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ABSTRACT
The notion of Petri Net, formerly developed by Carl Adam Petri, is useful for modeling
and analyzing a system’s behavior. Petri Net is a graphical tool, defined as a bipartite
graph consisting of two types of nodes, places (conditions) and transitions (activities).

In general, a discrete event dynamic system consists of activities that can model
the system by consecutively listing its states; prior and after to the occurrence of these
activities.

In this paper, a Petri Net model for a small eatery has been proposed, keeping in
view the spread of the COVID-19 virus. Emphasis has been given to practicing so-
cial distancing and allowing a minimum number of people together at any stage. This
model, which accounts for two service tables (which can be occupied by new cus-
tomers subsequently) and one service provider (waiter) and their respective activities,
has been interpreted as a dynamic system. Furthermore, the model’s design has been
validated structurally and behaviorally using techniques from Linear Algebra, transi-
tive matrices, and transition vectors. The reachability tree has been made for drawing
out more behavioral conclusions. Besides, inference of properties like cyclic/acyclic
nature, conflict, concurrency, boundedness, conservativeness, safeness, liveness, and
deadlock has been interpreted physically with the proposed model.
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Chapter 1
Petri Nets : Overview

1.1 Introduction
Any system, in general, consists of a number of activities which can model the system
by consecutively listing its states, prior and after to the occurrence of the activities.
An activity is thus responsible for bringing change in the system from one state to
another.

A simple example can be that of a switch where the activities including turning the
switch off or on can alter the state of the system, i.e. breaking the circuit or allowing it
to flow.

We can graphically represent all such state-transitions as state-transition dia-
grams. In mathematical modelling systems, there exist various such techniques in-
cluding networking, queuing etc.
One of the eminent mathematical graphical tools used for modeling discrete event
dynamic systems is a Petri Net (PN); formally defined as a bipartite graph consisting
of two types of nodes, the places, and the transitions.

1.2 Development of Petri Nets
Petri nets, originally developed by Carl Adam, formally specifies a model and helps to
further derive properties and relations.
It is useful for modelling and analysing the functionality (behaviour) of systems, like
computer networks, manufacturing units, scheduling areas etc.

1.3 Places and Transitions
Definition 1.3.1. ( Places)

The places refer to certain set of conditions that are to be satisfied. In simple
words, they can be thought of as a box which can hold something in it. These are
denoted using circles ◦ in the PN structures.

Definition 1.3.2. (Transitions)
The transitions are the events or activities that occur and lead to the change in the

state of the system. These are denoted using a vertical line | or a rectangular bar.
The places and transitions are connected via directed edges or arcs.

1



1.4 Conditions
We have seen that we can bifurcate a Petri Net system into-

1. Events (Transitions)

2. Conditions (Places)

The occurrence of an event is determined when certain conditions hold valid which are
known as pre-conditions. These eventually lead to cause other conditions known as
post-conditions.

Figure 1.1: Conditions of the Petri Net

1.5 Tokens
Present in a system are some basic entities called tokens which get created and de-
stroyed in the places (conditions) and can travel in a system under certain parameters
that can change the state of the system.

Figure 1.2: Tokens in a Petri Net

With respect to the above simple Petri Net structure, we can deduce that for the transi-
tion t, there exist total four places P1, P2, P3, P4. Further, it is evident that these places
and the transition are connected respectively by arcs or the directed edges. The tokens
are labelled at the input places P1 and P2 for t, where P1 has a single token and P2 has
2 tokens.

2



Chapter 2
Petri Net Structure

2.1 Introduction to Bags
1. Bag theory is an extension of the set theory, which is a collection of elements

from a certain predefined domain. However, multiple existence of elements is
possible in bags unlike that in sets.

2. For any arbitrary element, b ∈ B bag, we denote the number of times b occurs
in B by #(b, B).

Remark 2.1.1. The concept of bag theory reduces down to set theory when the condi-
tion 0 ≤ #(b, B) ≤ 1 holds.
We can consider the following example for an illustrative comparison.

Example 2.1.2. Consider a pre-defined domain as the S={w, x, y, z}.
Then, B1 = {w, x, y} is a bag, also a set. Also, B2 = {w, x, w, x} and B3 =
{w,w, x, x} are the same bags irrespective of the position of the elements where
#(w,B2) = #(w,B3) = 2 and #(x,B2) = #(x,B3) = 2.

The preliminaries of Petri Nets [5]− [7] have been discussed in the following sections
of this chapter.

2.2 Structural Description
A Petri Net structure is composed of four parts and is written as a four tupple,

PN = (P, T, I, O), where

P = set of all places.
T = set of all transitions.
I = Matrix that explains the association of input places and the transitions.
O = Matrix that explains the association of output places and the transitions

i.e. for a PN consisting of say, M-places and N- transitions,

P = {p1, p2, · · · , pM}
T = {t1, t2, · · · , tN}

3



Matrices I, O can have the values aij = 0 or 1 where we construct I, O as, say

I =


1 1 0 · · · 0
0 1 1 · · · 1
... 1 · · · · · · 0
1 1 0 · · · · · · 1


where the column vectors correspond to the places and the row vectors correspond to
the transitions. Here,

aij =

{
1 Pi is an input place for transition tj
0 Pi is not an input place for transition tj

Similarly, the matrix O can be constructed and thus be interpreted easily.

Remark 2.2.1. The set of places and the set of transitions are disjoint; P ∩ T = φ.

Remark 2.2.2. The input function is defined as I : T → P∞ and the output function
is defined as O : T → P∞ where T represents the set of transitions and P∞ denotes
the bag of the places.

2.3 Example of a Petri Net Structure

We have a general Petri Net structure defined as PN = {P, T, I, O}; let us now
consider that for a particular PN structure, where P = {p1, p2, p3, p4, p5, p6} and
T = {t1, t2, t3, t4, t5} where I : T → P∞ and O : T → P∞.

Let us be given the defined input and output functions as

I(t1) = {p1} O(t1) = {p2, p3}
I(t2) = {p3} O(t2) = {p3, p5, p5}
I(t3) = {p2, p3} O(t3) = {p2, p4}
I(t4) = {p4, p5, p5, p5} O(t4) = {p4}
I(t5) = {p2} O(t5) = {p6}

The input and the output functions can be extended as I : P → T∞ and O : P → T∞

such that #(tj, I(pi)) = #(pi, O(tj)) and #(tj, O(pi)) = #(pi, I(tj)) . The extended
input and output functions are:

I(p1) = {} O(p1) = {t1}
I(p2) = {t1, t3} O(p2) = {p3, p5}
I(p3) = {t2, t2} O(p3) = {p2, p3}
I(p4) = {p3, p4} O(p4) = {t4}
I(p5) = {t2} O(p5) = {t4, t4, t4}
I(p6) = {t5} O(p6) = {}

For the above, Petri Net structure can be drawn as below.

4



Figure 2.1: Structure of the Petri Net

2.4 Dual of a Petri Net
Since, both the vertex sets V1, V2 can be either of the two, places or the transitions, thus
a Petri Net can be accordingly defined, with a resulting interchanged sets of places and
transitions.
For a defined given Petri Net, PN = (P, T, I, O), the dual of the Petri Net PN
denoted by PN = (T, P, I, O).

2.5 Marking of a Petri Net
A marking of a Petri Net PN , at a certain given state t is the assignment of the tokens
to the set of places. It is denoted by Mt = M1,M2, . . . ,Mm where Mi gives the
number of tokens that are available at the place pi at a certain state t.

A marking M is a function defined from P , the set of all places to the non-negative
integers i.e., M : P → Z+, where clearly, M(pi) = Mi. The marking at initial state
(at t = 0) is called the initial marking M0 : P → Z+. A marked Petri Net PN w.r.t
M0 is a 5-tuple structure where PN = (P, T, I, O,M0).

It is obvious to realise that the number of tokens which can be assigned to any
place in a PN is not bounded, and thus, there are significantly infinite many number
of markings possible for the PN .

2.6 Transition enabling and firing
Any transition, say tj in a system, is enabled and can fire with one or multiple input
places; if the number of tokens in all the input places is at least equal to the multiplicity
of all the input arcs for tj of those places respectively. We also call this the triggering
of tj . When tj in a system triggers, a token gets deleted from its input places and
eventually gets created in the respective output places,

5



i.e., a transition t in a marked Petri Net having marking M gets enabled to fire, if for
all pi ∈ P , i = 1 to m and

M(pi) ≥ #(pi, I(tj)).

Figure 2.2: Transition enabling in a Petri Net

Figure 2.3: Transition enabling in a Petri Net

At time t = t0 (initial time), let us have M(t0) = (1, 0, 0). Correspondingly,

I =

1 1 0
0 1 0
1 0 1


and

O =

0 1 0
0 0 1
1 0 0


Since token is in p1 and M(p1) ≥ #(pi, I(tj)), j=1,2,3, thus t1 can fire.

A transition tj ∈ T in a marked PN with a markingM might be enabled to fire. Firing
an enabled transition tj will result in a new marking M defined by

M ′(pi) =M(pi)−#(pi, I(tj)) + #(pi, O(tj)).

It must be noted that transition firing can be in progress until there exists at least
one enabled transition i.e. there exists one token in each input place for a transition.
When there is no enabled transition, the execution halts.

6



Figure 2.4: Illustration of the change in marking in a place when a transition fires.

Fig 2.4 is the illustration of how a marking of a place changes when a transition tj is
fired.

Consider a marked PN drawn below which shall help us illustrate the firing rules,
where we have transitions,say, t1, t3, t4 are enabled.

Figure 2.5: Transitions t1, t3, t4 are enabled.

When a transition tj of a system occurs or triggers, a token gets removed from all
the input places and eventually gets added to the respective output places.

What must be noted here is that it is not necessary for the number of the input
places to be equal to the number of output places w.r.t the triggered transition.

7



Figure 2.6: Transition t4 fires

Figure 2.7: Transition t1 fires

Figure 2.8: Transition t3 fires

8



Chapter 3
Petri Net State Space and Components

3.1 Petri Net State Space
We define the state [6] of a Petri Net by the corresponding markings at that time. The
firing of a transition in a Petri Net represents an alteration in the state of the PN by
changing the marking.

For a markingM : P → Z+ of a PN whereM(pi) =Mi where P = {p1, p2, · · · , pm}
i.e. a Petri Net with m-places has a state space, or, a set of all markings which shall be
equal to Nm.

The change in the state that occurs by firing an enabled transition is defined using
a change function φ, which is known as the next-state function. [6]

Figure 3.1: Petri Net marking.

Formally, if we define the next-state function, φ : Nm × T → Nm for a Petri Net
PN = (P, T, I, O) with the marking M and a transition tj ∈ T is defined if and only
if M(pi) ≥ #(pi, I(tj)) for all pi ∈ P . If φ(M, tj) is defined, then φ(M, tj) = M ′,
where

M ′(pi) =M(pi)−#(pi, I(tj)) + #(pi, O(tj)),∀pi ∈ P.

For a given petri net PN = (P, T, I, O) and an initial marking M0, the PN can be
then executed by successive transition firings. The two sequences which result from
the PN execution are-

1. Sequence of markings: (M0,M1, · · · )

2. Sequence of transitions: (tj0 , tj1 , · · · )

9



These two above mentioned sequences are related as:

φ(Mk, tjk) =Mk+1, k = 0, 1, 2, · · ·

The result of the firing of an enabled transition, say tj is the change in the state
from M to M ′ and we say that M ′ is immediately reachable from M i.e the transition
of the state takes place from M to M ′.

This concept can be extended to reachability which shall be discussed in detail in
subsequent chapters. For the time being, we define it.

Definition 3.1.1. (Reachability)
We define the reachability set R(PN,M) for a petri net PN = (P, T, I, O) with

the marking M as the smallest set of markings defined as:

1. M ∈ R(PN,M)

2. If M ′ ∈ R(PN,M) and M ′′ = φ(M ′, tj) for some tj ∈ T , then M ′′ ∈
R(PN,M).

3.2 Components of a system
The following are the components [5] of a Petri Net structure PN.

1. Events and Conditions
We have discussed about events and conditions above.
A simple view using a PN structure where we have the tabular data is as follows:

PRE-CONDITION EVENT POST-CONDITION
- 1 q

p, q 2 r
r 3 s, p
s 4 -

Figure 3.2: Events and conditions

2. Concurrency
We say that two transitions are concurrent if they are independent i.e. where one

transition occurs independently of the other, either it can fire before, after, or in parallel
to another enabled transition.
When we discuss about concurrency, we deal with the sharing of variables. Concur-
rency is a binary relation denoted by co which exhibits both reflexive and symmetric
nature but not the transitive nature.
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To understand this, we consider three events as follows:
e1 : Cooking food in kitchen
e2 : Singing
e3 : Riding a bicycle
Clearly, e1 co e1 (reflexive) , e1 co e2 ⇒ e2 co e1 (symmetric) but e1 and e3 are

clearly not concurrent.(not transitive).

Figure 3.3: Transitions t2 and t3 executing concurrency.

3. Conflict
Two transitions are said to show conflict when the activities are in parallel i.e. either

of the possible transition can occur/fire but both cannot simultaneously.
Two transitions have a common input place and exhibit non-determinism.

Figure 3.4: Conflict w.r.t p2

Here in the above structure, we have three places p1, p2, p3 and two transitions t1, t2
where both the transitions have p2 as the common input place. If p1 and p2 has at least
one token each and p3 does not, then clearly t1 can fire.

Similarly, if p2 and p3 has at least one token each and p3 does not, then clearly t2
can fire.

However, if all p1, p2 and p3 have at least one token each, then both t1, t2 can fire
and this will give rise to the situation of conflict.

To resolve this conflict, a selection is made amongst the possible enabled transitions
based on some predefined characteristics/ probabilistic measures or policies.

Remark 3.2.1. When conflict and confusion occur together, it gives rise to
confusion.
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Confusions can be as follows:
(a) Symmetric Confusion : Here t1, t3 are concurrent but are in symmetric conflict

with t2.

Figure 3.5: Symmetric Confusion

(b) Asymmetric Confusion : Here t1, t2 are concurrent. If t2 fires initially, then
there is a conflict between t1 and t3.

Figure 3.6: Asymmetric Confusion

4. Sequential Action
It is a straight forward component, as the name suggest where data comes in, gets

processed and then goes out.

Figure 3.7: Straightforward sequence

It is also possible to have a transition that has no input place.
A simple model can be with two transitions and one intermediate place. The tran-

sition will thus, eventually keep on triggering, like a while loop continuing infinitely.
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If we have a simple such sequential model, where let the time spent on each of the
transitions is exponential with parameters, λ and µ for t1 and t2 respectively.

Figure 3.8: M/M/1 model

Then this system can represent a M/M/1 queuing model and the markings of this
system can range from 0, 1, · · ·∞, simply representing the number of customers in the
queue.

5. Resource Sharing
Let us consider two systems under processing. Also, let there be a shared token in

each of these systems.

Figure 3.9: Resource Sharing

Here the first processor consists of the places p1, p2, p3 and t1, t2, t3 and the second
processor consists of the places p4, p5, p6 and t4, t5, t6.

Now, if we want to trigger the transition t1, then we will have to satisfy the con-
dition where t1 can get an input from both p1 and p7. The result that will be obtained
from this will get stored in p2. Now as long as there exists at least one token in p2, the
triggering of t2 is possible which eventually stores the replica of this token in p3.

However, it must be noted that the original data in the form of the token gets re-
turned to the place p7, following to which, we have the transition t4 which is enabled
and can fire.

6. Buffers
Every place in the system can accommodate some number of tokens which can be

both finite or infinite. Such a number denotes the capacity of the PN.
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Clearly, as the name suggests, the finite capacity PN implies a finite upper bound
to the number of tokens and the infinite capacity PN can accommodate infinite number
of tokens.

Figure 3.10: Buffering

For an example to be considered, let us consider that the Buffer B denoting the
maximum number of tokens acts on place p2 such that in p2 part of the system, the
condition exists that there have to be, say, exactly or at most B buffers.

So, now what we do is, introduce another place p4 when p2 finishes, that feeds back
to t1. Now, if we impose the condition that p2 + p4 ≤ B.

Figure 3.11: Adding Conditions in Buffering

Here, we have input p1 and let us take the value B = 3. This means that at most 3
tokens can be accommodated in both p2 and p4 together.

Figure 3.12: Petri Net representation
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In a scenario, let us suppose that at some initial state t0, all the three tokens are
located in p4. After this, the transition t2 can be triggered where a single token goes to
output p3 and also returns to p4 i.e. one process in t2 finishes and comes back to p3 and
we have to model the system with the defined buffer.
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Chapter 4
Properties of Petri Net

4.1 Safeness

Definition 4.1.1. A place pi ∈ P of a Petri Net PN = (P, T, I, O) with an initial
marking M0 is safe [5] if for all M ′ ∈ R(PN,M0) ,M

′
(pi) ≤ 1 . A Petri Net is said

to be Safe if all the places in that Petri Net are safe.

Remark 4.1.2. When modelling a Petri Net as a real hardware device, safeness prop-
erty of a Petri Net can be useful for its analysis.

Remark 4.1.3. Example of a Safe-Petri Net

Figure 4.1: Safe-Petri Net

In the Fig. 4.1, when the transition t1 is fired it removes a token from the place p′
1

and adds a token in the place p1 , this enables the transition t2 and when it is fired a
token is added to the place p′

1 and a token is deleted from the place p1.Thus firing of
any transition results in one token in either p1 or p′

1 at a time. Moreover firing of t2
removes and adds a token in p3 and hence there is only one token in p3.Also a token
is added in p2 and removed from p

′
2.Hence a similar dynamics takes place in p2 and

p
′
2 as of p1 and p′

1.The total number of tokens at any time in a place after firing of any
transition is either 1 or 0, hence the Petri Net is Safe.

Remark 4.1.4. If we interpret a place in a Petri Net as a logical condition then we
know that a logical condition is either true or false. The logical condition being true
means a single token in that place and a logical condition being false means no token
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in that place . Hence multiple tokens have no interpretation and the marking is safe
under this assumption for all the places.

4.2 Boundedness
Safeness is a special case of the more general Boundedness property of Petri Net.

Definition 4.2.1. A place pi ∈ P of a Petri Net PN = (P, T, I, O) with an initial
marking M0 is n-safe or n-bounded [5] if the number of tokens in that place cannot
exceed an integer n

i.e. ∀M ′ ∈ R(PN,M0), M
′
(pi) ≤ n

Remark 4.2.2. If a place is bounded , it is n-safe for some n.A Petri Net is bounded if
all the places in that net are bounded.

Remark 4.2.3. If the number of tokens keeps on increasing in any place , the Petri
Net would become unbounded.The system which is modeled by such kind of Petri Net
would become unstable ,hence boundedness is a relevant property on which analysis
techniques are performed.

4.3 Conservation
Definition 4.3.1. (Strictly-Conservative Petri-Net)
A Petri Net PN = (P, T, I, O) with initial markingM0 is said to be strictly-Conservative
[6] if for all M ′ ∈ R(PN,M0)∑

pi∈P

M
′
(pi) =

∑
pi∈P

M0(pi)

Consider the petri-net in the figure given below ,

Figure 4.2: Not Strictly Conservative.

Here the enabled transitions are t1 and t2 .

M0 = (1, 1, 0, 0, 1) (initial marking)

M1 = (0, 1, 1, 0, 0) (On firing t1)

M2 = (1, 1, 0, 0, 1) (On firing t3)

M3 = (1, 0, 0, 1, 0) (On firing t2)

M4 = (1, 1, 0, 0, 1) (On firing t4)

(4.3.1)
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The Petri Net in Fig 4.2 is not strictly conservative since the number of tokens in
each of the markings are either increased or decreased by one, on consecutive firing of
transitions and hence the token count is not constant.

Remark 4.3.2. When Petri Net are modelled in such a way that the tokens are repre-
sented as resources which are neither created nor destroyed, conservation becomes an
important property to monitor.

Remark 4.3.3. A Petri Net is said to be partially conservative [2], [6] if the token
count is constant for few markings, then changes to another positive integer and re-
mains constant for the next few markings and eventually becomes constant. For a
partially conservative Petri Net, the tokens in a place will never become unbounded.

4.4 Conservative with respect to weighing vector.

Definition 4.4.1. A Petri Net PN = (P, T, I, O) with an initial marking M0 is con-
servative with respect to weighing vector u,where u = (u1, u2, u3, u4......, um) and
|P | = m , u > 0 (positive non-zero vector),if for all M ′ ∈ R(PN,M0),∑

i

ui.M
′
(pi) =

∑
i

.ui.M0(pi)

Remark 4.4.2. A Strictly Conservative Petri Net is conservative with respect to the
weighing vector u = (1, 1, 1, 1, 1...., 1).

Remark 4.4.3. The weighing vector is important concept since the tokens in the places
need not be identical in nature , that is some tokens might be of larger relevance to us
and thus would be assigned a larger weight , whereas some tokens might be of no
importance and thus can be assigned a lesser or 0 weight.Hence in modelling of Petri
Net conservation is an important property which can be investigated with respect to
the importance of tokens in the model.

Remark 4.4.4. For the example of conservation in Fig 4.2 , the Petri Net is conserva-
tive with respect to the weighing vector u = (1, 1, 2, 2, 1).
If we consider the resultant markings after considering the weights of the token, we get

(1, 1, 0, 0, 1).(1, 1, 2, 2, 1) = (1, 1, 0, 0, 1)

(0, 1, 1, 0, 0).(1, 1, 2, 2, 1) = (0, 1, 2, 0, 0)

(1, 0, 0, 1, 0).(1, 1, 2, 2, 1) = (1, 0, 0, 2, 0)

(4.4.1)

Hence the total token number count which is 3, is constant for all the markings after
considering the weights of the tokens.Hence the model is conservative with respect to
the weighing vector u = (1, 1, 2, 2, 1).

Remark 4.4.5. Conservation and Safeness are special cases of boundedness.
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4.5 Liveness
Resource allocation was the motivation to study conservation as a property in Petri
Net.Another problem which may arise in resource allocation is deadlock.

Definition 4.5.1. Deadlock
A deadlock [5] in a Petri Net is a situation where a transition or a set of transitions
cannot fire in that Petri Net.If there exists a transition, say t in T such that t can never
be fired, then t is said to be dead.

Definition 4.5.2. Live
A Petri Net model is said to be live [5] w.r.t an initial marking if it is possible to fire
all the transitions at least once using some firing sequence for all the markings in the
reachability set.
A transition is live if it is not deadlocked. This does not mean that the transition is
enabled,but the fact that it can be enabled in future.

Definition 4.5.3. Potentially Firable
A transition ti of a Petri Net PN is potentially firable in a marking M0 if there exists a
marking M ′ ∈ R(PN,M0) and ti is enabled in M ′

.

Remark 4.5.4. Demonstration of Deadlock Property.
Consider the example of resource allocation for two processes and two resources be-
low,

Figure 4.3: Demonstration of Deadlock

In this model illustrated in Fig 4.3 there are two processes , process a and process b
, also there are two resources , r1 in place p4 and r2 in place p5 .The transition firing
sequence t1t2t3t4t5t6 and t4t5t6t1t2t3 does not produce deadlock.

If both the processes need both the resources , then they would have to share the re-
sources in such a way that each of the process asks for a resource and then later releases
it so the other process can use it.

If we consider the transition firing sequence which starts from t1t4 , then process a
would have the resources from p4 and would want resources from p5 and similarly
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process b would have resources from p5 and would be needing resources from p4.Thus
a deadlock condition would be reached and neither of the two processes would be able
to proceed further.

4.6 Reachability
Definition 4.6.1. Reachability Problem
The reachablity problem considers a Marked Petri Net PN with initial marking M0

and a marking M ′ .Then it aims at answering if M ′ is reachable from M0 , that is if
M

′ ∈ R(PN,M0)?
This is an important property to analyse ,consider the previous example in Fig 4.3. In
this example we can see that for the markingM ′

= (0, 1, 0, 0, 0, 0, 1, 0) a deadlock will
appear, so we would want to know whether from the initial marking is M ′ reachable.

4.7 Coverability
Definition 4.7.1. The coverablity Problem [5]-[7]
Consider a Petri Net PN with an initial marking M0 and a marking M ′ , then is there
a reachable marking that is , M ′′ ∈ R(PN,M0) such that M ′′ ≥M

′
?

Remark 4.7.2. This property is important if we want to consider the scenario where
we want to ignore the contents of same places and would want to focus on covering
the contents or items of only few relevant places.

20



Chapter 5
Analysis Technique-Reachability Tree

5.1 Introduction
The reachability tree/graph is an analytic technique for representing the reachability
set of the Petri Net.
If we want to construct the reachability tree for a given Petri Net , then we need to
consider the marking of that Petri Net at that time as a node and an arc would represent
firing of transition from the initial marking to the subsequent new set of markings.
Consider the Petri Net in the Fig 5.1 given below,

Figure 5.1: A Petri Net Model

If we want to draw the reachability graph of the Petri Net, then consider the ini-
tial marking M0 = (1, 0, 0, 0, 0) , fire the enabled transition T1 from here, and the
new markings are obtained. Fig 5.2 show how the reachability graph gets constructed
following this procedure for the Petri Net model of Fig 5.1.

Many a times we want to analyse the Petri Net in such a way that the direct re-
lations in the markings are visible and the digraph has no cycles, thus we draw it as
a reachability tree, where the nodes might get repeated , thus deleting the existing
cycles. The reachability tree for the previous example of Fig 5.1 is shown in Fig 5.3.
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Figure 5.2: Reachability graph of Petri Net model.

Figure 5.3: Reachability tree with terminaing nodes.

5.2 Scenarios
Here forward we shall be discussing two possible scenarios which are possible for
constructing the reachability set and the reachability tree of a given Petri Net.

Consider the following Petri Net in Fig 5.4,
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Figure 5.4: A Petri Net

The reachability tree for the above Petri Net is given by ,

Figure 5.5: Reachability Tree

On repeating this process again and again in order to proceed, at every stage new
marking will be produced, and we will get an Infinite Reachability set and thus Infi-
nite Reachability tree .
In order to perform analysis for the Petri Net model we need to limit the size of the
tree to a finite one.

5.3 Scenario-2
Another possibility that can exist is when the finite reachability set can also produce
an infinite reachability tree.
Consider the following example in Fig 5.6,
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Figure 5.6: Finite reachability set and infinite reachability tree

In this particular example the reachability set is {(1, 0), (0, 1)} which is finite , but
the reachability tree here is alternative in nature and is infinite.

5.4 Finite Representation of Infinite Reachability Tree
In order to represent the infinite reachability tree in a finite way, the limitation of new
marking is done at each step.The nodes in the infinite tree are categorized in such a
way that they limit themselves in a finite manner.

Definition 5.4.1. (Terminal Node)
They are the nodes that are represented by dead markings.
Dead Markings: Markings where no transitions are enabled.
In this way extension of a marking is not pursued once we reach the terminal node
since no transitions are enabled and thus no transition can be fired.

Definition 5.4.2. (Duplicate Nodes)
They are represented by duplicate markings.
Duplicate Marking: Set of markings that have previously appeared in the tree.
The markings are not extended further once duplicate nodes are detected since succes-
sors of these markings have already been produced in the first occurrence.

5.5 ω Representation
Consider the sequence of transition firing , α which starts from M0 and ends at the
marking M ′ such that M ′

> M0.

i.e. M0 → α→M
′

The marking M ′ is same as M0 except that it has some extra tokens in some of the
places.

i.e. M ′
=M0 + (M

′ −M0)→ extra tokens (> 0)
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If α is fired again ,this time from M
′ , then again M ′ −M0 tokens will be added to the

marking M ′ .

i.e. M ′ → α→M
′′

M
′′
=M

′
+ (M

′ −M0) =M0 + 2(M
′ −M0)

In general if we fire α sequence of transitions n times then we obtain the marking
M0 + n(M

′ −M0) .Thus for the places which have gained tokens from the sequence
α , arbitrarily large number of tokens can be accumulated just by reiterating the se-
quence of transitions again and again.
This arbitrarily large number of tokens are represented by ω.

Hence for each marking the number of tokens in a place are either non negative
integer or ω .Terminal nodes , duplicate nodes along with ω representation restrict
the infinite tree to a finite one. In the previous example of Fig 5.5 , where we were
obtaining an infinite reachability tree , after again applying the finite representation
techniques , the new tree that we get is shown in Fig 5.7

Figure 5.7: Finite reachability tree

Firing t1 as many times , arbitrary number of tokens can be built in P2.

5.6 Analyzing properties of Petri Nets through Reach-
ability Tree.

• A Petri Net is bounded iff the symbol ω never appears in the reachability tree.
Hence if the Petri Net is bounded , it represents the finite state system.Thus to
determine the bound for a particular place , we need to draw the reachability
tree and examine the tree for the largest value of the tokens in the markings
corresponding to that place.

Thus the reachability tree helps in determining the boundedness or safeness
property for individual places in the Petri Net , or the entire Net .
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• Since the reachability tree is finite , conservation can be easily tested by com-
puting the weighted sum of tokens in places for each marking , if the weighted
sum is constant and same for all subsequent markings , then the Petri Net is
strictly conservative .

• If the symbol ω appears for any place in a marking and the corresponding ele-
ment of the weighing vector for that place is 0 , then there can be a scope for the
Petri Net to be conservative , but if the weight is positive of the element of the
weighing vector for any place then the Net will not be conservative under any
circumstances.
Since now the symbol ω tells us that the number of tokens for some place can be
arbitrarily increased, thus clearly the Petri Net won’t be conservative.

• Coverability Problem can also be solved through reachability tree by inspecting
and scanning the reachability tree since all we wish is to determine for a given
marking , M ′ is, if the marking M ′′ ≥M

′ is reachable or not .

• A Petri Net is deadlock free iff the reachability graph of the Petri Net has no
node(represented by a marking) without an outgoing arc.

Consider the example in Fig 5.4, here the reachability graph of the petri net has
no node which does not have an outgoing arc hence it is deadlock free.

Figure 5.8: Petri Net and its reachability graph.

• A Petri Net is live iff for each node of the reachability graph of the corresponding
Petri Net, there exists a path

i.e. M0 → t1 →M1 → t2 →M2 · · ·Mi−1 → ti →Mi

Here the sequence of path t1, t2, · · · ti is such that it contains all the transitions
of the Petri Net.
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Chapter 6
Analysis Technique - Matrix
Equations

6.1 Introduction
Another technique for analysis of Petri Nets is Linear Algebra methods known as
Matrix Equations. A Petri Net PN = (P, T, I, O) can be defined as the tupple
PN = (P, T,A−, A+) where A− is the matrix for input function and A+ is the matrix
for output function of the Petri Net.
The matrix A− and A+ have transitions as the rows (t1, t2, ......, tm) and the places of
the Petri Net as columns of the matrix (p1, p2, p3, ......., pn) .Thus both input and output
matrix are matrices of order m× n.

A−[j, i] = #(pi, I(tj))

Here the quantity represents inputs to transition tj from place pi , where j = (1, 2, ...,m)
and i = (1, 2, .., n).

A+[j, i] = #(pi,O(tj))

here the quantity represents outputs from transition tj to place pi.
Let e[j] be the m unit vector which is zero everywhere except the jth element in the
tupple .The transition tj is expressed through this unit m vector e[j].
e[j] = (0, 0, 0, ...1, 0, 0, 0....0)1×m.The unit entry is at the jth position in the m tupple.

Now a transition tj is enabled in a marking M if ,

M(1×n) ≥ e[j](1×m).A
−
(m×n)

If tj is fired in the marking M then the next state function is given by,

φ(M, tj) = M− e[j].A− + e[j].A+

Since earlier we saw that M ′
(pi) =M(pi)−#(pi, I(tj)) + #(pi, O(tj)) .

Hence φ(M, tj) =M + e[j].(A+ − A−) =M + e[j].A
where A = A+ − A− is the Composite Change Matrix [6].
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Now consider a sequence of transition firings α = tj1tj2 .....tjk .Then

φ(M,α) = φ(M, tj1tj2 .....tjk)

=M + e[j1].A+ e[j2].A+ .....+ e[jk].A

=M + (e[j1] + e[j2] + .....+ e[jk]).A

(6.1.1)

Let g(α) = e[j1]+ e[j2]+ ....+ e[jk] be the firing vector of sequence tj1tj2 .....tjk .The
ith element of g(α) would give the number of times the transition tj has been fired in
sequence tj1tj2 .....tjk .Thus g(α) is the vector of non negative integers.

6.2 Reachability Problem through Matrix Equations

If M ′ is reachable from a marking M then there exist a sequence of transition firings
which will lead M to M ′ , i.e. for M ′

= M + x.A .Here x is a solution vector of
non-negative integers. Consider the Petri Net,

Figure 6.1: A Petri Net Model for Matrix Analysis

The initial marking in the above Petri Net of Fig 6.1 is M = (1, 0, 1, 0). The input
and output matrices are given by ,

A− =

1 1 1 0
0 0 0 1
0 0 1 0

 and A+ =

1 0 0 0
0 2 1 0
0 0 0 1


The composite matrix is given by

A = A+ − A− =

1 0 0 0
0 2 1 0
0 0 0 1

−
1 1 1 0
0 0 0 1
0 0 1 0

 =

0 −1 −1 0
0 2 1 −1
0 0 −1 1



From the figure of the Petri Net model we can see that if t3 is fired then the new mark-
ing would be M ′

= (1, 0, 0, 1). i.e. M → t3 →M
′ .
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Remark 6.2.1. Now we obtain this result from matrix analysis.

M
′
= (1, 0, 1, 0) + (0, 0, 1).

0 −1 −1 0
0 2 1 −1
0 0 −1 1


= (1, 0, 1, 0) + (0, 0,−1, 1)
= (1, 0, 0, 1)

(6.2.1)

Thus we we have validated the above result through matrix analysis .

Remark 6.2.2. If the sequence of firing transitions is given

i.e. M → α→M
′ and α = t3t2t3t2t1

g(α) = e[t3] + e[t2] + e[t3] + e[t2] + e[t1]

= e[t1] + 2e[t2] + 2e[t3]

= (1, 2, 2)

(6.2.2)

This g(α) = (1, 2, 2) is the Firing Vector. Now to obtain the new marking after
applying this sequence of transition firing ,

M
′
= (1, 0, 1, 0) + (1, 2, 2).

0 −1 −1 0
0 2 1 −1
0 0 −1 1


= (1, 0, 1, 0) + (0, 3,−1, 0)
= (1, 3, 0, 0)

(6.2.3)

Hence after firing the sequence of transitions α to the initial marking M , the resultant
marking obtained is M ′

= (1, 3, 0, 0).

Remark 6.2.3. It can be shown that the marking (1,7,0,1) is not reachable from (1,0,1,0)

(1, 7, 0, 1) = (1, 0, 1, 0) + x.

0 −1 −1 0
0 2 1 −1
0 0 −1 1


(0, 7,−1, 1) = (0, 0, 0, 0) + x.

0 −1 −1 0
0 2 1 −1
0 0 −1 1

 (6.2.4)

For the above equation x has no solution , and since x was the firing vector .Thus we
know that no such sequence of transitions exist such that (1,7,0,1) is reachable from
(1,0,1,0).
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6.3 Matrix Approach for Conservation Problem.
For given Marked Petri Net, if we want to know whether the Petri Net is conservative
or not , then matrix approach can be applied. For conservation, we must find a non zero
weighing vector u for which the weighted sum of tokens over all reachable markings
is constant.

If u is a n × 1 vector and M0 is the initial marking and M ′ is the arbitrary reachable
marking from M0 then for conservation ,

M0.u =M
′
.u

Since M ′ is reachable from M0 then after a sequence of transitions firing α we get,

M
′
= φ(M0, α)

=M0 + g(α).A
(6.3.1)

Now since for conservation , M0.u =M
′
.u , therefore ,

M0.u = (M0 + g(α).A).u

M0.u =M0.u+ g(α).A.u

⇒ g(α).A.u = 0 (true for all g(α))

A.u = 0

(6.3.2)

Hence we can formulaise A test for conservation of Petri Net.

Definition 6.3.1. A Petri Net is said to be conservative iff there exists a vector u of
positive integers such that A.u=0 , where A is the composite change matrix (or the
incidence matrix) of the given Petri Net.

Definition 6.3.2. A Petri Net is said to be partially conservative iff there exists a
vector u of non negative integers such that A.u=0 , where A is the composite change
matrix (or the incidence matrix) of the given Petri Net.

Thus through matrix approach we can directly obtain tests for conservation (partial
conservation) of Petri Net.

6.4 Issues in Matrix Analysis Approach

6.4.1 Lack of sequencing information in Firing Vector
Consider the following Petri Net in Fig 6.2 ,
Here the initial marking is M0 = (1, 0, 0, 0, 0) . If we want to know that if (0,0,0,0,1)
is reachable from (1,0,0,0,0) then ,

(0, 0, 0, 0, 1) = (1, 0, 0, 0, 0) + x.


−1 2 1 0 0
0 0 0 0 0
0 0 1 0 0
0 −1 0 1 0
0 2 0 0 −1
0 0 −1 1 1

 (6.4.1)
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Figure 6.2: Example of Petri Net Model

This equation , does not have a unique solution.
The solution for x is (1, x2, x6 − 1, 2x6, x6 − 1, x6). If x6 = 1, x2 = 1 and now

solving for x we will get the firing vector g(α) = (1,1,0,2,0,1).
Hence this implies that t1t2t4t4t6 and t1t4t2t4t6 correspond to the same vector.Hence
we just know about transition firings and nothing about the order of transitions firings.

6.4.2 Solution to Matrix Equation is necessary for reachability but
not sufficient

Solving for x in M ′
=M + x.A in reachability problem is necessary but not sufficient

condition . Consider the Petri Net in Fig 6.3,

Figure 6.3: A Petri Net

Here the initial marking is (1,0,0,0). If we want to know that (0,0,0,1) is reachable
from (1,0,0,0) ,

(0, 0, 0, 1) = (1, 0, 0, 0) + g(α).

[
−1 1 −1 0
0 −1 1 1

]
(6.4.2)

⇒ g(α) = (1, 1) corresponds to the sequence t1t2 or t2t1. But if we observe the
Petri Net we see that neither of these two transitions are possible since t1 and t2 are
not enabled in the initial marking (1,0,0,0).
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Thus a solution to the matrix equation , M ′
= M0 + x.A is not sufficient to prove

reachability of the marking.

Remark 6.4.1. The incidence matrix as used in linear algebra techniques helps in
understanding the dynamic behavior of a system.

1. It provides test for conservative property.

2. It can tell if a marking is reachable from an initial marking or not.

3. The solution to the matrix equations is limited since the rank of the composite
matrix may not always be full.Thus the structural conclusions can not be drawn
in this case. To counter this , adding counter places in the composite matrix was
used but was discarded as a more sophisticated concept of transitive matrix was
introduced.

4. Nothing much about the behavioral properties (except reachability) can be de-
rived through incidence matrix.

The limitations of the matrix analysis techniques paved way for an improved analy-
sis using the labelled place (or transition ) transitive matrices, which shall be discussed
in the subsequent chapter.
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Chapter 7
Transitive Matrix

7.1 Petri Nets conversion into Directed Graphs

A graph G = (V,E) is a directed graph for a Petri Net PN, where the vertex set
V = P ∪ T and E ⊂ (P × T ) ∪ (T × P ) is the set of directed arcs.
Another graph G1 = (Vp, Ep) (or G2 = (VT , ET )) is known as a place ( transition )
transitive graph, where Vp = P (or VT = T ) is the set of all vertices and Ep = Bag(T)
(or ET = Bag(P) ) is the bag of directed arcs,

Further, tk ∈ Ep(orpk ∈ ET ) is the input and output transition (or place) of pi(or
ti) and pj (or tj) respectively.
Below is an example to illustrate such a conversion.

Figure 7.1: Conversion of a Petri Net into Directed Graph
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7.2 Concept of Transitive Matrices
The ideology of transitive matrices [4] were introduced in order to understand and
analyse the properties of a Petri Net.

Before moving forward, we define the following-

Definition 7.2.1. (Adjacent Matrix)

AM =

[
0 (B+)T

B− 0

]
(7.2.1)

where B−[i, j] = #(pi, T (tj)) ; B+[i, j] = #(pi, O(tj)) are the m × n matrices.
The incidence matrix B is defined by B = B+ −B−.

Definition 7.2.2. (Transitive Matrix)

TM = AM.AM =

[
(B+)TB− 0

0 B−(B+)T

]
(7.2.2)

where TMp = (B+)TB− and TM t = B−(B+)T are defined to be the place transitive
and transition transitive matrices respectively. Further defined are the Labelled place
transitive and transition transitive matrices as,

LBP = (B+)TDtB
− (7.2.3)

LBT = (B−)DP (B
+)T (7.2.4)

Here, Dt = diag(t1, t2, ..., tn) and Dp = diag(pl, p2, ..., pm) and ti and (or) pj = 1 if
the transition can fire and (or) the place has a token respectively, else ti, pj = 0.

Remark 7.2.3. Results drawn in [4] discuss well the use of the Labelled place transi-
tive and transition transitive matrices to analyse and draw inferences from various Petri
Nets.

7.3 Issues in Transitive matrix approach
It was observed that the Transitive matrix approach failed for Petri Nets which had a
source and (or) sink transition(s).The calculated LBP could not include all the possibly
appearing transitions of such a Petri Net.

This can be inferred as, say if same transition, say tk ∈ T of a Petri Net PN is a
source transition which has no input place and pm ∈ O(tk), then the corresponding
mth column entries of LBP = 0. Similarly, for a sink transition tk ∈ T which has no
output place and pm ∈ I(tk), then the corresponding mth row entries of LBP = 0.

Hence such a labeled place-transition transitive matrix is insufficient to describe
such a Petri Net. To support the same, consider the following Petri Nets in Fig 7.2.

Using equations (7.2.1), (7.2.2), (7.2.3), we can calculate the Labeled Place transi-
tive matrix for the above three considered Petri Nets. It is evaluated to be,

LBP = (B+)TDtB
− =

0 0 t1
0 0 t2
0 0 0

 .
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Figure 7.2: (a) PN without source/sink transition. (b) With source transition. (c) With
sink transition.

For 7.2(a), B+ =

[
1 0 0
0 1 0

]
and B− =

[
0 0 1
0 0 1

]
.

For 7.2(b), B+ =

1 0 0
0 1 0
0 0 1

 and B− =

0 0 1
0 0 1
0 0 0

.

For 7.2(c), B+ =

0 0 0
1 0 0
0 1 0

 and B− =

1 1 0
0 0 1
0 0 1

.

The same value of LBP for three different Petri Nets as shown above depicts the
vagueness and uncertainty while predicting the behaviour of a particular type of a Petri
Net uniquely.

Remark 7.3.1. The labeled place (transition)-transitive matrix is defined as LBP =
I t.Dt.O, where Dt is the diagonal-transition matrix for T = {t1, t2, . . . , tn} and I, O
are the input and output matrices respectively. The entry in the ith row and jth column
of labeled place transitive matrix (LBP [i, j] = tk) denotes a transitive relation from the
input place pi to the output place pj by firing the transition tk. LBP fails to include all
source/sink transitions and thus, limits the analysis to Petri Nets without source/sink
transitions.
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Chapter 8
Transition Vectors

As discussed in the previous chapter, the concept of transition vectors [2] was intro-
duced for more preciseness and uniqueness while analysing a Petri Net model. This
proves to be a useful tool and allows to encounter all types of Petri Nets, with or with-
out source and (or) sink transitions.

8.1 What are Transition Vectors?
Definition 8.1.1. (Transition Vectors) For a Petri Net PN with m-places and n-transitions
with LBP as its labeled place transitive matrix, the transition vectors are defined in two
fashions.

1. The row m-vector of transitions where TR : P → I(pi), I : P → T is input
function is defined as,

TR =

[
m∑
i=1

LBP [i, 1]
m∑
i=1

LBP [i, 2] · · ·
m∑
i=1

LBP [i,m]

]

2. The column n-vector of transitions where TC : P → O(pi), O : P → T is output
function is defined as,

TC =

[
m∑
j=1

LBP [1, j]
m∑
j=1

LBP [2, j] · · ·
m∑
j=1

LBP [m, j]

]t

To understand this literally, what we mean to say is that, in general, the kth com-
ponent of TR is nothing, but the set of all input transitions for the place pk denoted by
TR(pk).

Similarly, in general, the kth component of TC is nothing, but the set of all output
transitions for the place pk denoted by TC(pk).

These components of both TR and TC are finite linear combinations of transitions
with positive coefficients, which indeed represent the number of incoming arcs and
output arcs in TR and TC respectively.
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8.2 Analysis of various properties of Petri Nets
A Petri Net can be analysed and inferred with respect to various properties [1], [2],[4].
These properties can be broadly classified into-

1. Structural Properties : Static in nature, these are dependent on nodes and arcs
and independent of tokens availability.

• Structural conservation (partial)

• Cyclic/ acyclic

• Structural Conflict(or free)

• State Machine

• Self-loop (or free)

• Structural Concurrency

2. Behavioral Properties : Dynamic in nature, these are dependent on the initial
marking / availability of tokens.

• Behavioral conservation

• Safeness and Boundedness

• Behavioral Conflict

• Reachability

• Deadlock and Liveness

• Behavioral Concurrency

8.2.1 Cyclic / Acyclic Nature
A Petri Net is acyclic if TR and (or) TC has at least one zero component. Also, a Petri
Net is acyclic if and only if it has at least one source and (or) one sink place. [2]

8.2.1.1 Algorithm to find directed cycle

The transition vectors (row and column) are computed as input.

1. Consider the ith element (place) of the column transition vector.

2. If the considered place is same as previous place then step -6, else next step.

3. Select the transition of the selected(previous) place in the column transition vec-
tor.

4. Locate the same transition in the row transition vector.

5. Go to step 2.

6. Directed cycle is obtained.

7. END.
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8.2.2 Conflict (or free)
A Petri Net is conflict-free if and only if every component of TC has exactly one tran-
sition, or, in case any component has more than one transition, the same transitions set
must appear in the corresponding component of TR. [2]

8.2.3 State Machine
A Petri Net is said to be state machine if and only if all the components of TR and TC
are respectively distinct. [2]

8.2.4 Self loop (or free)
A Petri Net is said to be free of a self loop i.e. pure if and only if the corresponding
components of both TR and TC have no transitions that are same or identical at a certain
place pk. [2]

8.2.5 Structural Concurrency
A Petri Net is said to be structurally concurrent if and only if at least one entry of the
column transition vector TC has coefficient 2 or greater than 2. [2]

8.2.6 Demonstration of transition vector results through an exam-
ple.

Figure 8.1: Example of a Petri Net.

The labelled place transitive matrix for the above example is given as,

LBP =


0 t1 t2 0
0 0 0 t3
0 0 0 t4
t5 0 0 0


The transition vectors TR and TC for the above example in Fig. 8.1 is given by ,

TR = [t5 t1 t2 t3 + t4]
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and
TC = [t1 + t2 t3 t4 t5]

t

• Since the transition vectors don’t have any zero component thus, the PN in the
given example is cyclic.

• The Petri Net graph is self loop free since the corresponding distinct components
of row transition vector and column transition vector are different.

• The elements of row transition vectors and column transition vectors are differ-
ent thus, it can be implied that they have only one (input place) and one (output
place) and hence it is a state machine.

• The first element of TC is t1 + t2 and hence t1 and t2 are in conflict and have
choice for firing when the token is available in p1. The firing sequence (t1.t3) or
(t2.t4) can take place.

• Using the algorithm for directed cycle , we get directed cycles as,

p1 → t1 → p2 → t3 → p4 → t5 → p1

and
p1 → t2 → p3 → t4 → p4 → t5 → p1

Remark 8.2.1. The transition vectors, TR and TC , and results mentioned based on it, as
suggested in [2], have been used to overcome the ambiguous situation as determined
in transitive transition matrices. . The ith components of TR and TC give the set of
input and output transitions of pi, respectively. These components of the transition
vectors are a finite linear combination of tk ∈ T (k = 1, 2, . . . , n) with positive integer
coefficients.
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Chapter 9
A Petri Net model of a Small Eatery

Given the spread of the COVID-19 virus, social distancing is the need of the hour.
Here, designed and proposed is a small eatery model that is supposed to provide service
to its customers while practicing social distancing and allowing a minimum number of
people together at any possible stage.

Thus, this proposed model of a small eatery that originally had four tables has
revised the seating plan to provide service at two alternate tables while taking all nec-
essary precautions against the virus and ensuring social distancing.

Further, for the arrival of any new customer at the eatery, two separate waiting
places p9, p10 have been marked, which shall eventually pave the way to the respective
table (either the first or the second respectively). The model has been designed such
that the new customers cannot occupy the tables unless the previous customers who
are seated on the tables eat and vacate.

Also, the seated customer shall place the order once. It is assumed and supposed
that the customer at a certain waiting place cannot shift to the other waiting place w.r.t
the other table.

Figure 9.1: Petri Net graph of the proposed model.

The above figures shows the Petri Net graph of the proposed model of the small
eatery where P = {p1p2, p3, p4, p5, p6, p7, p8, p9, p10} and T = {t1, t2, t3, t4, t5, t6, t7}
are the places (conditions) and transitions (events) respectively.

The presence of a token at any place denotes the condition to be true; while the
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absence of a token means that the condition corresponding to a place is not true (or is
not happening).

PLACES CONDITIONS
p1 Customer is seated at sanitized first table and is then ready to place the order.
p2 The service provider (waiter) is free and can provide service at either table.
p3 Customer is seated at sanitized second table and is then ready to place the order.
p4 The customer at first table is waiting for the food to be served.
p5 The order is finalized by the service provider (waiter).
p6 The customer at second table is waiting for the food to be served.
p7 The customer at first table eats and vacates the place.
p8 The customer at second table eats and vacates the place.
p9 A new customer has arrived to occupy the first table.
p10 A new customer has arrived to occupy the second table.

Table 9.1: Depiction of places (conditions) of the proposed model.

TRANSITIONS ACTIVITIES
t1 The service provider (waiter) takes orders from the first table.
t2 The service provider (waiter) takes orders from the second table.
t3 The service provider (waiter) serves the order at the first table.
t4 The service provider (waiter) reports the order in the kitchen.
t5 The service provider (waiter) serves the order at the second table.
t6 First Table is sanitized and a menu card is placed.
t7 Second Table is sanitized and a menu card is placed.

Table 9.2: Depiction of transitions (activities) of the proposed model.

A prior illustrative assumption for this hypothesis is that when the first two cus-
tomers arrive, a token gets created at the places p1 and p3 respectively, and another to-
ken is created at the place p2 signifying the availability of the service provider (waiter)
to provide service.

Thereafter, whenever the new customer arrives, it is denoted in the model by the
creation of a token at p9 and p10 for the first and second table respectively.

9.1 Analysis and Interpretation of the proposed model

9.1.1 Structural Analysis
1. Conservation Property

With an initial marking M0, we call a Petri Net PN = (P, T, I, O) conservative if
for all M+ ∈ R(PN,M0), ∑

(pi∈P )

M+(pi) =
∑

(pi∈P )

M0(pi) (9.1.1)

where, the reachability set R(PN,M0) for a Petri Net PN with the initial markingM0

is the smallest set of markings defined as:

41



• M+ ∈ R(PN,M0)

• IfM+ ∈ R(PN,M0) andM++ is immediately reachable fromM+, thenM++ ∈
R(PN,M0).

Thus by conservation, we mean conservation of the tokens in place i.e., the to-
ken count for all the places at any state remains constant. A Petri Net is structurally
conservative (partially) [5] if there exists a positive (non-negative) vector w such that

D.w = 0 ,where w ≥ 0.

In order to find the incidence matrix D, we calculate the input matrix I , and the
output matrix O for the proposed model as follows,

I =



1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1



O =



0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0


The incidence matrix D = O − I is given by,

D = O − I =



−1 −1 0 1 1 0 0 0 0 0
0 −1 −1 0 1 1 0 0 0 0
0 0 0 −1 0 0 1 0 0 0
0 1 0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 0
1 0 0 0 0 0 −1 0 −1 0
0 0 1 0 0 0 0 −1 0 −1


The above matrix can be expressed as the system of linear equations when substituted
in D.w = 0. The following is the set of linear equations.

−w1 − w2 + w4 + w5 = 0

−w2 − w3 + w5 + w6 = 0

−w4 + w7 = 0

w2 − w5 = 0

−w6 + w8 = 0

w1 − w7 − w9 = 0

w3 − w8 − w10 = 0
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Solving these equations, we get a solution as below;

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10


=



1
2
3
1
2
3
1
3
0
0


The existence of a non-negative vector w such that D.w = 0 implies that the Petri

Net model is partially conservative.
This suggests that the Petri Net might be conservative w.r.t some initial marking

and might not be conservative w.r.t some other initial marking. Hence the token count
may vary after certain stages. This is further elaborated in the proposed model in sub-
sequent section.

For studying more properties like conflict, concurrency, self-loop, state machine,
cyclic/acyclic nature [3], [5]-[7], we compute the transitive matrix [4] and transition
vectors [2] for the proposed model.

The Labeled Place-Transitive matrix, LBP = I t.Dt.O is given by,

The row-transition vector corresponding to the above labeled Place-Transitive ma-
trix is given by,

TR = [2t6 2t3 + t4 + 2t5 2t7 2t1 2t1 + 2t2 2t2 2t3 2t5 0 0]

The column-transition vector corresponding to the above labeled Place-Transitive
matrix is given by,

TC = [2t1 2t1 + 2t2 + 2t3 + 2t5 2t2 2t3 t4 2t5 t6 t7 t6 t7]
t
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2. Cyclic/acyclic nature
With the concept as mentioned in section (8.2.1), the transition vector correspond-

ing to our proposed model TR has zero components at the ninth and tenth place; thus,
the Petri Net model is acyclic.

Also, a Petri Net is acyclic if and only if it has at least one source and (or) one sink
place.

To understand the physical interpretation of the Petri Net’s acyclic nature, let us
suppose the Petri Net is not acyclic. Then there must exist a directed path xi → xj ,
∀xi, xj ∈ P ∪ T . However, for xi = p9, there is no incoming arc; hence the directed
path is not possible for p9. Further, if p9 and p10 would not have been source places,
there would have been a cycle that would have repeated endlessly; hence the dynamics
between the customer and the waiter would go on, without the possibility of the arrival
of a new customer.

Moreover, it is inferred from [2] that the acyclic nature of Petri Net does not mean
that it cannot contain a cycle. With the implementation of section (8.2.1.1), we can find
a directed cycle p1t1p4t3p7t6p1, in the proposed model. The same can be interpreted as
the arrival of a customer at the first table; the service provider(waiter) taking his order;
the customer waiting for food; the service provider(waiter) serving him; and finally,
the customer eating and vacating the place, followed by the arrival of a new customer.

3. Self-loop free
With the concept as mentioned in section (8.2.4), the transition vectors that corre-

spond to our proposed model show that the PN is self-loop free.
From Fig. 9.1, it can be inferred that under any condition that happens to be accu-

rate, it would not continue to occur an indefinite number of times. To support this, on
the contradictory, let if possible, a self-loop exists at the place p4 w.r.t the transition t3.
This self-loop can be interpreted as the customer waiting for the food, followed by be-
ing served; waiting for the food again; and the cycle repeats. Undoubtedly, this turns
out to be an irrelevant situation making our assumption wrong. Thus, the proposed
Petri Net model is self-loop free, and no condition/event shall occur indefinite number
of times.

4. State Machine
With the concept as mentioned in section (8.2.3), in the transition vector, TR of the

proposed model, the ninth and tenth component is identical, equal to zero.
Hence the model is not a state machine, which implies that it necessarily does not

have one input and one output place for every transition i.e., more than one conditions
can simultaneously hold true for an activity to occur.

For e.g., from Fig.9.2 it is evident that both p1 and p2 lead to the happening of t1.
Therefore, this shall give rise to either concurrency, or conflict, or both.

5. Conflict
As it has been seen that the proposed Petri Net model is not a state machine, thus

conflict may or may not arise. With the concept as mentioned in section (8.2.2), in the
proposed model, the column transition vector TC has more than one transitions in the
first component, and the corresponding entry of TR is different, implying that there is
a conflict between t1 and t2 .Thus, the Petri Net model is not conflict-free.
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All possible conflicts that can arise in the Petri Net model are between the tran-
sitions t1, t2, t3, t5. The preciseness of the conflicting transitions is mentioned in the
behavioral aspect of conflict.

6. Concurrency
With the concept as mentioned in section (8.2.5), since the column transition vector

TC of the proposed model has coefficient 2 in the entries of its first, second, third, fourth
and sixth components, the transitions in these components along with the remaining
transitions form structurally possible concurrent transitions.

All the possible concurrent transitions have been mentioned in Table 9.3 .

First Transition Second Transition Structural Concurrency
t1 t4 Yes
t1 t6 Yes
t1 t7 Yes
t2 t4 Yes
t2 t6 Yes
t2 t7 Yes
t3 t4 Yes
t3 t6 Yes
t3 t7 Yes
t5 t4 Yes
t5 t6 Yes
t4 t7 Yes

Table 9.3: List of all possible structural concurrent transitions.

9.1.2 Behavioral Analysis
There can be many possible scenarios for this Petri Net model to work, depending
upon the customers (those being provided the service inside and those waiting outside)
and the service provider at the eatery. We throw light on two possible scenarios for the
proposed model.

9.1.2.1 Scenario 1

As per the first scenario, after the eatery is open to provide service at the initial stage,
it has two customers seated on the sanitized first and second tables respectively, and
the service provider (waiter) is free to serve the two customers. In this scenario, it is
assumed that no new customer has arrived at the eatery The initial marking that depicts
this scenario is M0 = {1, 1, 1, 0, 0, 0, 0, 0, 0, 0}.

Fig. 9.2 depicts the Petri Net model for the above-depicted scenario with the initial
marking M0 and the set of all reachable markings are mentioned in Table 9.4 .

9.1.2.2 Scenario 2

The second possible scenario says that, after the eatery is open to provide service, it
has two customers at the initial stage, seated on the sanitized first and second table
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Figure 9.2: Petri Net graph of the proposed model depicting scenario 1 with the initial
marking M0.

Marking Value of Marking
M0 {1, 1, 1, 0, 0, 0, 0, 0, 0, 0}
M1 {0, 0, 1, 1, 1, 0, 0, 0, 0, 0}
M2 {1, 0, 0, 0, 1, 1, 0, 0, 0, 0}
M3 {0, 1, 1, 1, 0, 0, 0, 0, 0, 0}
M4 {1, 1, 0, 0, 0, 1, 0, 0, 0, 0}
M5 {0, 1, 1, 0, 0, 0, 1, 0, 0, 0}
M6 {0, 0, 0, 1, 1, 1, 0, 0, 0, 0}
M7 {1, 1, 0, 0, 0, 0, 1, 0, 0, 0}
M8 {0, 0, 0, 1, 1, 0, 0, 1, 0, 0}
M9 {0, 1, 0, 1, 0, 0, 1, 0, 0, 0}
M10 {0, 1, 0, 0, 0, 0, 1, 1, 0, 0}
M11 {0, 0, 0, 0, 1, 1, 1, 0, 0, 0}
M12 {0, 1, 0, 0, 0, 1, 1, 0, 0, 0}
M13 {0, 1, 0, 1, 0, 1, 0, 0, 0, 0}

Table 9.4: Markings of the proposed model as per Scenario 1.

respectively, and the service provider (waiter) is free to serve the two customers. In
this scenario, the arrival of new customer(s) is possible at the eatery; and it is assumed
that new customer(s) is/are in the separate waiting places (p9 and p10) to occupy the
first and second table respectively, after the previously seated customers vacate the
tables. The initial marking that depicts this scenario is G0 = {1, 1, 1, 0, 0, 0, 0, 0, 1, 1}.
Fig. 9.3 depicts the Petri Net model for the above-depicted scenario with the initial
marking G0 .

We shall now discuss these scenarios and further analyze the proposed Petri net
model for the same.

One possibility in this first scenario is that the service provider (waiter) initially
visits the first table and takes the order, where after the order is reported to the kitchen,
and the customer waits until the order gets prepared for serving. Then, he visits the
second table and takes the order, which is further reported to the kitchen. Now, orders
for both the tables have been placed, and the service provider (waiter) is idle until the
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Figure 9.3: Petri Net graph of the proposed model depicting scenario 2 with the initial
marking G0.

food gets prepared. When the service has been provided at both the tables, the cus-
tomers eat and vacate the place. Continuing further, if Scenario 2 is taken into account,
then the arrival of a new customer is possible for the first table and (or) the second ta-
ble, and the process can repeat.

1. Reachability
From [6],[8], the reachability problem considers a marked Petri Net PN with an

initial marking M0 and a marking M1 and aims at answering if M1 is reachable from
M0, that is; whether M1 belongs to the set R(PN,M0). The reachability tree or graph
is an analytic tool for representing the reachability set of the Petri Net.

Suppose we construct a reachability tree for the given Petri Net; in that case, we
need to consider the marking of the Petri Net at that state as a node, and an arc would
represent firing of transition from the initial marking to the subsequent set of new
markings. Fig. 9.4 shows the Reachability tree of the Petri Net model shown in Fig.
9.2.

Additionally, refer to Fig. 10.1 1 for the reachability tree of the Petri Net model as
shown in Fig. 9.3.

From Fig. 9.4 below, it can be perceived that several paths can be chosen for the
functioning of the proposed model yielding dissimilar results.

In total, six different paths exist from the initial marking M0 to the final mark-
ing M10, which infers that both the customers have been served and have vacated the
eatery, and no new customer has arrived (as per scenario 1).

Table 9.5 highlights all the likely paths from the reachability tree in Fig. 9.4. The
six paths exhibit the possible order of activities w.r.t the occurrence of the required
pre-conditions.

2. Safeness
A place pi in a Petri Net structure with an initial marking M0 is safe if for all

markings M ′ that belong to the Petri Net’s reachability set, M ′(pi) ≤ 1 i.e. the total
number of tokens at any state in a place after firing of a transition is either 1 or 0.

1In Appendix on page number 54
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Figure 9.4: Reachability Tree for the Petri Net Structure of the proposed model depict-
ing scenario 1 and all possible markings due to various transitions firing.

1. M0 M1 M3 M5 M11 M12 M10

2. M0 M1 M3 M6 M13 M12 M10

3. M0 M1 M3 M6 M13 M9 M10

4. M0 M2 M4 M6 M13 M9 M10

5. M0 M2 M4 M6 M13 M12 M10

6. M0 M2 M4 M7 M8 M9 M10

Table 9.5: List of all possible paths.

A Petri Net is said to be safe if all the places in that Petri Net are safe.
Here, it can be inferred from the reachability tree in Fig. 9.4 and Fig. 9.52, that the

proposed Petri Net model is safe for any marking reachable from M0 (in case of the
first scenario) and G0 (in case of the second scenario).

Since the tokens’ presence at a place in this model justifies the happening of that
particular activity, the number of tokens at any place should be either 0 or 1. An infinite
number of tokens at any place, or number of tokens other than 0 and 1 at any place,
does not have any physical meaning with respect to the proposed model.

Therefore, the conditional nature of the proposed Petri Net model is validated
through the safeness property.

3. Behavioral Conservation
We have already shown in section (9.1.1) in (1.) that the model is partially conserva-
tive.
For scenario-1: It can be inferred from the Table 9.4 that the model is conservative,
having an initial marking M0.

To relate this property with the proposed model, let us consider a state where we
have two customers seated at the first and second table respectively, and a service

2In Appendix on page number 53
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provider (waiter). At any given instance, the possible states of the customers are either
of the following-

1) Arrival at the table and ready to place the order.
2) Waiting for the food after placing the order.
3) Eating the served food and eventually leaving.

Similarly, the possible states of the service provider (waiter) are either of the following
1) Free to attend the customers.
2) Confirm the order for serving the food.

It can be seen that the state of customers and service provider (waiter) cannot min-
gle within itself; for example, a customer cannot be waiting for food and leaving at the
same instance. Hence the shuffling of tokens is happening between the three states of
the customer; and two states of the service provider. This physical nature of the model
is validated by the conservative nature of the model with respect to the initial marking
M0.

For scenario-2: It can be inferred from the Table 10.13 that the model is not conserva-
tive, as the token count remains constant for few markings but eventually varies from
being five for some markings; to four; and to three, at various stages. The physical
nature indicates that the tokens are shuffling between the states of two customers at
both the tables respectively; the service provider; and the two customers at the waiting
place (p9, p10).

Up to this activity (before firing of t6 and t7), the token count is constant, but as
soon as the customers of the first and second table vacate, and the waiting customers
get seated, the token count represents shuffling between those two new customers and
the service provider; instead of four customers (since another pair of new customers
has not arrived), and the service provider.

3. Boundedness
A place pi in a Petri Net structure with an initial marking M0 is safe if for all

markings M ′ that belong to the Petri Net’s reachability set, M ′(pi) ≤ 1 i.e. the total
number of tokens at any state in a place after firing of a transition is either 1 or 0. A
Petri Net is said to be safe if all the places in that Petri Net are safe.

Further, it is apparent that conservativeness is a particular case of boundedness.
Hence, this model is structurally as well as behaviorally bounded. Further, the number
of tokens at any place can be either 0 or 1. The reachability trees 4 in Fig. 9.4, 10.1
(in Appendix), and Tables 9.4, 10.1 imply that the Petri Net is not unbounded. Thus,
the proposed Petri Net model, which exhibits safeness, is 1-bounded i .e., behaviorally
bounded for both the scenarios.

4. Deadlock
A Petri net model is said to be live w.r.t an initial marking if it is possible to fire

all the transitions at least once using some firing sequence for all the markings in the
reachability set. If there exists a transition, say t in T such that t can never be fired,
then t is dead.

3In Appendix on page number 53
4A Tree is a connected digraph without a directed cycle.
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For the first scenario, from Fig. 9.2, it can be seen that the reachability tree in Fig.
9.4 has one vertex i.e.,M10, which has no outgoing arc [1]. Hence, deadlock appears at
M10 as no transition from T = {t1, t2, t3, t4, t5, t6, t7} can fire. This suggests that the
customers at both tables have been served, and the customers have vacated the eatery.
Then, the service provider (waiter) becomes idle with no arrival of a new customer.

Similarly, for scenario-2 from Fig. 9.3, it can be seen that the reachability tree
in Fig. 10.15 shows deadlock at the node M10. This deadlock is the stage when the
initial customers seated at both the tables have eaten and vacated; also, the customers
who were waiting to be seated at these tables have eaten and vacated while the service
provider (waiter) has served all four customers and is currently idle as no new customer
has arrived after this. The deadlock will thus persist until the new customer arrives.

5. Liveness
A Petri net model is said to be live w.r.t an initial marking if it is possible to fire

all the transitions at least once using some firing sequence for all the markings in the
reachability set. If there exists a transition, say t in T such that t can never be fired,
then t is dead.

For scenario-1 in the proposed model, t6 and t7 act as the dead transitions because
it is assumed that no new customer arrives in this scenario. Hence, the proposed model
does not exhibit liveness for the initial marking M0.

Now considering scenario -2, we have a situation where every transition can be
fired, as there are new customers who can occupy the first and the second table. Thus,
there is no transition that is dead, and hence, the Petri Net model with respect to the
initial marking G0 is live. The physical interpretation of liveness is that all the activi-
ties that are mentioned in the model will happen at least once.

6. Behavioral Conflict
Two transitions are said to show conflict when the activities are in parallel i.e.,

either of the possible transition can occur/fire, but both cannot simultaneously. Two
transitions have a common input place and exhibit non-determinism.

From section (8.2.2), the conflicts can possibly exist between the transitions t1, t2, t3
and t5. The design of the model (the token placing) is such that t1 and t3 cannot be
enabled simultaneously since tokens can only be at p4 after firing of t1 (similarly, t2
and t5 cannot be enabled simultaneously).

Hence the only conflicts that would occur in the Petri Net model for both scenarios
would be between t1 and t2, t1 and t5, t2 and t3, and t3 and t5.

The physical interpretation of the conflict between t1 and t2 implies that when both
customers at first and second table are ready to place the order, the service-provider
(waiter) can only serve/attend one table at a time.

7. Behavioral Concurrency
Two transitions are concurrent if they are independent to each other i.e., where one

transition occurs independently of the other, either it can fire before, after, or in parallel
to another enabled transition.

Table 9.6 gives the behavioral concurrency between the transitions.
For understanding concurrency between two transitions, say t1 and t7, tokens are

available for places p1, p2, p8, and p10 i.e., a customer has arrived at the first table and
5In Appendix on page number 54
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First Transition Second Transition Behavioral Concurrency
t1 t4 No
t1 t6 No
t1 t7 Yes
t2 t4 No
t2 t6 Yes
t2 t7 No
t3 t4 No
t3 t6 No
t3 t7 Yes
t5 t4 No
t5 t6 Yes
t4 t7 No

Table 9.6: List of all possible behaviorally concurrent transitions.

is ready to place the order. Also, the service provider (waiter) is available to provide
service to the customer, and a customer at the second table has already been served,
after which he leaves, allowing the arrival of the next customer.

Henceforth, the service provider (waiter) who is serving at the first table; and san-
itization of the second table, along with the placing of a menu card on it are two
independent activities that exhibit concurrency.

For understanding concurrency between t1 and t4 (not behaviorally concurrent),
the tokens must be available at places p1, p2, and p5, which is not possible as per the
Petri Net’s design (token placing). Also, if true, it would imply that the waiter is idle
and is finalizing the order for some customer at the same instance, which is absurd.
Thus t1 and t4 not being behaviorally concurrent, validate the physical interpretation.
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Chapter 10
Conclusion

In this paper, we have discussed and interpreted the structural and behavioral properties
of the proposed model. The proposed small eatery model has been construed so that it
can be suitably related to the actual restaurant scenarios. This paper can be a motivation
towards designing and analyzing larger restaurant/eatery models.
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A.Appendix

Appendix
Marking Value of Marking
G0 {1, 1, 1, 0, 0, 0, 0, 0, 1, 1}
G1 {0, 0, 1, 1, 1, 0, 0, 0, 1, 1}
G2 {0, 1, 1, 1, 0, 0, 0, 0, 1, 1}
G3 {0, 1, 1, 0, 0, 0, 1, 0, 1, 1}
G4 {1, 1, 1, 0, 0, 0, 0, 0, 0, 1}
G5 {0, 0, 1, 1, 1, 0, 0, 0, 0, 1}
G6 {0, 1, 1, 1, 0, 0, 0, 0, 0, 1}
G7 {0, 0, 0, 1, 1, 1, 0, 0, 0, 1}
G8 {0, 1, 1, 0, 0, 0, 1, 0, 0, 1}
G9 {0, 0, 0, 0, 1, 1, 1, 0, 0, 1}
G10 {0, 1, 0, 0, 0, 1, 1, 0, 0, 1}
G11 {0, 1, 0, 0, 0, 0, 1, 1, 0, 1}
G12 {0, 1, 0, 1, 0, 1, 0, 0, 0, 1}
G13 {0, 1, 0, 1, 0, 0, 0, 1, 0, 1}
G14 {1, 0, 0, 0, 1, 1, 0, 0, 0, 1}
G15 {1, 1, 0, 0, 0, 1, 0, 0, 0, 1}
G16 {1, 1, 0, 0, 0, 0, 0, 1, 0, 1}
G17 {0, 0, 0, 1, 1, 1, 0, 0, 1, 1}
G18 {0, 0, 0, 1, 1, 1, 0, 0, 1, 1}
G19 {0, 1, 0, 1, 0, 1, 0, 0, 1, 1}
G20 {0, 1, 0, 0, 0, 1, 1, 0, 1, 1}
G21 {0, 1, 0, 1, 0, 0, 0, 1, 1, 1}
G22 {0, 1, 0, 0, 0, 0, 1, 1, 1, 1}
G23 {0, 1, 1, 0, 0, 0, 1, 0, 1, 0}
G24 {0, 0, 0, 0, 1, 1, 1, 0, 1, 0}
G25 {0, 1, 0, 0, 0, 1, 1, 0, 1, 0}
G26 {0, 1, 0, 0, 0, 0, 1, 1, 1, 0}
G27 {0, 1, 1, 1, 0, 0, 0, 0, 1, 0}
G28 {0, 0, 0, 1, 1, 1, 0, 0, 1, 0}
G29 {0, 1, 0, 1, 0, 1, 0, 0, 1, 0}
G30 {0, 1, 0, 1, 0, 0, 0, 1, 1, 0}
G31 {0, 0, 0, 0, 1, 1, 1, 0, 1, 1}
G32 {1, 0, 0, 0, 1, 1, 0, 0, 1, 1}
G33 {1, 1, 0, 0, 0, 1, 0, 0, 1, 1}
G34 {1, 1, 0, 0, 0, 0, 0, 1, 1, 1}
G35 {0, 0, 0, 1, 1, 0, 0, 1, 1, 1}
G36 {1, 1, 1, 0, 0, 0, 0, 0, 1, 0}
G37 {0, 0, 1, 1, 1, 0, 0, 0, 1, 0}
G38 {1, 0, 0, 0, 1, 1, 0, 0, 1, 0}
G39 {1, 1, 0, 0, 0, 1, 0, 0, 1, 0}
G40 {1, 1, 0, 0, 0, 0, 0, 1, 1, 0}
G41 {0, 0, 0, 1, 1, 0, 0, 1, 1, 0}

Table 10.1: Markings of the proposed model as per Scenario 2.
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A.Appendix

Figure 10.1: Reachability Tree for the Petri Net Structure of the proposed model depicting
scenario 2 and all possible markings due to various transitions firing.
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