
Apple Foliar Disease Detection using Convolutional

Neural Network Based Approach

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

SOFTWARE ENGINEERING

Submitted by

SARADINDU DAS

2K21/SWE/21

Under the supervision of

Dr. ABHILASHA SHARMA

(Assistant Professor)

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi 110042

MAY, 2023

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE'S DECLARATION

1. Saradindu Das, Roll No

Place: Delhi

gineering), hereby declare that the Project Dissertation titled �Apple Foliar Disease

Detection using Convolutional Neural Network Based Approach" which is sub

mitted by me to the Departmnent of Software Engineering, Delhi Technological University,

Delhi in partial fulfilment of the requirement for the award of degree of Master of Tech

nology, is original and not copied from any source without proper citation. This work

has not previously formed the basis for the award of any Degree, Diploma Associateship,

Fellowship or other similar title or recognition.

2K21/SWE/21 student of M.Tech (Software En

Date: 24 |05/2023

i

Saradindu Das

2K21/SWE/21

Place: Delhi

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

I hereby certify that the Project Dissertation titled "Apple Foliar Disease Detec

tion using Convolutional Neural Network Based Approach" which is submitted

by Saradindu Das, Roll No 2K21/SWE/21, Department of Software Engineering,
Delhi Technological University, Delhi in partial fulfilment of the requirement for the award

of the degree of Master of Technology, is a record of the project work carried out by the

student under my supervision. To the best of my knowledge this work has not been

submitted in part or full for any Degree or Diploma to this University or elsewhere.

Date:

CERTIFICATE

ii

Dr. Abhilasha Sharma

Assistant ProfessSor

Department of Software Engineering

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Fornerly Delhi College of Engineering)

Bawana Road, Delhi-110042

Place: Delhi

I wish to express my sincerest gratitude to Dr. Abhilasha Sharma for her continuous

guidance and mentorship that she provided me during the project. She showed me the

path to achieve my targets by explaining all the tasks to be done and explained to me

the importance of this project as well as its industrial relevance. She was always ready to

help me and clear my doubts regarding any hurdles in this project. Without her constant

support and motivation, this project would not have been successful.

ACKNOWLEDGEMENT

Date: 24o5 |2013

ii

Saradindu Das

2K21/SWE/21

Abstract

Agriculture is the process of growing crops and raising livestock and cultivating other

forms of food or fiber. It has been a fundamental activity for human societies through-

out history, providing food and other resources necessary for survival. It also provides

employment, economic growth and environmental conservation. Some farming practices,

such as sustainable agriculture, can promote environmental conservation and biodiver-

sity. Hence, plant illness can have a substantial effect on the economy, particularly in

agricultural-dependent countries. Crop yield loss, trade restrictions, increased production

costs, reduced agricultural productivity, and research and development costs are some of

the ways plant diseases can affect the economy. It is essential to prevent and manage

plant diseases to ensure food security and maintain a healthy agricultural sector. Farmers

visually inspect their crops for symptoms of diseases, such as discoloration, spots, wilting,

and deformities. Farmers can also use their sense of touch and smell to detect diseases,

such as the sticky or slimy feel of plant leaves infected with fungal diseases and the foul

smell of rotting or decaying plant material. However, traditional methods of plant disease

detection do have limitations. Visual inspection and other traditional methods may not

always detect diseases at an early stage, and there is a risk of misdiagnosis. Additionally,

traditional methods may not be able to detect diseases that are not visible to the naked

eye.

The other alternatives are the use of Artificial Intelligence (AI) which includes training

computers to detect plant diseases using image recognition technology. AI can analyze

thousands of images to detect subtle changes in plant health that may indicate the pres-

ence of diseases. Some of the regular AI techniques used for plant disease detection

are Convolutional Neural Networks (CNNs), Support Vector Machines (SVMs), Random

Forest (RF), Deep Belief Networks (DBNs), Transfer Learning. These AI methods are

increasingly being used for plant disease detection because they offer a fast, accurate,

and cost-effective way to diagnose plant diseases, which can help prevent crop losses and

iv

increase yields.

Here in this research work, a Multi-layered CNN model is introduced which is inspired

from InceptionNet. The proposed model is trained on the “Plant Pathology 2020: FGVC7

dataset” and “Plant Pathology 2021: FGVC8 dataset”. This proposed model is compared

with pertained models: InceptionV3. According to the findings, the suggested model

outperforms other pre-existing models in terms of accuracy or performance and it’s able

to detect the disease with a low error rate.

v

Contents

Candidate’s Declaration i

Certificate ii

Acknowledgement iii

Abstract v

Contents vii

List of Table(s) viii

List of Figure(s) ix

List of Abbreviation(s) x

1 INTRODUCTION 1

2 RELATED WORK 4

3 FUDAMENTALS 13
3.1 Plant Disease . 13

3.1.1 Classification of Plant Disease . 13
3.1.2 Apple Foliar Disease . 14

3.2 Convolutional Neural Network . 15
3.3 InceptionNet . 15

4 PROPOSED WORK 17
4.1 Problem Statement . 17
4.2 Solution . 17

4.2.1 Data Acquisition . 17
4.2.2 Image Processing . 19
4.2.3 Data Augmentation . 19
4.2.4 Proposed Model . 20
4.2.5 Inception Module . 22
4.2.6 Weight Initializers Used . 23
4.2.7 Optimizers Used . 24

5 DATA EVALUATION 27
5.1 Datasets Used . 27

6 EXPERIMENTS AND RESULTS 30

vi

6.1 Performance Metrics . 30
6.2 Analysis and Visualization of the Experimental Result 32

6.2.1 Performance on Plant Pathology 2020- FCVG7 dataset 33
6.2.2 Performance on Plant Pathology 2021- FCVG8 dataset 35
6.2.3 Summary of the Results . 37

7 CONCLUSION & FUTURE SCOPE 39

Bibliography 40

LIST OF PUBLICATIONS 46

vii

List of Table(s)

2.1 Summarized review of literature papers . 11

4.1 Detailed Architecture of Multilayer CNN Model 21

5.1 Distribution of Dataset . 27

6.1 Performance Evaluation of Plant Pathology 2020: FGCV7 dataset[13] . . . 37
6.2 Performance Evaluation of Plant Pathology 2021: FGCV8 dataset[14] . . . 38

viii

List of Figure(s)

1.1 Images of disease symptoms on leaves: (a) Indirect sunrays on leaf (b)
Direct sunrays on leaf (c) Strong reflection on the leaf[6] 2

1.2 Images of different apple leaf diseases: (a) Fire blight (b) Powdery mildew
on leaf (c) Cedar apple rust infection on the leaf[7]–[9] 3

3.1 Classification of plant diseases . 14
3.2 Convolutional Neural Network[50] . 16
3.3 InceptionNet[53] . 16

4.1 Graph showing proposed methodology process 18
4.2 Architecture of Inception Module . 23

5.1 Sample Images of Plant Pathology 2020-FGCV7 Dataset[13] 28
5.2 Sample Images of Plant Pathology 2021-FGCV8 Dataset[14] 29

6.1 Performance Evaluation of the Proposed model using Adam Optimizer on
Plant Pathology 2020-FCVG7 Dataset[13] 33

6.2 Performance Evaluation of the Proposed model using Nesterov Accelerated
Gradient Optimizer on Plant Pathology 2020-FCVG7 Dataset[13] 34

6.3 Performance Evaluation of the Proposed model using RMS Prop Optimizer
on Plant Pathology 2020-FCVG7 Dataset[13] 34

6.4 Performance Evaluation of the Proposed model using RMSprop with Nes-
terov Momentum Optimizer on Plant Pathology 2020-FCVG7 Dataset[13] . 35

6.5 Performance Evaluation of the Proposed model using Adam Optimizer on
Plant Pathology 2021-FCVG8 Dataset[14] 35

6.6 Performance Evaluation of the Proposed model using Nesterov Accelerated
Gradient Optimizer on Plant Pathology 2021-FCVG8 Dataset[14] 36

6.7 Performance Evaluation of the Proposed model using RMS Prop Optimizer
on Plant Pathology 2021-FCVG8 Dataset[14] 36

6.8 Performance Evaluation of the Proposed model using RMSprop with Nes-
terov Momentum Optimizer on Plant Pathology 2021-FCVG8 Dataset[14] . 37

6.9 Comparison of Performance using RMSProp with Nesterov Momentum Op-
timizer . 38

ix

List of Abbreviation(s)

PD Plant Disease
PDD Plant Disease Detection
SVM Support Vector Machine
ML Machine Learning
DL Deep Learning
CNN Convolutional Neural Network
RNN Recurrent Neural Network
DBN Deep Belief Network
AFD Apple Foliar Disease
NAG Nesterov Accelerated Gradient
RMS Root Mean Square
DCNN Deep Convolutional Neural Network
F −RCNN Faster Regions with Convolutional Neural Network
TTA Test-Time Augmentation
CAE Convolutional AutoEncoder
APD Apple Plant Disease
DNN Deep Neural Network
CV Computer Vision
NN Neural Network
NLP Natural Language Processing
ADC Analog-to-Digital Converter
SGD Sochastic Gradient Descent

x

Chapter 1

INTRODUCTION

Apples are one of the most popular and widely consumed fruits around the world. They
are not only delicious but also packed with many essential nutrients and health benefits.
Here are some of the benefits of apples: Nutrient-rich, Good for heart health, Boosts
immune system, May help regulate blood sugar levels. Overall, apples are a nutritious
and delicious fruit that can provide many health benefits when consumed as part of a
balanced diet. However there are several diseases that can affect apple plants, some of
which are induced by bacteria, viruses, or fungi. These diseases in the plants can be
harmful in several ways, both to individual plants and to entire ecosystems. PD[1] can
have significant economic impacts, both in terms of lost productivity for farmers and
increased costs for consumers. It can have adverse effects on ecosystem function: and
can affect the interactions between plants and other organisms, such as pollinators or
herbivores, leading to changes in ecosystem function.

Detecting PDs[1] in their early stages is crucial for effective management and control
of the disease. Managing apple diseases typically involves a combination of cultural,
biological, and chemical control methods, including proper pruning and sanitation, use of
disease-resistant varieties, and application of fungicides and bactericides when necessary.
Traditionally, PDD involves visual inspection of plants by experienced plant pathologists
or farmers. The presence of characteristic symptoms, such as spots, wilting, or deformities,
is often used to diagnose the disease. In some cases, laboratory tests may be required to
confirm the diagnosis. While these traditional methods are still commonly used for PDD,
they can be time-consuming, expensive, and require specialized expertise.

In recent years, new technologies such as remote sensing, AI[2], and biosensors have
emerged as promising tools for early and rapid detection of PDs[1]. These new approaches
offer faster, more accurate, and cost-effective solutions for disease detection and manage-
ment. The next alternatives are Imaging techniques which have emerged as promising
tools for early detection of PDs[1]. They have the potential to revolutionize PDD by
offering fast, non-destructive, and cost-effective solutions for early detection and manage-
ment of PDs[1]. While imaging techniques offer several advantages for PDD, there are
also some disadvantages to consider: Imaging equipment can be expensive, and special-
ized training may be required to use and interpret the images. Imaging techniques may
only capture images of small areas of plant tissue, requiring multiple images to be taken
to cover larger plants or fields. Imaging techniques may be impacted by natural factors
such as humidity or lighting, which can affect the quality of the images captured. ML[3]
techniques like SVMs[4] and K-Means Clustering[5] have shown promise in the detection
and diagnosis of PDs[1]. But it comes with the added disadvantage of a complex feature
extraction process which reduces the overall efficiency of the system. On the other hand,
the DL techniques such as CNNs, RNNs[10], and DBNs[11]. These algorithms are trained

1

Figure 1.1: Images of disease symptoms on leaves: (a) Indirect sunrays on leaf (b)
Direct sunrays on leaf (c) Strong reflection on the leaf[6]

on large datasets of plant images to learn the characteristic features of healthy and dis-
eased plants, enabling automated disease detection and classification with high accuracy.
DL[12] algorithms can be trained on large datasets of plant images to automatically detect
disease symptoms with high accuracy. This can enable faster and more accurate disease
detection, particularly in large-scale agricultural settings. DL[12] algorithms can detect
subtle changes in plant tissue that may be difficult for humans or traditional machine
learning algorithms to detect, leading to improved accuracy in disease detection. Overall,
DL[12] techniques provide an effective method for the timely detection and management
of PDs[1], with the potential to improve crop yields, reduce pesticide use, and promote
sustainable agriculture. While DL[12] techniques offer many advantages for PDD, there
are also several challenges that need to be addressed. Plants can vary widely in their mor-
phology and appearance, making it difficult to develop generalized DL[12] models that
can detect a wide range of diseases across different plant species. Labeling and annotating
large datasets of plant images can be time-consuming and resource-intensive, particularly
for rare or emerging PDs[1].

Here, in this work the FGVC7[13] dataset and FGVC8[14] dataset from the Plant
Pathology 2020 and 2021 Kaggle competitions, respectively, are taken. I can observe
apple leaves with unhealthy areas in Fig. 1.1 and in Fig. 1.2 I can see the effect of
different diseases on apple leaves. CNN technique makes it quite simple to identify them.
CNN will be used to identify AFDs[15], and it will be compared to previously trained
models InceptionNet. 256x256 is the new size of the images. To ascertain the health of
the plants, this process entails classifying photos from the test collection. The suggested
paradigm is employed to categorize various illnesses. This work contributes the following:

• This research work examines previously suggested CNN models that are capable
of identifying and classifying diseases. Additionally, a new model called Multilayer

2

Figure 1.2: Images of different apple leaf diseases: (a) Fire blight (b) Powdery mildew
on leaf (c) Cedar apple rust infection on the leaf[7]–[9]

CNN is introduced for this purpose. The newly suggested model is trained using
two separate datasets: FGVC7[13] and FGVC8[14].

• The proposed Multilayer CNN model is inspired by InceptionNet and it consists of
Convolution Layer, Batch Normalization Layer, Max-Pooling Layer, Flatten Layer,
Dense Layer, Dropout Layer and Inception Block.

• Trained with 4 optimizers: Adam, NAG, RMS Prop and RMS Prop with Nesterov
momentum and compared the results with each other. Learning rate set to 0.01 in
each of the optimizers.

• Also compared the results with two CNN-based models that are already proposed.

• And shows that the proposed model (the Multilayer CNN model) works very well
with RMS Prop with Nesterov momentum Optimizer which is trained on Plant
Pathology 2021- FGCV8[14] Dataset.

Related work will be covered in Chapter 2 along with methods that have previously
been suggested for identifying PDs. Fundamentals will then be covered in Chapter 3.
Chapter 4 will provide a summary of the proposed work. Data evaluation will be explored
in Chapter 5. Experiments and solutions will be addressed in Chapter 6, followed by the
conclusion and future scope and references.

3

Chapter 2

RELATED WORK

The classification and discovery of plant illnesses are decisive for the agriculture industry,
and DL[12] is a crucial module of detecting PD[1]. In this research work, some of the most
significant research related to this field is discussed and various DL[12] methods which
have been proposed in recent years are examined.

No. Ref. Methodology Conclusion Dataset Used
1. [16] With the help of Google

Net[17] Inception structure
and Rainbow concatena-
tion, DCNN is proposed
in this paper. There are
five kinds of apple leaf dis-
eases[15] that fiercely af-
fect apple yield, includ-
ing Alternaria leaf spot,
Brown spot, Mosaic, Grey
spot, and Rust. This advo-
cated model is correlated
with transfer learning[18],
[19] approaches.

With Rainbow concate-
nation and the Incep-
tion Structure of Google
Net[17], the model gives
better accuracy than other
transfer learning[18], [19]
approaches.

Apple Leaf Dis-
ease Dataset
(ALDD)

2. [20] In this paper, the DL[12]
approach which is used is
CNN. The suggested CNN
model is practiced with
an public repository called
PlantVillage[21] having 39
distinct classes. Before
training, this dataset
undergoes six types of
data augmentation meth-
ods. This proposed
model is compared with
transfer learning[18], [19]
approaches.

Compared to popular
transfer learning[18], [19]
approaches, data aug-
mentation can improve
model performance. With
transfer learning[18], [19],
DL[12] models can be
built with less training
data, less time, and fewer
computational costs.

PlantVillage[21]

4

3. [22] CNN was developed to
identify tomato illnesses
exhibit on monitored
tomato plants, compared
CNN with F-RCNN, and
used Transfer Learning
for disease recognition on
tomato plant leaves.

Before training, data aug-
mentation is done to in-
crease the dataset size and
reduce overfitting. Trans-
fer Learning[18], [19] is
used as well. In compari-
son to F-RCNN, the pro-
posed model gives better
accuracy.

PlantVillage[21]

4. [23] Designed DL[12] based on
the NASNet[24] architec-
ture. With the help of
techniques such as differ-
ential learning rates, cycli-
cal learning rates, and
TTA, the model was fine-
tuned.

With techniques such as
differential learning rates,
cyclical learning rates, and
TTA, model accuracy is
improved without reduc-
ing training efficiency. Al-
though there are complex
inter- and intra-class varia-
tions in the figures of plant
leaves, the classification of
plant leaves as either dis-
eased or healthy appears
promising.

PlantVillage[21]

5. [25] Proposed the DenseNet201
model which contains 201
layers. This proposed
model is compared with
transfer learning[18], [19]
approaches.

As a result of this pro-
posed model, the vanish-
ing gradient problem has
been solved, feature propa-
gation has been improved,
feature reuse has been pro-
moted, and the number of
parameters has been re-
duced. Overfitting occurs
when networks have too
many connections, which
not only reduces their per-
formance and metric capa-
bility, but also makes them
more susceptible to overfit-
ting.

PlantVillage[21]

5

6. [26] The advocated model is a
CNN architecture that in-
corporates an SVM classi-
fier[4]. The Mean Shift Al-
gorithm is utilized for seg-
mentation, while artificial
computation is employed
for the isolation of shape
features. CNN is used
to extract color features.
This proposed model iden-
tifies 4 kinds of illness in
rice plants.

The model gives high ac-
curacy around 96.8% but
involves a lengthy training
process.

PlantVillage[21]

7. [27] The INC-VGG model,
which incorporates both
VGG19 and InceptionV3,
was introduced through
the use of transfer learn-
ing[18], [19]. The process
involved applying three
3X3 ConvBN layers subse-
quent to the base layers of
VGG19 models. This was
followed by the application
of two InceptionV3 layers
and, finally, a Softmax
layer.

This proposed model is
a combination of two
pretrained-model and it
gives better accuracy than
other pretrained models.

PlantVillage[21]

8. [28] Three convolutional layers,
three max-pooling layers,
and two fully linked layers
make up the CNN model
that has been advocated.
Nine different forms of ill-
nesses that typically dam-
age tomato plants may be
recognised using this ap-
proach.

This CNN model is Mem-
ory Efficient but it’s giving
low testing accuracy.

PlantVillage[21]

9. [29] The suggested CNN model
includes six convolution
layers and three pooling
layers, which are imple-
mented for analysing im-
ages of mango plant leaves.

This proposed model is
simple and computation-
ally efficient but gives low
accuracy.

PlantVillage[21]
and images from
fields.

6

10. [30] Developed a Deep Siamese
CNN. Photos of grape
leaves were collected and
sorted into four categories.

The proposed model han-
dles the challenge of a
small dataset. Although
it gives high accuracy, it
is not computationally ef-
ficient.

Photographs
from the field.

11. [31] A combined model of CNN
and CAE[32] is proposed.

The proposed model pro-
duces accurate results.
When a reduced dimen-
sional input image is
employed, the amount of
time required for train-
ing is reduced, and the
program is capable of
naturally detecting cru-
cial features without any
human mediation. The
orientations are not en-
coded and the input data
is not spatially invariant.

PlantVillage[21]

12. [33] An architecture based
on CNNs was proposed
for the apprehension
of nine distinct kinds
of diseases on tomato
plant leaves. By using
conventional architec-
ture such as AlexNet[34]
and GoogleNet[17], they
developed a classifier.

This proposed model an-
nihilates the need to take
out features from figures in
order to teach models but
involves a lengthy training
process.

PlantVillage[21]

13. [35] The researchers sug-
gested a DCNN based
on Bayesian learning[36]
that applies Bayesian
learning[36] principles
on a residual network.
This method combines
the strength of Bayesian
learning[36] with the
effectiveness of residual
networks for enhanced
performance in disease
identification tasks. This
model is trained to de-
tect tomato, potato, and
pepper bell disease.

The study’s outcomes in-
dicate that the suggested
method was successful
in accurately detecting
APDs[15]. This can prove
to be beneficial for farm-
ers as it enables early
identification and treat-
ment of PDs[1], leading
to improved crop quality
and yield. Overall, the
article demonstrates the
potential of DL[12] based
approaches for improving
PDD in apple crops.

PlantVillage[21]

7

14. [37] The article proposes a
method for detecting
APD[15] using leaf images
through a CNN. The
proposed approach for
detecting diseases in apple
leaves includes collecting
a repository of images of
both healthy and diseased
leaves, pre-processing the
images, and practicing
a CNN model using the
dataset. The article also
explains the use of transfer
learning[18], [19] and data
augmentation techniques
to enhance the model’s
achievement. The results
prove that the proposed
approach achieved high
accuracy in identifying
APD[15], which can be
beneficial for early de-
tection and treatment
of PDs[1], leading to
improved crop yield and
quality.

The study’s outcomes in-
dicate that the suggested
method was successful
in accurately detecting
APDs[15]. This can prove
to be beneficial for farm-
ers as it enables early
identification and treat-
ment of PDs[1], leading
to improved crop quality
and yield. Overall, the
article demonstrates the
potential of DL[12] based
approaches for improving
PDD in apple crops.

PlantVillage[21]

15. [38] The article introduces a
complete DL[12] model
for classifying corn leaf
diseases using a dataset of
images comprising both
healthy and afflicted corn
leaves. The model sug-
gests using a pre-trained
CNN architecture and
fine-tuning techniques to
accomplish substantial
accuracy in disease clas-
sification. The article
also talks about various
pre-processing methods
employed to improve the
model’s performance, such
as image normalization
and data augmentation.

The study demonstrates
that the proposed model
was effective in accurately
classifying different types
of diseases in corn leaves.
The successful application
of the model can provide
farmers with a tool to de-
tect PDs[1] at an early
stage and take appropri-
ate measures to prevent
the spread of diseases, thus
improving crop yield and
quality. Overall, the ar-
ticle demonstrates the po-
tential of DL[12] based
approaches for improving
PDD and classification in
corn crops.

PlantVillage[21]

8

16. [39] The article presents an
approach for detecting
PD in cardamom using
the EfficientNetV2 DL[12]
model. The method
consists of several steps,
including data collection
of healthy and diseased
cardamom plants, image
pre-processing, and train-
ing the EfficientNetV2
model on the collected
dataset. The article
also discusses the use of
transfer learning[18], [19]
and data augmentation
techniques in order to
optimize the efficiency of
the model.

The proposed approach,
which involves collecting
a dataset of images of
fit and afflicted cardamom
plants, pre-processing the
images, and training the
EfficientNetV2 model on
the dataset, was found
to achieve high accuracy
in detecting diseases in
cardamom plants. This
has the potential to as-
sist farmers in early iden-
tification and treatment of
PDs[1], ultimately leading
to improved crop yield and
quality. Overall, the ar-
ticle demonstrates the po-
tential of DL[12] based
approaches for improving
PDD in cardamom plants.

PlantVillage[21]

17. [40] The article discusses a
performance-optimized
DL[12] based approach
for detecting PDs[1] in
horticultural crops in New
Zealand. The approach
uses CNNs and transfer
learning[18], [19] in order
to achieve good accu-
racy in the detection of
a disease. The article
discusses the repository
utilized to train the CNN
models, which contains
images of both healthy
and afflicted plants. The
article also discusses
the pre-processing tech-
niques used to enhance
the performance of the
models.

The outcomes of the
study demonstrate that
the proposed method
accomplished remarkable
precision in identifying
PDs[1] in horticultural
crops, which can assist
farmers in detecting and
treating them promptly,
resulting in improved
crop quality and yield.
Overall, the article demon-
strates the potential of
DL[12] based approaches
for improving PDD in
horticultural crops.

PlantVillage[21]

9

18. [41] The article discusses the
use of DL[12] algorithms
for detecting PDs[1] using
images. It provides an
overview of DL[12] mod-
els, datasets, and pre-
processing techniques used
for training these mod-
els. The article highlights
the relevance of data aug-
mentation, transfer learn-
ing[18], [19], and hyper-
parameter tuning for at-
taining elevated accuracy
in PDD. It also discusses
the challenges and future
directions of image-based
PDD using DL[12].

Overall, the article pro-
vides a comprehensive
overview of the use of
DL[12] algorithms for
image-based PDD and
highlights the potential
for these algorithms to
revolutionize agricultural
production by enabling
early and accurate detec-
tion of PDs[1].

All the datasets
used in the task
of PDD

19. [42] Proposes a DL[12] based
method for the detection
of automatic blight infec-
tion in potato and tomato
plants. The proposed
approach uses a DCNN
model to categorize the
plant images as healthy or
afflicted on the basis of the
presence of blight disease.

The suggested model in
this research was prac-
ticed and assessed using a
dataset containing 11,000
plant figures, and was
compared to other ad-
vanced techniques. The
results showed that it out-
performed other methods
in terms of accuracy and
computational efficiency.
This presents a promising
DL[12]-based technique for
the automatic detection
of blight illness in tomato
and potato plants, which
could be practically useful
in agriculture for early
disease detection and
management.

PlantVillage[21]

10

20. [43] Proposes a DL[12] based
multi-task prediction sys-
tem for detecting both
PD[1] and plant species
in images. The sug-
gested system is comprised
of two key components:
the feature extraction net-
work and the prediction
network. The feature ex-
traction network employs
a pre-trained CNN model
to derive significant at-
tributes from the input im-
ages, while the prediction
network consists of two
branches. One branch is
for disease detection and
the other for species iden-
tification, both of which
use the extracted features
to make precise predic-
tions. The two branches
share the feature extrac-
tion network, which allows
for joint learning of both
tasks and improves predic-
tion accuracy.

The study involves the use
of a dataset comprising
10 different diseases and
9 plant species to train
and evaluate the proposed
system. Additionally, the
paper compares the pro-
posed system with other
advanced approaches and
demonstrates its superior
performance in terms of
accuracy. The findings
of this study present a
promising solution for mul-
titask detection of PD[1]
and species using DL[12],
with potential applications
in the field of agriculture
and plant science.

Images captured
from the farm.

21. [44] They studied the
AlexNet[34] and
GoogLeNet[17] DNN
architectures and achieved
a categorization profi-
ciency of 99.55% on the
PlantVillage[21] dataset
using 50k sample images
over 30 training epochs.

AlexNet[34] and
GoogLeNet[17] DNN
architectures give more ac-
curate results as compared
to simple CNN models.

PlantVillage[21]

22. [45] The authors developed a
three-layer CNN system
with an average accuracy
of 94.9% after 40 epochs of
training. This study used
800 leaf images of cucum-
ber.

This model is prone to
overfitting because it uses
only 800 leaf images. And
also, a simple model which
uses only three layers.

Images captured
from the farm.

Table 2.1: Summarized review of literature papers

The following are some of the key takeaways from the preceding table:

11

1. Data augmentation has shown to be a highly successful strategy for improving overall
performance and making the model more resilient to noise.

2. Oversampling strategies for adjusting for uneven numbers of entities increase per-
formance in classes with unequal numbers of entities.

3. For image classification tasks, DL[12] models are more accurate than machine learn-
ing models.

4. The classification accuracy improves as the number of photos per class used to train
the models grows.

5. After achieving a particular high degree of accuracy, expanding the model’s com-
plexity to better suit the job yields decreasing returns.

6. When the model is trained for a small number of epochs (less than 20), the model
frequently does not acquire enough features from the input to correctly categorize
the test pictures.

7. The main advantage of using DL[12] Technique instead of ML[3] Technique is that
DL[12] does Feature Extraction and Classification by itself but in ML[3] we do
Feature Extraction Manually.

12

Chapter 3

FUDAMENTALS

The technology of the InceptionNet model based on CNN architecture has been put to
use to detect diseases in apple plant leaves[15]. In this section, the preliminary of such
a technique is explained and the python libraries are listed which have been used in the
suggested implementation such as Keras, TensorFlow, and others.

3.1 Plant Disease

PD[1] are caused by various species such as bacteria, viruses, fungi, nematodes, and
other pathogens, as well as non-infectious factors such as environmental stress, nutrient
deficiencies, and physical damage. The symptoms of these diseases, which include wilting,
discoloration, malformations, and slowed development, can affect many sections of the
plant, including the leaves, stem, roots, flowers, and fruits. PD[1] have the potential to
spread quickly, seriously harm gardens and crops, and diminish yields as well as create
financial losses. They can be managed through a variety of techniques, including social
norms, drugs, biological regulation, and genetic resistance. PD[1] can be reduced in
severity by taking preventative measures such as good sanitation, crop rotation, and the
use of disease-free seeds.

3.1.1 Classification of Plant Disease

PD can be classified based on the type of pathogen causing the disease or based on the
symptoms they cause. Here are some common classifications of PDs[1]:

1. Based on the type of pathogen:

• Fungal diseases: Instigated by fungi, such as blight, rust and powdery mildew.

• Bacterial diseases: Induced by bacteria, such as soft rot, leaf spot and bacterial
canker.

• Viral diseases: Triggered by viruses, such as yellow vein mosaic, leaf curl and
other mosaic virus.

• Nematode diseases: Caused by nematodes, such as cyst nematode, lesion ne-
matode and root-knot nematode.

• Phytoplasma diseases: Caused by phytoplasma, such as aster yellows and stol
bur.

• Protozoan diseases: Caused by protozoans, such as downy mildew and plas
modiophoromycetes.

13

Figure 3.1: Classification of plant diseases

2. Based on the symptoms:

• Foliar diseases: affecting leaves, such as leaf spot, blight, and rust.

• Stem and canker diseases: affecting stems, such as canker, wilt, and dieback.

• Root and crown diseases: affecting roots and the base of the plant, such as
root rot and crown rot.

• Vascular diseases: affecting the plant’s transport system, such as wilts and
yellows.

• Fruit and flower diseases: affecting fruits and flowers, such as fruit rot and
blossom blight.

3.1.2 Apple Foliar Disease

Apple trees are susceptible to several foliar diseases, which can substantially abate the
quality and yield of the fruit. Here are some common foliar diseases of apple trees:

1. Apple scab: This particular foliar disease is prevalent and can cause significant
damage to apple trees. It is induced by the fungus known as Venturia inaequals,
which infects the leaves, fruit, and twigs of the tree. Apple scab causes brown or
olive-green lesions on the leaves, which can cause them to fall off prematurely. The
disease can also cause scabbing on the fruit, which reduces their market value.

2. Cedar apple rust: This disease is caused by the fungus Gymnosporangium juniperi
virginianae, which requires two hosts to achieve its life cycle: apple trees and juniper
trees. The disease causes yellow spots on the leaves, which develop into orange or
brown spore-producing structures. It can also cause deformed fruit and stunted
growth in severe cases.

14

3. Powdery mildew: This disease is instigated by several species of fungi, including
Po dosphaera leucotricha and Podosphaera tridactyla. It causes a white or grayish
powdery coating on the leaves and can stunt the growth of the tree if left untreated.

4. Fire blight: This bacterial disease is induced by Erwinia amylovora and can cause
significant damage to apple trees. It causes a wilted, burnt appearance in the leaves,
which can quickly spread to the branches and fruit of the tree. Infected branches
should be pruned and removed immediately to prevent the spread of the disease.

These are just a few examples of foliar diseases[15] that can affect apple trees. Preventative
measures such as proper pruning and sanitation practices, as well as the use of fungicides,
can help manage these diseases and protect the health and productivity of apple trees.

3.2 Convolutional Neural Network

A CNN is a kind of DNN[46] which is frequently incorporated in CV[47] tasks such as
image and video validation. It is a specialized NN[46] architecture that is designed to
manage data with a grid-like topology, such as figures, by performing a series of convo-
lutional and pooling operations. The main building blocks of a CNN are convolutional
level, pooling level, and fully connected level. Convolutional layers are obliged to isolate
features from input data by enforcing a series of filters that slide over the input data and
output a set of feature maps. Pooling layers are used to downsample the feature maps
and diminish the spatial dimensionality of the data. Fully connected layers are utilized to
classify the input data based on the extracted features. During training, the weights of the
filters in the convolutional layers are adjusted through backpropagation, which is a pro-
cess that involves computing the gradient of the loss function in reference to the network
parameters and updating them accordingly. This process is repeated over many iterations
until the network learns to recognize patterns in the input data and produce accurate pre-
dictions. CNNs have achieved advanced performance on a varied range of CV[47] tasks,
including object detection, image classification, and semantic segmentation. They are
also commonly used in other domains such as NLP[48] and speech recognition[49], where
the input data can be represented as a grid-like structure.

3.3 InceptionNet

InceptionNet, also known as GoogLeNet[17], is a CNN architecture developed by re-
searchers at Google in 2014. It was designed to upgrade the reliability of image seg-
mentation tasks while abating the number of attributes required in the system. The
InceptionNet architecture incorporates several modules called Inception modules, each
of which contains multiple parallel convolutional layers with different filter sizes. These
parallel layers are concatenated along the depth axis, allowing the network to capture
features at different spatial scales. In addition to the convolutional layers, InceptionNet
also includes pooling layers, batch normalization layers, and fully connected layers. One
of the key features of InceptionNet is the use of 1x1 convolutions, which are used to reduce
the number of channels in the input feature maps and reduce computational complexity.
In addition, InceptionNet also uses a technique called ”bottleneck” layers, which use 1x1
convolutions to reduce the dimensionality of the input before applying larger convolutional
filters. InceptionNet was able to achieve innovative competence on the ImageNet dataset,

15

Figure 3.2: Convolutional Neural Network[50]

a large-scale image recognition dataset, while using fewer parameters than previous ad-
vanced models. This has made it a popular choice for image classification tasks and has
inspired the development of other Inception-based architectures, such as Inception-v3[51]
and Inception-ResNet[52].

When the Inception module is dissected into its constituent parts, it is simple to
unpack and comprehend. Little-experienced DL[12] practitioners can get some benefit by
knowing the hypotheses of the researchers who created the Inception network, as well as
certain conventional techniques and terminology used in more recent CNN.

Figure 3.3: InceptionNet[53]

16

Chapter 4

PROPOSED WORK

4.1 Problem Statement

Farming, as we all know, is the art of growing crops, and it is essential to the survival
of humanity as a whole. As a result, its production rate ought to be high. A plant’s
sickness will have an impact on its productivity rate. Thus, it is important to identify
PDs[1] as soon as possible. The process of detecting PDs[1] entails creating a precise and
effective mechanism for doing so. PD[1], which may significantly affect crop output and
quality, can be brought on by a variety of agents, including bacteria, fungus, viruses, and
environmental circumstances. To stop the spread of a PD[1] and reduce crop damage,
early discovery and diagnosis are essential.

PD[1] diagnosis has traditionally depended on visual inspection by skilled profession-
als, which may be time-consuming, expensive, and prone to human mistake. The de-
velopment of automated PDD systems utilizing ML[3] and CV[47] methods is a result of
technological advancements. In order to categorize the photographs as healthy or ill, these
systems generally require taking pictures of plants, collecting pertinent information, and
then utilizing ML[3] techniques. The objective is to provide reliable and effective tools for
PD[1] identification that farmers and agricultural professionals can use to manage crop
health.

4.2 Solution

A multilayered CNN model is suggested in this section. The first paragraph of this section
describes the data gathering procedure. The second and third subsections address image
processing and data augmentation, while the fourth and fifth subsections explain the
proposed model and the optimizers that were utilized. The suggested solution’s overall
workflow is shown in Fig. 4.1.

4.2.1 Data Acquisition

Data acquisition is the process of collecting data from various sources and converting it
into a digital format that can be processed by a computer or other electronic device. Data
acquisition systems are used in various possible implementations, from scientific research
to industrial process control. The process of data acquisition typically involves three main
components:

17

Figure 4.1: Graph showing proposed methodology process

1. Sensors or instruments: These are devices that measure physical or electrical prop-
erties of the environment, such as temperature, pressure, or voltage.

2. Data acquisition hardware: This is the equipment that is used to connect the sensors
or instruments to a computer or other electronic device. Data acquisition hardware
typically includes ADCs that convert the analog signals from the sensors into digital
signals that can be processed by a computer.

3. Data acquisition software: This is the software that is used to control the data acqui-
sition hardware and to collect, store, and analyze the data that is being acquired.
Data acquisition software can include drivers for the data acquisition hardware,
user interfaces for configuring and controlling the hardware, and data processing
and analysis tools.

Data acquisition systems can be designed for a wide range of applications, from simple
data logging to complex process control and monitoring systems. Some common applica-
tions of data acquisition systems include:

1. Scientific research: Data acquisition systems are used in scientific research to collect
and analyze data from experiments and observations.

18

2. Industrial process control: Data acquisition systems are used in industrial process
control to monitor and control manufacturing processes, such as temperature control
in chemical reactions or pressure control in oil drilling.

3. Environmental monitoring: Data acquisition systems are used in environmental
monitoring to measure and analyze air and water quality, weather patterns, and
other environmental factors.

4. Medical monitoring: Data acquisition systems are used in medical monitoring to
measure and analyze patient data, such as heart rate and blood pressure.

Overall, data acquisition plays a crucial role in collecting and analyzing data from various
sources, allowing for better decision making, process control, and scientific research.

4.2.2 Image Processing

Image processing is a field that deals with the manipulation and analysis of digital images.
It involves the use of various algorithms and techniques to transform, enhance, or extract
information from images. Some of the common techniques used in image processing
include image filtering, edge detection, image segmentation, image restoration, and feature
extraction. These techniques can be used individually or in combination to achieve various
image processing goals. There are many applications of image processing, including:

1. Medical imaging: Image processing is used to analyze medical images, such as X
rays, MRI scans, and CT scans, to aid in the diagnosis and treatment of medical
conditions.

2. Security and surveillance: Image processing is used to enhance and analyze surveil-
lance camera images, as well as to identify and track objects or people of interest.

3. Robotics and automation: Image processing is used in robotics and automation
systems to provide vision capabilities, such as object detection and recognition.

4. Entertainment: Image processing is used in the creation of visual effects for movies
and video games.

In recent years, DL[12] techniques such as CNNs have also been used in image process-
ing, achieving advanced results in various image related tasks which are object detection,
segmentation, and image classification.

4.2.3 Data Augmentation

This is a method of expanding the magnitude of a dataset by employing different trans-
formations or modifications to the authentic data. The intention of data augmentation
is to expand the diversity of the dataset, which can boost the performance of machine
learning models by reducing overfitting and improving generalization. There are several
techniques that can be used for data augmentation, depending on the type of data and
the task at hand. Some common techniques include:

1. Image augmentation: This involves applying transformations such as rotation, flip
ping, scaling, cropping, and color adjustments to images.

19

2. Text augmentation: This involves applying techniques such as synonym replace-
ment, word deletion, and word swapping to text data.

3. Audio augmentation: This involves applying transformations such as time stretch-
ing, pitch shifting, and noise addition to audio data.

The data augmentation process typically involves the following steps:

1. Selection of the augmentation technique: The first step is to select the appropriate
augmentation technique based on the type of data and the task at hand.

2. Configuration of the augmentation parameters: Each augmentation technique has
several parameters that can be configured to control the degree of transformation.
For example, the degree of rotation or the amount of noise added to an image can
be controlled by adjusting the parameters.

3. Application of the augmentation: The augmentation technique is applied to the
original data to generate new augmented data points.

4. Incorporation of the augmented data into the dataset: The augmented data is then
added to the original dataset to increase its size and diversity.

Data augmentation can be performed manually, but it can also be automated using various
libraries like PyTorch, Keras and TensorFlow. These libraries provide built in functions
for common augmentation techniques, making it easy to incorporate data augmentation
into the machine learning pipeline.

4.2.4 Proposed Model

A CNN based model called Multilayer CNN is proposed which contains Convolution Layer,
Batch Normalization Layer, Max-Pooling Layer, Flatten Layer, Dense Layer, Dropout
Layer and Inception Block. Here Inception Block is inspired from InceptionNet. And in
this proposed architecture, ReLU[54], LeakyReLU[55] and Softmax[56] activation func-
tions are used. Multilayer CNN architecture is given in Table 4.1. In Multilayer CNN
model, there are 5 Convolution Layers, 1 Batch Normalization Layers, 2 Max-Pooling
Layers, 1 Flatten Layer, 4 Dense Layers (3 layers having ReLU[54] activation function
and 1 layer having Softmax[56] activation function), 6 Dropout Layers having dropout
rate 0.25, 0.3 and 0.5 and 2 Inception Module.

S.No. Name Activations Total Learn-
ables

1. Image Input 256x256x3 0
2. conv2d 254x254x12 3584
3. dropout 254x254x612 0
4. conv2d 1 252x252x64 73792
5. max pooling2d 126x126x64 0
6. dropout 1 126x126x64 0
7. inception module 126x126x16 0
8. conv2d 2 124x124x32 46112
9. dropout 2 124x124x32 0

20

10. conv2d 3 122x122x16 4624
11. max pooling2d 1 61x61x16 0
12. dropout 3 61x61x16 0
13. inception module 61x61x80 0
14. conv2d 4 59x59x8 5768
15. max pooliing2d 2 29x29x8 0
16. dropout 4 29x29x8 0
17. flatten 6728 0
18. dense 4096 27561984
19. dense 1 1024 4195328
20. dense 2 128 131200
21. dense 3

• 4 (Plant
Pathology
2020)

• 12 (Plant
Pathology
2021)

• 516

• 1548

Total params:

• 32,126,244
(Plant
Pathology
2020)

• 32,127,276
(Plant
Pathology
2021)

Table 4.1: Detailed Architecture of Multilayer CNN Model

Detailed explanation of each layer is given below:

1. Input: Defines the shape of the input tensor, which is (input image, input image,
3) for this model.

2. Conv2D: Performs 2D convolution on the input tensor with a specified number of
filters (64 in the first layer), kernel size of 3x3, and padding of ’same’, which means
the output feature maps will have the same spatial dimensions as the input.

3. BatchNormalization: Normalizes the outputs of the preceding layer to ensure the
mean activation is approximately near to 0 and the activation standard deviation is
close to 1.

4. Activation: Applies the ReLU[54] activation function to the output of the previous
layer.

21

5. MaxPooling2D: Downsamples the input tensor along the spatial dimensions by tak-
ing the maximum value within a specified pool size (default is 2x2) and strides
(default is pool size).

6. inception module: A custom layer that applies the inception module that neces-
sitates the result of the preceding layer as input and returns a feature map with
increased depth through concatenation of different convolutional filters.

7. Flatten: Used to convert the 3D output of a convolutional layer into a 1D vector
that can be sustained into a fully connected section. The Flatten layer essentially
”flattens” the result of the preceding layer into a long, one-dimensional array of
values.

8. GlobalAveragePooling2D: Takes the average of each attribute map in the previous
layer along the spatial dimensions to reduce the tensor to a similar length vector as
that of the number of filters.

9. Dense: A fully connected layer that necessitates the vector result of the preceding
layer and applies a specified number of neurons (9216, 4096, 1024, and 128 in this
model) with ReLU[54] activation.

10. Dropout: Randomly sets a fraction of input units to 0 at each update during training
to prevent overfitting.

11. BatchNormalization: Applies batch normalization to the result of the preceding
layer.

12. Dense: A fully connected layer that takes the output of the previous layer and
applies a softmax activation to classify the input into one of 4 possible classes(in
case of Plant Pathology 2020-FGCV7[13]) or 12 possible classes(in case of Plant
Pathology 2021-FGCV8[14]) [as defined by the number of neurons in the output
layer].

The Module that is defined in this work is Inception Module

4.2.5 Inception Module

Inception Module is inspired by InceptionNet. Inception Net is a DCNN architecture
that uses inception modules, which allow for efficient information processing and feature
extraction at multiple scales. Inception Module in the proposed work contains 3 Convo-
lution Layers of kernel size 1x1 with activation function ReLU[54] and also the padding
is same, 3 Convolution Layers of kernel size 3x3 with activation function ReLU[54] and
also the padding is same, 1 Convolution Layers of kernel size 5x5 with activation function
ReLU[54] and also the padding is same and 1 Max-Pooling Layer having pool size of 3,
strides of 1x1, the padding is same and the Concatenation Layer to merge some Layers..
The architecture of InceptionNet is given in Fig.4.1. In Fig. 4.1, The Inception Module
takes an input tensor of shape (h, w, c) and applies a series of operations to it to produce
an output tensor of shape (h, w, 4 * filter 3x3). The module consists of four branches of
convolutional layers: a 1x1 convolution branch, a 3x3 convolution branch, a max pooling
and 1x1 convolution branch, and a 1x1 convolution followed by 5x5 convolution and then
3x3 convolution branch. The output of each branch is concatenated along the channel

22

axis to generate the final result. The diagram shows the flow of data through the In-
ception module, starting with the input tensor and ending with the output tensor. The
operations performed at each layer are shown, along with the shape of the tensors at each
stage. The output tensors of each branch are combined by concatenating them along the
channel axis to form the final output tensor.

Figure 4.2: Architecture of Inception Module

In Fig. 4.1, The Inception Module takes an input tensor of shape (h, w, c) and applies
a series of operations to it to produce an output tensor of shape (h, w, 4 * filter 3x3).

4.2.6 Weight Initializers Used

In this proposed Multilayer CNN model, two kernel initializers are used: LeCun-uniform
initializer and another one is He-uniform initializer. The LeCun-uniform kernel initializer
and the He-uniform kernel initializer are two commonly used methods for initializing the
weights of convolutional kernels in neural networks. The LeCun-uniform kernel initializer
is named after Yann LeCun, and is designed to initialize the weights of kernels in a
way that helps to prevent gradients from vanishing or exploding during training. The
initializer uses a uniform distribution to randomly initialize the weights of each kernel,
with a range determined by the formula sqrt(3/fan in), where fan in is the number of
input channels to the layer. This initialization method is commonly used in convolutional
layers of NNs[46], and has been shown to work well in practice for a wide range of tasks.
The He-uniform kernel initializer, on the other hand, is named after Kaiming He, and is a
modified version of the LeCun-uniform initializer that is specifically designed for use with
ReLU[54] activation functions. The He-uniform initializer sets the range of the uniform

23

distribution used to initialize the weights to sqrt(6/fan in), where fan in is the number
of input channels to the layer. This initialization method is preferred when using ReLU
activation functions because it helps to prevent the ”dying ReLU” problem, where a large
number of neurons in the network can become permanently ”dead” (i.e. outputting zero)
due to a zero gradient during training. Both the LeCun-uniform and He-uniform kernel
initializers have been shown to work well in practice for a variety of DL[12] tasks, and are
widely used in advanced neural network architectures. The choice of which initializer to
use may depend on the specific requirements of the task at hand, and the characteristics of
the dataset being used for training. In this work, LeCun-uniform Kernel Initializer is used
in convolution layers during defining Inception Module and Dense Module and He-uniform
Kernel Initializer is used in convolution layers during defining the overall model.

4.2.7 Optimizers Used

In this proposed work, 4 optimizers are used to check which optimizer gives the better
results with the proposed Multilayer CNN model. Optimizers are: Adam, NAG, RMS
Prop and RMS Prop with Nesterov momentum. Optimizers in DL[12] are algorithms used
to update the weights and biases of a NN[46] during training in order to mitigate the loss
function. The choice of optimizer can have a considerable impression on the performance
of the model, and there are several different optimizers available to choose from. Here’s
a brief overview of each optimizer used in this work:

1. Adam: The Adam update rule combines the benefits of both momentum and
RMSprop, and adapts the learning rate for each parameter based on the estimated
first and second moments of the gradient. The update guideline for the Adam
optimizer can be conveyed mathematically as stated below:

• Calculate the gradient of the objective function in reference to the model com-
ponents:

gt = ∇θJ(θt) (4.1)

where gt is the gradient at time step t, θt is the model parameters at time step
t, and J(θt) is the objective function at time step t.

• Update the exponential moving average of the first moment of the gradient:

mt = β1mt−1 + (1− β1)gt (4.2)

where mt is the first moment estimate at time step t, β1 is a hyperparameter
that controls the decay rate of the moving average, and m0 is initialized to 0.

• Update the exponential moving average of the second moment of the gradient:

vt = β2vt−1 + (1− β2)g
2
t (4.3)

where vt is the second moment estimate at time step t, β2 is a hyperparameter
that controls the decay rate of the moving average, and v0 is initialized to 0.

• Compute the bias-corrected first and second moment estimates:

m̂t =
mt

1− βt
1

(4.4)

v̂t =
vt

1− βt
2

(4.5)

where t is the current time step.

24

• Update the model parameters:

θt+1 = θt −
αm̂t√
v̂t + ϵ

(4.6)

where α is the learning rate, ϵ is a small constant added for numerical stability,
and

√
denotes the square root operation.

2. Nesterov Accelerated Gradient: Nesterov Accelerated Gradient (NAG) is a vari
ant of the standard stochastic gradient descent (SGD) optimizer, which improves
convergence by using a ”lookahead” update of the gradient. This lookahead update
takes into account the current momentum in the optimization process and allows
the optimizer to more accurately estimate the direction of the gradient at the next
time step.
The update rule for Nesterov Accelerated Gradient is as follows:

vt = momentum ∗ vt−1 + learningrate ∗ gradient(wt−1 −momentum ∗ vt−1) (4.7)

where wt is the value of the weights at iteration t, vt is the momentum term at
iteration t, learning rate is the learning rate, and momentum is the momentum
coefficient.

3. RMS Prop: RMSProp (Root Mean Square Propagation) is an optimization algo-
rithm commonly used in DL[12] to update the weights of a neural network during
training. It was introduced by Geoff Hinton in 2012 as an extension to the SGD al-
gorithm. The key idea behind RMSProp is to adjust the learning rate of each weight
based on the root mean square of its gradients. Specifically, RMSProp maintains a
moving average of the squared gradients for each weight, and divides the learning
rate by the square root of this moving average. This has the effect of scaling down
the learning rate for weights that have large, fluctuating gradients, while allowing
the learning rate for weights that have small, consistent gradients to remain rela-
tively high. The RMSProp algorithm has been shown to improve the convergence
speed and generalization performance of NNs[46] compared to traditional SGD. It
is particularly effective for networks with sparse gradients, such as those commonly
encountered in NLP[48] and CV[47] tasks.

The update rule for RMSProp can be expressed using the following formula:

cache = decayrate ∗ cache+ (1− decayrate) ∗ gradients ∗ ∗2 (4.8)

w = w − learningrate ∗ gradients/(sqrt(cache) + epsilon) (4.9)

where:
gradients are the steepness of the cost function with respect to the weights. cache
is a moving average of the squared gradients, initialized to 0. decay rate is a hyper
parameter that controls the exponential decay of the moving average, typically set
to 0.9. learning rate[57] is the learning rate used for updating the weights. epsilon
is a small constant (e.g., 1e-8) added to the denominator for numerical stability. w
are the weights of the neural network. The first line updates the cache by taking

25

a weighted average of the previous cache value and the squared gradients. The
second line updates the weights by dividing the gradients by the square root of the
cache (which scales the learning rate for each weight), and subtracting this value
from the weights. This update rule allows the algorithm to adaptively adjust the
learning rate for each weight based on the magnitude of its gradients, leading to
more efficient and effective training of DNNs.

4. RMSprop with Nesterov Momentum: RMSprop with Nesterov Momentum
is a variation of the RMSprop optimization algorithm that incorporates Nesterov
momentum. Nesterov momentum is a technique that accelerates the convergence of
the optimization algorithm by taking into account the momentum of the gradients.
The update rule for RMSprop with Nesterov Momentum is similar to that of regular
RMSprop, but with an additional momentum term added to the gradients:

cache = decayrate ∗ cache+ (1− decayrate) ∗ gradients ∗ ∗2 (4.10)

momentum = momentumrate ∗momentum−
learning rate ∗ gradients/(sqrt(cache) + epsilon) (4.11)

w = w +momentumrate ∗momentum− learningrate∗
gradients/(sqrt(cache) + epsilon) (4.12)

where:
gradients are the steepness of the cost function with respect to the weights. cache is
a moving average of the squared gradients, initialized to 0. decay rate is a hyperpa-
rameter that controls the exponential decay of the moving average, typically set to
0.9. momentum rate is a hyperparameter that controls the momentum term, typi-
cally set to 0.9. learning rate[57] is the learning rate used for updating the weights.
epsilon is a small constant (e.g., 1e-8) added to the denominator for numerical sta-
bility. w are the weights of the NN[46]. momentum is the momentum vector, which
is initialized to 0. The first line updates the cache by taking a weighted average
of the previous cache value and the squared gradients. The second line updates
the momentum vector by taking a weighted average of the previous momentum and
the gradients. The third line updates the weights by subtracting the scaled gra-
dients (using the updated momentum vector) from the current weights. By using
Nesterov momentum, the algorithm is able to incorporate information about the
momentum of the gradients into the update rule, leading to faster convergence and
better generalization performance.

26

Chapter 5

DATA EVALUATION

In this model, two datasets, Plant Pathology 2020: FGCV7[13] and Plant Pathology 2021:
FGCV8[14] have been used for the recommended approach. To gather the experimental
data for the proposed method, Python 3.0 on an Intel i5 9th generation CPU with 12 GB
of memory and an NVIDIA K80 GPU with 12 GB of memory have been used. We are
now going to read the in-depth descriptions of the datasets that has been compared in
the section below.

5.1 Datasets Used

Two real-world datasets, Plant Pathology 2020: FGCV7[13] and Plant Pathology 2021:
FGCV8[14] have been used to identify a certain disease affecting apple plants. These
datasets are shown in Table 2 The format and organization of all the datasets have been
described in Table 5.1. This is a summary of the datasets that have been used.

Dataset Name Training Images Testing Images Total Images

Plant Pathology 2020:
FGCV7[7]

14,707 4,008 18,715

Plant Pathology
2021:FGCV8[8]

14,906 3,726 18,632

Table 5.1: Distribution of Dataset

1. Plant Pathology 2020: FGCV7
The Kaggle community got access to a collection of images of leaves with various
diseases like apple scab, cedar apple rust, and healthy leaves. This was the Plant
Pathology 2020 - FGVC7 dataset, which was part of the ’Plant Pathology Chal-
lenge’ in the Fine-Grained Visual Categorization (FGVC) workshop at CVPR 2020
(Computer Vision and Pattern Recognition). The goal of this challenge was to use
the images of the training dataset to train a model that can correctly classify an
image from the testing dataset into different disease categories or a healthy leaf.
The dataset’s distribution of these categories is as follows:

• Healthy: 5162 images (27.6%)

• Multiple Diseases: 1420 images (7.6%)

• Rust: 3166 images (16.9%)

27

Figure 5.1: Sample Images of Plant Pathology 2020-FGCV7 Dataset[13]

The sample images of Plant Pathology 2020-FGCV7[13] dataset are given in Fig.
5.1. Some leaves may have more than one disease or condition, so they may belong
to more than one label. The “Other” label is for images that do not fit into any
of the four main categories, or that have labels that are not clear or definite. The
dataset has more images of some classes than others, with the “Healthy” class
having the most images and the “Multiple Diseases” class having the fewest. This
can make it hard to train machine learning models that are good at all classes, and
researchers and developers may have to use methods such as data augmentation and
class balancing to make the model better.

2. Plant Pathology 2021: FGCV8
The Plant Pathology 2021: FGCV8[14] dataset is available on Kaggle and it contains
images of apple leaves that are affected by four different diseases, namely Apple rust,
Scab, Cedar apple rust, and Healthy. The dataset consists of a total of 18632 images
with a resolution of 2048x1365 pixels. The images were captured from different
orchards around the world, and the dataset was released in 2021 for the objective
of developing and testing machine learning models that can accurately detect and
classify the diseases present in apple plants. The dataset is well-organized and
labeled, making it suitable for supervised learning approaches. It is a valuable
resource for researchers and practitioners working in the field of plant pathology
and computer vision. The Plant Pathology 2021: FGCV8[14] dataset is distributed
as a set of image files, with each image representing a leaf from an apple plant that
is either healthy or affected by one of the following diseases: Apple rust, Scab, or
Cedar apple rust. The dataset is well-balanced, with approximately 25% of the
images representing each of the four categories, totaling 18632 images in total. This
balance in the dataset ensures that machine learning models trained on this data are
less likely to be biased towards any particular class, which is important for ensuring
accurate disease detection in apple plants.

The distribution of these categories in the dataset is as follows:

• Healthy: 4826 images (25.9%)

• Complex: 821 images (4.4%)

• Rust: 6226 images (33.4%)

• Powdery Mildew: 4759 images (25.5%)

The sample images of Plant Pathology 2021-FGCV8[14] dataset are given in Fig.
5.2.

Some leaves may have more than one disease or condition, so they may belong to
more than one label. The dataset has more images of some classes than others,

28

Figure 5.2: Sample Images of Plant Pathology 2021-FGCV8 Dataset[14]

with the “Complex” class having the fewest images. This can make it hard to train
machine learning models that are good at all classes, and researchers and developers
may have to use methods such as data augmentation and class balancing to make
the model better.

29

Chapter 6

EXPERIMENTS AND RESULTS

In this chapter, the effectiveness and results of the suggested model has been discussed.
The suggested model is evaluated using data from two datasets. The Data Evaluation
section contains information on these datasets in depth. In this study, the suggested model
was trained using four optimizers, and the outcomes were compared. Adam, NAG, RMS
Prop and RMS Prop with Nesterov momentum were the four optimizers employed. The
Chapter: Proposed Work provides an explanation of these optimizers. Each optimizer
has a learning rate[57] setting of 0.01 for learning. further contrasted the outcomes with
two previously suggested CNN based algorithms.

6.1 Performance Metrics

Accuracy, Precision, and Recall are the three performance measures utilized in this case
to compare the outcomes. These metrics are employed to assess the effectiveness of
classification algorithms, particularly CNN-based models for the identification of PDs[1].

1. Accuracy: The degree to which a measurement, computation, or forecast is ac-
curate or precise is referred to as accuracy. The number of accurate forecasts or
measurements divided by the overall count of accurate predictions or measurements
is often stated as a percentage or ratio. In other words, accuracy assesses a model’s
or system’s performance in terms of the accuracy with which it can recognise or
categorize data. Accuracy represents the proportion of accurate predictions made
by an algorithm among all the predictions it has made. It can be calculated by
dividing the number of true positives (TP) and true negatives (TN) by the total
number of instances (TP + TN + FP + FN), where FP is false positives and FN
is false negatives1. Accuracy measures how well a model can classify all instances
correctly, regardless of their class. Let’s say a company is trying to predict which
job candidates will be successful in their role. They use a test to evaluate candi-
dates’ skills, and they use the results of the test to make their hiring decisions. The
company hires 100 candidates based on their test results. After six months on the
job, the company evaluates how well each employee is performing and categorizes
them as either successful or not successful based on predetermined criteria. If the
company correctly identified 80 out of the 100 successful candidates using the test,
and correctly identified 10 out of the 100 unsuccessful candidates, then the accuracy
of their test is:
Accuracy = (number of correct predictions) / (total number of predictions)
Accuracy = (80 + 90) / 200

30

Accuracy = 0.85 or 85%

This means that the test had an accuracy of 85%, meaning that it correctly iden-
tified 85% of the candidates who would be successful on the job, and incorrectly
identified 15% of the candidates who would not be successful on the job.

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(6.1)

2. Precision: Precision is the fraction of relevant instances among all retrieved in
stances2. It can be calculated by dividing the number of true positives (TP) by the
number of predicted positives (TP + FP). Precision measures how well a model can
avoid false positives, or how accurate its positive predictions are. Let’s say a doctor
wants to determine whether a patient has a certain disease, and uses a diagnostic
test to make the determination. The test results can be positive or negative.The
doctor performs the test on 100 patients, and the test results show 40 positive results
and 60 negative results. The doctor knows from previous experience that the true
prevalence of the disease in the patient population is 20%.The doctor is interested
in the precision of the test, which refers to the proportion of positive test results
that are truly positive (i.e., the proportion of true positives among all positive test
results).If the doctor examines the 40 patients who tested positive and finds that 30
of them truly have the disease, while 10 do not, then the precision of the test is:
Precision = 30 / (30 + 10)
Precision = 0.75 or 75%

This means that the precision of the test is 75%, meaning that 75% of the patients
who tested positive actually have the disease, while 25% of the positive results were
false positives.

Precision =
Number of Correctly Predicted Positive Instances

Number of Total Positive Positive Predictions you made
(6.2)

3. Recall: Recall is the fraction of relevant instances that were retrieved/2. It can be
calculated by dividing the number of true positives (TP) by the number of actual
positives (TP + FN)2. Recall measures how well a model can capture positive cases,
or how sensitive it is to positive instances. Let’s say a company wants to predict
which customers are likely to churn (i.e., stop using their services). They use a
machine learning model to make these predictions, which outputs a score for each
customer indicating their likelihood of churning. The company has a total of 1,000
customers, of which 200 have already churned. The machine learning model predicts
that 300 customers are likely to churn in the future. The company is interested in
the recall of the model, which refers to the proportion of actual churners that are
correctly identified by the model (i.e., the proportion of true positives among all
actual positives). If the model correctly predicts 150 out of the 200 customers who
have already churned, then the recall of the model is:
Recall = 150 / (150 + 50)
Recall = 0.75 or 75

This means that the recall of the model is 75%, meaning that the model correctly
identified 75% of the customers who actually churned, while 25% of the actual

31

churners were not identified by the model.

Recall =
Number of Correctly Predicted Positive Instances

Number of Total Positive Positive Instances in a Dataset
(6.3)

In the context of PD[1] precision, accuracy, and recall can be utilized to determine the
capability of machine learning models that are used to detect and diagnose PDs[1] based
on visual symptoms. Accuracy refers to how often the model correctly identifies whether
a plant is diseased or not, based on its symptoms. This can be calculated by comparing
the model’s predictions with the true values(i.e., the actual disease status of the plant),
which can be determined by laboratory testing or visual inspection by a human expert.
High accuracy indicates that the model is able to correctly identify diseased plants, as well
as healthy plants, with a high degree of accuracy. Precision refers to how often the model
correctly identifies diseased plants, out of all the plants that it predicted to be diseased.
This can be important in the context of PD[1] management, as false positives (i.e., plants
that are incorrectly identified as diseased) can lead to unnecessary treatments and costs.
High precision indicates that the model is able to accurately identify diseased plants,
with few false positives. Recall refers to how often the model correctly identifies diseased
plants, out of all the plants that are actually diseased. This can be important in the
context of plant disease management, as false negatives (i.e., plants that are incorrectly
identified as healthy) can lead to untreated plants and continued spread of the disease.
High recall indicates that the model is able to accurately identify most of the diseased
plants, with few false negatives. Overall, high accuracy, precision, and recall are desirable
in a plant disease diagnosis model, as they indicate that the model is able to correctly
identify diseased plants, with few false positives or false negatives. This can help to ensure
effective disease management and reduce the spread of PDs[1].

6.2 Analysis and Visualization of the Experimental

Result

According to the details provided, the suggested technique has been tested on two different
datasets to evaluate its performance using Accuracy, Precision, and Recall as evaluation
metrics. Additionally, the performance of the proposed model has been compared using
four optimizers, namely Adam, Nesterov Accelerated Gradient, RMS Prop, and RMSprop
with Nesterov Momentum. The purpose of using these evaluation metrics is to ascertain
the reliability of the suggested model in anticipating the correct output for a given input.
Accuracy refers to the possibility of correct estimation made by the model, while precision
and recall are utilized to assess the productivity of the model in identifying the true
positive and false positive cases. By comparing the proficiency of the proposed model using
different optimizers, it can be determined which optimizer is more effective in improving
the performance of the model. Adam is a popular optimizer that is known to perform
well on a wide range of DL[12] tasks. NAG is another optimizer that is effective in
accelerating the convergence of DNNs[46], particularly in cases where the optimization
landscape is highly non-convex or contains a large number of local minima. RMSProp
is designed to overcome the limitations of the Adagrad optimizer, which can lead to a
decaying learning rate over time and slow convergence. In RMSProp, the gradient is
scaled by a running average of the squared gradient, which helps to adjust the learning
rate based on the magnitude of the gradient. RMSprop with Nesterov Momentum is a

32

variant of the RMSprop optimizer that incorporates the NAG algorithm for momentum
updates. This optimizer combines the benefits of both RMSprop and NAG to accelerate
convergence and improve the robustness of the optimization process.

Overall, the choice of optimizer depends on the precise characteristics of the data
repository and the model architecture. Therefore, it is significant to analyze with separate
optimizers to find the one that works best for a given task.

6.2.1 Performance on Plant Pathology 2020- FCVG7 dataset

1. Adam Optimizer: The model is practiced on the dataset for 50 epochs using the
Adam optimizer. This model obtained the maximum accuracy of 0.8656, precision
of 0.8991, recall of 0.8329, and the lowest loss of 0.3443. These performance metrics
are for the course. This can be seen in the Fig. 6.1.

Figure 6.1: Performance Evaluation of the Proposed model using Adam Optimizer on
Plant Pathology 2020-FCVG7 Dataset[13]

2. Nesterov Accelerated Gradient Optimizer:
The model is practiced on the dataset for 50 epochs using the Nesterov Accelerated
Gradient Optimizer. This model achieved the highest accuracy of 0.8537, precision
of 0.8871, recall of 0.8169, and the lowest loss of 0.4186. These performance metrics
are for the course. This can be seen in the Fig. 6.2.

33

Figure 6.2: Performance Evaluation of the Proposed model using Nesterov Accelerated
Gradient Optimizer on Plant Pathology 2020-FCVG7 Dataset[13]

3. RMS Prop Optimizer: The model is practiced on the dataset for 50 epochs
using the RMS Prop Optimizer. This model achieved the highest accuracy of 0.6261,
precision of 0.7275, recall of 0.4591, and the lowest loss of 0.9249. These performance
metrics are for the course. This can be seen in the Fig. 6.3.

Figure 6.3: Performance Evaluation of the Proposed model using RMS Prop Optimizer
on Plant Pathology 2020-FCVG7 Dataset[13]

4. RMSprop with Nesterov Momentum Optimizer: The model is practiced on
the dataset for 50 epochs using the RMSprop with Nesterov Momentum Optimizer.
This model achieved the highest accuracy of 0.9082, precision of 0.9234, recall of
0.8885, and the lowest loss of 0.2758. These performance metrics are for the course.
This can be seen in the Fig. 6.4.

34

Figure 6.4: Performance Evaluation of the Proposed model using RMSprop with
Nesterov Momentum Optimizer on Plant Pathology 2020-FCVG7 Dataset[13]

6.2.2 Performance on Plant Pathology 2021- FCVG8 dataset

1. Adam Optimizer: The model is practiced on the dataset for 50 epochs using
the Adam optimizer. This model accomplished the maximum accuracy of 0.8996,
precision of 0.9023, recall of 0.8729, and the lowest loss of 0.0803. These performance
metrics are for the course. This can be seen in the Fig. 6.5.

Figure 6.5: Performance Evaluation of the Proposed model using Adam Optimizer on
Plant Pathology 2021-FCVG8 Dataset[14]

2. Nesterov Accelerated Gradient Optimizer:

35

The model is practiced on the dataset for 50 epochs using the Nesterov Accelerated
Gradient Optimizer. This model achieved the highest accuracy of 0.8656, precision
of 0.9134, recall of 0.8729, and the lowest loss of 0.3502. These performance metrics
are for the course. This can be seen in the Fig. 6.6.

Figure 6.6: Performance Evaluation of the Proposed model using Nesterov Accelerated
Gradient Optimizer on Plant Pathology 2021-FCVG8 Dataset[14]

3. RMS Prop Optimizer:
The model is practiced on the dataset for 50 epochs using the RMS Prop Optimizer.
This model achieved the highest accuracy of 0.6356, precision of 0.7123, recall of
0.5029, and the lowest loss of 0.645. These performance metrics are for the course.
This can be seen in the Fig. 6.7.

Figure 6.7: Performance Evaluation of the Proposed model using RMS Prop Optimizer
on Plant Pathology 2021-FCVG8 Dataset[14]

36

4. RMSprop with Nesterov Momentum Optimizer:
The model is practiced on the dataset for 50 epochs using the RMSprop with Nes-
terov Momentum Optimizer. This model achieved the highest accuracy of 0.9256,
precision of 0.9523, recall of 0.9029, and the lowest loss of 0.2543. These performance
metrics are for the course. This can be seen in the Fig. 6.8.

Figure 6.8: Performance Evaluation of the Proposed model using RMSprop with
Nesterov Momentum Optimizer on Plant Pathology 2021-FCVG8 Dataset[14]

6.2.3 Summary of the Results

Summary for Plant Pathology 2020- FCVG7 dataset

Optimizers Accuracy Precision Recall

Adam (in %) 86.56% 89.91% 83.29%
Nesterov Accelerated Gradient (in %) 85.37% 88.71% 81.69%

RMS Prop (in %) 62.61% 72.75% 45.91%
RMSprop with Nesterov Momentum (in %) 90.82% 92.34% 88.85%

Table 6.1: Performance Evaluation of Plant Pathology 2020: FGCV7 dataset[13]

In Table 6.1, It is shown that RMSprop with Nesterov Momentum optimizer gives
better results with a loss of 0.2758 and RMSprop optimizer gives worst results with a loss
of 0.9249.

Summary for Plant Pathology 2021- FCVG8 dataset

In Table 6.2, It is shown that RMSprop with Nesterov Momentum optimizer gives better
results with a loss of 0.2543 and RMSprop optimizer gives worst results with a loss of
0.645.
Based on the information presented in Tables 6.1 and 6.2, it can be deduced that the
proposed model performs better on the Plant Pathology 2021-FGCV8[14] dataset com-
pared to the Plant Pathology 2020-FGCV7[13] dataset. Furthermore, the proposed model

37

Optimizers Accuracy Precision Recall

Adam (in %) 89.96% 90.23% 87.29%
Nesterov Accelerated Gradient (in %) 86.56% 91.34% 81.76%

RMS Prop (in %) 63.56% 71.23% 50.29%
RMSprop with Nesterov Momentum (in %) 92.56% 95.23% 90.29%

Table 6.2: Performance Evaluation of Plant Pathology 2021: FGCV8 dataset[14]

was trained using RMSprop in conjunction with the Nesterov Momentum Optimizer on
both datasets. To delve deeper into the findings, a comparison was made between the pro-
posed model and two pre-existing CNN-based models, namely Model1[58] and Model2[16].
Both of these models were trained using RMSprop and the Nesterov Momentum Opti-
mizer, specifically on the Plant Pathology 2021-FGCV8 dataset[14]. Results are given in
Fig. 6.9.

Figure 6.9: Comparison of Performance using RMSProp with Nesterov Momentum
Optimizer

As depicted in Figure 6.9, three models were evaluated: Model1[58] and Model2[16],
which are CNN-based models, and Model3, which is a multi-layer CNN model trained on
the Plant Pathology 2020-FGCV7[13] dataset. Additionally, Model4 is a proposed multi-
layer CNN model trained on the Plant Pathology 2021-FGCV8[14] dataset. All models
were trained using an RMSprop and the Nesterov Momentum optimizer. Based on the
conclusions, it can be concluded that Model4 surpasses the other models, obtaining a
precision of 95.23%, a recall of 90.29% and accuracy of 92.56%.

38

Chapter 7

CONCLUSION & FUTURE SCOPE

CNNs have already shown great promise in the field of PDD and diagnosis. However,
there are several potential areas for future development and application of CNNs in this
field. Some of these include:

1. More accurate and robust models: CNNs have shown high accuracy in detecting PDs
from visual symptoms, however there is still potential for enhancement regarding
accuracy, robustness, and generalization to new diseases and plant species.

2. Integration with other data sources: While visual symptoms are a good indicator
of PD, they can be influenced by other factors such as environmental conditions,
nutrient deficiencies, and pest damage. By integrating visual data with other sources
of information such as genetic data, environmental data, and agronomic data, more
accurate and robust models can be developed.

3. Real-time disease detection: With the use of sensors and cameras in the field, real-
time PDD is becoming more feasible. CNN models can be trained to work with
real-time data and provide instant feedback to farmers and agronomists, allowing
for timely interventions and disease management.

4. Mobile and web-based applications: Mobile and web-based applications that inte-
grate CNN models for plant disease detection can provide easy access to farmers
and growers, even in remote areas with limited resources. Such applications can
provide real-time information on disease prevalence, management strategies, and
even predict disease outbreaks.

Overall, CNNs hold great potential for the future of PDD and management. With con-
tinued development and research, these models can perform a key function in enhancing
crop productivity and reducing the spread of PDs.

In this study, test has been conducted to see how well the Multilayer CNN model can
recognize PDs. The model performed very well in distinguishing between healthy and sick
plants, and also in naming the disease that each plant had. The model learned from a big
collection of plant pictures, which helped it to identify the features and patterns that are
related to different PDs. Different measures such as accuracy, precision and recall have
been used to assess how well the model did, and the results showed that the model was
very accurate in all measures. The Multilayer CNN model’s capacity to learn properties
straight from the picture data reduces the need for manually created features and is one of
its primary advantages. Also, the analysis of complicated data sets with high-dimensional

39

inputs, such as plant photos, is made possible by the application of DL techniques, such
as CNNs. The technology may also be used to detect plant illnesses in real time, enabling
farmers to take preventative action before the disease spreads.

Although Multilayer CNN models have shown promising results for PDD, there are
some limitations to their use. Some of these limitations include:

1. Computational requirements: Computational requirements: Multilayer CNN
models are typically deeper and more complex than traditional CNNs, which can
lead to higher computational requirements for training and inference. This can make
it more difficult to deploy Multilayer CNN models in resource-limited environments
or on low-powered devices.

2. Overfitting: Multilayer CNN models may be susceptible to overfitting, specially
when the dataset is minuscule or imbalanced. Overfitting can occur when the model
learns to memorize the training data instead of generalizing to new data, leading to
poor performance on unseen data.

3. Dataset bias: The performance of any machine learning model, including Multi-
layer CNN models, is highly dependent on the quality and diversity of the training
dataset. If the dataset is biased or incomplete, the model may not generalize well
to new data, leading to poor performance in real-world scenarios.

4. Limited interpretability: DL models, including Multilayer CNN models, can be
difficult to interpret and understand, especially when it comes to how the model
makes its decisions. This can make it difficult to identify and correct errors or
biases in the model.

5. Limited scope: Multilayer CNN models are designed specifically for image-based
classification tasks, such as PDD. While they may be highly effective for this specific
task, they may not be applicable to other types of data or problems.

In summary, although Multilayer CNN models have shown promising results for PDD,
there is still a significant potential for future research to further enhance their accuracy
and efficiency. The agricultural industry can benefit greatly from the development of
these models, as they can reduce the risk of crop losses and enhance food security. Future
research can explore various avenues such as improving the quality of the dataset, incorpo-
rating transfer learning, developing mobile applications, integrating multiple modalities,
and enhancing the explainability and interpretability of the models. These efforts can pave
the way for more effective and sustainable disease detection solutions for the agricultural
sector.

40

Bibliography

[1] “plant disease - Symptoms and signs — Britannica.”
https://www.britannica.com/science/plant-disease/Symptoms-and-signs (accessed
May 25, 2022).

[2] J. Mccarthy, “WHAT IS ARTIFICIAL INTELLIGENCE?,” 2007, Accessed: Mar.
31, 2023. [Online]. Available: http://www-formal.stanford.edu/jmc/

[3] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives,
and prospects,” Science (1979), vol. 349, no. 6245, pp. 255–260, Jul. 2015, doi:
10.1126/SCIENCE.AAA8415.

[4] D. A. Pisner and D. M. Schnyer, Support vector machine. Elsevier Inc., 2019. doi:
10.1016/B978-0-12-815739-8.00006-7.

[5] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means Clustering Algo-
rithm,” Appl Stat, vol. 28, no. 1, p. 100, 1979, doi: 10.2307/2346830.

[6] “[PDF] The Plant Pathology 2020 challenge dataset to
classify foliar disease of apples — Semantic Scholar.”
https://www.semanticscholar.org/paper/The-Plant-Pathology-2020-challenge-
dataset-to-of-Thapa-Snavely/17005a1bd4189707f17d8bef9a0909c9399f7171 (accessed
Mar. 18, 2023).

[7] “Fire Blight Treatment: How To Recognize Fire Blight Symptoms.”
https://www.gardeningknowhow.com/plant-problems/disease/fire-blight-remedies-
and-symptoms.htm (accessed May 17, 2023).

[8] “Cedar Apple Rust — NC State Extension Publications.”
https://content.ces.ncsu.edu/cedar-apple-rusts (accessed May 17, 2023).

[9] “Cancer-fighting drugs also help plants fight disease - Science & research news
— Frontiers.” https://blog.frontiersin.org/2018/10/17/plant-science-cancer-drugs-
pathogens-disease/?amp=1 (accessed May 17, 2023).

[10] L. Medsker, D. L. Jain, and B. Raton London New YorkWashington, “RECURRENT
NEURAL NETWORKS Edited by Design and Applications,” 2001.

[11] G. E. Hinton, “Deep belief networks,” Scholarpedia, vol. 4, no. 5, p. 5947, 2009, doi:
10.4249/SCHOLARPEDIA.5947.

[12] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553.
Nature Publishing Group, pp. 436–444, May 27, 2015. doi: 10.1038/nature14539.

41

[13] “Plant Pathology 2020 - FGVC7 — Kaggle.” https://www.kaggle.com/c/plant-
pathology-2020-fgvc7/overview (accessed Mar. 31, 2023).

[14] “Plant Pathology 2021 - FGVC8 — Kaggle.” https://www.kaggle.com/c/plant-
pathology-2021-fgvc8 (accessed Dec. 14, 2022).

[15] “Apple: Diseases and Symptoms — Vikaspedia.”
https://vikaspedia.in/agriculture/crop-production/integrated-pest-
managment/ipm-for-fruit-crops/ipm-strategies-for-apple/apple-diseases-and-
symptoms (accessed May 11, 2023).

[16] P. Jiang, Y. Chen, B. Liu, D. He, and C. Liang, “Real-Time Detection of Apple
Leaf Diseases Using Deep Learning Approach Based on Improved Convolutional
Neural Networks,” IEEE Access, vol. 7, pp. 59069–59080, 2019, doi: 10.1109/AC-
CESS.2019.2914929.

[17] “Deep Learning: GoogLeNet Explained — by Richmond Alake — Towards
Data Science.” https://towardsdatascience.com/deep-learning-googlenet-explained-
de8861c82765 (accessed May 26, 2022).

[18] S. Panigrahi, A. Nanda, and T. Swarnkar, “A Survey on Transfer Learning,” Smart
Innovation, Systems and Technologies, vol. 194, no. 10, pp. 781–789, 2021, doi:
10.1007/978-981-15-5971-6 83.

[19] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions
on Knowledge and Data Engineering, vol. 22, no. 10. pp. 1345–1359, 2010. doi:
10.1109/TKDE.2009.191.

[20] G. Geetharamani and A. P. J., “Identification of plant leaf diseases using a nine-layer
deep convolutional neural network,” Computers and Electrical Engineering, vol. 76,
pp. 323–338, Jun. 2019, doi: 10.1016/j.compeleceng.2019.04.011.

[21] “GitHub - spMohanty/PlantVillage-Dataset: Dataset of diseased plant leaf images
and corresponding labels.” https://github.com/spMohanty/PlantVillage-Dataset
(accessed May 25, 2022).

[22] R. G. De Luna, E. P. Dadios, and A. A. Bandala, “Automated Image Capturing
System for Deep Learning-based Tomato Plant Leaf Disease Detection and Recog-
nition,” IEEE Region 10 Annual International Conference, Proceedings/TENCON,
vol. 2018-October, pp. 1414–1419, Feb. 2019, doi: 10.1109/TENCON.2018.8650088.

[23] A. Adedoja, P. A. Owolawi, and T. Mapayi, “Deep learning based on NASNet for
plant disease recognition using leave images,” icABCD 2019 - 2nd International Con-
ference on Advances in Big Data, Computing and Data Communication Systems,
Aug. 2019, doi: 10.1109/ICABCD.2019.8851029.

[24] “Review: NASNet — Neural Architecture Search Network (Image Classification)
— by Sik-Ho Tsang — Medium.” https://sh-tsang.medium.com/review-nasnet-
neural-architecture-search-network-image-classification-23139ea0425d (accessed Apr.
06, 2023).

42

[25] V. Tiwari, R. C. Joshi, and M. K. Dutta, “Dense convolutional neural networks based
multiclass plant disease detection and classification using leaf images,” Ecol Inform,
vol. 63, no. March, p. 101289, 2021, doi: 10.1016/j.ecoinf.2021.101289.

[26] F. Jiang, Y. Lu, Y. Chen, D. Cai, and G. Li, “Image recognition of four rice leaf dis-
eases based on deep learning and support vector machine,” Comput Electron Agric,
vol. 179, Dec. 2020, doi: 10.1016/J.COMPAG.2020.105824.

[27] J. Chen, J. Chen, D. Zhang, Y. Sun, and Y. A. Nanehkaran, “Using deep transfer
learning for image-based plant disease identification,” Comput Electron Agric, vol.
173, p. 105393, Jun. 2020, doi: 10.1016/J.COMPAG.2020.105393.

[28] M. Agarwal, A. Singh, S. Arjaria, A. Sinha, and S. Gupta, “ToLeD: Tomato Leaf
Disease Detection using Convolution Neural Network,” Procedia Comput Sci, vol.
167, no. 2019, pp. 293–301, 2020, doi: 10.1016/j.procs.2020.03.225.

[29] U. P. Singh, S. S. Chouhan, S. Jain, and S. Jain, “Multilayer Convolution Neural
Network for the Classification of Mango Leaves Infected by Anthracnose Disease,”
IEEE Access, vol. 7, pp. 43721–43729, 2019, doi: 10.1109/ACCESS.2019.2907383.

[30] A. Smetanin, A. Uzhinskiy, G. Ososkov, P. Goncharov, and A. Nechaevskiy, “Deep
learning methods for the plant disease detection platform,” AIP Conf Proc, vol. 2377,
no. October, 2021, doi: 10.1063/5.0068797.

[31] P. Bedi and P. Gole, “Plant disease detection using hybrid model based on con-
volutional autoencoder and convolutional neural network,” Artificial Intelligence in
Agriculture, vol. 5, pp. 90–101, 2021, doi: 10.1016/j.aiia.2021.05.002.

[32] Y. Zhang, “A Better Autoencoder for Image: Convolutional Autoencoder”.

[33] M. Brahimi, M. Arsenovic, S. Laraba, S. Sladojevic, K. Boukhalfa, and A. Moussaoui,
“Deep Learning for Plant Diseases: Detection and Saliency Map Visualisation,” no.
June, pp. 93–117, 2018, doi: 10.1007/978-3-319-90403-0 6.

[34] M. Z. Alom et al., “The History Began from AlexNet: A Compre-
hensive Survey on Deep Learning Approaches,” 2018, [Online]. Available:
http://arxiv.org/abs/1803.01164

[35] G. Sachdeva, P. Singh, and P. Kaur, “Plant leaf disease classification using deep
Convolutional neural network with Bayesian learning,” Mater Today Proc, vol. 45,
pp. 5584–5590, 2021, doi: 10.1016/j.matpr.2021.02.312.

[36] Read, “Bayesian Learning”.

[37] V. K. Vishnoi, K. Kumar, B. Kumar, S. Mohan, and A. A. Khan, “Detection of
Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network,”
IEEE Access, vol. 11, pp. 6594–6609, 2023, doi: 10.1109/ACCESS.2022.3232917.

[38] H. Amin, A. Darwish, A. E. Hassanien, and M. Soliman, “End-to-End Deep Learning
Model for Corn Leaf Disease Classification,” IEEE Access, vol. 10, pp. 31103–31115,
2022, doi: 10.1109/ACCESS.2022.3159678.

43

[39] C. K. Sunil, C. D. Jaidhar, and N. Patil, “Cardamom Plant Disease Detection
Approach Using EfficientNetV2,” IEEE Access, vol. 10, pp. 789–804, 2022, doi:
10.1109/ACCESS.2021.3138920.

[40] M. H. Saleem, J. Potgieter, and K. M. Arif, “A Performance-Optimized Deep
Learning-Based Plant Disease Detection Approach for Horticultural Crops of
New Zealand,” IEEE Access, vol. 10, pp. 89798–89822, 2022, doi: 10.1109/AC-
CESS.2022.3201104.

[41] A. V. Panchal, S. C. Patel, K. Bagyalakshmi, P. Kumar, I. R. Khan, and M. Soni,
“Image-based Plant Diseases Detection using Deep Learning,” Mater Today Proc,
Aug. 2021, doi: 10.1016/J.MATPR.2021.07.281.

[42] A. O. Anim-Ayeko, C. Schillaci, and A. Lipani, “Automatic blight disease detection
in potato (Solanum tuberosum L.) and tomato (Solanum lycopersicum, L. 1753)
plants using deep learning,” Smart Agricultural Technology, vol. 4, p. 100178, Aug.
2023, doi: 10.1016/J.ATECH.2023.100178.

[43] A. S. Keceli, A. Kaya, C. Catal, and B. Tekinerdogan, “Deep learning-based multi-
task prediction system for plant disease and species detection,” Ecol Inform, vol. 69,
p. 101679, Jul. 2022, doi: 10.1016/J.ECOINF.2022.101679.

[44] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based
plant disease detection,” Front Plant Sci, vol. 7, no. September, p. 1419, Sep. 2016,
doi: 10.3389/FPLS.2016.01419/BIBTEX.

[45] Y. Kawasaki, H. Uga, S. Kagiwada, and H. Iyatomi, “Basic study of automated
diagnosis of viral plant diseases using convolutional neural networks,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 9475, pp. 638–645, 2015, doi: 10.1007/978-3-
319-27863-6 59/COVER.

[46] C. M. Bishop, “Neural networks and their applications,” Review of Scientific Instru-
ments, vol. 65, no. 6, p. 1803, Jun. 1998, doi: 10.1063/1.1144830.

[47] R. A. Jarvis, “A Perspective on Range Finding Techniques for Computer Vision,”
IEEE Trans Pattern Anal Mach Intell, vol. PAMI-5, no. 2, pp. 122–139, 1983, doi:
10.1109/TPAMI.1983.4767365.

[48] K. R. Chowdhary, “Natural Language Processing,” Fundamentals of Artificial Intel-
ligence, pp. 603–649, 2020, doi: 10.1007/978-81-322-3972-7 19.

[49] M. Halle and K. Stevens, “Speech Recognition: A Model and a Program for Re-
search,” IRE Transactions on Information Theory, vol. 8, no. 2, pp. 155–159, 1962,
doi: 10.1109/TIT.1962.1057686.

[50] “Python Tensorflow - tf.keras.layers.Conv2D() Function - GeeksforGeeks.”
https://www.geeksforgeeks.org/python-tensorflow-tf-keras-layers-conv2d-function/
(accessed May 17, 2023).

[51] “Inception-v3 Explained — Papers With Code.”
https://paperswithcode.com/method/inception-v3 (accessed Apr. 22, 2023).

44

[52] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning,” 31st AAAI Con-
ference on Artificial Intelligence, AAAI 2017, pp. 4278–4284, Feb. 2016, doi:
10.1609/aaai.v31i1.11231.

[53] “The architecture of Inception-V3 model. — Download Scientific Dia-
gram.” https://www.researchgate.net/figure/The-architecture-of-Inception-V3-
model fig5 349717475 (accessed Mar. 17, 2023).

[54] A. M. Fred Agarap, “Deep Learning using Rectified Linear Units (ReLU),” Mar. 2018,
Accessed: Apr. 04, 2023. [Online]. Available: https://arxiv.org/abs/1803.08375v2

[55] C. Banerjee, T. Mukherjee, and E. Pasiliao, “An empirical study on generalizations
of the RelU activation function,” ACMSE 2019 - Proceedings of the 2019 ACM
Southeast Conference, pp. 164–167, Apr. 2019, doi: 10.1145/3299815.3314450.

[56] M. Wang, S. Lu, D. Zhu, J. Lin, and Z. Wang, “A High-Speed and Low-Complexity
Architecture for Softmax Function in Deep Learning,” 2018 IEEE Asia Pacific Con-
ference on Circuits and Systems, APCCAS 2018, pp. 223–226, Jan. 2019, doi:
10.1109/APCCAS.2018.8605654.

[57] “Learning rate - Wikipedia.” https://en.wikipedia.org/wiki/Learning rate (accessed
Apr. 06, 2023).

[58] S. P. Singh, K. Pritamdas, K. J. Devi, and S. D. Devi, “Custom Convolutional Neural
Network for Detection and Classification of Rice Plant Diseases,” Procedia Comput
Sci, vol. 218, pp. 2026–2040, 2023, doi: 10.1016/j.procs.2023.01.179.

45

LIST OF PUBLICATIONS

1. Saradindu Das, Abhilasha Sharma, “Convolutional Neural Network Based Plant
Disease Detection: A Review”. The paper has been Accepted at the 7th Interna-
tional Joint Conference On Computing Sciences (ICCS-2023), May 2023. Indexed
by Scopus. Paper Id: 1066

2. Saradindu Das, Abhilasha Sharma, “Apple Leaves Disease Detection Using Multi-
layer Convolutional Neural Network”. The paper has been Accepted at the Inter-
national Conference on Intelligent Data Communication Technologies and Internet
of Things (CONIT-2023), June 2023. Indexed by Scopus. Paper Id: 1561

46

