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Preface

This thesis contributes several new results to the basic theory of the univalent function theory. Although

there are several elegant and beautiful articles available in the literature, but it was Ma and Minda’s pa-

per “A unified treatment of some special classes of univalent functions. Proceedings of the Conference

on Complex Analysis, Tianjin, Conf Proc Lecture Notes Anal., I Int Press, Cambridge, MA. 157–169

(1992)”, which paved the way for new research in univalent function theory. It is worth here to mention

that the Ma-Minda class covers the classical classes of the univalent starlike and convex functions.

After this, various problems were studied for a specific subclass of univalent functions, particular focus

has been on the subclasses of starlike functions. In this thesis, we study a variety of problems for the

Ma-Minda classes. Hence, either we generalize the known results or establish some new results for this

class. In brief, we generalize certain results, which trace their origin to the following defining articles:

“T.H. MacGregor, Majorization by univalent functions. Duke Math. J. 34, 95–102 (1967).” Interest in

special functions in view of radius problem can be seen from the papers “R.K. Brown, Univalence of

Bessel functions. Proc. Amer. Math. Soc. 11, 278–283 (1960)”, “R.K. Brown, Univalent solutions of

W ′′+ pW = 0. Canadian J. Math. 14, 69–78 (1962)”, “H.S. Wilf, The radius of univalence of certain

entire functions. Illinois J. Math. 6, 242–244 (1962)” and “E. Kreyszig and J. Todd, The radius of

univalence of Bessel functions. I, Illinois J. Math. 4, 143–149 (1960).” About absolute power series

sum and its connection to the univalent function theory follows from the papers “H. Bohr, A Theorem

Concerning Power Series, Proc. London Math. Soc. (2) 13 (1914), 1–5” and “Y.A. Muhanna, Bohr’s

phenomenon in subordination and bounded harmonic classes, Complex Var. Elliptic Equ. 55 (2010),

no. 11, 1071–1078.” The work on convolution and relevant radius problem comes from the papers

“G. Szegö, Zur Theorie der schlichten Abbildungen, Math. Ann. 100 (1928), no. 1, 188–211” and “H.

Silverman, Radii problems for sections of convex functions, Proc. Amer. Math. Soc. 104 (1988), no. 4,

1191–1196.”

In the context of the above, we prove the classical results and establish topics of current interest for

the general Ma-Minda classes. In certain investigations, particularly chapter 3 and chapter 5 pave the

way for future research.
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Chapter 1

Introduction

This chapter gives a glimpse into the Geometric function theory. The purpose of this chapter

is to define various classes of analytic functions and also to introduce basic definitions and

concepts which will be needed in the subsequent chapters. It also covers some basic no-

tations and includes the synopsis of the thesis with some significant findings of the present

study.

The study of geometric function theory aims at obtaining the qualitative characteristics of complex

valued functions mathematically. One of the main branch of geometric function theory is theory of

univalent functions. The subject is classified under geometric function theory due to the fact that from

simple geometrical consideration a large number of remarkable properties of univalent functions have

been found.

Definition 1.0.1. A function f (z) is said to be univalent in a domain D ⊂ C if it is one-to-one, i.e, for
z1,z2 ∈ D , f (z1) = f (z2) implies that z1 = z2.

An analytic function f in the domain D is said to be locally univalent at z0 ∈ D , if f ′(z0) ̸= 0. analytic

univalent functions in the domain D are also called conformal mappings in D because they preserve

angles (both in magnitude and direction). In 1851, Riemann stated that a remarkable result which is

known as Riemann Mapping Theorem given below.

Theorem A (Riemann Mapping Theorem). Let D ⊂ D be a simply connected domain with a ∈ D .
Then there exists a unique analytic function g : D → C such that

(A.) g(a) = 0 and g′(a)> 0;

(B.) g is univalent;

(C.) g(D) = Ω, where Ω is also a simply connected domain.

1
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Thus, the properties of the univalent function defined on the open unit disk D can be easily translated

into the properties of the original function defined in the simply connected domain D . Therefore, it is

sufficient to study analytic functions on the unit disk D. Since the quantity

f1(z) =
f (z)− f (0)

f ′(0)
, f ′(0) ̸= 0

represents the shifting and contraction (or expansion) with rotation of the image domain f (D) and

any property of the function f1(z) is immediately translated into a corresponding property of f (z),

so we consider the normalization, namely f (0) = 0 and f ′(0) = 1. Let A be the class of all such

normalized analytic functions. Now we can proceed to discuss some important subclasses of A .

Moreover, the importance of normalization can be seen in the existence of solution to the coefficient

related problem, and its connection to the compactness of a given function space. For this, we refer to

see [58, Chapter 4, Section 5].

1.1 Classes of univalent and starlike functions

Let S be the subclass of A consisting of univalent functions. If f ∈ S , then the Taylor Series

expansion of f is given by:

f (z) = z+
∞

∑
n=2

anzn. (1.1.1)

In the year 1907, Koebe [80] proved that for the class S , there exists an absolute constant k > 0

such that boundary of the image f (D) can not be distorted so far as to come within a distance less

than k of the origin. In 1916, Bieberbach [32] established the beautiful result that |a2| ≤ 2 for every

function f ∈ S and using this, determined the value of k as 1/4. This shows the geometrical con-

nection of coefficient bounds on the geometry of functions. Shortly, we shall see the importance of

coefficients bounds in the concept of Bohr phenomenon. Bieberbach also conjectured that |an| ≤ n.

Meanwhile, the validity of this conjecture was found true for many subclasses of S . In 1925, J. E.

Littlewood [98] proved that |an| ≤ en for all n, showing that Bieberbach conjecture is true up to a fac-

tor of e = 2.718 · · · . Finally in 1985, Louis De Branges [36] proved this conjecture, by using special

functions. Before the proof of Bieberbach conjecture, several subclasses and other fascinating results

appeared to solve it. A systematic study in this direction can be seen in some known standard books.

Books by Nehari [119], Pommerenke [131], Goodman [58], Duren [49], Graham and Kohr [63], Jenk-

ins [69], Thomas et al. [166] and survey articles of Hayman [66] and Duren [48] are excellent sources

of information on univalent function theory.

Coming back, we first describe a geometrical property, which further leads to an important subclass

of univalent functions.

Definition 1.1.1. A domain D is said to be starlike w.r.t a point w0 ∈ D if each ray with initial point w0

intersects the interior of D in a set which is either a line segment or a ray. If a function f (z) maps D
onto a domain which is starlike w.r.t w0 = 0, we say that f (z) is a starlike function.

Analytically, a function f (z) ∈ S is starlike with respect to origin if and only if ℜ(z f ′(z)/ f (z)) > 0.
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The class of starlike functions is defined as

S ∗ :=
{

f ∈ S : ℜ

(
z f ′(z)
f (z)

)
> 0
}
.

Definition 1.1.2. A set D in the plane is said to be convex if for every pair of points w1 and w2, the line
joining w1 and w2 is contained in D. If a function f (z) maps D onto a convex domain, we say that f (z)
is a convex function.

Analytically, a function f (z) ∈ S is said to be convex if and only if ℜ(1+ z f ′′(z)/ f ′(z)) > 0. The

class of convex functions is defined as

C :=
{

f ∈ S : ℜ

(
1+

z f ′′(z)
f ′(z)

)
> 0
}
.

It is easy to note that every convex function is starlike with respect to every point in the region f (D),
hence every convex function is a starlike function but the converse need not be true. One of the

example is f (z) = z+ z2/2. Later in 1936, Robertson [140] generalized the classes S ∗ and C by

introducing:

Definition 1.1.3. A function f ∈ S is said to be Convex function of order α if and only if

ℜ

(
1+

z f ′′(z)
f ′(z)

)
> α, (0 ≤ α < 1,z ∈ D).

The class of such functions is denoted by C (α). Note that C (0) = C , the class of convex functions.

Definition 1.1.4. A function f ∈ S is said to be Starlike of order α if and only if

ℜ

(
z f ′(z)
f (z)

)
> α (0 ≤ α < 1,z ∈ D).

The class of such functions is denoted by S ∗(α). Note that S ∗(0) = S ∗, the class of starlike func-
tions.

The well-known Alexander’s transformation given below establishes a two-way bridge between the

classes C (α) and S ∗(α) defined as

f ∈ C (α)⇐⇒ z f ′(z) ∈ S ∗(α).

In view of the analytic characterization of the above-discussed classes, let us recall the following im-

portant class:

Definition 1.1.5. A function p(z) which is analytic in D is said to be in the Carathéodory class P , if it
satisfy

p(0) = 1 and ℜp(z)> 0

and have the form: p(z) = 1+ p1z+ p2z2 + · · · .

ASUS
Highlight

ASUS
Highlight
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Thus, the classes P and S ∗ can now be related to each other as follows:

f ∈ S ∗ ⇐⇒ z f ′(z)/ f (z) ∈ P.

Hence, the relation between the coefficients pn of the function p in the class P becomes prominent

and serves as a tool to solve the many coefficient problems related to the subclasses of S . A recent

survey article entitled “A survey on coefficient estimates for Carathéodory functions" by N. E.

Cho et al. [40] deals with carathéodory coefficients pn. To proceed further, we need to recall

Definition 1.1.6. (Subordination) An analytic function f is subordinate to another analytic function g,
denoted by f ≺ g, if there is an analytic function w with |w(z)| ≤ |z| such that f (z) = g(w(z)). Further,
If g is univalent, then f ≺ g if and only if f (0) = g(0) and f (D)⊆ g(D).

The principle of subordination owes its origin to Lindelöf (1908), but the basic theory was developed,

later on, by Littlewood [98] and Rogosinski [142]. This principle enables us to derive information about

an analytic function f , if certain geometric details of the conformal map associated with this function

are known. The class P is also known as Carathéodory class of functions and plays an important role

in the characterization of the many subclasses of S . In 1992, using subordination, Ma-Minda [102]

introduced the unified class of starlike and convex functions defined as follows:

S ∗(ψ) :=
{

f ∈ A :
z f ′(z)
f (z)

≺ ψ(z)
}

and C (ψ) :=
{

f ∈ A : 1+
z f ′′(z)
f ′(z)

≺ ψ(z)
}
, (1.1.2)

where

1. ψ(z) ∈ P is an analytic univalent function in |z|< 1.

2. ℜψ(z)> 0, ψ ′(0)> 0, ψ(0) = 1 and ψ(D) is symmetric about real axis.

In literature, there are still several problems that are not solved in general. This fact motivated several

authors, see Table 1.1, to study specific subclasses in view of (3.1.3).

Class ψ(z) Reference
S ∗

C 1+4z/3+2z2/3 Sharma, Jain and Ravichandran [150]
S ∗

SG 2/(1+ e−z) Goel and Kumar [60]
S ∗

s 1+ sinz Cho, Kumar and Kumar [82]
S ∗

L
√

1+ z Sokół and Stankiewicz [161]
S ∗

Ne 1+ z− z3/3 Wani and Swaminathan [170]
S ∗

qb

√
1+bz, b ∈ (0,1] Sokół [158]

∆∗ z+
√

1+ z2 Raina and Sokół [134]
S ∗

e ez Mendiratta, Nagpal and Ravichandran [109]
S ∗

ϕo 1+ z
k

( k+z
k−z

)
, k = 1+

√
2 Kumar and Ravichandran [89]

S ∗
RL

√
2− (

√
2−1)

√
1−z

1+2(
√

2−1)z
Mendiratta, Nagpal and Ravichandran [108]

Table 1.1: Some subclasses of starlike functions obtained for different Choices of ψ(z)
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1.2 Concept of differential subordination

In very simple terms, a differential subordination in the complex plane is the generalization of a

differential inequality on the real line. Obtaining information about the properties of a function from

properties of its derivatives plays an important role in the functions of a real variable. Let us directly

compare the following two results:

If f ′(x)> 0, then f is an increasing function.

A simple analog of this is the Noshiro-Warschawski theorem: if f is analytic in the unit disk D, then

ℜ f ′(z)> 0 implies f is univalent in D.

For further interest in differential subordination implication, we strongly refer to read the book “Miller,

S.S., Mocanu, P.T.: Differential subordinations, Monographs and Textbooks in Pure and Applied Math-

ematics. New York: Marcel Dekker, Inc, (2000).” Now we only require to state the following concept,

which shall use as tool in our results:

Definition 1.2.1. (Differential Subordination) [110] Let φ : C3 ×D→C and let h be univalent in D. If
p is analytic in D and satisfy the (second order) differential subordination

φ(p(z),zp′(z),z2 p′′(z);z)≺ h(z), (1.2.1)

then p is called a solution of the differential subordination. An analytic function q is called a dominant
of the solution of the differential subordination, or more simply a dominant, if p ≺ q for all p satisfying
(1.2.1). A univalent dominant q̃ that satisfy q̃ ≺ q for all dominant q of (1.2.1) is called the best
dominant. Note that the best dominant is unique up to the rotation of D. For more information on
differential subordination see [110].

Definition 1.2.2. [110] Let Q be the set of functions q that are analytic and injective on D\E(q), where

E(q) = {ζ ∈ ∂D : lim
z→ζ

= ∞} (1.2.2)

and are such that q′(ζ ) ̸= 0 for ζ ∈ ∂D\E(q).

Definition 1.2.3. [110] Let Ω be a set in C, q ∈ Q and n be a positive integer. The class of admissible
functions Ψn[Ω,q], consists of those functions ψ : C3×D→C that satisfy the admissibility condition:

ψ(r,s, t;z) /∈ Ω

whenever r = q(ζ ), s = mζ q′(ζ ), ℜ
t
s
+1 ≥ mℜ

[
ζ q′′(ζ )
q′(ζ )

+1
]

, z ∈ D, ζ ∈ ∂D\E(q) and m ≥ n.

To study differential subordination implications using the technique of admissible function so that the

implication

{Ψ(p(z),zp′(z),z2 p′′(z);z)|z ∈ D} ≺ h(z)⇒ p(z)≺ q(z) (1.2.3)
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holds, one needs to follow Definition 1.2.2 and Definition 1.2.3. Here we see our interest in the class

S ∗
℘ :=

{
f ∈ A :

z f ′(z)
f (z)

≺ 1+ zez =:℘(z)
}
,

where ℘ maps the unit disk onto a cardioid domain, since the function ℘ does not follow Defini-

tion 1.2.2. This makes this class important for our study not only in view of differential subordination

but in other aspects also. In this thesis, we use the concept of differential subordination implications as

a technique for establishing our results, for instance in majorization problems.

1.3 Synopsis of the Thesis

Univalent function theory is the classical part of complex analysis, it falls under Geometric function

theory as it deals with the geometrical aspects of the image domain f (D) of analytic functions f de-

fined on the unit disk D = {z ∈ C : |z| < 1}. In fact, it begins with the sharp estimation of the second

coefficient bound of the univalent functions f , given by f (z) = z+a2z2 +a3z3 + · · · . The brief history

of |a2| estimation began with Bieberbach’s work and its application in Koebe’s famous 1/4-th Quarter

theorem [80]. In an attempt to get the bounds for other coefficients during the second decade of 20th

century, many coefficients functional like a2
2 −a3 were considered, which yields |a3| ≤ 5, a crude esti-

mate of the coefficient for univalent functions. Now the sharp estimates of the coefficients like |an| ≤ n

are well-known for the univalent functions. In fact, the sharp bounds of coefficients are yet to be known

for several subclasses of starlike functions. However, the sharp bounds for the initial coefficients a2, a3,

a4 for functions in S ∗(ψ), the Ma-Minda class of starlike functions, defined below, are now known and

derived in the recent years and the estimate for a5, subject to certain conditions, is obtained recently

in [56]. Further, the importance of such coefficient bounds has been noticed recently in the concept of

Bohr’s radius problems, see [34,111,115]. Moreover, the need of estimations of such coefficients and

other coefficients functional like a2
2 −βa3 can be found in higher-order Hankel determinants, see the

recent survey article titled “A survey on coefficient estimates for Carathéodory functions" by N. E.

Cho et al. [40]. Let P be the class of analytic Carathéodory functions defined by p(z) = 1+∑
∞
n=1 pnzn,

such that ℜp(z)> 0 in D. Many subclasses of univalent starlike functions were studied in the past, as-

sociated with the interesting Carathéodory regions represented by the Carathéodory functions
√

1+ z,

1+ sinz, z+
√

1+ z2, ez and 2/(1+ e−z), introduced and studied by Sokół and Stankiewicz [161],

Kumar et al. [38], Raina et al. [134], Mendiratta et al. [109], and Goel and Kumar [60] respectively.

For −1 ≤ E < D ≤ 1, let S ∗[D,E] := S ∗((1+Dz)/(1+Ez)) be the class of Janowski starlike func-

tions. Recently, coefficient problems are considered for the general class S ∗(ψ), which includes the

estimation of well-known Zalcman functional, Fekete-Szegö and Hankel determinant bounds, involving

the successive coefficients of functions in the desired class. Further, the coefficient bound estima-

tion eventually helps us to find the radius estimation, for instance, one may observe it in the case of

Bohr radius problems. In 1992, Ma and Minda [102] unified various subclasses of starlike and convex
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univalent functions, which are respectively given by:

S ∗(ψ) :=
{

f ∈ A :
z f ′(z)
f (z)

≺ ψ(z)
}

and C (ψ) :=
{

f ∈ A : 1+
z f ′′(z)
f ′(z)

≺ ψ(z)
}
,

where ψ ∈ P is univalent and ψ(D) symmetric about real axis and starlike with respect to 1. The

symbol ≺ denotes the usual subordination. Note that, for different choices of ψ , we obtain differ-

ent subclasses of S ∗. For instance if ψ(z) := (1 + z)/(1 − z),(1 + (1 + (1 − 2α))z)/(1 − z) and

((1+ z)/(1− z))γ , then the class S ∗(ψ) reduces respectively to the class of starlike functions S ∗,

Robertson’s [140] class S ∗(α) of starlike functions of order α and Stankiewicz’s [162] class S S ∗(γ)

of strongly starlike functions of order γ , where 0≤α < 1 and 0< γ ≤ 1. Note that S ∗(0)=S S ∗(1)=

S ∗.

Now we brief what is Radius problem: “To find the maximal radius r < 1 so that a function f has the

property P in Dr or f (Dr) has the property P” is known as the radius problem. For instance, let f be

a starlike function, which is not convex in D. Then the maximal radius r for which f (Dr) is convex, is

known as the radius of convexity for such starlike functions.

Let f and g be the analytic functions in a domain D ⊂ C. The function f is said to be majorized

by g, provided | f (z)| ≤ |g(z)| for each z in D. In 1967, Macgregor [104] discussed the concept of

majorization for the univalent functions and derived the following worthy result:

Theorem B. (Macgregor, [104]) Suppose f and g be analytic in |z| < 1. Let g(0) = 0 and f be
majorized by g in |z|< 1. Then

(A.) If 0 ≤ r ≤
√

2−1, then max|z|=r | f ′(z)| ≤ max|z|=r |g′(z)|.

(B.) If g is univalent for |z|< 1, then f ′ is majorized by g′ in |z| ≤ 2−
√

3.

(C.) If g maps one-to-one onto a convex domain, then f ′ is majorized by g′ in |z| ≤ 1/3.

Further, he [104] deduced coefficients bounds for analytic functions f (z) = ∑
∞
n=1 anzn majorized by

the analytic function g(z) = z+∑
∞
n=2 bnzn in |z|< 1, where g is either univalent or spiral-like or convex

function. In the present work, we deal with the generalization of the above Theorem B.

Other interesting problem for the analytic functions is due to Bohr [34], who proved in 1914 that

analytic functions f (z) = ∑
∞
n=0 anzn with | f (z)|< 1, satisfies the inequality

∞

∑
n=0

|an||z|n < 1, (1.3.1)

which holds for |z| < 1/3, where 1/3 is best possible constant. The inequality (1.3.1) is known as

Bohr’s sum or sometimes classical Bohr’s inequality. This inequality has attracted a lot of attention in

recent times. For such functions, Rogosinski gave the partial sum’s inequality, that is

N−1

∑
n=0

|an||z|n < 1,

which holds for |z|< 1/2. The constant 1/2 is the best possible. Let us now write an important Bohr-
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Rogosinski inequality for analytic functions f (z)=∑
∞
n=0 anzn, see Kayumov et al. [76] and Muhanna [111],

which is described as follows:

| f (z)|+
∞

∑
n=N

|an||z|n ≤ | f (0)|+d( f (0), f (D)),

where d here refers to the distance. Let g(z) = ∑
∞
n=1 bnzn and S( f ) = {g : g ≺ f}, the families of

analytic subordinates of f , where f is univalent, it is proved that:

Theorem C. (Kayumov et al., [76]) Assume that f and g are analytic in D such that f is univalent in
D and g ∈ S( f ). Then for each m,N ∈ N, the inequality

|g(zm)|+
∞

∑
n=N

|bn||z|n ≤ | f (0)|+d( f (0), f (D)) (1.3.2)

holds for |z| ≤ r f
m,N , where r f

m,N is the positive root of the following equation

4rm − (1− rm)2 +4rN(N(1− r)+ r)
(

1− rm

1− r

)2

= 0.

The radius r f
m,N is sharp due to Koebe function z/(1− z)2.

In the present thesis, we investigate several radius results such as Bohr, Rogosinski and Bohr-

Rogosinki radius involving the Ma-Minda classes S ∗(ψ) and C (ψ), as well as some other subclasses

of univalent functions. Radius problems for special functions are also an active area of research. For

the normalized form of certain special functions, the radius of starlikeness and convexity are known, for

special function’s related properties, see [21–23,25,27–29]. However, S ∗(ψ)-radius and C (ψ)-radius

for special functions are still open, we deal them in Chapter 6. Further, several types of radius problems

were also discussed in the past, see [58, Chapter 13] and [49, Chapter 6, Section 6.4 Majorization,

pg. 202]. However, their generalization for the Ma-Minda classes of univalent starlike and convex func-

tions, yet not established. Motivated by these observations, we further study extensively the concepts

related to the radius problems especially for the general classes S ∗(ψ) and C (ψ), which finally made

this thesis end up with nice and significant collections of radius problems for S ∗(ψ) and C (ψ). The

findings of this thesis are either new or provide new insight into the literature. We now brief in the

following, the chapter-wise description, skipping the first introductory chapter, which essentially deals

with basic definitions, notations, and notions needed for the study.

Chapter 2

In this chapter, titled “A Cardioid Domain and Starlike functions", we introduce and study a new

class of starlike functions given by

S ∗
℘ :=

{
f ∈ A :

z f ′(z)
f (z)

≺ 1+ zez =:℘(z)
}
,
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where ℘ maps the unit disk onto a cardioid domain. We find the radius of convexity of ℘(z) and

establish the inclusion relations between the class S ∗
℘ and some well-known classes. Further, we

derive sharp radius constants and coefficient-related results for the class S ∗
℘. We enlist below a few

results pertaining to this chapter:

1. The S ∗
℘,n-radius of the class S ∗

n [D,E] is given by

(i) RS ∗
℘,n

(S ∗
n [D,E]) = min

{
1,
(

1/e
D−(1−1/e)E

) 1
n
}
, when 0 ≤ D < E ≤ 1.

(ii) RS ∗
℘,n

(S ∗
n [D,E]) =

{
R1, if R1 ≤ r1

R2, if R1 > r1
when −1 ≤ E < 0 ≤≤ 1,

where

R1 := RS ∗
℘,n

(S ∗
n [D,E]) as defined in part (i),

R2 = min{1,(e/(D− (e+1)E))1/n}

and

r1 =

(
(e2 −1)/2e

((e2 +2e−1)/2e)E2 −DE

)1/2n

.

In particular, for the class S ∗, we have RS ∗
℘
(S ∗) = 1/(2e−1).

2. Let f ∈S ∗
℘. Then the following necessary condition for the 3-fold and 2-fold symmetric functions,

respectively hold:

(i) f̂ ∈ S
∗(3)

℘ implies that |H3(1)| ≤ 1/9.

(ii) f̂ ∈ S
∗(2)

℘ implies that |H3(1)| ≤ 1/16.

The above bounds are sharp.

Several inclusion results are nicely depicted in a graph. All the results of this chapter are sharp and

some are kept as open problems.

Chapter 3

In this chapter, titled “Classes of Analytic functions associated with univalent functions”, motivated

by the class of analytic functions associated with the functions, namely Booth Lemniscate and Cissoid

of Diocles, we introduce and study a new class of analytic functions given by:

F (ψ) :=
{

f ∈ A :
(

z f ′(z)
f (z)

−1
)
≺ ψ(z), ψ(0) = 0

}
,

where ψ is univalent. We establish the growth and covering theorems with some geometric conditions

on ψ , which are as follows:

1. (Growth Theorem) Suppose that max|z|=r ℜψ(z) = ψ(r) and min|z|=r ℜψ(z) = ψ(−r). Then the
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function f ∈ F (ψ) satisfies the sharp inequalities:

r exp
(∫ r

0

ψ(−t)
t

dt
)
≤ | f (z)| ≤ r exp

(∫ r

0

ψ(t)
t

dt
)
, (|z|= r).

2. (Covering Theorem) If f ∈ F (ψ), then either f is a rotation of f0 or

{w ∈ C : |w| ≤ − f0(−1)} ⊂ f (D),

where − f0(−1) = limr→1(− f0(−r)) and f0 is given by

f0(z) = zexp
∫ z

0

ψ(t)
t

dt.

Note that the functions in F (ψ) need not be univalent. As an application, we obtain the growth theorem

for the complete range of α and β for the functions in the classes BS (α) := { f ∈A : (z f ′(z)/ f (z))−
1 ≺ z/(1−αz2), α ∈ [0,1)} and Scs(β ) := { f ∈ A : (z f ′(z)/ f (z))− 1 ≺ z/((1− z)(1+β z)), β ∈
[0,1)}, respectively which improves the earlier known bounds. The sharp Bohr-radii for the classes

given by S(BS (α)) = {g : g ≺ f ,g(z) = ∑
∞
k=1 bkzk and f ∈BS (α)} and BS (α) are also obtained.

All the results obtained here are more general as well as sharp.

Chapter 4

In this chapter, titled “Some general results for the Ma-Minda classes", motivated by the well-known

work of MacGregor, Campbell and Szegö, we consider functions analytic in the unit disk that are

subordinate to functions of the same type that are defined by certain differential subordinations. We

prove several sharp majorization theorems, a product theorem, convolution conditions for necessary

and sufficient conditions, and some radius problems related to the Ma-Minda classes. Some of the

interesting results we obtained on majorization are given below:

1. Let ℜφ(z) > 0 and φ be convex in D with φ(0) = 1. Suppose ψ be the function such that

mr := min
|z|=r

|ψ(z)| and also satisfies the differential equation

ψ(z)+
zψ ′(z)
ψ(z)

= φ(z).

Let g ∈ A and f ∈ C (φ). If g is majorized by f in D, then |g′(z)| ≤ | f ′(z)| in |z| ≤ rψ , where rψ

is the least positive root of the equation

(1− r2)mr −2r = 0.

The result is sharp for the case mr = ψ(−r).

2. Let φ be convex in D, with ℜφ(z) > 0, φ(0) = 1 and suppose f ∈ A satisfies the differential
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subordination
z f ′(z)
f (z)

+ z
(

z f ′(z)
f (z)

)′
≺ φ(z).

If g is majorized by f , then |g′(z)| ≤ | f ′(z)| in |z| ≤ r0, where r0 is the least positive root of the

equation

(1− r2)min
|z|=r

ℜψ(z)−2r = 0,

where

ψ(z) :=
1
z

∫ z

0
φ(t)dt.

The result is sharp for the case min|z|=r ℜψ(z) = ψ(±r).

The contributions of this chapter are mostly the generalization of well-known results or new establish-

ments in the above-mentioned direction.

Chapter 5

This chapter titled “Bohr and Rogosinski phenomenon for certain classes of univalent functions ",

deals with a popular radius problem generally known as Bohr’s phenomenon, which has been studied

in various settings, however little is known about Rogosinski radius. For a fixed f ∈ S ∗(ψ) or C (ψ),

the class of analytic subordinants S f (ψ) := {g : g≺ f} is studied for the Bohr-Rogosinski phenomenon.

It’s applications to the classes S ∗(ψ) and C (ψ) are also shown. The phenomenon is also studied

for a class of harmonic functions to answer the problem for certain classes of univalent functions with

negative coefficients. We conclude the chapter with a natural generalization of the Bohr-Rogosinski

sum for general Ma-Minda classes. Some of the important results are as follows:

1. Let f0(z) be given by the relation z f ′(z)/ f (z)=ψ(z) and f (z)= z+∑
∞
n=2 anzn ∈S ∗(ψ). Assume

f0(z) = z+∑
∞
n=2 tnzn and f̂0(r) = r+∑

∞
n=2 |tn|rn. If g ∈ S f (ψ). Then

|g(zm)|+
∞

∑
k=N

|bk||z|k ≤ d(0,∂Ω)

holds for |z| = rb ≤ min{1
3 ,r0}, where m,N ∈ N, Ω = f (D) and r0 is the unique positive root of

the equation:

f̂0(rm)+ f̂0(r)− p f̂0
(r) =− f0(−1),

where

p f̂0
(r) =


0, N = 1;

r, N = 2

r+∑
N−1
n=2 |tn|rn, N ≥ 3

The result is sharp when rb = r0 and tn > 0.
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2. Let {φn(r)}∞
n=1 be a non-negative sequence of continuous functions in [0,1] such that the series

φ1(r)+
∞

∑
n=2

∣∣∣∣∣ f (n)0 (0)
n!

∣∣∣∣∣φn(r)

converges locally uniformly with respect to each r ∈ [0,1). If

β | f ′(zm)|+(1−β )| f (zm)|+φ1(r)+
∞

∑
n=2

∣∣∣∣∣ f (n)0 (0)
n!

∣∣∣∣∣φn(r)<− f0(−1)

and f (z) = z+∑
∞
n=2 anzn ∈ S ∗(ψ). Then

β | f ′(zm)|+(1−β )| f (zm)|+
∞

∑
n=1

|an|φn(r)≤ d(0,∂Ω) (1.3.3)

holds for |z|= r ≤ rb = min{1/3,r0}, where m ∈N, Ω = f (D) and r0 is the smallest positive root

of the equation:

β f ′0(r
m)+(1−β ) f0(rm)+

∞

∑
n=2

∣∣∣∣∣ f (n)0 (0)
n!

∣∣∣∣∣φn(r) =− f0(−1)−φ1(r),

where

f0(z) = zexp
∫ z

0

ψ(t)−1
t

dt.

Moreover, the inequality (1.3.3) also holds for the class S f (ψ) in |z|= r ≤ rb. When rb = r0, then

the radius is best possible.

The concept of the Bohr-phenomenon has been studied explicitly in this chapter for the Ma-Minda

classes. Also, certain fundamental inequalities are established involving subordination.

Chapter 6

This chapter titled “S ∗(ψ) and C (ψ)- radii of Special functions ”, deals with the radius problem

explaining the geometric properties of the normalized forms of some special functions, which has

been of special interest among the Geometric function theorist. Further, we show that the classes

S ∗(1+αz) and C (1+αz), 0 < α ≤ 1 solve the problem of finding the sharp S ∗(ψ)-radii and C (ψ)-

radii for some normalized special functions, whenever ψ(−1) = 1−α . Radius of strongly starlikeness

is also considered. One of our radius results is as follows: Let

Φ(κ,δ ,z) = ∑
n≥0

zn

n!Γ(nκ +δ )
,
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called as Wright function, where κ >−1 and z,δ ∈ C. The function Φ is entire for κ >−1. Consider

the following normalized Wright functions:

fκ,δ (z) =
[
zδ

Γ(δ )Φ(κ,δ ,−z2)
]1/δ

gκ,δ (z) = zΓ(δ )Φ(κ,δ ,−z2)

hκ,δ (z) = zΓ(δ )Φ(κ,δ ,−z).

For simplicity, we write Wκ,δ (z) := Φ(κ,δ ,−z2). We denote S ∗(ψ)-radius by R[S ∗(ψ)].

1. Let κ,δ > 0 and α ∈ (0,1] such that the largest disk {w : |w−1|< α} ⊆ ψ(D). Then

R[S ∗(ψ)] = R[S ∗(1+αz)],

where ψ(−1) = 1−α and S ∗(1+αz)-radii for the functions fκ,δ , gκ,δ and hκ,δ are the smallest

positive roots of the following equations respectively:

(i) rW
′
κ,δ (r)+δαWκ,δ (r) = 0;

(ii) rW
′
κ,δ (r)+αWκ,δ (r) = 0;

(iii)
√

rW
′
κ,δ (

√
r)+2αWκ,δ (

√
r) = 0.

2. Let κ,δ > 0 and α ∈ (0,1] such that the largest disk {w : |w−1|< α} ⊆ ψ(D). Then

R[C (ψ)] = R[C (1+αz)],

where ψ(−1) = 1−α and R[C (1+αz)] for the functions fκ,δ , gκ,δ and hκ,δ are the smallest

positive roots of the following equations respectively:

(i)
rΨ

′′
κ,δ (r)

Ψ
′
κ,δ

(r)
+
( 1

δ
−1
) rΨ

′
κ,δ (r)

Ψκ,δ (r)
+α = 0;

(ii) rg′′
κ,δ (r)+αg′

κ,δ (r) = 0;

(iii) rh′′
κ,δ (z)+αh′

κ,δ (r) = 0,

where Ψκ,δ (z) = zδ Φ(κ,δ ,−z2).

The sharp S ∗(ψ) and C (ψ)-radii of the normalized form of Wright functions, Lommel functions,

Struve functions and Legendre polynomials of odd degree, etc. are established in the chapter. The

results not only generalize the known work, but also provide a simple proof, which in turn reduces a lot

of calculations.

Further, we have provided a concluding remark as well as the future scope of the study in the thesis.
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Chapter 2

A Cardioid Domain and Starlike

Functions

We introduce a new class of starlike functions defined by

S ∗
℘ :=

{
f ∈ A :

z f ′(z)
f (z)

≺ 1+ zez =:℘(z)
}
,

where ℘ maps the unit disk onto a cardioid domain. We find the radius of convexity of ℘(z) and

establish the inclusion relations between the class S ∗
℘ and some well-known classes. Further, we

derive sharp radius constants and coefficient-related results for the class S ∗
℘.

2.1 Introduction

The investigation of properties of starlike and convex functions emerged soon after the Bieberbach

conjecture on univalent functions. Goodman [59] and Ronning [143] started investigating the prop-

erties like uniform starlikeness and uniformly convexity. Then the paper by Sokół [158] and, Kanas

and Wiśniowska [73] gave insights into subclasses of starlike and convex functions associated with

the Lemniscate of Bernoulli and Conic domains, respectively. But in 1992, a unified treatment of

subclasses of starlike and convex functions was given by Ma and Minda [102]. Since then several

fascinating articles in view of the Ma-Minda class appeared concerning several types of radius and

coefficient problems.

Let An be the class of analytic functions of the form f (z) = z+∑
∞
k=n+1 bkzk. Let A :=A1 and S be

15
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the subclass of A consisting of univalent functions f having the following power series expansion:

f (z) = z+b2z2 +b3z3 + · · · . (2.1.1)

In view of Ma and Minda classes defined in (1.3), we also consider the class of starlike functions

related to the contracted cardioid regions represented by the function ℘α(z) = 1+αzez, 0 < α ≤ 1.

More precisely,

S ∗(℘,α) :=
{

f ∈ A :
z f ′(z)
f (z)

≺ 1+αzez
}

(z ∈ D).

Observe that for 0 < α < β ≤ 1, ℘α(D)⊂℘β (D). Let ℘(z) :=℘1(z). Note that the function ℘ does

not satisfy the Definition 1.2.2 and thus it is an independent interesting case study for the differential

subordination implication related to this function itself using admissible conditions in view of Defini-

tion 1.2.3. In contrast to the literature, the image domain ℘(D) is not convex having a cusp at ℘(−1),

and ℘ also has no explicit inverse representation. Motivated by these facts, we study in particular the

following class:

S ∗
℘ :=

{
f ∈ A :

z f ′(z)
f (z)

≺℘(z)
}

(z ∈ D). (2.1.2)

A function f ∈ S ∗
℘ if and only if there exists a function p ∈ P and p ≺℘ such that

f (z) = zexp
(∫ z

0

p(t)−1
t

dt
)
. (2.1.3)

If we take p(z) =℘(z), then we obtain from (2.1.3) the function

f1(z) := zexp(ez −1) =
∞

∑
n=0

Bn
zn+1

n!
= z+ z2 + z3 +

5
6

z4 +
5
8

z5 +
13
30

z6 + · · · , (2.1.4)

where Bn are the Bell numbers satisfying the recurrence relation given by

Bn+1 =
n

∑
k=0

(
n
k

)
Bk. (2.1.5)

We now state below the following common results meant for S ∗
℘ using results in [102], by omitting

the proof.

Theorem 2.1.1. Let f ∈ S ∗
℘ and f1 as defined in (2.1.4). Then

(i) Growth theorem: − f1(−|z|)≤ | f (z)| ≤ f1(|z|).

(ii) Covering theorem: {w : |w| ≤ − f1(−1)≈ 0.5314} ⊂ f (D).

(iii) Rotation theorem: |arg f (z)/z| ≤ max|z|=r arg( f1(z)/z).

(iv) f (z)/z ≺ f1(z)/z and | f ′(z)| ≤ f ′1(|z|).

As a consequence of growth theorem, for |z|= r, we obtain

log
∣∣∣∣ f (z)

z

∣∣∣∣≤ ∫ r

0
etdt ≤

∫ 1

0
etdt = e−1,
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which implies | f (z)| ≤ ee−1 and the bound can not be further improved as zexp(ez −1) acts as an

extremal function.

The geometric properties of the cardioid domain ℘(D) and the inclusion relationship between S ∗
℘

and the classes S S ∗(γ), S ∗(α) and many more are examined in the present chapter. Various

sharp radius results associated with S ∗
℘ are also obtained. Further, we find the coefficient estimates

for f ∈ S ∗
℘ and the sharp bound for the first five coefficients. Conjecture related to the sharp bound

of nth coefficient is also posed. Using the expression of the carathéodory coefficient p4 in terms of

p1, where the technique has not been used much so far, we also obtain the estimate for the third

Hankel determinant for the class S ∗
℘. For the classes of two-fold and three-fold symmetric functions

associated with S ∗
℘, sharp estimates are also obtained for the third Hankel determinant. In addition,

problems related to coefficients are also discussed.

2.2 Properties of cardioid domain

Since 1+ zez maps D onto a starlike domain, our first result aims in finding the radius of convexity of

the same:

Theorem 2.2.1. The radius of convexity of the function ℘(z) = 1+ zez is the smallest positive root of
the equation r3 −4r2 +4r−1 = 0, which is given by

rc = (3−
√

5)/2 ≈ 0.381966.

Proof. Now it is to find the constant rc ∈ (0,1] so that

ℜ

(
1+

z℘′′(z)
℘′(z)

)
> 0 (|z|< rc). (2.2.1)

Since

ℜ

(
1+

z℘′′(z)
℘′(z)

)
=

r3 cosθ + r2(3+ cos2θ)+4r cosθ +1
1+2r cosθ + r2 =: g(r,θ)

and g is symmetric about the real axis as g(r,θ) = g(r,−θ). Thus we only need to consider θ ∈ [0,π].
Further, we have 1+2cosθr+ r2 > 0 for r ∈ (0,1) and θ ∈ [0,π]). So we may consider the numerator
of g(r,θ) as

gN(r,θ) := r3 cosθ + r2(3+ cos2θ)+4r cosθ +1.

Now to arrive at (2.2.1), we only need to show

gN(r,θ)> 0 (r ∈ (0,rc)). (2.2.2)

It is evident that for any fixed r = r0, gN(r0,θ) attains its minimum at θ = π , which is given by
gN(r0,π) = −r3

0 + 4r2
0 − 4r0 + 1. Since gN(0,π) > 0 and if rc is the least positive root of r3 − 4r2 +

4r−1 = 0 then (2.2.2) follows.
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Using elementary calculus, one can easily find the following sharp bounds that are associated with

the function ℘(z) = 1+ zez, which are used extensively in obtaining our subsequent results.

Lemma 2.2.1. (Function Bounds) Let℘R(θ) and℘I(θ) denote the real and imaginary parts of℘(eiθ ),
respectively.

(i) Let ℘R(θ) = 1+ ecosθ cos(θ + sinθ), then ℘R(θ0) ≤ ℜ℘(z) ≤ 1+ e where θ0 ≈ 1.43396 is the
solution of 3θ/2+ sinθ = π and ℘R(θ0)≈ 0.136038.

(ii) Let ℘I(θ) = ecosθ sin(θ + sinθ), then | Im℘(z)| ≤℘I(θ0), where θ0 ≈ 0.645913 is the solution of
3θ/2+ sinθ = π/2 and ℘I(θ0)≈ 2.10743.

(iii) |arg℘(z)|= |arctan(℘I(θ)/℘R(θ))| ≤ (0.89782)π/2.

(iv) |℘(z)| ≤ 1+ rer, whenever |z|= r < 1.

The bounds are the best possible.

The following lemma aims at finding the largest (or smallest) disk centered at the sliding point (a,0)

inside (or containing) the cardioid domain ℘(D).

Lemma 2.2.2. Let ℘(z) = 1+ zez. Then we have

1. {w : |w−a|< ra} ⊂℘(D), where

ra =

{
(a−1)+1/e, 1−1/e < a ≤ 1+(e− e−1)/2;
e− (a−1), 1+(e− e−1)/2 ≤ a < 1+ e.

2. ℘(D)⊂ {w : |w−a|< Ra}, where

Ra =

{
1+ e−a, 1−1/e < a ≤ (e+ e−1)/2√

d(θa), (e+ e−1)/2 < a < 1+ e.

where θa ∈ (0,π), is the root of the following equation:

sin(θ/2)+(1−a)sin(3θ/2+ sinθ) = 0. (2.2.3)

Proof. We begin with the first part. The curve ℘(eiθ ) =℘R(θ)+ i℘I(θ) = 1+ ecosθ (cos(θ + sinθ)+

isin(θ + sinθ)) represents the boundary of ℘(D) and is symmetric about the real axis. So it is enough
to consider θ in [0,π]. Now, square of the distance of (a,0) from the points on the curve ℘(eiθ ) is
given by

d(θ) := (a−1− ecosθ cos(θ + sinθ))2 + e2cosθ sin2(θ + sinθ)

= e2cosθ −2(a−1)ecosθ cos(θ + sinθ)+(a−1)2.

Case(i): If 1− e−1 < a ≤ (e+ e−1)/2, then d(θ) decreases in [0,π]. Therefore, we get

ra = min
θ∈[0,π]

√
d(θ) =

√
d(π) = (a−1)+1/e.
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Now for the range (e+ e−1)/2 ≤ a < 1+(e− e−1)/2, it is easy to see that the equation

d′(θ) =−4ecosθ cos(θ/2)(sin(θ/2)− (a−1)sin(3θ/2+ sinθ)) = 0

has three real roots 0,θa and π , where θa is the root of the equation given in (2.2.3) and we have
θa1 < θa2 whenever a1 < a2. Further, we see that d(θ) increases in [0,θa] and decreases in [θa,π].
Also,

d(π)−d(0) = 2(e+ e−1)(a− (1+(e− e−1)/2))< 0.

Therefore, min{d(0),d(θa),d(π)}= d(π) and we have

ra =
√

d(π) = (a−1)+1/e.

Case(ii): If 1+(e− e−1)/2 ≤ a < 1+ e, we see that d(θ) is an increasing function for θ ∈ [0,θa] and
decreasing for θ ∈ [θa,π], where θa is the root of the equation defined in (2.2.3). Also,

d(π)−d(0) = 2(e+ e−1)(a− (1+(e− e−1)/2))> 0.

Therefore, min{d(0),d(θa),d(π)}= d(0) and we have

ra =
√

d(0) = e− (a−1).

This completes the proof of the first part. The proof of the second part is much akin to the first part so
is skipped here.

Remark 2.2.1. We obtain the largest disk DL := |w− a| < ra contained in ℘(D) when a = 1+(e−
e−1)/2 and ra = (e+ e−1)/2 and the smallest disk DS := |w− a| < Ra, which contains ℘(D) when
a = (e+ e−1)/2 and Ra = 1+(e− e−1)/2. Thus DL ⊂℘(D)⊂ DS.

Our next result deals with the inclusion relations of the class S ∗
℘ involving various classes including

the following, see [12,73,168]:

M (β ) :=
{

f ∈ A : ℜ
z f ′(z)
f (z)

< β , β > 1
}
,

k−S T :=
{

f ∈ A : ℜ
z f ′(z)
f (z)

> k
∣∣∣∣z f ′(z)

f (z)
−1
∣∣∣∣ , k ≥ 0

}
and

S T p(a) :=
{

f ∈ A : ℜ
z f ′(z)
f (z)

+a >

∣∣∣∣z f ′(z)
f (z)

−a
∣∣∣∣ , a > 0

}
.

Theorem 2.2.2. Inclusion Relations:

(i) S ∗
℘ ⊂ S ∗(α)⊂ S ∗ for 0 ≤ α ≤ ω0 ≈ 0.136038.

(ii) S ∗
℘ ⊂ M (β ) for β ≥ 1+ e and S ∗

℘ ⊂ S ∗(ω0)∩M(1+ e).

(iii) S ∗
℘ ⊂ S S ∗(γ)⊂ S ∗ for 0.897828 ≈ γ0 ≤ γ ≤ 1.
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(iv) S ∗
℘ ⊂ S T p(a) for a ≥ b ≈ 1.58405.

(v) k−S T ⊂ S ∗
℘ for k ≥ e−1,

where ω0 = minℜ℘(z). These best possible inclusion relations are clearly depicted in Figure 6.4.3.

Proof. Proof of (i), (ii) and (iii) directly follows from Lemma 2.2.1. We begin with the proof of part
(iv).

(iv) Note that boundary ∂Ωa of the domain Ωa = {w ∈ C : ℜw+ a > |w− a|} is a parabola. Now
S ∗

℘ ⊂ S T p(a), provided ℜw+a > |w−a|, where w = 1+ zez. Upon taking z = eiθ , we have

T (θ) :=
e2cosθ sin2(θ + sinθ)

4(1+ ecosθ cos(θ + sinθ))
< a.

Further, T ′(θ) = 0 if and only if θ ∈ {0,θ0,π}, where θ0 ≈ 1.23442 is the unique root of the equation

cos(3θ/2+ sinθ)(2+ ecosθ cos(θ + sinθ))+ ecosθ cos(θ/2) = 0(0 < θ < π).

Therefore, max0≤θ≤π T (θ)=max{T (0),T (θ0),T (π)}=T (θ0)≈ 1.58405. Since S T p(a1)⊂S T p(a2)

for a1 < a2, it follows that S ∗
℘ ⊂ S T p(a) for a ≥ b ≈ 1.58405.

(v) Let f ∈ k−S T and Γk = {w ∈ C : ℜw > k|w− 1|}. For k > 1, the boundary curve ∂Γk is an
ellipse γk : x2 = k2(x−1)2 + k2y2 which can be rewritten as

(x− x0)
2

u2 +
(y− y0)

2

v2 = 1,

where x0 = k2/(k2 − 1), y0 = 0, u = k/(k2 − 1) and v = 1/
√

k2 −1. Observe that u > v. Therefore,
for the ellipse γk to lie inside ℘(D), we must ensure that x0 ∈ (1− 1/e,1+ e), which holds for k ≥√
(1+ e)/e and by Lemma 2.2.2, we have

1−1/e ≤ x0 −u and x0 +u ≤ 1+ e,

whenever
k ≥ max

{√
(1+ e)/e, e−1, (1+ e)/e

}
= e−1.

Since Γk1 ⊆ Γk2 for k1 ≥ k2, it follows that k−S T ⊂ S ∗
℘ for k ≥ e−1.

Remark 2.2.2. Inclusion relation of cardioid with vertical Ellipse:
Consider the equation (x−h)2

v2 + y2

u2 = 1, where x= h+vcosθ , y= usinθ and θ ∈ (0,π). Case(i) Let u=
maxIm℘(z) and v = h− (1− 1/e), where h = ℜ℘(z), which corresponds to maxIm℘(z) ≈ 1.70529
for the largest vertical ellipse, VL inside ℘(D). Case(ii) Let h = v = (1+ e)/2 and u = e− (1/2e) for
the smallest vertical ellipse, VS containing ℘(D).

In view of the Remark 2.2.2 and the class of starlike functions linked to the conic domains considered

by Kanas and Wiśniowska [73], we pose as an independent interest the following problem:

Open Problem 1. Find the explicit form of the functions Ψ∈P, which maps D onto a vertical elliptical
domain.
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γ0 :℘(z) = 1+ zez

γ1 : ℜw = A
γ2 : ℜw = 1+ e
γ3 : |argw|= (0.897828)π/2
γ4 : |w−1.58405|−Rew = 1.58405
γ5 : ℜw = (e−1)|w−1|
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2e
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γ8 : (ℜw−1.7052)2

(2.1074)2 + (Imw)2

(1.0731)2 = 1

γ9 : (2ℜw−B)2

B2 + 4(Imw)2

(e+BC)2 = 1
A = minℜ℘(z)≈ 0.136038
B = 1+ e
C = 1− e−1

arg(D) =−arg(E) = (0.897828)π/2

Figure 2.1: Boundary curves of best dominants and subordinants of ℘(z) = 1+ zez.

For our next result, we need the following class and some related results:

Pn[D,E] :=
{

p(z) = 1+
∞

∑
k=n

cnzn : p(z)≺ 1+Dz
1+Ez

, |E| ≤ 1,D ̸= E
}
,

where n ∈ N, Pn(α) := Pn[1−2α,−1] and Pn := Pn(0) (0 ≤ α < 1).

Lemma 2.2.3. [149] If p ∈ Pn(α), then for |z|= r,∣∣∣∣zp′(z)
p(z)

∣∣∣∣≤ 2(1−α)nrn

(1− rn)(1+(1−2α)rn)
.

Lemma 2.2.4. [137] If p(z) ∈ Pn[D,E], then for |z|= r,∣∣∣∣p(z)− 1−DEr2n

1−E2r2n

∣∣∣∣≤ |D−E|rn

1−E2r2n .

Particularly, if p ∈ Pn(α), then∣∣∣∣p(z)− 1+(1−2α)r2n

1− r2n

∣∣∣∣≤ 2(1−α)rn

1− r2n .

Theorem 2.2.3. Let −1 < E < D ≤ 1. If one of the following two conditions holds.

(i) 2(e−1)(1−E2)< 2e(1−DE)≤ (e2 +2e−1)(1−E2) and E −1 ≤ e(1−D);

(ii) (e2 +2e−1)(1−E2)≤ 2e(1−DE)< 2e(1+ e)(1−E2) and D−E ≤ e(1+E).

Then S ∗[D,E]⊂ S ∗
℘.
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Proof. If f ∈ S ∗[D,E], then z f ′(z)/ f (z) ∈ P[D,E]. Therefore, by Lemma 2.2.4, we have∣∣∣∣z f ′(z)
f (z)

−a
∣∣∣∣≤ (D−E)

1−E2 , (2.2.4)

where a := (1−DE)/(1−E2). Suppose that the conditions in (i) hold. Now multiplying by (E+1) on
both sides of the inequality (E −1)≤ e(1−D) and then dividing by 1−E2, gives (D−E)/(1−E2)≤
a− (1− 1/e). Similarly, the inequality 2(e− 1)(1−E2) < 2e(1−DE) ≤ (e2 + 2e− 1)(1−E2) is
equivalent to 1− 1/e < (1−DE)/(1−E2) ≤ 1+(e− e−1)/2. Therefore from (2.2.4), we see that
z f ′(z)/ f (z) ∈ {w ∈ C : |w− a| < ra}, where ra = a− (1− 1/e) and 1− 1/e < a ≤ 1+(e− e−1)/2.
Hence, f ∈S ∗

℘ by Lemma 2.2.2. Similarly, we can show that f ∈S ∗
℘, if the conditions in (ii) hold.

2.3 Radius Problems

In this section, we consider several radius problems for S ∗
℘. In the following theorem, we find the

largest radius rε < 1 for which the functions in S ∗
℘ are in the desired class when ε is given. We denote

the A-radius of the class B by RA(B).

Theorem 2.3.1. Let f ∈ S ∗
℘. Then

(i) f ∈ S ∗(α) in |z| < rα , α ∈ (α0,1), where α0 = 1+
√

5−3
2 e

√
5−3
2 and rα ∈ (0,1) is the smallest

root of the equation
1− re−r −α = 0.

(ii) f ∈ M (β ) in |z|< rβ , where

rβ =

{
r0(β ) for 1 < β < 1+ e
1 for β ≥ 1+ e

and r0(β ) ∈ (0,1) is the smallest root of 1+ rer = β .

(iii) f ∈ S S ∗(γ) in |z|< rγ , γ ∈ (0,1], where

rγ = min{1,r0(γ)}

and r0(γ) ∈ (0,1) is the smallest root of the following equation:

arcsin
(

1
r

ln
(

r
sin(γπ/2)

))
+

√
r2 + ln2

(
r

sin(γπ/2)

)
=

γπ

2
. (2.3.1)

Proof. Since z f ′(z)/ f (z)≺℘, it suffices to consider the cardioid domain℘(D) so that certain geometry
can be performed.

(i) Since f ∈ S ∗
℘, there exists a function ω(z) ∈ Ω such that

z f ′(z)
f (z)

= 1+ω(z)eω(z).
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Since |ω(z)| ≤ |z|, we can assume ω(z) = Reiθ , where R≤ |z|= r and −π ≤ θ ≤ π . A calculation
shows that

|Reiθ eReiθ |= ReRcosθ =: T (θ).

Since T (θ) = T (−θ), it is sufficient to consider θ ∈ [0,π]. Further, T ′(θ)≤ 0 implies

|ω(z)eω(z)|= T (θ)≤ T (0)≤ ReR ≤ rer.

Therefore, we obtain

ℜ
z f ′(z)
f (z)

≥ 1−|ω(z)eω(z)| ≥ 1− rer ≥ α,

whenever 1− rer −α ≥ 0.

(ii) Since f ∈ S ∗
℘, therefore using subordination principle and Lemma 2.2.1, we have

ℜ
z f ′(z)
f (z)

≤ ℜ℘(ω(z))≤ |℘(ω(z))| ≤ 1+ rer (|z|= r), (2.3.2)

where ω ∈ Ω. Thus f ∈ M (β ) in |z|< r, whenever 1+ rer < β .

(iii) Let f ∈ S ∗
℘, then f ∈ S S ∗(γ) in |z|< r provided∣∣∣∣arg

z f ′(z)
f (z)

∣∣∣∣≤ |arg(℘(z))| ≤ γπ/2 (|z|= r).

Assuming z = rei(θ+π/2),

θ + r cosθ = γπ/2 and re−r sinθ = sin(γπ/2), (2.3.3)

we have

1+ zez = 1+ re−r sinθ (−sin(θ + r cosθ)+ icos(θ + r cosθ))

= 1+ sin(γπ/2)(−sin(γπ/2)+ icos(γπ/2))

= cos2(γπ/2)+ isin(γπ/2)cos(γπ/2),

which implies |arg(℘(z))| ≤ γπ/2. Now we obtain equation (2.3.1) by eliminating θ from the
equations given in (2.3.3), a geometrical observation ensures the existence of the unique root for
the equation (2.3.1). Thus the result now follows by considering the smallest root of (2.3.1). The
result is further sharp as we can find z0 = r0ei(θ0+π/2) for any fixed γ at which the function f1,

given by (2.1.4) satisfies∣∣∣∣arg
z0 f ′1(z0)

f1(z0)

∣∣∣∣= |arg(1+ zez)|z=z0

= |arg(cos2(γπ/2)+ isin(γπ/2)cos(γπ/2))|

= |arctan(tan(γπ/2))|

= γπ/2.
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Theorem 2.3.2. Let f ∈ S ∗
℘. Then f ∈ C (α) in |z|< rα , where rα ∈ (0,1) is the smallest root of the

equation
(1− r)(1− rer)(1− rer −α)− rer = 0. (2.3.4)

Proof. If f ∈ S ∗
℘, then there exists a Schwarz function ω such that

z f ′(z)
f (z)

= 1+ω(z)eω(z).

Now a computation yields

1+
z f ′′(z)
f ′(z)

= 1+ω(z)eω(z)+
zω ′(z)eω(z)(1+ω(z))

1+ω(z)eω(z)
. (2.3.5)

From (2.3.5), we obtain

ℜ

(
1+

z f ′′(z)
f ′(z)

)
≥ 1+ℜ(ω(z)eω(z))− |zω ′(z)||(ω(z)+1)eω(z)|

1−|ω(z)eω(z)|
. (2.3.6)

Since |ω(z)| ≤ |z|, we can assume that ω(z) = Reiθ , where R ≤ |z| = r and −π ≤ θ ≤ π . Now using
triangle inequality together with the Schwarz-Pick inequality:

|ω ′(z)|
1−|ω(z)|2

≤ 1
1−|z|2

,

we have |zω ′(z)eω(z)(1+ω(z))| ≤ rer/(1− r). Also |ω(z)eω(z)| ≤ ReR ≤ rer. Upon using these in-
equalities in (2.3.6), we get

ℜ

(
1+

z f ′′(z)
f ′(z)

)
≥ 1− rer − rer

(1− r)(1− rer)
≥ α, (2.3.7)

and with the least root of (2.3.4), the above inequality (2.3.7) hold and hence the result.

By taking α = 0 in Theorem 2.3.2, we obtain the following result:

Corollary 2.3.3. Let f ∈ S ∗
℘. Then f ∈ C whenever |z|< r0 ≈ 0.256707 .

Remark 2.3.1. Let ω(z) = z = reiθ and α = 0 in Theorem 2.3.2. Then for the function given by (2.1.4),
we have

ℜ

(
1+

z f ′′1 (z)
f ′1(z)

)
= ℜ

(
1+ zez +

z(1+ z)ez

1+ zez

)
=: F(r,θ),

where

F(r,θ) =−1+ r cosθ +Rcosθ1 + rRcos(θ1 −θ)

1+2Rcosθ1 +R2 +2+ r cosθ +Rcosθ1

and
z = reiθ ,R = rer cosθ ,θ1 = θ + r sinθ .
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Numerically, we note that for all θ ∈ [0,π], F(r,θ) ≥ 0 whenever r ≤ r0 ≈ 0.599547, but when θ

approaches to π , then F(r,θ) < 0 for r = r0 + ε, ε > 0. Thus we previse that the sharp radius of
convexity for the class S ∗

℘ is r0.

For the next theorems 2.3.4-2.3.7, we need to recall some classes: Let f ∈ An. If we set p(z) =

z f ′(z)/ f (z), then the class Pn[D,E] reduces to S ∗
n [D,E], the class of Janowski starlike functions and

S ∗
n (α) := S ∗

n [1−2α,−1]. Further, let

S ∗
℘,n := An ∩S ∗

℘ and S ∗
n (α) := An ∩S ∗(α).

Ali et al. [9] studied the classes, Fn := { f ∈An : f (z)/z ∈Pn}, S ∗
n [D,E] and the subclass consisting

of close-to-starlike functions of type α given by

C S n(α) :=
{

f ∈ An :
f (z)
g(z)

∈ Pn, g ∈ S ∗
n (α)

}
.

We find the S ∗
℘,n-radii for the classes defined above.

Theorem 2.3.4. The sharp S ∗
℘,n-radius of the class Fn is given by:

RS ∗
℘,n

(Fn) = (
√

1+n2e2 −ne)1/n.

Proof. If f ∈ Fn, then the function h(z) := f (z)/z ∈ Pn and

z f ′(z)
f (z)

−1 =
zh′(z)
h(z)

.

Using Lemmas 2.2.2 and 2.2.3, we get∣∣∣∣z f ′(z)
f (z)

−1
∣∣∣∣= ∣∣∣∣zh′(z)

h(z)

∣∣∣∣≤ 2nrn

1− r2n ≤ 1
e
.

Upon simplifying the last inequality, we get r2n + 2nern − 1 ≤ 0. Thus, the S ∗
℘,n-radius of Fn is the

least positive root of r2n + 2nern − 1 = 0 in (0,1). Since for the function f0(z) = z(1+ zn)/(1− zn),
Re( f0(z)/z)> 0 in D. We have f0 ∈ Fn and z f ′0(z)/ f0(z) = 1+2nzn/(1− z2n). Moreover, the result is
sharp as we have at z = RS ∗

℘,n
(Fn):

z f ′0(z)
f0(z)

−1 =
2nzn

1− z2n =
1
e
.

This completes the proof.

Let F := F1, which is F := { f ∈ A : f (z)/z ∈ P}. MacGregor [103] showed that r0 =
√

2−1 for

the class F is the radius of univalence and starlikeness. The S ∗
℘-radius is shown below:

Corollary 2.3.5. The S ∗
℘-radius of the class F is given by

RS ∗
℘
(F ) =

√
1+ e2 − e ≈ 0.178105.
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Theorem 2.3.6. The sharp S ∗
℘,n-radius of the class C S n(α) is given by

RS ∗
℘,n

(C S n(α)) =

(
1/e√

(1+n−α)2 − (1/e)(2(1−α)−1/e)+1+n−α

)1/n

.

Proof. Let f ∈ C S n(α) and g ∈ S ∗
n (α). Then, we have h(z) := f (z)/g(z) ∈ Pn, which implies:

z f ′(z)
f (z)

=
zg′(z)
g(z)

+
zh′(z)
h(z)

.

Using Lemma 2.2.3 with α = 0 and Lemma 2.2.4, we have∣∣∣∣z f ′(z)
f (z)

−a
∣∣∣∣≤ 2(1+n−α)rn

1− r2n , (2.3.8)

where a := (1+(1−2α)r2n)/(1− r2n) ≥ 1. Note that a ≤ 1+(e− e−1)/2 if and only if r2n ≤ (e2 −
1)/(e2 −1+4e(1−α)). Let r ≤ RS ∗

℘,n
(C S n(α)). Then

r2n ≤

 1

e(2−α)+
√

e2(2−α)2 − e(2−2α − 1
e )

2

≤ 1
2e2α2 − (8e2 −2e)α +(8e2 −2e+1)

.

Further, the expression on the right of the above inequality is less than or equal to e2−1
(e2−1)+4e(1−α)

,

provided

T (α) := 2e2(e2 −1)α2 − (8e4 −2e3 −8e2 −2e)α +(8e4 −2e3 −8e2 −2e)≥ 0.

Since T ′(α) < 0 and min0<α<1 T (α) = limα→1 T (α) = 2e2(e2 − 1) > 0. Therefore, a ≤ 1 + (e −
e−1)/2. Using Lemma 2.2.2, it follows that the disk, given by (2.3.8) is contained in the cardioid
℘(D), if

1−2(1+n−α)rn +(1−2α)r2n

1− r2n ≥ 1− 1
e
,

which is equivalent to (2−2α−1/e)r2n−2(1+n−α)rn+1/e≥ 0, and holds when r ≤RS ∗
℘,n

(C S n(α)).
For sharpness, we consider the following functions

f0(z) :=
z(1+ zn)

(1− zn)(n+2−2α)/n
and g0(z) :=

z
(1− zn)2(1−α)/n

, (2.3.9)

such that f0(z)/g0(z) = (1+ zn)/(1− zn) and zg′0(z)/g0(z) = (1+(1−2α)zn)/(1− zn). Moreover, we
have ℜ( f0(z)/g0(z))> 0 and ℜ(zg′0(z)/g0(z))> α in D. Hence f0 ∈ C S n(α) and

z f ′0(z)
f0(z)

=
1+2(1+n−α)zn +(1−2α)z2n

1− z2n .

For z = R1eiπ/n, we have z f ′0(z)/ f0(z) = 1−1/e.
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Theorem 2.3.7. The S ∗
℘,n-radius of the class S ∗

n [D,E] is given by

(i) RS ∗
℘,n

(S ∗
n [D,E]) = min

{
1,
(

1/e
D−(1−1/e)E

) 1
n
}
, when 0 ≤ E < D ≤ 1.

(ii) RS ∗
℘,n

(S ∗
n [D,E]) =

{
R1, if R1 ≤ r1

R2, if R1 > r1
when −1 ≤ E < 0 ≤ D ≤ 1.

where
R1 := RS ∗

℘,n
(S ∗

n [D,E]) as defined in part (i),

R2 = min{1,(e/(D− (e+1)E))1/n}

and

r1 =

(
(e2 −1)/2e

((e2 +2e−1)/2e)E2 −DE

)1/2n

.

In particular, for the class S ∗, we have RS ∗
℘
(S ∗) = 1/(2e−1).

Proof. Let f ∈ S ∗
n [D,E]. Using Lemma 2.2.4, we have∣∣∣∣z f ′(z)

f (z)
− 1−DEr2n

1−E2r2n

∣∣∣∣≤ (D−E)rn

1−E2r2n . (2.3.10)

(i) If 0 ≤ E < D ≤ 1, then

a :=
1−DEr2n

1−E2r2n ≤ 1.

Further, by Lemma 2.2.2 and equation (2.3.10), we see that f ∈ S ∗
℘,n if

DEr2n +(D−E)rn −1
1−E2r2n ≤ 1

e
−1,

which upon simplification, yields

r ≤
(

1/e
D− (1−1/e)E

)1/n

.

The result is sharp due to the function f0(z), given by

f0(z) =

{
z(1+Ezn)

D−E
nE ; E ̸= 0,

zexp
(

Dzn

n

)
; E = 0.

(2.3.11)

(ii) If −1 ≤ E < 0 < D ≤ 1, then

a :=
1−DEr2n

1−E2r2n ≥ 1.

Let us first assume that R1 ≤ r1. Note that r ≤ r1 if and only if a ≤ 1+(e− e−1)/2. In particular, for
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0 ≤ r ≤ R1, we have a ≤ 1+(e− e−1)/2. Further, from Lemma 2.2.2, we have f ∈ S ∗
℘,n in |z| ≤ r, if

(D−E)rn

1−E2r2n ≤ (a−1)+
1
e
,

which holds whenever r ≤ R1. Let us now assume that R1 > r1. Thus r ≥ r1 if and only if a ≥
1+(e− e−1)/2. In particular, for r ≥ R1, we have a ≥ 1+(e− e−1)/2. Further, from Lemma 2.2.2,
we have f ∈ S ∗

℘,n in |z| ≤ r whenever

(D−E)rn

1−E2r2n ≤ e− (a−1),

which holds when r ≤ R2. Hence, the result follows with sharpness due to f0(z) given in (2.3.11).

Theorem 2.3.8. The S ∗
℘,n-radius of the class M ∗

n (β ), (β > 1) is given by

RS ∗
℘,n

(M ∗
n (β )) = (2e(β −1)+1)−1/n.

Proof. If f ∈ Mn(β ), then z f ′(z)/ f (z)≺ (1+(2β −1)z)/(1+ z). Now using Lemma 2.2.4, we have∣∣∣∣z f ′(z)
f (z)

− 1+(1−2β )r2n

1− r2n

∣∣∣∣≤ (β −1)2rn

1− r2n .

Note that for β > 1, we have (1+(1− 2β )r2n)/(1− r2n) < 1. Therefore by Lemma 2.2.2, we get
f ∈ S ∗

℘,n in |z|< r, provided

(β −1)2rn

1− r2n − 1+(1−2β )r2n

1− r2n ≤ 1
e
−1,

which holds whenever r ≤ RS ∗
℘,n

(M ∗
n (β )). The result is sharp due to

f0(z) :=
z

(1− zn)2(1−β )/n
,

as we see that z f ′0(z)/ f0(z) = (1+(1−2β )zn)/(1− zn) = 1−1/e when z = RS ∗
℘,n

(M ∗
n (β )).

In the following theorem, we attempt to find the sharp S ∗
℘-radii of the class S ∗(ψ), for different

choices of ψ such as 1+ sin(z),
√

2− c
√
(1− z)/(1+2cz), 1+ 4z/3+ 2z2/3, z+

√
1+ z2, ez and

√
1+ z, where c :=

√
2 − 1. Authors in [38, 108, 109, 134, 150, 159] introduced and studied these

subclasses of starlike functions which we denote by S ∗
s , S ∗

RL, S ∗
e , ∆∗, S ∗

C and S ∗
L , respectively.

Theorem 2.3.9. The sharp S ∗
℘-radii of S ∗

L ,S
∗

RL,S
∗

e ,S
∗

C ,S
∗

s and ∆∗ are:

(i) RS ∗
℘
(S ∗

L ) = (2e−1)/e2 ≈ 0.600423.

(ii) RS ∗
℘
(S ∗

RL) =
1+2(

√
2−1)e

e2(
√

2−1)(
√

2−1+2(
√

2−1+e−1)2)
≈ 0.648826.

(iii) RS ∗
℘
(S ∗

e ) = 1− ln(e−1)≈ 0.458675.

(iv) RS ∗
℘
(S ∗

C ) = 1−
√

1−3/2e ≈ 0.330536.
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(v) RS ∗
℘
(S ∗

s ) = arcsin(1/e)≈ 0.376727.

(vi) RS ∗
℘
(∆∗) = (2e−1)/(2e(e−1))≈ 0.474928.

Proof. (i) If f ∈ S ∗
L , then for |z|= r∣∣∣∣z f ′(z)

f (z)
−1
∣∣∣∣≤ 1−

√
1− r ≤ 1

e
,

provided r ≤ (2e−1)/e2 =: RS ∗
℘
(S ∗

L ). Now consider the function

f0(z) :=
4zexp(2(

√
1+ z−1))

(1+
√

1+ z)2
.

Since z f ′0(z)/ f0(z)=
√

1+ z, it follows that f0 ∈S ∗
L and for z=−RS ∗

℘
(S ∗

L ), we get z f ′0(z)/ f0(z)=
1−1/e. Hence the result is sharp.

(ii) Let f ∈ S ∗
RL. Then for |z|< r,

∣∣∣∣z f ′(z)
f (z)

−1
∣∣∣∣≤ 1−

√
2+(

√
2−1)

√
1+ r

(1−2(
√

2−1)r)
≤ 1

e
,

provided

r ≤ 1+2(
√

2−1)e
e2(

√
2−1)(

√
2−1+2(

√
2−1+ e−1)2)

=: RS ∗
℘
(S ∗

RL).

For sharpness, consider

f0(z) := zexp
(∫ z

0

q0(t)−1
t

dt
)
,

where

q0(z) =
√

2− (
√

2−1)

√
1− z

(1+2(
√

2−1)z)
.

Now for z =−RS ∗
℘
(S ∗

RL), we have

z f ′0(z)
f0(z)

=
√

2− (
√

2−1)

√
1− z

(1+2(
√

2−1)z)
= 1− 1

e
.

(iii) Let ρ = 1− ln(e− 1), q(z) = ez and f ∈ S ∗
e . To prove that f ∈ S ∗

℘ in |z| < ρ , it only suffices
to show that q(ρz) ≺℘(z) for z ∈ D and thus for |z| = r, we must have e−r ≥℘(−1), which
gives r ≤ ρ. Now the difference of the square of the radial distances from the point (1,0) to the
corresponding points on the boundary curves ∂℘(eiθ ) and ∂q(ρeiθ ) is given by

T (θ) := e2cosθ − e2ρ cosθ −1+2eρ cosθ cos(ρ sinθ) (0 ≤ θ ≤ π).

Since T ′(θ) ≤ 0 and T (0) > 0, it follows that the condition r ≤ ρ is also sufficient for q(ρz) =
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eρz ≺ 1+ zez =℘(z). For sharpness, consider the function

f0(z) := zexp
(∫ z

0

et −1
t

dt
)
.

Since z f ′0(z)/ f0(z) = ez, which implies f0 ∈ S ∗
e and for z =−RS ∗

℘
(S ∗

e ), we have ez = 1−1/e.

(iv) Let ρ = 1−
√

1−3/2e, q(z) = 1+4z/3+2z2/3 and f ∈ S ∗
C . To prove that f ∈ S ∗

℘ in |z|< ρ ,
we make use of the fact that for |z| = r < 1, the minimum distance of w = q(z) from 1 must be
less than 1/e. Therefore, for f ∈ S ∗

℘ in |z|< r, it is necessary that

4
3

r− 2
3

r2 ≤ 1
e
,

which gives r ≤ ρ . Since r0 = 1/2(> ρ) is the radius of convexity of q(z) and it is symmet-
ric about the real axis, we have q(−r) ≤ ℜq(z) ≤ q(r) for |z| = r < 1/2. Thus 1 − 1/e ≤
ℜq(ρz)≤ 1+4ρ/3+2ρ2/3 < 1+ e. Therefore, to prove that q(ρz)≺℘(z), it suffices to show
that max|z|=1 |arg(q(ρz)| ≤ max|z|=1 |arg(℘(z)|. Since

max
0≤θ≤π

arg(q(ρeiθ )) = max
0≤θ≤π

arctan

(
4
3 ρ sinθ + 2

3 ρ2 sin2θ

1+ 4
3 ρ cosθ + 2

3 ρ2 cos2θ

)

≤ arctan

(
4
3 ρ sinθ0 +

2
3 ρ2 sin2θ0

1− 4
3 ρ + 2

3 ρ2

)
≈ (0.401955)π/2 < max

0≤θ≤π

arg℘(eiθ )≈ (0.89782)π/2,

where θ0 ∈ (0,π) is the only root of cosθ + ρ cos2θ = 0. Hence, the condition r ≤ ρ is also
sufficient for q(ρz)≺℘(z). Let us consider the function

f0(z) := zexp
(

4z+ z2

3

)
.

Since z f ′0(z)/ f0(z) = q(z), it follows that f0 ∈S ∗
C and for z=−RS ∗

℘
(S ∗

C ), we get q(z) = 1−1/e.
Hence the result is sharp.

(v) Let ρ = sin−1(1/e), q(z) = 1+ sin(z) and f ∈ S ∗
s . Then using the similar argument as in part

(iv) together with a result ( [38], Theorem 3.3) and Lemma 2.2.2, we have f ∈ S ∗
℘ in |z| < r,

provided sinr ≤ 1/e which in turn gives r ≤ ρ . For the sharpness, we consider the function

f0(z) := zexp
(∫ z

0

sin t
t

dt
)
.

Since z f ′0(z)/ f0(z) = q(z), we have f0 ∈ S ∗
s . For z =−RS ∗

℘
(S ∗

s ), we arrive at q(z) = 1−1/e.

(vi) Let ρ = (2e− 1)/(2e(e− 1)), q(z) = z+
√

1+ z2 and f ∈ ∆∗. Clearly min |z+
√

1+ z2 − 1| =
1+ r−

√
1+ r2 whenever |z| = r < 1. Therefore using Lemma 2.2.2, for f ∈ S ∗

℘ we must have√
1+ r2 − r ≤ 1−1/e, which gives r ≤ ρ . Following the similar argument as in part (iv), we see
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that r ≤ ρ is also a sufficient condition for q(ρz)≺℘(z) to hold. Now for the function

f0(z) := zexp

(∫ z

0

t +
√

1+ t2 −1
t

dt

)
,

we have z f ′0(z)/ f0(z) = q(z), which implies f0 ∈ ∆∗. For z =−RS ∗
℘
(∆∗), we get q(z) = 1−1/e,

which shows that the result is sharp.

Now for our next radius problem, we need to consider some classes: Here below we presume the

value of α to be either 0 or 1/2.

F1(α) :=
{

f ∈ An : ℜ
f (z)
g(z)

> 0 and ℜ
g(z)

z
> α, g ∈ An

}
,

F2 :=
{

f ∈ An :
∣∣∣∣ f (z)
g(z)

−1
∣∣∣∣< 1 and ℜ

g(z)
z

> 0, g ∈ An

}
and

F3 :=
{

f ∈ An :
∣∣∣∣ f (z)
g(z)

−1
∣∣∣∣< 1 and g ∈ C , g ∈ An

}
.

Theorem 2.3.10. The sharp S ∗
℘,n-radii of functions in the classes F1(α), F2 and F3, respectively,

are:

(i) RS ∗
℘,n

(F1(0)) =
(√

4n2e2 +1−2ne
)1/n

.

(ii) RS ∗
℘,n

(F1(1/2)) =
(

2/(
√

(3ne+2)2 −8ne+3ne)
)1/n

.

(iii) RS ∗
℘,n

(F2) =
(

2/(
√
(3ne+2)2 −8ne+3ne)

)1/n
.

(iv) RS ∗
℘,n

(F3) =

(√
(n+1)2+4(n−1+1/e)/e−(1+n)

2(n−1+1/e)

)1/n

.

Proof. Let us consider the functions p,h : D→ C, defined by p(z) = g(z)/z and h(z) = f (z)/g(z). We
write p0(z) = g0(z)/z and h0(z) = f0(z)/g0(z).

(i) If f ∈ F1(0), then p,h ∈ Pn such that f (z) = zp(z)h(z). Thus it follows from Lemma 2.2.3 that∣∣∣∣z f ′(z)
f (z)

−1
∣∣∣∣≤ 4nrn

1− r2n ≤ 1
e
,

provided r ≤
(√

4n2e2 +1−2ne
)1/n

=: RS ∗
℘,n

(F1(0)). Thus f ∈S ∗
℘,n whenever r ≤RS ∗

℘,n
(F1(0)).

Now for the functions

f0(z) = z
(

1+ zn

1− zn

)2

and g0(z) = z
(

1+ zn

1− zn

)
,
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we have ℜh0(z) > 0 and Re p0(z) > 0. Hence f0 ∈ F1(0). For z = RS ∗
℘,n

(F1(0))eiπ/n, we see
that

z f ′0(z)
f0(z)

= 1+
4nzn

1− z2n = 1− 1
e
.

Thus the result is sharp.

(ii) Let f ∈ F1(1/2). Then h ∈ Pn and p ∈ Pn(1/2). Since f (z) = zp(z)h(z), it follows from
Lemma 2.2.3 that ∣∣∣∣z f ′(z)

f (z)
−1
∣∣∣∣≤ 2nrn

1− r2n +
nrn

1− rn =
3nrn +nr2n

1− r2n ≤ 1
e
,

provided

r ≤

(√
9n2e2 +4(ne+1)−3ne

2(ne+1)

)1/n

=: RS ∗
℘,n

(F1(1/2)).

Thus f ∈ S ∗
℘,n whenever r ≤ RS ∗

℘,n
(F1(1/2)). For the functions

f0(z) =
z(1+ zn)

(1− zn)2 and g0(z) =
z

1− zn ,

we have ℜh0(z) > 0 and Re p0(z) > 1/2. Hence f ∈ F1(1/2). The result is sharp, since for
z = RS ∗

℘,n
(F1(1/2)) we have

z f ′0(z)
f0(z)

−1 =
3nzn +nz2n

1− z2n =
1
e
.

(iii) Let f ∈ F2. Then p ∈ Pn. Since |h(z)− 1| < 1 if and only if ℜ(1/h(z)) > 1/2. Therefore
1/h ∈ Pn(1/2). Since f (z)/h(z) = zp(z), using Lemma 2.2.3 we have∣∣∣∣z f ′(z)

f (z)
−1
∣∣∣∣≤ 3nrn +nr2n

1− r2n ≤ 1
e
,

provided rn ≤ 2/(
√
(3ne+2)2 −8ne+3ne). For sharpness, consider

f0(z) :=
z(1+ zn)2

1− zn and g0(z) :=
z(1+ zn)

1− zn .

Since
|h0(z)−1|= |zn|< 1 and ℜp0(z) = ℜ

1+ zn

1− zn > 0.

Therefore f0 ∈ F2 and for z = RS ∗
℘,n

(F2)eiπ/n, we have

∣∣∣∣z f ′0(z)
f0(z)

−1
∣∣∣∣= ∣∣∣∣3nzn −nz2n

1− z2n

∣∣∣∣= 1
e
.
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(iv) Let f ∈ F3. Then 1/h(z) = g(z)/ f (z) ∈ Pn(1/2) and

z f ′(z)
f (z)

=
zg′(z)
g(z)

− zh′(z)
h(z)

. (2.3.12)

Using a result due to Marx-Strohhäcker that every convex function is starlike of order 1/2, it
follows from Lemma 2.2.4 that ∣∣∣∣zg′(z)

g(z)
− 1

1− r2n

∣∣∣∣≤ rn

1− r2n . (2.3.13)

Now using Lemma 2.2.3 and equation (2.3.13), we have∣∣∣∣z f ′(z)
f (z)

− 1
1− r2n

∣∣∣∣≤ rn

1− r2n +
nrn

1− rn =
(n+1)rn +nr2n

1− r2n .

Thus using Lemma 2.2.2 we have f ∈ S ∗
℘,n, provided

(n+1)rn +nr2n

1− r2n ≤
(

1
1− r2n −1

)
+

1
e
,

which implies r ≤ RS ∗
℘,n

(F3). Now consider the functions

f0(z) =
z(1+ zn)

(1− zn)1/n and g0(z) =
z

(1− zn)1/n .

Since g0 ∈C and |h0(z)−1|= |zn|< 1. Therefore, the function f0 ∈F3 and for z=RS ∗
℘,n

(F3)eiπ/n,
we have z f ′0(z)/ f0(z) = 1−1/e, which confirms the sharpness of the result.

2.4 Coefficient Problems

Using the coefficients of f (z) = z+∑
∞
k=n+1 bkzk, Pommerenke [130], Noonan and Thomas [120]

considered the Hankel determinant Hq(n), defined by

Hq(n) :=

∣∣∣∣∣∣∣∣∣∣∣

bn bn+1 . . . bn+q−1

bn+1 bn+2 . . . bn+q
...

...
. . .

...

bn+q−1 bn+q . . . bn+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣
, (2.4.1)

where b1 = 1. Finding the upper bound of |H3(1)|, |H2(2)| and |H2(1)| for the functions belonging

to various subclasses of A in S is a usual phenomenon in GFT. Note that the Fekete-Szegö func-

tional b3 −b2
2, coincide with H2(1), which was analyzed by Bieberbach in 1916. In fact, Fekete-Szegö

considered the generalized functional b3 − µb2
2, where µ is real and f ∈ S . For the class S ∗, it is

well-known that |H2(2)| ≤ 1. Recently, bound for the second Hankel determinant, H2(2) = b2b4 − b2
3
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is obtained by Alarif et al. [7] for the class S ∗(ψ). The estimation of the third Hankel determinant is

more difficult in comparison with the second Hankel determinant, especially when sharp bounds are

needed, where the third Hankel determinant is given by

H3(1) = b3(b2b4 −b2
3)−b4(b4 −b2b3)+b5(b3 −b2

2). (2.4.2)

The upper bound for |H3(1)| can be obtained by estimating each term of (2.4.2), see [139]. For more

work in this direction see [18,81,82,92,172]. The following lemmas are needed to prove our coefficient

results.

Lemma 2.4.1. [102] Let p(z) = 1+∑
∞
n=1 pnzn be the Carathéodory function. Then for a complex

number τ , we have
|p2 − τ p1

2| ≤ 2max(1, |2τ −1|).

Lemma 2.4.2. [138] Let p(z) = 1+∑
∞
n=1 pnzn be the Carathéodory function. Then for n,m ∈ N,

|pn+m − γ pn pm| ≤

{
2, 0 ≤ γ ≤ 1;
2|2γ −1|, elsewhere.

Here below, we partially disclose the lemma given in [11], which is required in the sequel. Here, we

need the following two relevant sets.

D8 :=
{
(µ,ν) :

1
2
≤ |µ| ≤ 2,−2

3
(|µ|+1)≤ ν ≤ 4

27
(|µ|+1)3 − (|µ|+1)

}
and

D9 :=
{
(µ,ν) : |µ| ≥ 2,−2

3
(|µ|+1)≤ ν ≤ 2|µ|(|µ|+1)

µ2 +2|µ|+4

}
.

In view of these sets, the following lemma provides a sharp bound for the certain combination of the

coefficient of the power series of a Schwarz function.

Lemma 2.4.3. [11] If ω(z) = ∑
∞
n=1 cnzn be the Schwarz function, then

|c3 +µc1c2 +νc3
1| ≤ Ψ(µ,ν),

where

Ψ(µ,ν) =
2
3
(|µ|+1)

(
|µ|+1

3(1+ν + |µ|)

) 1
2

for (µ,ν) ∈ D8 ∪D9.

The following lemma carries the expression for p2 and p3 in terms of p1, derived in [96, 97] and p4

in terms of p1 obtained in [91].

Lemma 2.4.4. Let p(z) = 1+∑
∞
n=1 pnzn be the Carathéodory function. Then for some complex num-

bers ζ , η and ξ with |ζ | ≤ 1, |η | ≤ 1 and |ξ | ≤ 1, we have

2p2 = p2
1 +ζ (4− p2

1), 4p3 = p3
1 +2p1ζ (4− p2

1)− p1ζ
2(4− p2

1)+2(4− p2
1)(1−|ζ |2)η
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and

8p4 = p4
1 +(4− p2

1)ζ (p2
1(ζ

2 −3ζ +3)+4ζ )−4(4− p2
1)(1−|ζ |2)(p1(ζ −1)η + ζ̄ η

2 − (1−|η |2)ξ ).

We now define the function fn such that fn(0) = f ′n(0)−1 = 0 and

z f ′n(z)
fn(z)

=℘(zn) (n = 1,2,3, · · ·),

which acts as an extremal function for many subsequent results and we have

fn(z) = zexp((ezn −1)/n) (2.4.3)

Theorem 2.4.1. Let f (z) = z+∑
∞
k=2 bkzk ∈ S ∗

℘ and α = (1+ e)2, then

∞

∑
k=2

(k2 −α)|bk|2 ≤ α −1. (2.4.4)

Proof. If f ∈ S ∗
℘, then z f ′(z)/ f (z) =℘(ω(z)), where ω is a Schwarz function. Now for 0 ≤ r < 1,

we have

2π

∞

∑
k=1

k2|bk|2r2k =
∫ 2π

0
|reiθ f ′(reiθ )|2dθ =

∫ 2π

0
| f (reiθ )+ f (reiθ )ω(reiθ )eω(reiθ )|2dθ

≤
∫ 2π

0

(
| f (reiθ )|+ | f (reiθ )ω(reiθ )eω(reiθ )|

)2

dθ

=
∫ 2π

0
| f (reiθ )|2dθ +

∫ 2π

0
| f (reiθ )ω(reiθ )eω(reiθ )|2dθ +2

∫ 2π

0
| f (reiθ )|2|ω(reiθ )eω(reiθ )|dθ

≤
∫ 2π

0
| f (reiθ )|2dθ +

∫ 2π

0
| f (reiθ )eω(reiθ )|2dθ +2

∫ 2π

0
| f (reiθ )|2|eω(eiθ )|dθ

≤
∫ 2π

0
| f (reiθ )|2dθ + e2r

∫ 2π

0
| f (reiθ )|2dθ +2er

∫ 2π

0
| f (reiθ )|2dθ

≤ 2π(1+ er)2
∞

∑
k=1

|bk|2r2k,

which finally yields
∞

∑
k=1

(k2 − (1+ er)2)|bk|2r2k ≤ 0, 0 ≤ r < 1.

Letting r → 1−, we get the desired result.

Corollary 2.4.2. Let f (z) = z+∑
∞
k=4 bkzk ∈ S ∗

℘ and α = (1+ e)2, then

|bk| ≤
√

α −1
k2 −α

, for all k ≥ 4.

Example 2.4.3. (i) z/(1−Az)2 ∈ S ∗
℘ if and only if |A| ≤ 1/(2e−1).

(ii) f (z) = z+bkzk ∈ S ∗
℘ if and only if |bk| ≤ 1/(e(k−1)+1), where k ∈ N−{1}.
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(iii) f (z) = zexp(Az) ∈ S ∗
℘ if and only if |A| ≤ 1/e.

Proof. (i) If A = 1, then z/(1− z)2 ̸∈S ∗
℘, since | f (z)| ≤ ee−1 for f ∈S ∗

℘. Now let K(z) = z/(1−Az)2.
If A ̸= 1, then the disk ∣∣∣∣w− 1+ |A|2

1−|A|2

∣∣∣∣< 2|A|
1−|A|2

, (2.4.5)

is the image of D under the bilinear transformation w = zK′(z)/K(z) = (1+Az)/(1−Az) with diame-
ter’s endpoints xL := (1−|A|)/(1+ |A|) and xR := (1+ |A|)/(1−|A|). Now for the disk (2.4.5) to be
inside the cardioid ℘(D), it is necessary that xL ≥ 1−1/e which gives |A| ≤ 1/(2e−1). Conversely,
let |A| ≤ 1/(2e−1). Then we have

a :=
1+ |A|2

1−|A|2
≤ 2e− e−1 +2

2(e−1)
and r :=

2|A|
1−|A|2

≤ 2e−1
2e(e−1)

.

Since ra > r, thus Lemma 2.2.2 ensures that disk {w : |w−a|< r} ⊂℘(D). Hence, K ∈ S ∗
℘.

(ii) Since z f ′(z)/ f (z) = (1+kbkzk−1)/(1+bkzk−1) maps D onto the disk {w ∈C : |w−a|< r}, where

a :=
1− k|bk|2

1−|bk|2
and r :=

(k−1)|bk|
1−|bk|2

.

Further f (z) = z+ bkzk ∈ S ∗ if and only if |bk| ≤ 1/k, which ensures (1− k|bk|2)/(1− |bk|2) ≤ 1.
Therefore in view of Lemma 2.2.2, {w ∈ C : |w−a|< r} ⊂℘(D) if and only if

(k−1)|bk|
1−|bk|2

≤ 1− k|bk|2

1−|bk|2
−1+

1
e
,

which is equivalent to (ke− e+1)|bk|2 +(ke− e)|bk|−1 ≤ 0. Hence, |bk| ≤ 1/(e(k−1)+1).
(iii) Since z f ′(z)/ f (z) = 1+Az maps D onto the disk {w ∈ C : |w− 1| < |A|}. Therefore in view of
Lemma 2.2.2, the inequality

|w−1|< |A| ≤ 1/e,

yields the necessary and sufficient condition |A| ≤ 1/e for 1+Az ≺℘(z).

Remark 2.4.1. Note that when k =
√

2+1, we have q0(z) = 1+(z/k)((k+ z)/(k− z))≺℘(z). There-
fore, the class of starlike functions S ∗(q0) introduced in [89] is contained in S ∗

℘. Further the sharp
S ∗(ψ)-radius for the class S ∗ is also given by the relation

RS ∗(ψ)(S
∗) = max |A|, (2.4.6)

where A is defined in such a way that z/(1−Az)2 ∈S ∗(ψ). Thus if z/(1−Az)2 ∈S ∗(q0)⊂S ∗
℘, then

by Example 2.4.3 we see that |A| ≤ 1/(2e−1) and, therefore in view of (2.4.6), we now state a result
( [89], theorem 2.3, pg 203) in its correct form using the result ( [89], theorem 3.2, pg 206):

z/(1−Az)2 ∈ S ∗(q0) if and only if |A| ≤ 3−2
√

2
2
√

2−1
<

1
2e−1

.

The authors [89] proved that |A| ≤ 1/3.
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Theorem 2.4.4. Let f (z) = z+∑
∞
k=2 bkzk ∈ S ∗

℘, then

|b2| ≤ 1, |b3| ≤ 1, |b4| ≤ 5/6 and |b5| ≤ 5/8. (2.4.7)

The bounds are sharp.

Proof. Let p(z) ∈ P . Since there exists one-one correspondence between the classes Ω and P via the
following functions:

ω(z) =
p(z)−1
p(z)+1

and p(z) =
1+ω(z)
1−ω(z)

.

Therefore, for f ∈ S ∗
℘ we have

z f ′(z)
f (z)

=℘(ω(z)) =℘

(
p(z)−1
p(z)+1

)
,

where

℘

(
p(z)−1
p(z)+1

)
= 1+

p1

2
z+

p2

2
z2 +

(
−

p3
1

16
+

p3

2

)
z3 +

(
p4

1
24

− 3p2
1 p2

16
+

p4

2

)
z4 + · · · (2.4.8)

and

z f ′(z)
f (z)

= 1+b2z+(2b3 −b2
2)z

2 +(3b4 −3b2b3 +b3
2)z

3 +(−b4
2 +2b3(2b2

2 −b3)−4b2b4 +4b5)z4 + · · · .

(2.4.9)

On comparing the coefficients of zk (k = 1,2,3,4) in (2.4.8) and (2.4.9), we get

b2 =
p1

2
, b3 =

1
4

(
p2 +

p2
1

2

)
, b4 =

1
6

(
p3 +

3
4

p1 p2

)
and

b5 =
1
8

(
1
48

p4
1 +

1
4

p2
2 +

2
3

p1 p3 −
1
8

p2
1 p2 + p4

)
. (2.4.10)

Now using the fact |pk| ≤ 2, Lemma 2.4.1 with τ =−1/2 and Lemma 2.4.2 with γ =−3/4, we obtain
|b2| ≤ 1, |b3| ≤ 1 and |b4| ≤ 5/6 respectively.

For b5, using proper rearrangement of terms and then applying triangle inequality, we see that

|b5|=
1
8

∣∣∣∣ 1
48

p4
1 +

1
4

p2
2 +

2
3

p1 p3 −
1
8

p2
1 p2 + p4

∣∣∣∣
=

1
8

∣∣∣∣ 1
48

p4
1 +(p4 +

2
3

p1 p3)+
1
4

p2(p2 −
1
2

p2
1)

∣∣∣∣
≤ 1

8

(
1

48
|p1|4 + |p4 +

2
3

p1 p3|+
1
4
|p2||p2 −

1
2

p2
1|
)

≤ 1
8

(
1

48
|p1|4 −

1
4
|p1|2 +

4
3
|p1|+3

)
=: G(p1).
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Now to maximize the above expression, without loss of generality, we write

G(p) =
1
48

p4 − 1
4

p2 +
4
3

p+3 (p ∈ [0,2]),

then G′(p)≥ 0. Thus G(p)≤ 5, which implies that |b5| ≤ 5/8. The bounds for bk (k=1,2,3,4) are sharp
with the extremal function f1 defined in (2.4.3).

Now in view of Theorem 2.4.4, we conjecture the following:

Conjecture 2.4.1. (Open) Let f (z) ∈ S ∗
℘. Then the following sharp estimates hold:

|bk| ≤
Bk−1

(k−1)!
for all k ≥ 1,

where Bk are Bell numbers satisfying the recurrence relation defined in (2.1.5) and the extremal func-
tion f1 is given by (2.4.3).

Remark 2.4.2. The logarithmic coefficients dk for f ∈S are defined by the following series expansion:

log
f (z)

z
= 2

∞

∑
k=1

dkzk, z ∈ D. (2.4.11)

Recently, Cho [1] obtained the sharp logarithmic coefficient bounds for the Ma-Minda class S ∗(ψ).
Consequently, we have the following sharp result:

Let f ∈ S ∗
℘. Then the logarithmic coefficients of f given by (2.4.11) satisfies

|dk| ≤ 1/2.

Remark 2.4.3. Now if f (z) ∈ S ∗
℘, then from (2.4.10), using triangle inequality together with Lemma

2.4.1, we obtain the following estimates for the Fekete-Szegö functional:

|b3 −µb2
2|=

1
4

∣∣∣∣p2 −
(

µ − 1
2

)
p2

1

∣∣∣∣≤ 1
2

max(1,2|µ −1|) . (2.4.12)

Equality cases holds for the function f1(z)= zexp(ez−1), when µ ∈ [1/2,3/2] and the function f2(z)=
zexp((ez2 − 1)/2), when µ ≤ 1/2 or µ ≥ 3/2 given by (2.4.3). In particular for µ = 1, we have
|H2(1)|= |b3 −b2

2| ≤ 1/2.

Now the Covering theorem stated in Theorem 2.1.1 ensures that for every f in S ∗
℘, f (D) contains

a disk of radius e1/e−1 centered at the origin. Hence, every function f ∈ S ∗
℘ has an inverse f−1 which

given by

f−1(w) = w+
∞

∑
k=2

Akwk

= w−b2w2 +(2b2
2 −b3)w3 − (5b3

2 −5b2b3 +b4)w4 + · · · ,

then we have f−1( f (z)) = z and f ( f−1(w)) = w for |w| < r0( f ) and r0 > e1/e−1. Thus using Theo-
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rem 2.4.4 and equation 2.4.12, we easily obtain

|A2| ≤ 1 and |A3| ≤ 1.

The bounds are sharp with extremal function f−1
1 , where f1 is defined in (2.4.3).

Theorem 2.4.5. Let f ∈ S ∗
℘. Then for f−1(ω) = ω +∑

∞
k=2 Akωk, we have

|A4| ≤
5
6

and |A3 −µA2
2| ≤


3−µ, µ ≤ 5/2;
1/2, 5/2 ≤ µ ≤ 7/2;
µ −3, µ ≥ 7/2.

The bounds are sharp.

Proof. Consider the inverse function f−1(ω) = ω +∑
∞
k=2 Akωk, where we have A4 =−5b3

2 +5b2b3 −
b4, which can be now rewritten in terms of Carathéodory coefficients using (2.4.10) as

A4 =−1
6

(
p3 −3p1 p2 +

15
8

p3
1

)
.

Now using Lemma 2.4.1 with τ = 5/8 and |pk| ≤ 2,

|b4|=
1
6

∣∣∣∣p3 −3p1

(
p2 −

5
8

p2
1

)∣∣∣∣≤ 1
6
(|p3|+3|p1||p2 −

5
8

p2
1|)≤

5
6
.

The bound is sharp with extremal function f−1
1 , where f1 is defined in (2.4.3). Now for the Fekete-

Szegö type inequality for the inverse function f−1 we have

|A3 −µA2
2|= |b3 − tb2

2|, t = µ −2.

Thus using (2.4.12) the desired sharp result follows.

Theorem 2.4.6. Let f (z) = z+∑
∞
k=2 bkzk ∈ S ∗

℘, then

|b2b3 −b4| ≤
2
3

√
2
5
.

The bound is sharp.

Proof. Let f ∈ S ∗
℘. Then

z f ′(z)
f (z)

=℘(ω(z)), (2.4.13)

where ω ∈ Ω. Then proceeding as in Theorem 2.4.4, from (2.4.13) we have

b2 = c1, b2 =
1
2
(c2 +2c2

1) and b4 =
1
6
(2c3 +7c1c2 +5c3

1). (2.4.14)
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Therefore, with µ = 2,ν =−1/2 and ψ(µ,ν) = |c3 +µc1c2 +νc3
1|, we have

|b2b3 −b4|=
1
3
|c3 +2c1c2 − c3

1/2|= 1
3

ψ(µ,ν).

Now using Lemma 2.4.3, we obtain

|b2b3 −b4| ≤
2
3

√
2
5
.

The bound is sharp as there is an extremal function

f (z) = zexp
∫ z

0

℘(ω(t))−1
t

dt,

where w(z) = z(
√

2/5− z)/(1−
√

2/5z).

We now enlist below in the remark certain special cases of earlier known results pertaining to our

class S ∗
℘:

Remark 2.4.4. We obtain the following result by using a result ( [7], theorem 2.2, pg 230): Let
f (z) = z+∑

∞
k=2 bkzk ∈ S ∗

℘, then

|H2(2)|= |b2b4 −b3
2| ≤ 1/4,

where equality is attained for the function f2 given by (2.4.3).

Remark 2.4.5. Now using Theorems 2.4.4, 2.4.6 and Remark 2.4.4 together with the estimate given in
(2.4.12) and triangle inequality, we obtain the following result:
Let the function f (z) = z+∑

∞
k=2 bkzk ∈ S ∗

℘, then

|H3(1)| ≤ 0.913864 · · · .

Remark 2.4.6. Until now the bound on the third Hankel determinant is obtained using the triangle
inequality approach. But note that using the method applied in Theorem 2.4.8, we can substantially
improve the known bounds for many subclasses of starlike functions such as S ∗

s , S ∗
C and S ∗

e .

In 2010, Babalola [17] showed that |H3(1)| ≤ 16 for the class S ∗. In 2018, Lecko [94] obtained

the sharp inequality |H3(1)| ≤ 1/9 for the class S ∗(1/2). For the class S ∗, it is proved in [92]

that |H3(1)| ≤ 8/9 (not sharp), which improves the earlier known bound |H3(1)| ≤ 1 established by

Zaprawa [172]. Since S ∗
℘ ⊂S ∗, it seems reasonable that the bound on |H3(1)| for S ∗

℘ can be further

improved. A function f in A is called n-fold symmetric if f (e2πi/nz) = e2πi/n f (z) holds for all z ∈ D,

where n is a natural number. We denote the set of n-fold symmetric functions by A (n). Let f ∈ A (n),

then f has power series expansion f (z) = z+ bn+1zn+1 + b2n+1z2n+1 + · · · . Therefore, for f ∈ A (3)

and f ∈ A (2) respectively, we have

H3(1) =−b4
2 and H3(1) = b3(b5 −b3

2). (2.4.15)
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Thus we can now find estimates on the third Hankel determinant |H3(1)| in the classes S
∗(2)

℘ and

S
∗(3)

℘ .

Theorem 2.4.7. Let f ∈ S ∗
℘. Then

(i) f̂ ∈ S
∗(3)

℘ implies that |H3(1)| ≤ 1/9.

(ii) f̂ ∈ S
∗(2)

℘ implies that |H3(1)| ≤ 1/16.

The result is sharp.

Proof. (i) Since f (z) = z+b2z2 + · · · ∈ S ∗
℘ if and only if f̂ (z) = ( f (z3))1/3 = z+β4z4 + · · · ∈ S

∗(3)
℘ .

We have β4 = b2/3. Hence for f̂ ∈ S
∗(3)

℘ , from (2.4.7) and (2.4.15), we obtain

|H3(1)|= |β4|2 =
1
9
|b2|2 ≤

1
9
.

The above estimate is sharp for f̂1, where f1 is given by (2.4.3).
(ii) Since f (z) = z+b2z2 + · · · ∈ S ∗

℘ if and only if f̂ (z) = ( f (z2))1/2 = z+α3z3 +α5z5 + · · · ∈ S
∗(2)

℘ .
Upon comparing the coefficients in the following:

z2 +b2z4 +b3z6 + · · ·= (z+α3z3 +α5z5 + · · ·)2,

we obtain
α3 =

1
2

b2 and α5 =
1
2

b3 −
1
8

b2
2. (2.4.16)

If f̂ ∈ S
∗(2)

℘ , then from (2.4.15) we have

H3(1) = α3(α5 −α3
2).

Now using (2.4.10), (2.4.16) and Lemma 2.4.4, we obtain

|H3(1)|=
1
4

∣∣∣∣b2

(
b3 −

3
4

b2
2
)∣∣∣∣= 1

64
|p1||(p1

2 − p1)+ξ (4− p1
2)|,

where |ξ | ≤ 1. Since H3(1) =α3(α5−α3
2) is rotationally invariant, so we may assume p1 := p∈ [0,2].

Thus using triangle inequality, we easily get |H3(1)| ≤ (3p3−4p2+4p)/256 =: g(p). Since g′(p)> 0
for all p ∈ [0,2]. Therefore, max0≤p≤2 g(p) = g(2). Hence

|H3(1)| ≤
1
16

.

The above estimate is sharp for f̂1, where f1 is given by (2.4.3).

In the following result, the bound obtained in the Remark 2.4.5 is improved.

Theorem 2.4.8. Let f ∈ S ∗
℘. Then |H3(1)| ≤ 0.150627.
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Proof. From (2.4.2) and (2.4.10), we have

H3(1) =
1

9216
(−21p6

1 +60p1
4 p2 +96p1

3 p3 +192p1 p2 p3

−144p1
2 p2

2 −144p1
2 p4 −72p2

3 −256p3
2 +288p2 p4)

and using Lemma 2.4.4 and writing p1 as p and t = 4− p2
1, we have

H3(1) =
1

9216
(
ϒ1(p,ζ )+ϒ2(p,ζ )η +ϒ3(p,ζ )η2 +ϒ4(p,ζ ,η)ξ

)
, (2.4.17)

where ζ ,η ,ξ ∈ D and

ϒ1(p,ζ ) =−4p6 + t(t(−25p2
ζ

2 +19p2
ζ

3 +2p2
ζ

4 +36ζ
3)+5p4

ζ −16p4
ζ

2 −24p2
ζ

3),

ϒ2(p,ζ ) = t(1−|ζ |2)(t(64pζ
2 −80pζ )+32p3),

ϒ3(p,ζ ) =−t2(1−|ζ |2)(64+8|ζ |2),

ϒ4(p,ζ ,η) = 72t2(1−|ζ |2)2
ζ .

Let x = |ζ | ∈ [0,1] and y = |η | ∈ [0,1]. Now using |ξ | ≤ 1 and triangle inequality, from (2.4.17) we
obtain

|H3(1)| ≤
1

9216
(

f1(p,x)+ f2(p,x)y+ f3(p,x)y2 + f4(p,x)
)

(2.4.18)

=:
F(p,x,y)

9216
, (2.4.19)

where

f1(p,x) = 4p6 + t(t(25p2x2 +19p2x3 +2p2x4 +36x3)+5p4x+16p4x2 +24p2x3),

f2(p,x) = t(1− x2)(t(80px+64px2)+32p3),

f3(p,x) = t2(1− x2)(64+8x2)

and f4(p,x) = 72t2x(1−x2)2. Since f2(p,x) and f3(p,x) are non-negative functions over [0,2]× [0,1].
Therefore, from (2.4.18) together with y = |η | ∈ [0,1] we obtain

F(p,x,y)≤ F(p,x,1).

Thus, F(p,x,1) = f1(p,x)+ f2(p,x)+ f3(p,x)+ f4(p,x) =: G(p,x).
Now we shall maximize G(p,x) over [0,2]× [0,1]. For this we consider the following possible cases:

1. when x = 0, we have

G(p,0) = 1024−512p2 +128p3 +64p4 −32p5 +4p6 =: g1(p).

Since g′1(p) < 0 on [0,2]. Therefore, g1(p) is an decreasing function over [0,2]. Thus, the
function g1(p) attains its maximum value at p = 0 which is equal to 1024.
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2. when x = 1, we have

G(p,1) = 576+544p2 −272p4 +29p6 =: g2(p).

Since g′2(p) = 0 has a critical point at p0 = 2
√
(68−7

√
34)/87 ≈ 1.11795. Therefore, it is easy

to see that g2(p) is an increasing function for p≤ p0 and decreasing for p0 ≤ p. Thus the function
g2(p) attains its maximum at p := p0, which is approximately equal to 887.674.

3. when p = 0, we have

G(0,x) = 1024−896x2 +576x3 −128x4 =: g3(x).

Since g′3(x) < 0 on [0,1]. Therefore, the function g3(x) attains its maximum at x = 0, which is
equal to 1024 and for the case, when p = 2, we easily obtain G(p,x)≤ 256.

4. when (p,x) ∈ (0,2)× (0,1), a numerical computation shows that there exists a unique real solu-
tion for the system of equations

∂G(p,x)/∂x = 0 and ∂G(p,x)/∂ p = 0

inside the rectangular region: [0,2]× [0,1], at (p,x) ≈ (0.531621,0.482768). Consequently, we
obtain G(p,x)≤ 1388.18.

Hence, from the above cases we conclude that

F(p,x,y)≤ 1388.18 on [0,2]× [0,1]× [0,1],

which implies that

H3(1)≤
1

9216
F(p,x,y)≤ 0.150627.

Conjecture 2.4.2. If f ∈ S ∗
℘, then the sharp bound for the third Hankel determinant is given by

|H3(1)| ≤
1
9
≈ 0.1111 · · · ,

with the extremal function f (z) = zexp
(

1
3(e

z3 −1)
)
= z+ 1

3 z4 + 2
9 z7 + · · · .

Highlights of the chapter

In this chapter, we investigated the geometrical properties of the cardioid function and used them

to establish several inclusion and radius results for the class of cardioid starlike functions. We derived

the sharp fifth coefficient bound for functions in our class and also established initial sharp bounds

for the associated inverse functions. Further, we obtained the sharp third hankel determinant for the

two and three-fold symmetric functions for our class and also obtained a better estimate for the third
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hankel determinant. However, based on the observations made in this chapter, we proposed some

conjectures pertaining to the coefficient bounds and the third hankel determinant.



Chapter 3

A class of Analytic functions associated

with univalent function

In 2019, Kargar et al. [74] introduced a new class using the starlikeness expression, the first of its kind:

BS (α) :=
{

f ∈ A :
z f ′(z)
f (z)

−1 ≺ z
1−αz2 , α ∈ [0,1)

}
,

where z/(1−αz2) =: ψ(z) (Booth lemniscate function [126] and [127]) is an analytic univalent function

and symmetric with respect to the real and imaginary axes. Here, we note that the function

1+
z

1−αz2

is univalent but not Carathéodory for α ∈ (0,1). In fact, functions in this class BS (α) may not be

univalent. To further examine the such types of classes in general, we introduce a new class as follows:

F (ψ) :=
{

f ∈ A :
(

z f ′(z)
f (z)

−1
)
≺ ψ(z), ψ(0) = 0

}
,

where ψ is univalent and establish the growth theorem with some geometric conditions on ψ and obtain

the Koebe domain with some related sharp inequalities. Its applications are studied for certain classes

defined on the basis of geometry.

45
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3.1 Introduction

Let f ∈A in the open unit disk D := {z : |z|< 1}. Let f (z) = w and Γw be the image of Γz (the circle

Cr : z = reiθ ) under the function f in A . The curve Γw is said to be starlike with respect to w0 = 0 if

arg(w−w0) is a non-decreasing function of θ , that is,

d
dθ

arg(w−w0)≥ 0, θ ∈ [0,2π],

which is equivalent to
d

dθ
arg(w−w0) = ℜ

(
z f ′(z)
f (z)

)
≥ 0. (3.1.1)

If the inequality (3.1.1) holds for each circle |z| = r < 1, then it characterizes a special class S ∗,

the class of starlike functions in D. It is obvious from (3.1) that for each 0 < r < 1, the curve Γw is

not allowed to have a loop which ensures the univalency of the function. But if for some 0 ̸= z ∈ D,

ℜ(z f ′(z)/ f (z))< 0, then f is not starlike with respect to 0, or equivalently we can say that the image

curve Γw : f (|z|= r) is definitely not starlike, but still it may or may not be univalent. From (3.1.1), we

also see the importance of the Caratheódory functions by writing (3.1.1) in terms of subordination as:

z f ′(z)
f (z)

≺ 1+ z
1− z

(z ∈ D), (3.1.2)

where the symbol ≺ stands for the usual subordination. In 1992, Ma and Minda [102] generalized

(3.1.2) by unifying all the subclasses of starlike functions as follows:

S ∗(Ψ) :=
{

f ∈ A :
z f ′(z)
f (z)

≺ Ψ(z)
}
, (3.1.3)

where Ψ has positive real part, Ψ(D) symmetric about the real axis with Ψ′(0)> 0 and Ψ(0) = 1. For

some special classes, refer [60,73,151] and the references therein. In view of the above, we consider

the following definition:

Definition 3.1.1. Let ψ be the analytic univalent function in D such that ψ(0) = 0, ψ(D) is starlike
with respect to 0. Then

F (ψ) :=
{

f ∈ A :
z f ′(z)
f (z)

−1 ≺ ψ(z), ψ(0) = 0
}
. (3.1.4)

Note that when 1+ψ(z) ̸≺ (1+z)/(1−z), then the functions in the class F (ψ) may not be univalent

in D which also implies F (ψ) ̸⊆ S ∗. Thus in case, when the function 1+ψ =: Ψ has positive real

part, Ψ(D) symmetric about the real axis with Ψ′(0) > 0, then F (ψ) reduces to the class S ∗(Ψ).

The functions in the class defined in (3.1.3) are univalent which helps a lot in studying the geometrical

properties of the functions, for example, Growth and Distortion theorems, etc. But this may not be quite

easy to study the analogous results in the class F (ψ). In this direction, recently, Kargar et al. [74]
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considered the following class, the first of its kind:

BS (α) :=
{

f ∈ A :
z f ′(z)
f (z)

−1 ≺ z
1−αz2 , α ∈ [0,1)

}
, (3.1.5)

where z/(1−αz2) =: ψ(z) (Booth lemniscate function [126] and [127]) is an analytic univalent function

and symmetric with respect to the real and imaginary axes. Note that the function (1+ z/(1−αz2))

assumes negative values for α ̸= 0, therefore functions in this class may not be univalent. For f

belonging to BS (α), using the vertical strip domain {w∈C : µ <ℜw< ν , where µ < 1< ν}, Kargar

et al. [74] proved that | f (z)/z| is bounded and obtained the coefficient estimates when 0≤α ≤ 3−2
√

2

along with Fekete-Szegö inequality for the associated k − th root transformation. In 2018, Najmadi

et al. [118] obtained the bounds for the quantities ℜ f (z), | f (z)| and | f ′(z)| when 0 ≤ α ≤ 3− 2
√

2.

Recently, Kargar et al. [75] obtained the best dominant of the subordination f (z)/z ≺ F(z) for the range

0 < α ≤ 3− 2
√

2 using the convolution technique, where F(z) =
(
1+ z

√
α)/(1− z

√
α
) 1

2
√

α . Cho et

al. [39] dealt with the first-order differential subordination implications and also solved the various sharp

radius problems pertaining to the class BS (α).

In 2019, Masih et al. [107] considered the following class with β ∈ [0,1/2]:

Scs(β ) :=
{

f ∈ A :
(

z f ′(z)
f (z)

−1
)
≺ z

(1− z)(1+β z)
, β ∈ [0,1)

}
. (3.1.6)

They proved the growth theorem and also obtained the sharp estimates for the logarithmic coefficients

but only for the range β ∈ [0,1/2]. Note that for β ∈ [0,1/2], Scs(β ) is a Ma-Minda subclass, but for

the other range, functions in this class may not be univalent. We also introduce and study the following

class in section 3.3.3:

Sγ(η) :=
{

f ∈ A :
(

z f ′(z)
f (z)

−1
)
≺ γz

(1+ηz)2 , η ∈ [0,1), γ > 0
}
.

In this chapter, we establish the sharp growth theorem for the class F (ψ) with certain geometric con-

ditions on ψ and obtain a covering theorem. Further, we provide some examples to illustrate our result,

and some newly defined classes are also discussed. As an application, we obtain the growth theorem

for the complete range of α and β for the functions in the classes BS (α) and Scs(β ), respectively

that improves the earlier known bounds. Finally, the sharp Bohr-radii for the classes S(BS (α)) and

BS (α) are obtained. For some classes, we study the geometrical behavior of an analytic function of

the form f (z)/z which arises frequently while working with the class S ∗(Ψ) and play an important role,

for example, in obtaining the bounds for ℜ( f (z)/z) and arg( f (z)/z). Further, geometrical properties

and coefficients estimation for the class F (ψ) are still open.

3.2 Distortions Theorems

Let F (ψ) be the class as defined in (3.1.4). Now we begin with the following:

Theorem 3.2.1 (Growth Theorem). Suppose that max|z|=r ℜψ(z)=ψ(r) and min|z|=r ℜψ(z)=ψ(−r).
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Then f ∈ F (ψ) satisfies the sharp inequalities:

r exp
(∫ r

0

ψ(−t)
t

dt
)
≤ | f (z)| ≤ r exp

(∫ r

0

ψ(t)
t

dt
)
, (|z|= r). (3.2.1)

Proof. Let f ∈ F (ψ). For z = reiθ , we have

φ(−r)≤ ℜψ(reiθ )≤ φ(r). (3.2.2)

Let Φ(z) = ψ(ω(z)), where ω is a Schwarz function. Then from (3.1.4), we have

log
f (z)

z
=
∫ z

0

Φ(ζ )

ζ
dζ .

Now by taking ζ = teiβ so that dζ = eiβ dt, where β is fixed but arbitrary and z = reiβ , we have

log
f (z)

z
=
∫ r

0

Φ(teiβ )

t
dt. (3.2.3)

From the Maximum-minimum modulus principle, we find that Φ also satisfies the inequality (3.2.2).
Therefore, without loss of generality, we may replace Φ by ψ and β by θ in (3.2.3). Then by equating
real parts on either side of (3.2.3), we have

log
∣∣∣∣ f (z)

z

∣∣∣∣= ∫ r

0

ℜΦ(teiθ )

t
dt (3.2.4)

and now using the inequalities (3.2.2) in (3.2.4), we obtain

∫ r

0

ψ(−t)
t

dt ≤ log
∣∣∣∣ f (z)

z

∣∣∣∣≤ ∫ r

0

ψ(t)
t

dt,

and (3.2.1) follows. The result is sharp for the function

f0(z) = zexp
∫ z

0

ψ(t)
t

dt. (3.2.5)

This completes the proof.

Remark 3.2.1. In the above theorem, we choose max|z|=r ℜψ(z) = ψ(r) and min|z|=r ℜψ(z) = ψ(−r)
for computational convenience. However, these conditions may change according to the choice of ψ

in that case, appropriately these may be replaced.

Remark 3.2.2. If 1+ψ is a Carathéodory univalent function, then Theorem 3.2.1 reduces to the re-
sult [102, Corollary 1, p. 161] and moreover, letting r tends to 1 in Theorem 3.2.1, we obtain the
covering theorem (Koebe-radius) for the class F (ψ).

Corollary 3.2.2 (Covering Theorem). If f ∈ F (ψ) and f0 as defined in (3.2.5), then either f is a
rotation of f0 or

{w ∈ C : |w| ≤ − f0(−1)} ⊂ f (D),

where − f0(−1) = limr→1(− f0(−r)).
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Let L( f ,r) denote the length of the boundary curve f (|z| = r). Note that for z = reiθ , we have

L( f ,r) :=
∫ 2π

0 |z f ′(z)|dθ . Now we obtain the following result:

Corollary 3.2.3. Assume that max|z|=r |ψ(z)| = ψ(r) and further let M(r) = exp
(∫ r

0
ψ(t)

t dt
)

. If f ∈
F (ψ), then for |z|= r, we have

ℜ
f (z)

z
≤ M(r), | f ′(z)| ≤ (1+ψ(r))M(r)

and
L( f ,r)≤ 2πr(1+ψ(r))M(r).

Let

ψ(z) =

{
β z/(1+αz), β > 0, 0 < α < 1 ;

ηz, η > 0.

Then the above two choices of ψ are clearly convex univalent and ψ(D) are symmetric about real axis

as ψ(z) = ψ(z̄). It is further evident that 1+ψ(z) ̸≺ (1+ z)/(1− z) except for the second choice of ψ

when 0 < η ≤ 1. We now obtain the following sharp result from Theorem 3.2.1:

Example 3.2.4. Let f ∈ F (β z/(1+αz)), where β > 0 and 0 < α < 1 and |z|= r. Then

r(1−αr)
β

α ≤ | f (z)| ≤ r(1+αr)
β

α ,

which implies:

{
w : |w| ≤ (1−α)

β

α

}
⊂ f (D), | f ′(z)| ≤

(
1+

β r
1+αr

)
(1+αr)

β

α

and
ℜ

f (z)
z

≤ (1+αr)
β

α .

Example 3.2.5. Let f ∈ F (ηz), where η > 0 and |z|= r. Then we have

r exp(−ηr)≤ | f (z)| ≤ r exp(ηr),

which implies:
{w : |w| ≤ exp(−η)} ⊂ f (D), | f ′(z)| ≤ (1+ηr)exp(ηr)

and
ℜ

f (z)
z

≤ exp(ηr).

From the above examples, it is clear that f ∈ F (ψ) if and only if

z f ′(z)
f (z)

∈

{
Ω1, ψ(z) = β z/(1+αz);

Ω2, ψ(z) = ηz,

where Ω1 = {w∈C : |w−1|< |β −α(w−1)|} and Ω2 = {w∈C : |w−1|< η}, respectively for z∈D.
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3.3 Some Applications and Further results

3.3.1 On Booth-Lemniscate

Let BS (α) be the class as defined in (3.1.5).

Theorem 3.3.1. Let 0 < α < 1 and f ∈ BS (α), then for |z|= r we have

− f̂ (−r)≤ | f (z)| ≤ f̂ (r), (3.3.1)

where

f̂ (z) = z
(

1+ z
√

α

1− z
√

α

) 1
2
√

α

. (3.3.2)

The result is sharp.

Proof. Let ψ(z) := z/(1−αz2) and f ∈ BS (α) := F (ψ). For z = reiθ , we have

− r
1−αr2 ≤ ℜψ(reiθ )≤ r

1−αr2

and

−
∫ r

0

1
1−αt2 dt ≤ log

∣∣∣∣ f (z)
z

∣∣∣∣≤ ∫ r

0

1
1−αt2 dt,

where ∫ r

0

1
1−αt2 dt =

1
2
√

α
log

1+
√

αr
1−

√
αr

.

Hence, the result follows from Theorem 3.2.1.

Remark 3.3.1. Theorem 4.5.1 improves the upper bound of ℜ f (z) and bounds of | f (z)|, obtained
in [118, Theorem 2, p. 116] and [118, Theorem 3, p. 116] respectively.

We now extend [75, Theorem 2.6, p. 1238] for the complete range of α using Theorem 4.5.1:

Corollary 3.3.2. Let f ∈ BS (α), α ∈ (0,1) and |z|= r, then

ℜ
f (z)

z
≤
(

1+ r
√

α

1− r
√

α

) 1
2
√

α

and | f ′(z)| ≤
(

1+
r

1−αr2

)(
1+ r

√
α

1− r
√

α

) 1
2
√

α

.

The result is sharp for the function f̂ given in (3.3.2).

Corollary 3.3.3. Let α ∈ (0,1) be fixed. Then f ∈ BS (α) satisfies the inequality

L( f ,r)≤ 2πr
(

1+
r

1−αr2

)(
1+ r

√
α

1− r
√

α

) 1
2
√

α

, (|z|= r).

Corollary 3.3.4 (Koebe-radius). Let 0 < α < 1 and f̂ as given in (3.3.2). If f ∈ BS (α), then either
f is a rotation of f̂ or

{w ∈ C : |w| ≤ − f̂ (−1)} ⊂ f (D).
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Proof. The proof follows by letting r tends to 1 in the inequality − f̂ (−r)≤ | f (z)|, given in (3.3.1).

Theorem 3.3.5. Let α ∈ (0,3−2
√

2] be fixed. Then f ∈ BS (α) satisfies the sharp inequality

∣∣∣∣arg
f (z)

z

∣∣∣∣≤ max
|z|=r

arg
(

1+ z
√

α

1− z
√

α

) 1
2
√

α

.

Proof. From [75, Theorem 2.5, p. 1238], we have f (z)/z ≺ f̂ (z)/z for 0 < α ≤ 3− 2
√

2, where f̂ is
defined in (3.3.2). Since the function f̂ (z)/z is convex and symmetric about the real axis in D, therefore
we easily see that (

1−
√

α

1+
√

α

) 1
2
√

α

> 0.

Thus f̂ (z)/z is a Carathéodory function and the result follows.

For our next result, we need the following definition and a related class:

Definition 3.3.6. Let f (z) = ∑
∞
k=0 akzk and g(z) = ∑

∞
k=0 bkzk are analytic in D and f (D) = Ω. Consider

a class of analytic functions S( f ) := {g : g ≺ f} or equivalently S(Ω) := {g : g(z) ∈ Ω}. Then the class
S( f ) is said to satisfy Bohr-phenomenon, if there exists a constant r0 ∈ (0,1] such that the inequality

∑
∞
k=1 |bk|rk ≤ d( f (0),∂Ω) holds for all |z|= r ≤ r0, where d( f (0),∂Ω) denotes the Euclidean distance

between f (0) and the boundary of Ω = f (D). The largest such r0 for which the inequality holds is
called the Bohr-radius.

See the articles [10, 31] and the references therein for more. Let us now introduce the following

class:

S(BS (α)) :=
{

g : g ≺ f , g(z) =
∞

∑
k=1

bkzk and f ∈ BS (α)

}
.

Theorem 3.3.7 (Booth-Bohr-radius). The class S(BS (α)) satisfies the Bohr-phenomenon in |z| ≤
r(α), where r(α) is the unique positive root of the equation

r
(

1+ r
√

α

1− r
√

α

) 1
2
√

α

−
(

1−
√

α

1+
√

α

) 1
2
√

α

= 0, (3.3.3)

whenever 0 < α ≤ 3−2
√

2. The result is sharp for the function f̂ given in (3.3.2).

Proof. Since g ∈ S(BS (α)), we have g ≺ f for a fixed f ∈ BS (α). From Corollary 3.3.4, we
obtain the Koebe-radius r∗ = − f̂ (−1) such that r∗ ≤ d(0,∂Ω) = | f (z)| for |z| = 1. Also using [75,
Theorem 2.5, p. 1238], we have

f (z)
z

≺ f̂ (z)
z

. (3.3.4)

Recall the result [31, Lemma 1, p.1090], which reads as: let f and g be analytic in D with g ≺ f , where
f (z) = ∑

∞
n=0 anzn and g(z) = ∑

∞
k=0 bkzk. Then ∑

∞
k=0 |bk|rk ≤ ∑

∞
n=0 |an|rn for |z| = r ≤ 1/3. Now using

the result for g ≺ f and (4.7.4), we have

∞

∑
k=1

|bk|rk ≤ r+
∞

∑
n=2

|an|rn ≤ f̂ (r) for |z|= r ≤ 1/3.
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Finally, to establish the inequality ∑
∞
k=1 |bk|rk ≤ d( f (0),∂Ω), it is enough to show f̂ (r)≤ r∗. But this

holds whenever r ≤ r(α), where r(α) is the least positive root of the equation f̂ (r) = r∗. Now let
T (r) := f̂ (r)− r∗, then

T ′(r) =
(

1+ r
√

α

1− r
√

α

) 1
2
√

α

+ r
(

1+ r
√

α

1− r
√

α

) 1
2
√

α
−1 1

(1− r
√

α)2 .

Since (1+ r
√

α)/(1− r
√

α) > 0, therefore T ′(r) > 0 and so T is an increasing function of r. Also
T (0) < 0 and T (1) > 0. Thus the existence of the root r(α) is ensured by the Intermediate Value
theorem for the continuous functions. By a computation, it can easily be seen that r(α) < 1/3 and
hence the result.

Corollary 3.3.8. Let 0 < α ≤ 3−2
√

2. The Bohr-radius for the class BS (α) is r(α), where r(α) is
the unique positive root of the Eq. (3.3.3).

3.3.2 On Cissoid of Diocles

Let us consider

Sβ (z) =
z

(1− z)(1+β z)
=

1
1+β

(
1

1− z
− 1

1+β z

)
=

∞

∑
n=1

1− (−β )n

1+β
zn,

where β ∈ [0,1). Clearly, it is analytic, symmetric about the real-axis and maps the unit disk D onto

the domain bounded by Cissoid of Diocles:

CS(β ) :=
{

u+ iv ∈ C :
(

u− 1
2(β −1)

)
(u2 + v2)+

2β

(1+β )2(β −1)
v2 = 0

}
.

Let us now consider the class Scs(β ) as defined in (3.1.6). Masih et al. [107] considered this class with

β ∈ [0,1/2] since ℜ(1+ z/((1− z)(1+β z))≥ (2β −1)/(2(β −1))≥ 0. Clearly, Scs(β ) =F (Sβ (z))

for β ∈ [0,1) and we have the following result:

Theorem 3.3.9. Let f ∈Scs(β ) and β ∈ [0,1). Then for |z|= r we have the following sharp inequality:

− f̃ (−r)≤ | f (z)| ≤ f̃ (r),

where

f̃ (z) = z
(

1+β z
1− z

) 1
1+β

. (3.3.5)

Proof. Let ψ(z) := z/((1− z)(1+β z)) and f ∈ S ∗
cs(β ) := F (ψ). Following the proof of [107, Theo-

rem 3.1, p. 5], it is easy to see that for z = reiθ , where θ ∈ [0,2π], we have

min
|z|=r

ℜψ(z) =
−r+(β −1)r2 +β r3

(1+ r)2(1−β r)2 = ψ(−r)
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and

max
|z|=r

ℜψ(z) = lim
θ→0

−r2 +β r2 −β r3 cosθ + r cosθ

(1+ r2 −2r cosθ)(1+β 2r2 +2β r cosθ)

≤ β −1
2(1+β )2

= max
|z|=1

ℜψ(z).

Thus, we have ψ(−r)≤ ℜψ(z)≤ ψ(r) for r ̸= 1, and for r = 1

1/(2(β −1)) = ψ(−1)≤ ℜψ(z)≤ (β −1)/(2(β +1)2).

Also, note that

f̃ (z) = zexp
∫ z

0

ψ(t)
t

dt = z
(

1+β z
1− z

) 1
1+β

.

Now the result follows from Theorem 3.2.1.

Remark 3.3.2. Let F̃(z) = f̃ (z)/z and |z| = 1 , where f̃ is as defined in Theorem 3.3.9. A calculation
show that

1+
F̃ ′′(z)
F̃ ′(z)

= 1+
−β z

(1+β z)(1− z)
+

2z
1− z

,

which implies that

ℜ

(
1+

F̃ ′′(z)
F̃ ′(z)

)
≥ βℜ

(
−z

(1+β z)(1− z)

)
.

Since

ℜ

(
−z

(1+β z)(1− z)

)
=

1+β

2(1+β 2 −2β cosθ)
=: g(θ),

and a simple calculation shows that g attains its minimum at θ = 0. Therefore, we have

ℜ

(
1+

F̃ ′′(z)
F̃ ′(z)

)
≥ β (1+β )

2(1−β )2 ≥ 0.

Hence F̃ is convex univalent in D.

Remark 3.3.3. Observe that the function Sβ (z) is not convex when β ̸= 0 and the result, f (z)/z ≺ F̃(z)
similar to theorem 3.3.14 is still open for f ∈ Scs(β ).

By letting r tends to 1 in the above Theorem 3.3.9, we obtain:

Corollary 3.3.10 (Koebe-radius). Let f̃ as given in (3.3.5). If f ∈ Scs(β ), then either f is a rotation of
f̃ or {

w ∈ C : |w| ≤ − f̃ (−1) =
(

1−β

2

)1/(1+β )
}

⊂ f (D).

Remark 3.3.4. We improved the result [107, Corollary 4.3.1, p. 8] in Theorem 3.3.9 and Corol-
lary 3.3.10 by extending the range of β .
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3.3.3 Modified Koebe function

The Koebe function k(z) = z/(1 − z)2 has a pole at z = 1 and maps unit disk onto the domain

C\(−∞,1/4], which is a slit domain. We now introduced the modified Koebe function:

K(z) :=
z

(1+ηz)2 , 0 ≤ η < 1, (3.3.6)

which is bounded in D and symmetric about the real-axis. It is interesting to observe the geometry of

the domain K(D), which assumes different shapes for different choices of η such as a convex or a

Bean or a Cardioid-shaped domain. Especially when η tends to 1, we see that one of the rotations

of the image domain K(D) will converge to k(D) and thereby justifying the name of K(z). Since

k(z) = (u2(z)−1)/4, where u(z) = (1+ z)/(1− z), in a similar fashion, we can write

K(z) =
1

4η
(1− v2(z)),

where v(z) = (1−ηz)/(1+ηz) and η ̸= 0.

Lemma 3.3.1. The function K(z) as defined in (3.3.6) is convex for 0 ≤ η ≤ 2−
√

3.

Proof. Let K(z) = z/(1+ηz)2. When η = 0, K(z) is the identity function and hence is convex. So let
us consider 0 < η < 1. By a computation, we obtain that

1+
zK′′(z)
K′(z)

=
1−4ηz+η2z2

(1−ηz)(1+ηz)
.

Putting z = eiθ , we have

ℜ

(
1+

zK′′(z)
K′(z)

)
=

1−4η(1−η2)cosθ −η4

((1+η2)2 − (2η cosθ)2)
. (3.3.7)

Since ((1+η2)2 − (2η cosθ)2) > 0 for all θ and for each fixed η . Therefore, we now only need to
consider the numerator in (3.3.7). A computation reveals that

N(θ) := 1−4η(1−η
2)cosθ −η

4

is increasing in 0 ≤ θ ≤ π (note that N(θ) = N(−θ)) with N(θ) ≥ 0 when 0 < η ≤ 2−
√

3, while
N(θ) takes negative values when η > 2−

√
3. Hence by the definition of convexity, result follows.

Now let us consider the function

ψ(z) :=
γz

(1+ηz)2 = γK(z), where γ > 0.

Then following the class F (ψ) defined in (3.1.4), we introduce a related class defined as follows:

Sγ(η) :=
{

f ∈ A :
(

z f ′(z)
f (z)

−1
)
≺ γz

(1+ηz)2 , η ∈ [0,1), γ > 0
}
. (3.3.8)
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Note that if γ and η satisfies the condition (1−η)2 ≥ γ , then the class Sγ(η) reduces to a Ma-Minda

subclass of univalent starlike functions. Also letting η = 1/4 and γ = 25(
√

2−1)/16, we see that the

class S ∗(
√

1+ z)⊂ Sγ(η).

Theorem 3.3.11. Let f ∈ Sγ(η) and η ∈ [0,2−
√

3]. Then for |z| = r we have the following sharp
inequality:

−κ(−r)≤ | f (z)| ≤ κ(r),

where

κ(z) := zexp
(

γz
(1+ηz)2

)
.

Proof. Since ψ(z) = γK(z), using Lemma 3.3.1, we see that for |z|= r,

ψ(−r)≤ ℜψ(z)≤ ψ(r).

Also, we have κ(z) = zexp
∫ z

0 (ψ(t)/t)dt. Hence, the result follows from Theorem 3.2.1.

We also note that ℜψ(z)≥ψ(−r) for all η ∈ [0,1) which implies −κ(−r)≤ | f (z)| holds for η ∈ [0,1)

in Theorem 3.3.11. So we have the following result:

Corollary 3.3.12 (Koebe-radius). Let f ∈ Sγ(η) and η ∈ [0,1). Then either f is a rotation of κ or{
w ∈ C : |w| ≤ −κ(−1) = exp

(
−γ

(1−η)2

)}
⊂ f (D).

Recall that a function f ∈ A is starlike of order α ∈ [0,1), if ℜ(z f ′(z)/ f (z)) > α . Thus using

ℜ(z f ′(z)/ f (z))≥ ℜψ(z)≥ ψ(−r) for all η ∈ [0,1), we have the following result:

Theorem 3.3.13 (Radius of starlikeness). Let f ∈ Sγ(η), γ > 0 and η ∈ [0,1). Then f is starlike
(univalent) of order α ∈ [0,1) inside the disk |z| < r0, where r0 is the smallest positive root of the
equation

(1−α)η2r2 − (2(1−α)η + γ)r+(1−α) = 0.

Remark 3.3.5. Let Fκ(z) := κ(z)/z = exp(γz/(1+ηz)2). We see that for η = 0 and γ ≤ 1, Fκ is clearly
convex. So consider 0 < η < 1. After some calculations, we obtain that

G(z) := 1+
zF ′′

κ (z)
F ′

κ(z)
=

η4z4 +(2η3 + γη2)z3 − (6η2 +2ηγ)z2 +(γ −2η)z+1
(1+ηz)3(1−ηz)

.

Now for z = eiθ , the denominator of the real part of G is (1+η2 −2η cosθ)(1+η2 +2η cosθ)3 > 0,
since (1−η)2 > 0 and therefore, it suffices to consider the numerator. After a rigorous computation,
we find that numerator of the real part of G is non-negative if and only if 0 < γ < 1 and 0 < η ≤ η0,
where η0 (depends on γ) is the smallest positive root of the equation

(1− γ)+(3γ −10)η2 +12η
3 +(8−3γ)η4 −16η

5 +(2+ γ)η6 +4η
7 −η

8 = 0. (3.3.9)

Hence, Fκ convex for 0 < γ < 1 and 0 < η ≤ η0.
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For our next result, we need to recall the following result of Ruscheweyh and Stankiewicz [145]:

Lemma 3.3.2 ( [145]). Let the analytic functions F and G be convex univalent in D. If f ≺ F and
g ≺ G, then

f ∗g ≺ F ∗G (z ∈ D).

Theorem 3.3.14. Let η ∈ [0,2−
√

3]. If f belongs to the class Sγ(η), then

f (z)
z

≺ Fκ(z), (z ∈ D)

where Fκ(z) = κ(z)/z is the best dominant and κ as defined in Theorem 3.3.11.

Proof. Let f ∈ Sγ(η), then by definition we have

φ(z) :=
z f ′(z)
f (z)

−1 ≺ ψ(z). (3.3.10)

It is well-known that the function

g(z) = log
(

1
1− z

)
=

∞

∑
n=1

zn

n
∈ C ,

where C is the usual class of normalized convex(univalent) function and thus for f ∈ A , we get

φ(z)∗g(z) =
∫ z

0

φ(t)
t

dt and ψ(z)∗g(z) =
∫ z

0

ψ(t)
t

dt. (3.3.11)

From Lemma 3.3.1, we see that ψ is convex for η ∈ [0,2−
√

3]. Thus applying Lemma 3.3.2 in
(3.3.10), we get

φ(z)∗g(z)≺ ψ(z)∗g(z). (3.3.12)

Now from (3.3.11) and (3.3.12), we obtain

∫ z

0

φ(t)
t

dt ≺
∫ z

0

ψ(t)
t

dt,

which implies that
f (z)

z
:= exp

∫ z

0

φ(t)
t

dt ≺ exp
∫ z

0

ψ(t)
t

dt =:
κ(z)

z
.

This completes the proof.

Corollary 3.3.15. Let 0 < γ < 1 and 0 < η ≤ min{2−
√

3,η0}, where η0 is the least positive root of
the equation (3.3.9) and also let 0 < γ ≤ π/2 when η = 0. If f ∈ Sγ(η), then f satisfies the sharp
inequality ∣∣∣∣arg

f (z)
z

∣∣∣∣≤ max
|z|=r

argexp
(

γz
(1+ηz)2

)
.

Proof. Let Fκ(z) := κ(z)/z = exp(γz/(1+ηz)2) which is symmetric about the real axis. From Theo-
rem 3.3.14, have f (z)/z ≺ Fκ(z) for 0 ≤ η ≤ 2−

√
3. Since for η = 0, ℜFκ(z)> 0 if and only γ ≤ π/2.

The result is obvious. Now from Remark 3.3.5, we see that if 0 < γ < 1 and 0 < η ≤ min{2−
√

3,η0},
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where η0 is the least positive root of the equation (3.3.9) then Fκ is convex which implies

ℜFκ(z)≥ exp
(

−γ

(1−η)2

)
> 0,

and Fκ is also a Carathéodory function in this case. Hence the result follows.

Now using Theorem 3.3.11, Remark 3.3.5 and Theorem 3.3.14, we obtain the following result:

Theorem 3.3.16. Let f ∈ Sγ(η), then

ℜ

(
f (z)

z

)
≤ exp

(
γr

(1+ηr)2

)
for η ∈ [0,1)

and

min
|z|=r

exp
(

γz
(1+ηz)2

)
≤ ℜ

(
f (z)

z

)
for η ∈ [0,2−

√
3].

In particular, if 0 < γ < 1 and 0 < η ≤ min{2−
√

3,η0}, where η0 is the least positive root of the
equation (3.3.9), then

exp
(

−γr
(1−ηr)2

)
≤ ℜ

(
f (z)

z

)
.

The result is sharp.

Remark 3.3.6. It is interesting to observe that even in the class F (ψ), functions may not be univa-
lent. But with the conditions on the bounds for the real part of ψ , a similar result holds as obtained
by Ma-Minda [102] which is quite important to obtain the Koebe domain. From Remark 3.3.2 and
Remark 3.3.5, we also note that the function f0(z)/z, where f0 as defined in (3.2.5) behaves quite dif-
ferently in the particular classes. With this perspective, we conclude this chapter by introducing the
following three new subclasses of F (ψ):

T :=
{

f ∈ A :
z f ′(z)
f (z)

−1 ≺ log(1− z)
}
,

which means z f ′(z)/ f (z) ∈ {w ∈ C : |exp(w−1)−1|< 1},

Sp :=
{

f ∈ A :
z f ′(z)
f (z)

≺ 1−
(

log
1+

√
z

1−√
z

)2}
,

or equivalently z f ′(z)/ f (z) ∈ {w ∈ C : |1−w| < ℜ((1−w)+ π2)}, a parabola with opening in left
half-plane and

L (β ) :=
{

f ∈ A :
z f ′(z)
f (z)

−1 ≺ z
cos(β z)

, β ∈ [0,1]
}
.

The above new classes are still open to study. Also see figure 6.4.3. Note that for the classes T and
L (β ), the function f0 defined in (3.2.5) takes the respective particular form

fT (z) := zexp(−Li2(z)),
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where

−
∫ z

0

log(1− t)
t

dt =
∞

∑
n=1

zn

n2 =: Li2(z)

known as dilogarithm function and

fL (z) := zexp
∫ z

0

1
cosβ t

dt = z(secβ z+ tanβ z)1/β ), β ̸= 0.

Γ1 = z / cos z

Γ2 = log(1 - z)

Γ2 Γ1

Re

Im
-2 -1 1 2

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 3.1: Boundary curves of the functions z/cosz and log(1− z)

Highlights of the chapter

In this chapter, we initiated a systematic way to study non-univalent functions by introducing the

class F (ψ). For this, we established growth theorems and also derived radii of starlikeness. For the

particular subclass BS (α) and a related class of subordinants S(BS (α)), we established Bohr’s

phenomenon. Likewise, there are several types of radius and coefficient problems, which can be

covered in future attempts.



Chapter 4

Some general results for the Ma-Minda

classes

In this chapter, we consider functions analytic in the unit disk that are subordinate to functions of the

same type that are defined by certain differential subordinations. We prove several sharp majorization

theorems and a product theorem. Further, necessary and sufficient conditions along with other aspects

of radius problems are studied by employing the technique of subordination and convolution.

4.1 Introduction

In 1967, MacGregor [104] started the radius problems, which says that if | f (z)|− |g(z)|> 0 for each

|z|< 1, then | f ′(z)|− |g′(z)|> 0 in |z|< 2−
√

3, when f is univalent. But the problem when f belongs

to others classes is still open. To proceed next, first let us recall an equivalent definition of majorization.

Definition 4.1.1 ( [104]). Let f and g be analytic in D. A function g(z) is said to be majorized by
f (z), denoted by g << f , if there exists an analytic function Φ(z) in D satisfying |Φ(z)| ≤ 1 and
g(z) = Φ(z) f (z) for all z ∈ D.

Theorem D ( [104]). Let g be majorized by f in D and g(0) = 0. If f (z) is univalent in D, then
|g′(z)| ≤ | f ′(z)| in |z| ≤ 2−

√
3. The constant 2−

√
3 is sharp.

Recently Tang and Deng [164] obtained the majorization results for S ∗(ψ) for some specific choices

of ψ , motivated by this in section 6.2.1, we devise a general approach to handle the same for C (ψ),

which is precisely stated as: if g ∈ A , f ∈ C (ψ) and g is majorized by f in D, then we find the largest

radius rψ ≤ 1 such that |g′(z)| ≤ | f ′(z)| in |z| ≤ rψ . Several other results in this direction are also

obtained. In section 4.3, we consider the radius problem posed by Obradović and Ponnusamy [121]

59



60

namely: Let g ∈ S ∗(ψ1) and h ∈ S ∗(ψ2), then find the largest radius r0 ≤ 1 such that the function

F(z) = (g(z)h(z))/z belongs to certain well-known class of starlike functions in |z| < r0. As a special

case, we also obtain a result of Obradović and Ponnusamy [121]. Throughout this chapter, we shall

assume that the function φ in S ∗(φ) and C (φ) has real coefficients in its power series expansion.

4.2 Majorization for starlike and convex functions

Let us consider the analytic function ψ(z) := 1+B1z+B2z2 + · · · . Here B1 = ψ ′(0), the coefficient

of z, plays a major role in deciding the orientation of the function ψ . Thus ψ is positively or negatively

oriented depends on whether B1 is positive or negative. Ma-Minda only considered the case ψ ′(0)> 0,

as it may be possible that for the case when ψ ′(0)< 0, many postulates for the class S ∗(ψ) need not

remain same. With this perspective, we begin with the following:

Theorem 4.2.1. Let ℜφ(z)> 0 and φ be convex in D with φ(0) = 1. Suppose ψ be the function such
that mr := min

|z|=r
|ψ(z)| and also satisfies the differential equation

ψ(z)+
zψ ′(z)
ψ(z)

= φ(z). (4.2.1)

Let g ∈ A and f ∈ C (φ). If g is majorized by f in D, then

|g′(z)| ≤ | f ′(z)| in |z| ≤ rψ , (4.2.2)

where rψ is the least positive root of the equation

(1− r2)mr −2r = 0. (4.2.3)

The result is sharp for the case mr = ψ(−r).

Proof. Let us define p(z) := z f ′(z)/ f (z). Since f ∈ C (φ), therefore we have 1+ z f ′′(z)/ f ′(z)≺ φ(z),
which can be equivalently written as

p(z)+
zp′(z)
p(z)

= 1+
z f ′′(z)
f ′(z)

≺ φ(z). (4.2.4)

Since ℜφ(z) > 0 and φ is convex in D, therefore using [110, Theorem 3.2d, p. 86] the solution ψ of
the differential equation (4.2.1) is analytic in D with ℜψ(z) > 0 and has the following integral form
given by

ψ(z) := h(z)
(∫ z

0

h(t)
t

dt
)−1

,

where
h(z) = zexp

∫ z

0

φ(t)−1
t

dt.

Since ℜψ(z) > 0 and p satisfies the subordination (4.2.4), therefore using [110, Lemma 3.2e, p. 89]
we conclude that ψ is univalent and p ≺ ψ , where ψ is the best dominant. Thus we have obtained that
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f ∈ C (φ) implies z f ′(z)/ f (z)≺ ψ(z) and ψ is the best dominant (which is important for the sharpness
of result), which is a univalent Carathéodory function. Now as g ∈ A and f ∈ C (φ), therefore we
obtain the following well defined equality

f (z)
f ′(z)

=
z

ψ(ω(z))
, (z ∈ D)

where ω is a Schwarz function. Hence, using min|z|=r |ψ(ω(z))| ≥ min|z|=r |ψ(z)| and the hypothesis
min
|z|=r

|ψ(z)|= mr, we obtain that ∣∣∣∣ f (z)
f ′(z)

∣∣∣∣≤ r
mr

, (0 < r < 1). (4.2.5)

Now if g is majorized by f , then by definition, we have g(z) = Ψ(z) f (z), where Ψ is analytic and
satisfies |Ψ(z)| ≤ 1 in D such that g′(z) = Ψ(z) f ′(z)+Ψ′(z) f (z). Thus using (4.2.5) together with the
following Schwarz-Pick inequality

|Ψ′(z)| ≤ 1−|Ψ(z)|2

1−|z|2
,

we obtain

|g′(z)| ≤ | f ′(z)|
(
|Ψ(z)|+ 1−|Ψ(z)|2

1− r2
r

mr

)
= | f ′(z)|h(β ,r), (4.2.6)

where |Ψ(z)| := β and

h(β ,r) = β +
1−β 2

1− r2
r

mr
.

Thus to arrive at (4.2.2), it suffices to show that h(β ,r)≤ 1, which is equivalent to show that

k(β ,r) := (1− r2)mr − (β +1)r ≥ 0. (4.2.7)

Since ∂

∂β
k(β ,r) =−r < 0, Therefore, (4.2.7) holds whenever

k(r) := min
β

k(β ,r) = k(1,r)≥ 0.

Note that k(r) is a continuous function of r and further k(0) = m0 = ψ(0) = 1 > 0 and k(1)< 0. Thus
there exists a point rψ ∈ (0,1) such that k(r) ≥ 0 for all r ∈ [0,rψ ], where rψ is the least positive root
of (4.2.3).

Proof of sharpness: Now let mr = ψ(−r). Choose f (z) ∈ C (φ) such that z f ′(z)/ f (z) = ψ(−z) and
Ψ(z) = (z+α)/(1+αz), where −1 ≤ α ≤ 1. Let r0 be the second consecutive positive root (if exists)
of the equation (4.2.3), otherwise choose r0 = 1. We show that for each rψ < r < r0 we can choose α

so that g′(r)> f ′(r)> 0, which implies that g′ is not majorized by f ′ outside |z| ≤ rψ . First, note that

f (r)
f ′(r)

=
r

ψ(−r)
. (4.2.8)

Since

g′(r) = f ′(r)
(

r+α

1+αr
+

1−α2

(1+αr)2
f (r)
f ′(r)

)
=: f ′(r)h(r,α)

and h(r,1)= 1, it suffices to show that ∂h(r,α)/∂α < 0 at α = 1 in order to establish that h(r,1−ε)> 1,



62

and hence g′(r)> f ′(r)> 0. But at α = 1, we have:

∂h(r,α)

∂α
=

2
(1+ r)2

(
1− r2

2
− f (r)

f ′(r)

)
=

2
(1+ r)2

(
1− r2

2
− r

ψ(−r)

)
< 0,

using the equations (4.2.3), (4.2.7), (4.2.8) and the fact that k(r)< 0 for all r ∈ (rψ ,r0).

Remark 4.2.1. The following result was proved by MacGregor [104]: Let g ∈ A and f ∈ C . If g is
majorized by f in D, then |g′(z)| ≤ | f ′(z)| in |z| ≤ 1/3. The result is sharp.

In our next result, we show the application to the Janowski class [72], which covers many well-known

classes. Here C [D,E] := C ((1+Dz)/(1+Ez).

Corollary 4.2.2. Let f belongs to C [D,E], where −1 ≤ E < D ≤ 1 along with 1+D/E ≥ 0 and
−1 ≤ E < 0. If g is majorized by f , then

|g′(z)| ≤ | f ′(z)| in |z| ≤ r0,

where r0 is the smallest positive root of the equation

(1− r2)

(
2F1

(
1− D

E
,1,2;

−Er
1−Er

))−1

−2r = 0.

The result is sharp.

Proof. In Theorem 4.2.1, put φ(z) = (1+Dz)/(1+Ez). Then we have ψ(z) := 1/q(z), where

q(z) =


∫ 1

0
(1+Etz

1+Ez

)D−E
E dt, if E ̸= 0;

∫ 1
0 eD(t−1)zdt, if E = 0,

which further can be represented in terms of confluent and Gaussian hypergeometric functions, respec-
tively as follows:

q(z) =

{
2F1
(
1− D

E ,1,2; Ez
1+Ez

)
, if E ̸= 0;

1F1 (1,2;−Dz) , if E = 0.

Since 1+D/E ≥ 0 and −1 ≤ E < 0, therefore we have

min
|z|=r

ℜψ(z) = ψ(−r) =
1

q(−r)
=

(
2F1

(
1− D

E
,1,2;

−Er
1−Er

))−1

.

Since ℜψ(z) > 0 and min|z|=r ℜψ(z) = ψ(−r), therefore we conclude that min|z|=r |ψ(z)| = ψ(−r)
and hence, the result follows from Theorem 4.2.1.

Now we have the result for the class of convex functions of order α using Corollary 4.2.2:
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Corollary 4.2.3. Let f belongs to C [1− 2α,−1], where 0 ≤ α < 1. If g is majorized by f , then
|g′(z)| ≤ | f ′(z)| in |z| ≤ r0, where r0 is the smallest positive root of the equation

(1− r2)

(
2F1

(
2(1−α),1,2;

r
1+ r

))−1

−2r = 0.

The result is sharp.

Corollary 4.2.4. Let f belongs to C [D,0]. If g is majorized by f , then |g′(z)| ≤ | f ′(z)| in |z| ≤ r0,

where r0 is the smallest positive root of the equation

(1− r2)(Dre−Dr/(e−Dr −1))+2r = 0.

The result is sharp.

Proof. From the proof of Corollary 4.2.2, we obtain that ψ(z) = DzeDz/(eDz−1), when φ(z) = 1+Dz.
Now with a little computation, we find that the function l(z) = zez/(ez − 1) is convex univalent in D.
Therefore, the function ψ(z) = l(Dz) is also convex in D for each fixed 0 < D ≤ 1. Since ψ is also
symmetric about the real axis, we conclude that min|z|=r |ψ(z)|= ψ(−r).

Theorem 4.2.5. Let φ be convex in D, with ℜφ(z) > 0, φ(0) = 1 and suppose f ∈ A satisfies the
differential subordination

z f ′(z)
f (z)

+ z
(

z f ′(z)
f (z)

)′
≺ φ(z). (4.2.9)

If g is majorized by f , then |g′(z)| ≤ | f ′(z)| in |z| ≤ r0, where r0 is the least positive root of the equation

(1− r2)min
|z|=r

ℜψ(z)−2r = 0,

where
ψ(z) :=

1
z

∫ z

0
φ(t)dt.

The result is sharp for the case min|z|=r ℜψ(z) = ψ(±r).

Proof. Let p(z) = z f ′(z)/ f (z). Then the subordination (4.2.9) can equivalently be written as:

p(z)+ zp′(z)≺ φ(z).

A simple calculation show that the analytic function ψ(z) := (1/z)
∫ z

0 φ(t)dt satisfies

ψ(z)+ zψ
′(z) = φ(z).

Now from the Hallenbeck and Ruscheweyh result [110, Theorem 3.1b, p. 71], we have p ≺ ψ , where
ψ is the best dominant and also convex. Further, since ℜφ(z) > 0, using the integral operator [110,
Theorem 4.2a, p. 202] preserving functions with positive real part, we see that ψ is a Carathéodory
function. Thus we have

f (z)
z f ′(z)

≺ 1
ψ(z)

which implies
∣∣∣∣ f (z)

f ′(z)

∣∣∣∣≤ r
min|z|=r |ψ(z)|

=
r

min|z|=r ℜψ(z)
.
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Now proceeding same as in the Theorem 4.2.1 result follows.

Corollary 4.2.6. Suppose f ∈ A satisfies the differential subordination

z f ′(z)
f (z)

+ z
(

z f ′(z)
f (z)

)′
≺ 1+ z

1− z
.

If g is majorized by f , then |g′(z)| ≤ | f ′(z)| in |z| ≤ r0, where r0 is the least positive root of the equation

(1− r2)(2log(1+ r)− r)−2r2 = 0.

The result is sharp.

Corollary 4.2.7. Suppose f ∈ A satisfies the differential subordination

z f ′(z)
f (z)

+ z
(

z f ′(z)
f (z)

)′
≺ ez.

If g is majorized by f , then |g′(z)| ≤ | f ′(z)| in |z| ≤ r0, where r0 is the least positive root of the equation

(1− r2)(1− e−r)−2r2 = 0.

The result is sharp.

Theorem 4.2.8. Let φ be convex in D, with ℜφ(z) > 0, φ(0) = 1 and suppose f ∈ A satisfies the
differential subordination

z f ′(z)
f (z)

(
z f ′(z)
f (z)

+2z
(

z f ′(z)
f (z)

)′)
≺ φ(z), α ∈ [0,1). (4.2.10)

If g is majorized by f , then |g′(z)| ≤ | f ′(z)| in |z| ≤ r0, where r0 is the least positive root of the equation

(1− r2)min
|z|=r

|
√

ψ(z)|−2r = 0,

where
ψ(z) :=

1
z

∫ z

0
φ(t)dt.

The result is sharp when min|z|=r |
√

ψ(z)|=
√

ψ(±r).

Proof. Let p(z) = z f ′(z)/ f (z). Then the subordination (4.2.10) can be equivalently written as:

p2(z)+2zp(z)p′(z)≺ φ(z),

which using the change of variable P(z) = p2(z) becomes

P(z)+ zP′(z)≺ φ(z).

Now proceeding as in Theorem 4.2.5, we see that p(z) ≺
√

ψ(z) and
√

ψ(z) is the best dominant.
Further, since ℜφ(z)> 0, using [110, Theorem 4.2a, p. 202], we see that ψ is a Carathéodory function.
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Therefore,

|arg
√

ψ(z)|= 1
2
|argψ(z)| ≤ π

4
,

which implies ℜ
√

ψ(z)> 0. Thus we have

f (z)
z f ′(z)

≺ 1√
ψ(z)

which implies
∣∣∣∣ f (z)

f ′(z)

∣∣∣∣≤ r

min|z|=r |
√

ψ(z)|
.

Now proceeding same as in the Theorem 4.2.1 result follows.

Corollary 4.2.9. Suppose f ∈ A satisfies the differential subordination

z f ′(z)
f (z)

(
z f ′(z)
f (z)

+2z
(

z f ′(z)
f (z)

)′)
≺ 1+(2α −1)z

1+ z
.

If g is majorized by f , then |g′(z)| ≤ | f ′(z)| in |z| ≤ r0, where r0 is the least positive root of the equation

(1− r2)min
|z|=r

ℜ
√

ψ(z)−2r = 0,

where
ψ(z) :=

1
z

∫ z

0

1+(2α −1)t
1+ t

dt.

Corollary 4.2.10. Suppose f ∈ A satisfies the differential subordination

z f ′(z)
f (z)

(
z f ′(z)
f (z)

+2z
(

z f ′(z)
f (z)

)′)
≺ 1+αz, (α ∈ (0,1]).

If g is majorized by f , then |g′(z)| ≤ | f ′(z)| in |z| ≤ r0, where r0 is the least positive root of the equation

(1− r2)
√

1−β r−2r = 0, where β = α/2.

The result is sharp.

Now we state the following result without proof as it follows from Theorem 4.2.1:

Theorem 4.2.11. Let ψ ∈ P be a univalent function such that

mr := min
|z|=r

|ψ(z)|=

{
ψ(−r), if ψ ′(0)> 0;
ψ(r), if ψ ′(0)< 0.

Let g ∈ A and f ∈ S ∗(ψ). If g is majorized by f in D, then

|g′(z)| ≤ | f ′(z)| in |z| ≤ rψ ,

where rψ is the least positive root of the equation

(1− r2)mr −2r = 0.

The result is sharp.
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Example 4.2.12. Let us consider the analytic functions ψ1(z) =
√

1− z and ψ2(z) =
√

1+ z. Note that
ψ ′

1(0)< 0, ψ ′
2(0)> 0 and for |z|= r,

mr1 = min
|z|=r

|ψ1(z)|= ψ1(r) =
√

1− r = ψ2(−r) = min
|z|=r

|ψ2(z)|= mr2 .

Now from Theorem 4.2.11, we obtain the following result:
If g ∈ A , f ∈ S ∗(ψi), where i = 1,2 and g is majorized by f , then |g′(z)| ≤ | f ′(z)| in |z| ≤ r0, where
r0 is the least positive root of the equation

(1− r2)
√

1− r−2r = 0.

Interestingly, the desired radius in both cases remains the same as ψ1(D) = ψ2(D), though ψ1 and ψ2

are oppositely oriented.

Remark 4.2.2. Taking α = 0 or η = 1 in Corollary 4.2.13, case (ii) and (iii), respectively, we obtain
the result proved by T. H. MacGregor [104], namely: Let g ∈ A and f ∈ S ∗. If g << f in D, then
|g′(z)| ≤ | f ′(z)| in |z| ≤ 2−

√
3. The result is sharp.

Now we obtain the following majorization results for some known classes as well those introduced

and studied in [38,60,109,134].

Corollary 4.2.13. Let g ∈ A and f ∈ S ∗(ψ). If g << f in D, then |g′(z)| ≤ | f ′(z)| in |z| ≤ rψ , where
rψ is the least positive root of the equation P(r) = 0 and the result follow for each one of the following
cases:

(i) P(r) = (1− r2)((1−Dr)/(1−Er))−2r when ψ(z) = 1+Dz
1+Ez , where −1 ≤ E < D ≤ 1.

(ii) P(r) = (1− r)(1− (1−2α)r)−2r when ψ(z) = 1+(1−2α)z
1−z , where 0 ≤ α < 1.

(iii) P(r) = (1− r2)((1− r)/(1+ r))η −2r when ψ(z) =
(1+z

1−z

)η
, where 0 < η ≤ 1.

(iv) P(r) = (1− r2)
(√

2− (
√

2−1)
√

1+r
1−2(

√
2−1)r

)
−2r when ψ(z) =

√
2− (

√
2−1)

√
1−z

1+2(
√

2−1)z
.

(v) P(r) = (1− r2)(b(1− r))1/a −2r when ψ(z) = (b(1+ z))1/a, where a ≥ 1 and b ≥ 1/2.

(vi) P(r) = (1− r2)−2rer when ψ(z) = ez.

(vii) P(r) = (1− r2)(
√

1+ r2 − r)−2r when ψ(z) = z+
√

1+ z2.

(viii) P(r) = (1− r2)− r(1+ er) when ψ(z) = 2
1+e−z .

(ix) P(r) = (1− r2)(1− sinr)−2r when ψ(z) = 1+ sinz.

The results are sharp.

Remark 4.2.3. In Corollary 4.2.13, case (ix), we obtained the radius rψ ≈ 0.312478 which improves
the majorization radius rs ≈ 0.309757 obtained in [165].

Let ψ(z) = 1+ z/(1−αz2), 0 ≤ α < 1, introduced and studied by Kargar et al. [74]. Clearly ψ ∈ P

only when α = 0 and hence Theorem 4.2.11 holds when ψ(z) = 1+ z. Moreover, for some r > 0,

the quantity z/ψ(z) does not exist for all |z| = r. In view of the same, the result proved by Tang and

Deng [164], needs correction and the corrected version is stated in the following corollaries:
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Corollary 4.2.14. Let g ∈ A and f ∈ S ∗(1+β z), 0 < β ≤ 1. If g << f in D, then

|g′(z)| ≤ | f ′(z)| in |z| ≤ rβ ,

where rβ is the least positive root of the equation

(1− r2)(1−β r)−2r = 0.

The result is sharp.

Now we obtain the result related to BS (α), the class of Booth Lemniscate starlike functions when

α ̸= 0.

Corollary 4.2.15. Let 0 < α < 1 and rα be the unique root of the equation

αr2 + r−1 = 0. (4.2.11)

Let g ∈ A and g << f in D, where f ∈ BS (α). Then

|g′(z)| ≤ | f ′(z)| in |z| ≤ rB(α) := min{rα ,r0},

where r0 is the least positive root of the equation

(1− r2)

(
1− r

1−αr2

)
−2r = 0.

The result is sharp.

Proof. Observe that ℜ

(
1+ z

1−αz2

)
> 0 for |z|< rα , where rα is the unique root of (4.2.11). Thus the

inequality in (4.2.5) holds for |z|= r < rα and the result follows at once.

4.3 Product of starlike functions

Assume that ψ1 and ψ2 belong to P and satisfy the following conditions for |z|= r and i = 1,2

max
|z|=r

ℜψi(z) = ψi(r) and min
|z|=r

ℜψi(z) = ψi(−r). (4.3.1)

Motivated by Obradović and Ponnusamy [121], in this section, we consider the radius problem to

generalize their result and also establish a similar result for the Uralegaddi class M (β ) := { f ∈ A :

ℜ(z f ′(z)/ f (z))< β , β > 1}.

Theorem 4.3.1. Let g ∈S ∗(ψ1) and h ∈S ∗(ψ2), where ψi satisfy the first condition in (4.4.2). Then
the function F defined by

F(z) =
g(z)h(z)

z
(4.3.2)

belongs to M (β ) in the disk |z| < rβ = min{1,r0(β )}, where r0(β ) is the least positive root of the
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equation
ψ1(r)+ψ2(r)−1−β = 0. (4.3.3)

The radius rβ is sharp.

Proof. Let g∈S ∗(ψ1) and h∈S ∗(ψ2). Then in view of (4.4.2) and subordination principle, it follows
that

ℜ
zg′(z)
g(z)

≤ ψ1(r) and ℜ
zh′(z)
h(z)

≤ ψ2(r)

in |z| ≤ r < 1. Since
zF ′(z)
F(z)

=
zg′(z)
g(z)

+
zh′(z)
h(z)

−1,

we have for |z|= r,

ℜ
zF ′(z)
F(z)

≤ ψ1(r)+ψ2(r)−1 ≤ β ,

whenever r ≤ min{1,r0(β )}, where r0(β ) is the least positive root of the equation (4.3.3). The sharp-
ness follows by considering the functions

g(z) = zexp
∫ z

0

ψ1(t)−1
t

dt and h(z) = zexp
∫ z

0

ψ2(t)−1
t

dt.

Corollary 4.3.2. Let g ∈ S ∗(γ) and h ∈ S ∗(τ). Then the function F defined in (4.3.2) belongs to
M (β ) in the disk |z|< min{1,r0(β )}, where

r0(β ) =
β −1

3+β −2(γ + τ)
.

The proof of the following result is much akin to Theorem 4.3.1, so is omitted here.

Theorem 4.3.3. Let g ∈ S ∗(ψ1) and h ∈ S ∗(ψ2), where ψi satisfy the second condition in (4.4.2).
Then the function F defined in (4.3.2) is starlike of order γ in the disk |z| < rγ , where rγ is the least
positive root of the equation

ψ1(−r)+ψ2(−r)−1− γ = 0.

The radius rγ is sharp.

Now using Theorem 4.3.3, we obtain the following result proved by Obradović and Ponnusamy [121]:

Remark 4.3.1. Let g ∈ S ∗(γ) and h ∈ S ∗(τ). Then the function F defined in (4.3.2) is starlike of
order γ0 in the disk

|z|< 1− γ0

γ0 +3−2(γ + τ)
.

Remark 4.3.2. Note that the identity function z ∈ S ∗(ψ). Thus if we choose g(z) = z (or h(z) = z)
in (4.3.2), then the problem reduces to obtaining the M (β )-radius (or S ∗(γ)-radius) of the class
S ∗(ψ2) (or S ∗(ψ1)). It is also evident that the conditions given in (4.4.2) establish the inclusion
relations S ∗(ψ)⊆ M (ψ(1)) and S ∗(ψ)⊆ S ∗(ψ(−1)), respectively.
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4.4 Convolution properties and sufficient conditions

The convolution of two power series f (z) = z+∑
∞
n=2 anzn and g(z) = z+∑

∞
n=2 bnzn is defined by

( f ∗g)(z) = z+
∞

∑
n=2

anbnzn.

Ruscheweyh and Sheil-Small [144] proved that if f ∈ C and g ∈ C (g ∈ S ∗), then f ∗g ∈ C ( f ∗g ∈
S ∗). Later on, Ma-Minda [102] proved that if f ∈ C and g ∈ S ∗(ψ), then f ∗ g ∈ S ∗(ψ), when

ψ(D) is convex. Szegö [163] in 1928 discussed the radii of convexity for the sections fk(z) = z+

∑
k
n=2 anzn of the functions f ∈ C , while in 1988 Silverman [155] considered the radii of starlikeness

of fk. Also see Silverman et al. [153, 154] work on convolution for the Janowski classes. We shall

consider these problems for the Ma-Minda classes C (ψ) and S ∗(ψ) following the idea of Goodman

and Schoenberg [57]. In the following, we extend the results of the Bulboacă and Tuneski [35] for the

class S ∗(ψ):

Theorem 4.4.1. Let h be analytic with h(0) = 0, h′(0) ̸= 0. Suppose that h satisfies

ℜ

(
1+

zh′′(z)
h′(z)

)
>−1

2
(4.4.1)

and
1
z

∫ z

0
h(t)dt ≺ ψ(z)−1

ψ(z)
. (4.4.2)

If f ∈ A , then
f (z) f ′′(z)
( f ′(z))2 ≺ h(z) implies f ∈ S ∗(ψ).

Proof. Using the result [35, Theorem 3.1, p. 3], we see that f (z) f ′′(z)/( f ′(z))2 ≺ h(z) implies

1
z

∫ z

0

(
1−
(

f (t)
f ′(t)

)′)
dt = 1− f (z)

z f ′(z)
≺ 1

z

∫ z

0
h(t)dt.

From the above subordination, we have

f (z)
z f ′(z)

≺ 1− 1
z

∫ z

0
h(t)dt.

Now to prove that f ∈ S ∗(ψ), it suffices to consider

1− 1
z

∫ z

0
h(t)dt ≺ 1

ψ(z)
,

which is equivalent to (4.4.2). This completes the proof.

Corollary 4.4.2. Let −1 ≤ E < D ≤ 1 and 0 < β ≤ 1 such that

h(z) = 1−
(

1+Ez
1+Dz

)β (1+(D+E −β (D−E))z+DEz2

(1+Dz)(1+Ez)

)
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and satisfies (4.4.1). If f ∈ A and
f (z) f ′′(z)
( f ′(z))2 ≺ h(z).

Then f ∈ S ∗
((1+Dz

1+Ez

)β
)
.

Remark 4.4.1. 1. Choosing E =−1 and D = 1 in Corollary 4.4.2 gives [35, Corollary 3.5].

2. Choosing E = 0 and β = 1, then Corollary 4.4.2 reduces to [35, Example 4.5].

In the following, choosing D = 1−2α , E =−1 and β = 1 in Corollary 4.4.2 yields [35, Corollary 3.4]

(Note that α ̸= 1). Also, in [35, Example 4.4] correct range of α is [0,1).

Corollary 4.4.3. If f ∈ A , 0 ≤ α < 1 and

f (z) f ′′(z)
( f ′(z))2 ≺ 2(1−α)((1−2α)z2 +2z)

(1+(1−2α)z)2 .

Then f is starlike of order α .

Considering ψ(z) =
√

1+ cz, where 0 < c ≤ 1 in Theorem 4.4.1, we get the following:

Corollary 4.4.4. Let 0 < c < c0 < 1, where c0 ≈ 0.845276 is the unique positive root of the equation

30− 75
2

c2 − 201
32

c4 = 0.

If f ∈ A and
f (z) f ′′(z)
( f ′(z))2 ≺ 1− 2+ cz

2(1+ cz)3/2 .

Then f ∈ S ∗(
√

1+ cz).

Let us consider the following function in Theorem 4.4.1:

h(z) = 1− eλ z(1−λ z)
e2λ z ,

where 0 < λ ≤ 1 . Then

1+
zh′′(z)
h′(z)

=
2−4λ z+λ 2z2

2−λ z
and ℜ

(
1+

zh′′(z)
h′(z)

)
=

2−4λ +λ 2

2−λ
.

Thus, we get

Corollary 4.4.5. Let 0 < λ ≤ 1
4(9−

√
33)< 1. If f ∈ A and

f (z) f ′′(z)
( f ′(z))2 ≺ 1− eλ z(1−λ z)

e2λ z . Then f ∈ S ∗(eλ z).

In 1985, Silverman and Silvia [154] obtained some necessary and sufficient conditions in terms of

convolution operators for the functions to be in the Janowski classes, and generalized the results of

Silverman et. al. [153]. We now extend their results for the class F (φ) defined in (3.1.4), which

consequently yield results for the classes S ∗(ψ) and C (ψ) when ℜ(1+φ(z))> 0.
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Theorem 4.4.6. Let f ∈ A such that f (z)/z ̸= 0. Assume that ψ = 1+φ Then f ∈ F (φ) if and only
if

1
z

(
f (z)∗ z−λ z2

(1− z)2

)
̸= 0, (4.4.3)

where λ = ψ(eit)/(1−ψ(eit)) and t ∈ [0,2π).

Proof. Since f ∈ F (φ) if and only if z f ′(z)/ f (z)≺ ψ(z), which is further equivalent to

z f ′(z)
f (z)

̸= ψ(eit), (z ∈ D, t ∈ [0,2π)),

( means that the values z f ′(z)/ f (z) does not lie on the boundary Ω of the domain ψ(D)) which, using
the hypothesis that f (z)/z ̸= 0, can be equivalently written as

1
z

(
z f ′(z)−ψ(eit) f (z)

)
̸= 0. (4.4.4)

Since
z f ′(z) = f (z)∗ z

(1− z)2 and f (z) = f (z)∗ z
1− z

.

Therefore, (4.4.4) becomes
1
z

(
f (z)∗ z−ψ(eit)(z− z2)

(1− z)2

)
̸= 0,

and further, with a little computation, it reduces to (4.4.3).

Note that we can also write

1
z

(
f (z)∗ z−λ z2

(1− z)2

)
=

1
z
(z f ′(z)−λ (z f ′(z)− f (z))).

Thus using the power series expansion of f (z), (4.4.3) becomes

∞

∑
k=2

(λ (k−1)− k)akzk−1 ̸= 1,

where λ is as defined in Theorem 4.4.6, and yields the following sufficient condition in terms of coeffi-

cients for the functions from A to be in S ∗(ψ):

Corollary 4.4.7. If f ∈ A such that f (z)/z ̸= 0 and satisfies ∑
∞
k=2 |λ (k− 1)− k||ak| < 1. Then the

function f ∈ F (φ).

In particular, we have the following sufficient condition for the class of Janowski starlike functions:

Corollary 4.4.8. The function f ∈ S ∗((1+Dz)/(1+Ez)), if

∞

∑
k=2

(
1+ |D|
D−E

+

(
1+ |D|−E +D

D−E

)
k
)
|ak|< 1.

The following result with some rearrangement and specific values of D and E reduces to [154,

Theorem 6, Theorem 7].
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Corollary 4.4.9. Let ψ(z) = (1+Dz)/(1+Ez), where −1 ≤ E < D ≤ 1. Then f ∈S ∗(ψ) if and only
if

1
z

(
f (z)∗

z+ ζ+D
D−E z2

(1− z)2

)
̸= 0, |ζ |= 1.

Corollary 4.4.10. Let ψ(z) = 1+ zez. Then f ∈ S ∗(ψ) if and only if

1
z

(
f (z)∗ z+(1+ζ eζ )z2

(1− z)2

)
̸= 0, |ζ |= 1.

The class S ∗(1+ sinz) was introduced in [38].

Corollary 4.4.11. Let ψ(z) = 1+ sinz. Then f ∈ S ∗(ψ) if and only if

1
z

(
f (z)∗ z− arcsinζ (1+ sinζ )z2

(1− z)2

)
̸= 0, |ζ |= 1.

Note that f ∈ F (φ) if and only if g(z) =
∫ z

0 ( f (t)/t)dt ∈ C F (φ), where

C F (φ) :=
{

f ∈ A :
z f ′′(z)
f ′(z)

≺ φ(z)
}
.

Therefore, the condition given in (4.4.3) is equivalent to the following:

1
z

(
zg′(z)∗ z−λ z2

(1− z)2

)
. (4.4.5)

Now using the convolution fact that zg′(z)∗ f (z) = g(z)∗z f ′(z) in (4.4.5), we obtain the following result,

which is the convex analogue of Theorem 4.4.6:

Theorem 4.4.12. Let f ∈ A such that f (z)/z ̸= 0. Assume that ψ = 1+φ Then f ∈ C F (φ) if and
only if

1
z

(
f (z)∗ z+(1−2λ )z2

(1− z)3

)
̸= 0,

where λ is as defined in Theorem 4.4.6.

Note that we can also write

1
z

(
f (z)∗ z+(1−2λ )z2

(1− z)3

)
= f ′(z)+(1−λ )z f ′′(z).

Thus, using the power series expansion of f (z), we equivalently get

∞

∑
k=2

(λ (k−1)− k)kakzk−1 ̸= 1,

which gives the following sufficient condition in terms of coefficients:

Corollary 4.4.13. If f ∈ A such that f (z)/z ̸= 0 and satisfies ∑
∞
k=2 k|λ (k − 1)− k||ak| < 1. Then

f ∈ C F (φ).
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In particular, we have the following sufficient condition for the class of Janowski convex functions:

Corollary 4.4.14. The function f ∈ C ((1+Dz)/(1+Ez)), if

∞

∑
k=2

(
1+ |D|
D−E

+

(
1+ |D|−E +D

D−E

)
k
)

k|ak|< 1.

Corollary 4.4.15. Let ψ(z) = (1+Dz)/(1+Ez), where −1 ≤ E < D ≤ 1. Then f ∈ C (ψ) if and only
if

1
z

(
f (z)∗

z+ (3D−E)+2ζ

D−E z2

(1− z)3

)
̸= 0, |ζ |= 1.

Corollary 4.4.16. Let ψ(z) = 1+ zez. Then f ∈ C (ψ) if and only if

1
z

(
f (z)∗ z+(3+2ζ eζ )z2

(1− z)3

)
̸= 0, |ζ |= 1.

Corollary 4.4.17. Let ψ(z) = 1+ sinz. Then f ∈ C (ψ) if and only if

1
z

(
f (z)∗ z− arcsinζ (2+ sinζ )z2

(1− z)3

)
̸= 0, |ζ |= 1.

It is well known that the class C (ψ) is closed under convolution. Also the class S ∗(ψ) is closed

under convolution when convoluted with convex functions when ψ(D) is convex. With this motivation,

the following result provides the largest radius r0 such that in |z|< r0 the class S ∗(ψ) is closed under

convolution.

Theorem 4.4.18. Let rψ be the largest radius such that F(z) = z+∑
∞
n=2 n2zn belongs to S ∗(ψ) for

|z|< rψ . If f ,g ∈ S ∗(ψ), where ψ is convex. Then f ∗g belongs to S ∗(ψ) for |z|< rψ . The radius is
the best possible.

Proof. Let f (z) = z+∑
∞
n=2 anzn and g(z) = z+∑

∞
n=2 bnzn. Then

G(z) := f (z)∗g(z) =

(
z+

∞

∑
n=2

n2zn

)
∗

(
z+

∞

∑
n=2

an

n
zn

)
∗

(
z+

∞

∑
n=2

bn

n
zn

)

= F(z)∗

(
z+

∞

∑
n=2

an

n
zn

)
∗

(
z+

∞

∑
n=2

bn

n
zn

)
.

Recall that
f ∈ S ∗(ψ) if and only if

∫ z

0

f (t)
t

dt ∈ C (ψ).

Similarly, for the function g. Therefore, z+∑
∞
n=2

an
n zn and z+∑

∞
n=2

bn
n zn belong to C (ψ). Now let

H(z) :=

(
z+

∞

∑
n=2

an

n
zn

)
∗

(
z+

∞

∑
n=2

bn

n
zn

)

= z+
∞

∑
n=2

anbn

n2 zn ∈ C (ψ)⊆ C
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so that
G(z) = F(z)∗H(z).

Now from the hypothesis, we have
F(rψz)

rψ

∈ S ∗(ψ), (4.4.6)

that is, F belongs to S ∗(ψ) for |z|< rψ . Since H ∈ C . Therefore, using (4.4.6), we get

B(z) :=
(

F(rψz)
rψ

)
∗H(z) ∈ S ∗(ψ), (4.4.7)

whenever ψ is convex. Thus, we conclude that

G(z) = rψB
(

z
rψ

)
∈ S ∗(ψ), (|z|< rψ).

Note that the radius rψ is independent of the choices of the functions f and g, and thus the sharpness
of the result follows from (4.4.6).

Remark 4.4.2. Note that

F(z) =
z(1+ z)
(1− z)3 = z+

∞

∑
n=2

n2zn.

Now the logarithmic differentiation of the above yields:

zF ′(z)
F(z)

=
1+4z+ z2

1− z2 =
1+ z
1− z

− 1
1+ z

+
1

1− z
. (4.4.8)

It follows from (4.4.8) that

ℜ

(
zF ′(z)
F(z)

)
≥ 1−4r+ r2

1− r2 . (4.4.9)

Moreover, the following sharp inequality also holds:∣∣∣∣zF ′(z)
F(z)

−1
∣∣∣∣≤ 2r(2+ r)

1− r2 . (4.4.10)

Furthermore, the following inequality also holds:∣∣∣∣zF ′(z)
F(z)

− 1+ r2

1− r2

∣∣∣∣≤ 4r
1− r2 . (4.4.11)

Now applying Theorem 4.4.18, we get the following result:

Corollary 4.4.19. Let f ,g ∈ S ∗(ψ), where ψ is convex. Then f ∗ g belongs to S ∗(ψ) for |z| < rψ ,
where

(i) rψ = (2−
√

3+α2)/(1+α), when ψ(z) = (1+(1−2α)z)/(1− z).

(ii) rψ = (−2+
√

5)/(1+
√

2), when ψ(z) =
√

1+ z.

(iii) rψ = (−2+
√

4+b(2+b))/(2+b), where b = (e−1)/(e+1), when ψ(z) = 2/(1+ e−z).
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(iv) rψ = (2−
√

4−b2)/b, where b = sinπγ/2, when ψ(z) = ((1+ z)/(1− z))γ .

The radii are sharp.

Proof. The part (i) follows using the inequality (4.4.9) such that (1−4r+r2)(1−r2)≥ α , which holds
for r ≤ (2−

√
3+α2)/(1+α). Further

z0F ′(z0)

F(z0)
= α for z0 =

√
3+α2 −2

1+α
,

implies the sharpness of the radius. Note that the disks {w : |w− 1| <
√

2− 1} and {w : |w− 1| <
(e−1)/(e+1)} are contained in ψ(D) where ψ(z) =

√
1+ z and 2/(1+e−z), respectively. Therefore,

the parts (ii) and (iii) follow using the inequality (4.4.10) such that

2r(2+ r)
1− r2 ≤

√
2−1 and

2r(2+ r)
1− r2 ≤ e−1

e+1
,

which holds for r ≤ (−2+
√

5)/(1+
√

2) and r ≤ (−2+
√

4+b(2+b))/(2+ b), where b = (e−
1)/(e+1) respectively. Since

z0F ′(z0)

F(z0)
= 1+

√
2 for z0 =

−2+
√

5
1+

√
2

and

z0F ′(z0)

F(z0)
=

2
1+ e

for z0 = (
√

4+b(2+b)−2)/(2+b),

therefore the radii obtained are sharp. Part (iv) follows by using the inequality (4.4.11) and the fact that
the disk {w : |w−a|< ra} is contained in the sector |argw| ≤ πγ/2, whenever ra ≤ asin(πγ/2).

The following lemma was introduced by Kumar and Gangania [83] to obtain certain radius constants

(see [83, p.12-14]) related to the operators like Livingston and Bernardi etc. to cover the case when ψ

is starlike but not convex.

Lemma 4.4.1. Let rc be the radius of convexity of ψ . If g ∈ C and f ∈ S ∗(ψ). Then f ∗g ∈ S ∗(ψ)

for |z|< rψ = min{rc,1}.

Now using the above lemma, we may write (4.4.7) as follows:

B(z) :=
(

F(r0z)
r0

)
∗H(z) ∈ S ∗(ψ),

where r0 = min{rψ ,rc}. Note that rc = (3−
√

5)/2 when ψ(z) = 1+ zez. Thus, we have the following

result:

Corollary 4.4.20. Let f ,g ∈ S ∗(1+ zez). Then the function f ∗ g belongs to S ∗(1+ zez) for |z| <
(2e−

√
4e2 −2e+1)/(2e−1)≈ 0.0957. The radius is sharp.
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Corollary 4.4.21. Let f ,g ∈ S ∗(1 + sinz). Then the function f ∗ g belongs to S ∗(1 + sinz) for
|z|< (

√
4+ sin1(2+ sin1)−2)/(2+ sin1)≈ 0.1858. The radius is sharp.

In the next theorem, we continue to extend the ideas of Szegö [163] and Silverman [155] on the

starlikeness and convexity of sections fk(z) = z+∑
k
n=2 anzn of f in S ∗(ψ) and C (ψ), respectively.

Theorem 4.4.22. Let gk(z) = (z− zk+1)/(1− z). If f ∈ C (ψ), where ψ be convex. Then

1. fk ∈ C (ψ) in |z|< r0, where r0 is the radius of convexity of gk.

2. fk ∈ S ∗(ψ) in |z|< rψ , whenever gk belongs to S ∗(ψ) in |z|< rψ .

The radii are the best possible.

Proof. Let t = r0 in the first part and rψ in the second part, respectively. Then the proof follows by

observing that fk(z) = thk(z/t), where hk(z) = f (z)∗ gk(tz)
t

.

Remark 4.4.3. If we choose ψ(z) = (1+ z)/(1− z). Then Theorem 4.4.22-(ii) reduces to the Silver-
man’s result [155, Theorem 1, p. 1192].

Jackson [71] introduced and studied the q-derivative defined as

dq f (z) :=
f (qz)− f (z)
(q−1)z

=
1
z

(
z+

∞

∑
n=2

[n]qanzn

)
, z ̸= 0

and dq f (0) = f ′(0), where [n]q =
1−qn

1−q .

Theorem 4.4.23. Let rψ be the largest radius in (0,1] and q ∈ (0,1) such that

z
(1−qz)(1− z)

∈ S ∗(ψ) for |z|< rψ ,

where ψ is convex. If f ∈ C , then we have

zdq f (z) = z+
∞

∑
n=2

[n]qanzn ∈ S ∗(ψ) for |z|< rψ .

The radius is the best possible.

Proof. Observe that for each q ∈ C where |q| ≤ 1, q ̸= 1, we have

hq(z) =
1

1−q
log
(

1−qz
1− z

)
=

∞

∑
n=1

(
1−qn

1−q

)
zn

n
=

∞

∑
n=1

[n]q
n

zn ∈ C ,

which implies that

zh′q(z) =
z

(1−qz)(1− z)
=

∞

∑
n=1

[n]qzn ∈ S ∗.

We note that

zdq f (z) =

(
z+

∞

∑
n=2

anzn

)
∗

(
∞

∑
n=1

[n]qzn

)
= f (z)∗ z

(1−qz)(1− z)
= f (z)∗ zh′q(z).
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Now for simplicity, let us write H(z) = zh′q(z). Then from hypothesis, we see that

H(rψz)
rψ

∈ S ∗(ψ). (4.4.12)

Since f ∈ C , and C ∗S ∗(ψ) = S ∗(ψ) whenever ψ is convex. Therefore, we have

f (z)∗
H(rψz)

rψ

∈ S ∗(ψ),

which is equivalent to saying that

zdq f (z) ∈ S ∗(ψ) for |z|< rψ .

From the proof, we note that the sharpness of the radius rψ follows from (4.4.12).

Remark 4.4.4. From the function H(z) = z/((1−qz)(1− z)), we have:

zH ′(z)
H(z)

= 1+
z

1− z
+

qz
1−qz

. (4.4.13)

It follows from (4.4.13) that

ℜ

(
zH ′(z)
H(z)

)
≥ 1−qr2

(1+ r)(1+qr)
. (4.4.14)

Moreover, the following sharp inequality also holds:∣∣∣∣zH ′(z)
H(z)

−1
∣∣∣∣≤ r(1+q−2qr)

(1− r)(1−qr)
. (4.4.15)

Now proceeding in a similar way as in Corollary 4.4.19 using (4.4.14) when the function ψ(z) =

(1+(1−2α)z)/(1− z), and (4.4.15) when ψ(z) =
√

1+ z and 2/(1+ e−z), we have

Corollary 4.4.24. If f ∈ C , then for all 0 < q < 1, we have

zdq f (z) = z+
∞

∑
n=2

[n]qanzn ∈ S ∗(ψ) for |z|< rψ ,

where

1. rψ = (
√

α2(1−q2)+4q−α(q+ 1))/(2q(1+α)), when ψ(z) = (1+ (1− 2α)z)/(1− z) for
α ≥ (1−q)/2(1+q).

2. rψ = ((1+q)−
√

1+q2)/(q
√

2(
√

2+1)), when ψ(z) =
√

1+ z.

3. rψ = ((1+q)(1+b)−
√

((1+q)(1+b))2 −4bq(2+b))/(2q(2+b)), where b= (e−1)/(e+1),
when ψ(z) = 2/(1+ e−z).

The radii are sharp.

Remark 4.4.5. Note that part (i) of the above corollary includes the result [ [128], Theorem 2.1]. Also
rψ = 1 for α ∈ [0,(1−q)/2(1+q)].
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4.5 Modified Distortion theorem for Ma-Minda starlike functions

The class S ∗(ψ) unifies various subclasses of starlike functions, which are obtained for an appro-

priate choice of ψ . See the special cases in [38, 60, 84, 109, 134, 159]. Ma-Minda discussed many

properties of the class S ∗(ψ), in particular, they proved the distortion theorem [102, Theorem 2,

p.162] with some restriction on ψ , namely

min
|z|=r

|ψ(z)|= ψ(−r) and max
|z|=r

|ψ(z)|= ψ(r). (4.5.1)

The importance of the above conditions can be seen in achieving the sharpness for majorization results

in [51]. Here, we modify the distortion theorem by relaxing this restriction on ψ to obtain a more general

result, which leads to a special case study. In particular, Ma-Minda [102] used the assumption that

|ψ(z)| attains its maximum and minimum value respectively at z = r and z =−r, see eq. (4.5.1). Now,

what if ψ does not satisfy the condition (4.5.1) and why the condition (4.5.1) is so important? To answer

this, we first need to recall the following result:

Lemma 4.5.1. ( [102]) Let f ∈ S ∗(ψ) and |z0| = r < 1. Then − f0(−r) ≤ | f (z0)| ≤ f0(r). Equality
holds for some z0 ̸= 0 if and only if f is a rotation of f0, where z f0(z)/ f0(z) = ψ(z) such that

f0(z) = zexp
∫ z

0

ψ(t)−1
t

dt. (4.5.2)

We see that a Ma-Minda starlike function, in general, need not satisfy the condition (4.5.1). To

examine the same, let us consider two different Ma-Minda starlike functions, namely ψ1(z) := z +
√

1+ z2 and ψ2(z) := 1 + zez. The unit disk images of ψ1 and ψ2 are displayed in figure 4.1 and

figure 4.2.

We know that the radius of a circle, centered at the origin and touching only the boundary points of

an image domain of a complex function, yields the optimal values of the modulus of the function. For

example, see figure 4.1 to locate the lower bound of the modulus for a crescent function. Therefore it is

evident from figure 4.1 that both the bounds ψ1(−r) and ψ1(r) of |ψ1| are attained on the real line and

we have ψ1(−r) ≤ |ψ1(z)| ≤ ψ1(r) for each |z| = r. Whereas, from figure 4.2, we see that only the

upper bound ψ2(r) of |ψ2| is attained on the real line and |ψ2(z)| ≤ ψ2(r) for each |z| = r. Although

both ψ1 and ψ2 are Ma-Minda functions but the distortion theorem of Ma-Minda [102, Theorem 2,

p. 162] does not accommodate the function ψ2, as the lower bound for |ψ2(z)| is not attained on

the real line for all |z| = r > (3−
√

5)/2, see figure 4.3. To overcome this limitation, we modify the

distortion theorem, wherein we theoretically assume the modulus bounds of the function and obtain

a more general result. Thus the Ma-Minda functions, for which modulus bounds are not attained on

the real line but could be computed can now be entertained for distortion theorem using the following

result:

Theorem 4.5.1 (Modified Distortion Theorem). Let ψ be a Ma-Minda function. Assume that min
|z|=r

|ψ(z)|=

|ψ(z1)| and max
|z|=r

|ψ(z)|= |ψ(z2)|, where z1 = reiθ1 and z2 = reiθ2 for some θ1,θ2 ∈ [0,π]. Let the func-
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Let min
|z|=r

|ψ2(z)|=: γi(r), where z = rieiθ , 0 ≤ θ ≤ π , then from table 4.1, we have γ1(1) = 0.372412,

γ2(4/5) = 0.527912, γ3(2/3) = 0.611553, γ4(1/2) = 0.693287, γ5(r) = 1− re−r, where r ≤ (3−
√

5)/2.
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Figure 4.2: Image of unit disk under ψ2(z) := 1+ zez
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Figure 4.3: A zoom of figure 4.2

tion f ∈ S ∗(ψ) and |z0|= r < 1. Then

|ψ(z1)|
(
− f0(−r)

r

)
≤ | f ′(z0)| ≤

(
f0(r)

r

)
|ψ(z2)|. (4.5.3)

Proof. Let p(z) = z f ′(z)/ f (z). Then f ∈ S ∗(ψ) if and only if p(z) ≺ ψ(z). Using a result [102,
Theorem 1, p.161], we have

f (z)
z

≺ f0(z)
z

, (4.5.4)

where f0 is given by (4.5.2). Now using Maximum-Minimum principle of modulus, (4.5.4) and by
Lemma 4.5.1, − f0(−r)/r ≤ | f (z0)/z| ≤ f0(r)/r, we easily obtain for |z0|= r

|ψ(z1)|
(
− f0(−r)

r

)
= min

|z|=r
|ψ(z)|min

|z|=r

∣∣∣∣ f0(z)
z

∣∣∣∣
≤
∣∣∣∣p(z0)

f (z0)

z0

∣∣∣∣= | f ′(z0)|

≤ max
|z|=r

|ψ(z)|max
|z|=r

∣∣∣∣ f0(z)
z

∣∣∣∣
=

(
f0(r)

r

)
|ψ(z2)|,
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that is,

|ψ(z1)|
(
− f0(−r)

r

)
≤ | f ′(z0)| ≤

(
f0(r)

r

)
|ψ(z2)|,

where z1 and z2 are as defined in the hypothesis.

To illustrate Theorem 4.5.1, we consider the function ψ(z) = 1+ zez. Then we have the following

expression for its modulus:

|ψ(z)|=
√

1+ rer cosθ (rer cosθ +2cos(θ + r sinθ)). (4.5.5)

Using equation (4.5.5) and Theorem 4.5.1, we obtain the following table, providing the minimum for

various choices of r:

r 0 ≤ θ1 ≤ π |ψ(reiθ1)| m(r,θ1) = |ψ(reiθ1)|(− f0(−r)/r)
1 1.88438 0.372412 0.197923

4/5 2.01859 0.527912 0.304374
2/3 2.17677 0.611553 0.375966
1/2 2.58169 0.693287 0.467769

r ≤ (3−
√

5)/2 π ψ2(−r) f ′0(−r)

Table 4.1: The lower bounds for |1+ zez| for different choices of r = |z|.

Now using Theorem 4.5.1, we obtain the following distortion theorem for the class S ∗(1+ zez):

Example 4.5.2. Let ψ(z) = 1+zez and min
|z|=r

|ψ(z)|= |ψ(z1)|, where z1 = reiθ1 for some θ1 ∈ [0,π]. Let

f ∈ S ∗(ψ) and |z0|= r < 1. Then

m(r,θ1)≤ | f ′(z0)| ≤ f ′0(r),
(

r > 3−
√

5
2

)
and

f ′0(−r)≤ | f ′(z0)| ≤ f ′0(r),
(

r ≤ 3−
√

5
2

)
,

where f0(z) = zexp(ez −1) and m(r,θ1) is provided in table 4.1 for some specific values of r.

Remark 4.5.1. In Theorem 4.5.1, if we assume that θ1 = π and θ2 = 0, then extremes in equation
(4.5.3) simplifies to f ′0(−r) and f ′0(r), respectively since z f ′0(z)/ f0(z) = ψ(z). Thus, the extremes in
the equation (4.5.3) are in terms of r alone and also lead to the sharp bounds. Consequently, we obtain
the following distortion theorem of Ma-Minda [102] as a special case of Theorem 4.5.1 :

Let min|z|=r |ψ(z)|= ψ(−r) and max|z|=r |ψ(z)|= ψ(r). If f ∈ S ∗(ψ) and |z0|= r < 1. Then

f ′0(−r) = ψ(−r)
f0(−r)
−r

≤ | f ′(z0)| ≤
f0(r)

r
ψ(r) = f ′0(r).

Equality holds for some z0 ̸= 0 if and only if f is a rotation of f0.
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4.6 An extremal problem for the class S ∗(ψ)

In 1961, Goluzin [61] obtained the set of extremal functions f (z)= z/(1−xz)2, |x|= 1 for the problem

of maximization of the quantity ℜΦ(log( f (z)/z)) or |Φ(log( f (z)/z))| over the class S ∗, where Φ is

a non-constant entire function. In 1973, MacGregor [105] proved the result for the class S ∗(α) :=

{ f ∈ A : ℜ(z f ′(z)/ f (z)) > α,α ∈ [0,1)}. Later on Barnard [30] discussed this for Bounded starlike

functions. Now, we present the result for the Ma-Minda class:

Theorem 4.6.1. Suppose Φ is a non-constant entire function and 0 < |z0|< 1 and assume that the class
S ∗(ψ) is closed. Then maximum of either

ℜΦ

(
log

f (z0)

z0

)
or

∣∣∣∣Φ(log
f (z0)

z0

)∣∣∣∣ (4.6.1)

for functions in the class S ∗(ψ) is attained only when the function is of the form

f (z) = zexp
∫

ζ z

0

ψ(t)−1
t

dt, where |ζ |= 1. (4.6.2)

Proof. Since the class S ∗(ψ) is compact, therefore the problem under consideration has a solution.
Moreover, in view of a result of Goluzin [61], in (4.6.1) it suffices to consider the continuous functional

ℜΦ

(
log

f (z0)

z0

)
.

Let f ∈S ∗(ψ). Then using a result from [102], f (z)/z≺ f0(z)/z=: F(z), where f0(z)= zexp
∫ z

0
ψ(t)−1

t dt
or equivalently log( f (z)/z)≺ logF(z). Thus,

g(z) = Φ

(
log

f (z)
z

)
≺ Φ(logF(z)) = G(z).

Note that G is also non-constant as is Φ. Thus for each r ∈ (0,1) by subordination principle, we
obtain g(Dr)⊂ G(Dr) = Ω. Since G(xz)≺ G(z) for |x| ≤ 1 is obvious, therefore for |z0|= r, we have
{g(z0) : g ≺ G in D}= Ω. Now by considering a support line to the compact set Ω, we conclude that

max
f∈S ∗(ψ)

ℜΦ

(
log

f (z0)

z0

)
= ℜw1, w1 ∈ ∂Ω.

Since G is also an open map, therefore there exists a point z1 where |z1|= r and G(z1) = w1 such that
among finitely many w1, for one suitable w1, we have

Φ

(
log

f (z0)

z0

)
= w1,

where f is the solution for the extremal problem. Now by the well known Lindelöf principle, we have

Φ

(
log

f (z)
z

)
= Φ(logF(xz)), (4.6.3)
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that is, if f is the desired solution, then (4.6.3) holds for some x, |x| = 1. Since Φ is a non-constant
analytic function, so we may write

Φ(w) = c0 + cnwn + cn+1wn+1 + · · · ; cn ̸= 0.

If we set log( f (z)/z)=α1z+α2z2+ · · · and log(F(z))= β1z+β2z2+ · · · , then from (4.6.3), comparing
the coefficients, we get cnαn

1 = cnβ n
1 . Or equivalently, αn

1 = β n
1 , which in particular implies that |α1|=

|β1|. Since log( f (z)/z) ≺ logF(xz), |α1| = |β1| is possible only if log( f (z)/z) = logF(xyz) for some
|y|= 1. Therefore, we conclude that

f (z) = zexp
∫ uz

0

ψ(t)−1
t

dt,

where |u|= 1 if f is a solution to the extremal problem.

Remark 4.6.1. Note that the analogous result for the class C (ψ) also holds.

Now as an application of the Theorem 4.6.1, we obtain the result due to MacGregor [105]:

Corollary 4.6.2. [105] Suppose Φ is a non-constant entire function and 0 < |z0| < 1. Then the max-
imum of the expression (4.6.1) for functions in the class S ∗(α) is attained only when the function is
of the form

f (z) =
z

(1−ζ z)2−2α
, |ζ |= 1.

Proof. If f ∈ S ∗(α), then f (z)/z ≺ 1/(1− z)2−2α and the result follows.

Corollary 4.6.3. Suppose Φ is a non-constant entire function and 0 < |z0|< 1. Then the maximum of
the expression (4.6.1) for functions in the class S ∗

℘ is attained only when the function is of the form

f (z) = zexp(eζ z −1), |ζ |= 1.

Proof. If f ∈ S ∗
℘, then f (z)/z ≺ exp(ez −1) and the result follows.

4.7 The class of subordinants of a starlike function

In 1914, Harald Bohr [34] proved the following remarkable result related to the power series:

Theorem E. (Bohr’s Theorem) [34] Let g(z) = ∑
∞
k=0 akzk be an analytic function in D and |g(z)| < 1

for all z ∈ D, then ∑
∞
k=0 |ak|rk ≤ 1 for all z ∈ D with |z|= r ≤ 1/3.

Bohr actually proved the above result for r ≤ 1/6. Further Wiener, Riesz and Shur independently

sharpened the result for r ≤ 1/3. Presently the Bohr inequality for functions mapping unit disk onto

different domains, other than unit disk is an active area of research. For the recent development on

Bohr-phenomenon, see the articles [10,31,33,113,125] and references therein. The concept of Bohr-

phenomenon in terms of subordination can be described as: Let f (z) =∑
∞
k=0 akzk and g(z) =∑

∞
k=0 bkzk

are analytic in D and f (D) =Ω. For a fixed f , consider a class of analytic functions S( f ) := {g : g ≺ f}
or equivalently S(Ω) := {g : g(z) ∈ Ω}. Then the class S( f ) is said to satisfy Bohr-phenomenon,
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if there exists a constant r0 ∈ (0,1] satisfying the inequality ∑
∞
k=1 |bk|rk ≤ d( f (0),∂Ω) for all |z| =

r ≤ r0 and g(z) ∈ S( f ), where d( f (0),∂Ω) denotes the Euclidean distance between f (0) and the

boundary of Ω = f (D). The largest such r0 for which the inequality holds, is called the Bohr-radius. In

2014, Muhanna et al. [113] proved the Bohr-phenomenon for S(Wα), where Wα := {w ∈ C : |argw|<
απ/2,1 ≤ α ≤ 2}, which is a Concave-wedge domain (or exterior of a compact convex set) and the

class R(α,β ,h) defined by R(α,β ,h) := {g ∈ A : g(z)+αzg′(z)+ β z2g′′(z) ≺ h(z)}, where h is a

convex function (or starlike) and R(α,β ,h) ⊂ S(h). In 2018, Bhowmik and Das [31] proved the Bohr-

phenomenon for the classes given by S( f ) = {g ∈ A : g ≺ f and f ∈ µ(λ )}, where µ(λ ) = { f ∈
A : |(z/ f (z))2 f ′(z)−1|< λ ,0 < λ ≤ 1} and S( f ) = {g ∈ A : g ≺ f and f ∈ S ∗(α),0 ≤ α ≤ 1/2},

where S ∗(α) is the well-known class of starlike functions of order α .

Here, for any fixed f ∈ S ∗(ψ), we introduce and study the Bohr-phenomenon inside the disk |z| ≤
1/3 for the following class of analytic subordinants:

Definition 4.7.6. Let f ∈ S ∗(ψ). Then the class of analytic subordinants functions is defined as

S f (ψ) :=
{

g(z) =
∞

∑
k=1

bkzk : g ≺ f
}
. (4.7.1)

Note that S ∗(ψ) ⊂
⋃

f∈S ∗(ψ) S f (ψ). As an application, we obtain the Bohr-radius for the class

S( f ), where f ∈S ∗((1+Dz)/(1+Ez)), the class of Janowski starlike functions, with some additional

restriction on D and E apart from −1 ≤ E < D ≤ 1.

Note that “the Bohr radius of the class X is at least rx”, this holds for every result in this section.

In general, Bohr radius is estimated for a specific class provided the sharp coefficients bounds of the

functions in that class are known. For instance, consider the class of starlike univalent functions, where

we have the sharp coefficient bounds: |an| ≤ n. However, for most of the Ma-Minda subclasses, the

better coefficients bounds are yet not known. Hence, we encounter the following problem, especially

in context of Ma-minda classes, which we deal with here to a certain extent:

Problem 4.7.1. If coefficients bounds are not known, how one can find a good lower estimate for the
Bohr radius of a given class?

To readily understand the above problem, consider the class S ∗(1+ zez), where the sharp coef-

ficients bounds for functions in this class are unknown. In this situation, how one can find the Bohr

radius for this class or is there any way out with the lower bounds all alone? Here below we state The-

orem 4.7.7, where we find a solution for this problem. Note that the Bohr radius 3−2
√

2 ≈ 0.1713 for

the class S ∗ serves as a lower bound for the class S f (ψ) and is also a special case of Theorem 4.7.7.

Let B(0,r) := {z ∈ C : |z| < r} and g(z) = ∑
∞
k=1 bkzk. For any g ∈ S f (ψ), we find the radius rb so

that S f (ψ) obey the following Bohr-phenomenon:

∞

∑
k=1

|bk|rk ≤ d( f (0),∂Ω) for |z|= r ≤ rb, (4.7.2)

where d( f (0),∂Ω) denotes the Euclidean distance between f (0) and the boundary of Ω= f (D). Now

we prove our main result:
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Theorem 4.7.7. Let r∗ be the Koebe-radius for the class S ∗(ψ), f0(z) be given by the equation (4.5.2)
and g(z) = ∑

∞
k=1 bkzk ∈ S f (ψ). Assume f0(z) = z+∑

∞
n=2 tnzn and f̂0(r) = r+∑

∞
n=2 |tn|rn. Then S f (ψ)

satisfies the Bohr-phenomenon

∞

∑
k=1

|bk|rk ≤ d( f (0),∂Ω), for |z|= r ≤ rb, (4.7.3)

where rb = min{r0,1/3}, Ω = f (D) and r0 is the least positive root of the equation

f̂0(r) = r∗.

The result is sharp when rb = r0 and tn > 0.

Proof. Since g ∈ S f (ψ), we have g ≺ f for a fixed f ∈S ∗(ψ) . By letting r tends to 1 in Lemma 4.5.1,
we obtain the Koebe-radius r∗ =− f0(−1). Therefore B(0,r∗)⊂ f (D), which implies that

r∗ ≤ d(0,∂Ω) = | f (z)| for |z|= 1.

Also using the result [102, Theorem 1, p.161], we have

f (z)
z

≺ f0(z)
z

. (4.7.4)

Recall the result [31, Lemma 1, p.1090], which reads as: let f and g be analytic in D with g ≺ f , where
f (z) = ∑

∞
n=0 anzn and g(z) = ∑

∞
k=0 bkzk. Then ∑

∞
k=0 |bk|rk ≤ ∑

∞
n=0 |an|rn for |z| = r ≤ 1/3. Now using

the result for g ≺ f and (4.7.4), we have

∞

∑
k=1

|bk|rk ≤ r+
∞

∑
n=2

|an|rn ≤ f̂0(r) for |z|= r ≤ 1/3.

Finally, to establish the inequality (4.7.3), it is enough to show f̂0(r) ≤ r∗. But this holds whenever
r ≤ r0, where r0 is the least positive root of the equation f̂0(r) = r∗. The existence of the root r0 is
ensured by the relations

f̂0(1)≥ | f0(1)| ≥ r∗ and f̂0(0)< r∗.

Thus, if rb = min{r0,1/3} then ∑
∞
k=1 |bk|rk ≤ d(0,∂Ω) holds. The case of sharpness follows for the

function f0.

Remark 4.7.1. Let us further assume that the coefficients Bn of ψ are positive. Then the function
f0(z) = z+∑

∞
n=2 tnzn defined by integral representation (4.5.2) can be written as

f0(z) = zexp

(
∞

∑
n=1

Bn

n
zn

)
,

which implies f0(r) = f̂0(r) for |z|= r.

From the proof of Theorem 4.7.7, we have the following:

Theorem 4.7.8. Let r∗ be the Koebe-radius for the class S ∗(ψ), f0(z) be given by the equation (4.5.2)
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and f (z) = z+∑
∞
n=2 anzn ∈ S ∗(ψ). Assume f0(z) = z+∑

∞
n=2 tnzn and f̂0(r) = r+∑

∞
n=2 |tn|rn. Then

S ∗(ψ) satisfies the Bohr-phenomenon

r+
∞

∑
n=2

|an|rn ≤ d( f (0),∂Ω), for |z|= r ≤ rb,

where rb = min{r0,1/3}, Ω = f (D) and r0 is the least positive root of the equation

f̂0(r) = r∗.

The result is sharp when rb = r0 and tn > 0.

If we choose ψ(z)= (1+Dz)/(1+Ez), −1≤E <D≤ 1, then S ∗(ψ) denotes the class of Janowski

starlike functions and we have

r∗ =

{
(1−E)

D−E
E , E ̸= 0;

e−D, E = 0.
(4.7.5)

and

f0(z) =

{
z(1+Ez)

D−E
E , E ̸= 0;

zexp(Dz), E = 0.
(4.7.6)

Recall that the nth (n ≥ 2) coefficients of f0(z) satisfy

|tn|=
n−2

∏
k=0

|E −D+Ek|
k+1

= M(n), (4.7.7)

Thus from Theorem 4.7.7, we have the following result:

Corollary 4.7.9. Let ψ(z) = (1+Dz)/(1+Ez), −1 ≤ E < D ≤ 1. Then S f (ψ) (and S ∗(ψ)) satisfies
the Bohr-phenomenon (4.7.2) for |z|= r ≤ rb, where rb = min{r0,1/3} and r0 is the least positive root
of the equation

r+
∞

∑
n=2

|tn|rn − (1−E)
D−E

E = 0,

where tn is as defined in (4.7.7).

Now as an application of Corollary 4.7.9, we obtain the following result.

Corollary 4.7.10. (Bohr-radius with Janowski class) Let ψ(z)= (1+Dz)/(1+Ez), −1≤E <D≤ 1.

(i) If E = 0 and D ≥ 3
4 log3. Then S f (ψ) (and S ∗(ψ)) satisfies the Bohr-phenomenon (4.7.2) for

|z|= r ≤ r0, where r0 is the only real root of the equation

1− reD(1+r) = 0. (4.7.8)

(ii) If E ̸= 0 and further satisfies

3(1−E)
D−E

E ≤ (1+E/3)
D−E

E . (4.7.9)

Then S f (ψ) (and S ∗(ψ)) satisfies the Bohr-phenomenon (4.7.2) for |z|= r ≤ r0, where r0 is the
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only real root of the equation

(1−E)
D−E

E − r(1+Er)
D−E

E = 0. (4.7.10)

The result is sharp for the function f0 defined in (4.7.6).

Proof. (i): Since E = 0, we have r∗ = e−D. Moreover f̂0(r) = f0(r) = r exp(Dr). Now we need to
show

r exp(Dr)≤ e−D (4.7.11)

or equivalently T (r) := 1− reD(1+r) ≥ 0 holds for r ≤ r0. Which obviously holds for 3
4 log3 ≤ D ≤ 1.

Since d( f0(0),∂ f0(D)) = r∗, therefore we see from inequality (4.7.11) that Bohr-radius is sharp for the
function f0 given by (4.7.6).

(ii): Proceeding as in case (i), it is sufficient to show the inequality

r(1+Er)
D−E

E ≤ (1−E)
D−E

E (4.7.12)

or equivalently g(r) := (1−E)
D−E

E − r(1+Er)
D−E

E ≥ 0 holds for r ≤ r0. This obviously follows when-
ever D and E satisfy (4.7.9). In view of the inequality (4.7.12), the sharp Bohr-radius is achieved for
the function f0 given by (4.7.6).

Remark 4.7.2. (Bohr-radius with starlike functions of order α) Let ψ(z) := (1+(1− 2α)z)/(1− z),
where 0 ≤ α < 1. We see S ∗(ψ) := S ∗(α) and for this class, we have

r∗ =
1

22(1−α)
and f0(z) =

z
(1− z)2(1−α)

.

Observe that here f̂0(r) = f0(r). Now as an application of Corollary 4.7.10, we obtain the result due to
Bhowmik et al. [31], namely:

If 0 ≤ α ≤ 1/2. Then S f (ψ) satisfies the Bohr-phenomenon ∑
∞
k=1 |bk|rk ≤ d( f (0),∂Ω), for |z|= r ≤

rb, where rb = min{r0,1/3}= r0 and r0 is the only real root of the equation (1− r)2(1−α)/r = 22(1−α).

The result is sharp.

Now from the above remark, in particular, we have:

Corollary 4.7.11. If 0 ≤ α ≤ 1/2. Then the class S ∗((1+(1− 2α)z)/(1− z)) satisfies the Bohr-
phenomenon (4.7.2) for |z|= r ≤ r0, where r0 is the only real root of the equation

(1− r)2(1−α)/r = 22(1−α).

The result is sharp. In particular, the Bohr radius for the class S ∗ is 3−2
√

2 ≈ 0.1713.

If we choose ψ(z) =
√

1+ z, then S ∗(ψ) := S L ∗, the class of lemniscate starlike functions and
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for this class we have:

f0(z) =
4zexp(2

√
1+ z−2)

(1+
√

1+ z)2
and r∗ =− f0(−1)≈ 0.541341. (4.7.13)

Also in this case f̂0(r) = f0(r) and therefore, we obtain the following corollary:

Corollary 4.7.12. The class S f (ψ) (and S L ∗), where ψ(z) =
√

1+ z satisfies the Bohr-phenomenon
(4.7.2) for |z|= r ≤ 1/3.

If we consider ψ(z) = 1+ zez, then S ∗(ψ) :=S ∗
℘, the class of cardioid starlike functions introduced

in [84] and for this class, we have:

f0(z) = zexp(ez −1) and r∗ =− f0(−1)≈ 0.531464. (4.7.14)

Here we can also see that f̂0(r) = f0(r) and we obtain the following corollary:

Corollary 4.7.13. The class S f (ψ) (and S ∗
℘), where ψ(z) = 1+ zez satisfies the Bohr-phenomenon

(4.7.2) for |z|= r ≤ 1/3.

Ali et al. [10] also showed that the coefficient bound of a function in a class has a role in the

estimation of the Bohr radius. Observed that for each f ∈ S ∗(ψ), the class S f (ψ) satisfies the

Bohr-phenomenon for r ≤ min(1/3,r0), where r0 is the least positive root of f̂0(r)− r∗ = 0. Since

S ∗(ψ) ⊂
⋃

f∈S ∗(ψ) S f (ψ), therefore the Bohr-radius for the class S ∗(ψ) is r ≥ min(1/3,r0). In

Corollary 4.7.13, we find r0 ≈ 0.349681 (an upper bound for Bohr radius), which is almost close to

1/3 ≈ 0.33333 and is the unique root of f0(r)− r∗ = 0. Moreover, the bound for the coefficients of

the functions belonging to S ∗
℘ and S L ∗ have been conjectured [84, 159] with the extremals given

in (4.7.14) and (4.7.13) respectively. Thus by using Theorem 4.7.7 and the approach dealt in [10]

(assuming that conjectures are true), we propose the following conjectures:

Conjecture 4.7.1. The Bohr-radius for the class S ∗
℘ is r0 ≈ 0.349681 which is the unique root in (0,1)

of the equation reer
= e1/e.

Conjecture 4.7.2. The Bohr-radius for the class S L ∗ is r0 ≈ 0.439229, which the unique root in (0,1)
of the equation e2r exp(2

√
1+ r−2) = (1+

√
1+ r)2.

Highlights of the chapter

In this chapter, we have attempted some generalizations for the Ma-Minda classes, which are new.

We established the majorization results for the Ma-Minda classes. We extended and generalized some

classical results pertaining to convolution for the class F (φ) and studied their applications to classes

of Ma-Minda starlike and convex functions along with an extremal problem studied by Goluzin. We also

established the concept of Bohr-phenomenon to the Ma-Minda classses.





Chapter 5

Bohr and Rogosinski phenomenon for

certain classes of univalent functions

In Geometric function theory, occasionally attempts have been made to solve a particu-

lar problem for the Ma-Minda classes, S ∗(ψ) and C (ψ) of univalent starlike and convex

functions, respectively. Recently, a popular radius problem generally known as Bohr’s phe-

nomenon has been studied in various settings. However, little is known about the Rogosinski

radius. In this chapter, for a fixed f ∈ S ∗(ψ) or C (ψ), the class of analytic subordinants

S f (ψ) := {g : g ≺ f} is studied for the Bohr-Rogosinski phenomenon. It’s applications to the

classes S ∗(ψ) and C (ψ) are also shown. The phenomenon will be further explored in several

relevant directions considering certain natural generalzations connecting the known results

and leading to new ones.

5.1 Introduction

The idea of the Bohr phenomenon is being considered and developed in several directions in recent

times from classes of analytic functions in one variable to the Banach spaces. Now following the

discussion of Section 4.7, for systematic study over the ma-Minda classes, we need to recall the

concept of the Bohr phenomenon in terms of subordination:

Definition 5.1.1 (Muhanna, [111]). Let f (z) = ∑
∞
k=0 akzk and g(z) = ∑

∞
k=0 bkzk are analytic in D and

f (D) = Ω. For a fixed f , consider a class of analytic functions S( f ) := {g : g ≺ f} or equivalently
S(Ω) := {g : g(z) ∈ Ω}. Then the class S( f ) is said to satisfy the Bohr phenomenon, if there exists a
constant r0 ∈ (0,1] satisfying the inequality ∑

∞
k=1 |bk|rk ≤ d( f (0),∂Ω) for all |z|= r ≤ r0 and g ∈ S( f ),

where d( f (0),∂Ω) denotes the Euclidean distance between f (0) and the boundary of Ω = f (D). The

89
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largest such r0 is called the Bohr-radius.

In the work of Muhanna et al. [113] and Bhowmik and Das [31], the role of the sharp coefficient’s

bound of f was prominent in achieving the respective Bohr radius for the class S( f ), see [10, 85, 86].

But in general, the sharp coefficient’s bounds for functions in a given class are not available, one can

see [38, 84, 85, 89, 150], thus certain power series inequalities are needed. In this direction, Bhowmik

and Das obtained the following vital inequality to achieve the Bohr radius for the class S( f ), where

f ∈ µ(λ ) and S ∗(α),0 ≤ α ≤ 1/2} respectively:

Lemma 5.1.1. [31] let f (z) = ∑
∞
n=0 anzn and g(z) = ∑

∞
k=0 bkzk be analytic in D and g ≺ f . Then

∞

∑
k=0

|bk|rk ≤
∞

∑
n=0

|an|rn, for |z| ≤ 1
3
.

Motivated by the class S( f ), Kumar and Gangania in [86, Sec. 5] (also see [64]) further used the

above Lemma 5.1.1 in the absence of the sharp coefficient’s bounds of f to study the Bohr phe-

nomenon for the class S f (ψ), which eventually holds for the class S ∗(ψ):

Definition 5.1.2. Let f ∈ S ∗(ψ) or C (ψ) be fixed. Then the class of subordinants functions g is
defined as:

S f (ψ) :=
{

g(z) =
∞

∑
k=1

bkzk : g ≺ f
}
.

Definition 5.1.3 (Koebe-radius). Let f ∈ S ∗(ψ). Then either f is a rotation of f0 or

{w ∈ C : |w| ≤ r∗ =− f0(−1)⊂ f (D)},

where r∗ = limr→1(− f0(−r)). Equality holds for the function

f0(z) = zexp
∫ z

0

ψ(t)−1
t

dt.

Theorem 5.1.4. [86, Theorem 5.1](also see [64]) Let r∗ be the Koebe-radius for the class S ∗(ψ),

f0(z) be given by the equation (4.5.2) and g(z) = ∑
∞
k=1 bkzk ∈ S f (ψ). Assume f0(z) = z+∑

∞
n=2 tnzn and

f̂0(r) = r+∑
∞
n=2 |tn|rn. Then S f (ψ) satisfies the Bohr-phenomenon

∞

∑
k=1

|bk|rk ≤ d( f (0),∂Ω), for |z|= r ≤ rb,

where rb = min{r0,1/3}, Ω = f (D) and r0 is the least positive root of the equation

f̂0(r) = r∗.

The result is sharp when rb = r0 and tn > 0.

Again if we look at the classical Bohr inequality and try to replace the initial coefficients ak,(k = 0,1)

by | f (z)| and | f ′(z)|, and further z by some suitable choice of functions ω(z) such that |ω(z)|< 1. Or

replace the Taylor coefficients ak completely by the higher order derivatives of f . Then the combina-



91

tions obtained lead us to the new inequalities, which are usually called Bohr-type inequalities. We now

mention a few such combinations:

Suppose that f (z) = ∑
∞
k=0 akzk be analytic in D and a = |a0| and || f0||2r = ∑

∞
k=1 |a2k|r2k, where the

function f0 is given by f0(z) = f (z)−a0.

1. | f (z)|n +∑
∞
k=1 |ak|rk, n = 0 or 1

2. | f (z)|+ | f ′(z)||z|+∑
∞
k=2 |ak|rk

3. | f (z)|+∑
∞
k=N

∣∣∣ f (k)(z)
k!

∣∣∣rk

4. | f (ω(z))|+∑
∞
k=1 |ak|rk + 1+ar

(1+a)(1−r) || f0||2r

For some important work in this direction, we refer to see [65,101].

Note that Muhanna et al. [114] recently discussed the Bohr type inequalities for the k-th section of

the analytic functions f (z) = ∑
∞
n=0 anzn using the Bohr Operator

Mr( f ) =
∞

∑
n=0

|an||zn|=
∞

∑
n=0

|an|rn.

Paulsen and Singh [124] using this operator provided a simple elementary proof of Bohr’s Theorem E

and extended it to the Banach algebras (for the basic important discussion, see [114, 124]). Now for

the simplicity and further discussion, we define the following basic operator for f , where SN( f (z)) =

∑
∞
n=N anzn:

MN
r ( f ) =

∞

∑
n=N

|an||zn|=
∞

∑
n=N

|an|rn, (5.1.1)

and thus the following observations hold for |z|= r for each z ∈ D

1. MN
r ( f )≥ 0, and MN

r ( f ) = 0 if and only if f ≡ 0

2. MN
r ( f +g)≤ MN

r ( f )+MN
r (g)

3. MN
r (α f ) = |α|MN

r ( f ) for α ∈ C

4. MN
r ( f .g)≤ MN

r ( f ).MN
r (g)

5. MN
r (1) = 1.

Using this operator, we now can get similar results as obtained by Muhanna et al. [114] for the interim

k-th sections SN
k ( f (z)) = ∑

k
n=N anzn and the function SN( f (z)).

In analogy with Bohr’s Theorem, there is also the notion of Rogosinski radius, however, a little is

known about Rogosinski radius as compared to Bohr radius, which is defined as follows, also see

[93,141,148]:
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Theorem F (Rogosinski Theorem). If g(z) = ∑
∞
k=0 bkzk with |g(z)|< 1, then for every N ≥ 1 we have∣∣∣∣∣N−1

∑
k=0

bkzk

∣∣∣∣∣≤ 1, for |z| ≤ 1
2
.

The radius 1/2 is called the Rogosinski radius.

Kayumov et al. [76] considered a new quantity, called Bohr-Rogosinski sum, which is described as

follows:

|g(z)|+
∞

∑
k=N

|bk||z|k, |z|= r.

For the case, N = 1, note that this sum is similar to Bohr’s sum, where g(0) is replaced by |g(z)|. We

also refer the readers to see [3,13]. Now we say the family S( f ) has Bohr-Rogosinski phenomenon, if

there exists r f
N ∈ (0,1] such that the inequality:

|g(z)|+
∞

∑
k=N

|bk||z|k ≤ | f (0)|+d( f (0),∂Ω)

holds for |z| = r ≤ r f
N . The largest such r f

N is called the Bohr-Rogosinski radius. Authors [76] also

proved the following interesting results:

Theorem G. [76, Theorems 5-6] Let g ∈ S( f ), where f is univalent in D. Then for each m,N ∈N, the
inequality

|g(zm)|+
∞

∑
k=N

|bk||z|k ≤ | f (0)|+d( f (0),∂Ω)

holds for |z|= r ≤ r f
m,N , where r f

m,N is the smallest positive root of:

4rm − (1− rm)2 +4rN(N(1− r)+ r)
(

1− rm

1− r

)2

= 0.

The radius is sharp for the Koebe function z/(1− z)2. Moreover, if f is convex (univalent) in D, then
r f

m,N is the smallest positive root of:

3rm −1+2rN
(

1− rm

1− r

)
= 0.

The radius is sharp for the convex function z/(1− z).

Motivated by the above work, let us now introduce the Bohr-Rogosinski phenomenon for the class of

analytic subordinants S f (ψ):

Definition 5.1.8. The class S f (ψ) has a Bohr-Rogosinski phenomenon, if there exists an 0 < r0 ≤ 1
such that for each g ∈ S f (ψ),

|g(z)|+
∞

∑
k=N

|bk||z|k ≤ d( f (0),∂Ω)
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for |z|= r ≤ r0, where N ∈N, Ω = f (D) and d( f (0),∂Ω) denotes the Euclidean distance between f (0)
and the boundary of Ω.

Note that S ∗(ψ) ⊂
⋃

f∈S ∗(ψ) S f (ψ). Further, the connection between the Bohr-Rogosinski and

Bohr phenomenon can be seen through Definition 5.1.8, if we replace |g(z)| by |g(zm)|, where m ∈ N,

and then consider the special case by taking m → ∞ with N = 1.

5.2 Bohr-Rogosinski phenomenon for S ∗(ψ) and C (ψ)

In this section, for a fixed f ∈ S ∗(ψ) or C (ψ), the class of subordinants S f (ψ) := {g : g ≺ f} is

studied for the Bohr-Rogosinski phenomenon in general settings along with its applications to the

standard classes of univalent starlike and convex functions. First, we need the following fundamental

result, which is an extension of the Lemma 5.1.1:

Lemma 5.2.1. Let f (z) = ∑
∞
n=0 anzn and g(z) = ∑

∞
k=0 bkzk be analytic in D and g ≺ f , then

∞

∑
k=N

|bk|rk ≤
∞

∑
n=N

|an|rn (5.2.1)

for |z|= r ≤ 1
3 and N ∈ N.

Proof. Since g ≺ f , we have g(z) = f (ω(z)), where ω is a Schwarz function. For the case ω(z) = cz,
|c| = 1, the function g is a rotation of f or g = f , and the inequality (5.2.1) easily holds. So consider
the case: ω(z) ̸= cz, |c|= 1. Now the coefficient bk of the function g is given by: for any k ≥ N ∈ N

bk =
k

∑
n=N

anβk
(n),

where the t-th power of the analytic function ω is represented as ω t(z) = ∑l≥t βl
(t)zl , t ∈ N. Now we

see that

m

∑
k=N

|bk|rk =
m

∑
k=N

∣∣∣∣∣ n

∑
n=N

anβk
(n)

∣∣∣∣∣rk

≤
m

∑
k=N

n

∑
n=N

|an||βk
(n)|rk

=
m

∑
n=N

|an|Mm
(n)(r),

where Mm
(n)(r) = ∑

m
k=n |βk

(n)|rk and m ∈ N. Since |ωn(z)/zn| < 1 for any n ≥ 1, using Bohr’s Theo-
rem E we have

m

∑
k=n

|βk
(n)|rk−n ≤

∞

∑
k=n

|βk
(n)|rk−n ≤ 1, r ≤ 1

3
,

ASUS
Highlight
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that is, Mm
(n)(r)≤ rn holds for r ≤ 1/3. Hence, for any m ≥ N ≥ 1 and r ≤ 1/3

m

∑
k=N

|bk|rk ≤
m

∑
n=N

|an|rn.

The result now follows by taking m → ∞.

Proof. (Alternate proof of the Lemma 5.2.1) Since g(z) = f (ω(z)), where ω is the Schawrz function,
we have

MN
r (g) = MN

r

(
∞

∑
k=N

ak(ω(z))k

)
≤

∞

∑
k=N

|ak|(Mr(ω(z)))k ≤
∞

∑
k=N

|ak||z|k

for |z|= r ≤ 1/3.

Remark 5.2.1. In Lemma 5.2.1, taking N → 1 and the fact the g(0) = f (0) we obtain Lemma 5.1.1.

Moreover, the following results are obtained using the properties of the operator MN
r ( f ) and Lemma 5.2.1:

Corollary 5.2.1. Let the analytic functions f ,g and h satisfies g(z) = h(z) f (ω(z)) in D, where ω is the
Schwarz function. Assume |h(z)| ≤ τ for |z|< τ ≤ 1. Then

MN
r (g)≤ τMN

r ( f ), 0 ≤ |z|= r ≤ τ

3
.

Corollary 5.2.2. Let τ = 1 in Corollary 5.2.1. Then

MN
r (g)≤ MN

r ( f ), 0 ≤ |z|= r ≤ 1
3
.

We need the following lemma for our next result.

Lemma 5.2.2. ( [102]) Let f ∈ S ∗(ψ) and |z0|= r < 1. Then f (z)/z ≺ f0(z)/z and

− f0(−r)≤ | f (z0)| ≤ f0(r).

Equality holds for some z0 ̸= 0 if and only if f is a rotation of f0, where z f0(z)/ f0(z) = ψ(z) such that

f0(z) = zexp
∫ z

0

ψ(t)−1
t

dt. (5.2.2)

Our next results discuss Bohr-Rogosinski phenomenon for the classes S f (ψ) and S ∗(ψ), respec-

tively.

Theorem 5.2.3. Let f0(z) be given by the equation (5.2.2) and f (z) = z+∑
∞
n=2 anzn ∈S ∗(ψ). Assume

that f0(z) = z+∑
∞
n=2 tnzn and f̂0(r) = r+∑

∞
n=2 |tn|rn. If g ∈ S f (ψ). Then

|g(zm)|+
∞

∑
k=N

|bk||z|k ≤ d(0,∂Ω) (5.2.3)

holds for |z| = rb ≤ min{1
3 ,r0}, where m,N ∈ N, Ω = f (D) and r0 is the unique positive root of the
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equation:
f̂0(rm)+ f̂0(r)− p f̂0

(r) =− f0(−1), (5.2.4)

where

p f̂0
(r) =


0, N = 1;
r, N = 2
r+∑

N−1
n=2 |tn|rn, N ≥ 3

The result is sharp when rb = r0 and tn > 0.

Proof. Let g(z) = ∑
∞
k=1 bkzk ≺ f (z), where f ∈ S ∗(ψ). Now by Lemma 5.2.1, for r ≤ 1/3, we have

∞

∑
k=N

|bk|rk ≤
∞

∑
n=N

|an|rn.

Again applying Lemma 5.2.1 on f (z)/z ≺ f0(z)/z (Lemma 5.2.2), we get that for r ≤ 1
3

∞

∑
k=N

|bk|rk ≤
∞

∑
n=N

|an|rn ≤
∞

∑
n=N

|tn|rn. (5.2.5)

Now g ≺ f implies that g(z) = f (ω(z)), which using the Lemma 5.2.2 yields

|g(|z| ≤ r)|= | f (ω(|z| ≤ r))| ≤ max
|z|=r

| f (|z| ≤ r)| ≤ f0(r),

that is,
|g(z)|= | f (ω(z))| ≤ f0(r)

for |z|= r, where ω is a Schwarz function. Moreover, replacing z by zm in the above inequality along
with the definition of f̂0 gives

|g(zm)| ≤ f̂0(rm). (5.2.6)

Also, by letting r tends to 1 in Lemma 5.2.2, we obtain the Koebe-radius r∗ = − f0(−1). Therefore,
the open ball B(0,r∗)⊂ f (D), which implies that for |z|= 1

r∗ ≤ d(0,∂Ω). (5.2.7)

Now using the equations (5.2.5), (5.2.6) and (5.2.7), we have

|g(zm)|+
∞

∑
k=N

|bk||z|k ≤ f̂0(rm)+
∞

∑
n=N

|tn|rn

= f̂0(rm)+ f̂0(r)− p f̂0
(r)

≤ r∗

≤ d(0,∂Ω)

holds whenever |z|= r ≤ min{1
3 ,r0}, where r0 is the smallest positive root of the equation:

G(r) := f̂0(rm)+ f̂0(r)− p f̂0
(r)− r∗ = 0.
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Note that G(0)< 0, and since f̂0(1)≥ | f0(1)| ≥ r∗ (see Lemma 5.2.2), we see that

2 f̂0(1)−
N−1

∑
n=1

|tn|− r∗ = ( f̂0(1)−
N−1

∑
n=1

|tn|)+( f̂0(1)− r∗)> 0

where t1 = 1, which implies G(1)> 0. Clearly, for 0 ≤ r ≤ 1

G′(r) = f̂ ′0(rm)+( f̂ ′0(r)− p′ f̂0
(r))> 0,

which implies G is a continuous increasing function in [0,1]. Thus G(r) = 0 has a root in the interval
(0,1). Let us take g = f = f0, then the sharpness follows for the function f0 with the equality in (5.2.3)
as

f0(rb
m)+

∞

∑
n=N

tnrb
n = r∗ = d(0,∂Ω)

when rb = r0 and tn > 0.

Remark 5.2.2. Let ψ(z) = (1+ z)/(1− z), then Theorem 5.2.3 reduces to [76, Theorem 5].

Remark 5.2.3. Observe that if we take m → ∞ and N = 1, then Theorem 5.2.3 reduces to [86, Theo-
rem 5.1].

Corollary 5.2.4. Let f0(z) be given by the equation (5.2.2). Assume f0(z) = z+∑
∞
n=2 tnzn and f̂0(r) =

r+∑
∞
n=2 |tn|rn. If f (z) = z+∑

∞
n=2 anzn ∈ S ∗(ψ). Then

| f (zm)|+
∞

∑
n=N

|an||z|n ≤ d(0,∂Ω) (5.2.8)

holds for |z| = rb ≤ min{1
3 ,r0}, where m,N ∈ N, Ω = f (D) and r0 is the unique positive root of the

equation:
f̂0(rm)+ f̂0(r)− p f̂0

(r) =− f0(−1),

where p f̂0
is as defined in Theorem 5.2.3. The radius is sharp for the function f0 when rb = r0 and

tn > 0.

Corollary 5.2.5. Let ψ(z) = 1+
4
3

z+
2
3

z2, f0(r) = r exp
(

4
3

r+
r2

3

)
and m = 1. If g ∈ S f (ψ). Then

the inequality (5.2.3) holds for |z|= r ≤ rN , where N ∈ N and rN(< 1/3) is the unique positive root of
the equation:

2r exp
(

4
3

r+
r2

3

)
− p f0(r)− exp(−1) = 0,

where p f0 = p f̂0
is as defined in Theorem 5.2.3 with |tn| = tn = f0

n(0)/n! . Moreover, if f ∈ S ∗(ψ).
Then the inequality (5.2.8) also holds for r ≤ rN . The radius rN is sharp.

Remark 5.2.4. In Corollary 5.2.5, we observe that the radius rN approaches r0 = 0.25588 · · · for large
value of N, where r0 is the unique positive root of

r exp
(

4
3

r+
r2

3

)
− exp(−1) = 0.

Moreover, if m ≥ 2 then the inequalities (5.2.3) and (5.2.8) hold for r ≤ 1/3.
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Corollary 5.2.6. Let ψ(z) = 1+ zez and m = 1. If g ∈ S f (ψ). Then the inequality (5.2.3) holds for
|z|= r ≤ rN = min{r0,1/3}, where N ∈ N and r0 is the unique positive root of the equation:

2r exp(er −1)−T (r)− exp(e−1 −1) = 0,

where

T (r) =


0, N = 1;
r, N = 2;

∑
N−1
n=1

Bn−1
(n−1)! r

n, N ≥ 3

and Bn are the bell numbers such that Bn+1 =∑
n
k=0
(n

k

)
Bk. Moreover, if f ∈S ∗(ψ). Then the inequality

(5.2.8) also holds for r ≤ rN . The radius rN < 1/3 is sharp for N ≤ 3.

Corollary 5.2.7. Let ψ(z) = 1+ z
k

( k+z
k−z

)
with k =

√
2+ 1. If g ∈ S f (ψ). Then the inequality (5.2.3)

holds for |z|= r ≤ rb = min{1/3,r0}, where N ∈ N and r0 is the unique positive root of the equation:

rm

erm

(
k

k− rm

)2k

+
r
er

(
k

k− r

)2k

− p f0(r)− e
(

k
k+1

)2k

= 0,

where p f0 = p f̂0
is as defined in Theorem 5.2.3 and tn = |tn| are the Taylor coefficients of the function

f0(r) = r
er

( k
k−r

)2k
. Moreover, if f ∈ S ∗(ψ). Then the inequality (5.2.8) also holds for r ≤ rb. The

radius rb is sharp when m = 1 and N ≤ 4.

Since all the Taylor coefficients of the function 1+ sinz are not positive, f̂0 ̸= f0. So we consider the

radius rN up to three decimal places only, which also reveals the connection of positive coefficients of

ψ to the sharp Bohr-Rogosinski radius.

Corollary 5.2.8. Let ψ(z) = 1+ sinz and m = 1. If g ∈ S f (ψ). Then the inequality (5.2.3) holds for
|z|= r ≤ rN , where N ∈ N and rN(< 1/3) is the unique positive root of the equation:

2r exp(Si(r))− exp(Si(−1))− p f0(r) = 0,

where f0(r) = r exp(Si(r)), where Si(x) is the Sin Integral defined as:

Si(x) :=
∫ x

0

sin(x)
x

dx =
∞

∑
n=0

(−1)nx2n+1

(2n+1)(2n+1)!

Moreover, if f ∈ S ∗(ψ). Then the inequality (5.2.8) also holds for r ≤ rN .

Remark 5.2.5. In Corollary 5.2.8, the numerical computations reveal that the Bohr-Rogosinski radius
rN ≈ 0.290∗· · ·< 1/3 for any N > 4, where ∗= 6 or 7. Also rN < 1/3 for N ≤ 4. Moreover, as N → ∞,
the required radius r0 ≈ 0.290∗ · · · is the unique positive root of

r exp(Si(r))− exp(Si(−1)) = 0.

Next, we discuss the Bohr-Rogosinski phenomenon for the celebrated Janowski class, S ∗((1+

Dz)/(1+Ez))≡ S [D,E], where −1 ≤ E < D ≤ 1 of univalent starlike functions. We need to recall:
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Lemma 5.2.3. [16, Theorem 3] If f (z) = z+∑
∞
n=2 anzn ∈ S [D,E]. Then for n ≥ 2, the following

sharp bounds occur:

|an| ≤
n−2

∏
k=0

|E −D+Ek|
k+1

.

Theorem 5.2.9. Let ψ(z) = (1+Dz)/(1+Ez), −1 ≤ E < D ≤ 1. If f (z) = z+∑
∞
n=2 anzn ∈ S ∗(ψ).

Then

| f (zm)|+
∞

∑
n=N

|an||z|n ≤ d(0,∂Ω) (5.2.9)

holds for |z|= r ≤ r0, where m,N ∈ N, Ω = f (D) and r0 is the unique positive root of the equations:

rm(1+Erm)
D−E

E +A(r)+
∞

∑
n=N

n−2

∏
k=0

|E −D+Ek|
k+1

rn − (1−E)
D−E

E = 0, if E ̸= 0,

where A(r) = r for N = 1 and 0 otherwise, and

rmeDrm
+ reDr − J(r)− e−D = 0, if E = 0,

where

J(r) =


0, N = 1;
r, N = 2;

∑
N−1
n=2 ∏

n−2
k=0

D
k+1 rn, N ≥ 3.

(5.2.10)

The radius r0 is sharp.

Proof. Let us consider the function f0 such that z f ′0(z)/ f0(z) = (1+Dz)/(1+Ez), which is given by

f0(z) =

{
z(1+Ez)

D−E
E , E ̸= 0;

zeDz, E = 0.
(5.2.11)

Now using the Lemma 5.2.2 and Lemma 5.2.3, we have | f (zm)| ≤ f0(rm), the Koebe radius r∗ =
− f0(−1) and

∞

∑
n=N

|an||z|n ≤
∞

∑
n=N

n−2

∏
k=0

|E −D+Ek|
k+1

rn, N ≥ 2.

Now proceeding as in Theorem 5.2.3, for r0 as defined in the statement, the result follows. To prove
the sharpness of the radius r0, we see that at |z|= r = r0 and f = f0 given in (5.2.11):

| f (zm)|+
∞

∑
n=N

|an||z|n

=

{
(r0)

m(1+E(r0)
m)

D−E
E +A(r0)+∑

∞
n=N ∏

n−2
k=0

|E−D+Ek|
k+1 (r0)

n, E ̸= 0;
(r0)

meD(r0)
m
+(r0)eDr0 − J(r0), E = 0.

=

{
(1−E)

D−E
E , E ̸= 0;

e−D, E = 0.

=− f0(−1) = d(0,∂Ω),

where J(r) is as defined in (5.2.10), and A(r) = r for N = 1 and 0 otherwise for the case E ̸= 0.
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Remark 5.2.6. Taking m → ∞ and N = 1 in Corollary 5.2.9, we obtain the Bohr radius for the class
S [D,E], which covers many classical cases.

In Theorem 5.2.9, putting D = 1−2α and E =−1, where 0 ≤ α < 1, we get the result for the class

of univalent starlike functions of order α , that is, S ∗(α):

Corollary 5.2.10. If f (z) = z+∑
∞
n=2 anzn ∈ S ∗(α). Then the inequality (5.2.9) holds for |z|= r ≤ r0,

where m,N ∈ N, Ω = f (D) and r0 is the smallest positive root of the equations:

rm

(1− rm)2(1−α)
+A(r)+

∞

∑
n=N

n−2

∏
k=0

k+2(1−α)

k+1
rn − 1

41−α
= 0,

where A(r) = r for N = 1 and 0 otherwise. The radius r0 is sharp.

Putting α = 0 in Corollary 5.2.10, we get the following:

Corollary 5.2.11. If f (z) = z+∑
∞
n=2 anzn ∈ S ∗. Then the inequality (5.2.9) holds for |z| = r ≤ r0,

where m,N ∈ N, Ω = f (D) and r0 is the smallest positive root of the equations:

4rm − (1− rm)2 +4rN(N(1− r)+ r)
(

1− rm

1− r

)2

= 0.

The radius r0 is sharp.

To proceed further, we need to recall the following fundamental result:

Lemma 5.2.4. [102] Let f ∈ C (ψ). Then z f ′′(z)/ f ′(z) ≺ zl′′0 (z)/l′0(z) and f ′(z) ≺ l′0(z). Also, for
|z|= r we have

−l0(−r)≤ | f (z)| ≤ l0(r),

where
1+ zl′′0 (z)/l′0(z) = ψ(z). (5.2.12)

Further, r∗ =−l0(−1) = limr→1(−l0(−r)) is the Koebe-radius for the class C (ψ).

Now we discuss the results for the convex analogue C (ψ) of S ∗(ψ).

Theorem 5.2.12. Let r∗ be the Koebe-radius for the class C (ψ), l0(z) be given by the equation (5.2.12)
and f (z) = z+∑

∞
n=2 anzn ∈ C (ψ). Assume l0(z) = z+∑

∞
n=2 lnzn and l̂0(r) = r +∑

∞
n=2 |ln|rn. If g ∈

S f (ψ). Then

|g(zm)|+
∞

∑
k=N

|bk||z|k ≤ d(0,∂Ω) (5.2.13)

holds for |z| = rb ≤ min{1
3 ,r0}, where m,N ∈ N, Ω = f (D) and r0 is the unique positive root of the

equation:
l̂0(rm)+ l̂0(r)− pl̂0

(r) =−l0(−1),

where

pl̂0
(r) =


0, N = 1;
r, N = 2;
r+∑

N−1
n=2 |ln|rn, N ≥ 3.
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The result is sharp when rb = r0 and ln > 0.

Proof. Let g(z) = ∑
∞
k=1 bkzk ≺ f (z), where f ∈ C (ψ). From the Alexander’s relation, it is known that

f ∈ C (ψ) if and only if

z f ′(z) = g̃(z), or equivalently f (z) =
∫ z

0

g̃(t)
t

dt

for some g̃ ∈ S ∗(ψ). Now by Lemma 5.2.1, for r ≤ 1/3, we have

∞

∑
k=N

|bk|rk ≤
∞

∑
n=N

|an|rn =
∞

∑
n=N

|b̃n|
n

rn, (5.2.14)

where b̃n are the Taylor coefficients of g̃. Again applying Lemma 5.2.1 on f ′(z)≺ l′0(z) (Lemma 5.2.4),
we get that

Mg̃(r)− pg̃(r)≤ Mh(r)− ph(r), r ≤ 1
3
, (5.2.15)

where Mg(x) := ∑
∞
k=1 |bk|xk, and h is given by the relation zl′0(z) = h(z). Now using the equations

(5.2.14) and (5.2.15), we have for r ≤ 1/3

∞

∑
k=N

|bk||z|k ≤
∞

∑
n=N

|b̃n|
n

rn

=
∫ r

0

Mg̃(t)− pg̃(t)

t
dt

≤
∫ r

0

Mh(t)− ph(t)
t

dt

=
∞

∑
n=N

|ln|rn

= l̂0(r)− pl̂0
(r). (5.2.16)

Now g ≺ f implies that g(z) = f (ω(z)), which using the Lemma 5.2.4 yields

|g(|z| ≤ r)|= | f (ω(|z| ≤ r))| ≤ max
|z|=r

| f (|z| ≤ r)| ≤ l0(r),

that is,
|g(z)|= | f (ω(z))| ≤ l0(r)

for |z|= r, where ω is a Schwarz function. Moreover, replacing z by zm gives

|g(zm)| ≤ l̂0(rm). (5.2.17)

Also, by letting r tends to 1 in Lemma 5.2.4, we obtain the Koebe-radius r∗ =−l0(−1). Therefore, the
open ball B(0,r∗)⊂ f (D), which implies that for |z|= 1

r∗ ≤ d(0,∂Ω). (5.2.18)



101

Hence, using the inequalities (5.2.16), (5.2.17) and (5.2.18), we have

|g(zm)|+
∞

∑
k=N

|bk||z|k ≤ l̂0(rm)+ l̂0(r)− pl̂0
(r)

≤ r∗

≤ d(0,∂Ω)

holds whenever |z|= r ≤ min{1
3 ,r0}, where r0 is the smallest positive root of the equation:

H(r) := l̂0(rm)+ l̂0(r)− pl̂0
(r)− r∗ = 0.

Clearly, H is continuous and H ′(r)> 0 for 0 ≤ r < 1. Note that H(0)< 0, and since l̂0(1)≥ |l0(1)| ≥ r∗
as r tends to 1 (see Lemma 5.2.4), we see that

2l̂0(1)−
N−1

∑
n=1

|ln|− r∗ = (l̂0(1)−
N−1

∑
n=1

|ln|)+(l̂0(1)− r∗)> 0,

which implies H(1)> 0. Thus H(r) = 0 has a root in the interval (0,1). The sharpness follows for the
function l0 by taking g = f = l0 with the equality in (5.2.13) as

l0(rm
b )+

∞

∑
n=N

lnrn
b = r∗ = d(0,∂Ω)

when rb = r0 and ln > 0.

Remark 5.2.7. Let ψ(z) = (1+ z)/(1− z), then Theorem 5.2.12 reduces to [76, Theorem 6].

Remark 5.2.8. Let g ∈ S f (ψ), where f ∈ C (ψ). In (5.2.14) if we use the Rogosinski’s well known
result: “If g ≺ f and f is a normalized convex function then |bn| ≤ 1 for n ≥ 1", then we can remove
the role of Lemma 5.2.1 in the proof of Theorem 5.2.12 and get

∞

∑
k=N

|bk|rk ≤
∞

∑
n=N

rk =
rN

1− r
, r ∈ (0,1). (5.2.19)

Further combining (5.2.19) and the inequality (5.2.17)

|g(zm)| ≤ l̂0(rm).

we get

|g(zm)|+
∞

∑
k=N

|bk|rk ≤ l̂0(rm)+
rN

1− r
, r ∈ (0,1).

Thus the inequality (5.2.13) follows for |z|= r ≤ r0, where r0 is the smallest positive root of

l̂0(rm)+
rN

1− r
+ l0(−1) = 0. (5.2.20)

ASUS
Highlight
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Also, the radius r0 can not be improved follows if we choose

g(z) = f (z) =
z

1− z
= l0(z).

Note that if the coefficients of ψ are positive then l̂0 = l0, and in this case (5.2.20) reduces to

l0(rm)+
rN

1− r
+ l0(−1) = 0.

Moreover, taking N = 1 and m → ∞, we get the result obtained by Hamada [64, Theorem 4.1].

The following result is explicitly for the class C (ψ).

Corollary 5.2.13. Let r∗ be the Koebe-radius for the class C (ψ), l0(z) be given by the equation (5.2.12).
Assume l0(z) = z+∑

∞
n=2 lnzn and l̂0(r) = r+∑

∞
n=2 |ln|rn. If f (z) = z+∑

∞
n=2 anzn ∈ C (ψ). Then

| f (zm)|+
∞

∑
n=N

|an||z|n ≤ d(0,∂Ω) (5.2.21)

holds for |z| = rb ≤ min{1
3 ,r0}, where m,N ∈ N, Ω = f (D) and r0 is the unique positive root of the

equation:
l̂0(rm)+ l̂0(r)− pl̂0

(r) = r∗,

where pl̂0
is as defined in Theorem 5.2.12. The radius is sharp for the function l0 when rb = r0 and

ln > 0.

Remark 5.2.9. The special case of taking m → ∞ and N = 1 in Theorem 5.2.12 and Corollary 5.2.13
establish the Bohr phenonmenon for the classes S f (ψ) and C (ψ), respectively.

After some little computations when ψ(z) = (1+ z)/(1− z), the Corollary 5.2.13 yields:

Corollary 5.2.14. If f (z) = z+∑
∞
n=2 anzn ∈ C . Then the inequality (5.2.21) holds for |z| = r ≤ r0,

where m,N ∈ N, Ω = f (D) and r0 is the unique positive root of the equations:

3rm −1+2rN
(

1− rm

1− r

)
= 0.

The radius r0 is sharp.

Corollary 5.2.15. Let ψ(z) = 1+ zez and m = 1. If g ∈ S f (ψ). Then the inequality (5.2.13) holds for
|z|= r ≤ rN , where N ∈ N and rN(< 1/3) is the unique positive root of the equation:

2r(1+ rer)exp(er −1)−H(r)− (1− e−1)ee−1−1 = 0,

where

H(r) =


0, N = 1;
r, N = 2;

∑
N−1
n=0

((n+1)Bn
n!

)
rn+1, N ≥ 3.

and Bn are the bell numbers such that Bn+1 = ∑
n
k=0
(n

k

)
Bk. Moreover, if f ∈C(ψ). Then the inequality

(5.2.21) also holds for r ≤ rN . The radius rN is sharp.
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5.3 Bohr radius for some classes of Harmonic mappings

There are certain classes of univalent functions whose natural extensions to the harmonic functions

have been studied, see [53, 116]. In this section, we aim to study Bohr radius problems for such

classes. As an application, we derive the Bohr radius for their analytic analog.

Let H denotes the class of complex-valued harmonic functions f (which satisfy the Laplacian equa-

tion ∆ f = 4 fzz̄ = 0) defined on the unit disk D := {z ∈C : |z|< 1}, then we can write f = h+ ḡ, where

h and g are analytic and satisfy f (0) = g(0). If the Jacobian J f := |h′|2 − |g′|2 > 0, we say f is

sense-preserving in D. Let H0 be the class of functions f with fz̄(0) = 0 and f = h+ ḡ, where

h(z) = z+
∞

∑
m=2

amzm and g(z) =
∞

∑
m=2

bmzm

are analytic functions in D. For g ≡ 0, H0 reduces to the class A of analytic functions f with normal-

ization f (0) = 0 = fz(0)− 1. Let S 0
H denotes the class of harmonic and univalent functions, which

clearly includes the well-known class of normalized univalent functions S .

Motivated by the Sakaguchi class of starlike functions with respect to the symmetric points using

subordination [146], Cho and Dziok [37] considered a subclass of S 0
H , which is given by

S ∗∗
H (C,D) :=

{
f ∈ H0 :

2DH f (z)
f (z)− f (−z)

≺ 1+Cz
1+Dz

,−D ≤C < D ≤ 1
}
,

where DH f (z) := zh′(z)− zg′(z). Further, in light of Silverman’s work [152], they defined the class

S ∗∗
τ (C,D) := τ0∩S ∗∗

H (C,D), where τa(a∈ {0,1}) is the class of functions in H0 with the coefficients

am and bm are replaced respectively by −am and (−1)abm for all m. By involving Janowski functions,

Dziok [43] studied the following classes:

S ∗
H (C,D) :=

{
f ∈ H0 :

2DH f (z)
f (z)

≺ 1+Cz
1+Dz

,−D ≤C < D ≤ 1
}
,

and S c
H (C,D) :=

{
f ∈ S 0

H : DH f (z) ∈ S ∗
T (C,D)

}
in addition to the classes S ∗

τ (C,D) := τ0 ∩
S ∗

H (C,D) and S c
τ (C,D) := τ1 ∩S c

H (C,D). Singh [157] studied the subclass given by F (λ ) :=

{ f ∈ A : | f ′(z)−1|< λ ,λ ∈ (0,1]} of close-to-convex functions. Later, Nagpal and Ravichandran [116]

examined its harmonic extension defined as:

F 0
H (λ ) := { f = h+ ḡ : | fz(z)−1|< λ −| fz̄(z)|,λ ∈ (0,1]} .

Gao and Zohu [53] investigated a subclass of close-to-convex functions given by W (µ,ρ) := { f ∈A :

ℜ(h′(z)+µzh′′(z))> ρ, µ ≥ 0,0 ≤ ρ < 1}. Rajbala and Prajapat [133] also explored the subclass of

close-to-convex harmonic mappings defined as:

W 0
H (µ,ρ) := { f = h+ ḡ ∈ H0 : ℜ(h′(z)+µzh′′(z)−ρ)> |g′(z)+µzg′′(z)|},
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where µ ≥ 0 and 0 ≤ ρ < 1, which is the harmonic extension of W (µ,ρ). This generalizes the classes

studied in [55,117]. In a similar way, Dixit and Porwal [42] considered the class RH (β ) = { f = h+ ḡ :

ℜ{h′(z)+ g′(z)} ≤ β ,2 ≥ β > 1}, where h(z) = z+∑
∞
m=2 |am|zm, g(z) = ∑

∞
m=1 |bm|z̄m with |b1| < 1.

Now if we take b1 = 0, then we get the class

R0
H (β ) := { f = h+ ḡ ∈ H0 : ℜ{h′(z)+g′(z)} ≤ β ,β > 1},

comprising of functions with positive coefficients and reduces to the class R(β ) explored by Uralegaddi

for the case g ≡ 0. Altinkaya et al. [14] studied the class k− S̃T
−
q (α) of functions in A with negative

coefficients associated with the conic domains defined by ℜ(p(z))> k|p(z)−1|+α , where 0 ≤ k < ∞,

0 ≤ α < 1, 0 < q < 1, p(z) = z(D̃q f )(z)/ f (z) and

(D̃q f )(z) =


f (qz)− f (q−1z)

(q−q−1)z
, z ̸= 0

f ′(0), z = 0

and [m̃]q =
qm −q−m

q−q−1 .

In the literature, sufficient conditions for many classes of harmonic and analytic mappings are ob-

tained in terms of coefficients. See [14, 37, 42, 43, 116, 133]. In a similar way, we introduce a new

subclass of H0 as follows:

Definition 5.3.1. Let us consider the class

B0
H (M) := { f = h+ ḡ ∈ H0 :

∞

∑
m=2

(γm|am|+δm|bm|)≤ M, M > 0},

where
γm, δm ≥ α2 := min{γ2,δ2}> 0, (5.3.1)

for all m ≥ 2.

Note that the classes S∗∗τ (C,D), S∗τ(C,D), Sc
τ(C,D) and k− S̃T

−
q (α) are all become subclasses of

B0
H (M) for some suitable choices of γm,δm and M, which is evident from equations (5.3.5), (5.3.6),

(5.3.7) and Lemma 5.3.1 respectively.

Now let us recall the Bohr phenomenon for the harmonic mappings:

Definition 5.3.2. Let f (z)= h(z)+g(z)= z+∑
∞
m=2 amzm+∑

∞
m=2 bmzm ∈H0. Then the Bohr-phenomenon

is to find the constant r∗ ∈ (0,1] such that the inequality r+∑
∞
m=2(|am|+ |bm|)rm ≤ d( f (0),∂Ω) holds

for all |z|= r ≤ r∗, where d( f (0),∂Ω) denotes the Euclidean distance between f (0) and the boundary
of Ω := f (D). The largest such r∗ is called the Bohr radius.

Here, we find the sharp growth theorem, covering theorem and finally derive the Bohr radius for the

class B0
H (M). As an application of our results, we obtain the Bohr radius for the classes S ∗∗

τ (C,D),

S∗τ(C,D), Sc
τ(C,D), k− S̃T

−
q (α) and many more. Further, Bohr radii for the classes W 0

H (µ,ρ) and

F 0
H (λ ) are also derived.
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5.3.1 The class B0
H (M) and its applications

Theorem 5.3.3 (Growth Theorem). Let f (z) = z+∑
∞
m=2 amzm +∑

∞
m=2 bmzm ∈ B0

H (M). Then

r− M
α2

r2 ≤ | f (z)| ≤ r+
M
α2

r2 (|z|= r).

The inequalities are sharp for the functions f (z) = z± M
α2

z2 and f (z) = z± M
α2

z̄2 with the suitable choice
of α2.

Proof. From the condition (5.3.1), we see that

∞

∑
m=2

(γm|am|+δm|bm|)≤ M (5.3.2)

implies
∞

∑
m=2

(|am|+ |bm|)≤
M
α2

, (5.3.3)

where γm,δm and α2 are as defined in (5.3.1) and the equality in (5.3.3) holds for the function f (z) =
z+(M/α2)z2. Now using the inequality |a| − |b| ≤ |a± b| ≤ |a|+ |b| and then (5.3.3), we have for
|z|= r

|z|−

∣∣∣∣∣ ∞

∑
m=2

amzm +
∞

∑
m=2

bmzm

∣∣∣∣∣≤ | f (z)| ≤ |z|+

∣∣∣∣∣ ∞

∑
m=2

amzm +
∞

∑
m=2

bmzm

∣∣∣∣∣ ,
which immediately yields the required inequality.

Here, we observe that functions in the class B0
H (M) are bounded. Taking r tending to 1− yields:

Corollary 5.3.4 (Covering Theorem). Let f (z) = z+∑
∞
m=2 amzm +∑

∞
m=2 bmzm ∈ B0

H (M). Then{
w ∈ C : |w| ≤ 1− M

α2

}
⊂ f (D).

Now we are ready to obtain the Bohr-radius for the class B0
H (M).

Theorem 5.3.5. Let f (z) = z+∑
∞
m=2 amzm +∑

∞
m=2 bmzm ∈ B0

H (M). Then

|z|+
∞

∑
m=2

(|am|+ |bm|)|z|m ≤ d( f (0),∂ f (D)) for |z| ≤ r∗,

where

r∗ =
−1+

√
1+4

(
M
α2

)(
1− M

α2

)
2
(

M
α2

) .

Bohr radius r∗ is achieved by the function f (z) = z− M
α2

z2.

Proof. From the Growth Theorem 5.3.3 and Corollary 5.3.4(Covering Theorem), we see that the dis-
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tance between origin and the boundary of f (D) satisfies

d( f (0),∂ f (D))≥ 1− M
α2

. (5.3.4)

Let us consider the continuous function defined in (0,1) as

H(r) := r+
M
α2

r2 −
(

1− M
α2

)
,

such that H ′(r) > 0 for r ∈ (0,1) with H(0) < 0 and H(1) > 0. Therefore, by the Intermediate Value
Theorem for continuous functions, we let r∗ be the unique positive root in (0,1) as mentioned in the
Theorem statement. Thus for r = r∗ we have

r∗+
M
α2

(r∗)2 = 1− M
α2

.

Now from (5.3.3), (5.3.4) and the above equality, it follows that

|z|+
∞

∑
m=2

(|am|+ |bm|)|z|m ≤ r+
M
α2

r2 ≤ r∗+
M
α2

(r∗)2 ≤ d( f (0),∂ f (D))

for |z|= r ≤ r∗. Let us consider the analytic function f : D→ C

f (z) = z− M
α2

z2,

which by suitably choosing α2 and using (5.3.2) belongs to B0
H (M). Further, for |z|= r∗ we have

|z|+
∞

∑
m=2

(|am|+ |bm|)|z|m = d( f (0),∂ f (D)).

Hence the result is sharp.

Remark 5.3.1. Note that we can extend our results by considering the analytic functions of the follow-
ing form:

h(z) = z+
∞

∑
m=k

amzm and g(z) =
∞

∑
m=k

bmzm, (k ≥ 2)

and the class

B0
H (k,M) := { f = h+ ḡ :

∞

∑
m=k

(γm|am|+δm|bm|)≤ M, M > 0},

where
γm, δm ≥ αk := min{γk,δk}> 0,

for all m ≥ k. Thus we see that B0
H (2,M)≡ B0

H (M). Precisely, for the class S 0
h+ḡ(k,M), we have

r− M
αk

rk ≤ | f (z)| ≤ r+
M
αk

rk, (|z|= r)
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and the Bohr radius r∗ is the unique positive root in (0,1) of the equation

r+
M
αk

(rk)−
(

1− M
αk

)
= 0.

Now we can also obtain the Bohr radius for the classes (see [44, Theorem 8, 9]) studied by Dziok [44].

5.3.2 Applications to certain classes of univalent functions

We begin with the following corollary.

Corollary 5.3.6. Let f (z) = z+∑
∞
m=2 amzm +∑

∞
m=2 bmzm ∈ S ∗∗

τ (C,D). Then

r− D−C
2(1+D)

r2 ≤ | f (z)| ≤ r+
D−C

2(1+D)
r2 (|z|= r)

and

|z|+
∞

∑
m=2

(|am|+ |bm|)|z|m ≤ d( f (0),∂ f (D))

for |z| ≤ r∗, where

r∗ =
−1+

√
1+4

(
D−C

α2

)(
1− D−C

α2

)
2
(

D−C
α2

) ,

where α2 is as defined in (5.3.5). Bohr radius r∗ is achieved by the function f (z) = z− D−C
2(1+D)z

2.

Proof. Cho and Dziok [37] showed that f ∈ S ∗∗
τ (C,D) if and only if

∞

∑
m=2

(|αm||am|+ |βm||bm|)≤ D−C, (5.3.5)

where
αm = m(1+D)− (1+C)(1− (−1)m)

2

and
βm = m(1+D)+

(1+C)(1− (−1)m)

2
.

Note that for all m ≥ 2, we have αm < βm which shows that 0 < α2 ≤ αm < βm. Therefore from (5.3.5)
we obtain that

∞

∑
m=2

(|am|+ |bm|)≤
D−C

α2

and also the condition in (5.3.1) holds by choosing γm = αm, δm = βm and M = D−C. Thus using
Theorem 5.3.3 and Theorem 5.3.5, we get the result.

Corollary 5.3.7. Let f (z) = z+∑
∞
m=2 amzm +∑

∞
m=2 bmzm ∈ S∗τ(C,D). Then

r− D−C
1+2D−C

r2 ≤ | f (z)| ≤ r+
D−C

1+2D−C
r2, (|z|= r)
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and

|z|+
∞

∑
m=2

(|am|+ |bm|)|z|m ≤ d( f (0),∂ f (D))

for |z| ≤ r∗, where

r∗ =
−1+

√
1+4

( D−C
1+2D−C

)(
1− D−C

1+2D−C

)
2
( D−C

1+2D−C

) .

Bohr radius r∗ is achieved by the function f (z) = z− D−C
1+2D−C z2.

Proof. Dziok [43] proved that f ∈ S∗τ(C,D) if and only if

∞

∑
m=2

(αm|am|+βm|bm|)≤ D−C (5.3.6)

and f ∈ Sc
τ(C,D) if and only if

∞

∑
m=2

(mαm|am|+mβm|bm|)≤ D−C, (5.3.7)

where αm = m(1+D)− (1+C) and βm = m(1+D)+(1+C). We note that βm > αm ≥ α2 > 0 for all
m ≥ 2. Therefore from (5.3.6), we obtain that

∞

∑
m=2

(|am|+ |bm|)≤
D−C

α2
.

Now choosing γm = αm, δm = βm and M = D−C, the condition (5.3.1) holds and thus using Theo-
rem 5.3.3 and Theorem 5.3.5, we get the desired radius.

Again using βm > αm ≥ α2 for all m ≥ 2 in (5.3.7), we obtain that if f ∈ Sc
τ(C,D) then the following

inequality holds:
∞

∑
m=2

(|am|+ |bm|)≤
D−C
2α2

.

Now choosing γm = mαm, δm = mβm and M = D −C, the condition (5.3.1) holds and thus using

Theorem 5.3.3 and Theorem 5.3.5, we obtain the following result:

Corollary 5.3.8. Let f (z) = z+∑
∞
m=2 amzm +∑

∞
m=2 bmzm ∈ Sc

τ(C,D). Then

r− D−C
2(1+2D−C)

r2 ≤ | f (z)| ≤ r+
D−C

2(1+2D−C)
r2, (|z|= r)

and

|z|+
∞

∑
m=2

(|am|+ |bm|)|z|m ≤ d( f (0),∂ f (D))

for |z| ≤ r∗, where α2 is defined in (5.3.7) and

r∗ =
−1+

√
1+2

(
D−C

α2

)(
1− D−C

α2

)
(

D−C
α2

) .
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Bohr radius r∗ is achieved by the function f (z) = z− D−C
2(1+2D−C)z

2.

Now we obtain the result for the class F 0
H (λ ). Using the condition

∞

∑
m=2

m(|am|+ |bm|)≤ λ , (5.3.8)

convolution properties, the radius of starlikeness, and certain inclusion relationships were studied

in [116] for the class F 0
H (λ ). Now with the same condition, we arrive at the following result using

Theorem 5.3.3 and Theorem 5.3.5:

Corollary 5.3.9. If f (z) = z+∑
∞
m=2 amzm +∑

∞
m=2 bmzm ∈ F 0

H (λ ) and also satisfy the condition that

∑
∞
m=2 m(|am|+ |bm|)≤ λ . Then

r− λ

2
r2 ≤ | f (z)| ≤ r+

λ

2
r2, (|z|= r)

and

|z|+
∞

∑
m=2

(|am|+ |bm|)|z|m ≤ d( f (0),∂ f (D))

for |z| ≤ r∗, where

r∗ =
−1+

√
1+2λ

(
1− λ

2

)
λ

and the Bohr radius r∗ for F 0
H (λ ) is obtained when f (z) = z− λ

2 z2.

If g ≡ 0 then F 0
H (λ ) reduces to the Singh [157] class F (λ ), which is contained in the MacGregor

subclass F := { f ∈ A : | f ′(z)−1|< 1} of close-to-convex functions.

Corollary 5.3.10. Bohr radius for the classes F (λ ) and F 0
H (λ ) is same, whenever the condition

(5.3.8) holds.

The following two corollaries are for the classes k− S̃T
−
q (α) and R0

H (β ) respectively:

Lemma 5.3.1. [14] Let 0 ≤ k < ∞, 0 < q < 1 and 0 ≤ α < 1. Then f ∈ k− S̃T
−
q (α) if and only if

∞

∑
m=2

([m̃]q(k+1)− (k+α))am ≤ 1−α.

From Lemma 5.3.1, we see that choosing γm = [m̃]q(k + 1)− (k + α), δm = 0 and M = 1 − α ,

condition in (5.3.1) holds. Therefore, applying Theorem 5.3.3 and Theorem 5.3.5, we get the following

result:

Corollary 5.3.11. Let f (z) = z−∑
∞
m=2 amzm ∈ k− S̃T

−
q (α). Then

r− q(1−α)

(q2 +1)(k+1)−q(k+α)
r2 ≤ | f (z)| ≤ r+

q(1−α)

(q2 +1)(k+1)−q(k+α)
r2,
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where |z|= r and

|z|+
∞

∑
m=2

am|z|m ≤ d( f (0),∂ f (D))

for |z| ≤ r∗, where

r∗ =
−1+

√
1+4

(
q(1−α)

(q2+1)(k+1)−q(k+α)

)(
1− q(1−α)

(q2+1)(k+1)−q(k+α)

)
2
(

q(1−α)
(q2+1)(k+1)−q(k+α)

)
and the Bohr radius r∗ is obtained when f (z) = z− q(1−α)

(q2+1)(k+1)−q(k+α)
z2.

Lemma 5.3.2. [42] Let f ∈ R0
H (β ). Then the following inequality

∞

∑
m=2

(m(|am|+ |bm|))≤ β −1

is necessary and sufficient for the functions to be in R0
H (β ).

From Lemma 5.3.2, we see that choosing γm = δm = m and M = β − 1, condition in (5.3.1) holds.

Therefore applying Theorem 5.3.3 and Theorem 5.3.5, we get the following result:

Corollary 5.3.12. Let f (z) = z+∑
∞
m=2 amzm +∑

∞
m=2 bmzm ∈ R0

H (β ). Then

r− β −1
2

r2 ≤ | f (z)| ≤ r+
β −1

2
r2, (|z|= r)

and

|z|+
∞

∑
m=2

(|am|+ |bm|)|z|m ≤ d( f (0),∂ f (D))

for |z| ≤ r∗, where

r∗ =
−1+

√
1+2(β −1)

(
1− β−1

2

)
β −1

and the Bohr radius r∗ for the class R0
H (β ) is obtained when f (z) = z+ β−1

2 z2.

Corollary 5.3.13. Bohr radius for the classes R(β ) and R0
H (β ) is same.

Silverman considered the class with negative coefficients as follows:

T :=

{
f ∈ S : f (z) = z−

∞

∑
m=2

amzm,am ≥ 0

}
.

Using this recently, Ali et al. [10] considered the following general class defined as:

T (α) :=

{
f ∈ T :

∞

∑
m=2

gmam ≤ 1−α

}
,

where gm ≥ g2 > 0 and α < 1. Note that if we choose in (5.3.1), γm = gm, δm = 0 and M = 1−α , then
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the class B0
H (M) contains T (α), which satisfies the required conditions. Thus using Theorem 5.3.3

and Theorem 5.3.5, we have the following result obtained in [10]:

Theorem 5.3.14. Let f (z) = z−∑
∞
m=2 amzm ∈ T (α). Then

r− 1−α

γ2
r2 ≤ | f (z)| ≤ r+

1−α

γ2
r2, (|z|= r)

and

|z|+
∞

∑
m=2

|am||z|m ≤ d( f (0),∂ f (D))

for |z| ≤ r∗, where

r∗ =
2(γ2 +α −1)

γ2 +
√

γ2
2 +4γ2(1−α)−4(1−α)2

and the Bohr radius r∗ is obtained by the function f (z) = z− 1−α

γ2
z2.

Choosing γm = m−α and γm = m(m−α) in (5.3.1), the class B0
H (M) contains the Silverman

classes T S T (α) := T ∩S T (α) and T C V (α) := T ∩C V (α) of starlike and convex functions

with negative coefficients respectively and Theorem 5.3.5 provides the Bohr radius as obtained in [10,

Theorem 2.3] and [10, Theorem 2.4].

Ali et al. [10] considered the class T F α := T ∩Fα , 0 ≤ α ≤ 1, where Fα is the class of close

to convex functions and showed that if f ∈ T F α , then ∑
∞
m=2 m(2n+α)am ≤ 2+α . Thus choosing

γm = m(2n+α) and δm = 0 and M = 2+α in (5.3.1), the class T F α satisfies all conditions of

B0
H (M), and Theorem 5.3.5 (or Theorem 5.3.14) reduces to [10, Corollary 2.6].

For α > 1, Owa and Nishiwaki [122] considered the classes of analytic functions M (α) := { f ∈
A : ℜ(z f ′(z)/ f (z)) < α} and N (α) := { f ∈ A : 1+ℜ(z f ′′(z)/ f ′(z)) < α}. They showed that the

conditions:
∞

∑
n=2

((m−µ)+ |m+µ −2α|)|am| ≤ 2(α −1)

and
∞

∑
n=2

m(m−µ +1+ |m+µ −2α|)|am| ≤ 2(α −1),

where 0 ≤ µ ≤ 1 are sufficient for the function f (z) = z+∑
∞
m=2 amzm to be in M (α) and N (α),

respectively. It is easy to see that the above two conditions also become necessary for the classes

T M (α) := T ∩M (α) and T N (α) := T ∩N (α) respectively. Thus choosing γm = (m− µ)+

|m+µ −2α|, γm = m(m−µ +1+ |m+µ −2α|) with δm = 0 and M = 2(α −1), from Theorem 5.3.3

and Theorem 5.3.5 we obtain the following result respectively:

Corollary 5.3.15. Let f (z) = z−∑
∞
m=2 amzm ∈ T M (α) (or T N (α)). Then

r− 2(α −1)
γ2

r2 ≤ | f (z)| ≤ r+
2(α −1)

γ2
r2, (|z|= r),
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where γ2 := (2−µ)+ |µ −2(1−α)| (or 2(3−µ + |µ −2(1−α)|)) and

|z|+
∞

∑
m=2

|am||z|m ≤ d( f (0),∂ f (D))

for |z| ≤ r∗, where

r∗ =
−1+

√
1+4

(
2(α−1)

γ2

)(
1− 2(α−1)

γ2

)
2
(

2(α−1)
γ2

) .

The radius r∗, achieved for the function f (z) = z− 2(α−1)
γ2

z2 is the Bohr radius for the class T M (α)

(or T N (α)).

5.3.3 Bohr-radius for the class W 0
H (µ,ρ)

Rajbala and Prajapat [133] introduced and studied the following subclass of close-to-convex har-

monic mappings:

W 0
H (µ,ρ) := { f = h+ ḡ ∈ H0 : ℜ(h′(z)+µzh′′(z)−ρ)> |g′(z)+µzg′′(z)|},

where µ ≥ 0 and 0 ≤ ρ < 1. They obtained the sharp estimates for the coefficients and for the growth

theorems as follows.

Lemma 5.3.3. [133] let f = h+ ḡ ∈W 0
H (µ,ρ). Then for m ≥ 2 the following sharp inequality holds:

|am|+ |bm| ≤
2(1−ρ)

m(1+µ(m−1))
.

Lemma 5.3.4. [133] let f = h+ ḡ ∈W 0
H (µ,ρ). Then for |z|= r, we have the sharp inequality

| f (z)| ≥ |z|−2
∞

∑
m=2

(−1)m−1(1−ρ)

m(1+µ(m−1))
|z|m.

Now for this class, we establish the Bohr phenomenon.

Theorem 5.3.16. Let f (z) = z+∑
∞
m=2 amzm +∑

∞
m=2 bmzm ∈W 0

H (µ,ρ). Then

|z|+
∞

∑
m=2

(|am|+ |bm|)|z|m ≤ d( f (0),∂ f (D))

for |z| ≤ r∗, where r∗ is the unique positive root in (0,1) of

r+
∞

∑
m=2

2(1−ρ)

m(1+µ(m−1))
rm = 1−2

∞

∑
m=2

(−1)m−1(1−ρ)

m(1+µ(m−1))
.

The radius r∗ is the Bohr radius for the class W 0
H (µ,ρ).

Proof. From Lemma 5.3.4, it follows that the distance between the origin and the boundary of f (D)
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satisfies

d( f (0),∂ f (D))≥

(
1−2

∞

∑
m=2

(−1)m−1(1−ρ)

m(1+µ(m−1))

)
. (5.3.9)

Let us consider the continuous function

H(r) := r+
∞

∑
m=2

2(1−ρ)

m(1+µ(m−1))
rm −

(
1−2

∞

∑
m=2

(−1)m−1(1−ρ)

m(1+µ(m−1))

)
.

Now

H ′(r) = 1+
∞

∑
m=2

2m(1−ρ)

m(1+µ(m−1))
rm−1 > 0

for all r ∈ (0,1), which implies that H is a strictly increasing continuous function. Note that H(0)< 0
and

H(1) =
∞

∑
m=2

2(1−ρ)

m(1+µ(m−1))
+

∞

∑
m=2

2(−1)m−1(1−ρ)

m(1+µ(m−1))
> 0.

Thus by the Intermediate Value Theorem for continuous function, we let r∗ be the unique root of
H(r) = 0 in (0,1). Now using Lemma 5.3.3 and the inequality (5.3.9), we have

|z|+
∞

∑
m=2

(|am|+ |bm|)|z|m ≤ r+
∞

∑
m=2

2(1−ρ)

m(1+µ(m−1))
rm ≤ r∗+

∞

∑
m=2

2(1−ρ)

m(1+µ(m−1))
(r∗)m

=

(
1−2

∞

∑
m=2

(−1)m−1(1−ρ)

m(1+µ(m−1))

)
≤ d( f (0),∂ f (D)),

which hold for r ≤ r∗. Now consider the analytic function

f (z) = z+
∞

∑
m=2

2(−1)m−1(1−ρ)

m(1+µ(m−1))
zm.

Then clearly f ∈ W 0
H (µ,ρ) and at |z| = r∗, we get |z|+ ∑

∞
m=2(|am|+ |bm|)|z|m = d( f (0),∂ f (D)).

Hence the radius r∗ is the Bohr radius for the class W 0
H (µ,ρ).

Now Theorem 5.3.16 yields the Bohr radius for the classes W 0
H (µ,0) = W 0

H (µ), W 0
H (0,ρ) =

P0
H (ρ), W 0

H (1,0) =W 0
H and W 0

H (0,0) = P0
H . Here we mention the following:

Corollary 5.3.17. Let f (z) = z+∑
∞
m=2 amzm +∑

∞
m=2 bmzm ∈ P0

H . Then

|z|+
∞

∑
m=2

(|am|+ |bm|)|z|m ≤ d( f (0),∂ f (D))

for |z| ≤ r∗, where the Bohr radius r∗ is the unique positive root in (0,1) of

r+
∞

∑
m=2

2
m

rm = 1−2
∞

∑
m=2

(−1)m−1

m
. (5.3.10)

For the case g ≡ 0, the class W 0
H (µ,ρ) reduces to W (µ,ρ), introduced by Gao and Zohu [53].

Corollary 5.3.18. The Bohr radius of the classes W (µ,ρ) and W 0
H (µ,ρ) is same.
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Remark 5.3.2. We studied the Bohr phenomenon for the class B0
H (M) and pointed out its several ap-

plications in the context of various known classes. Further, the Bohr radius for the classes of q-starlike
and q-convex functions studied in [15] can be obtained by merely an application of our result. Simi-
larly, many other classes can also be dealt with for the Bohr radius. Since S ∗∗

τ (C,D) ⊂ S ∗∗
H (C,D),

S∗τ(C,D) ⊂ S ∗
H (C,D) and Sc

τ(C,D) ⊂ S c
H (C,D). If we let r∗ be the Bohr radius for a well defined

class F , then we conclude that r∗ ≤ r∗ whenever F = S ∗∗
H (C,D) or S ∗

H (C,D) or S c
H (C,D). How-

ever, finding r∗ is still open.

5.4 A generalized Bohr-Rogosinski phenomenon

In this section, we generalize the Bohr-Rogosinski sum for the Ma-Minda classes of starlike and

convex functions. Also the phenomenon is studied for the classes of starlike functions with respect

to symmetric points and conjugate points along with their convex cases. Further, the connections

between the derived results and the known ones are established with suitable examples. For reader’s

convenience, we again recall the following prominent results :

Theorem H (Bohr’s Theorem, [34]). Let g(z) = ∑
∞
k=0 akzk be an analytic function in D and |g(z)|< 1

for all z ∈ D, then
∞

∑
k=0

|ak||z|k ≤ 1, for |z| ≤ 1
3
.

Theorem I (Rogosinski Theorem). If g(z) = ∑
∞
k=0 bkzk be an analytic function in D with |g(z)| < 1,

then for every N ≥ 1, we have ∣∣∣∣∣N−1

∑
k=0

bkzk

∣∣∣∣∣≤ 1, for |z| ≤ 1
2
.

The radius 1/2 is called the Rogosinski radius.

Recently, Kumar and Sahoo [90] obtained the generalized classical Bohr’s Theorem for functions

satisfying ℜ( f )(z)< 1. Also see, Kayumov et al. [77].

Theorem J. [90, Theorem 2.2] Let {νk(r)}∞
k=0 be a sequence of non-negative continuous functions in

[0,1) such that the series

ν0(r)+
∞

∑
k=1

νk(r)

converges locally uniformly with respect to r ∈ [0,1). Let f (z) = ∑
∞
n=0 anzn with ℜ f (z) < 1 and

p ∈ (0,1]. If

ν0(r)>
2(1+ rm)

p(1− rm)

∞

∑
k=1

νk(r).

Then the following sharp inequality holds:

| f (zm)|ν0(r)+
∞

∑
k=1

|ak|νk(r)≤ ν0(r) for all |z|= r ≤ R1,
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where R1 is the minimal positive root of the equation:

ν0(r) =
2(1+ rm)

p(1− rm)

∞

∑
k=1

νk(r).

In case when

ν0(r)<
2(1+ rm)

p(1− rm)

∞

∑
k=1

νk(r)

in some interval (R1,R1 + ε), then the number R1 can not be improved.

If we choose νk(r) = rk in Theorem J, we get Bohr’s Theorem H. At this juncture, it is natural to pose

the following problem:

Problem 5.4.1. Can we establish the analogue of Theorem J for the Ma-Minda classes S ∗(ψ) and
C (ψ) ?

In the context of the above problem and Muhanna [111], we now describe the notion of generalized

Bohr-Rogosinski phenomenon here below, in terms of subordination, following the recent development

as seen in [77,90,100].

Definition 5.4.11. Let f (z) = ∑
∞
k=0 akzk and g(z) = ∑

∞
k=0 bkzk are analytic in D. Let d( f (0),∂Ω)

denotes the Euclidean distance between f (0) and the boundary of Ω = f (D). For a fixed f , consider a
class of analytic functions

S( f ) := {g : g ≺ f}

or equivalently,
S(Ω) := {g : g(z) ∈ Ω}.

Then we say S( f ) satisfies the Generalized Bohr-Rogosinski phenomenon, if there exists a constant
r0 ∈ (0,1] such that

P(r,g, f )+
∞

∑
k=1

|bk|φk(r)≤ d( f (0),∂Ω),

holds for all |z|= r ≤ r0, where

(i) P(r,g, f ) represent some function of r or certain proper combination of moduli of g, f and their
derivatives.

(ii) {φk(r)} be a sequence of non-negative continuous functions in [0,1) such that the series of the
form

p0φ0(r)+
∞

∑
k=1

pkφk(r)

converges locally uniformly with respect to r ∈ [0,1), where pk depends on the function f and
provide bounds for bk.

For P(r,g, f ) = |g(z)|, φk(r) = rk (k ≥ N) and 0 otherwise in the Definition 5.4.11 gives the quantity

considered by Kayumov et al. [76], which is known as the Bohr-Rogosinski sum, given by

|g(z)|+
∞

∑
k=N

|bk||z|k, |z|= r.
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The link between the Bohr-Rogosinski and Bohr phenomenon can be noticed, if we replace |g(z)|
by g(0) with N = 1. We also refer the readers to see [3, 13]. Now we see that the family S( f ) has

Bohr-Rogosinski phenomenon provided there exists r f
N ∈ (0,1] such that the inequality:

|g(z)|+
∞

∑
k=N

|bk||z|k ≤ | f (0)|+d( f (0),∂Ω)

holds for |z|= r ≤ r f
N . The largest such r f

N is called the Bohr-Rogosinski radius.

In case when the function f is normalized, then Kumar and Gangania [52] studied Bohr-Rogosinski

phenomenon for the class S f (ψ), which is given below.

Theorem 5.4.12. [52, Theorem 2.3, Page no. 7] Let f0(z) be given by the equation (4.5.2) and f (z) =
z+∑

∞
n=2 anzn ∈ S ∗(ψ). Assume f0(z) = z+∑

∞
n=2 tnzn and f̂0(r) = r+∑

∞
n=2 |tn|rn. If g ∈ S f (ψ). Then

|g(zm)|+
∞

∑
k=N

|bk||z|k ≤ d(0,∂Ω)

holds for |z| = rb ≤ min{1
3 ,r0}, where m,N ∈ N, Ω = f (D) and r0 is the unique positive root of the

equation:
f̂0(rm)+ f̂0(r)− p f̂0

(r) =− f0(−1),

where

p f̂0
(r) =


0, N = 1;
r, N = 2;
r+∑

N−1
n=2 |tn|rn, N ≥ 3.

The result is sharp when rb = r0 and tn > 0.

For the class C (ψ), see [52, Theorem 2.13, page no. 12]. In the context of the above, also see

[3,13,31,76]. Recall the Bohr Operator

Mr( f ) =
∞

∑
n=0

|an||zn|=
∞

∑
n=0

|an|rn

for the analytic functions f (z) = ∑
∞
n=0 anzn. We considered its extension defined in (5.1.1), which is

given by

MN
r ( f ) =

∞

∑
n=N

|an||zn|=
∞

∑
n=N

|an|rn.

For the properties of MN
r ( f ) in terms of the sequence {νn(r)}∞

n=0, see [129, Lemma 1]. Using this

operator, a simple proof of [31, Lemma 1] was achieved by Gangania and Kumar [52] to settle the

Bohr-Rogosinski Phenomenon for the classes S ∗(ψ) and C (ψ), which in terms of interim k-th section

fk(z) := ∑
k
n=N anzn is as follows:

Lemma 5.4.1. [52] let f (z) = ∑
∞
n=0 anzn and g(z) = ∑

∞
k=0 bkzk be analytic in D and g ≺ f , then

MN
r (gk)≤ MN

r ( fk) (5.4.1)
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for all |z|= r ≤ 1/3 and k,N ∈ N.

When N = 1 and k → ∞, the lemma was obtained by Bhowmik and Das [31]. Various interesting

applications of this lemma can be seen in [31,51,52,64,85].

While we establish the Bohr-type inequalities for the general class S ∗(ψ) or C (ψ), the main diffi-

culty that we come across is the unavailability of the sharp coefficients bounds. Here, we require the

use of the Lemma 5.2.1 or its proper modifications. Interestingly, the Lemma 5.2.1 (or Lemma 5.4.1)

also implies that if f ≺ g, then within the disk |z| ≤ 1/3, we have |an| ≤ |bn| for all n ∈ N∪{0}, where

bn are the coefficients of the function g in Lemma 5.2.1. Further, this readily gives the following:

Lemma 5.4.2. Let f (z) = ∑
∞
n=0 anzn and g(z) = ∑

∞
n=0 bnzn be analytic in D. Let {νk(r)}∞

k=0 be a
sequence of non-negative functions, continuous in [0,1) such that the series

∞

∑
n=0

|bn|νk(r)

converges locally uniformly with respect to r ∈ [0,1). If g ≺ f , then

∞

∑
n=0

|an|νn(r)≤
∞

∑
n=0

|bn|νn(r) for all |z|= r ≤ 1
3
.

For a different version of the Lemma 5.4.2 with the conditions νm+n(r)≤ νm(r)νn(r) and ν0(r) = 1,

see [129, Theorem 3].

To discuss further the Bohr phenomenon, let us recall some well-known classes. A function f ∈ A

is in the class K of close-to-convex if ℜ(z f ′(z)/g(z)) > 0, where g ∈ S ∗. In 2004, Ravichandran

studied the amalgamated treatment for the classes of starlike and convex functions with respect to the

symmetric points for the growth and distortion theorems:

Definition 5.4.13. [136] A function f ∈A is in the class S ∗
s (ψ) and Cs(ψ) if it satisfy z f ′(z)/h(z)≺

ψ(z) and (z f ′(z))′/h′(z)≺ ψ(z) respectively, where 2h(z) = f (z)− f (−z).

Now if we take 2h(z) = f (z)+ f (z̄) in Definition 5.4.13, we obtain the classes S ∗
c (ψ) and Cc(ψ)

of starlike and convex functions with respect to conjugate points, respectively. For the choice 2h(z) =

f (z)− f (−z̄), we have the classes S ∗
sc(ψ) and Csc(ψ) of starlike and convex functions with respect to

the symmetric conjugate points, respectively. See [136].

Motivated, by the class S ∗
s ((1+ z)/(1− z)) [147], Gao and Zhou [54] studied the class Ks of close-

to-convex functions f , which is characterized as:

ℜ

(
z2 f ′(z)

g(z)g(−z)

)
> 0,

where g is some starlike function of order 1/2. In view of the Definition 5.4.13, the generalized class

Ks(ψ) was studied by Cho et al. [41] and Wang et al. [169].

In this section, we positively answer the Problem 5.4.1 for the classes S ∗(ψ) and C (ψ). Further,

we study the Bohr-Rogosinski phenomenon for the classes Ks(ψ), S ∗
c (ψ), Cc(ψ) and Cs(ψ). For
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convenience, we denote f̂ (z) = ∑
∞
n=0 |an|zn, whenever f (z) = ∑

∞
n=0 anzn.

5.4.1 Generalized Bohr’s sum for Ma-Minda starlike functions

We here solve the Problem 5.4.1. But as we do not have sharp coefficient’s bound for each an for

the given class in general. Thus for certain valid assumptions to solve it, we need the following:

Lemma 5.4.3. The families S ∗(ψ) and C (ψ) are normal and compact.

Proof. From Montel’s Theorem [58], we see that the class S ∗(ψ) is a normal family. Now let us prove
that S ∗(ψ) is compact. Let { fn}n∈N be a sequence of functions from S ∗(ψ). Suppose that { fn} be
convergent. Then it is well-known that

lim
n→∞

fn := f ∈ S .

We show that f ∈ S ∗(ψ). If possible, suppose that there exists a nonzero point z0 ∈ D such that
g(z0) ̸∈ ψ(D), where g(z) = z f ′(z)/ f (z). Note that the corresponding sequence {gn} converges to g,
where gn(z) = z f ′n(z)/ fn(z). Now let

ε = dist(g(z0),∂ψ(D)).

Then the open ball B(g(z0),ε) ̸⊂ ψ(D). Since gn → g, in particular, gn(z0) → g(z0). There exists
n(ε) ∈ N such that

gn(z0) ∈ B(g(z0),ε), ∀n ≥ n(ε),

which implies gn(z0) ̸∈ ψ(D), ∀n ≥ n(ε). But as fn ∈ S ∗(ψ),

gn(z0) =
z0 f ′n(z0)

fn(z0)
∈ ψ(D), ∀n.

Hence, we must have f ∈ S ∗(ψ), that means the family S ∗(ψ) is compact. With similar arguments,
it is easy to see that the family C (ψ) is also compact.

Remark 5.4.1. (Existence of sharp coefficients Bounds) Let us consider the real-valued functional J

defined on S ∗(ψ) as
J ( f ) = max{|an|} for every f ∈ S ∗(ψ),

where n is fixed and f (z) = z+∑
∞
n=2 anzn. From Lemma 5.4.3, S ∗(ψ) is normal and compact. Further,

since S ∗(ψ) ⊆ S ∗, we have |an| ≤ n, that means J is a bounded functional. Hence, following the
discussion in the Goodman’s Book [58, page no. 44-45], we conclude that

J ( f ) = max{|an|} exists in the family S ∗(ψ).

Thus, let us say that
max

f∈S ∗(ψ)
{|an|} := M(n)
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for each n ∈ N. For instance, M(n) = n for the class of univalent starlike functions. For the Janowski
starlike functions, it is given by [16, Theorem 3].

We can now state our result in a general setting whose complement is Theorem 5.4.15:

Theorem 5.4.14. Let {φn(r)}∞
n=1 be a sequence of non-negative continuous functions in (0,1) such

that the series

φ1(r)+
∞

∑
n=2

M(n)φn(r)

converges locally uniformly with respect to each r ∈ [0,1). If for β ∈ [0,1]

β f ′0(r
m)+(1−β ) f0(rm)+

∞

∑
n=1

M(n)φn(r)<− f0(−1). (5.4.2)

and the function f (z) = z+∑
∞
n=2 anzn ∈ S ∗(ψ). Then the following inequality

β | f ′(zm)|+(1−β )| f (zm)|+
∞

∑
n=1

|an|φn(r)≤ d(0,∂Ω)

holds for |z|= r ≤ r0, where m ∈ N, Ω = f (D) and r0 is the smallest positive root of the equation:

β f ′0(r
m)+(1−β ) f0(rm)+

∞

∑
n=1

M(n)φn(r) =− f0(−1), (5.4.3)

where M(1) = 1 with M(n) as described in remark 5.4.1 and

f0(z) = zexp
∫ z

0

ψ(t)−1
t

dt.

In case when f0 or it’s rotation serves as an extremal for the coefficient’s bounds M(n), then the radius
r0 is sharp.

Proof. From Lemma 5.4.3 and Remark 5.4.1, we see that: (a) J is a bounded real valued continuous
functional, (b) S ∗(ψ) is a normal family, and (c) S ∗(ψ) is a compact family in D. Thus, the sharp
bounds for each an exists. In view of Remark 5.4.1, we have

|an| ≤ M(n),

which yields that
∞

∑
n=1

|an|φn(r)≤
∞

∑
n=1

M(n)φn(r). (5.4.4)

The Koebe-radius for the functions in S ∗(ψ) satisfies

d(0,∂ f (D))≥− f0(−1). (5.4.5)

Now combining it with the growth and distortion theorems [102], and using the condition 5.4.2, the
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inequalities (5.4.4) and (5.4.5) gives

β | f ′(zm)|+(1−β )| f (zm)|+
∞

∑
n=1

|an|φn(r)

≤ β f ′0(r
m)+(1−β ) f0(rm)+

∞

∑
n=1

M(n)φn(r)

≤ d(0,∂Ω),

which holds in |z|= r ≤ r0, where r0 is the minimal positive root of the equation (5.4.3). The existence
of the root r0 follows from the Intermediate value theorem for continuous function in (0,1). To see the
sharpness case, let us consider the function

f0(z) = zexp
∫ z

0

ψ(t)−1
t

dt.

such that it’s Taylor series coefficients an( f0) satisfies |an( f0)|= M(n). For this function we have

d(0,∂ f (D)) =− f0(−1),

and the following equality holds for |z|= r0:

β f ′0(r
m)+(1−β ) f0(rm)+

∞

∑
n=1

M(n)φn(r) = d(0,∂ f (D)),

and therefore, if f0 is extremal for each coefficient’s bound, then the radius r0 can not be improved.

Question 5.4.1. What if we do not have M(n)?

For such cases, the following result complements Theorem 5.4.14:

Theorem 5.4.15. Let {φn(r)}∞
n=1 be a non-negative sequence of continuous functions in [0,1] such that

the series

φ1(r)+
∞

∑
n=2

∣∣∣∣∣ f (n)0 (0)
n!

∣∣∣∣∣φn(r)

converges locally uniformly with respect to each r ∈ [0,1). If

β | f ′(zm)|+(1−β )| f (zm)|+φ1(r)+
∞

∑
n=2

∣∣∣∣∣ f (n)0 (0)
n!

∣∣∣∣∣φn(r)<− f0(−1), β ∈ [0,1]

and f (z) = z+∑
∞
n=2 anzn ∈ S ∗(ψ). Then

β | f ′(zm)|+(1−β )| f (zm)|+
∞

∑
n=1

|an|φn(r)≤ d(0,∂Ω) (5.4.6)

holds for |z| = r ≤ rb = min{1/3,r0}, where m ∈ N, Ω = f (D) and r0 is the smallest positive root of
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the equation:

β f ′0(r
m)+(1−β ) f0(rm)+

∞

∑
n=2

∣∣∣∣∣ f (n)0 (0)
n!

∣∣∣∣∣φn(r) =− f0(−1)−φ1(r),

where
f0(z) = zexp

∫ z

0

ψ(t)−1
t

dt.

Moreover, the inequality (5.4.6) also holds for the class S f (ψ) in |z|= r ≤ rb. When rb = r0, then the
radius is best possible.

Proof. Since f ∈ S ∗(ψ), it is known that f (z)/z ≺ f0(z)/z. Applying Lemma 5.4.2, we see that

m

∑
n=N

|an||z|n ≤
m

∑
k=N

∣∣∣∣ f k
0 (0)
k!

∣∣∣∣ |z|k for |z|= r ≤ 1
3
.

Now choosing N = m, we conclude that

|an| ≤
∣∣∣∣ f n

0 (0)
n!

∣∣∣∣
holds for each n within the disk |z|= r ≤ 1/3. Hence, it suffices to see

β | f ′(zm)|+(1−β )| f (zm)|+
∞

∑
n=1

|an|φn(r)

≤ β | f ′0(rm)|+(1−β )| f0(rm)|+φ1(r)+
∞

∑
n=2

∣∣∣∣∣ f (n)0 (0)
n!

∣∣∣∣∣φn(r)

≤ − f0(−1)

≤ d(0,∂Ω),

holds in |z|= r ≤ min{r0,1/3}. If r0 ≤ 1/3, then the equality case can be seen for the function f = f0,
whenever Taylor coefficients of ψ are positive.

The result for the class C (ψ) also follows on similar lines, so we omit the details of the proof.

Theorem 5.4.16. Let {φn(r)}∞
n=1 be a non-negative sequence of continuous functions in [0,1] such that

the series

φ1(r)+
∞

∑
n=2

∣∣∣∣∣ f (n)0 (0)
n!

∣∣∣∣∣φn(r)

converges locally uniformly with respect to each r ∈ [0,1). If

β | f ′(zm)|+(1−β )| f (zm)|+φ1(r)+
∞

∑
n=2

∣∣∣∣∣ f (n)0 (0)
n!

∣∣∣∣∣φn(r)<− f0(−1), , β ∈ [0,1]
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and f (z) = z+∑
∞
n=2 anzn ∈ C (ψ). Then

β | f ′(zm)|+(1−β )| f (zm)|+
∞

∑
n=1

|an|φn(r)≤ d(0,∂Ω) (5.4.7)

holds for |z| = r ≤ rb = min{1/3,r0}, where m ∈ N, Ω = f (D) and r0 is the smallest positive root of
the equation:

β f ′0(r
m)+(1−β ) f0(rm)+

∞

∑
n=2

∣∣∣∣∣ f (n)0 (0)
n!

∣∣∣∣∣φn(r) =− f0(−1)−φ1(r),

where f0 satisfy

1+
z f ′′0 (z)
f ′0(z)

= ψ(z).

Moreover, the inequality (5.4.7) also holds for the class S f (ψ) in |z|= r ≤ rb. When rb = r0, then the
radius is best possible.

Remark 5.4.2. 1. By taking φn(r) = rn in Theorem 5.4.15 give [86, Theorem 5.1], and [64, Theo-
rem 3.1] for the choice g = f with Taylor coefficients of ψ being positive.

2. Taking φn = rn for n ≥ N and 0 elsewhere in Theorem 5.4.15 yields [52, Theorem 5, Corollary 3].

Let us discuss the generalized Bohr-Rogosinski phenomenon for the celebrated Janowski class of

univalent starlike functions. For simplicity, write S ∗((1+Dz)/(1+Ez))≡ S [D,E], where −1 ≤ E <

D ≤ 1.

Corollary 5.4.17. Let {φn(r)}∞
n=1 be a sequence of non-negative continuous functions in (0,1) such

that the series

φ1(r)+
∞

∑
n=2

n−2

∏
k=0

|E −D+Ek|
k+1

φn(r)

converges locally uniformly with respect to each r ∈ [0,1). If for β ∈ [0,1]

β f ′0(r
m)+(1−β ) f0(rm)+

∞

∑
n=1

|an( f0)|φn(r)<− f0(−1).

and the function f (z) = z+∑
∞
n=2 anzn ∈ S [D,E]. Then the following sharp inequality

β | f ′(zm)|+(1−β )| f (zm)|+
∞

∑
n=1

|an|φn(r)≤ d(0,∂Ω) (5.4.8)

holds for |z|= r ≤ r0, where m ∈ N, Ω = f (D) and r0 is the minimal positive root of the equations:
If E ̸= 0

β (1+Drm)(1+Erm)
D−2E

E +(1−β )rm(1+Erm)
D−E

E

+
∞

∑
n=2

n−2

∏
k=0

|E −D+Ek|
k+1

φn(r) = (1−E)
D−E

E −φ1(r),
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and if E = 0

eDrm
(β +(1−β (1−D))rm)+

∞

∑
n=2

n−2

∏
k=0

D
k+1

φn(r) = e−D −φ1(r),

where

f0(z) =

{
z(1+Ez)

D−E
E , E ̸= 0;

zeDz, E = 0.
(5.4.9)

The radius r0 can not be improved.

Proof. Let f (z) = z+∑
∞
n=2 anzn ∈ S [D,E]. Then for n ≥ 2, [16, Theorem 3] states that:

|an| ≤
n−2

∏
k=0

|E −D+Ek|
k+1

= M(n),

where the function f0 given by (5.4.9) gives equality. The result now follows by Theorem 5.4.14.

Remark 5.4.3. Taking m → ∞ and β = 0 in Corollary 5.4.17 yields: If

∞

∑
n=1

|an( f0)|φn(r)<− f0(−1).

Then the sharp inequality ∑
∞
n=1 |an|φn(r) ≤ d(0,∂Ω) holds for |z| = r ≤ r0, where m ∈ N, Ω = f (D)

and r0 is the minimal positive root of the equations:
If E ̸= 0

∞

∑
n=2

n−2

∏
k=0

|E −D+Ek|
k+1

φn(r) = (1−E)
D−E

E −φ1(r),

and if E = 0

∞

∑
n=2

n−2

∏
k=0

D
k+1

φn(r) = e−D −φ1(r),

where f0 is given in (5.4.9).

In Corollary 5.4.17, putting D = 1−2α and E =−1, where 0 ≤ α < 1, we get the result for the class

of univalent starlike functions of order α , that is, S ∗(α):

Corollary 5.4.18. Let {φn(r)}∞
n=1 be a sequence of non-negative continuous functions in (0,1) such

that the series

φ1(r)+
∞

∑
n=2

n−2

∏
k=0

k+2(1−α)

k+1
φn(r)

converges locally uniformly with respect to each r ∈ [0,1). If for β ∈ [0,1]

β (1+(1−2α)rm)

(1− rm)2(1−α)+1 +
(1−β )rm

(1− rm)2(1−α)
+

∞

∑
n=2

n−2

∏
k=0

k+2(1−α)

k+1
φn(r)<

1
41−α

−φ1(r).
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and f (z) = z+∑
∞
n=2 anzn ∈ S ∗(α). Then the sharp inequality (5.4.8) holds for |z| = r ≤ r0, where

m ∈ N, Ω = f (D) and r0 is the minimal positive root of the equations:

β (1+(1−2α)rm)

(1− rm)2(1−α)+1 +
(1−β )rm

(1− rm)2(1−α)
+

∞

∑
n=2

n−2

∏
k=0

k+2(1−α)

k+1
φn(r) =

1
41−α

−φ1(r).

The radius r0 is sharp.

Putting α = 0 in Corollary 5.4.18, we get the following:

Corollary 5.4.19. Let the sequence {φn(r)}∞
n=1 satisfy the hypothesis of Corollary 5.4.18 with α = 0.

If f (z) = z+∑
∞
n=2 anzn ∈ S ∗. Then the inequality (5.4.8) holds for |z| = r ≤ r0, where m,N ∈ N,

Ω = f (D) and r0 is the smallest positive root of the equations:

β (1+ rm)

(1− rm)3 +
(1−β )rm

(1− rm)2 +
∞

∑
n=1

nφn(r) =
1
4
.

The radius r0 is sharp.

The following series of examples explore the choices of sequence φn(r):

Example 5.4.20. Let us consider φn(r) = 0 for 1≤ n≤N, and φn(r) = rn for n≥N in Corollary 5.4.17.
Then the following sharp inequality

β | f ′(zm)|+(1−β )| f (zm)|+
∞

∑
n=N

|an|rn ≤ d(0,∂Ω)

holds for |z| = r ≤ Rm,β ,N , where m,N ∈ N, Ω = f (D) and Rm,β ,N is the unique positive root of the
equations:
If E ̸= 0

β (1+Drm)(1+Erm)
D−2E

E +(1−β )rm(1+Erm)
D−E

E

+
∞

∑
n=N

N−2

∏
k=0

|E −D+Ek|
k+1

rn = (1−E)
D−E

E ,

and if E = 0

eDrm
(β +(1−β (1−D))rm)+

∞

∑
n=2

n−2

∏
k=0

D
k+1

φn(r) = e−D.

Example 5.4.21. Taking φ2n−1(r) = 0 and φ2n(r) = r2n in Corollary 5.4.18 yields

β | f ′(zm)|+(1−β )| f (zm)|+
∞

∑
n=1

|a2n|r2n ≤ d(0,∂Ω)

which holds for |z|= r ≤ Rm,β ,α , where m ∈ N, β ∈ [0,1], Ω = f (D) and Rm,β ,α is the unique positive
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root of the equations:

β (1+(1−2α)rm)

(1− rm)2(1−α)+1 +
(1−β )rm

(1− rm)2(1−α)
+

∞

∑
n=1

2(n−1)

∏
k=0

k+2(1−α)

k+1
r2n =

1
41−α

.

The radius is sharp.

Example 5.4.22. Letting φ2n(r) = 0 and φ2n−1(r) = r2n−1 in Corollary 5.4.19 gives the following sharp
inequality

β | f ′(zm)|+(1−β )| f (zm)|+
∞

∑
n=1

|a2n−1|r2n−1 ≤ d(0,∂Ω)

in |z| = r ≤ Rm,β where m ∈ N, β ∈ [0,1], Ω = f (D) and Rm,β is the unique positive root of the
equations:

β (1+ rm)

(1− rm)2+1 +
(1−β )rm

(1− rm)2 +
r(1+ r2)

(1− r2)2 =
1
4
.

The radius is sharp.

5.4.2 Bohr-Rogosinski sum for starlike and convex functions with respect to conjugate

and symmetric points

To discuss the Bohr-Rogosinski phenomenon, we first need to recall some related basic definitions,

where

1. ψ(z) ∈ P is an analytic univalent function in |z|< 1.

2. ℜψ(z)> 0, ψ ′(0)> 0, ψ(0) = 1 and ψ(D) is symmetric about real axis.

Definition 5.4.23. [41] Let us consider the subclass of close-to-convex functions given by

Ks(ψ) =

{
f ∈ A : − z2 f ′(z)

h(z)h(−z)
≺ ψ(z)

}
for some h ∈ S ∗(1/2).

Definition 5.4.24. [136] The class of starlike functions with respect to conjugate points is given by

S ∗
c (ψ) =

{
f ∈ A :

2z f ′(z)

f (z)+ f (z̄)
≺ ψ(z)

}
.

Definition 5.4.25. [136] The class of convex functions with respect to conjugate points given by

Cc(ψ) =

{
f ∈ A :

2(z f ′(z))′

( f (z)+ f (z̄))′
≺ ψ(z)

}
.

Definition 5.4.26. [136] The class of convex function with respect to symmetric points is given by

Cs(ψ) =

{
f ∈ A :

2(z f ′(z))′

f ′(z)+ f ′(−z)
≺ ψ(z)

}
.
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We also need to recall the following fundamental results for the classes of Ma-Minda starlike and

convex functions:

Lemma 5.4.4. ( [102]) Let f ∈ S ∗(ψ) and |z0| = r < 1. Then f (z)/z ≺ f0(z)/z and − f0(−r) ≤
| f (z0)| ≤ f0(r). Equality holds for some z0 ̸= 0 if and only if f is a rotation of f0, where

f0(z) = zexp
∫ z

0

ψ(t)−1
t

dt. (5.4.10)

Lemma 5.4.5. ( [102]) Let f ∈ C (ψ). Then z f ′′(z)/ f ′(z) ≺ zl′′0 (z)/l′0(z) and f ′(z) ≺ l′0(z). Also, for
|z|= r we have −l0(−r)≤ | f (z)| ≤ l0(r), where

1+ zl′′0 (z)/l′0(z) = ψ(z). (5.4.11)

Remark 5.4.4. Throughout this section, we shall assume that min|z|=r |ψ(z)|=ψ(−r) and max|z|=r |ψ(z)|=
ψ(r), as under these conditions growth theorems for the above-defined classes in Definitions 5.4.23,
5.4.24, 5.4.25 and 5.4.26 are known.

The following result yields the Bohr-Rogosonski radius for the analytic functions subordinated by

close-to-convex functions.

Theorem 5.4.27. Let f ∈Ks(ψ) and Ω= f (D). If g∈ S f (ψ). Then |g(zm)|+∑
∞
k=N |bk||z|k ≤ d(0,∂Ω)

holds for |z|= rb ≤ min{1
3 ,r0}, where m,N ∈ N and r0 is the minimal positive root of the equation:

∫ rm

0

ψ(t)
1− t2 dt +RN(r) =

∫ 1

0

ψ(−t)
1+ t2 dt, (5.4.12)

where

RN(r) =
∫ r

0

MN
t (ψ)t2N

t2(1− t2)
dt and f0(z) =

∫ z

0

ψ(t)
1− t2 dt.

Proof. Let g(z) = ∑
∞
k=1 bkzk ≺ f (z). Then by Lemma 5.2.1, for r ≤ 1/3

∞

∑
k=N

|bk|rk ≤
∞

∑
n=N

|an|rn =
∞

∑
n=N

|b̃n|
n

rn, (5.4.13)

where b̃n are the power series coefficient of G̃(z) defined below. From Definition 5.4.23, we have

z f ′(z) = G(z)ψ(ω(z)) =: G̃(z),

where

G(z) =
−h(z)h(−z)

z
=: z+

∞

∑
n=2

h2n−1z2n−1,

which is an odd starlike function. Now a simple integration gives that

f (z) =
∫ z

0

G(t)ψ(ω(t))
t

dt.
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For f ∈ A , let us consider the operator

MN
r ( f ) =

∞

∑
n=N

|an||zn|=
∞

∑
n=N

|an|rn.

Then
MN

r (G̃)≤ MN
r (G)MN

r (ψ ◦ω). (5.4.14)

Since ψ ◦ω ≺ ψ , we get
MN

r (ψ ◦ω)≤ MN
r (ψ), for r ≤ 1/3. (5.4.15)

It is known that odd starlike functions satisfies |h2n−1| ≤ 1. Thus

MN
r (G)≤

∞

∑
n=N

r2n−1 =
1
r

(
r2N

1− r2

)
. (5.4.16)

Now combining the inequalities (5.4.13), (5.4.14), (5.4.15) and (5.4.16), the following sequence of
inequalities holds for r ≤ 1/3:

∞

∑
k=N

|bk|rk ≤
∞

∑
n=N

|b̃n|
n

rn =
∫ r

0

MN
t (G̃)

t
dt ≤

∫ r

0

MN
t (G)MN

t (ψ ◦ω)

t
dt

≤
∫ r

0

MN
t (ψ)t2N

t2(1− t2)
dt := RN(r). (5.4.17)

Since, also see growth theorem in [41, Theorem 2, page no. 4],

|g(z)|= | f (ω(z))| ≤ max
|z|=r

| f (|z| ≤ r)| ≤
∫ r

0

ψ(t)
1− t2 dt = f0(r),

it follows that
|g(zm)| ≤ f (rm)≤ f̂0(rm), where f0(z) =

∫ z

0

ψ(t)
1− t2 dt. (5.4.18)

Finally, note that

d(0,Ω)≥
∫ 1

0

ψ(−t)
1+ t2 dt.

Hence, from (5.4.17) and (5.4.18), we get

|g(zm)|+
∞

∑
k=N

|bk||z|k ≤ d(0,∂Ω)

for |z| = r ≤ rb = min{1/3,r0}, where r0 ∈ (0,1) is the minimal root of the equation (5.4.12). The
existence of the root follows by the Intermediate value theorem in the interval [0,1].

Remark 5.4.5. Taking m → ∞ and N = 1, then Theorem 5.4.27 reduces to [5, Theorem 2.2].

Corollary 5.4.28. If f ∈ Ks(ψ) and Ω = f (D). Then

| f (zm)|+
∞

∑
n=N

|an||z|n ≤ d(0,∂Ω)
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holds for |z|= rb ≤ min{1
3 ,r0}, where m,N ∈ N and r0 is the minimal positive root of the equation:

∫ rm

0

ψ(t)
1− t2 dt +RN(r) =

∫ 1

0

ψ(−t)
1+ t2 dt,

where

RN(r) =
∫ r

0

MN
t (ψ)t2N

t2(1− t2)
dt

and
f0(z) =

∫ z

0

ψ(t)
1− t2 dt.

Our next result provides the Bohr-Rogosonski radius for the analytic functions subordinated by star-

like function with respect to conjugate points.

Theorem 5.4.29. Let hψ be given by (4.5.2) and f (z) = z+∑
∞
n=2 anzn ∈ S ∗

c (ψ). If g ∈ S f (ψ). Then

|g(zm)|+
∞

∑
k=N

|bk||z|k ≤ d(0,∂Ω) (5.4.19)

holds for |z| = rb ≤ min{1
3 ,r0}, where m,N ∈ N, Ω = f (D) and r0 is the unique positive root of the

equation:
hψ(rm)+RN(r)+hψ(−1) = 0, (5.4.20)

where

RN(r) =
∫ r

0

MN
t (hψ)MN

t (ψ)

t
dt

The result is sharp when rb = r0 and tn > 0.

Proof. Since the function G(z) = ( f (z)+ f (z̄))/2 belongs to S ∗(ψ). Therefore, by Lemma [102] we
have

G(z)
z

≺
hψ(z)

z
,

which using Lemma 5.2.1 yields

MN
r (G)≤ MN

r (hψ) for r ≤ 1
3
. (5.4.21)

From Definition 5.4.24, we get z f ′(z) = G(z)ψ(ω(z)) which after integration gives

f (z) =
∫ z

0

G(t)ψ(ω(t))
t

dt. (5.4.22)

Since ψ ◦ω ≺ ψ ,

MN
r (ψ ◦ω)≤ MN

r (ψ) for r ≤ 1
3
. (5.4.23)
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Thus, combining (5.4.21), (5.4.22) and (5.4.23), we see that

∞

∑
k=N

|bk||z|k = MN
r (g)≤ MN

r ( f )

=
∫ r

0

MN
t (G)MN

t (ψ ◦ω)

t
dt

≤
∫ r

0

MN
t (hψ)MN

t (ψ)

t
dt =: RN(r),

holds for r ≤ 1/3. Also, using Maximum-principle of modulus and growth theorem [136], g ≺ f
implies that

|g(|z| ≤ r)|= | f (ω(|z| ≤ r))| ≤ max
|z|=r

| f (|z| ≤ r)|= hψ(r),

which yields |g(zm)| ≤ hψ(rm). Finally, note that

d(0,Ω)≥−hψ(−1).

Hence, the Bohr-Rogosinski inequality (5.2.13) holds for |z| ≤ min{1/3,r0}, where r0 is the root of the
equation (5.4.20). The existence of the root follows by the Intermediate value theorem for continuous
function in [0,1]. For the sharpness, note that for the function hψ , d(0,Ω) = −hψ(−1) such that if
rb = r0, then for the choice g = f = hψ :

|hψ(zm)|+
∞

∑
n=N

|tn||z|n = d(0,∂Ω)

holds for |z|= rb with tn > 0, where hψ(z) = z+∑
∞
n=2 tnzn as given in (4.5.2).

Remark 5.4.6. Let ψ(z) = (1+ z)/(1− z), then Theorem 5.4.29 reduces to [76, Theorem 6].

The following result is explicitly for the class S ∗
c (ψ).

Corollary 5.4.30. Let f (z) = z+∑
∞
n=2 anzn ∈ S ∗

c (ψ). Then

| f (zm)|+
∞

∑
n=N

|an||z|n ≤ d(0,∂Ω)

holds for |z| = rb ≤ min{1
3 ,r0}, where m,N ∈ N, Ω = f (D) and r0 is the unique positive root of the

equation:
hψ(rm)+RN(r)+hψ(−1) = 0,

where

RN(r) =
∫ r

0

MN
t (hψ)MN

t (ψ)

t
dt

and hψ be given by (4.5.2). The result is sharp when rb = r0 and tn > 0.

Remark 5.4.7. Taking m → ∞ and N = 1 in Theorem 5.4.29 and Corollary 5.4.30 establish the Bohr
phenonmenon for the classes S f (ψ) and S ∗

c (ψ), respectively given in [5, Lemma 2.12] and [5, Theo-
rem 2.9].
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In the following, we obtain Bohr-Rogosonski radius for the analytic functions subordinated by the

convex function with respect to conjugate points.

Theorem 5.4.31. Let f (z) = z+∑
∞
n=2 anzn ∈ Cc(ψ). If g ∈ S f (ψ). Then

|g(zm)|+
∞

∑
k=N

|bk||z|k ≤ d(0,∂Ω)

holds for |z| = rb ≤ min{1
3 ,r0}, where m,N ∈ N, Ω = f (D) and r0 is the minimal positive root of the

equation:
kψ(rm)+RN(r)+ kψ(−1) = 0, (5.4.24)

where
RN(r) =

∫ r

0

1
s

∫ s

0
MN

t (k
′
ψ)M

N
t (ψ)dtds,

and kψ(z) = z+∑
∞
n=2 lnzn is given by (5.4.11). The result is sharp when rb = r0 and ln > 0.

Proof. Consider the function

G(z) =
f (z)+ f (z̄)

2
.

Then G ∈ C (ψ). Now from Definition 5.4.25, we see that

(z f ′(z))′ = G′(z)ψ(ω(z)). (5.4.25)

This gives

f (z) =
∫ z

0

1
y

∫ y

0
G′(t)ψ(ω(t))dtdy. (5.4.26)

As G′ ≺ k′ψ , see Lemma 5.4.5, it follows using Lemma 5.2.1 that

MN
r (G

′)≤ MN
r (k

′
ψ) for r ≤ 1

3
. (5.4.27)

Hence, using (5.4.25), (5.4.26) and (5.4.27)

|g(zm)|+MN
r ( f )≤ kψ(rm)+

∫ r

0

1
y

∫ y

0
MN

t (G
′)MN

t (ψ ◦ω)dtdy

≤ kψ(rm)+
∫ r

0

1
y

∫ y

0
MN

t (k
′
ψ)M

N
t (ψ)dtdy

≤−kψ(−1)≤ d(0,∂Ω),

holds for |z|= r ≤ rb = min{1/3,r0}, where r0 is minimal root of the equation (5.4.24). The existence
of 0 < r0 < 1 can be seen by the Intermediate value theorem for continuous function in [0,1]. The case
of equality

|g(zm)|+
∞

∑
k=N

|bk||z|k = d(0,∂Ω)

follows with the choice g = f = kψ , whenever rb = r0 and ln > 0.
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Corollary 5.4.32. If f (z) = z+∑
∞
n=2 anzn ∈ Cc(ψ). Then

| f (zm)|+
∞

∑
k=N

|an||z|n ≤ d(0,∂Ω)

holds for |z| = rb ≤ min{1
3 ,r0}, where m,N ∈ N, Ω = f (D) and r0 is the minimal positive root of the

equation:
kψ(rm)+RN(r)+ kψ(−1) = 0,

where
RN(r) =

∫ r

0

1
s

∫ s

0
MN

t (k
′
ψ)M

N
t (ψ)dtds.

The result is sharp when rb = r0 and ln > 0.

Remark 5.4.8. Taking m → ∞ and N = 1 in Corollary 5.4.32 gives [5, Theorem 2.23].

Now, we omit the details of the proof of our next result as it works on similar lines discussed in the

above theorems.

Theorem 5.4.33. Let kψ(z) = z+∑
∞
n=2 lnzn be given by (5.4.11) and f (z) = z+∑

∞
n=2 anzn ∈ Cs(ψ). If

g ∈ S f (ψ). Then

|g(zm)|+
∞

∑
k=N

|bk||z|k ≤ d(0,∂Ω)

holds for |z| = rb ≤ min{1
3 ,r0}, where m,N ∈ N, Ω = f (D) and r0 is the unique positive root of the

equation:

∫ r

0

1
s

∫ s

0
ψ(t)(k′ψ(t

2))1/2dtds+RN(r) =
∫ 1

0

1
s

∫ s

0
ψ(−t)(k′ψ(−t2))1/2dtds,

where K′(z) = (k′ψ(z
2))1/2 and

RN(r) =
∫ r

0

1
s

∫ s

0
MN

t (K
′)MN

t (ψ)dtds.

The result is sharp when rb = r0 and ln > 0.

Corollary 5.4.34. If f (z) = z+∑
∞
n=2 anzn ∈ Cs(ψ). Then

| f (zm)|+
∞

∑
k=N

|an||z|n ≤ d(0,∂Ω)

holds for |z|= rb ≤ min{1
3 ,r0}, where m,N ∈ N, Ω = f (D) and r0 is as given in Theorem 5.4.33. The

result is sharp when rb = r0 and ln > 0.

Remark 5.4.9. Taking m → ∞ and N = 1 in Corollary 5.4.34 gives [5, Theorem 2.25].

Highlights of the chapter

In this chapter, we studied extensively the radius problem in view of Bohr and Rogosinski phe-

nomenon and their natural generalizations for the various classes of analytic functions, especially for
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the Ma-Minda classes of starlike and convex functions, which is a new attempt and would give a way

to further investigations in this direction. We also established the Bohr phenomenon for the classes of

certain harmonic functions and studied their application to certain classes of analytic univalent func-

tions.



Chapter 6

S ∗(φ) and C (φ)-radii of Some Special

functions

In this chapter, we consider the Ma-Minda classes of analytic functions S ∗(φ) := { f ∈A : (z f ′(z)/ f (z))≺
φ(z)} and C (φ) := { f ∈ A : (1+ z f ′′(z)/ f ′(z))≺ φ(z)} defined on the unit disk D and show that the

classes S ∗(1+αz) and C (1+αz), 0 < α ≤ 1 solve the problem of finding the sharp S ∗(φ)-radii and

C (φ)-radii for some normalized special functions, whenever φ(−1) = 1−α . The radius of strongly

starlikeness is also considered.

6.1 Introduction

The involvement of the special functions and their geometrical properties has been observed vastly

in the theory of univalent functions. We also used certain properties of hypergeometric functions in our

majorization problems. This motivates us to study another radius problem, which concerns the radii of

starlikeness and convexity of the special functions for the classes S ∗(φ) and C (φ).

A real entire function L maps real line into itself is said to be in the Laguerre-Pólya class L P , if it

can be expressed as follows:

L(x) = cxme−ax2+βx
∏
k≥1

(
1+

x
xk

)
e
−

x
xk ,

where c,β ,xk ∈R, a≥ 0, m∈N∪{0} and ∑xk
−2 <∞, see [21], [47, p. 703] and the references therein.

The class L P consists of entire functions which can be approximated by polynomials with only real

zeros, uniformly on the compact sets of the complex plane and it is closed under differentiation.

133
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Recall that S ∗(φ)-radius for a given normalized function f in A is defined as the largest radius r0

such that f ∈ S ∗(φ) in |z| ≤ r0. Similarly C (φ)-radius can be defined. For more radius problems we

refer to [29,38,50,109].

In view of Ma-Minda classes S ∗(φ) and C (φ), the specific choices of D and E in the Janowski

classes yields: S ∗[α,0] and C [α,0], which are the extensions of the Ram Singh [156] classes

S ∗[1,0] and C [1,0] respectively, where 0 < α ≤ 1, and S ∗(γ) := S ∗[1 − 2γ,−1] and C (γ) :=

C [1−2γ,−1], where 0 ≤ γ < 1 are the classes of starlike and convex functions of order γ , that is,

S ∗(γ) =

{
f ∈ A : ℜ

z f ′(z)
f (z)

> γ

}
and

C (γ) =

{
f ∈ A : ℜ

(
1+

z f ′′(z)
f ′(z)

)
> γ

}
.

Recently, S ∗(γ)-radius and C (γ)-radius for the normalized special functions, which can be repre-

sented as Hadamard factorization [95] under certain conditions were studied in [6, 21, 22, 25–29, 45].

Some of the special functions, which are studied recently in terms of radius problems are Bessel

functions [6, 22, 26] (see Watson’s treatise [171] for more on Bessel function), Struve functions [6, 21],

Wright functions [27], Lommel functions [6,21], Legendre polynomials of odd degree [29] and Ramanu-

jan type entire functions [45]. Evidently, the zeros of these special functions and the L P class played

an important role in the derivation of the above radius results. Now to proceed further, we consider

the following assumption as it covers many classical classes and the recently introduced classes, see

Corollary 6.7.1:

Assumption 6.1.1. Let φ be analytic and univalent with ℜφ(z)> 0, φ ′(0)> 0 and φ(D) is starlike with
respect to φ(0) = 1. Assume that the maximal disk {w : |w− 1| < α} ⊆ φ(D) and φ(−1) = 1−α .
Here, α is the largest such number depending upon φ(D).

In view of the above literature, we now concisely state our problem:

Problem 6.1.1. Let g be the normalized form of a given special function. Then find the S ∗(φ)-radius
and C (φ)-radius of g, i.e find the largest radius r0 such that g ∈ S ∗(φ) and C (φ) respectively in
|z| ≤ r0.

That is, S ∗(φ)-radius and C (φ)-radius of g is defined as follows:

r0(g) = sup
{

r ∈ R+ :
zg′(z)
g(z)

∈ φ(D),z ∈ Dr

}
and

r0(g) = sup
{

r ∈ R+ : 1+
zg′′(z)
g′(z)

∈ φ(D),z ∈ Dr

}
.

Note that here the fixed domain φ(D) will be given.

In this chapter, we obtain the S ∗(φ)-radius and C (φ)-radius of certain normalized special func-

tions using the extension of the Ram Singh class: S ∗[α,0] and C [α,0], where 0 < α ≤ 1 with the

Assumption 6.1.1. The radius of strongly starlikeness is also obtained.
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6.2 Starlikeness and Convexity of Wright and Mittag-Leffler functions

We deal here with two special functions.

6.2.1 Wright functions

Let us consider the generalized Bessel function

Φ(κ,δ ,z) = ∑
n≥0

zn

n!Γ(nκ +δ )
,

where κ >−1 and z,δ ∈ C, named after E. M. Wright. The function Φ is entire for κ >−1. From [27,

Lemma 1, p. 100], we have the following Hadamard factorization

Γ(δ )Φ(κ,δ ,−z2) = ∏
n≥1

(
1− z2

ζ 2
κ,δ ,n

)
, (6.2.1)

where κ,δ > 0 and ζκ,δ ,n is the n-th positive root of Φ(κ,δ ,−z2) and satisfies the following relationship:

ζ̆κ,δ ,n < ζκ,δ ,n < ζ̆κ,δ ,n+1 < ζκ,δ ,n+1, (n ≥ 1) (6.2.2)

where ζ̆κ,δ ,n is the n-th positive root of the derivative of the function Ψκ,δ (z) = zδ Φ(κ,δ ,−z2). Since

Φ(κ,δ ,−z2) ̸∈ A ,

so we consider the following normalized Wright functions:

fκ,δ (z) =
[
zδ Γ(δ )Φ(κ,δ ,−z2)

]1/δ
,

gκ,δ (z) = zΓ(δ )Φ(κ,δ ,−z2),

hκ,δ (z) = zΓ(δ )Φ(κ,δ ,−z).

 (6.2.3)

For simplicity, we write Wκ,δ (z) := Φ(κ,δ ,−z2). We denote S ∗(φ)-radius by R[S ∗(φ)].

Theorem 6.2.1. Let κ,δ > 0 and α ∈ (0,1] such that the largest disk {w : |w−1|< α} ⊆ φ(D). Then

R[S ∗(φ)] = R[S ∗(1+αz)],

where φ(−1) = 1−α and S ∗(1+αz)-radii for the functions fκ,δ , gκ,δ and hκ,δ defined in (6.2.3) are
the smallest positive roots of the following equations respectively:

(i) rW
′
κ,δ (r)+δαWκ,δ (r) = 0;

(ii) rW
′
κ,δ (r)+αWκ,δ (r) = 0;

(iii)
√

rW
′
κ,δ (

√
r)+2αWκ,δ (

√
r) = 0.
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Proof. Using (6.2.1), we obtain the following by the logarithmic differentiation of (6.2.3):

z f ′
κ,δ (z)

fκ,δ (z)
= 1+

1
δ

zW ′
κ,δ (z)

Wκ,δ (z)
= 1− 1

δ
∑
n≥1

2z2

ζ 2
κ,δ ,n − z2

zg′
κ,δ (z)

gκ,δ (z)
= 1+

zW ′
κ,δ (z)

Wκ,δ (z)
= 1− ∑

n≥1

2z2

ζ 2
κ,δ ,n − z2

zh′
κ,δ (z)

hκ,δ (z)
= 1+

1
2

√
zW ′

κ,δ (
√

z)

Wκ,δ (
√

z)
= 1− ∑

n≥1

z
ζ 2

κ,δ ,n − z
. (6.2.4)

Now using the fact that ||x|− |y|| ≤ |x− y| and |z|= r < ζκ,δ ,1, we see that fκ,δ , gκ,δ and hκ,δ belong
to S ∗(1+αz) whenever ∣∣∣∣∣z f ′

κ,δ (z)

fκ,δ (z)
−1

∣∣∣∣∣≤ 1
δ

∑
n≥1

2r2

ζ 2
κ,δ ,n − r2 ≤ α∣∣∣∣∣zg′

κ,δ (z)

gκ,δ (z)
−1

∣∣∣∣∣≤ ∑
n≥1

2r2

ζ 2
κ,δ ,n − r2 ≤ α∣∣∣∣∣zh′

κ,δ (z)

hκ,δ (z)
−1

∣∣∣∣∣≤ ∑
n≥1

r
ζ 2

κ,δ ,n − r
≤ α. (6.2.5)

The first part of each of the inequalities in (6.2.5) becomes equality when z = r. Now consider the
following continuous functions:

Tf (r) =
1
δ

∑
n≥1

2r2

ζ 2
κ,δ ,n − r2 −α, Tg(r) = ∑

n≥1

2r2

ζ 2
κ,δ ,n − r2 −α

and
Th(r) = ∑

n≥1

r
ζ 2

κ,δ ,n − r
−α.

Note that Tf , Tg are increasing in (0,ζκ,δ ,1) and Th is increasing in (0,ζ 2
κ,δ ,1). Since limr→0 Tf (r) =

limr→0 Tg(r)= limr→0 Th(r)=−α < 0 and limr→ζκ,δ ,1
Tf (r)= limr→ζκ,δ ,1

Tg(r)=∞, limr→ζ 2
κ,δ ,1

Th(r)=

∞. Therefore, the required S ∗(1+αz)-radii for the functions fκ,δ and gκ,δ are the unique positive roots
of the equations Tf (r) = 0, Tg(r) = 0 and for hκ,δ given by Th(r) = 0, respectively in (0,ζκ,δ ,1) and
(0,ζ 2

κ,δ ,1), which can be written as in the statement using (6.2.4). Let rα, f , rα,g and rα,h be the roots of
Tf (r) = 0, Tg(r) = 0 and Th(r) = 0 respectively. Then from (6.2.4), we see that

rα, f f ′
κ,δ (rα, f )

fκ,δ (rα, f )
=

rα,gg′
κ,δ (rα,g)

gκ,δ (rα,g)
=

rα,hh′
κ,δ (rα,h)

hκ,δ (rα,h)
= 1−α.

Then fκ,δ , gκ,δ and hκ,δ belong to S ∗(1+αz) in |z| < rα, f , rα,g and rα,h, respectively. Now let
α ∈ (0,1] such that wα := {w : |w − 1| < α} is the maximal disk inside φ(D). Since a function
f1(z) ∈ S ∗(φ) if and only if e−it f1(eitz) ∈ S ∗(φ) for all t ∈R. Therefore, using (6.2.4) with z = rα, f ,
rα,g and rα,h along with φ(−1) = 1−α , the maximality of the disk wα implies that Fκ,δ (|z| ≤ r),
Gκ,δ (|z| ≤ r) and Hκ,δ (|z| ≤ r) do not lie inside φ(D) for r ≥ rα, f , rα,g and rα,h respectively, where
Fκ,δ (z)= z f ′

κ,δ (z)/ fκ,δ (z), Gκ,δ (z)= zg′
κ,δ (z)/gκ,δ (z) and Hκ,δ (z)= zh′

κ,δ (z)/hκ,δ (z) (with some suit-
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able rotation). Hence, fκ,δ , gκ,δ and hκ,δ belong to S ∗(φ) in |z|< rα, f , rα,g and rα,h, respectively and
the radii are sharp.

Remark 6.2.1. From [27, Theorem 1], we see that the equations of Theorem 6.2.1 yields the radius of
starlikeness of order γ := 1−α for fκ,δ , gκ,δ and hκ,δ .

We denote C (φ)-radius by R[C (φ)]. For our next result, we need the following:

Lemma 6.2.1. Let κ,δ > 0. Then C (1+αz)-radii for the functions fκ,δ , gκ,δ and hκ,δ given by (6.2.3)
are the smallest positive roots of the following equations respectively:

(i)
rΨ

′′
κ,δ (r)

Ψ
′
κ,δ (r)

+

(
1
δ
−1
) rΨ

′
κ,δ (r)

Ψκ,δ (r)
+α = 0;

(ii) rg′′
κ,δ (r)+αg′

κ,δ (r) = 0;

(iii) rh′′
κ,δ (z)+αh′

κ,δ (r) = 0,

where α is the radius of the disk {w : |w−1| ≤ α}.

Proof. From (6.2.1), (6.2.3) and using the Hadamard representation (see [27, Eq. 7]),

Γ(δ )Ψ
′
κ,δ (z) = δ zδ−1

∏
n≥1

(
1− z2

ζ̆ 2
κ,δ ,n

)
,

we have

1+
z f ′′

κ,δ (z)

f ′
κ,δ (z)

= 1+
zΨ

′′
κ,δ (z)

Ψ
′
κ,δ (z)

+

(
1
δ
−1
) zΨ

′
κ,δ (z)

Ψκ,δ (z)

= 1− ∑
n≥1

2z2

ζ̆ 2
κ,δ ,n − z2

−
(

1
δ
−1
)

∑
n≥1

2z2

ζ 2
κ,δ ,n − z2

and for δ > 1, using the following inequality of [46]:∣∣∣∣ z
y− z

−λ
z

x− z

∣∣∣∣≤ |z|
y−|z|

−λ
|z|

x−|z|
, (x > y > r ≥ |z|) (6.2.6)

with λ = 1−1/δ , we get∣∣∣∣∣z f ′′
κ,δ (z)

f ′
κ,δ (z)

∣∣∣∣∣=
∣∣∣∣∣∑n≥1

2z2

ζ̆ 2
κ,δ ,n − z2

−
(

1− 1
δ

)
∑
n≥1

2z2

ζ 2
κ,δ ,n − z2

∣∣∣∣∣
≤ ∑

n≥1

2r2

ζ̆ 2
κ,δ ,n − r2

−
(

1− 1
δ

)
∑
n≥1

2r2

ζ 2
κ,δ ,n − r2

=−
r f ′′

κ,δ (r)

f ′
κ,δ (r)

=−
rΨ

′′
κ,δ (r)

Ψ
′
κ,δ (r)

−
(

1
δ
−1
) rΨ

′
κ,δ (r)

Ψκ,δ (r)

Since gκ,δ and hκ,δ belong to the Laguerre-Pólya class L P , which is closed under differentiation,
their derivatives g′

κ,δ and h′
κ,δ also belong to L P and the zeros are real. Thus assuming τκ,δ ,n and
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ηκ,δ ,n are the positive zeros of g′
κ,δ and h′

κ,δ , respectively, we have the following representations:

g′
κ,δ (z) = ∏

n≥1

(
1− z2

τ2
κ,δ ,n

)
and h′

κ,δ (z) = ∏
n≥1

(
1− z

ηκ,δ ,n

)
,

which yield

1+
zg′′

κ,δ (z)

g′
κ,δ (z)

= 1− ∑
n≥1

2z2

τ2
κ,δ ,n − z2 and 1+

zh′′
κ,δ (z)

h′
κ,δ (z)

= 1− ∑
n≥1

z
ηκ,δ ,n − z

.

Now using the inequality ||x| − |y|| ≤ |x− y| and the relation (6.2.2), we see that fκ,δ , gκ,δ and hκ,δ

belong to C (1+αz) whenever∣∣∣∣∣z f ′′
κ,δ (z)

f ′
κ,δ (z)

∣∣∣∣∣≤ ∑
n≥1

2r2

ζ̆ 2
κ,δ ,n − r2

+

(
1
δ
−1
)

∑
n≥1

2r2

ζ 2
κ,δ ,n − r2 ≤ α,

where δ > 0, |z|= r < ζ̆κ,δ ,1,∣∣∣∣∣zg′′
κ,δ (z)

g′
κ,δ (z)

∣∣∣∣∣≤ ∑
n≥1

2r2

τ2
κ,δ ,n − r2 ≤ α (|z|= r < τκ,δ ,1)

and ∣∣∣∣∣zh′′
κ,δ (z)

h′
κ,δ (z)

∣∣∣∣∣≤ ∑
n≥1

r
ηκ,δ ,n − r

≤ α (|z|= r < ηκ,δ ,1),

respectively. Now further proceeding as in Theorem 6.2.1, the result follows at once.

The proof of Theorem 6.2.2 is similar to Theorem 6.2.1, and hence it is skipped here.

Theorem 6.2.2. Let κ,δ > 0 and α ∈ (0,1] such that the largest disk {w : |w−1|< α} ⊆ φ(D). Then

R[C (φ)] = R[C (1+αz)]

for the functions fκ,δ , gκ,δ and hκ,δ given by (6.2.3), where φ(−1) = 1−α and R[C (1+αz)] is given
by Lemma 6.2.1.

Remark 6.2.2. From [27, Theorem 5], we see that equations of Lemma 6.2.1 yields the radius of
starlikeness of order γ := 1−α for fκ,δ , gκ,δ and hκ,δ .

6.2.2 Mittag-Leffler functions

In 1971, Prabhakar [132] introduced the following function

M(µ,ν ,a,z) := ∑
n≥0

(a)nzn

n!Γ(µn+ν)
,



139

where (a)n =Γ(a+n)/Γ(a) denotes the Pochhammer symbol and µ,ν ,a> 0. The functions M(µ,ν ,1,z)

and M(µ,1,1,z) were introduced and studied by Wiman and Mittag-Leffler, respectively. Now let us

consider the set Wb = A(Wc)∪B(Wc), where

Wc :=
{(

1
µ
,ν

)
: 1 < µ < 2,ν ∈ [µ −1,1]∪ [µ,2]

}
and denote by Wi, the smallest set containing Wb and invariant under the transformations A, B and C

mapping the set {( 1
µ
,ν) : µ > 1,ν > 0} into itself and are defined as:

A : ( 1
µ
,ν)→ ( 1

2µ
,ν), B : ( 1

µ
,ν)→ ( 1

2µ
,µ +ν),

C : ( 1
µ
,ν)→

{
( 1

µ
,ν −1), if ν > 1;

( 1
µ
,ν), if 0 < ν ≤ 1.

Kumar and Pathan [88] proved that if ( 1
µ
,ν) ∈ Wi and a > 0, then all zeros of M(µ,ν ,a,z) are real

and negative. From [25, Lemma 1, p. 121], we see that if ( 1
µ
,ν) ∈ Wi and a > 0, then the function

M(µ,ν ,a,−z2) has infinitely many zeros, which are all real and have the following representation:

Γ(ν)M(µ,ν ,a,−z2) = ∏
n≥1

(
1− z2

λ 2
µ,ν ,a,n

)
,

where λµ,ν ,a,n is the n-th positive zero of M(µ,ν ,a,−z2) and satisfy the interlacing relation

ξµ,ν ,a,n < λµ,ν ,a,n < ξµ,ν ,a,n+1 < λµ,ν ,a,n+1 (n ≥ 1),

where ξµ,ν ,a,n is the n-th positive zero of the derivative of zνM(µ,ν ,a,−z2). Since M(µ,ν ,a,−z2) ̸∈
A , therefore we consider the following normalized forms (belong to the Laguerre-Pólya class):

fµ,ν ,a(z) =
[
zνΓ(ν)M(µ,ν ,a,−z2)

]1/ν
,

gµ,ν ,a(z) = zΓ(ν)M(µ,ν ,a,−z2),

hµ,ν ,a(z) = zΓ(ν)M(µ,ν ,a,−z).

 (6.2.7)

For simplicity, write L(µ,ν ,a,z) := M(µ,ν ,a,−z2). Now proceeding similarly as in Section 6.2.1, we

obtain the following results:

Theorem 6.2.3. Let ( 1
µ
,ν) ∈ Wi, a > 0 and α ∈ (0,1] such that the largest disk {w : |w− 1| < α} ⊆

φ(D). Then S ∗(φ)-radii for the functions fµ,ν ,a, gµ,ν ,a and hµ,ν ,a given by (6.2.7) are the smallest
positive roots of the following equations respectively:

(i) rL
′
µ,ν ,a(r)+ναLµ,ν ,a(r) = 0;

(ii) rL
′
µ,ν ,a(r)+αLµ,ν ,a(r) = 0;

(iii)
√

rL
′
µ,ν ,a(

√
r)+2αLµ,ν ,a(

√
r) = 0,

where φ(−1) = 1−α .
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Theorem 6.2.4. Let ( 1
µ
,ν) ∈ Wi, a > 0 and α ∈ (0,1] such that the largest disk {w : |w− 1| < α} ⊆

φ(D). Then C (φ)-radii for the functions fµ,ν ,a, gµ,ν ,a and hµ,ν ,a given by (6.2.7) are the smallest
positive roots of the following equations respectively:

(i) r f ′′µ,ν ,a(r)+α f ′µ,ν ,a(r) = 0;

(ii) rg′′µ,ν ,a(r)+αg′µ,ν ,a(r) = 0;

(iii) rh′′µ,ν ,a(r)+αh′µ,ν ,a(r) = 0,

where φ(−1) = 1−α

6.3 Starlikeness and Convexity of Legendre polynomials

The Legendre polynomials Pn are the solutions of the Legendre differential equation

((1− z2)P′
n(z))

′+n(n+1)Pn(z) = 0,

where n ∈ Z+ and using Rodrigues formula, Pn can be represented in the form:

Pn(z) =
1

2nn!
dn(z2 −1)n

dzn

and it also satisfies the geometric condition Pn(−z) = (−1)nPn(z). Moreover, the odd degree Legendre

polynomials P2n−1(z) have only real roots which satisfy

0 = z0 < z1 < · · ·< zn−1 or − z1 > · · ·>−zn−1. (6.3.1)

Thus the normalized form is as follows:

P2n−1(z) :=
P2n−1(z)
P′

2n−1(0)
= z+

2n−1

∑
k=2

akzk = a2n−1z
n−1

∏
k=1

(z2 − z2
k). (6.3.2)

Theorem 6.3.1. R[C (φ)] = R[C (1+αz)] for the normalized Legendre polynomial of odd degree as
defined in (6.3.2) is given by the smallest positive root r(P2n−1) of the equation

rP ′′
2n−1(r)+αP ′

2n−1(r) = 0,

where α is the radius of the largest disk {w : |w−1|< α} inside φ(D) such that φ(−1) = 1−α .

Proof. From (6.3.2), we obtain after the logarithmic differentiation

1+
zP ′′

2n−1(z)
P ′

2n−1(z)
=

zP ′
2n−1(z)

P2n−1(z)
−

∑
n−1
k=1

4z2
kz2

(z2
k − z2)2

zP ′
2n−1(z)

P2n−1(z)

= 1−
n−1

∑
k=1

2z2

z2
k − z2 −

∑
n−1
k=1

4z2
kz2

(z2
k − z2)2

1−∑
n−1
k=1

2z2

z2
k − z2

,
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which implies, after using the inequality ||x|− |y|| ≤ |x− y| and (6.3.1) for |z|= r < z1

∣∣∣∣(1+
zP ′′

2n−1(z)
P ′

2n−1(z)

)
−1
∣∣∣∣≤ n−1

∑
k=1

2r2

z2
k − r2 +

∑
n−1
k=1

4z2
kr2

(z2
k − r2)2

1−∑
n−1
k=1

2r2

z2
k − r2

=−
rP ′′

2n−1(r)
P ′

2n−1(r)
. (6.3.3)

Now let α be the largest such that {w : |w−1| ≤ α} ⊆ φ(D). Then from (6.3.3), we see that

P2n−1 ∈ C (1+αz)⊆ C (φ),

whenever
rP ′′

2n−1(r)+αP ′
2n−1(r)≥ 0,

which holds in |z|= r ≤ r(P2n−1). Sharpness of the radius r(P2n−1) follows from the suitable rotation
of P2n−1.

Now we have the starlike case:

Theorem 6.3.2 (Legendre polynomials Pn). The S ∗(φ)-radius rφ (P2n−1) ∈ (0,z1) of the normalized
odd degree Legendre polynomial is the smallest positive root of the following equation:

rP ′
2n−1(r)− (1−α)P ′

2n−1(r) = 0,

where α is the radius of the largest disk {w : |w−1|< α} inside φ(D) such that φ(−1) = 1−α .

Proof. From (6.3.2), after logarithmic differentiation, we obtain

zP ′
2n−1(z)

P2n−1(z)
= 1−

n−1

∑
k=1

2z2

z2
k − z2 . (6.3.4)

Now applying Assumption 6.1.1 on (6.3.4), we have P2n−1 ∈ S ∗(φ) whenever∣∣∣∣zP ′
2n−1(z)

P2n−1(z)
−1
∣∣∣∣≤ n−1

∑
k=1

2r2

z2
k − r2 ≤ α, (6.3.5)

where |z| = r < z1 and zk satisfies the condition given in (6.3.1). Now let us consider the strictly
increasing continuous function

T (r) :=
n−1

∑
k=1

2r2

z2
k − r2 −α, r ∈ (0,z1).

We have to show that T (r)≤ 0 in |z| ≤ r < z1 so that (6.3.5) holds. Since limr→0 T (r)< 0, limr→z1 T (r)>
0 and T ′(r) > 0, there exists a unique positive root rφ (P2n−1) ∈ (0,z1) of T (r) such that P2n−1 ∈
S ∗(φ) in |z|< rφ (P2n−1).
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6.4 Starlikeness and Convexity of Lommel functions

The Lommel function Lu,v of the first kind is a particular solution of the second-order inhomogeneous

Bessel differential equation

z2w′′(z)+ zw′(z)+(z2 − v2)w(z) = zu+1,

where u± v /∈ Z− and is given by

Lu,v =
zu+1

(u− v+1)(u+ v+1)1F2

(
1;

u− v+3
2

,
u+ v+3

2
;−z2

4

)
,

where
1
2
(−u± v− 3) /∈ N and 1F2 is a hypergeometric function. Since it is not normalized, therefore

we consider the following three normalized functions involving Lu,v :

fu,v(z) = ((u− v+1)(u+ v+1)Lu,v(z))
1

u+1 ,

gu,v(z) = (u− v+1)(u+ v+1)z−uLu,v(z),

hu,v(z) = (u− v+1)(u+ v+1)z
1−u

2 Lu,v(
√

z).

 (6.4.1)

Authors in [6, 21] and [28] proved the radius of starlikeness and convexity for the following normalized

functions expressed in terms of L
u−1

2 ,
1
2

:

f
u−1

2 ,
1
2
(z), g

u−1
2 ,

1
2
(z) and h

u−1
2 ,

1
2
(z), (6.4.2)

where 0 ̸= u ∈ (−1,1). Now we find R[C (φ)] of the functions defined in (6.4.2). For simplicity, we write

these as fu,gu and hu, respectively and L
u−1

2 ,
1
2
= Lu.

For the convenience of notations, functions defined in (6.4.2) are written as fu,gu and hu, respec-

tively.

Theorem 6.4.1. The C (φ)-radii for the functions fu,gu and hu given by (6.4.2) are the smallest positive
roots of the following equations respectively:

(i) r f ′′u (r)+α f ′u(r) = 0;

(ii) rg′′u(r)+αg′u(r) = 0;

(iii) rh′′u(r)+αh′u(r) = 0,

where α is the radius of the largest disk {w : |w−1|< α} inside φ(D) such that φ(−1) = 1−α .

Proof. We begin with the first part. From (6.4.1), we have

1+
z f ′′u (z)
f ′u(z)

= 1+
zL ′′

u (z)
L ′

u(z)
+

 1

u+
1
2

−1

 zL ′
u(z)

Lu(z)
. (6.4.3)
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Also using the result [28, Lemma 1], we have

Lu(z) =
zu+ 1

2

u(u+1)
Φ0(z) =

zu+ 1
2

u(u+1) ∏
n≥1

(
1− z2

τ2
u,n

)
,

where Φk(z) := 1F2

(
1;

u− k+2
2

,
u− k+3

2
;−z2

4

)
with conditions as mentioned in [28, Lemma 1],

and from the proof of [28, Theorem 3], we see that the entire function
u(u+1)

u+ 1
2

z−u+ 1
2 L ′

u(z) is of order

1/2 and thus has the following Hadamard factorization:

L ′
u(z) =

u+ 1
2

u(u+1)
zu− 1

2 ∏
n≥1

(
1− z2

τ̆2
u,n

)
,

where τu,n and τ̆u,n are the n-th positive zeros of Lu and L ′
u, respectively and interlace for 0 ̸= u ∈

(−1,1) (see [28, Theorem 1]). Now we can rewrite (6.4.3) as follows:

1+
z f ′′u (z)
f ′u(z)

= 1−

 1

u+
1
2

−1

∑
n≥1

2z2

τ2
u,n − z2 − ∑

n≥1

2z2

τ̆2
u,n − z2 .

Let us now consider the case u ∈ (0,1/2]. Then using the inequality ||x|− |y|| ≤ |x− y| for |z| = r <
τ̆u,1 < τu,1 we get

∣∣∣∣z f ′′u (z)
f ′u(z)

∣∣∣∣≤
 1

u+
1
2

−1

∑
n≥1

2r2

τ2
u,n − r2 + ∑

n≥1

2r2

τ̆2
u,n − r2 =−r f ′′u (r)

f ′u(r)
(6.4.4)

and for the case u ∈ (1/2,1), using the inequality (6.2.6) with λ = 1−1/(u+1/2), we also get∣∣∣∣z f ′′u (z)
f ′u(z)

∣∣∣∣≤−r f ′′u (r)
f ′u(r)

, (6.4.5)

which is same as (6.4.4). When u ∈ (−1,0), then we proceed similarly substituting u by u−1, Φ0 by
Φ1, where Φ1 belongs to the Laguerre-Pólya class L P and the n-th positive zeros ξu,n and ξ̆u,n of
Φ1 and its derivative Φ′

1, respectively interlace. Finally, replacing u by u+ 1, we obtain the required
inequality.

For 0 ̸= u ∈ (−1,1), the Hadamard factorization for the entire functions g′u and h′u of order 1/2 [28,
Theorem 3] is given by

g′u(z) = ∏
n≥1

(
1− z2

γ2
u,n

)
and h′u(z) = ∏

n≥1

(
1− z

δ 2
u,n

)
, (6.4.6)

where γu,n and δu,n are n-th positive zeros of g′u and h′u, respectively and γu,1,δu,1 < τu,1. Now from
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(6.4.1) and (6.4.6), we have

1+
zg′′u(z)
g′u(z)

=
1
2
−u+ z

(
3
2
−u
)

L ′
u(z)+ zL ′′

u (z)(
1
2
−u
)

Lu(z)+ zL ′
u(z)

= 1− ∑
n≥1

2z2

γ2
u,n − z2

1+
zh′′u(z)
h′u(z)

=
1
2

3
2
−u+

√
z

(
5
2
−u
)

L ′
u(
√

z)+
√

zL ′′
u (

√
z)(

3
2
−u
)

Lu(
√

z)+
√

zL ′
u(
√

z)


= 1− ∑

n≥1

z
δ 2

u,n − z
. (6.4.7)

Using the inequality ||x|− |y|| ≤ |x− y| in (6.4.7) for |z|= r < γu,1 and |z|= r < δu,1, we get∣∣∣∣zg′′u(z)
g′u(z)

∣∣∣∣≤ ∑
n≥1

2r2

γ2
u,n − r2 =−rg′′u(r)

g′u(r)∣∣∣∣zh′′u(z)
h′u(z)

∣∣∣∣≤ ∑
n≥1

r
δ 2

u,n − r
=−rh′′u(r)

h′u(r)
. (6.4.8)

Now let α be the largest such that {w : |w− 1| ≤ α} ⊆ φ(D). Then from (6.4.4), (6.4.5), (6.4.7) and
(6.4.8), we see that fu,gu and hu belong to C (1+αz)⊆ C (φ), whenever the following inequalities

−r f ′′u (r)
f ′u(r)

≤ α, −rg′′u(r)
g′u(r)

≤ α and − rh′′u(r)
h′u(r)

≤ α

hold. Further proceeding with the similar method as in Theorem 6.2.1, we obtain the desired equations.
The sharpness of the radii follows with the suitable rotations of the functions fu,gu and hu.

Similarly, we also get the following result:

Theorem 6.4.2 (Lommel function Lu,v). Let 0 ̸= u ∈ (−1,1) and write L
u−1

2 ,
1
2
(z) =: Lu(z). Then the

S ∗(φ)-radii rφ ( fu), rφ (gu) and rφ (hu) of the functions fu, gu and hu given by (6.4.2) are the smallest
positive root of the following equations, respectively:

(i)

{
2rL ′

u(r)− (2u+1)(1−α)Lu(r) = 0, f or u ∈ (−1
2 ,1)

2rL ′
u(r)− (2u+1)(1+α)Lu(r) = 0, f or u ∈ (−1,−1

2);

(ii) 2rL ′
u(r)− (2u+1−2α)Lu(r) = 0;

(iii) 2
√

rL ′
u(
√

r)− (2u+1−4α)Lu(
√

r) = 0,

where α is the radius of the largest disk {w : |w−1|< α} inside φ(D) such that φ(−1) = 1−α .
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6.5 Starlikeness and Convexity of Struve functions

The Struve function Hβ of first kind is a particular solution of the second-order inhomogeneous

Bessel differential equation

z2w′′(z)+ zw′(z)+(z2 −β
2)w(z) =

4
( z

2

)β+1

√
πΓ

(
β +

1
2

)
and have the following form:

Hβ (z) :=

( z
2

)β+1

√
π

4
Γ

(
β +

1
2

)1F2

(
1;

3
2
,β +

3
2

;−z2

4

)
,

where −β − 3
2
/∈ N and 1F2 is a hypergeometric function. Since it is not normalized, so we consider

the following three normalized functions involving Hβ :

Uβ (z) =
(√

π2β

(
β +

3
2

)
Hβ (z)

) 1
β +1 ,

Vβ (z) =
√

π2β z−β Γ

(
β +

3
2

)
Hβ (z),

Wβ (z) =
√

π2β z
1−β

2 Γ

(
β +

3
2

)
Hβ (

√
z).


(6.5.1)

Moreover, for |β | ≤ 1/2, Hβ (see [24, Lemma 1]) and H′
β

have the Hadamard factorizations [28,

Theorem 4] given by

Hβ (z) =
zβ+1

√
π2β Γ(β +

3
2
)
∏
n≥1

(
1− z2

z2
β ,n

)

and

H′
β
(z) =

(β +1)zβ

√
π2β Γ(β +

3
2
)
∏
n≥1

(
1− z2

z̆2
β ,n

)
(6.5.2)

where zβ ,n and z̆β ,n are the n-th positive zeros of Hβ and H′
β

, respectively and interlace [28, Theo-

rem 2]. Thus from (6.5.2) with logarithmic differentiation, we obtain respectively

zH′
β
(z)

Hβ (z)
= (β +1)− ∑

n≥1

2z2

z2
β ,n − z2

and

1+
zH′′

β
(z)

H′
β
(z)

= (β +1)− ∑
n≥1

2z2

z̆2
β ,n − z2 . (6.5.3)
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Also for |β | ≤ 1/2, the Hadamard factorization for the entire functions V ′
β

and W ′
β

of order 1/2 [28,

Theorem 4] is given by

V ′
β
(z) = ∏

n≥1

(
1− z2

η2
β ,n

)
and W ′

β
(z) = ∏

n≥1

(
1− z

σ2
β ,n

)
, (6.5.4)

where ηβ ,n and σβ ,n are n-th positive zeros of V ′
β

and W ′
β

, respectively. V ′
β

and W ′
β

belong to the

Laguerre-Pólya class and zeros satisfy ηβ ,1,σβ ,1 < zβ ,1. Now proceeding as in Theorem 6.4.1 using

(6.5.1), (6.5.2), (6.5.3) and (6.5.4), we obtain the following result:

Theorem 6.5.1 (Starlikeness of Struve function Hβ ). Let |β | ≤ 1/2. Then the S ∗(φ)-radii rφ (Uβ ),
rφ (Vβ ) and rφ (Wβ ) of the functions Uβ , Vβ and Wβ as given by (6.5.1) are the smallest positive root of
the following equations, respectively:

(i) rH′
β
(r)− (1−α)(β +1)Hβ (r) = 0;

(ii) rH′
β
(r)− ((1+β )−α)H′

β
(r) = 0;

(iii)
√

rH′
β
(
√

r)− (1+β −2α)Hβ (
√

r) = 0,

where α is the radius of the largest disk {w : |w−1|< α} inside φ(D) such that φ(−1) = 1−α .

Theorem 6.5.2 (Convexity of Struve function). Let |β | ≤ 1/2. Then C (φ)-radii for the functions
Uβ ,Vβ and Wβ given by (6.5.1) are the smallest positive roots of the following equations respectively:

(i) rU ′′
β
(r)+αU ′

β
(r) = 0;

(ii) rV ′′
β
(r)+αV ′

β
(r) = 0;

(iii) rW ′′
β
(r)+αW ′

β
(r) = 0,

where α is the radius of the largest disk {w : |w−1|< α} inside φ(D) such that φ(−1) = 1−α .

6.6 On Ramanujan type entire functions

Ismail and Zhang [68] defined the following entire function of growth order zero for β > 0, called

Ramanujan type entire function

A(β )
p (c,z) = ∑

n≥0

(c; p)n pβn2

(p; p)n
zn,

where β > 0, 0 < p < 1, c ∈ C, (c; p)0 = 1 and (c; p)k = ∏
k−1
j=0(1 − cp j) for k ≥ 1, which is the

generalization of both the Ramanujan entire function Ap(z) and Stieltjes-Wigert polynomial Sn(z; p)

defined as (see [67,135]):

Ap(−z) = A(1)
p (0,z) =

∞

∑
n=0

pn2

(p; p)n
zn

and

A(1/2)
p (p−n,z) =

∞

∑
m=0

(p−n; p)m pm2/2

(p; p)m
zm = (p; p)nSn(zp(1/2)−n; p).
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Since A(β )
p (c,z) ̸∈ A , therefore consider the following three normalized functions in A :

fβ ,p,c(z) :=
(

zβ A(β )
p (−c,−z2)

)1/β

gβ ,p,c(z) := zA(β )
p (−c,−z2)

hβ ,p,c(z) := zA(β )
p (−c,−z),

 (6.6.1)

where β > 0, c ≥ 0 and 0 < p < 1. From [45, Lemma 2.1, p. 4-5], we see that the function

z → Ψβ ,p,c(z) := A(β )
p (−c,−z2)

has infinitely many zeros (all are positive) for β > 0, c ≥ 0 and 0 < p < 1. Let ψβ ,p,n(c) be the n-th

positive zero of Ψβ ,p,c(z). Then it has the following Weierstrass decomposition:

Ψβ ,p,c(z) = ∏
n≥1

(
1− z2

ψ2
β ,p,n(c)

)
. (6.6.2)

Moreover, the n-th positive zero Ξβ ,p,n(c) of the derivative of the following function

Φβ ,p,c(z) := zβ
Ψβ ,p,c(z) (6.6.3)

interlace with ψβ ,p,n(c) and satisfy the relation

Ξβ ,p,n(c)< ψβ ,p,n(c)< Ξβ ,p,n+1(c)< ψβ ,p,n+1(c)

for n ≥ 1. Now using (6.6.1) and (6.6.2), we have

z f ′
β ,p,c(z)

fβ ,p,c(z)
= 1+

1
β

zΨ′
β ,p,c(z)

Ψβ ,p,c(z)
= 1− 1

β
∑
n≥1

2z2

ψ2
β ,p,n(c)− z2 ; (c > 0)

zg′
β ,p,c(z)

gβ ,p,c(z)
= 1+

zΨ′
β ,p,c(z)

Ψβ ,p,c(z)
= 1− ∑

n≥1

2z2

ψ2
β ,p,n(c)− z2 ;

zh′
β ,p,c(z)

hβ ,p,c(z)
= 1+

1
2

√
zΨ′

β ,p,c(
√

z)

Ψβ ,p,c(
√

z)
= 1− ∑

n≥1

z
ψ2

β ,p,n(c)− z
,

where β > 0,c ≥ 0 and 0 < p < 1. Also, using (6.6.3) and the infinite product representation of

Φ′ [45, p. 14-15, Also see Eq. 4.6], we have

1+
z f ′′

β ,p,c(z)

f ′
β ,p,c(z)

= 1+
zΦ′′

β ,p,c(z)

Φ′
β ,p,c(z)

+

(
1
β
−1
) zΦ′

β ,p,c(z)

Φβ ,p,c(z)

= 1− ∑
n≥1

2z2

Ξ2
β ,p,n(c)− z2 −

(
1
β
−1
)

∑
n≥1

2z2

ψ2
β ,p,n(c)− z2 .

As (zΨβ ,p,c(z))′ and h′
β ,p,c(z) belong to L P . So suppose γβ ,p,n(c) be the positive zeros of g′

β ,p,c(z)

(growth order is same as Ψβ ,p,c(z)) and δβ ,p,n(c) be the positive zeros of h′
β ,p,c(z). Thus using their
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infinite product representations, we have

1+
zg′′

β ,p,c(z)

g′
β ,p,c(z)

= 1− ∑
n≥1

2z2

γ2
β ,p,n(c)− z2

1+
zh′′

β ,p,c(z)

h′
β ,p,c(z)

= 1− ∑
n≥1

z
δ 2

β ,p,n(c)− z
.

Now proceeding similarly as done in the above sections, we obtain the following results:

Theorem 6.6.1. Let β > 0, c≥ 0 and 0< p< 1. Then S ∗(φ)-radii for the functions fβ ,p,c(z), gβ ,p,c(z)
and hβ ,p,c(z) given by (6.6.1) are the smallest positive roots of the following equations respectively:

(i) rΨ′
β ,p,c(r)+βαΨβ ,p,c(r) = 0;

(ii) rΨ′
β ,p,c(r)+αΨβ ,p,c(r) = 0;

(iii)
√

rΨ′
β ,p,c(

√
r)+2αΨβ ,p,c(

√
r) = 0,

where α is the radius of the largest disk {w : |w−1|< α} inside φ(D) such that φ(−1) = 1−α .

Theorem 6.6.2. Let β > 0, c ≥ 0 and 0 < p < 1. Then C (φ)-radii for the functions fβ ,p,c(z), gβ ,p,c(z)
and hβ ,p,c(z) given by (6.6.1) are the smallest positive roots of the following equations respectively:

(i)
rΦ′′

β ,p,c(r)

Φ′
β ,p,c(r)

+

(
1
β
−1
) rΦ′

β ,p,c(r)

Φβ ,p,c(r)
+α = 0;

(ii) rg′′
β ,p,c(r)+αg′

β ,p,c(r) = 0;

(iii) rh′′
β ,p,c(r)+αh′

β ,p,c(r) = 0,

where α is the radius of the largest disk {w : |w−1|< α} inside φ(D) such that φ(−1) = 1−α .

6.7 Applications and Further Results

6.7.1 Applications to special cases

In the following result, we consider the Caratheódory functions φ associated with some well-known

classes as well as some recently introduced in [72,73,108,109,123]:

Corollary 6.7.1. If α be the radius of the largest disk {w : |w−1|< α} inside φ(D), where

1. α = min
{∣∣∣∣1− 1+D

1+E

∣∣∣∣ , ∣∣∣∣1− 1−D
1−E

∣∣∣∣}=
D−E
1+ |E|

when φ(z) =
1+Dz
1+Ez

, where −1 ≤ E < D ≤ 1;

2. α =

√
2−2

√
2+
√
−2+2

√
2 when φ(z) =

√
2− (

√
2−1)

√
1− z

1+2(
√

2−1)z
;

3. α =
√

2−1 when φ(z) =
√

1+ z;

4. α = 1−1/e when φ(z) = ez;
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5. α = 2−
√

2 when φ(z) = z+
√

1+ z2;

6. α = 1/e when φ(z) = 1+ zez;

7. α =
e−1
e+1

when φ(z) =
2

1+ e−z ;

8. α = sin1 when φ(z) = 1+ sinz;

9. for the domains bounded by the conic sections

Ωκ := {w = u+ iv : u2 > κ
2(u−1)2 +κ

2v2;κ ∈ [0,∞)},

we have
α =

1
κ +1

,

where the boundary curve of Ωκ for fixed κ is represented by the imaginary axis (κ = 0), the
right branch of a hyperbola (0 < κ < 1), a parabola (κ = 1) and an ellipse (κ > 1). The univalent
Carathéodory functions mapping D onto Ωκ is given by

φ(z) := φκ(z) =



1+ z
1− z

for κ = 0;

1+
2

1−κ2 sinh2(A(κ)arctanh
√

z) for κ ∈ (0,1);

1+
2

π2 log2 1+
√

z
1−√

z
for κ = 1;

1+
2

κ2 −1
sin2

(
π

2K(t)
F
(√

z√
t
, t
))

for κ > 1,

where A(κ) = (2/π)arccos(κ) and

F(w, t) =
∫ w

0

dx√
(1− x2)(1− t2x2)

is the Legender elliptic integral of the first kind, K(t) = F(1, t) and t ∈ (0,1) is choosen such that
κ = cosh(πK′(t)/2K(t)).

Then Theorems 6.2.1, 6.2.2, 6.2.3, 6.2.4, 6.3.1, 6.4.1, 6.5.2, 6.6.1 and 6.6.2 hold true for the above
choices of φ respectively.

Here, in the above corollary for the Janowski functions at (i), we use its inverse representation

|(w−1)/(D−Ew)| < 1 for the sharpness (also see [106]). Whereas for the Lemniscate of Bernoulli

at (iii), we use the fact that if |w−1| ≤
√

2−1, then |w+1| ≤
√

2+1, which implies |w2 −1| ≤ 1.

6.7.2 Radius of Strongly Starlikeness

To prove our next result, we need the following lemma:

Lemma 6.7.1. [50] If |z| ≤ r < 1 and |zk|= R > r, then we have∣∣∣∣ z
z− zk

+
r2

R2 − r2

∣∣∣∣≤ Rr
R2 − r2 .

ASUS
Highlight
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Here 0 < ε ≤ 1 in what follows. The class of strongly starlike functions is given by:

S ∗
((

1+ z
1− z

)ε)
:=
{

f ∈ A :
∣∣∣∣arg

z f ′(z)
f (z)

∣∣∣∣< ε

}
.

Theorem 6.7.2 (Wright functions). Let κ,δ > 0. Then S ∗
((

1+ z
1− z

)ε)
-radii for the functions fκ,δ ,

gκ,δ and hκ,δ are the unique positive roots of the following equations:

(i)
2
δ

∑n≥1

(
ζ 2

κ,δ ,nr2

ζ 4
κ,δ ,n − r4 + sin

(
πε

2

) r4

ζ 4
κ,δ ,n − r4

)
− sin

(
πε

2

)
= 0;

(ii) 2∑n≥1

(
ζ 2

κ,δ ,nr2

ζ 4
κ,δ ,n − r4 + sin

(
πε

2

) r4

ζ 4
κ,δ ,n − r4

)
− sin

(
πε

2

)
= 0;

(iii) ∑n≥1

(
ζ 2

κ,δ ,nr

ζ 4
κ,δ ,n − r2 + sin

(
πε

2

) r2

ζ 4
κ,δ ,n − r2

)
− sin

(
πε

2

)
= 0

in (0,ζκ,δ ,1), (0,ζκ,δ ,1) and (0,ζ 2
κ,δ ,1) respectively.

Proof. We prove the first part and the rest all follow in a similar manner. From (6.2.4) and using
Lemma 6.7.1, we see that

z f ′
κ,δ (z)

fκ,δ (z)
= 1+

1
δ

zW ′
κ,δ (z)

Wκ,δ (z)
= 1− 1

δ
∑
n≥1

2z2

ζ 2
κ,δ ,n − z2 ,

which implies ∣∣∣∣∣z f ′
κ,δ (z)

fκ,δ (z)
−

(
1− 1

δ
∑
n≥1

2r4

ζ 4
κ,δ ,n − r4

)∣∣∣∣∣≤ 1
δ

∑
n≥1

∣∣∣∣∣ 2z2

z2 −ζ 2
κ,δ ,n

+
2r4

ζ 4
κ,δ ,n

− r4

∣∣∣∣∣
≤ 2

δ
∑
n≥1

ζ 2
κ,δ ,nr2

ζ 4
κ,δ ,n − r4 (6.7.1)

for |z| ≤ r < ζκ,δ ,1. Define

a :=

(
1− 1

δ
∑
n≥1

2r4

ζ 4
κ,δ ,n − r4

)
and Ra :=

2
δ

∑
n≥1

ζ 2
κ,δ ,nr2

ζ 4
κ,δ ,n − r4 .

Now from Lemma [50, Lemma 3.1, p. 307], we see that the disk |w−a| ≤ Ra in (6.7.1) is contained in
the sector |argw| ≤ πε/2, whenever

2
δ

∑
n≥1

ζ 2
κ,δ ,nr2

ζ 4
κ,δ ,n − r4 ≤

((
1− 1

δ
∑
n≥1

2r4

ζ 4
κ,δ ,n − r4

))
sin
(

πε

2

)
(6.7.2)

holds. Let us now define

T (r) :=
2
δ

∑
n≥1

(
ζ 2

κ,δ ,nr2

ζ 4
κ,δ ,n − r4 + sin

(
πε

2

) r4

ζ 4
κ,δ ,n − r4

)
− sin

(
πε

2

)
.
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Then a simple calculation shows that T ′(r)≥ 0. Also limr→0 T (r)< 0 and limr→ζκ,δ ,1
T (r)> 0. Thus

(6.7.2) holds in |z| ≤ r0, where r0 is the unique positive root of T (r) = 0 in (0,ζκ,δ ,1). This completes
the proof.

Reasoning along the same lines as of Theorem 6.7.2, the following results hold. So, the proofs are

omitted here.

Theorem 6.7.3 (Lommel functions). The S ∗
((

1+ z
1− z

)ε)
-radii for the functions fu,gu and hu are the

unique positive roots of the following equations:

(i)
2

u+
1
2

∑n≥1

(
τ2

u,nr2

τ4
u,n − r4 + sin

(
πε

2

) r4

τ4
u,n − r4

)
− sin

(
πε

2

)
= 0;

(ii) 2∑n≥1

(
τ2

u,nr2

τ4
u,n − r4 + sin

(
πε

2

) r4

τ4
u,n − r4

)
− sin

(
πε

2

)
= 0;

(iii) ∑n≥1

(
τ2

u,nr
τ4

u,n − r2 + sin
(

πε

2

) r2

τ4
u,n − r2

)
− sin

(
πε

2

)
= 0

in (0,τu,1), (0,τu,1) and (0,τ2
u,1), respectively.

Theorem 6.7.4 (Struve functions). Let |β | ≤ 1/2. Then S ∗
((

1+ z
1− z

)ε)
-radii for the functions

Uβ ,Vβ and Wβ are the unique positive roots of the following equations:

(i)
2

β +1
∑n≥1

(
z2

β ,nr2

z4
β ,n − r4 + sin

(
πε

2

) r4

z4
β ,n − r4

)
− sin

(
πε

2

)
= 0;

(ii) 2∑n≥1

(
z2

β ,nr2

z4
β ,n − r4 + sin

(
πε

2

) r4

z4
β ,n − r4

)
− sin

(
πε

2

)
= 0;

(iii) ∑n≥1

(
z2

β ,nr

z4
β ,n − r2 + sin

(
πε

2

) r2

z4
β ,n − r2

)
− sin

(
πε

2

)
= 0

in (0,zβ ,1), (0,zβ ,1) and (0,z2
β ,1), respectively.

Theorem 6.7.5 (Mittag-Leffler functions). Let ( 1
µ
,ν) ∈ Wi and a > 0. Then S ∗

((
1+ z
1− z

)ε)
-radii

for the functions fµ,ν ,a, gµ,ν ,a and hµ,ν ,a are the unique positive roots of the following equations:

(i)
2
ν

∑n≥1

(
λ 2

µ,ν ,a,nr2

λ 4
µ,ν ,a,n − r4 + sin

(
πε

2

) r4

λ 4
µ,ν ,a,n − r4

)
− sin

(
πε

2

)
= 0;

(ii) 2∑n≥1

(
λ 2

µ,ν ,a,nr2

λ 4
µ,ν ,a,n − r4 + sin

(
πε

2

) r4

λ 4
µ,ν ,a,n − r4

)
− sin

(
πε

2

)
= 0;

(iii) ∑n≥1

(
λ 2

µ,ν ,a,nr
λ 4

µ,ν ,a,n − r2 + sin
(

πε

2

) r2

λ 4
µ,ν ,a,n − r2

)
− sin

(
πε

2

)
= 0

in (0,λµ,ν ,a,1), (0,λµ,ν ,a,1) and (0,λ 2
µ,ν ,a,1), respectively.
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Theorem 6.7.6 (Ramanujan type entire functions). Let β > 0, c≥ 0 and 0< p< 1. Then S ∗
((

1+ z
1− z

)ε)
-

radii for the functions fβ ,p,c(z), gβ ,p,c(z) and hβ ,p,c(z) are the unique positive roots of the following
equations:

(i)
2
β

∑n≥1

(
ψ2

β ,p,n(c)r
2

ψ4
β ,p,n(c)− r4 + sin

(
πε

2

) r4

ψ4
β ,p,n(c)− r4

)
− sin

(
πε

2

)
= 0;

(ii) 2∑n≥1

(
ψ2

β ,p,n(c)r
2

ψ4
β ,p,n(c)− r4 + sin

(
πε

2

) r4

ψ4
β ,p,n(c)− r4

)
− sin

(
πε

2

)
= 0;

(iii) ∑n≥1

(
ψ2

β ,p,n(c)r

ψ4
β ,p,n(c)− r2 + sin

(
πε

2

) r2

ψ4
β ,p,n(c)− r2

)
− sin

(
πε

2

)
= 0

in (0,ψβ ,p,1(c)), (0,ψβ ,p,1(c)) and (0,ψ2
β ,p,1(c)), respectively.

Highlights of the chapter

We answered the Problem 6.1.1. Further, we observe that using our technique, S ∗(φ) and C (φ)-

radii for the normalized forms of q-Bessel [20] and q-Mittag-Leffler [167] functions can be achieved.

For the q-forms of the other special functions, these radii problems are still open. Also note that if we

consider the series representation of the normalized special functions, then combining the technique

used in this chapter with the methodology used in [19, 23], we can get the explicit conditions on the

relevant parameters for the S ∗(φ) and C (φ)-radii, which we shall study separately.



Conclusion and Future Scope

The investigation of properties of starlike and convex functions emerged soon after the Bieberbach

conjecture on univalent functions. Goodman [59] and Ronning [143] started investigating the prop-

erties like uniform starlikeness and uniformly convexity. Then the paper by Sokół [158] and, Kanas

and Wiśniowska [73] gave insights into subclasses of starlike and convex functions associated with

the Lemniscate of Bernoulli and Conic domains, respectively. But in 1992, a unified treatment of

subclasses of starlike and convex functions was given by Ma and Minda [102]. Since then several

fascinating articles in view of the Ma-Minda class, appeared concerning several type of radius and

coefficient problems. The main obective of the present study is to solve classical as well as problems

of current interest for the general Ma-Minda classes.

In chapter 2, we study a Ma-Minda class of starlike functions associated with the cardioid domain

given by S ∗
℘ :=

{
f ∈ A : z f ′(z)

f (z) ≺ 1+ zez =:℘(z)
}

, where ℘ maps the unit disk onto a cardioid do-

main. Since the properties of such functions depend on the geometry of the domain and it’s explicit

mathematical formula. Therefore, we considered cardioid domain ℘(D), which is starlike in shape

having a cusp, and the function ℘ is transcendental and doesn’t have inverse representation. We find

the radius of convexity of ℘(z) and establish the inclusion relations between the class S ∗
℘ and some

well-known classes. Further, we derive sharp radius constants and coefficient related results for the

class S ∗
℘. As a future scope, open problem concerning the sharp coefficient bounds and a conjecture

on third hankel determinant are posed.

In chapter 3, we introduced a new class of analytic functions, and initiated a systematic study of

non-univalent functions given by

F (ψ) :=
{

f ∈ A :
(

z f ′(z)
f (z)

−1
)
≺ ψ(z), ψ(0) = 0

}
,

where ψ is univalent. Thus, we started developing a parallel theory reminiscent of Ma-Minda classes.

We here mainly derived growth and distortion theorems, and obtained the Koebe domain for such

functions. Further, we also analyzed the geometry of the image of the functions f (z)/z. The problems

related to the coefficient and subordinations are left for future attempt.

In chapter 4, motivated by the work of MacGregor, Campbell and Szegö, we consider several clas-

sical problems which have been of great interest in GFT. We prove several sharp majorization theo-

rems, a product theorem, convolution conditions for necessary and sufficient conditions (also for the
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class F (ψ)) and some radius problems related to the Ma-Minda classes. The application of ma-

jorzation can be studied in exploring the radius problems in the theory of harmonic univalent func-

tions. In fact, exploring the concept of majorization in higher dimensions is interesting for future re-

search. In 1961, Goluzin [61] obtained the set of extremal functions f (z) = z/(1− xz)2, |x| = 1 for

the problem of maximization of the quantity ℜΦ(log( f (z)/z)) or |Φ(log( f (z)/z))| over the class S ∗,

where Φ is a non-constant entire function. In 1973, MacGregor [105] proved the result for the class

S ∗(α) := { f ∈A : ℜ(z f ′(z)/ f (z))>α,α ∈ [0,1)}. Later on Barnard [30] discussed this for Bounded

starlike functions. We establish the same for the Ma-Minda classes. Finally, we establish the sharp

Bohr phenomenon for the Ma-Minda class of starlike functions and associated subordinating families.

In chapter 5, we continue to explore the idea of Bohr phenomenon along with the Bohr-Rogosinski

phenomenon. We establish several fundamental results related to power series to dervie the Bohr-

Rogosinski radius for the Ma-Minda classes and associated subordinating families. We further investi-

gate the phenomenon for some classes of harmonic functions, which are quite natural generalization of

certain subclasses of univalent functions. We introduce a class of harmonic functions with some con-

ditions on their coefficients to study its application to both the classes of harmonic as well as classes

of univalent functions. We also study a generalization of the Bohr phenomenon with the approach of

sequence of non-negative functions for the Ma-Minda classes. In future, the ideas developed in this

chapter can be used to study the Bohr phenomenon for the classes of harmonic univalent functions

whose sharp coefficient bounds are yet to be known.

The interaction of special functions and their geometrical properties is evident in geometric func-

tion theory. But special attention has been given to them, particularly, under what conditions special

functions are starlike and convex or what is the largest radius for which they will be starlike or con-

vex or uniform convex. In chapter 6, we mainly study certain known normalized special functions,

namely Wright and Mittag-Leffler functions, Legendre polynomials, Lommel and Struve functions, and

Ramanujan type entire functions for their Ma-Minda starlikeness and convexity. We aim to generalize

the known theory and provide simple proof with some simple geometric conditions, which are easy to

apply. The ideas developed in this chapter can be used to derived Ma-Minda radii of starlikeness and

convexity for some other form of special functions as a future scope.
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