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ABSTRACT

The utilization of heavy metals in several agricultural and industrial processes is
expanding dramatically, posing a severe hazard to human and ecosystem health from
heavy metal contamination from natural and anthropogenic sources. A significant
exposure source that results in the buildup of hazardous heavy metals in people, plants,
and livestock is contaminated water. Mercury, lead, copper, cadmium, chromium, and
copper are among the key metals of public health concern. Mercury is a heavy element
that pollutes marine environments due to both natural and human-caused activities that
release waste products into the sea. Mercury waste can be produced by the cosmetic
sector, electronics, paint industry, dental industry, gold extraction sector, also many more.
Humans are exposed to mercury not just through environmental pollution but also
through the use of cosmetic chemicals, consumption of foods and beverages that contain
mercury, or by direct contact with mercury-containing items. Due to exposure of mercury,
bacteria strive to protect themselves by withdrawing the metal so that they can survive in
conditions where mercury is present. The genes of bacteria that attempt to protect
themselves from environmental mercury exposure alter, making them mercury-resistant
bacteria. In this study,the bacteria was allowed to grow in the media containing mercury
and was observed that with the subsequent days, it was thriving. The growth curve was
made in the presence of mercury using UV spectrophotometry. It was also observed that
at minute concentrations, mercury seems to be an inducer for the bacteria E.coli. It was
analyzed by HPLC, where the bacteria was found to produce high amounts of citric acid
at lower concentrations so as to thrive in the environment containing mercury. Total
enzyme activity was analyzed by an FDA assay.

Keywords: Heavy metal, Environmental pollution, Mercury, E.coli, HPLC, FDA, UV
spectrophotometry
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CHAPTER 1 : INTRODUCTION

Unusual quantities of hazardous heavy metals like Pb, Cu, Co, Mn, Cd, Hg, Ag, Sn, and
Zn have been released into the surroundings over the past century as a result of
unregulated mining, vast industrialization, contemporary agricultural practises, and poor
waste disposal techniques.These sources release a range of poisonous chemicals that are
detrimental to biological processes. Heavy metals can harm cell membranes, change
enzyme activity and disrupt DNA's structural integrity[1] . They are exceedingly
hazardous to people, animals, microorganisms, and plants.

Many metals are deleterious at greater doses yet necessary for microbial growth at lower
ones. A desirable strategy is biosorption, which is the adhesion of heavy metals to dead
cells or living microbes. Numerous microbes are capable of selectively accumulating
metals[2]. The analysis determined that the amount of metal used from the initial
concentration is still left in the media after the organism had adsorbed the remainder, is
the basis for the current study. Elimination of harmful heavy metals is essential and
relevant for a safe environment, especially in consideration of the rising environmental
awareness. Various distinct microorganisms have the ability to absorb or adsorb metals.
Rates of absorption may be influenced by the physiological state of the cells, the
environmental conditions, and the constituents of growth medium. Based on their
respective tolerance levels, different microorganisms have different capacities for
absorbing metal in varied concentrations.

Both natural occurrences and human actions result in the release of mercury into the
environment. Mercury in its different forms like metallic and ionic can build up in
precipitates, where it could be metabolized by bacteria in the extremely deadly methyl
mercury[3]. If mercury is further biomagnified through the trophic layers, eating seafood
can make people sick.In order to increase heavy metal resistance and accumulation,
heavy metal scavenging molecules including polyphosphates and metallothionein have
been expressed in bacteria[4,5]. The mt genes encode metallothioneins, which are,
less-molecular-weight, cysteine-rich, metal-binding proteins that could trap metal ions in
a physiologically unreactive form. Negatively charged polyphosphates are
orthophosphate polymers that have the ability to bind metal ions[6]. The enzyme
polyphosphate kinase, which is in charge of bacteria's production of polyphosphates, is
encoded by the ppk gene.

Also, one method for purifying the environment with the aid of microorganisms is
bioremediation. This method is basic, economical, and most importantly, environmentally
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beneficial. Some bacteria are able to acquire metals and tolerate high amounts. Some
microbes develop plasmid-encoded resistance mechanisms that are typically specific for
certain metals. Therefore, E.coli is a desirable choice for in situ bioremediation due to its
capacity in such a harsh environment.
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CHAPTER 2 : LITERATURE REVIEW

2.1. Sources of heavy metals
Heavy metals are released into the environment via industrial processes such mining,
smelting, metal processing, and manufacturing. The application of fertilizers, pesticides,
and sewage sludge can contaminate water sources by introducing heavy metals into the
soil. When home and municipal waste are disposed of improperly, heavy metals may leak
into the environment [7].

Heavy metals can be released into the atmosphere through emissions from vehicles,
power plants, and other combustion activities. These metals subsequently settle on land
and ocean surfaces. Also they can contaminate water sources due to industrial discharges,
poor waste management practices, and the weathering of rocks [8].

2.2. Hazards of heavy metal pollution [9]

Effects on human health: Heavy metals including lead, mercury, cadmium, and arsenic
can contribute to a variety of health difficulties, including neurological diseases, renal
damage, respiratory problems, aberrant development, and even cancer.
Environmental impact: Pollution from heavy metals can harm ecosystems. It can
destroy aquatic life, diminish biodiversity, upend ecosystem equilibrium, and taint soil,
water, and plants.
Degradation of the soil: Over time, heavy metals build up in the soil, diminishing its
fertility and hindering plant growth. This might have a big effect on farming and food
production.
Water contamination: Heavy metal poisoning of water bodies can harm aquatic
ecosystems and render the water unsafe for human consumption.
Bioaccumulation and biomagnification: Heavy metals can accumulate in the tissues of
organisms over time . Heavy metal concentrations rise as prey is consumed by predators,
offering a greater risk to species farther up the food chain, such as humans.
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Toxic metals Organ toxicity Mechanism of action

Mercury (Hg) ● Nervous system
disorders

● kidney dysfunction

● Enzyme inhibition
● GSH conjugation
● Aquaporin mRNA reduction

Copper (Cu) ● hemolytic anemia
● vomiting, malaise
● azotemia, anuria

● Causes cellular injury
● Lipid peroxidation
● DNA damage
● Chromosomal breakage in plants

Cadmium (Cd) ● Degenerative bones
● Gastrointestinal

disorders
● Kidney dysfunction

● Induces cell death
● miRNA expression dysregulation

Chromium (Cr) ● Skin diseases
● Cause cancers in

different organs

● Damages DNA
● Genomic instability

Lead (Pb) ● Causes anemia
● Damages liver

● Increases inflammatory cytokines
● Damages hematopoietic system
● Inhibition of heme biosynthesis

Harmful effects of Heavy metal [57-61]

2.3. Types of remediation of heavy metals
To minimize or remove heavy metals from contaminated locations, heavy metal pollution
remediation uses a variety of methods and strategies. Here are a few typical corrective
measures:

2.3.1. Soil remediation
Phytoremediation: It is possible to remove and store contaminants in the tissues of
plants that have the capacity to accumulate heavy metals, such as some kinds of ferns.

Soil washing: This method uses solvents or chelating agents to physically or chemically
separate the heavy metals from the soil.

Soil stabilization: Immobilizing heavy metals and lowering their bioavailability by
adding chemicals or amendments to the soil.
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2.3.2. Water Remediation
Precipitation/flocculation: Chemicals are added to contaminated water to create
precipitates or flocs, which are insoluble and may be filtered or sedimented out of the
water.

Ion exchange: To remove the impurities from the water, materials having a high affinity
for heavy metals, such as activated carbon or zeolites, can be synthetic or natural.
Reverse osmosis: This technique applies pressure-driven filtration to a semi-permeable
membrane to remove heavy metals from water.

2.3.3. Containment
Capping: To stop the spread of heavy metals, the polluted region is "capped" with a layer
of clean soil or impermeable materials.
Landfilling: To prevent the discharge of contaminated materials into the environment,
properly built and managed landfills can separate and contain them.

2.3.4. Biological treatment
Bioremediation: Utilizing microorganisms or plants, bioremediation converts hazardous
heavy metals into less harmful ones. Processes like bioleaching or microbial-assisted
immobilization can be used to accomplish this.

2.3.5. Chemical treatment [10]
Chemical precipitation: It is the process of adding substances that react with heavy
metals to produce insoluble molecules that are simple to remove from water or soil.
Electrochemical techniques: By applying an electric current, heavy metals can be
removed using processes like electrocoagulation and electrokinetics.

It's crucial to remember that choosing the best remediation strategy relies on a no. of
variables, which includes the kind and quantity of heavy metals, site features, and legal
requirements. To properly remediate heavy metal pollution, a number of alternative
remediation strategies may be used.
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2.4. Mechanism of Remediation

2.4.1. Biosorption
Heavy metals can be concentrated by microbes through either absorption or adsorption.
Adsorption is different from absorption in that the absorbent dissolves a fluid the
absorbate [11]. Adsorption occurs at the outer surfaces, while absorption affects the total
amount of the substance. In order for heavy metals to be taken into cells through
adsorption, they must first complex on the cell surface[12]. Heavy metals can be
absorbed or adsorbed easily due to the structure of the cell surface, specifically the
mucus layer and the cell wall. Several metal ions and functional group ions form
complexes as coordination atom[13]. Also, the cell wall of the microbes contains
negatively charged phosphoric acid anions and carboxyl anionic groups, while the
majority of heavy metal surfaces contain a positively charged group that associate with
the cell wall and allows the ions to adhere to or cross the cell membrane[14]. In general,
heavy metal ions are quickly absorbed by microorganisms in high quantities. Bacillus
have Cu2+ adsorbing capacity of 60% at pH 7.2 in one minute and acquire adsorption
equilibrium in 10 minutes[15].

[16]
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2.4.2. Bioleaching
The broad phrase "biomining" also known as bioleaching, is the process of releasing
cationic heavy metal from insoluble ores, frequently by forming biological complex
processes [17,18], and bio-oxidation [19]. Secretions from metabolism of microbes, such
as organic acids with low molecular weight, have the ability to dissolve soil particles
containing heavy metal minerals and heavy metals. It demonstrated how, in nutrient-rich
environments, microorganisms can efficiently take on nutrients and energy to release
organic acids and encourage the leaching of Cd. For instance, the leaching rate was
determined to be 9.1 % without the presence of nutrients and 36% with the presence
nutrients [20]. Studies have also revealed that many microorganisms, such as Citrobacter,
could produce free inorganic phosphates, which can result in the creation of an insoluble
metal PO4 coat that can sequester a significant amount of hazardous metals[21].
Prokaryotic microorganisms are involved in redox processes which alter the electrons in
the outer most shell of heavy metals, modifying their reactivity and perhaps affecting the
mobility or toxicity of the metals[22].

[16]

2.5. Principle of remediation
Bioremediation is a process by which organic wastes degrade biologically under
maintained conditions to a harmless substance or to less concentrated levels which are
permitted by official agencies. Because they contain enzymes that enable the microbes to
consume toxins present in the environment as food, they are well adapted for this task of
contaminant eradication. By giving them the adequate amount of nutrients and other
chemicals that are necessary for metabolic activity, bioremediation aims to motivate them
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to work and encourage the degradation or detoxification of pollutants that are detrimental
to the environment and living organisms. Enzymes carry out every process of
metabolism. These are a part of the ligases, hydrolases, lyases, transferases, isomerases,
and oxidoreductases groups. Due to their specific and non specific substrate affinities,
many enzymes have an astonishingly broad capacity for degradation. Microorganisms
should attack the contaminants enzymatically and modify them into harmless substances
and make bioremediation successful. As bioremediation is only effective in the
environments which support the growth of microbes and enhance their activity, its
application frequently demands for changing the environmental conditions to promote
growth of the microbes and to degrade at a much faster rate [23]. Natural bioremediation
occurs and is aided by the addition of living creatures and fertilizers. Technology used in
bioremediation is mostly based on biodegradation. It refers to the complete conversion of
harmful or naturally occurring organic contaminants into substances like carbon dioxide,
water, and inorganic chemicals that are secure for use by people, animals, plants, and
aquatic life [24].

2.6. Uses of bacteria in remediation

A simple and effective method for removing contaminants from wastewater, including
non-biodegradable substances like heavy metals, is biosorption by bacteria. Cells that
make up bacterial biomass might be alive or dead. For their survival, bacteria have
evolved mechanisms for resistance to remediation and metal ions [25]. Numerous
research has been conducted for the bioremediation of heavy metal ions by microbes.
Metals including Cu, Zn, Pb, Cd, and Cr can be quickly removed using bacterial biomass.
Because different bacterial species have distinct cellular structures like peptidoglycans
such as poly-N-acetylglucosamine and N-acetylmuramic acid, the efficacy of biosorption
is dependent on both heavy metal ions and bacterial species[26-31]. The actual physical
interface between the bacterial biomass and metal ions is the cell wall of the bacterium.
The ability to bind metals to or within the cell wall is conferred by the complete negative
charges caused by anionic functional groups (such as OH-, amine, carboxyl, PO4 and
sulphate) present in Gram positive bacteria and in Gram negative bacteria [32].

2.7. Bioremediation of Mercury by E.coli
Particularly the hazardous heavy metals that affects the environment is mercury. Battery
operations, mercury switches, chloralkali plants, and medical waste facilities are the main
causes of contamination in wastewater[33]. Hg2+ in sediment is methylated in an aquatic
environment, producing more dangerous methylmercury[34]. The primary molecules that
sequester the metals employed by these cells to immobilize the metal ions are
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metal-binding peptides, such as phytochelatins and metallothioneins (MTs), which
provide specific, high-affinity binding sites[35]. The creation of microbe-based
biosorbents for the elimination and retrieval of Hg2+ from impure soil and water presents
a viable approach as overexpression of these metal-binding proteins, such as MTs, in
bacteria led to higher Hg2+ accumulation[36].

2.8. Impact of Mercury
The International Programme of Chemical Safety has mercury (Hg) on its list of most
hazardous substances. The hazard of Hg to human health has drawn a lot of attention
because of its capacity for methylation, accumulation, and biomagnification in food
chains[37,38]. Hg is hazardous to the CNS, kidneys, cardiovascular, GI tract,
immunological network and can build up in the human body[39-41] Hg's toxicity to
tissue is greatly influenced by its chemical forms. Specifically, exposure to Hg during
pregnancy, that can cross the blood brain barrier, has a negative impact on the
neurobehavioral development of the offspring. Hg's high affinity for the thiols found in
proteins is thought to be the cause of its cellular toxicity[42]. The covalent interactions
that Hg2+ and methylmercury (MeHg) can form with glutathione (GSH) or the cysteine,
cystine, methionine, and taurine residues of proteins can disrupt GSH metabolism,
inactivate proteins, and harm cells[43]. Hg can also cause lipid, protein, or DNA
oxidation as well as free radical production in cells[44-49]. Although Hg has been the
subject of intensive research over the past few decades, the precise mechanisms
underlying its cellular toxicity are still poorly known, making more study in this field
very desirable [50].
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CHAPTER 3 : MATERIALS AND METHOD

3.1. UV spectroscopy
Ultraviolet/visible (UV-Vis) spectroscopy works at multiwavelength and is a quantitative,
flexible, quick, and reliable analytical instrument that can be used as a biosensor for the
enumeration, recognition and detecting the cells and microorganisms[51]. Cell size,
chemical constituents, and shape are examples of sample information in a spectrum. The
spectroscopic study of a material measured across a wide wavelength range (200-900 nm)
and with the scattered light detected at various distinct directions provide this
information. A bacterial population's growth curve typically comprises four phases: lag
phase, exponential phase, stationary phase, and death phase. Changes in cell number,
size, form, chemical composition, and internal structure can all be categorized as changes
in the cell population. In theory, multiwavelength spectroscopic measurements can find
all these discrepancies.

Experimental procedure
E.coli was allowed to grow overnight in a shaker incubator at 35oC after suspending a
colony-forming unit in 4 mL Nutrient Broth (NB). From this overnight culture (109

colony-forming units per ml), 0.5 ml of volume was added to 100 mL of clean and
freshly prepared broth. This culture was placed in a shaker incubator at 35oC. At certain
intervals, duplicate samples were removed from the incubator, cleaned (in sterile
deionized water), and then subjected to spectroscopic analysis. The samples were spun in
a centrifuge for 3 minutes at a 13,000 rotation per minute. The test tubes were taken out,
and the supernatant was carefully taken out and was discarded using 1.0 ml pipette. A
small amount of supernatant was left in each tube to avoid unsettling of the pellet. After
being briefly vortexed, the leftover pellets were resuspended in sterile deionized water.
Three times were done with the washing step. The pellets formed with fresh cells were
resuspended into sterile deionized water after the final washing, which was also utilized
to dilute the samples. A 1-cm pathlength cuvette was used for every measurement, which
was done at room temperature at 600 nm [52].
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Figure 3. UV Spectrophotometer

3.2. Total enzyme activity (FDA assay)

Many distinct enzymes, including proteases, lipases, and esterases, hydrolyze fluorescein
diacetate (3',6'-diacetylfluorescein [FDA]). This enzymatic reaction results in fluorescein,
which may be seen inside cells using fluorescence microscopy. Fluorometry and
spectrophotometry are other methods for measuring fluorescein[53].

Figure 4. Fluorescein diacetate hydrolytic reaction [62]
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Experimental procedure
A 50 ml conical flask containing 2 ml of sample was filled upto 15 ml of a 60 mM
potassium phosphate buffer with a pH of 7.66. The reaction mixture was prepared by
adding 0.2 ml of 1000 g/l FDA stock solution. A reasonable number of sample replicates
and blanks without the FDA substrate were also generated. The flasks' contents were
manually shaken after being stopped. After that, the flasks were placed in a shaker
Incubator (110 rev/min) at 32 °C for 15 min. The procedure, containing methanol and
chloroform, was completed in a fume hood. 10 ml of chloroform/methanol (2:1 v/v) was
added right away to terminate the reaction when the incubator was turned off. The flasks'
stoppers were replaced, and the solutions were vigorously shaken with the help of hand.
The conical flasks' contents were then transferred to centrifuge tubes of 50 ml, where
they were centrifuged at 6000 rev min-1 for around 7 minutes. After filtering (Whatman,
No 2) the supernatant from each sample into 50 ml conical flasks, the filtrates were
analyzed at 490 nm using a spectrophotometer[54].

3.3. HPLC

The HPLC separation principle relies on the distribution of the sample between a
stationary phase (material inside the column) and a mobile phase (liquid moving through
the column). The analyte molecules move at different speeds through the stationary
phase, depending on their chemical composition. The time a sample spends on the
column is determined by the interactions between its molecules and the packing material,
resulting in the separation of different components. After exiting the column, the analytes
are detected using equipment like a UV detector. Signals are converted, recorded, and
displayed in a chromatogram using computer software. The mobile phase can undergo
additional detection units, a fraction collector, or be disposed of after passing the
detection unit. An HPLC system typically consists of a solvent reservoir, pump, injection
valve, column, detector unit, and data processing unit. The pump maintains a
high-pressure, steady flow of the solvent throughout the system. It is crucial for the pump
to provide a continuous and pulseless flow to minimize detector signal drift and noise.
The injection valve introduces the sample into the mobile phase.
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Figure 5. HPLC Ultimate 3000

Experimental procedure
After every 5 days of mercury treatment, the quantity of organic acids like oxalic acid,
citric acid, and malic acid in the bacterial culture was calculated. To get cell free
metabolites, 1 ml of the culture was removed and filtered using 0.2 m
polytetrafluorethylene Millex filters. High Performance Liquid Chromatography with
PDA detector that operates at 210 nm was used to assess the presence of organic acids.
The Organic Acid 5 m Analytical Column, measuring 250 micrometer 4.6 micrometer,
used with the injection volume of 10 mL having an ideal temp. of 25 °C.
Because the mobile phase with the flow rate at 1 ml/min, methanol and potassium
dihydrogen phosphate {10 mM, pH 2.8} were combined in the ratio of 10:90. [55,56]

23



Figure 6. Peak of citric acid at 300 ppm Mercury

Figure 7. Peak of citric acid at 500 ppm Mercury
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CHAPTER 4 : RESULT AND DISCUSSION

4.1. Growth curve of E.coli in the presence of Mercury

To check the heavy metal resistivity of bacteria, the standard growth curve of the
E.coli was plotted in the presence of different concentrations of mercury (100-600
ppm).

Graph 1. Growth curve of E.coli in the presence of Mercury

After plotting the standard growth curve in the presence of mercury, it was recorded that
the maximum growth was seen at the concentration 400 ppm. The minimum growth was
observed at 200 ppm.
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4.2. Total enzyme activity by FDA analysis

Figure 8. Hydrolysis of FDA into Fluorescein

Graph 2. FDA analysis of E.coli in the presence of Mercury
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At the concentrations 500 ppm and 600 ppm of mercury, the total enzyme activity
was found to be the highest on the second day of incubation. But later the curve
gradually declines.

4.3. Organic acids analysis by HPLC

Graph 3. Organic acid analysis by HPLC

The citric acid was found to be the highest at 300 ppm and 500 ppm of mercury
and hence, the highest peak was observed at 500 ppm because in the presence of
heavy metal mercury the bacteria is thriving and thus producing high amounts of
citric acid. This concludes as there is a high metabolic rate due the presence of
mercury.
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CHAPTER 5 : CONCLUSION

In this work, it was studied that the presence of heavy metal impacts the growth of
bacteria E.coli. Unusual quantities of hazardous heavy metals such as Zn, Pb, Sn, Co, Cu,
Mn, Hg, Cd and Ag, have been released in the surrounding environment over the past
century as a result of unregulated mining, vast industrialization, contemporary
agricultural practises, and poor waste disposal techniques. These sources release a range
of poisonous chemicals that are detrimental to biological processes. The hazard of Hg to
human health has drawn a lot of attention because of its capacity for methylation,
accumulation, and biomagnification in food chains. Hg is hazardous to the CNS, kidneys,
cardiovascular, GI tract, immunological network and can build up in the human body.

It was analyzed that at different concentrations of mercury there were variable effects
seen on the bacteria. At higher concentrations the growth of bacteria was found to be
increased during initial phases of incubation.

Upon further testing, it was found that the total enzymatic activity was highest at the
same concentrations as it was seen in the growth curve. Later, the samples were run in
HPLC and the presence of organic acids was analyzed. It was found that the amount of
citric acid was highest at 300 ppm and 500 ppm, which confirms that the metabolic rate
in the presence of mercury has increased so as to maintain the viability of the bacterial
cells in the medium.

Therefore, mercury acts as an inducer and inhibitor at various concentrations thereby
increasing the metabolic rate.
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