ϵ)

1− exp (4/ϵ)
for A0 = 1 and A1 = 0. (2.2.4)

The correction functional with regard to the equation (2.2.3) can be stated as the
following:

un+1(t) = un(t) +

∫ t

0

λ(s)

[
ϵ
d2un(s)

ds2
− 4dun(s)

ds

]
ds

= un(t)− ϵ
dλ(s)

ds
un(s)|ts=0 − 4λ(s)un(s)|ts=0 + ϵλ(s)

dun(s)

ds
|ts=0

+

∫ t

0

(
ϵ
d2λ(s)

ds2
+ 4

dλ(s)

ds

)
un(s)ds. (2.2.5)

Taking a variation with respect to un and setting the correction functional, (2.2.5),
to zero will make the functional stationary.i.e., δun+1 = 0:

δun+1(t) =

(
1− ϵ

dλ(s)

ds
− 4λ(s)

)
s=t

δun(t) + ϵλ(s)|s=tδu
′
n(t)

+

∫ t

0

(
ϵ
d2λ(s)

ds2
+ 4

dλ(s)

ds

)
δun(s)ds

= 0.

Henceforth,we obtain the Euler-Lagrange equation as

ϵ
d2λ(s)

ds2
+ 4

dλ(s)

ds
= 0 (2.2.6)

and we have the stationary conditions:(
1− ϵ

dλ

ds
− 4λ(s)

)
s=t

= 0 and λ(s)|s=t = 0. (2.2.7)

Thus, Euler equation (2.2.6) with the stationary conditions , (2.2.7), when combined,
gives:

λ(s) =
1

4

(
1− exp 4

(
t− s

ϵ

))
10



As a result, we can now express the variation iteration formula as follows:

un+1(t) = un(t) +

∫ t

0

1

4

(
1− exp 4

(
t− s

ϵ

))(
ϵ
d2u(t)

dt2
− 4

du(t)

dt

)
ds (2.2.8)

We can obtain a series of solution for the equation (2.2.3) by considering its linearly
independent solutions.We start with the initial approximation u0 = B + C exp (4t),
where free constants, B and C, can be determined using the boundary conditions.
Using (2.2.8), we have the following:

u1 = B + C exp (t) + C(ϵ− 4)
1

4

∫ t

0

(
1− exp 4

(
t− s

ϵ

))
exp (s)ds

= B + C − C
ϵ

4

(
1− exp

(
4t

ϵ

))
If we specify the boundary conditions A0 = 1 and A1 = 0, then the solution at the
first iteration, which is obtained by using the variation iteration method, gives:

u1(t) =
exp (4t/ϵ)− exp (4/ϵ)

1− exp (4/ϵ)

which is indeed the exact solution (2.2.4).

Example 2.2.2 Again, consider the following problem having boundary conditions

ϵ
d2u(t)

dt2
+ 4u(t) = 0, t ∈ (0, 1); u(0) = A0, u(1) = A1, (2.2.9)

Here ϵ is a small perturbation and the linearly independent solutions, sin(2/
√
ϵ)t and

cos(2/
√
ϵ)t, correspond to the imaginary roots of the relevant characteristic polyno-

mial then the exact solution:

u(t) = acos(
2√
ϵ
)t+

A1 − A0cos(
2√
ϵ
)

sin( 2√
ϵ
)

.sin(
2√
ϵ
)t

= cos(
2√
ϵ
)t+

2− cos( 2√
ϵ
)

sin( 2√
ϵ
)

.sin(
2√
ϵ
)t for A0 = 1 and A1 = 2 (2.2.10)

Then the correction functional analogous to (2.2.9) is:

un+1(t) = un(t) +

∫ t

0

λ(s)

[
ϵ
d2un(s)

ds2
+ 4un(s)

]
ds

= un(t)− ϵ
dλ(s)

ds
un(s)|ts=0 + ϵλ(s)

dun(s)

ds
|ts=0

+

∫ t

0

(
ϵ
d2λ(s)

ds2
+ 4λ

)
un(s)ds. (2.2.11)
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by inflicting the variation and taking into consideration the restricted variation i.e
δun+1 = 0, then (2.2.11) becomes:

δun+1(t) =

(
1− ϵ

dλ(s)

ds

)
δun(s) + ϵλ(s)|ts=0δu

′
n(s)

+

∫ t

0

(
ϵ
d2λ(s)

ds2
+ 4λ

)
δun(s)ds. (2.2.12)

= 0

Henceforth,we obtain the Euler-Lagrange equation:

ϵ
d2λ(s)

ds2
+ 4λ(s) = 0 (2.2.13)

and we have the stationary conditions as:(
1− ϵ

dλ

ds

)
s=t

= 0 and λ(s)|s=t = 0. (2.2.14)

Thus, equation (2.2.13) with the stationary conditions, when combined, (2.2.14) yields

λ(s) =
1√
ϵ
sin

(
2s− 2t√

ϵ

)
.

Hence, we may now express the variation iteration formula as:

un+1(t) = un(t) +

∫ t

0

1√
ϵ
sin

(
2s− 2t√

ϵ

)[
ϵ
d2un(s)

ds2
+ 4un(s)

]
ds

(2.2.15)

We can obtain a series of solution for the equation (2.2.9) by considering its linearly
independent solutions. We start with the initial approximation u0 = C1 cos2t +
C2 sin2t, where free constants, C1 and C2, can be determined using the boundary
conditions. Using (2.2.15), we have

u1 = C1cos2t+ C2sin2t+
4(1− ϵ)√

ϵ

∫ t

0

sin

(
2s− 2t√

ϵ

)
(C1cos2t+ C2sin2t)ds

= cos(2/
√
ϵ)t+

2− cos(2/
√
ϵ)

sin(2/
√
ϵ)

.sin(2/
√
ϵ)t for a=1 and b=2 (2.2.16)

which is indeed the exact solution (2.2.10)

12



Figure 2.1: The behaviour of the solution
to example (2.2.1) is shown as the param-
eter ϵ is varied.

Figure 2.2: The behaviour of the solution
to example (2.2.2) is shown as the param-
eter ϵ is varied.
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2.2.3 Problem Description

Take a look at these two-point boundary value problem with nonlinear singular per-
turbation:

ϵu′′ = f(t, u(t), u′(t)); t ∈ (0, 1)
u(0) = β, u(1) = α.

(2.2.17)

When dealing with boundary value problems that are singularly perturbed, it is com-
mon practice to look for solutions that are stable and provide an indication of where
the boundary layers will occur. With the aid of a maximal theory statement, most of
these objectives have been achieved. The solution is approximated by values at the
boundary of the interval over which it exists. In the subsequent discussion, we will
present some of these supporting results.

Existence theorem and a priori bounds

Assume that p(t) and q(t) are functions that are smooth and that they satisfy:

p(t) ≤ q(t)

p(0) ≤ ξ ≤ q(0), p(1) ≤ γ ≤ q(1)

p′′(t) ≥ f(t, u(t), u′(t), q′′(t) ≤ f(t, q(t), q′(t)

Furthermore, the following Nagumo condition is true.

f(t, u, u′) = O(|u′|2)as|u′| → ∞∀(t, y) ∈ [a, b]XR

.
Theorem : Suppose there exists bounding functions p(t) and q(t) with the above

properties and also suppose that the function f satisfies the Nagumo condition with
respect to functions p and q. Then (2.2.17) has a solution y(t) ∈ C2([0, 1]) satisfying
the condition

p(t) ≤ u(t) ≤ q(t), for, t ∈ [0, 1]

Moreover, as a direct application of maximum principle the following estimate holds.

14



Theorem : Suppose that f , function, is continuous with respect to (t, u, u′). The
function, f , is of class C1 with respect to u for (t, u, u′) in [0, 1] X R2 and there exists
a positive constant m such that fu(t, u, 0) ≥ m > 0 for (t, u) ∈ [0, 1]XR then for each
ϵ > 0, (2.2.17) has unique solution u(t, ϵ) ∈ [0, 1] such that
|u(t, ϵ)| ≤M/m where

M = max
[0,1]

|f(t, 0, 0)|,m|α|,m|β|

Proof:- Define a(t) = −M/m and b(t) =M/m. Then,

a ≤ b, a(0) ≤ α ≤ b(0) and a(1) ≤ β ≤ b(1).

For some intermediate point ξ ∈ (a, 0) an application of Taylor’s theorem gives

f(t, a, 0) = f(t, 0, 0) + fu(t, ξ, 0)a ≤ |f(t, 0, 0)|+ma

≤ M +m(−M/m) ≤ 0 = ϵa′′.

Similarly, for some intermediate point η ∈ (0,b),

f(t, b, 0) = f(t, 0, 0) + fu(t, η, 0)

≥ −M +m(M/m) ≥ 0 = ϵb′′.

Hence, it follows from the previous theorem that for each ϵ > 0 the problem
(2.2.17) has a solution u(t, ϵ) ≡ u(t) on [0,1] satisfying

|u(t)| ≤M/m

where
M = max{max

[0,1]
|f(t, 0, 0)|,m|α|,m|β|}.

The solution to the equation is unique because of the maximum principle.

Note: The proof follows from Kaushik, Aditya. ”Iterative analytic approximation to
nonlinear convection dominated systems.” Computer Physics Communications 184.9
(2013): 2061-2069.
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2.2.4 Solution Methodology

Now, we’ll study using two different possible instances:

f(t, u(t), u′(t)) =

{
h(t, u(t), u′(t))−m(t)u′(t)− n(t)u(t), m(t) ̸= 0 and

h(t, u(t), u′(t)),
(2.2.18)

i.e., In the first instance, the linear component of the function h(t, y(t), y′(t)) may be
recovered directly, unlike the second instance.

Case-I:f(t, u(t), u′(t)) = h(t, u(t), u′(t))−m(t)u′(t)− n(t)u(t); m(t) ̸= 0.
As a result, we may develop the correction functional analogous to (2.2.18)

un+1(t) = un(t) +

∫ t

0

λ(µ)
(
ϵu′′(µ) +m(µ)u′(µ) + n(µ)u(µ)− h̃(µ, u, u′)

)
dµ

= un(t) + ϵ

{
λ(µ)u′(µ)|t0 −

∫ t

0

dλ(µ)

dµ
u′(µ)dµ

}
+

{
λ(µ)m(µ)u(µ)|t0 −

∫ t

0

(
dλ(µ)

dµ
m(µ) + λ(µ)

dm(µ)

dµ

)
u(µ)dµ

}
+

∫ t

0

λ(µ)n(µ)u(µ)dµ−
∫ t

0

λ(µ)h̃(µ, u, u′)dµ

= un(t) + ϵ

{
λ(µ)u′(µ)|t0 −

(
dλ(µ)

dµ
u(µ)|t0 −

∫ t

0

d2λ(µ)

dµ2
u(µ)

)}
+

{
λ(µ)m(µ)u(µ)|t0 −

∫ t

0

(
dλ(µ)

dµ
m(µ) + λ(µ)

dm(µ)

dµ

)
m(µ)dµ

}
+

∫ t

0

λ(µ)n(µ)u(µ)dµ−
∫ t

0

λ(µ)h̃(µ, u, u′)dµ (2.2.19)

It should be found that λ(µ, t) := λ(µ) here represents the Lagrange multiplier
and the function,h̃(µ, u(µ), u′(µ)), represents the constrained source term variation of
the nonlinear source term. (i.e.,δh̃ = 0).To determine Lagrange’s multiplier, we shall
apply variational theory and consider variation with respect to an independent vari-
able, un (notice that δun(0) = 0) and making the correctional functional stationary
in (2.2.19), means., δun+1 = 0:
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δun+1(t) = δun(t) + ϵ

{
λ(µ)δu′(µ)|µ=t −

(
dλ(µ)

dµ
δu(µ)|µ=t −

∫ t

0

d2λ(µ)

dµ2
δu(µ)

)}
+

{
λ(µ)p(µ)δu(µ)|µ=t −

∫ t

0

(
dλ(µ)

dµ
m(µ) + λ(µ)

dm(µ)

dµ

)
δu(µ)dµ

}
+

∫ t

0

λ(µ)n(µ)δy(µ)dµ−
∫ t

0

λ(µ)δh̃(µ, u, u′)dµ

=

(
1− ϵ

dλ(µ)

dµ
+m(µ)λ(µ)

)
δun(µ)|µ=t + ϵλ(µ)δ

dun(µ)

dµ
|µ=t

+

∫ t

0

(
ϵ
d2λ(µ)

dµ2
−m(µ)

dλ(µ)

dµ
+

(
n(µ) +

dm(µ)

dµ

)
λ(µ)

)
δun(µ)dµ

= 0. (2.2.20)

Euler-Lagrange’s equation consequently becomes

ϵd
2λ(µ)
dτ2

−m(µ)dλ(µ)
dµ

+
(
n(µ) + dm(µ)

dµ

)
λ(µ) = 0(

1− ϵdλ(µ)
dµ

+m(µ)λ(µ)
)
µ=t

= 0

λ(µ)µ=t = 0

 (2.2.21)

The Lagrange multiplier in this case is λ, which was created by applying Liouville’s
green transformation. Define Liouville-Green transformation x, ϕ(x) and w(µ) as
follows

x = ϕ(µ) = −1
ϵ

∫
m(µ)dµ

ψ(µ) = ϕ′(µ) = −1
ϵ
m(µ)

w(x) = ψ(µ)λ(µ).

 (2.2.22)

It follows that
dλ(µ)

dµ
=
ϕ′(µ)

ψ(µ)

dw

dx
− ψ′(µ)

ψ2(µ)
w, and (2.2.23a)

d2λ(µ)

dµ2
=
ϕ′2(µ)

ψ(µ)

d2w

dx2
+

(
ϕ′′(µ)

ψ(µ)
− 2

ϕ′(µ)ψ′(µ)

ψ2(µ)

)
dw

dx
−
(
ψ′′(µ)

ψ2(µ)
− 2

ψ′2(µ)

ψ3(µ)

)
w.

(2.2.23b)
Substituting (2.2.23) into (2.2.21), which in turn gives:

d2w

dx2
+

(
ϕ′′(µ)

ψ2(µ)
− 2

ϕ′(µ)ψ′(µ)

ψ3(µ)
− m(µ)ϕ′(µ)

ϵψ2(µ)

)
dw

dx

+

(
n(µ)

ϵψ2(µ)
− ψ′′(µ)

ψ3(µ)
+ 2

ψ′2(µ)

ψ4(µ)
+
m(µ)ψ′(µ)

ϵψ3(µ)
+

p′(µ)

ϵψ2(µ)

)
w = 0.

d2w

dx2
+
dw

dx
= ϵ

(
G(µ, ϵ)w(x)−F(µ)

dw

dx

)
(2.2.24)
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in which

F(µ) =
m′(µ)

m2(µ)
and G(µ, ϵ) =

(
ϵ
m′′(µ)

m3(µ)
− 2ϵ

m′2(µ)

m3(µ)
− 2m′(µ) + n(µ)

m2(µ)

)
.

Since m(·) ∈ C2[0, 1], n(·) ∈ C[0, 1] and F(·), G(·, ϵ) are bounded on [0, 1], thus, we
have

ϵ

(
G(µ, ϵ)w(x)−F(µ)

dw

dx

)
→ 0 as ϵ→ 0.

Therefore, (2.2.24) reduces to
d2w

dx2
+
dw

dx
≈ 0

and hence
w(x) = C1 + C2 exp(−x). (2.2.25)

In light of (2.2.22), (2.2.25) results

λ(µ, t) = − ϵ

m(µ)

(
C1 + C2 exp

(
1

ϵ

∫ µ

t

m(s)ds

))
. (2.2.26)

where C1 and C2 are made up constants at random. As a result, boundary conditions
produce

λ(µ, t) = − 1

m(µ))

(
1− exp

(
1

ϵ

∫ µ

t

m(s)ds

))
. (2.2.27)

Consequently, the iteration formula for (2.2.18) is provided as

un+1(t) = un(t) +

∫ t

0

− 1

m(µ))

(
1− exp

(
1

ϵ

∫ µ

t

m(s)ds

))
×(

ϵ
d2u(µ)

dµ2
+m(µ)

du(µ)

dµ
+ n(µ)y(µ)− f

(
µ, u(µ),

du(µ)

dµ

))
dµ (2.2.28)

Case-II: f(t, u(t), u′(t)) = h(t, u(t), u′(t)); only contains non-linear or implicit
terms.

The correction functional is presented as follows with regard to (2.2.18)

un+1(t) = un(t) +

∫ t

0

λ(µ)
(
ϵu′′(µ)− h̃(µ, u, u′)

)
dµ

= un(t) + ϵ

{
λ(µ)u′(µ)|t0 −

∫ t

0

dλ(µ)

dµ
u′(µ)dµ

}
−
∫ t

0

λ(µ)h̃(µ, u, u′)dµ

= un(t) + ϵ

{
λ(µ)u′(µ)|t0 −

(
dλ(µ)

dµ
u(µ)|t0 −

∫ t

0

d2λ(µ)

dµ2
u(µ)

)}
−
∫ t

0

λ(µ)h̃(µ, u, u′)dµ (2.2.29)
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The Lagrange multiplier is represented in this equation by λ(µ, t) := λ(µ), with
h̃(µ, u(µ), u′(µ)) standing for the constrained variation of the nonlinear source term.
To determine Lagrange’s multiplier, we shall apply variation theory and consider
variation with respect to an independent variable, un (observe that δun(0) = 0) and
δun+1 = 0:

δun+1(t) = δun(t) + ϵ

{
λ(µ)δu′(µ)|t0 −

(
dλ(µ)

dµ
δu(µ)|t0 −

∫ t

0

d2λ(µ)

dµ2
δu(µ)

)}
−
∫ t

0

λ(µ)δh̃(µ, u, u′)dµ

=

(
1− ϵ

dλ(µ)

dµ

)
µ=t

δu(t) + ϵλ(µ)|µ=tδu
′(t) + ϵ

∫ t

0

d2λ(µ)

dµ2
δu(µ)dµ

= 0. (2.2.30)

Euler-Lagrange’s equation consequently becomes

d2λ(µ)

dµ2
= 0;

(
1− ϵ

dλ(µ)

dµ

)
µ=t

= 0, λ(µ)µ=t = 0

which in turn yields

λ =
µ− t

ϵ
.

Thus, the iteration formula is as follows

un+1(t) = un(t) +

∫ t

0

(
µ− t

ϵ

)(
ϵ
d2u(µ)

dµ2
− h

(
µ, u(µ),

du(µ)

dµ

))
dµ.(2.2.31)
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Chapter 3

Variation Iteration Method for
Partial Differential Equation

3.1 Brief Analysis of the method

In this section, we’ll review the core ideas that underlie the variation iteration method.
Let us consider the following nonlinear equation as an example:

Lz(x) ≡ L(z(x)) +N(z(x)) = h(x, t) (3.1.1)

For example Lz = Ltz + Lxz, then Equation (3.1.1) can also be written as

Ltz + Lxz +Nz − h(x, t) = 0 (3.1.2)

with Lx and Lt, both are linear operators with respect to x and t, respectively, N is
the Non-Linear operator and h(x, t), a continuous function. Based on the variation
iteration method, a correction functional for Equation (3.1.2) in the shape of

zn+1(x) = zn(x, t)+

∫ t

0

λ(µ){Lµzn(x, µ)+Lxz̃n(x, µ)+Nz̃n(x, µ)−h(x, t)dµ (3.1.3)

where λ is the Langrange’s multiplier and can be optimally identified using the cal-
culus theory of variation, z̃n is a finite variation so that δz̃n to achieve stationary
conditions, and z0 is chosen based on the initial conditions given.

Let zn be the approximate solution in the nth iteration n ≥ 0, then the exact
solution of (3.1.1) is given by (3.1.3) :

z(x, t) = limn→∞zn(x, t)

En = |z(x, t)− zn(x, t)|
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3.1.1 Problem Description

To construct the form of the correction function, reconsider the following parabolic
partial differential equation,

∂z
∂t

− ∂2z
∂x2 = ϕ(z) + h(x, t) (3.1.4)

with boundary conditions z(0, t) = z(1, t) = 0,
and initial conditions z(x, 0) = g(x).

For example, Lt =
∂
∂t

and Lxx = ∂2

∂x2 , is a differential linear operator, then equation
(3.1.4) can be described as

Ltz − Lxxz = ϕ(z) + h(x, t)

Or
Ltz − Lxxz − ϕ(z)− h(x, t) = 0 (3.1.5)

Component ϕ(z), in equation (3.1.5), is a non linear function. Equation (3.1.5) is
said to be homogeneous when h(x, t) = 0. But on the other hand, if h(x, t) ̸= 0, then
Equation (3.1.5) is said to be non-homogeneous.

3.1.2 Solution Methodology

To solve Equation (3.1.5), then based on the iteration method, the variation of Equa-
tion (3.1.5) can be changed to

zn+1(x, t) = zn(x, t) +

∫ t

0

λ(µ)((Lµzn(x, µ)− Lxxz̃n(x, µ)− ϕ(z̃n(x, µ)− h(x, t))dµ

(3.1.6)
where λ(µ) is the Lagrange multiplier. The Lagrange multiplier, λ(µ),can be op-
timally identified through the theory of variation. Therefore, equation (3.1.6) be
formed as

δzn+1(x, t) = δzn(x, t) + δ

∫ t

0

λ(µ)(Lµzn(x, µ)−Lxxz̃n(x, µ)− ϕ(z̃n(x, µ))− h(x, t))dµ

(3.1.7)
To reach the stationary condition, the condition δz̃n = 0 is needed, so Equation (3.1.7)
becomes

δzn+1(x, t) = δzn(x, t) + δ

∫ 1

0

λ(µ)
∂zn(x, µ)

∂µ
dµ

Or

δzn+1 = δzn(x, t)(1 + λ|µ=t)−
∫ t

0

λ′(µ)δ
∂zn(x, µ)

∂µ
dµ (3.1.8)
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When the condition is stationary, from Equation (3.1.8), we have λ′(µ)|µ=t = 0
and 1 + λ(µ)|µ=t = 0 so we get λ = −1. Then by changing the value of the Lagrange
multiplier in equation (3.1.6), now (3.1.6) can be rewritten as

zn+1(x, t) = zn(x, t)−
∫ t

0

(Lµzn(x, µ)−Lxxzn(x, µ)− ϕ(zn(x, µ))− h(x, µ)dµ (3.1.9)

Or

zn+1(x, t) = zn(x, t)−
∫ t

0

(
∂zn(x, µ

∂µ
− ∂2zn(x, µ)

∂x2
− ϕ(zn(x, µ))− h(x, µ))dµ (3.1.10)

Based on Equation (3.1.10), then by taking the initial value z0(x, t) , then obtained
successively z1(x, t), z2(x, t), z3(x, t), . . . in the form

z1(x, t) = z0(x, t)−
∫ t

0

(
∂z0(x, µ

∂µ
− ∂2z0(x, µ)

∂x2
− ϕ(z0(x, µ))− h(x, µ))dµ

z2(x, t) = z1(x, t)−
∫ t

0

(
∂z1(x, µ

∂µ
− ∂2z1(x, µ)

∂x2
− ϕ(z1(x, µ))− h(x, µ))dµ

z3(x, t) = z2(x, t)−
∫ t

0

(
∂z2(x, µ

∂µ
− ∂2z2(x, µ)

∂x2
− ϕ(z2(x, µ))− h(x, µ))dµ

...
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Example 3.1.1 Parabolic partial differential equation
Let’s think about a problem:

zt = zxx − e−xsint+ e−xcost (3.1.11)

containing the initial conditions z(x, 0) = x and boundary conditions:

z(0, t) = sint, z(1, t) =
1 + sint

e
Which is obvious to provide the precise answer.

z(x, t) = x+ e−x(cost− sint) (3.1.12)

The correction functional that corresponds to (3.1.11) is given as:

zn+1(x, t) = zn(x, t) +

∫ t

0

λ

(
∂zn(x, µ)

∂µ
− ∂2zn(x, µ)

∂x2
− e−xcost+ e−xsint

)
dµ

(3.1.13)
where λ, the Lagrange multiplier, can be conveniently determined using variational
theory:

δzn+1(x, t) = δzn(x, t) + δ

∫ t

0

λ

(
∂zn(x, µ)

∂µ
− ∂2zn(x, µ)

∂x2
− e−xcost+ e−xsint

)
dµ

(3.1.14)
We obtain λ = −1 after applying Integration by parts.

δzn+1(x, t) = δzn(x, t) + δ

∫ t

0

(−1)

(
∂zn(x, µ)

∂µ
− ∂2zn(x, µ)

∂x2
− e−xcost+ e−xsint

)
dµ

(3.1.15)
Now, take an initial approximation that satisfies the initial condition.

z0(x, t) = x

substitute initial condition into (3.1.15), then we get

z1(x, t) = x− e−x + e−xsint+ e−xcost (3.1.16)

similarly,

z2(x, t) = x+ 2e−xsint− e−xt (3.1.17)

z3(x, t) = x+ e−xsint+ e−x − e−xcost− 1

2
e−xt2 (3.1.18)

The remaining iterations can be obtained in a similar manner.
When the outcomes of this analysis were compared to those produced from an

exact solution, it became clear that they were nearly identical. This demonstrates
that the variational iteration method is a highly accurate and effective mathematical
tool for solving differential equations.
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t z(x, t)exact z(x, t)vim
0.1 0.190333 0.190333
0.3 0.367396 0.367397
0.5 0.533801 0.531465
0.7 0.68292 0.674006
0.9 0.808783 0.794705

Table 3.1: Numerical results for x = 0.1

t z(x, t)exact z(x, t)vim
0.1 0.940589 0.940589
0.3 1.020149 1.020149
0.5 1.094919 1.094911
0.7 1.161919 1.161853
0.9 1.218476 1.218181

Table 3.2: Numerical results for x = 0.9
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Example 3.1.2 Consider a non linear partial differential equation

∂z

∂x
− ∂2z

∂t2
= z2 −

(
∂z

∂t

)2

(3.1.19)

with initial condition z(t, 0) = et. The variational iteration approach can be used to
calculate the nonlinear parabolic equation’s value.
The correction functional analogous to (3.1.19)

zn+1(x, t) = zn(x, t) +

∫ x

0

λ

(
∂zn(t, µ)

∂µ
− ∂2zn(t, µ)

∂t2
− z2n(t, µ) +

(
∂z(t, µ)

∂t

)2
)
dµ

(3.1.20)
where λ, the lagrange multiplier, can be conveniently determined using variational
theory:

δzn+1(x, t) = δzn(x, t)+δ

∫ x

0

λ

(
∂zn(t, µ)

∂µ
− ∂2zn(t, µ)

∂t2
− z2n(t, µ) +

(
∂z(t, µ)

∂t

)2
)
dµ

(3.1.21)
Applying by parts ,we obtain λ = −1

δzn+1(x, t) = δzn(x, t)+δ

∫ x

0

(−1)

(
∂zn(t, µ)

∂µ
− ∂2zn(t, µ)

∂t2
− z2n(t, µ) +

(
∂z(t, µ)

∂t

)2
)
dµ

(3.1.22)
Now,take arbitrary initial approximation which satisfying the initial condition

z(t, 0) = et

substitute initial condition into (3.1.20)

z1(x, t) = et(1 + x),

z2(x, t) = et
(
1 + x+

x2

2!

)
,

z3(x, t) = et
(
1 + x+

x2

2!
+
x3

3!

)
,

...

zn(x, t) = ex
(
1 + t+

t2

2!
+
t3

3!
+ · · ·+ tn

n!

)
,

...

We can solve Equation (3.1.19) exactly by taking n→ ∞., so we get

zn(x, t) = ex
(
1 + t+

t2

2!
+
t3

3!
+ · · ·+ tn

n!
· · ·
)

(3.1.23)
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or
z(x, t) = ex+t (3.1.24)

The accuracy of the solution of (3.1.19) depends on the number of iterations required
to solve it. Figures (a) and (b), depict a preliminary data and the comparison between
the exact and approximate solutions for the two values of n, i.e., n = 2 and n = 8,
respectively. Figures 2.3 and 2.4 illustrate that the curve produced by z8(x, t) is

Figure 3.1: (a) Comparison of exact solu-
tion for x, 0 ≤ x ≤ 2

Figure 3.2: (b) Comparison of exact solu-
tion for x, x = 2

Comparison of the exact solution with the z2 iteration and z8 iteration for
2 ≤ t ≤ 6 : (a) 0 ≤ x ≤ 2, (b) x = 2

more closely related to z(x, t) than the other curves. This indicates that carrying out
additional iterations to refine the approximation will bring you closer to the exact
solution.

26



Chapter 4

Conclusion

Nonlinear problems are frequently solved by linearizing them around a notional so-
lution using the quasi-linearization technique, which is subsequently solved either
analytically or numerically. However, this linearization approach may lead to inac-
curacies in the solution, particularly for complex problems with severe nonlinearities.
To address some of these issues, we proposed an iterative analytic approach that has
been shown to be highly accurate and robust with respect to small parameters. In-
deed, the suggested approach offers an analytical approximation that is on par with
wholly analytical solutions.

Furthermore, this approach is straightforward to implement and can be adapted
to tackle a broader array of problems, including those involving discontinuous source
terms and the evolution equations of mathematical physics. Unlike numerical meth-
ods, the present approach does not entail tiresome algebraic calculations, prior sim-
plification, discretization or linearization, and because it doesn’t offer any linear or
nonlinear systems of equations, the size of calculations is greatly reduced while still
maintaining high accuracy. The approach demonstrates its efficacy by producing
promising results in just a few iterations, without any restrictive assumptions. The
obtained results are equivalent.

After applying the proposed approach to parabolic partial differential equations,
we observed that an infinite number of iterations is needed to obtain the exact solu-
tion. The fact that more iterations result in a solution that gets closer to being the
exact answer shows how good this method is in solving PDEs. A close approximation
to the exact solution can be obtained using this technique. In summary, the proposed
iterative analytic method offers a powerful tool for accurately solving nonlinear prob-
lems with greater efficiency and ease compared to traditional methods. Moreover,
this approach is free from constraining assumptions and justifies its effectiveness by
delivering promising results with only a few iterations.
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