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ABSTRACT

One well-liked method for dividing up scientific photos is fuzzy C-Means (FCM).The

use of intuitionistic fuzzy C-Means (IFCM), which is based on the idea of intuition-

istic fuzzy sets (IFSs), is advocated in the literature as a way to deal with the

ambiguity and uncertainty associated with real data.The hesitation and member-

ship degrees are used to determine the objective function.However, FCM is used to

achieve the approximate answer rather than analytically computing the objective

function. Even though there are numerous variations of intuitionistic fuzzy set the-

ory, all of them struggle with the issue of noise in images during the segmentation

process.In order to address this issue, we have proposed using a picture fuzzy set

theoretic approach, which improves the data’s ability to be represented and aids in

handling the noise structures present in the image In our proposed work,we have

added algorithm of FCM , PFCM, and some applications..The method was applied

to a fake image that had been ”Gaussian” and ”salt and pepper” distorted.Partition

efficiency, average segmentation accuracy (ASA), and dice score (DS) were the per-

formance metrics used. In order to determine the difference between two fuzzy sets

or intuitionistic sets, we can use the distance measure and the dissimilarity between

them, which are both employed in pattern recognition and image segmentation.

Keywords: Image Segmentation , Clustering, Intuitionistic fuzzy sets, Fuzzy c-

means, Picture fuzzy clustering, Applications
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Chapter 1

INTRODUCTION

Image analysis and pattern recognition begin with image segmentation. One of

the hardest tasks in image processing, it is a crucial and necessary part of image

analysis and/or pattern recognition systems and affects how well the analysis turns

out in the end. The image segmentation problem is essentially one of psychophysical

perception, hence a purely analytical solution is not possible, according to [2]. The

methods for monochromatic picture segmentation have been extensively studied in

both articles and surveys.

The fuzzy theory was introduced by Lotfi Zadeh [3], and the researchers put

the fuzzy theory into clustering. The FCM algorithm is introduced by Dunn [4]

and later, it is generalized by Bezdek [5] with (fuzzifier) and became very popular.

The assignment of data objects to numerous clusters by fuzzy algorithms is partially

possible. The distance between a data object and the cluster centres determines how

much of it belongs in the fuzzy clusters.However, there are a number of drawbacks

to the FCM algorithm. For instance, it struggles with data sets that have clusters of

different sizes or densities, and it is susceptible to noise and outliers. Numerous FCM

algorithm variations have been developed to address these FCM disadvantages.

A noise clustering (NC) variation of the FCM was proposed by Dave and Sen [6].

Noisy points are defined as data points whose distances from all cluster centers are

greater than a specific threshold. It is not effected by the amount of clusters present

in a particular data set, and it does not recognise noisy data points that are located

between clusters.This technique discovers outliers with clarity and is unaffected by
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the number of clusters. Because it regularly spreads outliers across different clusters,

this method successfully reduces the impact of outliers but is less noise-resistant.

Howerver, to overcome the poor performance of FCM caused by noisy data,

possibilistic c-means (PCM) was proposed in [7]. In contrast to a fuzzy partition,

PCM views the clustering as a possibilistic partition. To overcome these issues,

PFCM clustering provides both the membership and typicality data.It is therefore

a fusion of PCM and FCM. When the input data set has multiple outliers and

different-sized clusters, PFCM performs ineffectively, but it still generates better

clustering than FCM and PCM.

The FCM has been expanded to three algorithms: the EnFCM (Enhanced FCM),

FCM S1, and FCM S2, to address the latter issue. When creating the membership

function in FCM, more ambiguity appears. This ambiguity results from ignorance.

An innovative IFS introduced by [8] clustering technique for medical picture seg-

mentation was created by Chaira. [9].In this method to maximize the good points

in the class, a new objective function called intuitionistic fuzzy entropy is incorpo-

rated into the objective function of conventional FCM. Zhang et al. [10] proposed

an intuitionistic fuzzy set clustering method. Xu et al.

In order to detect tumors in medical photos, Chaira and Anand [9] created a novel

IFS technique. In order to remove undesirable regions from a clustered image, this

method employs histogram thresholding. Moreover, the tumor’s edge is removed.

Cuong [11] has presented a Picture Fuzzy Set (PFS) which is a generalization of the

traditional fuzzy set and IFS. PFS resolves issues that call for responses like ”yes,”

”no,” ”refusal,” and ”abstaining”. Thong and Son., [12] proposed a new Picture

Fuzzy Clustering (PFC) proposed by [13]. The findings of the experiments show

that PFC produces better clustering outcomes. This paper provides techniques of

image segmentation with algorithm and some applications. We created an FCM

method and implemented it on code to segment MRI brain pictures in this paper,

which was motivated by the PFC’s strong performance.
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Chapter 2

Preliminaries and Related work

2.1 Image Segmentation

In segmentation, we want to colour our pixels in the image so that similar objects

are coloured similarly. For example, in the image above, we can see that the input

image contains a variety of different objects, such as a road, sidewalk, building,

vehicle, etc. In the segmented image, we can see that similar objects are coloured

similarly. The process of image segmentation divides a digital image into smaller

groups, or ”image segments,” which simplifies the image and makes each segment

easier to handle or analyse.

Segmenting images for identifying objects is a common application. Prior to pro-

cessing a picture completely, it is customary to first utilise an image segmentation

method to identify objects of interest in the image. When the segmentation proce-

dure is finished, the object detector can use the bounding box it created. Accuracy

and inference time can both be improved by pausing the detector from analysing

the entire image.

3



Figure 2.1: Image Segmentation

2.1.1 Why do we need Image Segmentation?

Cancer has historically been a fatal disease. Cancer can be devastating even in

today’s technologically advanced day if it isn’t detected at an early stage. Millions

of lives could be saved by early cancer detection. The severity of the cancer is

significantly influenced by the morphology of the malignant cells. It’s possible that

you placed the puzzle pieces together; object detection won’t be very helpful in this

case. We won’t be able to determine the shape of the cells because we will just

create bounding boxes.

Image segmentation methods have a MASSIVE influence in this situation. They

enable us to take a more detailed approach to the issue at hand and produce more

fruitful outcomes. a situation where everyone in the healthcare sector benefits.
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Figure 2.2: Cancer Cells

Here, all of the malignant cells’ forms are easily visible. There are numerous

other uses for image segmentation that are revolutionising industries:

1. Traffic control systems

2.Self driving cars

3.Locating objects in satellite images

2.1.2 Image segmentation types

An image can be segmented in many ways. Here are a few of the principal methods:

Semantic Segmentation

The pixels in an image are organised into semantic classes during semantic segmen-

tation. The segmentation model does not make use of any additional context or

data and each pixel in this model belongs to a single class.

A mask that categorises all tree types into one category (tree) and all vehicle

types, such as buses, cars, and bicycles into one category (vehicles), for example,

will be produced by semantic segmentation of an image containing several trees and

vehicles.
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Figure 2.3: Semantic Segmentation

When utilising this approach, the problem description can often be nebulous,

particularly when several instances are combined into one class. For instance, the

entire crowd in a photo of a crowded street might be categorised under the ”people”

class.

Instance Segmentation

Figure 2.4: Instance Segmentation

Instance segmentation divides pixels into groups based on specific instances of an

item. Instance segmentation techniques instead divide comparable or overlapping

regions based on the boundaries of objects rather than knowing to which class each

region belongs.

6



Consider processing an image of a busy street using an instance segmentation

model. It should ideally be able to pinpoint certain objects within the crowd while

counting the number of occurrences. The region or item (i.e., a ”person”) for each

instance cannot be predicted, though.

Here, we see the difference between the Semantic and Instance Segmentation and

its combination called Panoptic Segmentation

2.1.3 Techniques for Image Segmentation

Edge-Based Segmentation

Figure 2.5: Edge-Based Segmentation
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Edge-based segmentation is a term used to describe a popular technique for pro-

cessing images that detects the edges of various objects in a picture. It aids in

identifying features of connected objects in the image by using information from the

edges. Edge detection reduces the size of photographs and facilitates analysis by

deleting unnecessary information.

Edge-based segmentation algorithms identify edges based on variations in con-

trast, texture, colour, and saturation. Edge chains, which are constructed from the

individual edges, can be used to accurately represent the borders of objects in an

image.

Threshold-Based Segmentation

Figure 2.6: Threshold-Based Segmentation

Thresholding, which separates pixels based on how intense they are in relation to

a predetermined value or threshold, is the most straightforward method for seg-

menting images. It is suitable for dividing up objects with a stronger contrast than

background or other objects.

The threshold value T can act as a constant in low-noise images. In some cases,

flexible thresholds are a possibility. Thresholding divides a grayscale image into two

parts based on how closely they relate to T, producing a binary image.

8



Watershed Segmentation

In a grayscale image, watersheds are changes. The elevation (height) of an image

is determined by the pixel brightness in watershed segmentation algorithms, which

treat images like topographic maps. Using this method, the regions between the

watershed lines are marked by lines forming ridges and basins. One of the main

applications for the watershed method is medical image processing. Being able

to identify lighter and darker areas in an MRI image, for example, can help with

diagnosis.

2.2 Cluster based image segmentation

Image segmentation involves dividing an image into meaningful regions or objects,

and cluster-based methods provide a powerful approach for achieving this. Cluster-

based methods play a significant role in image segmentation due to their ability to

group similar pixels or regions, adaptability to different image content, computa-

tional efficiency, and flexibility in parameter control. They provide a powerful and

versatile approach for extracting meaningful regions from images, enabling numerous

applications in fields such as computer vision, medical imaging, object recognition,

and more.

2.3 Clustering

A technique for assembling several clusters of related data points from the data

points.

i.e., the potentially similar object stays in a group that shares few to no similarities

with another group.

2.4 Different types of clustering

• Partitional Clustering VS Hierarchical clustering

(a) a division of data objects into non-overlapping subsets in which each object

can be found inside just one subset

9



(b) a group of stacked clusters organised in a form like a tree

• Exclusive VS non-exclusive

(a) Points may belong to more than one cluster in non-exclusive clustering.

(b) represents many types or ”boundary” points

• Fuzzy VS non-fuzzy

(a) A point belongs to each cluster in fuzzy clustering where the weight ranges

from 0 to 1.

(b) Probabilistic clustering has similar characteristics

• Heterogeneous VS Homogeneous

(a) Cluster of widely different sizes, shapes, and densities

2.5 Clustering Analysis

By clustering, we mean dividing a data universeX into n data samples and counting

the number of subclasses of c clusters within that universe.(2 ≤ c < n)

Note: c = 1 denotes rejection of the hypothesis that there are clusters in the data,

where as c = n denotes the trivial case where each sample is in a cluster by itself.

There are two types of data C-partitions:

1. HARD (or crisp)

2. SOFT (or fuzzy)

10



One of the techniques used in hard clustering, where each data item is grouped

so that it can only belong to one cluster, is K-Means. Soft clustering, which groups

the data items in a way that allows for the existence of a single item in multiple

clusters, as exemplified by fuzzy C-Means (FCM).

Now, the question arises that how to calculate the degree of similarity between

data and how to assess the partitions after they have been created.

The distance between two vector pairs is among the simplest metrics for compar-

ing similarity. i.e., the distance between points within a cluster should be smaller

than the distance between points outside of that cluster.
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Chapter 3

Fuzzy Clustering

With a membership weight ranging from zero to one, a person or thing can be a

member of every cluster.

Membership weight zero means the person/object absolutely does not belong to the

cluster.

Membership weight one means the person/object absolutely belong to the cluster

3.1 Hard C-Means

HCM is used to clearly categorise data. This refers to the assignment of each data

point to one single data cluster. These clusters can also be referred to as data

partitions in this sense.

Let’s define the family of sets {Ai, i = 1, 2, 3, ...c} as hard c-partitions of X, when

the following characteristics ought to be met.

1.
c⋃

i=1

Ai = X

2. Ai ∩ Aj = ∅ ∀ i ̸= j

3. ∅ ⊂ Ai ⊂ X ∀ i = 1, 2, 3, ...c

X = {x1, x2, ....xn} is a constrained set space consisting of all data samples,

together with the number of classes, divisions, or clusters we intend to create for

12



the data into is c. where the defining fn is χAi
(xk) is defined as:

χAi
(xk) =

1 xk ∈ Ai

0 xk /∈ Ai

Notations:

• χij = χAi
(xj) i.e, membership assignment of the jth data point in the ith

cluster or class.

• U is a matrix comprising elements χij (i = 1, 2, ...c; j = 1, 2, ...n) Conse-

quently, it has a matrix of c-rows and n-columns.

Thus, for X, the following matrix set is defined as a hard c-partition space:

Mc =

{
U | χij ∈ {0, 1} ,

c∑
i=1

χik = 1

}
(3.1)

and

0 <
n∑

k=1

χik < n

any matrix U ∈ Mc is a hard-partition.

Since each cluster centre needs m coordinates to indicate its location in the same

space as the data sample it represents, each data sample needs m coordinates to

explain its placement in the space.

Therefore, the ith cluster centre is a vector of length m

vi = {vi1, vi2, ....., vim}

where the jth coordinates is calculated by

vij =

n∑
k=1

χikxkj

n∑
k=1

χik

(3.2)

and

dik = d (xk − vi) = ||xk − vi|| =

[
m∑
j=1

(xkj − vij)
2

] 1
2

(3.3)
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where the objective function is specified as follows and dik is the euclidean dis-

tance between the kth data sample xk and the ith cluster centre vi:

J (U, V ) =
n∑

k=1

c∑
i=1

χik (dik)
2 (3.4)

where U is the partition matrix and enquoteV is a vector representing the cluster

centre. In order to find the best partition, U∗ must be the partition that results in

the function J ’s minimum value.

J (U∗, V ∗) = min
U∈Mc

J (U, V ) (3.5)

3.2 Algorithm

Algorithm 1 FCM Algorithm

1. Fix c (2 ≤ c < n) and reload the U matrix

U (0) ∈ Mc

then do r=0,1,2,...

2. Calculate the centre vectors for c
{
v
(r)
i with U (r)

}
3. Utilising the updated characteristic function, determine the value for each i,k

U (r).

χ
(r+1)
ik =

1 d
(r)
ik = min

{
d
(r)
jk

}
∀j ∈ c

0 otherwise

4. If ||U (r+1) − U (r)|| ≤ ϵ tolerence level then stop; otherwise set r = r + 1 and

return to step 2
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Chapter 4

CODE

we used the optimize.linprog command from Scipy module of Python

import numpy as np

import pandas as pd

import cv2

from google.colab.patches import cv2_imshow # for image display

from skimage import io

from PIL import Image

import matplotlib.pylab as plt

def InitMem(x,y,c):

U = np.random.rand(x,y,c)

Rsum = U.sum(axis=2)

NU = np.divide(U,Rsum[:,:, None])

return NU

def UpdateMem(Dist_Mat,m):

Temp = Dist_Mat**(-1/(m-1))

SumTemp = Temp.sum(axis=2)

UpdatedMem = np.divide(Temp,SumTemp[:,:,None])

return UpdatedMem

def UpdateCen(mf,data,c):

15



data = np.repeat(data[:, :, None], repeats = c, axis=2)

mfsum = mf.sum(axis = 1)

mfsum = mfsum.sum(axis = 0)

mfdata = np.multiply(mf,data)

mfdatasum = mfdata.sum(axis = 1)

mfdatasum = mfdatasum.sum(axis = 0)

Cen = np.divide(mfdatasum,mfsum)

# Cen = Cen.reshape(c,1)

return Cen

def Distance_Mat(data,Cen):

x,y = data.shape

c = Cen.shape[0]

data = np.repeat(data[:, :, None], repeats = c, axis=2)

dist = np.zeros((x,y,c))

repetitions = x*y

repeats_Cen = np.tile(Cen, (repetitions, 1))

repeats_Cen = np.reshape(repeats_Cen,(x,y,c))

dist = (data-repeats_Cen)**2

return dist

def Objective_Fun(mf,Dist_Mat):

obj = np.multiply(mf,Dist_Mat)

objvalue = obj.sum()

return objvalue

def FCM(Data, c, m, MaxItter,epsilon):

# c = 4

x,y = Data.shape

# n, d = Data.shape

Uinit = InitMem(x,y,c) # InitMem is updated below

U = Uinit

OldDif = 0.0

OBJ=[]

for i in range(MaxItter):

16



mf = U**(m)

Cen = UpdateCen(mf,Data,c)

Dist_Mat = Distance_Mat(Data,Cen)

obj = Objective_Fun(mf,Dist_Mat)

OBJ.append(obj)

UNew = UpdateMem(Dist_Mat,m)

Dif = (((np.absolute(U-UNew)).sum(axis=2)).sum(axis=1)).sum()

print("Itteration ", i, "Differnce", Dif )

if (np.absolute(OldDif-Dif)<epsilon):

break

OldDif = Dif

U = UNew

return U,Cen,OBJ

def algo_func(data,c,m,Maxit,epsilon):

# x,y = image.shape

# numpydata = asarray(image)

data = data.astype(float)

Maxit = 200

m=2

c = 4

U, Cen,OBJ = FCM(data, c, m, Maxit,epsilon)

print(’Cen’, Cen)

Umax = (U == U.max(axis=2)[:,:,None]).astype(float)

seg1 = Umax[:,:,0]

seg2 = Umax[:,:,1]

seg3 = Umax[:,:,2]

seg4 = Umax[:,:,3]

plt.imshow(data,’gray’)

figure, axis = plt.subplots(2, 2)

axis[0,0].imshow(seg1,’gray’)

axis[0, 1].imshow(seg2,’gray’)

axis[1, 0].imshow(seg3,’gray’)

17



axis[1, 1].imshow(seg4,’gray’)

return seg1, seg2, seg3, seg4, Umax,OBJ,Cen

def Plot(obj):

y = obj

y.pop(0)

x = list(range(0,len(obj)))

return plt.plot(x, y)

data = np.load(’numpy_data.npy’)

seg1, seg2, seg3, seg4, Umax,OBJ,Cen = algo_func(data,c=4,m=2,Maxit=200,epsilon=0.0001)

18



def DS(gt,data):

gt = np.divide(gt,255)

intersection = np.logical_and(gt,data)

ds = (2*intersection.sum())/(gt.sum()+data.sum())

return ds

def avg_intensity(image, seg1, seg2, seg3, seg4):

avg1 = ((np.multiply(seg1,image)).sum())/(seg1.sum())

avg2 = ((np.multiply(seg2,image)).sum())/(seg2.sum())

avg3 = ((np.multiply(seg3,image)).sum())/(seg3.sum())

avg4 = ((np.multiply(seg4,image)).sum())/(seg4.sum())

avg = np.array([avg1,avg2,avg3,avg4])

ind = np.argsort(avg)

# print(’ind’,ind)

return ind

def dicescore(gt,image,seg1,seg2,seg3,seg4,U):

# Sorted Average Intensity of original image and noise images

ind = avg_intensity(image,seg1, seg2, seg3, seg4)

ds=[]

for i in range(len(gt)):

ds.append(DS(gt[i],U[:,:,ind[i]]))
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print(’Dice Score:’,ds)

return ds

def ASA1(gt,data):

gt = np.divide(gt,255)

intersection = np.logical_and(gt,data)

asa1 = intersection.sum()

return asa1

def ASA2(gt):

gt = np.divide(gt,255)

return gt.sum()

def asa(gt,image,seg1,seg2,seg3,seg4,U):

sum = 0

num = 0

ind = avg_intensity(image,seg1, seg2, seg3, seg4)

for i in range(len(gt)):

sum = sum + ASA2(gt[i])

num = num + ASA1(gt[i],U[:,:,ind[i]])

ASA = num/sum

print(’ASA:’,ASA)

return ASA

gt_array = np.load(’gt_array.npy’)

dice = dicescore(gt_array,data,seg1,seg2,seg3,seg4,Umax)

avgsegacc = asa(gt_array,data,seg1,seg2,seg3,seg4,Umax)

Dice Score: [1.0, 1.0, 1.0, 1.0] ASA: 1.0

Plot(OBJ)

[¡matplotlib.lines.Line2D at 0x7fb94adb7dc0¿]
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Chapter 5

Fuzzy C-Means (FCM)

We define a fuzzy set {Ai : i = 1, 2, 3, ...c} as a hazy c-partition on a set of X data

points. The numerous data points in each fuzzy set (fuzzy class, fuzzy clusters) can

now be assigned membership.

Consequently, a single point can be partially a member of more than one class.

µik = µAi (xk) ∈ [0, 1] signifies the membership value of the kth data point in the

ith class, and the sum of all the membership values for one of the data points across

all classes must be 1. i.e,

c∑
i=1

µik = 1 ∀ k = 1, 2....n

and

0 <
n∑

i=1

µik < n

For the classification involving c classes and ndata points, we may now create a

set of fuzzy partition matrices, Mfc.

Mfc =

{
U
∼

| µik ∈ [0, 1];
c∑

i=1

µik = 1; 0 <

n∑
k=1

µik < n

}
(5.1)

where i = 1, 2, ....c and k = 1, 2, .....n

Any U
∼
∈ Mfc is a fuzzy c-partition.

Given that vi is the ith cluster centre, which is represented by m features (m

coordinates), vi can be arranged in a vector form, i.e. vi = {vi1, vi2, ...vim. Similar

to the procedure in the crisp case, one can compute each cluster coordinate for each
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class:-

vij =

n∑
k=1

µm′

ik .xik

n∑
k=1

µm′
ik

(5.2)

where the feature space’s variable j is j=1,2,...m

We construct an objective Jm for a fuzzy c-partition, which is, to determine the

fuzzy c-partition matrix U
∼
for classifying a collection of n data sets into c classes.

Jm

(
U
∼
, V
)
=

n∑
k=1

c∑
i=1

(µik)
m′

(dik)
2 (5.3)

and where ,

dik = d (xk − vi) =

[
m∑
j=1

(xkj − vij)
2

] 1
2

(5.4)

5.1 Algorithm

Algorithm 2 PFCM Algorithm

1. Fix c (2 ≤ c < n) and select a value for parameter m′. Initialize the partition

matrix U
∼
(0). Each step in this algorithm will be labeled r, where r = 0,1,2,...

2. Calculate the centres for c
{
v
(r)
i

}
for each step.

3. Update the partition matrix for rth step, U
∼
(r) as follows:

µ
(r+1)
ik =

 c∑
j=1

(
d
(r)
ik

d
(r)
jk

) 2
m′−1

−1

4. If ||U
∼
(r+1) − U

∼
(r)|| ≤ ϵ stop; otherwise set r=r+1 and return to step 2.

5.2 Example

U∗ as the initial fuzzy partition, U (0) and assuming a weighting factor of m′ = 2

and a criterion for convergence of ϵ = 0.01 that’s

max
i,k

|µ(r+1)
ik − µ

(r)
ik | ≤ 0.01
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We seek to identify the ideal fuzzy 2-partition. U
∼

First, the fuzzy initial partition is

U (0) =

1 1 1 0

0 0 0 1


The initial cluster centres’ calculation follows:

vij =

n∑
k=1

µ2
ik.xkj

n∑
k=1

µ2
ik

where for c=1

v1j =
µ2
1x1j + µ2

2x2j + µ2
3x3j + µ2

4x4j

µ2
1 + µ2

2 + µ2
3 + µ2

4

v11 =
1 + 1.5 + 1.3

3
= 1.26

v12 =
3 + 3.2 + 2.8

3
= 3.0

then v1 = {1.26, 3}

and similarly for c=2

v21 =
3

1
= 3

v22 =
1

1
= 1

then v2 = {3, 1}

The distances between each data point and each cluster centre are now calculated

as follows:

d11 =
√

(1− 1.26)2 + (3− 3)2 = 0.26

d21 =
√

(1− 3)2 + (3− 1)2 = 2.82

d12 =
√

(1.5− 1.26)2 + (3.2− 3)2 = 0.31

d13 =
√

(1.3− 1.26)2 + (2.8− 3)2 = 0.20

d14 =
√
(3− 1.26)2 + (1− 3)2 = 2.65

similarly we get d22 = 2.66 ; d23 = 2.47 ; d24 = 0

µ12 =

[(
d12
d12

)2

+

(
d12
d22

)2
]−1

= 0.986
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We are now able to update using the distance measurements U
∼
for m′ = 2

µ
(r+1)
ik =

 c∑
j=1

(
d
(r)
ik

d
(r)
jk

)2
−1

and we get

µ11 =

[
c∑

j=1

(
d11
dj1

)2
]−1

=

[(
d11
d11

)2

+

(
d11
d21

)2
]−1

=

[(
0.26

0.26

)2

+

(
0.26

2.82

)2
]−1

= 0.991

µ13 =

[(
d13
d13

)2

+

(
d13
d23

)2
]−1

= 0.993

µ14 =

[(
d14
d14

)2

+

(
d14
d24

)2
]−1

= 0

Hence we obtain

U
∼
(1) =

0.991 0.986 0.993 0

0.009 0.014 0.007 1


We select a matrix norm || such as the highest pairwise comparison value of each

value in the matrix to determine whether or not we have achieved convergence U
∼
(0)

and U
∼
(1)

i.e,

max
i,k

|µ(1)
ik − µ

(0)
ik | = 0.014 > 0.01

This result indicates that the procedure needs to be iterated upon in order to de-

termine whether our convergence conditions have been met.

We then calculate cluster centres once more for the following iteration using values

from the most recent fuzzy partition. U
∼
(1) for C=1

v11 =
(0.991)2 .1 + (0.986)2 . (1.5) + (0.993)2 . (1.3)

(0.991)2 + (0.986)2 + (0.993)2

v11 =
3.719

2.94
= 1.26

Similarly,

v12 =
8.816

2.94
= 3.0
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Therefore,

v1 = {1.26, 3}

Now for C=2

v21 =
(0.009)2 .1 + (0.014)2 . (1.5) + (0.007)2 . (1.3) + (1) .3

(0.009)2 + (0.014)2 + (0.007)2

v21 = 3.0

v22 = 1.0

then

v2 = {3, 1}

we observe that these two cluster centers are identical to those from the first step,

at least to with in the stated accuracy of (0.01)

Hence the final partiton U
∼
(2) result as:

U
∼
(2) =

0.991 0.986 0.993 0

0.009 0.014 0.007 1


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Chapter 6

Fuzzy set and it’s extensions

6.1 Fuzzy set

A Fuzzy set is a set in which each member element will have the fractional mem-

bership via a membership function

µA : Xß[0, 1] (6.1)

which gives its degree of belongingness [14]. It is possible to represent A, a fuzzy

set said over a set X, as follows:

A = (x, µA(x)) : xX (6.2)

6.2 Intuitionistic fuzzy set

A fuzzy set over X that is expressed as follows is an extension of an intuitionistic

fuzzy set B.

B = (x, µB(x), νB(x)) : xX and 0µB(x) + νB(x)1 (6.3)

where

µB : X −→ [0, 1], νB : X −→ [0, 1] (6.4)

are the functions of an element x’s membership and non-membership in set B. When

µB(x) + νB(x) = 1 for every x in B, the IFS B becomes FS B.

An ordered triple set serves as the representation of A in an intuitionistic fuzzy

set.
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(x, µA(x), νA(x)),

where,

µA(x) is the degree at which x is a member of A, and νA(x) is the degree at

which x is not a member of A. The degree of hesitation, hA(x), is a mathematical

constant.

6.3 Hesitation Degree

hA(x) = 1 - µA(x)− νA(x)

When compared to membership and non-membership degrees, the hesitation

degree reflects how uncertain or ambiguous those degrees are. The total of the

membership and non-membership degrees divided by 1 is used to calculate it.

6.4 Picture Fuzzy Set

[11] proposed a Picture Fuzzy Set (PFS), which is generalization of conventional

fuzzy set and intuitionistic fuzzy set. A PFS is a non empty set X given by

A = hx, uA(x), ηA(x), γA(x)i|xX (6.5)

where µA(x) is the value of each element’s positive membership, ηA(x) is its

neutral membership degree, and γA(x) is its negative membership degree that

satisfies the constraints.

0 ≤ µA(x) + ηA(x) + γA(x) ≤ 1 (6.6)

An element’s refusal degree is computed as follows:

ξA(x) = 1− (µA(x) + ηA(x) + γA(x)

In case ξA(x) = 0 PFS returns Intuitionistic fuzzy set.

If ξA(x) = ηA(x) = 0 PFS returns to fuzzy set.
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6.5 Picture Fuzzy set representation of Image

The fuzzy complement generator developed by Yager is used to create the fuzzy

image. Take a look at the image X = x1, x2,.....xNi, which consists of N pixels with

intensities ranging from 0 to L - 1. The image’s PFS representation can be specified

as follows:

I = (xij, µI(xij) , ηI(xij), γI(xij), ξI(xij))

where I represents the refusal degree of the pixel, I represents the neutral mem-

bership value, I represents the negative membership value, and uI represents the

positive membership value. Each pixel in an image has a corresponding intensity

value. We compute the normalised intensity level for each pixel to translate the

intensity data into membership values. i.e:

µI(xij) =
xij

L− 1
(6.7)

In this study, we used Yager’s fuzzy complement generator to calculate the neg-

ative membership value. The fuzzy complement generator by Yager is described as

follows:

γI(xij) = (1(µI(xij) + νI(xij))
α)

1
α (6.8)

Following the use of Yager’s fuzzy complement generator, the PFS picture is

thus:

IPFS
α = (xij, µI(xij), νI(xij), (1(µI(xij) + νI(xij))

)
1
α ,ξI(xij))(6.9)

The refusal degree of the pixel is calculated as:

ξI(xij) = 1(µI(xij) + νI(xij))(1(µI(xij) + νI(xij)
α))

1
α (6.10)

where is exponent, the value varies between 0 and 1.

6.5.1 Picture Fuzzy Clustering

The Picture Fuzzy Clustering (PFC) method for segmenting MRI brain pictures is

shown in this section. This method clusters the image by searching for local minima

of the subsequent objective function:
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J =
N∑
i=1

C∑
J=1

(uij(2ξij))
m||xi − vj||+

N∑
i=1

C∑
J=1

νij((logνij + ξij) (6.11)

When the element fits the following characteristics and ij, νij, andξijarethepositive, neutral, andrejectiondegrees, respectively, vjisthejthclustercentre.

µij + νij + ξij1 (6.12)

C∑
j=1

(µij(2− ξij)) = 1 (6.13)

C∑
j=1

νij +
ξij
c

= 1 (6.14)

The Lagrangian approach is used to discover the optimal solutions of the objec-

tive function, and the optimal solutions of the systems for vj, µij, νij, andξij are :

vj =

N∑
i=1

(µij(2−ξij))
mxi

N∑
i=1

(µij(2−ξij))m
(6.15)

uij =
1

N∑
i=1

(µij(2− ξij)
(

||xi−vj ||
||xi−vk||

) 2
m−1

(6.16)

νij =
e−ξij

C∑
k=1

e−ξik

(
1− 1

c

C∑
k=1

ξik

)
(6.17)

ξij = 1− (uij + νij)(1(uij + νij)α)
1
α (6.18)

where i = 1.,,,,N, k = 1.,,,,,n, j = 1,.....c.

The membership value of fuzzy set-based clustering methods is influenced by the

distance measure. Intensity values that are nearer to the cluster centre value indicate

that the pixel has a higher membership value. In turn, this makes the membership

value more noise-sensitive. Due of the noise and intensity inhomogeneity that the

MRI brain pictures contain, the euclidean distance measure does not produce the

desired segmentation results. The distance between the cluster centre and the pixel

was calculated in this study using the image euclidean distance function, which took

noise and intensity inhomogeneity into consideration. The following formula is used

to determine picture euclidean distance:

d(xi, vj) = ((u(xi)u(vj)) + (ν(xi)ν(vj)) + (γ(xi)γ(vj)))
1
2 (6.19)
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6.6 Distance between picture fuzzy sets [1]

Distances for two picture fuzzy sets A and B in X = x1, x2, ..., xnare :

• The normalized Hamming distance dP(A,B)

dP (A,B) =
1

n

n∑
i=1

(|µA(xi)µB(xi)|+ |ηA(xi)ηB(xi)|+ |νA(xi)νB(xi)| (6.20)

• The normalized Euclidean distance eP(A,B)

eP (A,B) =

√√√√ 1

n

n∑
i=1

((µA(xi))µB(xi))2 + (ηA(xi)ηB(xi))2 + (νA(xi)νB(xi))2)

(6.21)
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Chapter 7

Applications

7.1 Image Segmentation

There are many practical uses for image segmentation, which divides a picture into

distinct regions or objects, across a variety of industries. Here are a few instances:

(a)Autonomous Vehicles = Image segmentation is crucial for scene comprehen-

sion and object detection in the context of autonomous cars. Autonomous vehicles

can sense their environment and make wise decisions by segmenting various items

such as pedestrians, vehicles, and road markings.

(b)Object Recognition and Tracking = Object recognition and tracking systems

use image segmentation. In video surveillance, robotics, and augmented reality

applications, segmentation aids in recognising and monitoring particular items of

interest by separating them from the backdrop.

(c) Augmented Reality = Image segmentation is used in augmented reality ap-

plications to distinguish between foreground and background objects. This permits

the accurate and realistic overlay of digital data or virtual objects onto the physical

environment.

(d)Video Compression and Streaming = By detecting areas of interest and al-

locating resources appropriately, image segmentation helps with video compression

and streaming. Compression algorithms can prioritise crucial parts and assign higher

bitrates by segmenting the video frames into significant regions. This enhances video

quality and bandwidth efficiency.
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7.2 Intuitionistic fuzzy sets

Intuitionistic fuzzy sets (IFS) have been applied in various domains where uncer-

tainty and ambiguity are prevalent. Here are some common applications of intu-

itionistic fuzzy sets:

(a )Decision Making = To deal with ambiguous and imperfect information,

decision-making systems can use intuitionistic fuzzy sets. IFS can capture the hesi-

tations and uncertainties in decision models by taking into account both membership

and non-membership degrees, enabling more reliable and adaptable decision-making.

(b) Pattern recognition = To handle complicated and ambiguous data in pattern

recognition tasks, intuitionistic fuzzy sets have been used. In comparison to con-

ventional crisp or fuzzy sets, they may effectively capture ambiguous patterns and

offer a more precise classification and identification framework.

(c)Image processing = Applications for IFS can be found in image processing

tasks like object recognition, edge detection, and image segmentation. The accuracy

and dependability of these activities are improved by having the ability to deal with

ambiguity and uncertainty in picture data.

(d) Medical Diagnosis = In medical diagnosis, where imprecise and ambiguous

data are frequently encountered, intuitionistic fuzzy sets have been used to describe

symptoms, diseases, and diagnostic criteria. In addition to helping with uncertainty,

they offer a more precise diagnosis.

7.3 Picture fuzzy set

As an extension of conventional fuzzy sets, picture fuzzy sets—also known as fuzzy

sets with membership grades as images—have been presented. By employing pic-

tures or images rather than numbers, they give a better visual representation of

fuzzy membership ratings. Despite being a relatively recent idea, photo fuzzy sets

offer a wide range of practical uses. Here are a few illustrations:

(a)Human Computer Interactions= Picture fuzzy sets can be used in human-

computer interaction interfaces to record and decode user input and gesticulations.

It enables a more natural and intuitive engagement with computers or other inter-

active systems by displaying fuzzy membership grades as visuals.
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(b) Risk Assessment = Picture fuzzy sets can be used in risk assessment activities

like analysing the susceptibility of vital infrastructure or the likelihood and conse-

quences of natural disasters. It offers a more visual and thorough comprehension

of risk levels by portraying ambiguous and imprecise risk indicators as image-based

membership grades.

(c)Medical Imaging = Picture fuzzy sets may be used in the interpretation and

analysis of MRI or CT scan pictures, among other applications. It aids in the

diagnosis and treatment planning process by portraying ambiguous or uncertain

picture elements as image-based membership ratings.
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