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ABSTRACT 

 

 
Hydrothermal synthesis of Graphene quantum dots (GQDs) was done using corn powder 

as a carbon source and water as a solvent. A high-resolution transmission electron 

microscope shows uniform size distribution with an average diameter of 42 nm. Fourier 

transform infrared analysis of synthesized GQDs indicates the presence of C=C bond, O-

H groups, and aromatic rings. The absorption spectrum of GQDs shows a sharp band at 

around 227 nm, corresponding to the π-π* transition, and a shoulder peak at 283 nm 

assigned to the n-π* transition. The band gap of produced GQDs corresponding to 283 

nm is 4.07 eV. When the GQDs are excited at 350 nm, the photoluminescence (PL) 

spectrum with a peak maximum of 450 nm was observed. The band maximum shifted 

blue of about 100 nm when excited with the band edge of absorption. Hence the PL is 

excitation dependent. The GQDs could be used as a potential candidate for hazardous 

metal ions detection in drinking water, and as a catalyst in degrading hazardous dye in 

wastewater treatment. 
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CHAPTER 1 

INTRODUCTION 

1.1. Nanotechnology: 

Nanotechnology is a rapidly growing field dealing with the study and modification of 

matter at the nanoscale, which is approximately 1 to 100 nanometres. At this scale, the 

physical, biological and chemical properties of substances change dramatically, resulting 

in unique properties and potential applications [1]. Nanotechnology has the potential to 

transform from electronics and energy to medicine and environmental science [2]. 

One of the significant applications of nanotechnology is in electronics. Nanoscale 

materials, such as graphene and carbon nanotubes, are being used to create faster, smaller, 

and more energy-efficient electronic devices [3]. The electric properties of these materials 

are unique which makes them ideal for use in electronic components, such as transistors, 

sensors, and memory devices. Nanotechnology is being used to create new materials with 

unique properties that can be used in various applications. For example, the creation of 

quantum dots, which are nanoscale semiconductor particles, has opened up new 

possibilities in areas such as electronics, optics, and quantum computing [4-5]. 

In the field of medicine, nanotechnology has the potential to revolutionize the diagnosis 

and treatment of diseases. Nanoparticles can be designed to target specific cells or tissues 

in the body, allowing for more precise drug delivery and reduced side effects. 

Nanoparticles can also be used to create new diagnostic tools that are more sensitive and 

accurate than current technologies. For example, gold nanoparticles can be used to detect 

cancer cells in the early stages [5-7]. 
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Nanotechnology is also being explored for its potential applications in energy production 

and storage. Nanoscale materials, such as quantum dots and nanowires, can be used for 

creating solar cells and batteries with better efficiency. Nanotechnology can also be used 

for improving the efficiency of existing energy technologies, such as fuel cells and wind 

turbines [7]. 

In material science, nanotechnology is being used to create new materials with enhanced 

properties. For example, carbon nanotubes and graphene are being used to create stronger, 

lighter, and more conductive materials that can be used in various applications, from 

electronics to aerospace. Nanoparticles can also be used to create new coatings and films 

with unique properties, such as self-cleaning or anti-corrosive properties. 

In engineering, nanotechnology is being used to create new devices and systems with 

enhanced performance. For example, nanoscale sensors and actuators can be used to 

create more precise and efficient control systems for various applications, from 

manufacturing to robotics. Nanotechnology is also being used to create new energy 

technologies, such as solar cells and fuel cells, that can be more efficient and cost-

effective than current technologies [8-10]. 

In environmental science, nanotechnology is being used to develop new solutions for 

water treatment, air purification, and pollution control. Nanoparticles can be used for 

removing contaminants from water and air, and nanomaterials can be used to create more 

efficient catalysts for chemical reactions. Nanotechnology is also being used to develop 

new sensors and monitoring systems that can detect and track environmental pollutants 

at the nanoscale [10-12]. 

Nanotechnology is being used to develop new diagnostic and therapeutic tools that can 

target specific cells or tissues in the body. Nanoparticles, such as liposomes and 
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dendrimers, can be used to deliver drugs or genetic material, reducing the side effects of 

traditional treatments. Nanotechnology is also being used to develop new sensors and 

imaging techniques that can detect and monitor biological processes at the nanoscale. 

Despite its many potential applications, nanotechnology also raises concerns about its 

potential impact on the environment and human health. As such, it is essential to regulate 

and oversee the development and use of nanotechnology to ensure that its use is safe and 

responsible [13-14]. 

Overall, nanotechnology has the potential to revolutionize various fields and create new 

possibilities for science, technology, and society. However, it is essential to balance the 

potential benefits with the potential risks and ensure that the development and use of 

nanotechnology are safe and responsible. 

1.2. Graphene Quantum dots (GQDs) 

GQDs, being to a novel category of low-dimensional materials that exhibit distinctive 

physical and chemical properties. This makes them particularly appealing for diversified 

applications, such as electronics, biology, energy, and environmental science. A relatively 

recent addition to the family of carbon-based materials is GQDs. They are minute pieces 

of graphene with dimensions under 100 nm. They possess features that are a result of both 

GQDs and carbon dots [1-2]. GQDs are essentially a sort of zero-dimensional (0D) 

material that can be thought of as incredibly tiny graphene fragments [3-5]. They stand 

out from their close relatives, carbon dots, by containing a graphene structure inside each 

dot, excluding its size. As a result, GQDs exhibit certain exceptional behavior of 

graphene, making them an object of significant research interest [6-7]. 

In recent years, scientists have successfully developed GQDs using the same principles 

as two-dimensional (2D) graphene. GQDs that show quantum confinement and edge 
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effects are typically made up of one or more layers. These substances have a variety of 

appealing characteristics like biocompatibility, high surface area, good stability and 

adjustable cytotoxicity, tunable PL, small molecular size, chemical inertness and ease of 

surface grafting and functionalization [1,3,8–14]. 

        Fluorescent nanomaterials known as GQDs have recently been discovered. They 

have unique optical features and great potential for use in bioimaging-based disease 

detection and treatment. This is brought about by their 0D structure, which also 

contributes to solubility, biocompatibility, and chemical stability. They are especially 

appealing for biomedical applications because of these characteristics [15], [16]. 

           In electronics, GQDs have been studied as potential components in solar cells [17–

19], photodetectors [20-21], and field-effect transistors [22-26], due to their photo 

response and high charge carrier mobility. They have been utilized in biomedicine as 

biosensors and for targeted medication delivery because of their biocompatibility and 

substantial surface area for chemical functionalization [27–36]. In energy, they have been 

studied as catalysts for fuel cells and hydrogen evolution reactions, and in environmental 

science, they have served as adsorbents for organic pollutants [37–45]. 

        The π-π* transition of C=C makes carbon dots (CDs) as well as GQDs an efficient 

photon absorber within a small-wavelength range. Normally, they typically exhibit 

significant optical absorption between 260 and 320 nm, with considerable absorption 

reaching the visible spectrum. In general, CDs are more effective than GQDs at absorbing 

long wavelengths. Many GQDs show a peak within 270–390 nm, in contrast to CDs, 

which may be brought on by the C=O's transition (n-π*). Functional groups and surface 

passivation cause changes in both materials’ absorption properties [46–52]. The tunable 

photoluminescence (PL) features deriving from quantum confinement phenomena are the 
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most intriguing aspect of both carbon nanodots [9]. The PL intensity fluctuates together 

with the excitation wavelength, and the redshifts nearly span the visible spectrum as a 

result. The most thorough and convincing model to describe it is the quantum 

confinement effect. Surface emissive traps cause bare CDs’ poor PL quantum yield (QY). 

For boosting their brightness, a surface passivation layer is therefore needed. Hence, a 

surface passivation layer is needed to boost their brightness. Because of their multilayer 

structure and increased crystallinity, GQDs often provide higher QY than bare CDs. The 

high QY PL of GQDs is a result of their crystallinity and layer structure. Electrical 

conductivity is significantly affected by quantum confinement and an edge effect in 

GQDs thanks to the possibility of high-speed electron mobility. GQDs have high electron 

mobility and a fast reaction rate, which make them excellent choices for sensing 

applications [6], [12]. 

1.3. Synthesis method of GQDs 

Bottom-up and top-down are two categories of GQD synthesis methods differing in their 

reaction mechanisms. In first strategy, large amounts of graphene are exfoliated into 

smaller particles using physical or chemical techniques like mechanical milling, oxidative 

cleavage [53,54], nanolithography [55–57], hydrothermal or solvothermal [58–61], 

microwave irradiation [62-64], laser ablation [65], sonication assisted [66], 

electrochemical [67,68], or chemical exfoliation [69,70]. This method can result in GQDs 

with a wide size distribution and a lot of functionalization, but it might also cause 

oxidation and structural damage. 

 In the second strategy, organic molecules are controlled pyrolyzed or carbonized, 

or controlled sp2 carbon structures are synthesized from organic polymers. This process 

entails the growth of GQDs from precursors like carbon, metal, or organic precursors. 
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Chemical vapour deposition can be used for developing graphene on metal substrates and 

then transferring it for exfoliation. This method can result in GQDs with controlled sizes 

and compositions, but it might also introduce undesirable impurities and defects. This 

method produces quantum-sized dots by first carbonizing tiny molecules that have 

undergone dehydration. There are many different techniques to carry out this synthetic 

process, including hydrothermal [71], plasma hydrothermal [72], microwave [73], 

combustion [74], pyrolysis in acid [75], microwave-assisted hydrothermal [76], 

microreactor-based synthesis [77], etc. 

1.4. Eco-Friendly Synthesis of Graphene Quantum Dots: Green 

Approaches and Raw Materials 

The conventional methods for the synthesis of GQDs often involves toxic chemicals, 

which can pose risks to human health and the environment. Therefore, researchers have 

been exploring alternative methods for synthesizing GQDs using eco-friendly raw 

materials and green approaches [2]. 

Eco-friendly raw materials are those that are natural, renewable, and sustainable, and can 

be obtained without damaging the environment. These include plant-based materials, 

such as fruits, vegetables, and biomass waste, which can be converted into graphene oxide 

(GO) through a simple oxidation process. The GO can then be reduced to GQDs using 

eco-friendly reducing agents, such as ascorbic acid, sodium borohydride, or green tea 

extract. Green solvents, such as water or ethanol, can be used to dissolve the precursors 

and facilitate the synthesis process [78-79]. 

Green approaches to GQD synthesis involve the use of non-toxic and environmentally 

friendly materials and methods that minimize the use of hazardous chemicals and reduce 

waste generation. These include hydrothermal, microwave-assisted, electrochemical, and 
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photochemical methods, as mentioned earlier. These methods have several advantages 

over conventional methods, including reduced toxicity, lower cost, and higher 

sustainability. Furthermore, the resulting GQDs can have improved biocompatibility and 

can be used in bioimaging, drug delivery, and biosensing [16]. 

The development of eco-friendly raw materials and green approaches for GQD synthesis 

is an important step towards sustainable and responsible nanotechnology. By reducing 

the use of toxic chemicals and waste generation, these approaches can help to minimize 

the environmental impact of nanotechnology while also improving the safety and efficacy 

of GQDs in various applications. Moreover, these approaches can promote the use of 

renewable and sustainable resources, which is crucial for addressing global challenges 

such as climate change and resource depletion [2-16]. 

Green synthetic routes are being used as a recently growing research area in the field of 

nanotechnology. In the preparation of GQDs, strong acids or organic solvents are required 

and green production involves non-toxic reagents but it still has to confront some 

challenges; that’s why, synthetic routes which are not harmful to the environment and do 

not involve complicated processes should discover and developed. 
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CHAPTER 2 

SYNTHESIS & CHARACTERIZATION TECHNIQUES 

2.1. SYNTHESIS OF GQDS 

An innovative and non-toxic precursor (corn powder) was used in the hydrothermal process to 

create GQDs. Initially, 50 ml DI water and 0.5 g corn powder were mixed and stirred, afterward, 

it was subsequently placed into an autoclave made of stainless steel and heated for eight hours at 

180°C It was subsequently placed into an autoclave made of stainless steel and heated for eight 

hours at 180°C. The brown solution was obtained, which was further filtered or GQDs were 

separated from the solution by rapid centrifuge at 7500 rpm for 15 minutes [78,79]. 

 

 

Figure 2.1. Schematic diagram of the synthesis route of GQDs using eco-friendly and 

cost-effective route 
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2.2. CHARACTERIZATION TECHNIQUES 

TALOS (Accelerating voltage 200 kV) (Fig. 2.1), was used for TEM images, while FTIR 

spectroscopy within the range of 400 - 4000 cm-1 was conducted with Perkin Elmer Two-

Spectrum FTIR spectrometers (Fig.2.2) of the obtained GQDs. The UV-Vis spectroscopic 

data were recorded by a Perkin-Elmer Lambda-750 dual-beam spectrometer (Fig. 2.3). 

Steady-state PL and PL-excitation measurements were done using Fluorolog-3 

spectrofluorometer from Horiba Jobin Yvon (Fig. 2.4), having equipment 

(photomultiplier tubes and xenon lamp). The measurements were done with a cuvette 

made of quartz having 10 mm of the optical path. 

 

Figure 2.2. Photograph of TALOS thermo-scientific instrument (Acc. Vol. 200 kV) 

 

 

 



10 
 

 

 

 

Figure 2.3. Photograph of Perkin Elmer Two–Spectrum FTIR spectrometers 

 

 

 

 

 

Figure 2.4. Photograph of Perkin Elmer Lambda 750 UV/Vis/NIR spectrophotometer 
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Figure 2.5. Photograph of Horiba Jobin Yvon Fluorolog-3 spectrofluorometer 
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1. TEM Analysis 

The GQDs were subjected to TEM analysis to investigate their size, shape, and 

uniformity. The GQDs were then drop-cast onto a carbon-coated grid after that it was left 

for drying before TEM imaging. Fig. 3.1 displays TEM images of the GQDs having a 

spherical shape and the diameter is within 20 -50 nm. (Fig. 2 c) confirms an average size 

of 42 nm, having 5 nm of standard deviation [80–82]. ImageJ software was used further 

for analyzing GQDs’ size distribution. It revealed that the size of GQDs is consistent and 

there is a small range of variation in their sizes. The observed size range is as per previous 

reports on GQDs, and its shape as observed from TEM images is consistent with spherical 

morphology, as previously reported for GQDs [83]. The uniformity of GQDs as observed 

from the TEM images is following the uniformity observed in its size distribution 

analysis. These results are consistent with previous reports on GQDs which highlight their 

potential for use in numerous applications, including bioimaging, energy storage, and 

catalysis. However, it should be noted that there are potential limitations to TEM analysis, 

including sample preparation and imaging artifacts, which should be taken care of while 

interpreting the results [84]. 
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Figure 3.1. TEM images of GQDs at the magnification of 100 nm (a &b) along with 

particle size distribution (c). 

 

3.2. FT-IR Analysis 

The synthesized GQDs were investigated using FTIR, especially to find out functional 

groups, bonds and chemical composition, and the observed FTIR spectrum is shown in 

Fig. 3.2. The broad band with a peak at 3297 cm-1, may be attributed to O-H stretching 

vibration of hydroxyl groups. A weak band at 2103 cm-1 is also observed, which may be 

attributed to the aromatic compounds. A band at 1639 cm-1 may be attributed to the C=C 

stretching vibration of carbonyl groups [85]. The FTIR spectrum of the GQDs indicates 

various group’s presence on their surface and this could be the reason behind the 

distinctive characteristics and potential applications of GQDs. The hydroxyl group’s 

presence suggests that the GQDs may have good water solubility and biocompatibility. 

Overall, this analysis validates the functional group’s presence on GQDs’ surface and 

also offers an understanding of their chemical makeup. These results can inform further 

investigations into the properties and potential applications of GQDs [86–89]. 
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Figure 3.2. FTIR spectrum of green synthesized GQDs 

 

3.3. Absorption Spectrum 

The absorption spectrum of GQDs typically shows strong absorbance in the UV-Vis 

region because of sp2 hybridization of carbon bonds in the graphene layer. The exact 

shape and position of the absorption vary depending on their structure and 

functionalization as well as the solvent used for dispersing the GQDs. In general, smaller 

GQDs exhibit stronger and narrow peaks compared to larger GQDs. Additionally, the 

functionalization of the GQDs with various chemical groups can also affect their 

absorption properties [91,92]. 
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 The GQDs absorption spectrum (Fig. 3.3) exhibits two distinct excitonic absorption 

peaks at approximately 227 and 283 nm as a result of the π-π* and n-π* transitions of 

C=C and C=O groups, respectively [48,90–94]. The longer wavelength band which arises 

as 283 nm appeared prominently. Tauc’s plot was used for calculating the optical band 

gap and it is described as a plot of the converted absorption coefficient (αhυ)r versus the 

photon energy (hυ). Here, h is Planck’s constant, α is absorption coefficient and υ is light 

frequency. The appropriate optical band gap can be estimated after determining the value 

of R, which is 1/2 for materials with an indirect band gap and 2 for those with a direct 

band gap.  (Fig. 3.3) When r = 2, displays a good linear fit, supporting that the synthesized 

GQDs are direct band gap materials (r = 1/2 does not provide a good linear fit). From Fig. 

3.3, we observed the band gap energy (Eg) to be 4.07 eV, and this was accomplished by 

determining the point at which a line, extrapolated from the range of the curve, intersects 

the x-axis [95,96]. 

 

Figure 3.3. UV-Vis absorption spectrum and Tauc plot of (αhυ)2 vs hυ (inset) of 

synthesized GQDs 
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3.4. Photoluminescence Spectra 

Figure 3.4(a) displays the PL spectra of GQDs within the 330–470 nm wavelength region. 

The PL of the GQDs is another appealing quality although the mechanism behind the PL 

phenomenon is still not completely understood, it is thought to involve free zig-zag sites 

with a triplet state resembling a carbene and surface flaws in the functional groups of the 

GQDs, quantum effects, edge structure, doping and electron-hole recombination [97,98]. 

Fig. 3.4(b) shows a broad emission at 450 nm with the excitation wavelength at 350 nm. 

As the excitation wavelength was increased, there was a rise in the PL intensity before it 

began to decrease [50]. Notably, the intensity of the PL was the weakest when 330 nm 

wavelength was used for excitation, and it was the highest when 450 nm wavelength light 

was used. GQDs emitted an intense blue light when exposed with a wavelength of 365 

nm and the band maximum shifted by about 100 nm when excited with the band edge of 

absorption, indicating that the PL is excitation-dependent, which might be due to size 

distribution and different emitting centers [99–102]. 

 

Figure 3.4. PL spectra with varying excitation wavelengths from 330 to 470 nm (a) and 

a combination of absorption spectrum (black line), PL-excitation spectrum (blue line) 

with 450 nm PL, and PL spectra with 350 nm excitation (red line) of the GQDs (b). 
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CHAPTER 4 

CONCLUSION 

A green method has been used to successfully create GQDs, utilizing corn powder as a 

precursor. The GQDs exhibited a spherical shape with an average size of 42 nm. The 

presence of hydroxyl and carbonyl groups, as well as aromatic compounds, was 

confirmed using FTIR. The GQDs showed promising optical properties with two distinct 

excitonic absorption bands and intense blue PL. Extensive research is needed to fine-tune 

the characteristics of GQDs to maximize their potential for different uses, such as 

bioimaging, sensing, and optoelectronics. 
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