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Preface

Cosmology is a branch of science which deals with the study of the origin of the u-

niverse, its evolution and its eventual fate. The modern cosmology is based on the

Big Bang theory, where the universe is considered as emerged out of the Big Bang,

which occurred about 13.7 billion years ago. The cosmology assumes the homo-

geneous (no change during linear motion) and isotropic (no change during angular

motion) universe, which is justified on the scales of larger than 100 Mpc. These prop-

erties lead us to make an assumption about the model of the universe, called the

Cosmological Principle. This principle is the basis of the Big Bang cosmology. For

the evolution of the universe, various models have been proposed by scientists from

time to time. Since the development of general relativity, cosmology has changed

our perception of the laws of the universe remarkably. The First Three Minutes written

by Steven Weinberg and A Brief History of Time by Stephen Hawking are the famous

books which create the interest in this subject.

The rapid development in observational cosmology witnesses that the universe is

expanding with an accelerated rate. Several theories have been proposed to ex-

plain the accelerated phenomena for past two decades. It has been observed that a

large part of the universe has One a mysterious component with negative pressure,

so-called dark energy (DE). The most natural and successful candidate of DE is the

cosmological constant which was introduced by Albert Einstein to obtain a static uni-

verse. Some other DE candidates like scalar fields, Chaplygin gas, holographic dark

energy, Ricci dark energy, etc. have been proposed to explain the accelerated expan-

sion of the universe. Recently, it has been studied that the bulk viscosity and matter

creation are another alternative candidates to explain the present acceleration of the

universe.

The motive of this thesis’s work is to explore the effects of bulk viscosity and matter

creation in explaining the dark energy phenomena within the framework of a spatial-

ly homogeneous and isotropic flat Friedmann-Lemaître-Robertson-Walker metric in

xi



general relativity and its modified theories. We extract the useful information about

the bulk viscosity and matter creation by using observational data to fit the model ac-

cording to the accepted model. Chapter 1 is introductory in nature. Chapters 2 – 6

are based on the research work published in the form of research papers in reputed

refereed journals. The last chapter contains the conclusion and future scope of the

thesis work. Each chapter begins with a brief outline of the work carried out in that

chapter.

Date : (SIMRAN KAUR)

Place : DTU, New Delhi, India.
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Chapter 1

Introduction

The introduction gives an overview of the basic principles of cosmology, general the-

ory of relativity, Einstein’s field equations, energy-momentum tensor, dark energy and

dark matter which govern the evolution of the universe. Bulk viscosity and matter cre-

ation cosmology are discussed. Some scalar-tensor theories, preferably the Brans-

Dicke theory and dynamical dark energy models, like holographic dark energy are

studied. The various cosmological parameters in describing the dynamical behaviour

of cosmological models are discussed. Recent observational data from Type Ia su-

pernova (cJLA and Pantheon samples), observational Hubble data (using Cosmic

Chronometers, Differential Age Technique, BAO etc.), baryon acoustic oscillations,

cosmic microwave background data and Strong Lensing System are discussed. This

chapter contains two parts, one devoted to the theoretical aspects and second part

concentrating on observational aspects of cosmology which finally ends with the mo-

tivation and plan of the work carried out in thesis.

1
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I. Introduction

Cosmology is the study of physical and kinematical nature of the universe, when

considered as a whole i.e. to study about the origin and large-scale structures of the

universe, such as the distribution of galaxies and their motions and density of dust

through intergalactic space. The geometry (shape) and size, the age, the mass den-

sity and total mass content, the phase of its present dynamical behaviour with time are

some of the basic requirement in formulating a comprehensive theory of cosmology.

The study of large-scale structure of universe began just after the discovery of gener-

al theory of relativity. The study of cosmology depends crucially on general theory of

relativity, which was introduced by Albert Einstein in 1915 and published in 1916 [1].

Modern cosmology within the framework of general relativity has entered into data

driven era. Remarkable findings through the latest observational data depicts that u-

niverse is expanding with an accelerating rate which might be due to the existence of

mysterious components of universe : dark matter and dark energy. Following sections

brings out the brief introduction of elementary topics of cosmology which would help

us to understand the observational evidences of present-day universe.

1.1 General Relativity and Cosmology

Albert Einstein, in 1905, proposed the special theory of relativity which only ac-

counts for inertial systems. According to this theory, all systems of co-ordinates are

equally suitable for description of physical phenomena. In 1915, Einstein extended

his special theory of relativity for non-inertial frame and presented a general theory of

relativity (GTR). In GTR, the gravity is not an ordinary force but rather a property of

space-time geometry. Due to the presence of gravity, GTR is valid in every coordinate

system in the curved space-time. This theory is a classical field theory of gravitation

because it does not contain quantum effects. GTR provides the natural conceptual

framework for cosmology. GTR depends on two fundamental principles: the principle

of general covariance and the principle of equivalence.

1. Principle of general covariance: It states that the laws of physics can be ex-

pressed in a form which is independent of the coordinate systems, i.e., under

the general coordinate transformations all physics equations must be covariant.
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This can be done by expressing the laws of nature in the form of tensor equa-

tions because a tensor equation has exactly the same form in all co-ordinate

systems.

2. Principle of Equivalence: The cornerstone of Einstein’s theory is the principle of

equivalence between gravity and acceleration which says that uniform gravita-

tional fields are equivalent to frames that accelerate uniformly relative to inertial

frames.

1.2 The Cosmological Principle

The study of cosmology is based on a basic hypothesis called the cosmological prin-

ciple (CP). According to the cosmological principle (CP), the universe looks the same

from all positions in space at any given cosmic time, and that all directions in space

at any point are equivalent. Thus, on the large scale of hundreds of megaparsecs

(Mpc), the universe possesses two important properties at each epoch, namely, ho-

mogeneity and isotropy. Homogeneity means the universe looks the same at each

point, i.e., there is no special places in the universe. Isotropy means the universe

looks the same in all directions, i.e., there is no special directions in the universe.

1.3 The metric of space-time

General relativity gives an excellent description of gravitational physics. An impor-

tant idea is the metric of space-time, that describes the physical distance between

points. The metric of space-time is important both for correctly interpreting the geom-

etry of the universe and to fully understand the ideas of luminosity and distances in

cosmology. In general relativity, the distribution of mass and energy determines the

geometry of space-time. Einstein’s theory shows that, in the presence of a gravita-

tional field, space becomes curved and its geometry is then Riemannian.

The space-time in general relativity is a combination of three dimensional space

and time coordinates. Therefore, the space-time is a four-dimensional geometry in

Riemannian space in which the points are labelled by a general coordinate system

(x0, x1, x2, x3), often written as xµ (µ = 0, 1, 2, 3). As per the principle of general

covariance physics equations must be expressed in tensorial form as tensor equation

has exactly the same form in all coordinate systems. The second rank covariant ten-
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sor gµν (number of indices gives the rank of the tensor), known as the metric tensor

or fundamental tensor, gives all the information of gravitational field. This tensor de-

termines the space-time interval ds2 between infinitesimally separated events xµ and

xµ +dxµ as follows:

ds2 = gµνdxµdxν . (1.3.1)

As (1.3.1) is defined in Riemannian space, it is independent of the coordinate system.

Therefore, ds2 is an invariant. The contravariant tensor corresponding to gµν is de-

noted by gµν where gµνgνσ = δ σ
µ , where δσ µ is kronecker delta, defined as δ σ

µ = 1 if

σ = µ, and zero otherwise. The indices can be raised or lowered by using the metric

tensor as Aµ = gµνAν or Aµ = gµνAν .

The ordinary (or partial) differentiation to Riemannian space is carried out by covari-

ant differentiation which is defined as

Aµ;ν =
∂Aµ

∂xν −Γσ
µνAσ , (1.3.2)

Aµ
;ν =

∂Aµ

∂xν +Γµ
νσ Aσ , (1.3.3)

where Γµ
νσ is called Christoffel sysmbols, which is defined as

Γµ
νσ =

1
2

gµh(ghν ,σ +ghσ ,ν −gνσ ,h), (1.3.4)

where a comma denotes partial derivative with respect to the corresponding variable.

It should be noted that gµν ;λ = 0.

The mixed Riemannian- Christoffel tensor is given by

Rλ
µνσ =

∂
∂xν Γλ

µσ − ∂
∂xσ Γλ

µν +Γα
µσ Γλ

αν −Γα
µνΓλ

ασ . (1.3.5)

The contraction of Riemannian-Christoffel tensor with respect to σ gives the second

rank tensor called the Ricci tensor which is defined as

Rµν = Rλ
µνλ =

∂
∂xν Γλ

µλ − ∂
∂xλ Γλ

µν +Γα
µλ Γλ

αν −Γα
µνΓλ

αλ . (1.3.6)

Ricci tensor is symmetric tensor, i.e., Rµν = Rνµ . If the Ricci tensor is further contract-

ed, we get an invariant R, called the scalar curvature or Ricci scalar and is defined

by

R = gµνRµν . (1.3.7)
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In general, the metric gµν in equation(1.3.1) is function of the coordinates. However,

it can be simplified by assuming the cosmological principle which says that at a given

time, the universe is isotropic and homogeneous. A spatially isotropic and homoge-

neous universe in spherical polar coordinates (r,θ ,ϕ) can be described by [2]

ds2 =−c2dt2 +a2(t)
[

dr2

1− kr2 + r2(dθ 2 + sin2θdϕ 2)

]
, (1.3.8)

The above line element (1.3.8) is known as the Friedmann-Lemaître-Robertson-

Walker (FLRW) metric [3,4]. In Eq.(1.3.8), k is an undetermined constant which mea-

sures the curvature of space. Without loss of generality, we can scale the coordinate r

in such a way as to make k takes one of the three values +1, 0, −1. This corresponds

to the three possible spatial geometries spherical, flat or hyperbolic respectively. Also,

a(t) is the scale factor of the universe which describes the expansion or contraction of

the universe.1

1.4 Einstein’s law of gravitation

A cosmological model represents the universe at a particular scale and is defined

by specifying:

• the space-time geometry which is determined by the metric tensor gµν .

• the matter content in the universe which is represented by the energy momentum

tensor Tµν , i.e., equations governing the behaviour of each matter component

and the interaction terms between them, ranging from early enough times to

present day.

• the interaction of geometry and matter.

According to Newtonian theory of gravitation, the field equations in the presence of

matter are given by

∇2ϕ = 4πGρ , (1.4.1)

where ϕ is the gravitational potential, ρ is the density of matter and G is the Newtonian

gravitational constant.

In non-relativistic limit, the metric gµν plays the role of gravitational potential, we

1We consider the speed of light c = 1 and ‘space-like convention’ (-, +, +, +) for the metric (1.3.8) throughout
the thesis.
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must replace ϕ by gµν in the relativistic theory of gravitation. Hence, left hand side of

(1.4.1) must be expressed in terms of the second order derivatives of gµν .

As the density ρ is of second rank energy-momentum tensor, therefore, right hand

side must be expressed in terms of material energy tensor Tµν in such a way that its

divergence vanishes.

Therefore, the most appropriate field equations in general relativity are the Einstein

field equations which are given by

Gµν = 8πG Tµν , (1.4.2)

where Gµν = Rµν − 1
2gµνR is the Einstein tensor which plays a very important role in

general relativity and Tµν is the energy-momentum tensor of the source producing

gravitational field. Einstein’s field equations tell us that how the presence of matter

curves space-time, therefore, we need to define the matter under consideration. In

this regard, we consider the perfect fluid which has no viscosity or heat flow. The

energy-momentum tensor for the perfect fluid is given by

Tµν = (ρ + p)uµ uν + p gµν , (1.4.3)

where p represents the pressure, ρ represents the energy density and uµ = dxµ

ds is

the four-velocity of matter. The four-velocity vector uµ can be considered as a con-

travariant vector field whose components are functions of the space-time point xµ

(µ = 0, 1, 2, 3). In normalized form, we have gµνuµuν =−1.

According to definition of divergence of a tensor, the divergence of Einstein’s tensor

is identically zero, that is,

Gµ
ν ;µ =

(
Rµ

ν − 1
2

gµ
ν R
)

;µ
= 0, (1.4.4)

which implies from (1.4.2) that

T µ
ν ;µ = 0, (1.4.5)

where the semicolon is a covariant derivative. This is known as the conservation

equation for energy-momentum tensor. Writing out the covariant derivative, it gives

T µ
ν ,µ +Γµ

αµT α
ν −Γα

νµT µ
α = 0, (1.4.6)
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where a comma denotes an ordinary derivative. Although this gives four equations,

only the time component gives a non-trivial equation which is given by

ρ̇ +3
ȧ
a
(ρ + p) = 0, (1.4.7)

where a dot denotes derivative with respect to the cosmic time t. This is also known

as the Matter conservation equation. It is noted that there are two terms which

contribute the change in density. The first term within the bracket corresponds to

dilution in the density as the volume increases whereas the second term corresponds

to the loss of energy due to the work done by pressure as the volume increases. Thus,

the energy lost from the fluid through work done transfers into gravitational potential

energy, i.e., the energy is always conserved.

1.5 Friedmann Universe

Our aim now is to substitute the FLRW space-time metric (1.3.8) into Einstein’s field

equations (1.4.2) for energy-momentum tensor of perfect fluid (1.4.3) to obtain predic-

tions for the dynamical evolution of the universe. The field equations (1.4.2) give 10

equations, but in view of the homogeneity and isotropic assumptions there are only

two independent equations for a perfect fluid in co-moving coordinates as below.

ȧ2

a2 =
8πG

3
ρ − k

a2 , (1.5.1)

2ä
a
+

ȧ2

a2 =−8πGp− k
a2 , (1.5.2)

where a dot represents the derivative with respect to the cosmic time t. The first e-

quation (1.5.1) is known as the Friedmann equation [2]. This is the most important

equation in cosmology which describes the expansion of the universe. Cosmologists

try to solve this equation under different assumptions depending on the material con-

tent in the universe.

Using the Friedmann equation (1.5.1), we may rewrite the second equation (1.5.2)

as
ä
a
=−4πG

3
(ρ +3p), (1.5.3)

which is an important equation known as the acceleration equation. This equation

does not feature the curvature parameter k. This equation has a vital role in explaining
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the evolution of universe. The universe decelerates for ρ +3p > 0, while accelerates

for ρ +3p < 0.

In cosmology, we have a unique pressure associated with each density, i.e., p =

p(ρ). This relationship is known as the equation of state. Once the equation of

state is specified, the Friedmann equation (1.5.1) and conservation equation (1.4.7)

can describe the evolution of the universe. The perfect fluid relevant to cosmology

follows the simple equation of state

p = wρ , (1.5.4)

where w is known as equation of state parameter. Using (1.5.4) in the conservation

equation (1.4.7) we obtain
ρ̇
ρ
=−3(1+w)

ȧ
a
. (1.5.5)

If ω is constant, this can be integrated to get

ρ ∝ a−3(1+w). (1.5.6)

The cosmological fluid is assumed to consist of three non-interacting components-

pressureless matter (w = 0), radiation (w = 1/3) and vacuum (w =−1).

The pressureless matter means non-relativistic matter which exerts negligible pres-

sure (p = 0). In this case, from equations (1.5.1) and (1.4.7) for k = 0, we find that the

energy density and the scale factor vary as ρ ∝ a−3 and a ∝ t2/3, respectively. Thus,

the density decreases in proportion to the volume of the universe.

In case of radiation, it obeys p = ρ/3. Consequently equations (1.5.1) and (1.4.7)

give ρ ∝ a−4 and a ∝ t1/2. This suggests that the universe expands more slowly if

radiation dominates.

In vacuum, the equation of state gives p =−ρ. Using this in field equations we find

that the energy density is constant and the scale factor varies in exponential form.

A negative pressure is something like a tension in a rubber band which expands the

volume instead of compressing it.

1.6 The Cosmological constant

From the acceleration equation (1.5.3), we see that if we want a static solution, i.e.,

one in which ä = 0, we must have ρ + 3p = 0 which is nonphysical condition. This is
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because assumption of zero pressure gives zero energy density.

While formulating general relativity, Einstein believed that the universe was static

although his theory did not permit it. Therefore, in order to make a static universe,

he modified his field equations by adding the so-called Cosmological Constant to his

equation (1.4.2), which is as follows:

Rµν −
1
2

gµνR+Λgµν = 8πG Tµν , (1.6.1)

where Λ is the cosmological constant has units [time]−2 or sometimes it is [length]−2.

Equations (1.5.1) and (1.5.2) for perfect fluid (1.4.3) are then modified as follows:

ȧ2

a2 =
8πG

3
ρ − k

a2 +
Λ
3
, (1.6.2)

2ä
a
+

ȧ2

a2 =−8πGp− k
a2 +Λ. (1.6.3)

In principle, Λ can be positive or negative. Now, if we assume the universe to be static

with a(t) = a0, a constant, and, say zero pressure, we get

ρ =
Λ

8πG
, k = Λa2

0. (1.6.4)

Thus, a positive Λ represents a repulsive force, so that the attractive force due to

the matter is balanced by this repulsive force in the Einstein’s static universe. In the

dynamical models when the galaxies are very far apart after a period of expansion,

the attractive force of matter becomes weak and ultimately the repulsive force due to

the cosmological constant dominates. The dynamic solutions with the cosmological

constant were first studied by Georges Lemaître [5]. Nowadays, the Λ−term is most

often considered in context of the universe with flat Euclidean geometry, k = 0. The

acceleration equation (1.5.3) is now modified as

ä
a
=−4πG

3
(ρ +3p)+

Λ
3
. (1.6.5)

We can observe from (1.6.5) that a positive Λ gives a positive contribution to ä, and

therefore, acts as a repulsive force. We can say that for sufficiently large Λ, it can

overcome the gravitational attraction caused by the first term and leads to an acceler-

ation.

In recent years, there are some other motivations for introducing a cosmological
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constant and such a term arises in many different contexts. Introducing the cosmo-

logical constant as a fluid with energy-momentum tensor T̃µν

T̃µν = (ρΛ + pΛ)uµuν + pΛgµν =
Λ

8πG
gµν , (1.6.6)

so that the energy density ρΛ and pressure pΛ of this fluid due to cosmological con-

stant are given by

ρΛ =
Λ

8πG
, pΛ = − Λ

8πG
. (1.6.7)

The above equations bring the Friedmann equation into the form

(
ȧ
a

)2

=
8πG

3
(ρ +ρΛ)−

k
a2 (1.6.8)

and the conservation equation is given by

ρ̇ + ρ̇Λ +3
ȧ
a
(ρ +ρΛ + p+ pΛ) = 0. (1.6.9)

Now, using (1.4.7) into above equation, we get

ρ̇Λ +3
ȧ
a
(ρΛ + pΛ) = 0. (1.6.10)

Since ρΛ is constant by definition, we must have

pΛ = −ρΛ. (1.6.11)

Thus, the cosmological constant has a negative effective pressure. Therefore, when

the universe expands, the work is done on the cosmological constant fluid which al-

lows its energy density to remain constant even though the volume of the universe

increases. The cosmological constant term is sometimes considered as the ener-

gy density of ’empty’ space, i.e., vacuum energy density. In the latest cosmological

discussion, Λ plays a crucial role causing an accelerating universe and is said to con-

stitute the so-called ’dark energy ‘.
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1.7 Observational Parameters

The whole of the observational cosmology, in fact, depends on some of the vital

parameters, such as the Hubble parameter, the deceleration parameter, density pa-

rameter, etc. which describe the physical and dynamical behavior of the universe. Let

us discuss about these parameters one by one:

1.7.1 Hubble Parameter

The Friedmann equation (1.5.1) or (1.6.2) is considered to explain Hubble’s discovery

which was made by Edwin Hubble in 1929 [6]. During the observation of moving

galaxies, Hubble observed that the almost all the galaxies are receding from us. The

further away from us a galaxy is, the faster it is receding. He observed that the velocity

of recession of a galaxy was proportional to the distance from us. That is, if −→v is

velocity of recession of galaxy and −→r is the distance from us, then −→v = H0
−→r which is

a linear relation between velocity and distance. This is known as Hubble’s law. The

proportionality constant H0 is known as Hubble’s constant which means that, at a

given cosmic time, H0 is independent of the separation distance and the recessional

velocity.

Let the velocity of recession is given by −→v = d−→r /dt and is in the same direction as
−→r . Thus, we have

−→v =
|−̇→r |
|−→r |

−→r =
ȧ
a
−→r , (1.7.1)

where −→r = a−→x and assume that the comoving position −→x is a constant. Thus, the

proportionality constant is defined as

H =
ȧ
a
. (1.7.2)

Although this is constant in space due to the cosmological principle, it is treated as

a function of time and is known as ‘Hubble parameter ’. This parameter tells us the

expansion rate of the universe. The value of H measured today is denoted by H0 in unit

Km sec−1 Mpc−1, which is known as ‘Hubble constant’. The inverse of the Hubble’s

constant at present epoch, the Hubble time, has the value of tH ≡ H−1
0 = 13.6 Gyr,

which gives the age of the universe from the ‘big bang’.
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We can write the Friedmann equation (1.6.8) as the evolution equation for H(t) as

H2 =
8πG

3
(ρ +ρΛ)−

k
a2 . (1.7.3)

It has been observed that the galaxies have a set of absorption and emission lines in

their spectra. If the galaxy recedes, the spectra lines move towards the red end of the

spectrum. This effect is known as redshift which is denoted by z, and is defined as

1+ z =
λobs

λem
, (1.7.4)

where λobs and λem are the wavelengths at the point of observation (us) and emission

(galaxy) respectively. On the other hand, the wavelength λ and the scale factor a is

proportional to each other, i.e., λ ∝ a, which gives

1+ z =
a(tobs)

a(tem)
, (1.7.5)

which is normally used to light received by us at the present time.

1.7.2 Critical density

The strength of the gravitational attraction is determined by the density of the uni-

verse. The critical density, denoted by ρc is a special value of density which is required

to make the geometry of the universe flat, k = 0, assuming Λ = 0 regardless of its ac-

tual value. Thus, on putting k = 0 in the Friedmann equation (1.6.8), the critical density

is defined as

ρc =
3H2

8πG
. (1.7.6)

It is to be noted that the critical density changes with time. Using the present value

of Hubble parameter H0, we may calculate the present value of the critical density.

Observations show that the actual density of our universe is very close to the critical

density, and this is achieved if we take k = 0 (the universe is flat).

1.7.3 Density parameter

The density parameter is a very useful tool for specifying the density of the universe.

The critical density as discussed above is not necessarily the true density of the uni-

verse because the universe may not be flat. However, it describes a natural scale for
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the density of the universe. Hence, it is often useful to quote the value of density of

the universe with respect to the critical density. This dimensionless quantity is known

as the density parameter Ω and is defined by

Ω =
ρ
ρc

. (1.7.7)

Using (1.7.7) into (1.7.3) and simplifying, we get

Ω−1 =
k

a2H2 . (1.7.8)

It should be noted that a, H and Ω all evolve with time. Their values at any particular

epoch t have to be related by (1.7.8). Their values at present epoch are denoted by a0,

H0 and Ω0. The above equation implies that Ω defines the geometry of the universe,

i.e., a closed, flat or open universe, as the sign of k will determine if density parameter

is greater than, equal to or less than unity. Current research shows that Ω is very

close to unity which implies that the universe is (nearly) flat.

It is important to note that the ρ used in the calculation of Ω is the total mass/energy

density of the universe. It is the sum of matter content (baryonic + cold matter) and

dark energy suggested by recent observations whose densities can be denoted by ρm

and ρΛ respectively. Hence total density is given by ρ = ρm +ρΛ and therefore

Ω = Ωm +ΩΛ (1.7.9)

where Ωm = ρm/ρc represents the density parameter of matter content (baryonic +

dark) and ΩΛ = ρΛ/ρc is the density parameter for dark energy. The density parameter

associated with the curvature term is given by Ωk = −k/a2H2. Thus, the Friedmann

equation (1.7.3) in terms of the density parameters can be written as

Ωm +ΩΛ +Ωk = 1. (1.7.10)

The observational data obtained from Tyep Ia supernovae, cosmic microwave back-

ground (CMB) and studies of the evolution of galaxy clusters all suggest that our

universe at present has ΩΛ = 0.7, Ωm = 0.3 and Ωk = 0. This means that we live in a

flat universe, dominated by a positive cosmological constant. The studies of formation

of elements in the early universe say that the density of baryonic matter (normal mat-

ter made of protons, neutrons and electrons) has Ωb = 0.04. Thus, most of the matter



14

in the universe is non-baryonic which does not emit radiation. It can be detected only

through its gravitational effects. This matter is known as ’dark matter‘. Therefore, Ωm

can split into its components: Ωm = Ωb +Ωc, where Ωb = 0.04 and Ωc = 0.26.

1.7.4 Deceleration parameter

The deceleration parameter is an important cosmological quantity which measures

the rate of change of expansion. It is defined as

q =−aä
ȧ2 =− Ḣ

H2 −1 , (1.7.11)

It is an indicator of deceleration/acceleration phase of the evolution of universe. The

positive value of q denotes the decelerated phase of the universe and the negative

value denotes the accelerated phase of the universe. The transition from decelerating

(q > 0) to the accelerating (q < 0) phase occurs at redshift ztr when the deceleration

parameter vanishes, i.e., q(ztr) = 0. Hence, it is an important tool to check the phase

transition of universe. The universe has gone through two phase transitions, one from

early time inflation to decelerated expansion and then decelerated expansion to late-

time accelerated expansion. In the late 1990s, the first convincing measurements of

deceleration parameter were made by two research groups studying distant super-

novae of a class known as type Ia, which are believed to be good standard candles

and got the result that q < 0 i.e. the universe is accelerating at present.

1.8 Dark matter and Dark energy

Dark matter(DM) is a hypothetical form of matter thought to account for approximate-

ly 26.8% of the matter content in the universe. The existence and properties of DM are

derived mainly from its gravitational effects observed on the visible matter, radiation,

and the large-scale structure of the universe. It neither emits nor absorbs any kind

of electromagnetic radiation. The first person to interpret the evidence of dark matter

was Dutch astronomer Jan Oort in 1932. Later on, study of motion of galaxies gave

the evidence about the dark matter.

Dark energy(DE) is the mysterious component of the universe that contains about

68.3% of the energy density today making the universe nearly flat and is responsi-

ble for accelerating the universe. Two teams of astronomers: the High-Z supernovae
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search team in 1998 led by Adam Riess [7] and the Supernovae Cosmological Project

in 1998 led by Saul Perlmutter, [8] used supernovae explosions of Type Ia as stan-

dard candles at redshifts-z: 0.4− 0.7 and confirmed that the expansion of the uni-

verse has not been slowing down due to gravity, rather it has been accelerating. The

phase transition of universe from decelerating to accelerating was also confirmed by

various observations like Wilkinson Microwave Anisotropy Probe (WMAP) [9, 10], S-

loan Digital Sky Survey (SDSS) [11], Planck collaboration [12,13], Cosmic Microwave

Background (CMB) [14], the Baryon Acoustic Oscillations (BAO) [15] etc. The most

accepted hypothesis to explain the accelerated expansion of universe is the pres-

ence of a mysterious energy called "dark energy" which makes up 68.3% of the total

mass-energy density of the universe. It is a hypothetical form of energy that exerts a

negative, repulsive pressure, behaving like the opposite of gravity.

However, both dark energy and dark matter are simply names describing unknown

entities. The various theoretical models for dark energy are being investigated since

last two decades.

1.9 The Lambda-CDM model

During the past two decades, cosmology has seen a set of major achievements. We

have developed a standard model to describe the origin and future evolution of the

universe. Many of the basic cosmological parameters have been deduced in several

independent ways which describe the consistent set of results. Several results show

that our universe is infinite and spatially flat having matter/energy density equal to

the critical density, Ω0 = 1. Yet observationally, including both the baryonic and dark

matter, we can only find less than a third of this value after neglecting the contribution

of radiation part at present epoch: Ωm = Ωb +Ωc ≃ 0.30. Thus, it appears that there

is some missing energy in a flat universe. A possible resolution of this problem of flat

universe would be to assume the presence of dark energy.

The simplest candidate of dark energy is the Einstein’s cosmological constant, with

w = −1. Such a cosmological constant assumed to be present even after inflation.

The constant dark energy density ρΛ is about three-quarters of the critical density

to provide the required missing energy. Such matter density is made up mostly of

cold dark matter. This standard model is often called the Lambda-Cold dark matter
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(ΛCDM) model. In this model, the universe contains three major components: 1) a

cosmological constant Λ which is associated to the dark energy (vacuum energy), 2)

Cold dark matter- dark matter which moves slowly as compared to the speed of light

and has weak interaction with ordinary matter and electromagnetic radiation, and 3)

ordinary matter.

The ΛCDM model is the simplest model which describes the properties of existence

and structure of the cosmic microwave background, the large scale structure in the

distribution of galaxies and the accelerating expansion of the universe. This model

assumes that the general relativity is the correct theory on the cosmological scales.

The cosmological constant Λ is currently associated with vacuum energy or dark en-

ergy in empty space. This vacuum energy explains the accelerating expansion of the

space against the attractive effects of gravitational field. As we know that the Λ−term

has negative pressure pΛ = −ρΛ which is responsible for the accelerating universe.

Such model often has an equation of state parameter w ̸= wΛ =−1.

Since the densities of various matter scale as different powers of the scale factor, for

example, ρ ∝ a−3 for matter-dominated phase, ρ ∝ a−4 for radiation-dominated phase

and ρ ∝ a−3(1+w) for different dark energy, therefore, the Friedmann equation can be

rewritten in terms of various density parameters as

H(a) = H0

√
(Ωc +Ωb) a−3 +Ωrad a−4 +Ωk a−2 +ΩΛ a−3(1+w), (1.9.1)

or equivalently,

H(z) = H0

√
(Ωc +Ωb) (1+ z)3 +Ωrad (1+ z)4 +Ωk (1+ z)2 +ΩΛ (1+ z)3(1+w), (1.9.2)

where w is the equation of state parameter.

In ΛCDM model, it is assumed that the density parameter for curvature, Ωk = 0 and

w =−1, then the equation (1.9.2) reduces to

H(z) = H0

√
Ωm (1+ z)3 +Ωrad (1+ z)4 +ΩΛ, (1.9.3)

where Ωc +Ωb = Ωm. The observations show that the radiation density is very small

today, Ωrad ∼ 10−4, therefore, finally, we get the expression for H(z) as

H(z) = H0

√
Ωm (1+ z)3 +ΩΛ. (1.9.4)



17

Although, the ΛCDM model is the best known model till date to explain the accel-

erating phenomena of present-day universe, it suffers from some problems. From

theoretical point of view, fine tuning and cosmic coincidence are the shortcomings

of the model [16–19]. There is a large discrepancy between the theoretical and ob-

served values of cosmological constant Λ which differs by at least 120 orders of mag-

nitude [20,21] and thus the problem is known as fine-tuning problem. Second problem

is associated with the coincidence between the observed vacuum energy density ΩΛ

and the matter density Ωm. Up to date we still know little about realistic nature of the

dark energy to resolve problems arising from the standard ΛCDM model.

1.10 Alternative models

Since the last two decades theorists have been trying to explain the observable be-

haviour of universe in two ways: one by introducing some unknown kind of matter

in the framework of Einstein gravity which does the modification in the matter part of

EFEs and known as the dark energy models and other is to modify the geometric part

of the Einstein’s equation, known as the modified theories of gravity models. In what

follows, we explain the evolution of universe with both the cases.

1.10.1 Dynamical dark energy models

The dynamical dark energy models have been proposed to solve the theoretical

problems connected with the standard model of cosmology. Many dynamic dark en-

ergy equation of state have been built to describe the late time acceleration. For a

given equation of state parameter, the dynamics of the expansion are determined.

Unlike the ΛCDM model with w =−1, the equation of state dynamically changes with

time for dynamical dark energy. The concept of quintessence [22–31] arose after the

1998 discovery of cosmic acceleration which used a scalar particle field [32–40]. The

quintessence model gives the solution to the fine-tuning problem and the coincidence

problem. Some other candidates of dynamical DE have also been proposed in litera-

ture such as phantom field (with negative kinetic energy) [41–47], the quintom (a com-

bination of quintessence and phantom scalar fields) [48–50], tachyonic field [51, 52],

k-essence [53–55], Chaplygin gas [56,57], etc. Considering such forms of DE candi-

dates as a responsible agent to explain the evolution of the universe has become a

common way. Using significant properties of quantum mechanics, various other dark
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energy models have been proposed. Out of which we have worked on holographic

dark energy (HDE) models in this thesis to explain the evolution of universe. Let us

discuss briefly the theory of HDE.

Holographic Dark Energy

Cosmologists are still working on the origin and types of dark energy. A theoreti-

cal attempt of applying Holographic Principle to dark energy emerged the concept of

holographic dark energy. This was basically done to align the vacuum energy density

with the holographic principle [58–60] of quantum gravity. Holographic principle (HP)

states that the entropy of any system is not related to its volume but to its surface

area. According to the principle, the maximum entropy limit set by the system should

not be greater than the entropy of black hole of same size. Susskind [59] further dis-

cussed this principle in the context of string theory. Holographic dark energy (HDE)

is originated from the HP in which ultra-violet (UV) cut-off of DE is associated with an

infrared (IR) cut-off. It is significant to note that the UV cut-off is related to vacuum

energy, while the IR cut-off is related to the large-scale structure of universe. Hence,

HDE is worth studying being an interesting and simple idea to explain the accelerated

expansion of the universe.

HDE originates from the quantum zero-point energy predicted by an effective quan-

tum field theory with a proper UV/IR connection. Cohen et al. [61] proposed that for

a system with size L and vacuum energy density ρΛ which is related to UV cut-off

must be L3ρΛ ≤ LM2
p, Mp ∼ 1√

8πG
is the reduced Planck mass and L is the IR cut-off.

A natural candidate for IR cut-off, free from causality, is the Hubble horizon i.e., L as

Hubble scale, L = H−1c [62]. Li [63] considered the largest possible L to saturate this

inequality and therefore the energy density related to HDE is given by

ρΛ = 3b2M2
pL−2, (1.10.1)

where b is a numerical constant and coefficient 3 is for mathematical convenience.

The HDE model is an attempt to investigate the nature of dark energy in fundamen-

tal theory originating from some considerations of the features of quantum gravity

theory [64]. Several [65–73] authors have investigated holographic dark energy mod-

el with different matter content. Myung [74–76] in his various papers reviewed the

origin of HDE and also investigated how it is different than other dynamical models

like Chaplygin gas, and tachyon model with a constant potential.
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As mentioned IR cut-off is related to the universe’s large-scale structure so we have

various choices for IR cut-off for a given holographic dark energy model, for example,

Hubble horizon, event horizon, Granda-Oliveros cut-off, particle horizon, or Ricci s-

calar.

Hsu [62] showed that the HDE model with Hubble horizon does not exhibit the ac-

celerated expansion of the universe. However, the HDE model with event horizon,

i.e., L = a(t)
∫ ∞

t dt ′/a(t ′) provides the sufficiently negative EoS to obtain the accelerat-

ed expansion of the universe [77]. It has been found that the HDE using event horizon

is also not compatible with the age of some old high redshift objects [78]. Later on,

Pavón and Zimdahl [79] showed that the interacting HDE model with the Hubble hori-

zon, L = H−1 might give a suitable EoS for DE. It was also observed that there might

be a constant ratio of the energy densities of HDE and DM irrespective of the type of

interaction.

Granda-Oliveros [80] proposed an IR cut-off for the HDE, which is a combination

of the square of Hubble scale and the time derivative of Hubble scale. They defined

the holographic energy density as ρd = 3(n1H2+n2Ḣ), where n1 and n2 are constants.

This IR cut-off avoids the problem of causality and solves the coincidence problem.

Many authors [81–90] have used this cut-off to explain the evolution of universe. No-

jiri and Odintsov [91] showed that a unified model of the universe may be achieved

in a generalized HDE model and coincidence problem may be resolved. Thus, HDE

models having the advantage over other DE models may be able to solve the cos-

mic coincidence problem. Hence for different choices of the IR cut-off, various HDE,

have been considered in Refs. [90,92–99]. The HDE model with suitable choice of IR

cut-off favors the current cosmic observational data [100–103].

1.10.2 Modified Theory of gravity

The modified theories of gravity are the extension of general theory of relativity, to

incorporate it in a larger, more unified theory. A large number of models with modifica-

tion to Einstein’s gravity can explain the dark energy phenomena. Notable examples

are Eddington’s theory of connections [104], Weyl’s scale independent theory [105]

and higher dimensional theories of Kaluza and Klein [106, 107]. The idea of con-

structing a quantum field theory of gravity arose with rise of super gravity and string

theories [108, 109]. These thoeries influenced the later scientists and opened the

many possible ways of modifying gravity. The theories like the scalar-tensor theo-
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ries [110,111] are well known examples of extra fields included in the field equations.

One of the most simple and well studied scalar-tensor theory is Brans-Dicke Theory.

Brans-Dicke Theory

In 1961, Brans and Dicke [112] proposed a theoretical framework to explain the gravi-

tation known as Jordan-Brans-Dicke or simply the Brans-Dicke(BD) theory. This theo-

ry is an attempt to properly incorporate both the Mach’s principle [113] and the Dirac’s

Large Number Hypothesis [114] in which the gravitational constant G is allowed to

vary with space-time. The Brans Dicke theory offers alternative predictions of the so-

lar system tests of gravity which escalated the experimental techniques and to make

accurate measurements for distinguishing between the predictions of this theory and

general relativity, and explain the accelerated expansion of universe [115]. It de-

scribes the gravitation through spacetime metric gµν and a massless scalar field ϕ .

This was the first theory of gravity which described the dynamics of gravity by a scalar

field and a metric tensor represented the spacetime dynamics. In Jordan frame, the

action for the BD theory with matter fields is given by [116]

S =
∫

d4x
√
−g
[

1
16π

(
ϕR− ω

ϕ
∇αϕ∇αϕ

)
+Lm

]
, (1.10.2)

where R is the Ricci scalar, ϕ is the BD scalar field and ω is known as the BD coupling

parameter. ω measures how strongly ϕ couples with matter and Lm represents the

matter Lagrangian density excluding the scalar field. By the appropriate scaling we

can show that BD theory approaches to GTR as ω → ∞.

The dark energy models emerging from the BD theory can still be significantly differ-

ent from standard cosmology sufficiently early in the universe. This theory is widely

used to study the inflationary epoch of the universe [117–119] but the inflationary

regime can be different because of the additional term in the action. Theorists have

explored a variation in the Brans-Dicke theme by adding higher-order couplings of

the scalar field with gravity. Banerjee and Beesham [120] presented a second order

thermodynamic viscous model in the framework of BD theory. They found the exact

solutions of the FRW model by assuming the power-law form of BD scalar field. Ram

and Singh [121, 122] have studied the flat FRW model with variable EoS parameter

using the power law form of BD scalar field.

In 1998, Liddle et al. [123] have discussed the BD theory to describe the transition

between the radiation era and the matter dominated era. The BD theory has also
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been investigated to describe the emergent universe [124]. Singh [125] studied the

early time cosmology with particle creation in BD theory to analyze its thermodynam-

ical effect in open thermodynamical systems. The various aspects of black hole have

been investigated in BD theory in Refs. [126–130]. The BD theory, due to its asso-

ciation with string theory and higher dimensional theories [131–133], has got much

interest to explain the accelerated expansion .

The variation of action (1.10.2) with respect to the metric tensor and scalar field yield

Gµν = Rµν −
1
2

gµνR =
8π
ϕ

Tµν +8πT BD
µν , (1.10.3)

and

∇α∇αϕ =
8π

(2ω +3)
T λ

λ . (1.10.4)

where T BD
µν is the energy-momentum tensor for the BD scalar which is defined as

T BD
µν =

1
8π

[ ω
ϕ 2

(
∇µϕ∇νϕ − 1

2
gµν∇αϕ∇αϕ

)
+

1
ϕ
(
∇µ∇νϕ −gµν∇α∇αϕ

)]
. (1.10.5)

The BD theory is an alternative to the general relativity and finds wide interests in the

modern cosmology, it is worthy to study the dark energy models in this framework.

1.11 Viscous and matter creation cosmology

In what follows, we discuss the role of viscous fluid and matter creation in cosmology

in describing the evolution of the universe.

1.11.1 Viscous cosmology

Inflation is a crucial part of universe as it has solved many problems in cosmological

history. One needs to consider a suitable mechanism to obtain the inflationary phase

which is either a scalar field in the framework of GR or a degree of freedom arising

from gravitational modification. In literature, so far cosmological fluid (non viscous)

has been considered as an ideal fluid. It is worth finding out how the cosmological

solutions of GR behave after introducing viscosity term. Viscosity is a concept in fluid

mechanics and is related to an exotic fluid with few thermodynamical features like bulk

and/or shear viscosities. In view of the spatial isotropy of the universe which is com-

monly accepted, one usually omits the shear viscosity. This is further motivated by the
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Planck observations [13] and WMAP [14], and is supported by theoretical calculations

which show that isotropization is quickly established in a large class of homogeneous

and anisotropic universes.

The bulk viscosity arises due to the decay of dark matter particles into relativistic

products. Bulk viscosity helps in reducing the equilibrium pressure in an expanding

Universe. Thus, for large bulk viscous coefficient it is possible for negative pressure

term to dominate and an accelerating cosmology to ensue. The pressure provided by

bulk viscous coefficient dominantly surpasses the remaining pressure contributions

from other cosmic energy-matters. Therefore, it is necessary to clearly define the

bulk viscosity for the system of interest.

The interest in viscous cosmology has increased a lot in recent years. Many theo-

rists have explored how several parts of cosmological theory become affected when

a bulk viscosity is brought into formalism. The bulk viscosity arises anytime a fluid ex-

pands (or contracts) too fast and ceases to be in thermodynamic equilibrium. Hence,

the bulk viscosity is a measure of effective pressure needed to restore the system to

its thermal equilibrium.

There are two types of dissipative model based on relativistic theory of non-equilibrium

thermodynamics. The first order type was developed by C. Eckart [134]. There is a lin-

ear relation between the Hubble parameter H and the bulk viscous pressure Π which

results from the first order deviations of the equilibrium states i.e. Π =−3ζ H where ζ

is the bulk viscous coefficient. To avoid violating the causality principle, higher order

deviations from the equilibrium states have been taken into considerations, mostly the

second order derivations of the thermodynamics quantities. Full causality theory of a

relativistic second order theory was developed by Israel and Stewart [135] which has

been studied in the evolution of universe. The full Israel-Stewart transport equation

is given by [136]. In this theory, the transport equation for bulk viscous pressure Π is

given by

Π+ τΠ̇ =−3ζ H − τΠ
2

(
3H +

Π̇
Π

− Ṫ
T
− ζ̇

ζ

)
. (1.11.1)

When relaxation time τ = 0, the second-order theory reduces to the Eckart first-order

theory. The existence of bulk viscosity leads to a modification of the perfect fluid

energy-momentum tensor

Tµν = (ρ + p)uµuν +gµν p+∆Tµν . (1.11.2)
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The dissipative contribution ∆Tµν which guarantees translation and rotational invari-

ance for a fluid in motion is given by

∆Tµν =−3ζ
ȧ
a

(
gµν +uµuν

)
(1.11.3)

where ζ is the bulk viscous coefficient. Thus, the total energy-momentum tensor is

Tµν =

(
ρ + p−3ζ

ȧ
a

)
uµuν +gµν

(
p−3ζ

ȧ
a

)
. (1.11.4)

According to the Eckart’s theory, if cosmic fluid has viscosity and p is the thermody-

namic pressure of matter content then the effective pressure is given by

p̃ = p+Π, (1.11.5)

where Π =−3ζ H, is the dissipative pressure where ζ is the coefficient of bulk viscos-

ity. Hence the energy-momentum tensor (1.4.3) with viscous fluid transforms to

Tµν = (ρ + p̃)uµ uν + p̃ gµν . (1.11.6)

Some anisotropic models with viscous term have also been studied to observe the ef-

fect of viscous term [137–140]. Many authors [141–169] have studied the dark energy

models with bulk viscosity in the cosmic medium. All these cited works show that, for

an appropriate viscosity coefficient, an accelerated cosmology may be obtained with-

out the requirement of a cosmological constant. In this thesis, we probe the viscous

counterparts in various cosmological models depending on the form of bulk viscosity

as well as on the equation of state.

1.11.2 Matter creation cosmology

It is well known that the key ingredient required for accelerating universe is a sufficient

negative pressure. This happens naturally in various ways when physical systems

depart from the thermodynamic equilibrium. The matter creation is one of the exam-

ple which is induced by the time-varying gravitational field during expansion of the

universe. The negative pressure generated by the matter creation can be derived

through relativistic non-equilibrium thermodynamics.

To understand the observed large scale structure of universe we need a mecha-
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nism for the existence of the irreversible processes prevalent at all levels of physical

description and we believe that this irreversibility comes from the dissymmetrical re-

lation between space-time and matter. This can be done by reinterpreting the matter-

energy stress tensor in Einstein’s equations. This creation of particles is due to an

irreversible energy flow from the gravitational field to the created matter constituents.

This consequent from consideration of the thermodynamics of open systems within

the framework of cosmology. It is appeared that the second law of thermodynamic-

s requires that space-time transforms into matter while the inverse transformation is

forbidden.

Prigogine et al. [170, 171] dealt with the matter creation problem using the thermo-

dynamical theory of irreversible processes, in the framework of the standard hot big

bang cosmology. They came up with an interesting type of cosmological history in-

cluding large scale entropy production assuming the cosmological thermodynamics of

open systems and the creation of particles can occur only as an irreversible process

at the cost of the gravitational field. This phenomenon within the context of GTR has

been studied by many authors in detail [172–178]. Matter creation has ability to gen-

erate an effective negative pressure and therefore can play the role of a dark energy

component. Several authors [179–187] reconsidered the idea of irreversible matter

development.

On a phenomenological level, the matter creation has been defined in the literature

in terms of a bulk viscous stress [188,189]. However, Prigogine et al. [170,171] made

the differences between the bulk viscosity and matter creation processes and showed

that they result in different histories of universe evolution. The equivalence between

bulk viscosity and matter creation has been discussed by Triginer and Pavón [190],

and Brevik and Stokkan [191]. It has been found that matter creation and bulk viscos-

ity have different thermodynamic feature of the universe while the dynamics of both

ideas could be similar. The observational consequence of matter creation in the early

universe has been discussed by Singh and Beesham [192].

In the gravitationally induced matter creation mechanism, the number of fluid parti-

cles is not conserved, i.e., Nµ
;µ ̸= 0. In this case, the continuity equation for the particle

number density takes the form [173]

Nµ
;µ ≡ ṅ+3nH = nΓ, (1.11.7)
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where Nµ = n uµ is the particle flux vector, N is the total number of particles in a co-

moving volume V , n = N/V is the particle density and Γ is the rate of matter creation

from the gravitational field with dimension time−1. In theoretical physics, Γ > 0 rep-

resents the source (matter creation), Γ < 0 represents the sink (matter annihilation),

and when there is no matter creation then Γ = 0. In the process of adiabatic particle

creation, the particles and entropy are generated but the entropy per particle does not

vary. The particle creation pressure, under such ‘adiabatic condition’, can be given

as [176,179,190,193]:

pc =−
(

ρ + p
3H

)
Γ, (1.11.8)

where pc is the pressure due to the matter creation. Now, the dynamics of the universe

can be explained if we know the particle creation rate. The nature of Γ is still not

known as the associated quantum field theory (QFT) is yet to be developed. In theory,

different forms of Γ, e.g., Γ = constant [194], Γ ∝ H [195], Γ ∝ H2 [175, 196], and a

linear combination [197], have been already taken to explain the early and present-

day acceleration of the universe. However, the models with linear and quadratic forms

of Γ do not show transition redshift, i.e., they are not compatible with the current

cosmology. Therefore, a natural extension is to consider the linear combinations of H,

H2 . . ., and the derivative of the Hubble parameter. At last, we can check the viability

of such models with observational data.

Due to the addition of matter creation, energy momentum tensor changes as per the

second law of thermodynamics. Therefore, the energy- momentum tensor of perfect

fluid (1.4.3) empowered with the mechanism of matter creation is given as

Tµν = (ρ + p+ pc)uµ uν +(p+ pc) gµν . (1.11.9)

The entropy flux vector has the form Sµ = nσuµ ≡ suµ , with σ = S/N is the basic

entropy per particle and S= sa3 being the entropy in a comoving amount. The second

law of thermodynamics imposes a relationship

Sµ
;µ = nσ̇ +σnΓ ≥ 0. (1.11.10)

The divergence of Sµ is reduced to Sµ
;µ = σnΓ if the creation process is such that the

specific entropy per particle is constant. However, matter creation and bulk viscosity

are two distinct processes, the viscous term’s specific entropy rate per particle is
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calculated as [190]

σ̇ =
ζθ 2

nT
, (1.11.11)

where T is the temperature. It is clear that the existence of Γ has no bearing on the

production of entropy per particle, which is completely dependent on the nature of

bulk viscosity. As stated previously, if ζ = 0, the entropy per particle is constant.

1.12 Geometrical diagnostic parameters

The study of cosmological parameters like the Hubble parameter H, deceleration pa-

rameter q and equation of state parameter ω help us to study the behaviour of uni-

verse through different cosmological models. These parameters are defined by taking

the first and second order derivatives of the scale factor. To get the more precision

about the universe through cosmological models that matches the observational data

as well, some other parameters are defined by involving the higher order derivatives

of the scale factor. In what follows, we discuss such diagnostic parameters which

have been used in this thesis to analyse cosmological phenomena.

1.12.1 Statefinder Parameter

Sahni et al [198] and Alam et al [199] introduced a new pair of diagnostic, known as

statefinder parameter, denoted by {r,s} to distinguish the different dark energy models

with ΛCDM model. This pair is defined as

r =
...a

aH3 =
Ḧ
H3 −3q−2 and s =

r−1
3(q−1/2)

. (1.12.1)

The statefinder pair is geometrical in nature as it is derived from the space-time metric

directly. Depending on the values of pair {r,s} in s− r plane, we can classify the dark

energy into three categories:

• r > 1, s < 0, Chaplygin gas model;

• r < 1, s > 0, quintessence model;

• r = 1, s = 0, the standard ΛCDM model.

One can plot the trajectories in s− r and q− r planes to discriminate various dark

energy models.
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1.12.2 Om diagnostic

As a complementary to {r,s}, Sahni et al [200] proposed another new diagnostic called

Om(z) parameter. It is defined as

Om(z) =

H2(z)
H2

0
−1

(1+ z)3 −1
. (1.12.2)

The slope of the trajectory in Om− z plane is used to classify into different categories:

• a negative slope means a quintessence type DE;

• a positive slope means a phantom-like DE;

• a horizontal line means a ΛCDM model.

Many authors [201–203] have studied the dark energy models based on Om(z) diag-

nostic.

1.12.3 Cosmographic Parameters

Apart from the above mentioned two geometric parameters, a comparison of DE mod-

els can also be carried out by cosmography. A Taylor series expansion of the scale

factor at present time is used to define the cosmographic parameter (CP), which in-

volve the higher order derivatives of the scale factor. The usual CP are the jerk(j),

snap(s), lerk (m) and m which are respectively defined as [204,205]

j =
1

aH3
d3a
dt3 , s =

1
aH4

d4a
dt4 , l =

1
aH5

d5a
dt5 , m =

1
aH6

d6a
dt6 . (1.12.3)

The above cosmographic parameters in terms of redshift are defined as

j =−q+(1+ z)
dq
dz

+2q(1+q), (1.12.4)

s = j−3 j(1+q)− (1+ z)
d j
dz

, (1.12.5)

l = s−4s(1+q)− (1+ z)
ds
dz

, (1.12.6)

m = l −5l(1+q)− (1+ z)
dl
dz

. (1.12.7)
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Here, r and j are same; but the s parameter defined in (1.12.3) is not same with one

defined in (1.12.1). The jerk parameter informs about inflection points in the expansion

history of the Universe. However, there is no such physical significance of snap and

m parameters but being important part of the Taylor series of the Hubble parameter

in cosmography, they give us the information about the models. The study of the

above parameters for any dark energy model along with the Hubble parameter H

and deceleration parameter q is known as the cosmography of the model. Using the

equation (1.12.3) it can be deduced that the cosmography of any cosmological model

will be true whenever the Hubble parameter is fourth-order differentiable.

1.13 Model Selection Criterion

A chi-squared statistic is a very popular method that measures how a model com-

pares to actual observed data. The reduced chi-squared, denoted by χ2
red, method

is used for model assessment, model comparison, convergence diagnostic, and error

estimation in astronomy. If ν is the degree of freedom, the reduced χ2 is then defined

as

χ2
red =

χ2
min
ν

. (1.13.1)

If N is the number of data points and d is the free parameters, then degree of freedom

is defined as the difference between total number of data points and the number of

free parameters i.e., ν = N− d. If a model is fitted to data and the resulting χ2
red is

larger than one, it is considered a “bad” fit, whereas if χ2
red is less than one, it is con-

sidered an over-fit. The model with the minimum reduced chi-squared is usually the

preferred one.

Statistical analysis takes the number of parameters required into account to decide

which model is “better”, and how well the models complement the data. Akaike In-

formation Criterion (AIC) [206] and the Bayesian or Schwarz Information Criterion

(BIC) [207] are used to evaluate the goodness of our model in comparison to a given

reference model. The AIC parameter is defined as follows [206]

AIC =−2 lnLmax +2d, (1.13.2)

where Lmax = e−χ2
tot/2 is the maximum likelihood obtained for the cosmological model.

Minimizing the Akaike information criterion allows selection between models with dif-
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fering number of parameters. The “preferred model” for this criterion is the one with

the smaller value of AIC. We calculate ∆AICkl = AICk −AICl to compare the model k

with the model l, which may be interpreted as “evidence in favor” of the model k over

the model l. We have “strong evidence in favor” of model k for 0≤∆AICkl < 2, “average

evidence in favor” of model k for 2 < ∆AICkl < 4, “less evidence in favor” of model k for

4 < AICkl ≤ 7, and “no evidence in favor” of model k for ∆AICkl > 10 [208].

The BIC, on the other hand, is defined as [207]

BIC =−2 lnLmax +d lnN, (1.13.3)

Similar to ∆AICkl, ∆BICi j = BICi − BIC j may be interpreted as “evidence favor” the

model i compared to the model j. For 0 ≤ ∆BICi j < 2, there is “not enough evidence

against” the model i, for 2 ≤ ∆BICi j < 6, there is “evidence against” the model i and for

6 ≤ ∆BICi j < 10, there is “strong evidence against” model i [208].

II. Observational Cosmology

1.14 Observational Analysis

Now that we have precision cosmological data, it has become significant to compare

cosmological models with data. Once we have decided our cosmological model we

use our observations to measure the value of its parameters and to learn about our

universe and its material composition. Usually a compilation of several different type

of data, analysed simultaneously, is used.

1.14.1 Methodology

This section introduces the statistical methods used to perform the data analysis.

Cosmologists use the Bayesian statistics to tackle the data analysis. A software pack-

age COSMOMC is used which carries out an Monte Carlo Markov Chain (MCMC)

analysis using a CAMB program to carry out the theoretical calculations. COSMOMC

is a publicaly available code 2. There have been many cosmological probes till date

that can be used to perform the data analysis. There is an efficient way of exploring

parameter space (set of model free parameters) using MCMC method. An MCMC

2Go to http://cosmologist.info for more information
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sampler provides an efficient way to generate a list of samples. Foreman-Mackey et

al [209] introduced a Python implementation of the ensemble sampler for MCMC, the

‘EMCEE’. We have adopted this for analysing the cosmological models in this thesis.

In this approach, the algorithm drifts towards the highest likelihood regions, where the

fit to the data is best. For this, parameter space is explored by ’jumping’ randomly

from one set of parameter values to the next, with a rule for whether the jump is ac-

cepted or rejected depending on how the likelihood of the new point compares to the

old. We are fortunate to have access to a software package EMCEE which carries

out the MCMC analysis and many datasets have been incorporated into it making it

relatively easier for cosmologists to carry out analysis of new cosmological models

and to discover the effect of emerging data.

1.14.2 Observational Data

We list herewith some of the observations in this thesis which are important in the

context of late time acceleration. These are the observations of Type Ia supernova,

strong lensing system, observational measurement of Hubble parameter, the baryon

acoustic oscillation, and the cosmic microwave background radiation, etc.

Type Ia supernova: cJLA

Type Ia supernova type Ia (SNe) are the result of the explosion of a carbon-oxygen

white dwarf in a binary system. They are the brightest of all supernovae and are

characterized by a silicon absorption feature in their maximum light spectra. Type Ia

are also known as thermonuclear supernovae. This type of explosion does not take

place when the core of a massive star collapses. They instead occur in binary system,

where one of two stars must be a white dwarf. The other star is often a low mass star

like our sun or can be a red giant star. If the white dwarf grows to over 1.4 solar mass,

at this point electrons are no longer strong enough to prevent the star from collapsing

and star explodes as Type Ia SNe.

SNe are one of the brightest event in the universe. One would expect these super-

novae to be regular candles, with the same luminosity every time, because explosion

always takes place when white dwarf reaches a set mass. SNe is one of the best

probes for confirming the redshift-distance relation under this hypothesis, as they give

a clear measurement of the luminosity distance independent of redshift determination.

As a result, SNe are considered the best distance indicators available to astronomer-
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s. We use standard candles, like SNe to measure distances in space. They were

the objects observed when dark energy was discovered in 1998. These observations

have helped prove that the universe is expanding and accelerating.

In this thesis, we use samples from the compressed Joint Light-curve Analysis

(cJLA) compilation, which consists of 31 binned data points within the range 0.01 <

z < 1.3 [210]. The distances of a supernova at different redshift z are measured in the

form of distance modulus µb(z) which is same as the difference between the apparent

magnitude mb and the absolute magnitude Mb of the B-band (wavelength band of the

blue line) of the observed spectrum of the supernova.

µb(z) = mb −Mb = 5 log
(

dL(z)
10Mpc

)
+M, (1.14.1)

where M is the normalization parameter, dL is the luminosity distance defined as

dL = c(1+ z)
∫ z

0

dz′

H(z′,Θ)
, (1.14.2)

where c is the speed of light and Θ is the set of model parameters.

We use the chi-square, χ2-statistics in order to estimate the free parameters of the

cosmological models. The likelihood is evaluated :

χ2
SNe = xTC−1

b x, (1.14.3)

where x = µb −M−5 log10dL and Cb is the covariance matrix of µb [Table F.2 in [210]].

Type Ia supernova: Pantheon data

We also use the another latest compilation of SNe (Pantheon sample), consisting 40

binned data points in the redshift range 0.014 ≤ z ≤ 1.62 or 1048 data points in the

redshift range of z ∈ [0.014,2.3] from SNLS, SDSS, Pan-STARRS1, HST survey [211].

The χ2 function for SNe is defined as

χ2
Pan = µC−1µT , (1.14.4)

where µ = µobs
i − µ th and C is the covariance matrix of µobs given in [212]. The ob-

served distance modulus is given in [210] . Also, the theoretical distance modulus is

given by

µ th = 5 log10[dL(z)/10pc]+M, (1.14.5)
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where M is the nuisance parameter, c is the speed of light and the dimensionless

luminosity distance dL(z) is defined as [211]

dL(z) = (1+ z)
∫ z

0

dz′

H(z′,Θ)
(1.14.6)

where Θ represents the model parameters.

Observational Hubble Data

The other important part of fitting parameters is to determine the Hubble parameter

using observational data. Lately, the measurement of Hubble parameter H(z) has

received much attention from the researchers because of its model-independent na-

ture. The observational Hubble data (OHD) is based on differential ages of the galax-

ies [213]. OHD presents the Hubble parameter estimated at different redshift z. We

have used 43 data points of the Hubble parameter in the redshift range 0< z< 2.5 [214]

in our statistical analysis.

The χ2 function is defined as

χ2
OHD =

n

∑
i=1

[H(zi)−Hobs(zi,Θ)]2

σ2
i

, (1.14.7)

where H(zi) and Hobs(zi,Θ) denotes the theoretical and observed values of Hubble

parameter, respectively. σi denotes the standard deviation in the observed value.

OHD(CC + Galaxy distribution)

We use Hubble data H(z) to study the cosmic expansion history which includes 36

measurements in which 31 measurements are determined from the cosmic chrono-

metric technique (CC) [215], 3 correlated measurements from the radial BAO signal

in the galaxy distribution [216], and 2 measurements determined from the BAO signal

in Lyman forest distribution alone [217,218].

The expression for χ2 function for H(z) is

χ2
H(z)36 = χ2

CC+Lyα +χ2
gal. (1.14.8)

where

χ2
CC+Lyα =

33

∑
i=1

[Hobs(zi)−Hth(zi)]
2

σ2
i

, (1.14.9)
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Here, Hth(zi) and Hobs(zi) represent the theoretical and observed values at redshift zi,

respectively and σ2
i the standard deviation of each Hobs(zi),

and

χ2
gal = AT C−1A, (1.14.10)

C is the covariance matrix of 3 galaxy distribution measurements, given in Ref. [216]

and

A =


Hobs(0.38)−Hth(0.38)

Hobs(0.51)−Hth(0.51)

Hobs(0.61)−Hth(0.61)


Hz(DA+BAO)

Here we use the updated collection of 57 H(z) data points in the range z ∈ [0.07,2.36]

that consists of 31 points measured from differential age(DA) technique and 26 data

points received through BAO and other methods. The minimized chi squared function

for determining the best fit values of model is

χ2
H(z)(θ) =

57

∑
i=1

[H(zi)−Hobs(zi,Θ)]2

σ2
i

(1.14.11)

where H(zi) are theoretical values of Hubble parameter and Hobs(zi,Θ) are the ob-

served values of Hubble parameter. The standard deviation measurement uncertainty

in Hobs(zi,Θ) is represented by σi [219]. The corresponding data has been shown in

Table 1.1.

Baryon Acoustic Oscillations and Cosmic Microwave Background

Baryon acoustic oscillations (BAO) are a pattern of wrinkles in the density distribution

of the clusters of galaxies spread across the universe. They provide an independent

way to measure the expansion rate of the universe and how the rate has changed

throughout the cosmic history. Until recombination, the acoustic oscillations in the

baryon-photon fluid imprint a fixed comoving length scale in the statistics of galaxies

distribution, which is given by the comoving sound horizon at recombination,

rs(z∗) =
∫ ∞

z∗

cs(z)
H(z)

dz, (1.14.12)

in which cs is the sound speed and z∗ denotes the photons decoupling redshift and

holds the value z∗ = 1090 as per the Planck 2015 results [13]. The peak positions in
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Table 1.1: H(z) datasets consisting of 57 points

DA Method (31 points)
z H(z) σh(z) Re f . z H(z) σh(z) Re f .

0.070 69 19.6 [222] 0.4783 80 99 [231]
0.90 69 12 [220] 0.480 97 62 [222]

0.120 68.6 26.2 [222] 0.593 104 13 [215]
0.170 83 8 [220] 0.6797 92 8 [215]

0.1791 75 4 [215] 0.7812 105 12 [215]
0.1993 75 5 [215] 0.8754 125 17 [215]
0.200 72.9 29.6 [227] 0.880 90 40 [222]
0.270 77 14 [220] 0.900 117 23 [220]
0.280 88.8 36.6 [227] 1.037 154 20 [215]

0.3519 83 14 [215] 1.300 168 17 [220]
0.3802 83 13.5 [231] 1.363 160 33.6 [230]
0.400 95 17 [220] 1.430 177 18 [220]

0.4004 77 10.2 [231] 1.530 140 14 [220]
0.4247 87.1 11.2 [231] 1.750 202 40 [220]
0.4497 92.8 12.9 [231] 1.965 186.5 50.4 [230]
0.470 89 34 [232]

BAO and other method (26 points)

z H(z) σh(z) Re f . z H(z) σh(z) Re f .
0.24 79.69 2.99 [221] 0.52 94.35 2.64 [234]
0.30 81.7 6.22 [228] 0.56 93.34 2.3 [234]
0.31 78.18 4.74 [234] 0.57 87.6 7.8 [226]
0.34 83.8 3.66 [221] 0.57 96.8 3.4 [229]
0.35 82.7 9.1 [224] 0.59 98.48 3.18 [234]
0.36 79.94 3.38 [234] 0.60 87.9 6.1 [223]
0.38 81.5 1.9 [216] 0.61 97.3 2.1 [216]
0.40 82.04 2.03 [234] 0.64 98.82 2.98 [234]
0.43 86.45 3.97 [221] 0.73 97.3 7.0 [223]
0.44 82.6 7.8 [223] 2.30 224 8.6 [225]
0.44 84.81 1.83 [234] 2.33 224 8 [233]
0.48 87.79 2.03 [234] 2.34 222 8.5 [217]
0.51 90.4 1.9 [216] 2.36 226 9.3 [218]



35

the CMB anisotropy power spectrum is determined using this scale. After recombi-

nation the baryons decouple from the photons. Their perturbations evolve under the

influence of only gravity, which is dominated by dark matter due to its high density.

Eventually, baryon and dark matter both perturbations adopt the same power spec-

trum, with the acoustic oscillations function diluted in comparison to the CMB. We

adjust the size of the scale to find the history of expansion of universe.

In this thesis, we assume the combined BAO and CMB data from different obser-

vational missions [235]. We have taken the data from BAO distances measurements

from SDSS(R) [236], the 6dF Galaxy survey [237], BOSS CMASS [229] and three

parallel measurements from WiggleZ survey [238]. We combine these results with

the Planck 2015 [13].

The angular diameter, dA(z,Θ), in context of BAO, is given as

dA(z∗,Θ) = c
∫ z∗

0

dz′

H(z′,Θ)
, (1.14.13)

where Dv(z,Θ) represents the dilation scale which is given by Dv(z,Θ) =
(

d2
A(z,Θ)cz
H(z,Θ)

)1/3
.

The distant redshift dz is given by

dz =
rs(z∗)

Dv(z,Θ)
, (1.14.14)

where rs(z∗) is the co-moving sound horizon at the time when photons decouple [235].

The χ2 function for BAO/CMB can be written as [235]

χ2
BAO = ATC−1A (1.14.15)

where A is the matrix

A =



dA(z∗,Θ)
Dv(0.106,Θ) −30.84

dA(z∗,Θ)
Dv(0.35,Θ) −10.33

dA(z∗,Θ)
Dv(0.57,Θ) −6.72

dA(z∗,Θ)
Dv(0.44,Θ) −8.41

dA(z∗,Θ)
Dv(0.6,Θ) −6.66
dA(z∗,Θ)

Dv(0.73,Θ) −5.43


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and the inverse of the covariance matrix C−1 [235] is given by

C−1 =



0.52552 −0.03548 −0.07733 −0.00167 −0.00532 −0.00590

−0.03548 24.97066 −1.25461 −0.02704 −0.08633 −0.09579

−0.07733 −1.25461 82.92948 −0.05895 −0.18819 −0.20881

−0.00167 −0.02704 −0.05895 2.91150 −2.98873 1.43206

−0.00532 −0.08633 −0.18819 −2.98873 15.96834 −7.70636

−0.00590 −0.09579 −0.20881 1.43206 −7.70636 15.28135


We have taken the correlation coefficient from Ref. [9].

Strong Lensing System

We gather a new data from Strong Lensing System (SLS) to constrain the model

parameters. Due to the presence of gravity, light rays passing near matter get bent

in accordance with the General theory of Relativity and this bending of light gives

rise to multiple images of source. This phenomenon is known as strong gravitational

lensing [239]. For elliptical galaxies acting as lenses, Image separation depends on

the mass of the lens and also on the angular diameter distance between the lens and

the source and also between the observer and the lens.

When a lens is described under the assumption of Singular Isothermal Sphere(SIS),

the Einstein radius is defined as

θe = 4π
σSISDls

c2Ds
(1.14.16)

where Dls is the angular diameter distances between the lensing galaxy and the

source and Ds is the angular diameter distances between the observer and the source,

σSIS is velocity dispersion of lensing galaxy and c is the speed of light.

Since the angular diameter distance D, in terms of redshift can be defined as

D(z) =
c

H0(1+ z)

∫ z

0

dz′

E(z′)
(1.14.17)

where H0 is the Hubble constant. The main advantage of this system is that H0 is

being eliminated in defining the theoretical distance ratio as Dth = Dls
Ds

to obtain

Dth(zl,zs,Θ) =

∫ zs

zl
dz′

E(z′)∫ zs
0

dz′
E(z′)

(1.14.18)
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where Θ is the set of free model parameters, zl and zs are the redshifts to the lens and

source respectively and its observable counterpart can be obtained as

Dobs =
c2θe

4πσ2 (1.14.19)

where σ is the measured velocity dispersion of the lens. We can constrain the cos-

mological parameters by minimizing the χ2 function given by [240]

χ2
SLS =

NSL

∑
i=1

{Dth(zl,zs,Θ)−Dobs(θe,σ2)}2

(δDobs)2 (1.14.20)

where the sum is over all the (NSL) lens systems and δDobs is the uncertainty of each

Dobs measurement which can be computed employing the standard way of error prop-

agation as

δDobs = Dobs

√(
δθe

θe

)2

+4
(

δσ
σ

)2

(1.14.21)

where δθe and δσ are the error reported for the Einstein radius and velocity dispersion

respectively.

Local Hubble constant

In addition, we take the recently measured local Hubble constant H0 as H0 = 73.5±1.4

Km sec−1 Mpc−1 by SH0ES as mentioned in [241].

1.15 Motivation

Cosmological observations carried out by many researchers [7–15] show that the

universe recently went under transition from a decelerating to an accelerating expan-

sion. The reason behind this cosmic acceleration is still a mystery and constitutes a

challenging problem of modern cosmology.

In relativistic cosmology, an accelerating universe is obtained by considering the ex-

istence of a DE component (an exotic fluid endowed with negative pressure). Several

theorists have proposed many cosmological models to investigate the behavior of the

dark energy. The two most accepted DE models are that of a cosmological constant

(ΛCDM) or a non-zero vacuum energy density and a slowly varying rolling scalar field

(quintessence models). The ΛCDM model faces a number of difficulties. For example,
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the data requires a fine-tuned value for the energy density of the vacuum (Ω ≈ 0.26).

It’s critical to find and investigate a number of physical processes that could explain

the universe’s late-time acceleration. The inconsistency between the local H0 report-

ed as H0 = 74.03± 1.42 Km sec−1 Mpc−1 and its estimation through the Planck CMB

with H0 = 67.36±0.54 Km sec−1 Mpc−1, certainly emerges as the greatest challenge

of the modern cosmology. These issues open alternative approaches beyond the

ΛCDM model, such as considering either modifications of GR or new description for

DE or different theories of DM. Some approaches in order to investigate the DE are:

the dynamical DE, phantom DE, quintessence, chaplygin gas, holographic DE, etc.

As universe continues to expand over time, the negative pressure associated with

the cosmological constant (the form of DE in ΛCDM ) dominates over opposing grav-

itational forces, and the expansion of the universe accelerates. Among several mod-

els, the thermodynamics approach has been widely investigated. In this regard, bulk

viscosity and matter creation cosmology may be the possible candidates for the ac-

celerating universe. Dark energy models with bulk viscosity and matter creation have

obtained good results by a description based on fluids, modified GR and a scalar

fluid framework. Bulk viscosity and matter creation play an important role in the u-

niverse dynamics at the background level because it satisfy cosmological principle.

These quantities depend on time and can be written in terms of the Hubble param-

eter. These quantities also satisfy the transportation equation and therefore can be

extended to more general forms that contain derivatives of the Hubble parameter and

energy density, ζ = ζ (z, ρ, H, Ḣ) and Γ = Γ(z, ρ , H, Ḣ).

In this thesis work, I investigate a spatially homogeneous and isotropic flat FLRW

model with bulk viscosity and matter creation in general relativity and scalar-tensor

theory by assuming the different forms of bulk viscous coefficient, ζ and particle cre-

ation rate, Γ to observe the effects of these thermodynamical quantities in explaining

the DE phenomena.

The thesis entitled “A Study on Cosmological Models in General Relativity and Mod-

ified Gravity Theories” consists of seven chapters. The bibiliography and the list of

publications are given at the end of the thesis.

Chapter 1 titled “Introduction” lays out the basic concept of general theory of rel-

ativity and cosmology. It deals with the concept of space and time, cosmological

principle, Einstein field equations, Friedmann equation, various cosmological param-
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eters, the ΛCDM model, the alternative theory. It gives a brief overview for explain-

ing the decelerated-accelerated expansion of the universe. The thermodynamics of

dissipative processes of bulk viscosity and matter creation have been discussed. A

brief studies on holographic dark energy and Brans-Dicke theory have been carried

out. Some of the latest observational data such as Type Ia supernova (SNe), Strong

Lensing System (SLS) Observational Hubble parameter data (OHD), Baryon acous-

tic oscillations (BAO), and cosmic microwave background (CMB) data are discussed.

The motivation of the work in this thesis has been discussed at the end. Thus, the

current chapter establishes a context and explains the purpose of the thesis work.

Chapter 2 titled “Probing bulk viscous matter dominated model in Brans-Dicke the-

ory” explores a matter dominated model with bulk viscosity in BD theory. We solve

the field equations by assuming the constant bulk viscous coefficient and BD scalar

field proportional to some power of the scale factor to explain the accelerated expan-

sion of universe. The statistical analysis of model is carried out to obtain the best fit

values of model parameters. Using the best fit values of model parameters we cal-

culate and plot the deceleration parameter with redshift to show the phase transition

of universe. We also discuss age of the universe, statefinder and Om(z) parameter to

compare our model with standard ΛCDM model. We also apply the model selection

criteria, namely, AIC and BIC to discriminate the viscous model based on the penal-

ization associated to the number of parameters.

Chapter 3 titled “Viscous cosmology in holographic dark energy with Granda-Oliveros

cut-off” proposes a holographic dark energy (HDE) model with bulk viscosity, whose

IR cut-off is set by Granda Oliveros (GO). HDE model with bulk viscosity exhibits the

solution that unify the early and late-time acceleration. We assume the most gener-

alized form of bulk viscous coefficient ζ = ζ0 +ζ1H +ζ2

(
Ḣ
H +H

)
, where ζ0, ζ1 and ζ2

are all constants. The model is tested with the latest observational data from Strong

lensing System (SLS), measurements of Hz(DA+BAO), SNe(Pantheon) and local H0.

With two different combination of these datasets we constrain our model parameters

with the MCMC method to achieve the best fit values of the free parameters. The

HDE model with bulk viscosity shows the phase transition from decelerated epoch to

accelerated epoch. We also discuss the model through diagnostic parameters and

compare our model with standard ΛCDM model.
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Chapter 4 titled “ Matter creation cosmology in Brans-Dicke theory: Observational

tests and thermodynamical analysis” outlines a matter dominated model with grav-

itationally induced matter creation in the framework of BD theory. We assume the

particle creation rate as Γ = 3γH0 + 3βH, where β and γ are the constants, and the

BD scalar field proportional to some power of scale factor. We perform the statistical

analysis for our model using the four combination of latest observational data of SNe,

OHD, and combined data of BAO and CMB. We employ the publicly available EMCEE

codes for the implementation of the MCMC method and obtain the best-fit values for

the model parameters. We present the evolution of various cosmological parameters

using best-fit values of model parameters and study the geometrical diagnostics pa-

rameters analytically and graphically. Further we test the thermodynamic viabilities of

the matter creation model.

Chapter 5 titled “ Constraints on Holographic dark energy model with matter creation

in Brans-Dicke theory and thermodynamical analysis” examines the HDE model with

adiabatic matter creation in context of BD theory to show the evolution of universe.

We solve the field equations with and without particle creation rate Γ. The models are

tested with the latest observational data from SNe (pantheon sample), measurements

of OHD and local H0 data. By using MCMC method, we obtain the best fit values of

the parameters for different models. HDE model without matter creation does not

achieve the phase transition when Hubble horizon is taken as an IR cut-off but HDE

model with matter creation with same IR cut-off as Hubble horizon shows the phase

transition and leads to a solution that unify the early and late-time acceleration. Using

AIC and BIC, and geometrical diagnostic parameters, we compare the models with

ΛCDM model and discuss the viability of the model. A detailed thermodynamic anal-

ysis is also carried out.

Chapter 6 titled “ Evolution of Holographic dark energy model with adiabatic matter

creation” explores HDE with adiabatic matter creation process to explain the observed

accelerated expansion of the universe. The field equations are solved analytically

with a more generalized form of matter creation rate. The viability of such model is

checked by using the recent data of Type Ia supernovae Pantheon sample, Hubble

function H(z) data, joined data of BAO/CMB and latest local H0 by SH0ES.

The last chapter titled “Conclusion and Future Scope" provides the conclusion of
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the thesis work and future research plan.

Finally, the thesis concludes with a bibliography and a list of the author’s publica-

tions.

****************





Chapter 2

Probing Bulk Viscous matter-Dominated

model in Brans-Dicke Theory

In this chapter 1, we study a matter-dominated model with bulk viscosity in the frame-

work of Brans-Dicke theory. We assume the bulk viscous coefficient as constant and

Brans-Dicke scalar field as the power of the scale factor to obtain the exact solution of

the field equations. The model parameters are constrained using the latest available

astronomical data. The best-fit values of model parameters show that the viscous

model shows the phase transition from decelerated epoch to accelerated epoch. The

viscous model also alleviates the age problem. We plot the evolution of cosmologi-

cal parameters to analyse the physical behavior of the viscous model. Geometrical

analysis of the model is carried out to compare the model with the standard dark en-

ergy model, ΛCDM model. We further apply Akaike information criterion (AIC) and

Bayesian information criterion (BIC) to distinguish the viscous model with the refer-

ence model, ΛCDM.

1This chapter is based on a published research paper “Probing Bulk Viscous matter-Dominated model in
Brans-Dicke Theory, Astrophysics and Space Science 365, 2 (2020)".

43



44

2.1 Introduction

Cosmologists have presented various models to explain the observable accelera-

tion, one of them is the assumption of the existence of mysterious component called

dark energy (DE). It is assumed that DE has negative pressure which provides the dy-

namical mechanism for the accelerated expansion of the Universe. In recent years

it has also been attempted in modelling the missing energy of the universe and to

explain its late time accelerated expansion in view of scalar tensor theories. The

scalar-tensor theories of gravity are amongst the most established and well studied

alternative theories of gravity that exist in the literature. The interest in scalar-tensor

theories of gravity arises from inflationary cosmology, supergravity and superstring

theory. The pioneering study on scalar-tensor theories was carried out by Brans and

Dicke in 1961 [112], known as Brans-Dicke (BD) theory. The scalar field in BD theory

has a very active role for the description of the early era as well as the present phase

of the evolution of the Universe. The BD theory provides useful clues to the solutions

for some of the outstanding problems in cosmology and could generate sufficient ac-

celeration in the matter dominated Universe.

The idea of viscous dark energy models in cosmology has been presented in dif-

ferent ways to understand the evolution of the universe. Ren and Meng [147] have

investigated the universe evolution through a cosmological model with bulk viscosity.

Tawfik and Harko [242] have discussed phase transition of the viscous early universe.

Singh and Kumar [159] and, Kumar and Singh [161] have explored different aspects

of viscosity in f (R,T ) gravity taking Hubble horizon as IR cut-off. Viscous cosmology

with inhomogeneous equation of state have also been proposed and studied in Ref-

s. [143,145].

The possibility of distinguishing between cosmological constant and dark energy

models is one of the most intriguing questions concerning the late time accelerating

expansion in the universe. A reliable diagnostic measure should be introduced using

the model independent properties. Using diagnostic analysis, we study some kine-

matic properties of the dark energy model with bulk viscosity.

The purpose of this chapter is to explore the role of bulk viscosity in BD theory. Such

a viscous term acts as a negative pressure. It is well known that bulk viscosity can

generate early and late time accelerated expansion. But, such possibility has been

investigated only in the context of the primordial universe, concerning also the search
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of non-singular models [141, 243]. Indeed, it has been shown in Ref. [244] that for

the right viscosity coefficient, we do not need a cosmological constant to explain the

accelerating cosmology. We consider a simple bulk viscosity model, in the context of

the Eckart formalism [134]. Inspite of the problems of this theory, it has been used

to model bulk viscous model as responsible for the observed acceleration of the U-

niverse assuming that the approximation of vanishing relaxation time is valid [245].

Avelino and Nucamendi [246,247] have studied and constrained a matter-dominated

model with bulk viscosity using observational data and found that the model is viable

just if the bulk viscosity is triggered in recent times in case bulk viscous coefficient

is proportional to the Hubble parameter. However, the model is ruled out by the ob-

servations when bulk viscous coefficient is taken to be constant. In this chapter, we

extend this work to matter-dominated model with constant bulk viscous coefficient in

BD Theory.

Chapter 2 is organized as follows: In section 2.2, we consider the matter-dominated

bulk viscous model in the framework of Friedmann-Lemaître-Roberston-Walker (FLR-

W) line element in BD theory. The solutions of field equations are presented in section

2.3 and discuss the evolution of the scale factor and deceleration parameter. In sec-

tion 2.4 we discuss two diagnostic parameters, namely statefinder parameter and Om

parameter to discriminate our model with ΛCDM model. Section 2.5 uses the obser-

vational data of Type Ia SNe, Observational Hubble data and Baryon Acoustic Oscil-

lation data to constrain our viscous model parameters. we analyze the constrain of

model parameters in the solutions and accordingly discuss the evolution of our model

in section 2.6. Section 2.7 deals the information criteria to select the model. Finally,

in section 2.8 we conclude the outcomes of our work.

2.2 Viscous model in Brans-Dicke theory

In the context of the Brans-Dicke theory (1961), the action in the presence of matter

with Lagrangian Lm in Jordan frame is given by equation (1.10.2) [116]. The gravita-

tional field equations derived from variation of action (1.10.2) with respect to the metric

given in equation (1.10.3). We have assumed the matter content of the universe to be

composed of a fluid represented by the energy-momentum tensor

Tµν =
(
ρm + P̃

)
uµuν + P̃ gµν (2.2.1)
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where ρm and P̃ represents the energy density and effective pressure of the fluid, re-

spectively, and uµ is the four velocity of the fluid, i.e., uµuν =−1.

The wave equation that follows from equation (1.10.2), by varying the action with

respect to the scalar field ϕ , is given in (1.10.4).

We consider a homogenous and isotropic flat Friedmann-Lemaître-Robertson-Walker

(FLRW) line-element which is given by (1.3.8). In such a universe, the dissipative ef-

fects arise due to the presence of bulk viscosity ζ in cosmic fluids.

The first approach to study the relativistic bulk viscosity process in thermodynamics

systems is based on the Eckart theory [134]. It is known that this theory is unsta-

ble and non-causal against perturbations around the thermodynamical equilibrium s-

tate [248], i.e., it describes that all the equilibrium states are unstable and the signals

can propagate through the fluids faster than the speed of light, i.e., with superluminal

velocities. These problems could be traced back to their restriction to the first -order

deviations from equilibrium. In order to solve these problems, Israel and Stewart [135]

proposed a second-order full causal theory in relativistic framework. Despite of insta-

bility and non-causality, Eckart theory is still suitable for cosmological investigations

while dealing with the accelerating universe with bulk viscous fluids. This is due to

the fact that this theory is a good approximation to the IS theory in the limit when

the relaxation time vanishes in late time. Another reason is that Eckart theory is less

complicated than the IS theory, it has been widely used by many authors to character-

ize the bulk viscous fluid in describing the late time acceleration when the relaxation

time goes to zero. Considering Eckart’s theory as a first order limit of Israel-Stewart

scenario with zero relaxation time, one can re-express the effective pressure P̃ at the

thermodynamical equilibrium as

P̃ = pm +Π = pm −3ζ H, (2.2.2)

where Π = −3ζ H is the bulk viscous pressure, ζ is the bulk viscous coefficient, ρm

and pm are the energy density are pressure of the fluid respectively.

The energy-momentum tensor with viscous fluid is given by equation (1.11.6) where

P̃ = pm−3ζ H. The dynamics of a FLRW universe in BD theory in the presence of bulk

viscosity is governed by the following two equations:

H2 +H
ϕ̇
ϕ
− ω

6
ϕ̇ 2

ϕ 2 =
8π
3ϕ

ρm, (2.2.3)
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2
ä
a
+H2 +

ω
2

ϕ̇ 2

ϕ 2 +2H
ϕ̇
ϕ
+

ϕ̈
ϕ
=−8π

ϕ
P̃ (2.2.4)

The scalar field evolution equation (1.10.4) is written as

ϕ̈ +3Hϕ̇ =
8π

2ω +3
(ρm −3P̃). (2.2.5)

The wave equation (2.2.5) combines with (2.2.3) and (2.2.4) leads to the energy con-

servation equation

ρ̇m +3(ρm + P̃)H = 0. (2.2.6)

One interesting thing about BD theory in the Jordan frame is that the conservation

equation holds separately for the matter and scalar field or in a slightly different way,

the Bianchi identity along with the wave equation (1.10.4) gives the matter conserva-

tion equation.

Let us consider that the bulk viscous fluid is the non relativistic matter with pm = 0.

Therefore, the effective pressure is only due to the negative viscous matter, i.e. P̃ =

−3ζ H. For the explicit form of ζ , we can principally solve the matter density ρm with

respect to cosmic time t. The conservation equation (2.2.6) now becomes

ρ̇m +3(ρm −3ζ H)H = 0, (2.2.7)

which in terms of scale factor can be written as

a
dρm

da
= 3(3ζ H −ρm). (2.2.8)

Equation (2.2.8) is valid for any parametrization of ζ . However, in this chapter, we

consider the simplest parametrization of the bulk viscous coefficient as

ζ = const.= ζ0 (2.2.9)

We assume the bulk viscous coefficient to be positive, i.e., ζ0 > 0 to preserve the va-

lidity of second law of thermodynamics.

The general analytical solutions to the system (2.2.3)-(2.2.5) are not known. How-

ever, physical sense guides us into searching for possible solutions in which the BD

scalar field ϕ evolves very slowly. We assume that BD scalar field can be described as

a power-law of the scale factor, namely ϕ = ϕ0 aα = 1
Gaα , where ϕ0 and α are constan-

t [249,250], and here we set the present scale factor a0 = 1 which implies ϕ0 = 1/G. A
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case of particular interest is that when α is small whereas ω is high so that the prod-

uct αω results of order unity [249]. This is interesting because local experiments set

a very high lower bound on ω . This choice with small α can lead to consistent results

which may justify this specific choice among other possible choices [249]. We note

that in Ref. [251] this kind of power-law solution is used to show that BD cosmology

with a cosmological term can mimic the running vacuum model, which is very conve-

nient in order to improve the fitting of the cosmological data [252]. With this power-law

assumption,

ϕ = ϕ0 aε (2.2.10)

where ϕ0 and ε are constants. Equation (2.2.3) can be rewritten as

H2 =
16π

(6+6ε −ωε2)ϕ0

ρm

aε . (2.2.11)

It is to be noted that the solar system experiments Cassini predict a very stringent

high bound result on ω as |ω| > 40000 [115, 253] but the cosmological observations

put comparatively lower bounds on ω [254].

Substituting (2.2.11) into (2.2.8) we obtain

a
dρm

da
+3ρm −κ

ρ1/2
m

aε/2 = 0, (2.2.12)

where κ = 9
(

16π
(6+6ε−ωε2)ϕ0

)1/2
ζ0.

On solving (2.2.12), we get the evolution for energy density as

ρm =

[
κ

(3− ε)
a−ε/2 +

(
ρ1/2

m0 − κ
(3− ε)

)
a−3/2

]2

(2.2.13)

where ρm0 is the present value of energy density. We assume that the value of scale

factor at present is a0 = 1. Now, by considering that a = (1+ z)−1, the energy density

in (2.2.13) can be rewritten as

ρm =

[
κ

(3− ε)
(1+ z)ε/2 +

(
ρ1/2

m0 − κ
(3− ε)

)
(1+ z)3/2

]2

(2.2.14)

Inserting (2.2.14) into (2.2.11), we obtain

H(z) = H0(1+ z)−ε/2

[
ζ̄0(1+ z)ε/2

(3− ε)
+

(
Ω1/2

m0 − ζ̄0

(3− ε)

)
(1+ z)3/2

]
(2.2.15)
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where H0 is the present Hubble constant, κ = ζ̄0/H0 is the dimensionless bulk viscous

coefficient and Ωm0 = ρm0/ρ0
crit , where ρ0

crit = 3ϕ0 H2
0/8π is the present critical density.

Taking Ωm0 = 1 at present as bulk viscous matter is the only component, Eq. (2.2.15)

finally becomes

H(z) =
H0

(3− ε)
(1+ z)−ε/2

[
ζ̄0(1+ z)ε/2 +

(
3− ε − ζ̄0

)
(1+ z)3/2

]
(2.2.16)

It should be noticed that for ε = 0, the above expression reduces to the solution derived

in Ref. [245].

2.3 Solution of viscous model

Equation (2.2.16) has the solution

∫ a

1

á
3
2−

ε
2 dá

á
[
ζ̄0á

3
2−

ε
2 +
(
3− ε − ζ̄0

)] = H0

(3− ε)

∫ t

t0
dt́ (2.3.1)

where t is the cosmic time and t0 is the present cosmic time. In the absence of

bulk viscous term, ζ̄0 = 0, equation (2.3.1) gives the scale factor for matter-dominated

universe in BD theory as

a(t) =
(

3− ε
2

H0(t − t0)+1
)2/(3−ε)

, (3− ε) ̸= 0, (2.3.2)

which is power-law of expansion. The model decelerates for 0≤ ε < 1 and accelerates

for ε ≥ 1.

For ζ̄0 ̸= 0, Equation (2.3.1) gives

a =

(3− ε)exp
(

ζ̄0H0
2 (t − t0)

)
− (3− ε − ζ̄0)

ζ̄0

2/(3−ε)

, (2.3.3)

where ζ̄0 ̸= 0 and (3− ε) ̸= 0.

The transition from one phase to another phase can also be obtained by defining

the deceleration parameter q, as in (1.7.11). Using (2.3.3) in (1.7.11), the value of q for

the viscous model takes the following form

q(t) =−1
2

[
2− (3− ε − ζ̄0)e−

ζ̄0H0
2 (t−t0)

]
. (2.3.4)
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In terms of redshift, q is given by

q(z, ζ̄0) =−1+
1
2

(3− ε − ζ̄0)(3− ε)

ζ̄0 (1+ z)−
(3−ε)

2 +(3− ε − ζ̄0)
(2.3.5)

We find that the value of q is time-dependent and hence the model shows the tran-

sition. We see that q = (1− ε)/2 in the absence of bulk viscous term, i.e., for ζ̄0 = 0.

Thus, for 0 ≤ ε < 1, the model decelerates and accelerates for ε ≥ 1.

The solution of BD scalar field is given by

ϕ = ϕ0

(3− ε)exp
(

ζ̄0H0
2 (t − t0)

)
− (3− ε − ζ̄0)

ζ̄0

(2ε)/(3−ε)

. (2.3.6)

Now, we will discuss the solutions for three different values of ζ̄0 which are as follows:

Case(i): 0 < ζ̄0 < (3− ε)

In this case, we observe that as t → ∞, the scale factor a ∼ exp
(

ζ̄0H0
(3−ε)(t − t0)

)
i.e., to

have the form like de Sitter universe. It is obvious that for any value of ζ̄0 in 0 < ζ̄0 <

(3− ε), the model predicts a Big-bang in past during time tB = t0 + 2
ζ̄0H0

ln
(

1− ζ̄0
(3−ε)

)
.

The elapsed time between Big-bang time tB until today t0, the age of the Universe, is

given by |tB − t0|= 2
ζ̄0H0

ln
(

1− ζ̄0
(3−ε)

)
. Thus, there is decelerating epoch followed by a

transition from deceleration to acceleration epoch in late time. To compute the value

of scale factor where transition happens, we have from (2.2.16)

dȧ
da

=
H0

(3− ε)

[
ζ̄0 +

(ε −1)(3− ε − ζ̄0)

2
a

ε−3
2

]
. (2.3.7)

Equating (2.3.7) to zero, we get

atr =

[
(1− ε)(3− ε − ζ̄0)

2ζ̄0

]2/(3−ε)

, (2.3.8)

where the subscript “tr" denotes the transition.

We plot the evolution of a(t) as a function of t in Fig.2.1 for different values of ε and

ζ̄0 in 0 ≤ ζ̄0 ≤ (3− ε). It is observed that phase transition from decelerated to accel-

erated phase occurs in future (atr > 1) for the value of ζ̄0 in interval 0 < ζ̄0 < (1− ε).

When ζ̄0 = (1− ε), we get atr = 1, i.e., the transition takes place today whereas the
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Figure 2.1: a(t) as a function of t for different values of ε and ζ̄0 in the range of 0 ≤ ζ̄0 ≤ (ε −
3). The grey dotted line represents the evolution coming from SNe+OHD and the blue solid
line corresponds trajectory coming from SNe+OHD+BAO data set analysis (see, section
2.6). The dots show the transition point.

transition occurs in past (0 < atr < 1) for the values of ζ̄0 in (1− ε) < ζ̄0 < (3− ε). We

observe that as the value of ζ̄0 increases, the transition from deceleration to acceler-

ation occurs in the past. In the limiting case when ζ̄0 approaches to (3− ε), atr → 0,

i.e., the transition takes place very close to Big-bang.

In this case, the deceleration parameter decreases from q(1) = −1+ 1
2(3− ε − ζ̄0)

to q(∞) =−1 which shows the transition from positive to negative. When ζ̄0 = (1− ε),

q = 0, i.e., the transition from decelerated to accelerated phase takes place today.

Case(ii): ζ̄0 = (3− ε)

In this case, equation (2.3.3) gives a(t)= exp(H0(t − t0)) and q=−1 that corresponds to

the de Sitter universe. The model has singularity at infinite past, i.e., as (t − t0)→−∞,

a → 0 and as (t − t0)→ ∞, a → ∞. The matter density is constant, ρm =
(6+6ε−ωε2)ϕ0H2

0
16π(3−ε) .

In Fig. 2.2, the dotted line ε = 0.5 and ζ̄0 = 2.5 corresponds to ζ̄0 = (3− ε) (the de

Sitter universe).

Case(iii): ζ̄0 > (3− ε)

In this case, we observe that the viscous model always accelerates. There is not

any deceleration-acceleration transition. The deceleration parameter always gives

negative value. In this case, the model starts with minimum scale factor (Einstein

static universe) and behaves as a de Sitter universe in future. The evolution of the
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scale factor is presented in Fig. 2.2 for different values of ε and ζ̄0 in ζ̄0 ≥ (3− ε).

-2 -1 0 1 2 3
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H0 (t- t0)
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= 0.5, ζ0 = 2.5

ϵ = 2, ζ0 = 1.2

ϵ = 0.5, ζ0=3

ϵ = 0.003, ζ0 = 4.2

Figure 2.2: Plot of the scale factor as function of time for different values of ζ̄0 in the range of
ζ̄0 ≥ (ε −3)

2.4 Diagnostic analysis

One of the most intriguing questions concerning the late time accelerating expan-

sion in the universe is that, the possibility of distinguishing between cosmological

constant and dark energy models. High sensitivity as well as model independent

properties should be considered for introducing a reliable diagnostic measure. Us-

ing diagnostic analysis, we are able to study some kinematic properties of the viscous

dark energy model. In this context, Sahni et al. (2003) [198,199] introduced a new ge-

ometrical diagnostic pair {r,s}, known as statefinder parameters, which is constructed

from the scale factor and its derivatives up to the third order. The statefinder pair {r,s}

is geometrical in the nature as it is constructed from the space-time metric directly.

Therefore, the statefinder parameters are more universal parameters to study the DE

models than any other physical parameters. In a flat ΛCDM model, the statefinder pair

has a fixed point value {r,s}= {1,0} where as it is {r,s}= {1,1} for SCDM model. One

can plot the trajectories in r− s and r− q planes to discriminate various DE models.

We will discuss the statefinder diagnostic for viscous model and obtain the fixed point

values of statefinder pair under suitable constraints.

As a complementary to {r,s}, Sahni et al.(2008) [200] proposed another new diag-

nostic called, Om(z). This diagnostic helps to distinguish the present matter density

Ωom in different models more effectively. The Om(z) diagnostic is indeed a geomet-
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rical diagnostic which combines Hubble parameter and redshift. It can differentiate

dark energy model from ΛCDM. For ΛCDM model Om(z) = Ω0m while for other dark

energy models, Om(z) depends on redshift. Phantom like dark energy corresponds to

the positive slope of Om(z) whereas the negative slope means dark energy behaves

like quintessence.

In this section, we discuss about the statefinder parameter {r,s} , which discrimi-

nates the proposed model with ΛCDM model. The diagnostic statefinder parameter

{r,s} is defined in (1.12.1) and for this viscous BD model, the statefinder parameters

are given by

r =
1
4

e−ζ̄0H0(t−t0)
[
(3− ε)e

ζ̄0H0
2 (t−t0)− (3− ε − ζ̄0)

]2

+

3
4
(ε −1)e−

ζ̄0H0
2 (t−t0)

[
(3− ε)e

ζ̄0H0
2 (t−t0)− (3− ε − ζ̄0)

]
+

1
2
(ε −1)(ε −2)(2.4.1)

and

s =
(r−1)

3
[
−3

2 +
(3−ε−ζ̄0)

2 e−
ζ̄0H0

2 (t−t0)
] (2.4.2)

We observe that as (t − t0)→ ∞, the statefinder pair {r,s} → { (ε−1)(ε−2)
2 , 2−(ε−1)(ε−2)

9 },

which deviates from the ΛCDM model. However, it corresponds to the ΛCDM model

for ε = 0.

Now, we discus another diagnostic parameter, known as Om(z), which is defined as

in (1.12.2). Using (2.2.16) into (1.12.2), we get

Om(z) =

[
ζ̄0 +(3− ε − ζ̄0)(1+ z)

(3−ε)
2

]
− (3− ε)2

(3− ε)2[(1+ z)3 −1]
. (2.4.3)

In the case of z = −1, Om(z) = 1− ζ̄0
(3−ε)2 , which is constant, which deviates from the

ΛCDM model. However, in the absence of bulk viscosity we get Om(z) = 1. We will

discuss in details the trajectories of {r,s} and Om(z) in section 2.6.

2.5 Observations and Methodology

It is very interesting to study the effects of viscous model at cosmological scales

on the evolution of universe. To study quantitatively the effects of bulk viscosity, we

perform the global constraints on viscous model using the latest cosmological obser-
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vations which are exhibited as follows:

• SNe(cJLA data):

SNe is a powerful probe of cosmology. Betoule et al. [210] reported the results

of ‘Joint light-curve Analysis’ (JLA) dataset of 31 check point (30 bins) covering

the redshift range, z = [0.01,1.3].

• OHD: We use the OHD data of 43 measurement points collected in Ref. [214]

in the redshift range 0 < z < 2.5.

• BAO:

BAO are excellent geometrical probes. We include the sample of BAO distances

measurements from from SDSS(R) [236], the 6dF Galaxy survey [237], BOSS

CMASS [229] and three parallel measurements from WiggleZ survey [238].

The data description of SNe, OHD and BAO data are given in Section (1.14). Using the

above cosmological observations, we adopt the Markov Chain Monte Carlo (MCMC)

method to find the best-fit value of model parameters of viscous model. The χ2 for

each data, namely, χ2
SNe, χ2

OHD and χ2
BAO are given in equations (1.14.3), (1.14.7) and

(1.14.15) respectively.

2.6 Results and Analysis

We implement the constraint on viscous model using two different combination

SNe+OHD and SNe+OHD+BAO. We use the MCMC method to obtain the best

-fit parameters and the corresponding χ2
min. The results of the estimation of the mod-

el parameters of the viscous BD model from the observational data sets, namely (i)

SNe+OHD and (ii) SNe+OHD+BAO, are presented in Table 2.1. The contour plot-

s of parameters with 1σ(68.3%) and 2σ(95.4%) confidence level for SNe+OHD and

SNe+OHD+BAO are shown in Figs. 2.3 and 2.4, respectively.

The evolution of the scale factor is shown in Figs. 2.1 and 2.2. for different values

of model free parameters. Using the best fitting data of parameters listed in Table 2.1,

we plot the trajectories of the scale factor. In Fig. 2.1, the trajectories are shown for

0 < ζ̄0 < (3− ε). The grey dotted line and the solid blue line represent the evolution

of the scale factor for best fitting data of parameters obtained from SNe+OHD and
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Figure 2.3: The contour maps of ζ̄0, ε , H0 at 1σ(68.3%) and 2σ(95.4%) confidence level
using SNe+OHD. In Fig. e0 means ζ̄0

Table 2.1: The results of statistical analysis for the viscous BD model parameters.

Parameters SNe+OHD SNe+OHD+BAO

ζ̄0 1.689+0.062
−0.087 1.443+0.027

−0.030

ε 0.038+0.064
−0.025 0.003+0.005

−0.002

H0 68.1870.566
−0.601 65.324+0.487

−0.391

χ2
d.o. f . 0.493 0.931

SNe+OHD+BAO, respectively. The trajectories show that the viscous universe de-

celerates in early time and accelerates in late time. Figure 2.2 shows the trajectories

for ζ̄0 ≥ (3− ε). The transition scale factor atr for best fitting data, where the transition

from decelerated phase to accelerated phase takes place, for both the datasets is

listed in Table 2.2.

We plot the deceleration parameter versus redshift in Fig. 2.5 for best-fit values

of model parameters. Both the trajectories show that model transits from decelerat-

ed phase (negative redshift) to accelerated (positive redshift) phase. In Fig. 2.5, red

dotted line represents trajectory obtained by SNe+OHD where as the blue solid line

represents the trajectory from SNe+OHD+BAO. From (2.3.5) we can obtain the val-
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Figure 2.4: The contour maps of ζ̄0, ε , H0 at 1σ(68.3%) and 2σ(95.4%) confidence level
using SNe+OHD+BAO. In Fig. e0 means ζ̄0

Table 2.2: The transition scale factor and redshift, and present values of q(z) and we f f using
best-fit results of model parameters

Data atr ztr q0 we f f

SNe+OHD 0.504 0.984 -0.363 -0.575

SNe+OHD+BAO 0.660 0.515 -0.223 -0.482

ue of q0 as q(z = 0, ζ̄0) = (1− ε − ζ̄0)/2. Using the best-fit values of parameters from

Table 2.1, the present value of deceleration parameter is listed in Table 2.2. This is

comparatively higher from the observational results on the present value of q, which is

around −0.64 [255, 256]. The transition redshift, at which q enters the negative value

region, corresponding to an accelerating epochs are also listed in Table 2.2. An anal-

ysis of the ΛCDM model with combined SNe+CMB data gives the transition redshift

as ztr = 0.45−0.73 [257].

Using (2.4.1) and (2.4.2), the trajectories of {r,s} in s− r plane for different values

of ε and ζ̄0 are shown in Fig. 2.6. It is found that in 0 ≤ ζ̄0 ≤ (3− ε), the trajectories

start from quintessence region (r < 1, s > 0) in early time and tend to ΛCDM in late

time. However, for the values in ζ̄0 ≥ (3− ε), the trajectories start from chaplygin gas

region (r > 1, s < 0). It reveals that the (r,s) trajectory for best fitted parameters are ly-

ing in the region of quintessence. In all cases we find that the viscous model tends to
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Figure 2.5: Plot of the deceleration parameter q with redshift z for best-fit values of model
parameters obtained from two sets of joint analysis of observational data
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values of model parameters. The arrow shows the direction of the evolution of the trajectory.
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ΛCDM model in late time. So the present model resembles the ΛCDM model in future.

The present position of the universe dominated by the viscous matter corresponds to

{r0,s0} = {0.43706,0.2595}. Thus, the viscous model is distinguishably different from

the ΛCDM model.

The r − q relation for the model is shown in Fig. 2.7. The SCDM model corre-

sponds to {r,q} = {1,0.5} and steady state (SS) model corresponds to fixed points

and {r,q} = {1,−1}. The horizontal line at r = 1 corresponds to the time evolution of

ΛCDM model. The viscous model approaches to the standard model like ΛCDM and

quintessence model [198] in late time.

Using best fit values as given in Table 2.1 into equation (2.4.3), the trajectory of Om

with redshift z is shown in Fig. 2.8. The trajectories reveal that the viscous model

shows deviation from the horizontal line which belongs to ΛCDM model. Moreover,

the negative slope of the trajectories indicate that our model has a quintessence be-

havior.

Next, we find the effective equation of state (EoS) parameter to observe the accel-

erated expansion of the universe. It is to be noted that an accelerated expansion is

possible only if the effective EoS parameter we f f < −1/3, or 3w+ 1 < 0. The EoS

parameter can be obtained using the standard relation [258] as

we f f =−1− 1
3

2a
h

dh
da

, (2.6.1)

where h = H/H0 is the dimensionless Hubble parameter. Using equation (2.2.16) into

equation (2.6.1), we get

we f f =−1+
1
3
(3− ε − ζ̄0)(1+ z)

(3−ε)
2

h
(2.6.2)

As z → −1, (a → ∞), we get we f f → −1, which can also be observed from Fig. 2.9.

It means that the model tends to de Sitter in future time. Viscous model is free from

big-rip singularity as EoS does not cross the phantom divide line w ≤−1.

The current value (h = 1) of we f f is found to be

we f f (z = 0) =−1+
(3− ε − ζ̄0)

3
. (2.6.3)

This shows that we f f (z = 0) makes transition from positive values to negative values

for ζ̄0 ≥ (1− ε). It can also be understood by the present values of q0(z = 0), where
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Figure 2.9: Plot of effective equation of state parameter we f f versus redshift z for best-fit
values of model parameters obtained from two sets of joint analysis of observational data. The
dot denotes the present value of we f f which is within the quintessence region

q makes the transition for ζ̄0 ≥ (1− ε), which is discussed in section (2.3). As stated

above, we f f < −1/3 is the condition for accelerating universe. From eq. (2.6.3), it is

obvious that we f f (z = 0) < −1/3 only for ζ̄0 ≥ (1− ε), i.e., (1− ε) ≤ ζ̄0 ≤ (3− ε). The

present value of the EoS parameter using the best-fitted values of model parameters

obtained from both joint data, is listed in Table 2.2. These values are comparatively

higher than that predicted by the joint analysis of WMAP+BAO+H0+SNe data, which

is around −0.93 [14]. The evolution of effective EoS with redshift for the best estimated

values of model parameters is given in Fig. 2.9. The trajectories show that the viscous

BD model favors the quintessence type of DE.

In Fig. 2.10, we compare our viscous model with the standard ΛCDM model with

the error bar plots of Hubble dataset. We conclude that the fitting achieved from our

statistical analysis is compatible with the Hubble observational data.

Let us calculate the age of the universe. The age of the universe is the time elapsed

since the Big Bang. As ΛCDM model is well understood theoretically and strongly

supported by recent high precision astronomical observations such as WMAP. So

today age of universe is carried out in context of ΛCDM model.

The age of our universe at redshift z is given by t(z) = T (z)/H0, where

T (z) =
∫ ∞

z

dz′

(1+ z′)(H(z)/H0)
(2.6.4)
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Figure 2.10: Plot of Hubble evolution of the ΛCDM model and the best-fit values of model
parameters obtained from two sets of joint analysis of observational data with error bar plots
from Hubble data

is the dimensionless age parameter. For the ΛCDM model, in which the density pa-

rameter, Ωm0 ≈ 0.27, the age parameter is [152]

T (z) =
∫ ∞

z

dz′

(1+ z′)[Ωm0(1+ z)3 +(1−Ωm0)]1/2 (2.6.5)

It is to be noted that the present age of the universe for a flat CDM model dominated

by matter (Ωm0 = 1, t0 = 2/(3H0)) gives t0 ≈ 8− 10 Gyr, which does not satisfy the

stellar age bound: t0 > 11−12 Gyr, as the age of the universe should be longer than

any objects in the universe. Therefore, this model suffers the age problem. However,

for ΛCDM model, it easily satisfies the constraint t0 > 11− 12 Gyr. It seems that the

problem is caused by the fact that matter is diluted too fast. Feng and Li [152] claimed

that once the viscosity is taken into account, this age problem is alleviated. In our

viscous model, Fig. 2.11 shows that the trajectory for the Viscous model deviates

a little from that of ΛCDM. It indicates that the viscosity could really resolve the age

problem. Addition of viscosity makes the matter dilution little bit slower, changes the

energy conservation equation and then the age problem is resolved.

2.7 Model selection

Based on the statistical analysis, we use Akaike Information Criterion (AIC) and the

Bayesian Information Criterion (BIC) to check which model is better. The AIC and BIC

have been discussed in section 1.13.
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Figure 2.11: The age of universe of viscous model for best-fit values of model parameters
obtained from two sets of joint analysis of observational data and ΛCDM model.

Table 2.3: Summary of the AIC and BIC for ΛCDM model and viscous BD model

Model Data set χ2
min AIC BIC

ΛCDM
SNe+OHD 27.89 31.89 36.49

SNe+OHD+BAO 30.45 34.45 39.21

Viscous BD
SNe+OHD 34.81 38.81 43.41

SNe+OHD+BAO 72.67 76.67 81.43
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Using equations (1.13.2) and (1.13.3), it is obvious that a model giving a small AIC

and a small BIC is favoured by the observations. It requires a ‘reference model’ for

comparison, and ΛCDM could be the best reference model and we choose that for the

purpose. Table 2.3 presents the results of AIC and BIC of ΛCDM model and viscous

BD model.

In our analysis ΛCDM is the model with lower AIC and BIC parameters when we use

data from the joint analysis of SNe+OHD and SNe+OHD+BAO, respectively. From

Table 2.3, considering ΛCDM as the referring model, we find ∆AIC = 6.92 corresponds

to SNe+OHD and ∆AIC = 42.22 corresponds to SNe+OHD+BAO. This indicates that

the viscous BD model with joint analysis of SNe and OHD is in the region of “less

evidence in favor" where as viscous model using joint analysis of SNe, OHD and BAO

is in “no evidence in favour". Regarding BIC, we find ∆BIC = 6.92 corresponds to

SNe +OHD and ∆BIC = 42.22 corresponds to SNe +OHD + BAO. This shows that

the model has “strong evidence against". We notice a tension between AIC and BIC

results, while AIC indicates there is “less evidence in favor" with SNe + OHD, BIC

indicates that there is “strong evidence against" for the same model. This is due to

the fact that BIC strongly penalizes model. We can say that the viscous BD model

obtained from joint analysis of SNe and OHD is marginally better than other results.

2.8 Conclusion

In this chapter, we have discussed a bulk viscous matter-dominated universe with

constant bulk viscous coefficient, ζ = ζ0 in BD theory. We have solved the evolu-

tion equations to obtain the scale factor and other cosmological parameters. We

have identified three possible conditions for bulk viscous coefficient, 0 ≤ ζ̄0 < (3− ε),

ζ̄0 = (3− ε) and ζ̄0 > (3− ε). Depending on these conditions, we have analyzed the

different possible evolutions predicted by the viscous model. We have observed that

the viscous model depicts a universe with a Big-bang in the past and then transition

from decelerating epoch to an accelerating epoch in late times for the values of ζ̄0 in

the range 0 < ζ̄0 ≤ (3− ε). For ζ̄0 = (3− ε), the model corresponds to the de Sitter

and it always predicts accelerated expansion for ζ̄0 > (3− ε). We have calculated the

value of the scale factor where the transition happens. We have found that the tran-

sition from decelerated phase to accelerated one occurs in future in 0 < ζ̄ < (1− ε).

When ζ̄0 = (1− ε), the transition from decelerated to accelerated epoch takes place
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today. The transition between the deceleration-acceleration epoch takes place in past

in (1− ε)< ζ̄0 ≤ (3− ε). In limiting case, when ζ̄0 approaches to (3− ε), the transition

takes place very close to Big-bang. The evolutions of the scale factor are plotted in

Figs. 2.1 and 2.2 for different values of ζ̄0 and ε.

We have constrained the present viscous model using two sets of combined ob-

servational data coming from SNe+OHD and SNe+OHD+BAO. The value of bulk

viscous coefficient is positive which satisfies the second law of thermodynamics.

We have shown the contour maps of parameters H0, ε and ζ̄0 with 1σ(68.3%) and

2σ(95.4%) confidence level in Figs. 2.3 and 2.4.

We have studied the evolution of the deceleration parameter which is found to be

time-dependent. We have calculated the present value of q0 = (1− ε − ζ̄0)/2. The

present universe enters into accelerating phase at an early stage, corresponds to

q0 < 0 for ζ̄0 > (1−ε). It enters into accelerating epoch in future time if 0 < ζ̄0 < (1−ε),

and the accelerating phase occurs at present time if ζ̄0 = (1−ε), i.e., q0 = 0. The varia-

tions of q with z are shown in Fig. 2.5 for two set of joint analysis of model parameters.

It is found that for the best estimates, the universe enters into accelerating phase in

recent past at a redshift ztr = 0.984 using joint observational data set of SNe and OHD

where as it is ztr = 0.515 using SNe+OHD+BAO.

We have analyzed the statefinder and Om diagnostic parameters to discriminate

our model from the other existing models especially from ΛCDM model. In Fig. 2.6,

the trajectory of {r,s} in s− r plane for best fitted value of model parameters has been

plotted. It reveals that the trajectory starts from quintessence region and tends to

ΛCDM model in late times. The present value of {r,s} in the s− r plane correspond-

s to {r0,s0} = {0.43706,0.2595} using joint data of SNe,OHD and BAO which shows

that the viscous model is distinguishably different from the ΛCDM model. However,

as a → ∞, {r,s} → {1,0} corresponds to ΛCDM point. In Fig. 2.8, negative slope of

Om(z) trajectories also reveal that our model has quintessence behavior.

We have discussed the effective EoS parameter for the best estimates of the vis-

cous model. It is observed that ωe f f → −1 as z → −1, which shows that the vis-

cous model behaves like de Sitter in future. The model has no big rip singularity as

ωe f f does not cross the phantom divide line as shown in Fig. 2.9. The present val-

ue of ωe f f is around ωe f f ≃ −0.575 through SNe+OHD and ωe f f ≃ −0.482 through

SNe+OHD+BAO for the best-fit values of parameters.

We have compared our model with the ΛCDM model with the error bar of Hubble

dataset as shown in Fig. 2.10. It is found that the fitting achieved through our statistical
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analysis is compatible with the observational data used. We have also calculated the

age of the universe and plotted t(z) versus z in Fig. 2.11. It is found that the trajecto-

ries of viscous model deviate very slightly from that of ΛCDM model in t0 > 13−14 Gyr.

Thus, the viscous model in BD theory alleviates the age problem.

Lastly, we have performed the information criterion of AIC and BIC to discriminate

our model with ΛCDM model. The analyses based on the AIC indicates that there is

less support for the viscous model when compared to the ΛCDM model, while those

based on the BIC indicates that there is strong evidence against it in favor of the

ΛCDM model.

****************





Chapter 3

Viscous cosmology in holographic dark

energy with Granda-Oliveros cut-off

In this chapter 1, we study the the effect of bulk viscosity on the holographic dark

energy (HDE) with Granda Oliveros IR cut-off. We focus on a generalized form of bulk

viscous coefficient which describes successfully the present-day evolution of the uni-

verse. We observe that the model with bulk viscosity provides an elegant description

of the early and late-time evolution of the universe. We constrain the model through

the combined observational data of Strong Lensing System (SLS), measurements of

Hubble parameter consisting, sample of Type Ia SNe Pantheon sample and local H0

measured by SH0ES. Using best-fit values obtained from two different combinations

of data, we show that HDE model with bulk viscosity exhibits the phase transition from

decelerated epoch to accelerated epoch. A comparison of the model with standard

ΛCDM model is discussed with the statefinder and cosmographic parameters.

1This chapter is based on a research paper “Viscous cosmology in holographic dark energy with Granda-
Oliveros cut-off, Communication in Theoretical Physics, Accepted (2022)".
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3.1 Introduction

Modern cosmology has plunged into data driven era. According to various inde-

pendent observational evidences [7, 8, 255, 256, 259–263], the universe is under an

accelerated expansion which gives rise to the concept of dark energy (DE). It has

been observed that the universe contains 70% dark energy components and rest 30%

includes baryons and cold dark matter. In order to give a reasonable explanation to

DE, a large number of attempts have been done. These attempts include the modified

gravity and DE models. It has been found that these models fit the observational data,

but they also have their own demerits. Therefore, the study is still continued to explain

the cosmic acceleration.

In recent years, it has been proposed that the DE is a dynamically evolving compo-

nent. Several dynamical models of DE have been proposed. One of such dynamical

model is the holographic dark energy (HDE) which is based on the holographic princi-

ple (HP) [58,59]. The HP gives a connection between the short distance (UV) cut-off

and long distance (IR) cut-off as described in subsection: 1.10.1. The HDE energy

density depends on the choice of the IR cut-off which represents the large length s-

cale of the universe. Hsu [62] considered the Hubble Horizon as an IR cut-off and

observed that the HDE model could not drive the observable late-time expansion of

the universe. Granda and Oliveros [80] proposed a new IR cut-off which is a combina-

tion of Hubble parameter and its time derivative to solve the causality problem. This

cut-off has been studied by many authors [81–90,264,265] to explain the present-day

evolution of the Universe.

In case of homogenous and isotropic Universe, assuming the cosmological prin-

ciple, the dissipative process within a thermodynamical approach can be modeled

as a bulk viscosity. The bulk viscous pressure is characterized by the bulk viscous

coefficients ζ . There are various parametrization of ζ available in literature. The sim-

plest parametrization of the bulk viscous coefficient is considered to be constant, i.e.,

ζ = ζ0. The other parametrization has been considered as ζ = ζ1H, where ζ1 is a

constant and H is the Hubble parameter and a linear combination form ζ = ζ0 +ζ1H.

Many authors [93,147,148,266–275] have discussed viscous cosmology to show the

late-time evolution of the universe by assuming these parameterized form of the bulk

viscous coefficient. Some authors [166,277–280] have studied the viscous cosmolog-

ical model with bulk viscous coefficient depending on both expansion and acceleration
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rates, i.e., ζ = ζ0+ζ1H +ζ2ä/ȧ, where ζ2 is a constant, a denotes the scale factor and

dot represents the differentiation with respect to cosmic time.

It has already been found that a non-viscous HDE model with Granda-Oliveros IR

cut-off does not show the observable evolution of universe [90]. In this chapter, we

examine the viscous effect in a dynamical HDE model with new IR cut-off suggest-

ed by Granda and Oliveros [80] to achieve the present-day evolution of the universe.

In this dynamical HDE model we consider that our universe is filled with dark matter

jointly with bulk viscosity and HDE dark energy. We study the evolution of the uni-

verse by considering a more generalized form of bulk viscous coefficient as proposed

in paper [277–279]. We constrain the model to get the best fit values of model pa-

rameters by using different observational data like, Type Ia SNe (Pantheon), Hubble

data, strong lensing data and local Hubble value of SH0ES. We distinguish the vis-

cous model with standard ΛCDM model by studying the statefinder parameters and

cosmographic parameters.

This chapter is divided into the following sections: section 3.2 presents the basic

equations of HDE model with bulk viscosity and the solutions for Hubble parameter,

along with some other main cosmological parameters. In section 3.3, we estimate the

best fit values of parameters using the latest observational data. We use the best-fit

values to discuss the evolution of the different cosmological parameters in section 3.5.

A discussion on statefinder parameters and cosmographic parameters is presented

in section 3.6. In section 3.7 we conclude our results.

3.2 Bulk viscous HDE Model

We consider the line element for an isotropic and homogeneous flat Friedmann-

Lemaitre-Robertson-Walker (FLRW) metric is given in (1.3.8). In a homogeneous and

isotropic universe, the only dissipative process allowed is the bulk viscosity. It is well

known that bulk viscosity plays an important role in the universe dynamics at the

background level because it satisfies the cosmological principle. The viscous process

fundamentally change the equation of motion of relativistic fluids through the addition

of new terms of hydrodynamic in energy-momentum tensor.

It has been observed that the HDE model with Granda-Oliveros as the IR cut-off can

not exhibit the phase transition [90]. However, the observations indicate a transition

phase from deceleration to acceleration during the evolution of the Universe. The
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recent works on bulk viscosity [166, 277–280] show that this dissipative fluid plays

an important role in describing the late-time evolution. Therefore, it will be worthy

to discuss the HDE model with bulk viscosity by using Granda-Oliveros IR cut-off to

explain phase transition.

In dissipative cosmology with bulk viscosity, the Einstein’s field equations are given

by Rµν − 1
2gµνR = T e f f

µν , where T e f f
µν is the effective energy-momentum tensor of the

cosmic fluids including the bulk viscosity. This tensor is written as T e f f
µν =(ρ+P)uµuν +

Pgµν , where ρ = ρm + ρh is the total energy density of matter and HDE, and with

P as the effective fluid pressure which may be defined as P = pm +Π + ph. Here

pm, Π and ph represent the dark matter pressure, bulk viscous pressure and HDE

pressure, respectively. In Eckart formalism, the bulk viscous pressure Π is considered

as Π =−3ζ H, where ζ is the bulk viscous coefficient.

Let us consider the FLRW Universe dominated by pressureless dark matter with

viscous term and the energy of the HDE. The non-vanishing equations of Einstein’s

field equations are

3H2 = ρm +ρh (3.2.1)

and

(ρ̇m + ρ̇h)+3(ρm +ρh + ph −3ζ H)H = 0, (3.2.2)

Assuming that there is no interaction between the dark matter with bulk viscosity

and HDE, the conservation equation (3.2.2), therefore, conserves separately, which

are given by

ρ̇m +3H(ρm −3Hζ ) = 0 (3.2.3)

and

ρ̇h +3H(1+wh)ρh = 0, (3.2.4)

where ph = whρh is the equation of state for HDE. Here, wh is the equation of state

(EoS) parameter for HDE. An overdot denotes derivative with respect to cosmic time

t.

In HDE model the UV cut-off is related to the vacuum energy, and IR cut-off is relat-

ed to the large scale of the universe, for example Hubble horizon, future event horizon

or particle horizon. Taking L as the size of the current universe, for instance, the Hub-

ble scale, the resulting energy density is comparable to the present-day DE. Hsu [62]

studied HDE model with Hubble horizon as IR cut-off and found that the evolution of

DE is the same as that of the dark matter (dust matter). Therefore, it cannot drive the



71

the universe to accelerated expansion. The same appears if one chooses the particle

horizon of the universe as the length scale L. However, Li [63] studied HDE model

with event horizon as IR cut-off and found that the holographic DE not only gives the

observation value of DE in the Universe, but also can drive the Universe to an ac-

celerated expansion phase. In that case, however, an obvious drawback concerning

causality appears in this proposal. Event horizon is a global concept of spacetime;

existence of event horizon of the universe depends on future evolution of the uni-

verse; and event horizon exists only for universe with forever accelerated expansion.

Granda-Oliveros [80] proposed a new IR cut-off for HDE, which is a combination of

Hubble parameter and its time derivative. This model depends on local quantities and

avoids the problem of causality which appears using the event horizon area as the

IR cut-off. The new IR cut-off for HDE defined by Granda and Oliveros [80], which is

given by

ρh = 3(n1H2 +n2Ḣ) (3.2.5)

where n1 and n2 are the dimensionless parameters to be computed by the current

observational data. Granda and Oliveros argued that since the underlying origin of

the holographic DE is still unknown, the inclusion of the time derivative of the Hubble

parameter may be expected as this term appears in the curvature scalar, and has

the correct dimension. This kind of density may appear as the simplest case of more

general f (H, Ḣ) holographic density in the FLRW background. Comparing (3.2.5) with

the HDE density ρh = 3b2M2
PL−2 shows that the corresponding IR cut-off for the model

(3.2.5) is

L = H−1
(

1+
n2

n1

Ḣ
H2

)−1/2

(3.2.6)

which depends on local quantities and avoids the causality problem.

Using the above mentioned energy density for HDE, equations (3.2.1), (3.2.3) and

(3.2.4) give the evolution equation for Hubble function as

Ḣ +
3(1+n1wh)

(2+3n2wh)
H2 =

3ζ H
2+3n2wh

(3.2.7)

Using x = lna, the above equation can be transformed into

h′+
3(1+n1wh)

(2+3n2wh)
h =

3ζ
(2+3n2wh)H0

(3.2.8)
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where h=H/H0 is the dimensionless Hubble parameter and h′ = dh/dx i.e. prime indi-

cates the derivative with respect to lna. The above evolution equation can analytically

be solved provided to assume a specific form of bulk viscous coefficient ζ .

In an expanding Universe, the bulk viscous coefficient may depend on both the ve-

locity and acceleration. The most reasonable form can be a linear combination of

three terms: the first term is a constant ζ0, the second term is proportional to the Hub-

ble parameter, which features the dependence of the bulk viscosity on velocity, and

the third is proportional to ä/ȧ, featuring the effect of acceleration on the bulk viscosi-

ty. Thus, we consider the parameterized bulk viscous coefficient as a combination of

three terms which is given by [278]

ζ = ζ0 +ζ1
ȧ
a
+ζ2

ä
ȧ
, (3.2.9)

In terms of the Hubble parameter, this can be written as

ζ = ζ0 +ζ1H +ζ2

(
Ḣ
H

+H
)
, (3.2.10)

where ζ0, ζ1 and ζ2 are constants. Defining the dimensionless bulk viscous parame-

ters ξ0 = ζ0/H0, ξ1 = ζ1 +ζ2, ξ2 = ζ2 and ξ = ζ/H0, Eq. (3.2.10) reduces to

ξ = ξ0 +ξ1h+ξ2h′. (3.2.11)

Using (3.2.11) into (3.2.8), we finally get the evolution equation as

h′+
3(1+n1wh −ξ1)

(2+3n2wh −3ξ2)
h =

3ξ0

2+3n2wh −3ξ2
. (3.2.12)

Integrating the above equation to get the solution of dimensionless Hubble parameter

as

h =
ξ0

1+n1wh −ξ1
+

(
1− ξ0

1+n1wh −ξ1

)
a
− 3(1+n1wh−ξ1)

(2+3n2wh−3ξ2) , (3.2.13)

which can further be simplified by considering a normalized relation between the scale

factor and redshift, a = (1+ z)−1 to get the solution for Hubble parameter as

H = H0

[
ξ0

1+n1wh −ξ1
+

(
1− ξ0

1+n1wh −ξ1

)
(1+ z)

3(1+n1wh−ξ1)
(2+3n2wh−3ξ2)

]
. (3.2.14)

It should be noted that for ξ0, ξ1 and ξ2 equal to zero, the Hubble parameter gives

H = H0(1+ z)3(1+n1wh)/(2+3n2wh), which corresponds to the power-law solution of HDE
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Universe. Further, n1 = 0 and n2 = 0 reduces the model to the matter-dominated Uni-

verse H = H0(1+ z)3/2 whose solution give the power-law expansion of the Universe.

However, Eq. (3.2.14) gives the solution of scale factor which has power-law form in

early times and exponential expansion in late-time evolution of the Universe. There-

fore, we obtain a solution which shows a phase transition from deceleration epoch to

acceleration epoch during the evolution. The transition from decelerated to acceler-

ated phase can be further explained by finding the deceleration parameter using Eq.

(3.2.13) and (1.7.11), we get

q =−1+
3(1+n1wh −ξ1)

2+3n2wh −3ξ2

(
1− ξ0

1+n1wh−ξ1

)
(1+ z)

3(1+n1wh−ξ1)
2+3n2wh−3ξ2[

ξ0
1+n1wh−ξ1

+
(

1− ξ0
1+n1wh−ξ1

)
(1+ z)

3(1+n1wh−ξ1)
(2+3n2wh−3ξ2)

] (3.2.15)

which depends on cosmic time and hence shows the phase transition. We observe

that q(z) approaches to −1 in the late-time (negative redshift). The transition redshift

ztr can be obtained by substituting q = 0 in above equation, which is obtained as

ztr =−1+
[

1+
(1+n1wh −ξ1)(1+3(n1 −n2)wh −3(ξ0 +ξ1 −ξ2))

ξ0(2+3n2wh −3ξ2)

]− 2+3n2wh−3ξ2
3(1+n1wh−ξ1)

.

(3.2.16)

From (3.2.15), the present value of q(z) corresponds to z = 0 is

q0 =−1+
3(1+n1wh −ξ1 −ξ0)

2+3n2wh −3ξ2
. (3.2.17)

Let us derive effective equation of state (EoS) parameter to discuss the evolution of

the Universe using the standard relation (2.6.1). For this viscous HDE model we get

we f f =−1+
2(1+n1wh −ξ1 −ξ0)

2+3n2wh −3ξ2

(1+ z)
3(1+n1wh−ξ1)
2+3n2wh−3ξ2

h
. (3.2.18)

The present value of we f f at z = 0 for our model is

we f f (z = 0) =−1+
2(1+n1wh −ξ1 −ξ0)

2+3n2wh −3ξ2
. (3.2.19)
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3.3 Data Samples

In this section, following the derivation of H(z) obtained in (3.2.14), we constrain

the space parameters (H0,ξ0,ξ1,ξ2,n1,n2,wh) of viscous HDE model using the two

different combinations DS1 and DS2 of the following datasets:

• Strong lensing system:

We gather a new data from Strong Lensing System (SLS) to constrain the model

parameters. We constrain the model parameters for 204 SLS in the redshift

0.063 < zl < 0.950 for lens and 0.196 < zs < 3.595 for the source is given by [240].

• Hubble data:

We use the updated collection of 57 Hubble H(z) data points between the red-

shift range 0.07 ≤ z ≤ 2.36 that consists of 31 points collected from differential

age(DA) technique and 26 data points received through line-of-sight BAO and

other methods.

• SNe(Pantheon data):

We use the latest compilation of SNe (Pantheon sample), consisting 1048 data

points from SNLS, SDSS, Pan-STARRS1, HST survey in the redshift range of

0.014 ≤ z ≤ 2.3 [211].

• Local Hubble constant: We also take the recently measured local Hubble con-

stant H0 as H0 = 73.5±1.4 km s−1Mpc−1 by SH0ES as mentioned in [241].

The detail of SLS, H(z) and SNe(Pantheon data) are provided in subsection 1.14.2 of

Section 1.14.

3.4 Methodology

The minimized χ2 function, for two combinations of our analysis, is given as, χ2
DS1 =

χ2
pan + χ2

H(z) + χ2
SLS + χ2

H0
and DS2 for which the minimized χ2 is given as χ2

DS2 =

χ2
pan + χ2

H(z)+ χ2
SLS where χ2

pan, χ2
H(z), χ2

SLS and χ2
H0

are defined in equations (1.14.4),

(1.14.11) and (1.14.20) respectively.

We perform fitting to determine the best fit values of model parameters using the M-

CMC method. The best fit values obtained for both the combinations of DS1 and DS2
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Figure 3.1: The likelihood contours at 68.3% CL and 95.4% CL for viscous HDE model
correspond to DS1(red color) and DS2 (grey color) datasets
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Table 3.1: The best-fit values of free parameters of HDE and ΛCDM models with errors from
DS1 and DS2 datasets

DS1 DS2
Model HDE ΛCDM HDE ΛCDM

H0 71.567+1.448
−0.848 70.061+0.775

−0.852 69.197+1.563
−1.924 68.944+0.738

−0.530

ξ0 0.758+0.097
−0.221 − 0.652+0.146

−0.220 −

ξ1 −2.690+1.335
−1.650 − −2.458+1.327

−2.056 −

ξ2 −2.835+1.410
−1.608 − −2.940+1.447

−1.906 −

α 0.460+0.261
−0.275 − 0.462+0.294

−0.266 −

wh −5.556+0.917
−0.782 − −5.576+0.336

−0.525 −

β 0.517+0.294
−0.238 − 0.565+0.301

−0.263 −

Ωm 0.308+0.121
−0.093 0.286+0.004

−0.007 0.26+0.122
−0.103 0.288+0.004

−0.006

ΩΛ 0.668+0.112
−0.103 0.711+0.010

−0.006 0.73+0.122
−0.123 0.707+0.009

−0.005

χ2
min 525.033 537.330 525.473 530.538

through statistical analysis for viscous HDE and ΛCDM models are provided in Ta-

ble 3.1. The space parameters (H0,ξ0,ξ1,ξ2,n1,wh,n2) with 1σ(68.3%) and 2σ(95.4)%

confidence level for both the data sets DS1 and DS2 are represented in Fig. 3.1.

The data set DS1 fitted is shown by the red contours while the greyish contours are

derived from DS2 data set. The best-fit values of space parameters of viscous HDE

and of ΛCDM models obtained by both the combinations are provided in Table 3.1.

In the following section, we present and discuss the results obtained from the above

mentioned datasets.

3.5 Result and discussion

We estimate the best-fit values of model parameters from two different joint combi-

nations DS1 and DS2 datasets. Using the best-fit values we study few observational

parameters namely Hubble constant, deceleration parameter, equation of state pa-
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Figure 3.2: Plot of the Hubble function as a function of redshift for HDE model with bulk
viscosity for DS1 dataset over H(z) points and its comparison with ΛCDM model (solid black
line). The 57 H(z) data points are also shown with error bars in blue dots. The band corre-
sponds to the error at the 95.4% confidence level.
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Figure 3.3: Plot of the Hubble function as a function of redshift for viscous HDE model with
bulk viscosity for DS2 dataset over H(z) points and its comparison with ΛCDM model (solid
black line). The 57 H(z) data points are also shown with error bars in blue dots. The band
corresponds to the error at the 95.4% confidence level.



78

rameter and age of Universe to describe the global dynamics of the Universe.

Figs. 3.2 and 3.3 presents the evolution of the Hubble parameter H(z) as a function

of the redshift using the best-fit values of free parameters constrained from both the

datasets DS1 and DS2. We have also traced the trajectory of ΛCDM model to com-

pare the evolution of viscous HDE models. The bars stand for the observational data

of H(z) as mentioned in Ref. [219] as well as given in Table 1.1. It is observed that the

fit obtained from DS2 is consistent with observational H(z) data points.

The present values of Hubble constant are H0 = 71.567+1.448
−0.848 and H0 = 69.197+1.563

−1.924,

respectively. The first value of H0 is slightly lower than the value obtained by SH0ES

project H0 = 73.5±1.4 km s−1Mpc−1 [241] where as the second result of H0 is slightly

higher than Planck result [281], where H0 = 67.7±0.46 km s−1Mpc−1.

The respective χ2 with DS1 and DS2 data sets are 525.033 and 525.473. The

reduced χ2 statistics is very beneficial in goodness of fit testing. It is defined as

χ2
red = χ2

min/ν , where ν is known as degree of freedom (dof) and is defined as the

difference between the total number of combined data points used and the number

of estimated free model parameters. We have the number of data points for DS1 as

N = 1310 (1048 data of SNe, 57 data of H(z), 204 data of SLS and 01 data of local H0)

and for DS2 it is N = 1309 (1048 data of SNe, 57 data of H(z) and 204 data of SLS).

The viscous HDE has seven free parameters where as the ΛCDM has 3. Thus, the

χ2
red for ΛCDM comes out to be χ2

red = 0.411 and χ2
red = 0.406 where as for viscous HDE

model, these are χ2
red = 0.402 and χ2

red = 0.403, respectively, which is less than unity

with each dataset, showing that both the models fit well and data sets are compatible

with the considered model.

Table 3.2 presents the values of transition redshift, present value of q and ωeff of

viscous HDE and ΛCDM models. Fig. 3.4 shows the evolution of the deceleration

parameter defined in equation (3.2.15) for best-fit values of free parameters with the

joint datasets. The deceleration parameter shows the transition from q > 0 to q < 0

with respect to DS1 and DS2 data. In this cosmological scenario, the signature flipping

occurs at the transition redshift ztr = 0.666+0.426
−0.310 and ztr = 0.777+0.234

−0.130 corresponding

to DS1 and DS2 datasets, which are very close to ΛCDM model’s transition values.

These results are also consistent with the results reported in Ref. [282]. Thus, the

Universe has an transition from early decelerated era to current observable accel-

erated era. The present value of q(z) is found to be about q0 = −0.535+0.016
−0.016 and

q0 = −0.536+0.016
−0.016, respectively, which are comparable with q0 = −0.55± 0.01 of the

Planck spacecraft data [281]. It is to be noted that Capozziello et al [283] have ob-
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Figure 3.4: Plot of deceleration parameter q versus redshift z for best-fit values of free param-
eters obtained from DS1 and DS2 data sets. The current value q0 is shown by a dot on the
trajectory. The band corresponds to the error at the 95.4% confidence level.

Table 3.2: Values of ztr, q0, we f f (z = 0) and t0 (Gyr) for different combinations of data sets.

DS1 DS2
Model HDE ΛCDM HDE ΛCDM

ztr 0.666+0.426
−0.310 0.707+0.223

−0.205 0.777+0.234
−0.130 0.699+0.143

−0.125

q0 −0.535+0.016
−0.016 −0.568+0.013

−0.012 −0.536+0.016
−0.016 −0.563+0.012

−0.012

weff(z = 0) −0.690+0.010
−0.010 −0.615+0.006

−0.006 −0.691+0.011
−0.011 −0.611+0.068

−0.068

tained q0 =−0.56±0.04.

Next we analyze the cosmic expansion using the effective equation of state pa-

rameter we f f . We have plotted the trajectory of we f f versus redshift z in Fig. 3.5,

using the best-fit values of free parameters of both the combinations of datasets.

The present values of effective EoS parameter are we f f (z = 0) = −0.690+0.010
−0.010 and

we f f (z= 0) =−0.691+0.010
−0.010 for both the combination of data sets which are also listed in

Table 3.2. These values are comparatively larger than w0 =−0.93 which was predicted

by joint analysis of WMAP+BAO+H(z)+SNe. The model behaves like quintessence

DE. Note that we f f → −1 in future time of evolution which implies that the viscous

holographic dark energy model approaches to de Sitter model in late time . Finally,

we estimate the age of the Universe as t0 ≈ 13.26 Gyr and t0 ≈ 13.56 Gyr, respectively,

which are comparable to the value reported in Ref. [281] with t0 = 13.79±0.02 Gyr.
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Figure 3.5: Plot of Effective equation of state parameter we f f versus redshift z for best-fit
values of free parameters obtained from DS1 and DS2 data sets. The current we f f (z = 0) is
shown by a dot on the trajectory. The band corresponds to the error at the 95.4% confidence
level.

3.6 Diagnostic and cosmographic parameters

In this section, we discuss diagnostic parameters, like statefinder parameters and

cosmography parameters, like jerk, snap, lerk and m parameters to discriminate the

proposed viscous HDE model with dark energy model, like ΛCDM model.

Substituting the values of scale factor and its derivatives from (3.2.14) in (1.12.1), we

get

r = 9(1+n1wh−ξ0−ξ1
2)

2+3n2wh−3ξ2
2 e−

6ξ0(t−t0)
2+3n2wh−3ξ2 −9 (1+n1wh−ξ0−ξ1)(1−n1wh+3n2wh+ξ1−3ξ2)

2+3n2wh−3ξ2
2 e−

3ξ0(t−t0)
2+3n2wh−3ξ2

+(2+3n2wh −3ξ2), (3.6.1)

and

s =
1

(2+3n2wh −3ξ2){2(1+n1wh −ξ0 −ξ1)− e−
3ξ0(t−t0)

2+3n2wh−3ξ2
(2+3n2wh−2ξ2)}

×

[
2e−

6ξ0(t−t0)
2+3n2wh−3ξ2 (1+n1wh −ξ0 −ξ1){1+n1wh −ξ0 −ξ1 − e−

6ξ0(t−t0)
2+3n2wh−3ξ2 (1+ξ1 −3ξ2 −n1wh +3n2wh)}

]
.(3.6.2)

Figure 3.6 shows the s−r plane trajectories of viscous holographic dark energy mod-

el for best fit values of parameters achieved through DS1 and DS2 data. It can be

observed that the {r, s} evolutions start from a region of chaplygin gas where r > 1,

s < 0 and tends to {r, s}→ {1, 0} in future, a value of ΛCDM model. The present val-

ues of statefinder parameters are {r0 = 0.6415, s0 = 0.132} and {r0 = 0.716, s0 = 0.094}
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Figure 3.6: The evolution of {r,s} in s− r plane corresponding to best fit values of free pa-
rameters obtained from DS1 and DS2. The direction of the evolution is shown by the arrows
on each trajectory.
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Figure 3.7: The evolution of {r,q} in q − r plane corresponding to best fit values of free
parameters obtained from DS1 and DS2.
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Figure 3.8: The evolutions of jerk, lerk,snap and m parameters corresponding to best fit values
of model parameters obtained from DS1 and DS2. The direction of the evolution of each
trajectory is shown by the arrow.

for DS1 and DS2, respectively which show a deviation from ΛCDM model. An alter-

nate way to check the differences between the models is through the {q, r} trajectory.

In Fig. 3.7 we plot such q− r trajectory for both data sets. The arrow represents

the direction of the evolution of the model. The trajectories evolute from deceleration

phase to accelerated epoch. We find that {q, r} converges to steady state (SS) model

{−1, 1} in the future (z →−1) with both data sets.

In addition to the above, we calculate the high order cosmography parameter-

s ( jerk,snap, lerk,m) for best fit values of parameters of viscous HDE model using

(1.12.3). Using the best fit values of model parameters, the evolution of these CP for

our model has been shown graphically against redshift, for DS1, and the same can be

plotted for the data set DS2. It can be checked through the graph that all the cosmo-

logical parameters j, s, l and m → 1 as z →−1, i.e., our model is in good agreement

with the observations of standard ΛCDM model in late time evolution. We find that

jerk and lerk parameters have the trajectories in the same direction while s and m

have the same evolution but different than j and l and both transit from initial nega-

tive values to later positive ones. A positive jerk and lerk implies that Universe has

gone under transition from deceleration to acceleration. The current values of these

parameters are found to be { j0 = 0.6415, s0 =−0.5082, l0 = 3.1301 and m0 =−14.614}

and { j0 = 0.716, s0 = −0.323, l0 = 2.852 and m0 = −12.490} for DS1 and DS2 respec-

tively. Thus, we report a deviation from the standard ΛCDM model in cosmography

parameters due to the contributions of bulk viscosity.
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3.7 Conclusion

In this chapter, we have studied the effect of bulk viscosity in HDE model with

Granda-Oliveros as an IR cut-off in the framework of FLRW space-time. The viscous

term has a negative pressure, therefore, it has been studied to observe the early and

late-time accelerated expansion of the universe. It is well known that the HDE model

with Granda-Oliveros IR cut-off does not show the phase transition which contradicts

with the present observable universe. Instead of assuming the other cut-off, we have

included viscous term in HDE model with the same IR cut-off to observe the phase

transition. We have assumed a more general form of bulk viscous coefficient ξ in

terms of H and Ḣ to demonstrate how does the bulk viscosity explain the accelerating

Universe. We have obtained the solution of different cosmological parameters such

as Hubble parameter, deceleration parameter and equation of state parameter.

We have constrained the space parameters of the viscous HDE model using the

latest observational data of Strong Lensing system containing 204 data points, H(z)

data comprising 57 points, SNe (pantheon data) of 1048 points and local H0. We have

performed two joint analysis namely DS1 and DS2 comprising SLS+SNe+H(z)+H0

and SLS+SNe+H(z), respectively to find the best-fit values of parameters. We have

also assumed ΛCDM model as concordance model to compare the results of viscous

HDE model. The best-fit values for both the models are listed in Table 2. Using the

the best -fit values we have investigated the effects of bulk viscosity on the evolution

of the universe by plotting the trajectory of different cosmological parameters. We

have found that the viscous HDE model fits well to both data sets. We have found

good agreement to data sets according to the χ2
red value. We have also obtained the

evolutions of cosmographic parameters and statefinder parameters. In the following,

we summarize the main results.

We have plotted and analyzed the trajectory of each of the main observable cos-

mological parameters such as H(z), q(z) and ωeff(z) using the best-fit values of model

parameters. In Figs. 3.2 and 3.3, the Hubble function obtained analytically has been

confronted by error bars of Hubble data with best-fit values and compared with ΛCDM.

We have found that the model predicts a better fit along with ΛCDM model. From Figs.

3.4 and 3.5, the evolution of the deceleration and EoS parameters show that the mod-
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el transits from deceleration phase to the accelerated phase. In late-time, we have

found that the parameters tend to −1. The present value of deceleration and EoS

parameters are very near to the values of ΛCDM model as mentioned in Table 3.2.

The ages of the Universe predicted by the viscous HDE model from two data sets are

slightly lower than the value of ΛCDM model. We have also studied the diagnostic

parameters namely statefinder and cosmographic parameters for viscous HDE model

and compared with the ΛCDM model. Using the best-fit values, we have plotted the

evolutions of {r,s}, {r,q} in (s− r) and (q− r) planes, respectively in Figs. 3.6 and 3.7

and discussed the behavior accordingly. In Fig. 3.8, we have plotted the evolution

of cosmographic parameters which explain the dynamics of the model. It has been

observed that these parameters tend to 1 as z tends to −1, that is, the viscous HDE

model is in good agreement with the observation of concordance model in late-time

evolution.

The presence of bulk viscosity in dark energy models is an interesting and signifi-

cant approach to show the phase transition of universe. The present model gives a

good alternative to explain the accelerating phenomena of the universe.

****************



Chapter 4

Matter creation cosmology in Brans-Dicke

theory: observational test and

thermodynamic analysis

In this chapter 1, a matter-dominated model with gravitationally induced matter cre-

ation is proposed in the framework of BD theory. We obtain the main cosmological

functions like scale factor of the universe, the Hubble expansion rate and deceleration

parameter analytically. We explore the viability of the model to explain the current

observable expansion of the universe. In this scenario the present cosmic acceler-

ation is supposed to drive only by the creation of negative pressure associated with

the matter component. The evolution of such model is tested by statistical analysis of

latest SNe, OHD and BAO probes. We analyse the model through the trajectories of

deceleration parameter, statefinder diagnostic and compared the model with standard

ΛCDM model.

1This chapter is based on a published research paper “Matter creation cosmology in Brans-Dicke theory:
observational tests and thermodynamic analysis, Physical Review D 100, 084057 (2019)".
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4.1 Introduction

In the past several years, after the discovery of the accelerating universe the matter

creation has been reconsidered to explain it and got some unexpected results. In gen-

eral relativistic cosmology, the presence of a negative pressure is the key ingredient to

accelerate the expansion. Cosmological models dominated by pressureless fluid like

a cold dark matter (CDM) component expands in a decelerating way. Matter creation

is considered in the context of the thermodynamics of open systems. A detailed study

of the thermodynamics of the matter creation with changing specific entropy has been

discussed in Ref. [173,174] as described in chapter 1.

The irreversible creation process, in comparison to the standard equilibrium equa-

tions, is described by two new ingredients: a negative pressure term in the energy-

momentum tensor and a balance equation for the particle number density. Second

law of thermodynamics relates these quantities in a very definite way. Several inter-

esting features of cosmological models with matter creation have been investigated

by many authors [181–183,196,284]. This field is very appealing for several important

observations carried out in the last ten years. It has been pointed out that models with

particle creation can mimic ΛCDM cosmology [182,194,197,244,285–287]. Further,

Nunes and Pavón [288] have shown that the matter creation models can explain the

phantom behavior of the universe without invoking any phantom fields. Particle cre-

ation models in modified theories of gravity have attracted several authors at recent

time [89,90,177].

There have been attempts in modelling the missing energy of the universe and to

explain its late time accelerated expansion in purview of the scalar tensor theories

where the scalar field is non-minimally coupled to gravity sector. The study of matter

creation processes in the context of the cosmological models has recently attracted a

lot of interest in cosmology. In this chapter, we study the role of irreversible process-

es, corresponding to the creation of matter out of gravitational energy in BD theory.

The aim of this work is to build a cosmological model based on matter creation in the

framework of BD theory. In a flat FLRW geometry, we consider a general creation rate

to demonstrate how matter creation explains the accelerating universe. We obtain the

analytical solutions of the Hubble function and the scale factor of the FLRW universe.

We also constrain the model using the latest compilation of Type Ia SNe data, O-

HD data and BAO data. We examine the models using two independent diagnoses,
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namely the statefinder parameter and Om from observational constraints. Further, we

test the thermodynamic viabilities of the matter creation model.

The chapter is arranged as follows: In section 4.2, we present the model field e-

quations for matter creation in a flat FLRW space-time in BD theory. We obtain the

analytical solutions of Hubble parameter, scale factor and the deceleration parameter

in section 4.3. In section 4.4, we test the cosmological model with matter creation in

BD theory with the recent observational data and derive the constraints on the mod-

el parameters. The results obtained by observational data are also given in section

4.5. In section 4.6, we study the evolution of the universe with the best fitted values

of parameters. Diagnostic analysis has been done in section 4.7. We present the

thermodynamic analysis of the model in Section 4.8. At the end, in section 4.9 we

discuss our findings.

4.2 Model and Field equations

Let us consider that the universe is filled with two fluid components: dark matter

and matter creation. Thus, the energy-momentum tensor for perfect fluid modifies to

Tµν = T (m)
µν +T (c)

µν , where T (m)
µν is the energy-momentum tensor for the perfect fluid, i.e.,

T (m)
µν = (ρm + pm)uµuν + pm gµν , (4.2.1)

and T (c)
µν is the energy-momentum tensor which corresponds to the matter creation,

i.e.,

T (c)
µν = pc(gµν +uµuν). (4.2.2)

Thus the modified EMT is given by

Tµν = (ρm + pm + pc)uµuν +(pm + pc) gµν (4.2.3)

where ρm, pm and pc are the energy density, kinetic pressure and creation pressure,

respectively.

In a spatially homogeneous and isotropic flat FLRW cosmology (1.3.8) filled with

dark matter and matter creation (4.2.3), the gravitational equations in BD theory can

be written as

H2 +H
ϕ̇
ϕ
− ω

6
ϕ̇ 2

ϕ 2 =
ρm

3ϕ
, (4.2.4)
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The scalar field evolution equation is

ϕ̈ +3Hϕ̇ =
ρm −3(pm + pc)

(2ω +3)
. (4.2.5)

Here, we note that the case of ω = −3/2 is not allowed. The energy conservation

equation T µν
;ν = 0 leads to

ρ̇m +3H(ρm + pm + pc) = 0. (4.2.6)

A self gravitating simple fluid endowed only with gravitational matter creation is char-

acterized by an energy-momentum tensor Tµν , a particle current Nµ and an entropy

current Sµ . In homogenous and isotropic case, these quantities sastisfy the following

relations:

T µν
;ν = 0, Nµ

;µ = nΓ, where Nα = n uµ , Sµ = nσuµ . (4.2.7)

It is to be noted that the creation pressure pc is defined in terms of the creation rate Γ

and other physical quantities describing the fluid. In adiabatic particle creation (mean-

ing particles are created but the specific entropy per particle remains constant), the

creation pressure is given by

pc =−
(

ρm + pm

3H

)
Γ, (4.2.8)

We assume the non-relativistic matter with (pm = 0), and therefore above equation

reduces to

pc =− ρm

3H
Γ (4.2.9)

Using second law of thermodynamics, we have the constraint

dS =
s
n

d(nV )≥ 0, (4.2.10)

where s = S/V is the entropy density, n is the particle number density, V = a3 denotes

the volume.

4.3 Solution of field equations

Equation (4.2.9) shows how matter creation rate, Γ, modifies the evolution of the

scale factor and density of fluid. The evolution of matter dominated model can be
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determined by assuming a suitable form of the creation rate. Although there is no

precise functional form of Γ, still various phenomenological parametrization have been

proposed in literature. The simplest choices of Γ is Γ ∝ H, however, this model is not

consistent with Type Ia SNe. The other forms of Γ are Γ = H0 [194], Γ ∝ H2 [196] and

Γ ∝ H−1 [197]. Steigman et al. [182] proposed a linear combination in the terms of

Hubble parameter as

Γ = 3γH0 +3βH, (4.3.1)

where γ and β are constants contained in the interval [0,1], and H0 is the present

value of H.

With the power law assumption ϕ = ϕ0 a(t)ε [249,250], equation (4.2.4) can be rewritten

as (
1+ ε − ε2ω

6

)
H2 =

ρ
3ϕ0aε . (4.3.2)

From the above Eq.(4.3.2), we get

2
Ḣ
H

=
ρ̇
ρ
− εH. (4.3.3)

Now, equation (4.2.6) gives
ρ̇
ρ
=−3

(
1− Γ

3H

)
H. (4.3.4)

Using equations (4.3.4) and (4.3.1) into (4.3.4), we get

ḣ
h
+

(ε +3(1−β ))
2

H0h− 3
2

γH0 = 0. (4.3.5)

where h = H/H0 is the dimensionless Hubble parameter. Using d
dt =

ȧ
a

d
d lna , the above

equation can be written as

h′+
(ε +3(1−β ))

2
h =

3
2

γ. (4.3.6)

where prime denotes the derivative with respect to conformal time lna.

Integration of equation (4.3.6), we obtain

h(a) =

[
3γ

ε +3(1−β )
+

(
1− 3γ

ε +3(1−β )

)(a0

a

) ε+3(1−β )
2

]
(4.3.7)
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From equation (4.3.7), we obtain the solution of scale factor a(t) as function of time,

a(t) = a0

[
1+

ε +3(1−β )
3γ

(
e

3γ
2 H0(t−t0)−1

)] 2
ε+3(1−β )

, (4.3.8)

where a0 is the present value of the scale factor at cosmic time t = t0 and in there-

after we take a0 = 1, and ε + 3(1− β ) ̸= 0, γ ̸= 0. As (t − t0) → 0, the scale factor

a(t)→
[
1+ ε+3(1−β )

2 H0(t − t0)
] 2

ε+3(1−β ) which corresponds to early deceleration and as

(t − t0) → ∞, the scale factor a(t) ∝ e
3γ
2 H0(t−t0), corresponds like that of the de Sitter

universe.

The Hubble parameter in terms of cosmic time t reads

H =
H0 e

3γ
2 H0(t−t0)[

1+ ε+3(1−β )
3γ

(
e

3γ
2 H0(t−t0)−1

)] (4.3.9)

In terms of redshift, it is given by

H(z) = H0

[
3γ

ε +3(1−β )
+

(
1− 3γ

ε +3(1−β )

)
(1+ z)

ε+3(1−β )
2

]
(4.3.10)

Using a(t) = 0 in (4.3.8), the cosmic time tBB when Big-bang happens, is given by

tBB = t0 +
2

3γH0
ln
(

1− 3γ
ε +3(1−β )

)
(4.3.11)

The energy density ρm in terms of z is given by

ρm = ρm0(1+ z)−ε
[

3γ
ε +3(1−β )

+

(
1− 3γ

ε +3(1−β )

)
(1+ z)

ε+3(1−β )
2

]2

(4.3.12)

where ρm0 is constant quantity. The scalar field ϕ has the solution

ϕ = ϕ0

[
1+

ε +3(1−β )
3γ

(
e

3γ
2 H0(t−t0)−1

)] 2ε
ε+3(1−β )

, (4.3.13)

which shows that BD scalar field increases exponentially with time.

Let us discuss the matter creation model in the sense of irreversible process. Adi-

abatic gravitational matter creation means that the total entropy S increase, but the

specific entropy (per particle), σ = S/N remains constant (σ̇ = 0), which implies that

Ṡ
S
=

Ṅ
N
. (4.3.14)
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Now, from N = nV where V = a3, we have

Ṅ
N

=
ṅ
n
+

3ȧ
a
. (4.3.15)

Inserting equations (1.11.7) and (4.3.1) into (4.3.16), a straightforward integration yields

N(t) = N0 a3β e3γH0(t−t0), (4.3.16)

where N0 is the present number of particles. The number of particle is increasing

function of time. Using (4.3.16) into (4.3.14) and integrating, we get

S(t) = S0 a3β e3γH0(t−t0), (4.3.17)

where S0 is the present entropy.

The solution for particle number density is given by

n = n0 a−3(1−β ) e3γH0(t−t0), (4.3.18)

which shows that the particle number density first decreases and then increases ex-

ponentially with cosmic time t.

The exact solutions coming out from (4.2.4) and (4.2.6) are consistent solutions if

these satisfy the wave equation (4.2.5). From (4.2.5), the conditions of consistency are

(2w+3)(ε −3(1−β )+2)ε − (6+6ε − ε2w)(1+3β ) = 0, (4.3.19)

and

3ε(2w+3)− (6+6ε − ε2w) = 0. (4.3.20)

It is straightforward to calculate the deceleration parameter which determines the tran-

sition from one phase to another. For this model, using (1.7.11), it is calculated as

q(t) =−1−
(

3γ −3(1−β )− ε
2

)
e−

3γ
2 H0(t−t0). (4.3.21)

The deceleration parameter in terms of the redshift is written as

q(z) =
1
2

[
−6γ +(1−3β + ε)(ε +3(1−β )−3γ)(1+ z)

ε+3(1−β )
2

(ε +3(1−β )−3γ)(1+ z)
ε+3(1−β )

2 +3γ

]
. (4.3.22)
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When ε +3(1−β ) = 3γ, we have q =−1 that belongs to the de Sitter universe. From

the above expression, the present-day value of q is given by,

q0 =
1
2

[
−6γ +(1−3β + ε)(ε +3(1−β )−3γ)

ε +3(1−β )

]
. (4.3.23)

For ε = 0, equation (4.3.22) reduces to result of Ref. [181] in general relativity. For

β = 0, we find

q(z) =
1
2

[
−6γ +(1+ ε)(3+ ε −3γ)(1+ z)

(ε+3)
2

(3+ ε −3γ)(1+ z)
(ε+3)

2 +3γ

]
(4.3.24)

Equation (4.3.24) shows that the creation of matter is negligible at high redshifts while

due to matter creation at redshifts of the order of a few, a transition from a decelerating

to an accelerating phase occurs. For γ = 0, from (4.3.22) we get

q =
1+ ε −3β

2
(4.3.25)

Equation (4.3.25) shows that β = (1 + ε)/3 is a critical value for which q = 0. For

β < (1+ ε)/3, the possible value of q(z) are always constant and positives while for

β > (1+ ε)/3, it remains constant and negative in the course of expansion. There is

no transition from deceleration to acceleration phase.

The transition redshift ztr can be obtained by taking q = 0 in equation (4.3.22), which

implies that

ztr =

[
6γ

(1+ ε −3β )(ε +3(1−β )−3γ)

] 2
(ε+3(1−β ))

−1, (4.3.26)

Note that the case γ = 0 gives ztr = −1, which shows that the transition would be in

infinite future. This gives contradiction with SNe data. Equation (4.3.26) equivalently

can be written as,

γ =
1
3
(1+ ε −3β )(ε +3(1−β ))(1+ ztr)

(ε+3(1−β ))
2

2+(1+ ε −3β )(1+ ztr)
(ε+3(1−β ))

2

. (4.3.27)

which for β = 0, becomes

γ =
1
3
(1+ ε)(ε +3)(1+ ztr)

(ε+3)
2

2+(1+ ε)(1+ ztr)
(ε+3)

2

. (4.3.28)
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4.4 Observational datasets

In this section, we use Hubble parameter (4.3.10) to perform the four different statis-

tical analysis involving the latest observational data, namely :

• SNe(cJLA data): We use the results of ‘Joint light-curve Analysis’ (cJLA) dataset

of 31 check point (30 bins) by Betoule et al. [210], in the redshift range, z =

[0.01,1.3].

• OHD: We use the OHD data of 43 measurement points collected in Ref. [214]

in the redshift range 0 < z < 2.5.

• BAO: The sample of BAO distances measurements from BOSS CMASS [229],S-

DSS(R) [236], the 6dF Galaxy survey [237] and three parallel measurements

from WiggleZ survey [238] are used in analysis.

The χ2 for the above mentioned datsets are χ2
SNe, χ2

OHD and χ2
BAO in section 1.14

respectively. We obtain the best fit of the model parameters, namely, ε, β and γ. The

goodness-of-fit of the model is obtained by the χ2-minimization and likelihoods by us-

ing Markov Chain Monte Carlo (MCMC) method [209]. In this study we have taken

the value of the Hubble constant, H0 = 67.8 Km sec−1 Mpc−1 [13].

4.5 Results

In our analysis, we perform a global fitting to determine the model parameters using

the MCMC method. Table 4.1 summarizes the best-fit values of model parameters

obtained by statistical analysis carried out using different sets of observational data.

The results of SNe and SNe+BAO are little different from which of SNe+OHD and

SNe+OHD+BAO.

In statistical analysis, we find the best-fit values of model parameters satisfying the

constraints 0 < ε < 3, 0 < β < 1, 0 < γ < 1 and 1 < (β + γ) < 2. Figs. 4.1-4.4 show

confidence contours on parameters and the marginalized likelihood function of model

obtained from the joint analysis with different data sets. The best-fit values of model

parameters are given in Table 4.1.
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Figure 4.1: The likelihood contours at 68.3% CL and 95.4% CL using data from SNe with
marginalized probability for the parameters. In Fig. the words ep, bt and gm denote ε , β and
γ parameters, respectively.

Figure 4.2: The likelihood contours at 68.3% CL and 95.4% CL based on joint analysis of SNe
+ OHD. In Fig. the words ep, bt and gm denote ε , β and γ parameters, respectively.
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Figure 4.3: The likelihood contours at 68.3% CL and 95.4% CL based on joint analysis of SNe
+ BAO. In Fig. the words ep, bt and gm denote ε , β and γ parameters, respectively.

4.6 Evolution of the model

In this section, we discuss the evolution of the different cosmological quantities us-

ing the best-fit values of free parameters obtained from different observational data

set. Figure 4.5 shows the evolution of the scale factor for different values of model

parameters using observational data. It shows that the model starts expanding with

accelerated rate at early time. The dots denote the transition point where the universe

transits from deceleration to acceleration phase. We have also plotted the trajectories

for other different values of parameters. The first bottom curve gives the trajectory

without matter creation (β = 0, γ = 0) in general relativity (ε = 0) which clearly shows

the expansion in decelerated rate.

From (4.3.10), we have

dȧ
da

=
H0

(ε +3(1−β ))

[
3γ +

(ε +3(1−β − γ))(2− ε −3(1−β ))
2

a−
ε+3(1−β )

2

]
. (4.6.1)

Putting dȧ/a = 0 in (4.6.1) to get the value of scale factor at transition, which is given

by

atr =

[
(ε +3(1−β − γ))(ε +3(1−β )−2)

6γ

] 2
ε+3(1−β )

, (4.6.2)
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Figure 4.4: The likelihood contours at 68.3% CL and 95.4% CL based on joint analysis of SNe
+ OHD + BAO. In Fig. the words ep, bt and gm denote ε , β and γ parameters, respectively.

Table 4.1: The best-fit results of model parameters obtained from the analysis with different
combinations of the data sets.

Dataset ε β γ M χ2
min

SNe 1.898+0.633
−0.535 0.667+0.210

−0.240 0.645+0.218
−0.240 24.941+0.020

−0.022 18.427

SNe +OHD 2.142+0.593
−0.698 0.512+0.205

−0.224 0.840+0.066
−0.079 24.945+0.018

−0.020 28.223

SNe +BAO 1.915+0.665
−0.651 0.448+0.225

−0.199 0.813+0.072
−0.059 24.932+0.021

−0.020 17.497

SNe +OHD+BAO 2.141+0.596
−0.672 0.597+0.200

−0.215 0.731+0.021
−0.020 24.951+0.017

−0.018 30.671

where the subscript “tr” denotes the transition. The values of atr are listed in Table 4.2

for different values of model parameters. In the expression (4.3.8), If we assume ε +

3(1−β )= 3γ, we obtain the de Sitter universe a(t)= eH0(t−t0) as shown in Fig. 4.5 (solid

black line). In this case the model predicts an eternal accelerated expansion. For

0 < ε +3(1−β )< 3γ, the model expanding forever (see, brown curve) and for ε +3(1−

β ) > 3γ, we find that model begin with a Big-Bang followed by an eternal expansion.

Using the best fitted values of parameters listed in Table 4.1 into (4.3.22) the variation

of q with z is shown in Fig.4.6. We have found that the evolution corresponding the

best estimates from all observational data are identical. The deceleration parameter

starts from negative redshift, z =−1 and takes the trajectory from negative to positive.

The model transits from decelerated to accelerated epoch at around ztr ∼ 0.8 with
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Figure 4.5: The scale function as a function of time for different values of model parameters
ε , β and γ . The dots show the transition point.

SNe+OHD and SNe+OHD+BAO, whereas SNe and SNe+BAO predict the transition

at around z ∼ 1.818 and z ∼ 1.005, respectively which are significantly higher and hint

a strong deviation from other two. The transition redshift ztr, at which q enters the

negative region and the present-day value of q0 are given in Table 4.2. The present-

day negative value −1 < q0 < 0 with each observational data shows that the model

behaves quintessence like.

The effective equation of state parameter, we f f as defined in equation (2.6.1), is

calculated as

we f f =−1+
1
3
(ε +3(1−β − γ))(1+ z)

(ε+3(1−β ))
2

h
(4.6.3)

Table 4.2: The transition scale factor and redshift, and current values of q(z) and we f f (z) using
best-fit results of model parameters.

Data atr ztr q0 we f f (z)
SNe 0.3548 1.8180 −0.779 −0.679

SNe +OHD 0.5551 0.8013 −0.457 −0.638

SNe +BAO 0.4986 1.005 −0.434 −0.662

SNe +OHD+BAO 0.5398 0.8522 −0.422 −0.614
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Figure 4.6: The evolution of the deceleration parameter q(z) vs redshift z for the best estimated
values of parameters. The dot denotes the value of ztr at which q(z)=0 as mentioned in Table
4.2.

As z → −1, (a → ∞), we get we f f → −1, which can also be observed from Fig. 4.7.

It means that the model tends to ΛCDM in future time. The matter creation model is

free from big-rip singularity as EoS does not cross the phantom divide line w ≤−1.

The current value (h = 1) of we f f is found to be

we f f (z = 0) =−1+
ε +3(1−β − γ)

3
. (4.6.4)

The present value of we f f are listed in Table 4.2 for different observational datasets

which are higher than that predicted by the joint analysis of WMAP+BAO+H0 +SNe

data which is around −0.93 [14].

In Fig 4.8, we see the Hubble evolution of our model and compare ΛCDM model

with the error bar plots of Hubble dataset in the range z ∈ (0,2). At the low redshifts,

the curves coincide, while their evolution with increasing z differ appreciably in case

of SNe and SNe+BAO. However, a good fit may be obtained using joint statistical

analysis of SNe+OHD and SNe+OHD+BAO.

It is to be noted that the present age of the universe for a flat CDM model dominated

by matter (Ωm0 = 1, t0 = 2/(3H0)) gives t0 ≈ 8−10 Gyr, i.e., this model suffers the age

problem. However, for ΛCDM model, it easily satisfies the constraint t0 > 11−12 Gyr. A

plot of the age of the universe with redshift for the best fit values of model parameters

is shown in fig. 4.9. The ages of the universe corresponding to SNe + OHD and
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Figure 4.7: Plot of effective equation of state parameter we f f versus redshift z for best fitted
parameters.

Figure 4.8: The Hubble function in terms of the redshift for ΛCDM model and the fitted model
with error bar plots from Hubble data.
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Figure 4.9: The age of universe for best fitted values and ΛCDM model in the units of
Gyr(gega-year) with redshift.

SNe+OHD+BAO are found to be 13.9 Gyr. So, the age predicted by the present model

is agreeing with the age deduced from ΛCDM model which is around 13.799± 0.021

Gyr.

4.7 Diagnostic parameters

Let us compare our model with ΛCDM model by calculating the diagnostic parame-

ters. The statefinder parameters are given by

r =
(2− (ε +3(1−β )))(2−2(ε +3(1−β )))

4
+

9γ
4
(2− (ε +3(1−β )))e−

3γH0
2 (t−t0)

×
[

1+
ε +3(1−β )

3γ

(
e

3γH0
2 (t−t0)−1

)]
+

9γ2

4
e−3γH0(t−t0)

[
1+

ε +3(1−β )
3γ

(
e

3γH0
2 (t−t0)−1

)]2

(4.7.1)

s =
(r−1)

3
[
−3

2 +
(

3γ−3(1−β )−ε
2

)
e−

3γ
2 H0(t−t0)

] (4.7.2)

We observe that as (t − t0) → ∞, {r,s} → { (3β−ε−1)(3β−ε−2)
2 , 2(1−r)

9 }, which deviates

from the ΛCDM model. However, it corresponds to the ΛCDM model for ε = 0 and

β = 0. The {r,s} plane trajectory of the model for best estimated values of param-

eters by SNe+OHD+BAO is shown in Fig. 4.10. The plot lies in the region r < 1,

s > 0, which is the behavior of any quintessence model. The {r,q} trajectory of the

model is shown in Fig. 4.11. Our model tends to the standard model like ΛCDM and
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Figure 4.10: The trajectory of {r,s} in s− r plane corresponds to best fitted parameters ob-
tained from joint analysis of SNe+OHD+BAO. The arrow shows the direction of the evolu-
tion of the trajectory.
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Figure 4.11: The trajectory of {r,q} in q− r plane for the best fitted parameters obtained from
joint analysis of SNe+OHD+BAO. The arrow shows the direction of the evolution of the
trajectory.
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quintessence model (Q−model) in late time.

4.8 Thermodynamic Analysis

In this section, we discuss the validity of generalized second law (GSL) of thermo-

dynamic in the present model dominated by matter creation. It is to be noted that

according to the thermodynamic the entropy of isolated systems can never diminish-

es. We explore the calculations of total entropy, S for matter creation model. We

assume that the apparent horizon is related to temperature and entropy analogous

to associated with black hole event horizon [289]. So, according to GSL, the total

entropy S must include the entropy of all sources. During the evolution of the universe

the rate of the entropy change of the fluid within the universe and that of the horizon

must always be greater than or equal to zero. As we are studying only the recent

and future times, the total entropy is equal to the sum of the contribution of entropy to

matter, Sm and apparent horizon, Sh, i.e., S = Sm +Sh, where Sh =
κBA
4l2

Pl
is the entropy of

apparent horizon and Sm is entropy of pressureless matter. A and lPl are the area of

the horizon and Planck’s length, respectively, and κB is the Boltzman constant. The

area of the apparent horizon is given by A = 4πr2
h, where rh =

1√
(H2+ka−2)

. As we are

restricting our analysis to spatially flat model (k = 0), this assumption yields rh = H−1.

Therefore, the horizon entropy reads as

Sh =
κBπ

l2
PlH

2 . (4.8.1)

Using Eq.(4.3.7), the first derivative of Eq. (4.8.1) gives

Ṡh =
κBπH0

l2
Pl

H0

H2 (ε +3(1−β − γ))a−
ε+3(1−β )

2 . (4.8.2)

It is observed from the above equation that Ṡh ≥ 0 for 0 < β +γ ≤ 1. The matter entropy

inside the dynamical apparent horizon is described by Gibb’s relation [290]

T dSm = d(ρV )+ p dV, (4.8.3)

where V = 4π
3 r3

h is the spatial volume enclosed by the horizon and T is the temperature

of fluid and we assume that the temperature T is equal to the temperature at horizon
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Th, where Th = 1/2πrh [94].

Using (4.3.4), the above equation gives

Ṡm =
8π2H0ρ

H4

[
(3γ − (ε +3(1−β )))

2
a−

ε+3(1−β )
2 + εH

]
, (4.8.4)

As H and ρ are positive, the positivity of Ṡm is ensured whenever ε + 3(1−β ) < 3γ.

Adding (4.8.2) and (4.8.4), we get Ṡh+ Ṡm ≥ 0 provided 0< (β +γ)< 1 and ε+3(1−β )<

3γ. This means that GSL is always valid with these constraints.

4.9 Conclusion

In this chapter we have studied a matter-dominated model with ‘adiabatic’ matter

creation in Brans-Dicke theory with matter creation rate Γ = 3γH0+3βH to explain the

late-time accelerated expansion of the universe. We have demonstrated how matter

creation works well with the expanding universe. In order to constrain the model pa-

rameters, statistical analysis using cosmic observations data from SNe, OHD and BAO

have been performed. Further, in order to reduce the number of the free variables, we

select to use the present value of the Hubble function, i.e., H0 = 67.8 Km s−1Mpc−1.

The results are given in Table 4.1 and 4.2. In figures 4.1-4.4, we have plotted the

contour maps obtained from dataset. According to the MCMC analysis, it is found that

the best fitting values of model parameters from SNe and SNe+BAO are little different

than those obtained from SNe+OHD and SNe+OHD+BAO. The later best fit values

are compatible with the ΛCDM model.

Using the best fit values, we plot the evolutions of scale factor, deceleration param-

eter and effective equation of state parameter. From Fig. 4.5, it has been found that

the model starts from Big-Bang followed by decelerated expansion at early times and

with a transition to an accelerated epoch at later time corresponding to the defined

constraints. In some other constraints, the model predicts an eternally expanding uni-

verse beginning with a Big-Bang in the past followed by decelerated expansion and a

smooth transition to an accelerated expansion. Table 4.2 gives the transition point atr

from best fitted values obtained from different dataset.

We have also discussed the evolution of the deceleration parameter q and effec-

tive EoS we f f . From Fig.4.6, it is observed that there is a transition from decelerated

phase to accelerated phase. The present day value of q0 and transition redshift are

found from each observational data. In general, q →−1 as a → ∞ which corresponds
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to de Sitter model of the universe. We have also plotted the trajectories for we f f for

best fitted values of parameters in Fig 4.7. In each case the model does not cross the

phantom-divide line. Irrespective of the values of parameters, we f f →−1 as z →−1.

The Hubble function of the model with error bar fits in to the ΛCDM model for best

fitted values obtained from SNe+OHD and SNe+OHD+BAO (see, Fig. 4.8). The

age of the universe obtained from SNe+OHD and SNe+OHD+BAO for best fitting

values predict the same as ΛCDM model. However, it is comparatively higher than

those obtained from SNe and SNe+BAO as shown in Fig 4.9.

We have discussed the statefinder diagnostic for the model. In Fig.4.10, we have

plotted the trajectory of {r,s} in s− r plane. The trajectory is different from the ΛCDM

model. The model shows the behavior of quintessence like. However, as a → ∞, the

statefinder parameter {r,s}→ {1,0}, corresponds to the ΛCDM point.

We have analysed the validity of GSL in the present model and found that the GSL

of thermodynamic is valid with apparent horizon as the boundary for 0 < (β + γ) < 1

and ε +3(1−β )< 3γ.

In summary, this chapter keeps itself in the domain of cosmology, more especially

in the accelerating cosmology which is a certain plight to explain the evolution of the

universe.

****************



Chapter 5

Holographic dark energy model with

matter creation in Brans-Dicke theory

In this chapter 1, the adiabatic matter creation for a spatially homogeneous and

isotropic flat FLRW universe is discussed in holographic dark energy (HDE) in the

context of BD theory. Since the HDE density is considered as a dynamical cosmologi-

cal constant, it is natural to study it in a dynamical frame of BD theory. The models are

constrained with the latest observational data from SNe, measurements of OHD and

BAO/CMB data. Using the MCMC method, we obtain the best fit values of the param-

eters for different models. It is found that the HDE model without matter creation does

not achieve transition phase when the Hubble horizon is taken as an IR cut-off. How-

ever, it achieves the phase transition from decelerated phase to accelerated phase

with same IR cut-off with the inclusion of gravitationally induced matter creation. Us-

ing AIC and BIC, and geometrical diagnostic parameters, we compare the models

with ΛCDM model and discuss the viability of the model. A detailed thermodynamic

analysis is also carried out.

1This chapter is based on a published research paper “Constraints on holographic dark energy model with
matter creation in Brans-Dicke theory and thermodynamic analysis, Physics of the Dark Universe 33, 100869
(2021)".
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5.1 Introduction

Many theoretical approaches have been carried out to investigate the recent cosmic

acceleration. In general relativistic cosmology, the presence of negative pressure is

the key ingredient for the accelerating universe. The negative pressure occurs natural-

ly in many different contexts when the physical systems depart from thermodynamic

equilibrium. One such example is the matter creation induced by the time-varying

gravitational field in an expanding universe [170,171,173,291,292].

On the other hand, there is another concept in which the DE is assumed a dy-

namically evolving component. In fact, several dynamical models of DE have been

proposed and studied in detail. One of such dynamical models is the holographic

dark energy (HDE) model in which HDE density depends on the choice of IR cut-off.

In a paper, Xu et al. [293] have studied HDE model with Hubble horizon as an IR

cut-off in BD theory and found that there is no accelerated expansion of the universe.

However, an accelerated expansion is obtained once the event horizon is considered

as an IR cut-off.

The BD theory is the most natural choice as the scalar tensor generalization of gen-

eral relativity which was formulated in order to incorporate the Mach’s Principle. In this

chapter, we consider HDE model with matter creation in a more dynamical framework,

i.e., in BD cosmology. It is to be noted that the HDE density belongs to a dynamical

cosmological constant, therefore, we need a dynamical frame to accommodate it in-

stead of Einstein gravity. Thus, the study of HDE model in the framework of BD theory

is well motivated. A number of authors [249,294–298] have studied HDE models with

different IR cut-offs in the framework of BD theory to explain the recent acceleration

and to alleviate the cosmic coincidence problem. Xu and Li [293] have constrained

the HDE model in BD theory by cosmic observational data.

The purpose of this paper is to study a cosmological model of late acceleration in

BD theory with the assumption that the pressureless dark matter with matter creation

and HDE conserve separately. Instead of assuming the other IR cut-off, we include

matter creation mechanism in HDE model with the same Hubble horizon as an IR

cut-off with the possibility that this model would be consistent with the current obser-

vations and show the phase transition. We consider four different HDE models with

and without matter creation. We discuss the evolution and dynamics of the model by

constraining the model parameters through combined observational data of type Ia
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SNe, OHD and combined data of BAO and CMB. It is found that the HDE model with

matter creation shows phase transition from decelerated phase to accelerated phase.

The model behaves quintessence like and approaches to ΛCDM model in late times.

The chapter is organized as follows. In section 5.2, we present the field equations of

HDE model with Hubble horizon as an IR cut-off in BD theory when adiabatic matter

creation is allowed. Section 5.3 is devoted to the analytical solution of the different

HDE models with and without matter creation. Section 5.4 studies the constraints

on cosmological model by using data of Type Ia SNe, OHD and BAO/CMB data. In

section 5.5, we present the result of the best-fit values of different model parameters

to discuss the evolution of the universe. Section 5.6 discusses the geometrical di-

agnostic parameters to distinguish HDE models with ΛCDM model. We present the

thermodynamic analysis of the model based on generalized second law of thermody-

namics in section 5.7. Finally, we summarize our findings in section 5.8.

5.2 HDE Model with matter creation in BD theory

We assume the background as a spatially homogenous and isotropic flat FLRW

space-time as defined in (1.3.8). The BD field equations from the action (1.10.2) with

respect to flat FLRW metric gµν (1.3.8) and the BD scalar field ϕ are

Rµν −
1
2

gµνR =
8π
ϕ

Tµν +8πT BD
µν , (5.2.1)

and

∇α∇α =
8π

(2ω +3)
T λ

λ = 0, (5.2.2)

where Tµν is the energy-momentum tensor for perfect fluid and T BD
µν is the energy-

momentum tensor of BD scalar field. We assume that the universe contains the dark

matter and HDE in which a process of dark matter creation from gravitational field

takes place. Therefore, the energy-momentum tensor Tµν is the sum of matter fluid

including creation and HDE, and adopts the perfect fluid form as

Tµν = (ρt + pt)uµuν + ptgµν , (5.2.3)

where ρt is the sum of energy density of matter and HDE, i.e., ρt = ρm + ρh, and

pt is the sum of pressures due to perfect fluid, matter creation and HDE i.e., pt =
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pm + pc + ph. The energy-momentum tensor for BD scalar field T BD
µν is defined by

T BD
µν =

1
8π

[ ω
ϕ 2

(
∇µϕ∇νϕ − 1

2
gµν∇εϕ∇εϕ

)
+

1
ϕ
(
∇µ∇νϕ −gµν∇ε∇εϕ

)]
. (5.2.4)

The gravitational field equations for a universe dominated by pressureless dark mat-

ter (DM) and HDE in which a process of DM creation from the gravitational field, gov-

erned by (5.2.1), yield

3H2 +3H
ϕ̇
ϕ
− ω

2
ϕ̇ 2

ϕ 2 =
8π
ϕ

ρt , (5.2.5)

2Ḣ +3H2 +
ϕ̈
ϕ
+2H

ϕ̇
ϕ
+

ω
2

ϕ̇ 2

ϕ 2 =−8π
ϕ

pt . (5.2.6)

The dynamical equation for the scalar field is given by

ϕ̈
ϕ
+3H

ϕ̇
ϕ
=

8π
(2ω +3)ϕ

(ρt −3pt), (5.2.7)

Ignoring the inhomogeneities arising from the (linear) field perturbations, the BD

field can be treated as a perfect fluid T BD
µν = (ρBD+ pBD)uµuν + pBDgµν with energy and

pressure are respectively given by

ρBD =
1

8πG

[
ω
2

(
ϕ̇
ϕ

)2

−3H
ϕ̇
ϕ

]
, (5.2.8)

pBD =
1

8πG

[
ω
2

(
ϕ̇
ϕ

)2

+2H
ϕ̇
ϕ
+

ϕ̈
ϕ

]
. (5.2.9)

Finally, the geometric Bianchi identity in equation (5.2.1), which play a role of con-

sistency relation, leads to

∇ν

(
Rµν − 1

2
gµνR

)
= 0 = ∇ν

(
8π
ϕ

T µν +8πT µν
BD

)
. (5.2.10)

In this chapter, we study the model dominated by pressureless dark matter (pm = 0)

in the presence of matter creation and HDE in BD theory. Further, we assume that

dark components - the pressureless dark matter with matter creation and the HDE -

do not interact with each other. Therefore, the energy conservation equation for each

conserves separately. It means that T µν obeys the usual conservation law, T µν
;ν = 0,

which take the forms

ρ̇m +3H (ρm + pc) = 0, (5.2.11)
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and

ρ̇h +3H (ρh + ph) = 0. (5.2.12)

One interesting thing about working in Jordan frame is that the conservation equation

holds for matter and BD scalar field separately, i.e., equations of motion of matter do

not enter into the BD scalar field. Therefore, from (5.2.10), we are left(
∇ν{

8π
ϕ
}T µν +∇ν{8πT µν

BD }
)
= 0, (5.2.13)

which gives

ρ̇BD +3H (ρBD + pBD) =

(
ϕ̇
ϕ 2

)
ρt , (5.2.14)

which can be treated as an additional conservation law [116,299].

It can be checked that the covariant conservation laws (5.2.11), (5.2.12) and (5.2.14)

can also be obtained upon lengthy but straight forward computation by combining e-

quations (5.2.5)-(5.2.7) which are identical to that of general relativity. Although the

calculation is more involved than in general relativity, the final result turns out to be

the same. Thus, we shall use (5.2.11), (5.2.12) and (5.2.5) to obtain the solution of the

model and finally we use (5.2.14) to get the consistency condition, which will be used

to constraint the model parameters.

The general analytical solutions to the system (5.2.5)-(5.2.7) are not known. How-

ever, physical sense guides us into searching for possible solutions in which the BD

scalar field ϕ evolves very slowly. We assume that BD scalar field can be described

as a power-law of the scale factor, namely ϕ = ϕ0 aε as taken in the previous chapter.

With this power-law assumption, the Friedmann equation (5.2.5) can be rewritten as

(
1+ ε − ω

6
ε2
)

H2 =
8π
3ϕ

(ρm +ρh). (5.2.15)

We have discussed that there are various choices of IR cut-off for the cosmo-

logical length scale available in literature. The Hubble horizon, which is given by

ρh = 3b2(8πGL2)−1, where L = H−1 is the IR cut-off, is the simplest choice of IR cut-off

but this IR cut-off does not describe the cosmic acceleration [62]. In the framework of

BD theory, the scalar field ϕ plays the role of Newton’s constant (ϕ ∼ 1/G). Therefore,

the modify HDE in BD theory is given by [299]

ρh =
3b2

8π
ϕH2 (5.2.16)



110

Now, using this form of ρh with (5.2.11) and (5.2.12), the evolution equation (5.2.15)

for cold dark matter can be written as

Ḣ +

(
3+ ε

2
+

9b2wh

6+6ε −ωε2

)
H2 =

(6+6ε −ωε2 −6b2)

2(6+6ε −ωε2)
ΓH, (5.2.17)

where wh = ph/ρh is the equation of state (EoS) parameter of HDE. In what follows,

we shall solve the above equation for different choices of particle creation rate Γ and

perform the observational constraints on the model parameters.

5.3 Solution of HDE model

Now, one can observe from (5.2.17) that the dynamics of the universe can only be

observed if the matter creation rate Γ is known. In what follows, we present different

models depending on the choices of the matter creation rate Γ.

5.3.1 Solution with Γ = 0

Let us first find the solution of HDE model with Hubble horizon as an IR cut-off without

matter creation (hereafter HDE 1). Taking Γ = 0, Eq. (5.2.17) reduces to

Ḣ +

(
3+ ε

2
+

9b2wh

6+6ε −ωε2

)
H2 = 0. (5.3.1)

The solution of (5.3.1) is given by

H = H0

(
a
a0

)−
(

3+ε
2 +

9b2wh
6+6ε−ωε2

)
, (5.3.2)

The solution of the scale factor, normalized to unity at present epoch, in terms of

cosmic time t can be obtained as

a =

[
1+
(

3+ ε
2

+
9b2wh

6+6ε −ωε2

)
H0 (t − t0)

] 1(
3+ε

2 +
9b2wh

6+6ε−ωε2

)
. (5.3.3)

The deceleration parameter is given by

q =

(
3+ ε

2
+

9b2wh

6+6ε −ωε2

)
−1. (5.3.4)
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Using (5.3.2) and (2.6.1), the effective EoS parameter is calculated as

we f f =−1+
2
3

(
3+ ε

2
+

9b2wh

6+6ε −ωε2

)
. (5.3.5)

From (5.3.3), (5.3.4) and (5.3.5), we observe that the expansion of the model is of

power-law form, and the deceleration parameter and effective EoS parameter are

constant. Therefore, the HDE model with Hubble horizon as an IR cut-off in BD theory

does not show the phase transition. The HDE model will decelerate or accelerate

through out the evolution depending on the value of parameters. Thus, the HDE model

with Hubble horizon as an IR cut-off in BD theory is ruled out to fit the observational

data. In Refs. [62,63,300], the authors have also found such solutions. Many authors

[69,77,97,301] proposed different IR cut-off like particle horizon, event horizon, Ricci

scalar, etc., to discuss the accelerating universe. However, it is to be noted that the

Hubble horizon is a natural choice of cosmological length scale. Therefore, instead

of considering any other IR cut-off or interaction between the fluids as did by many

authors, we restrict ourselves to Hubble horizon as an IR cut-off but in the presence

of matter creation to realize an accelerated expansion of the universe.

5.3.2 Solution with Γ ̸= 0

The purpose of review of the power-law solution of HDE model in previous section is

to present our motivation to work with matter creation. In this subsection, let us study

the evolution equation (5.2.17) of HDE model with matter creation. We assume the

functional form of matter creation rate of a more general form [181,182,302](hereafter,

HDE 2)

Γ = 3γH0 +3βH, (5.3.6)

where the parameters γ and β lie on the interval [0, 1]. Inserting (5.3.6) into (5.2.17),

one finds

H ′+
k1

a
H =

3γ(6+6ε −ωε2 −6b2)

2(6+6ε −ωε2)

H0

a
, (5.3.7)

where k1 =
(ε+3(1−β ))(6+6ε−ωε2)+18(wh+β )b2

2(6+6ε−ωε2)
and a prime denotes derivative with respect

to the scale factor a. The solution of (5.3.7) in terms of redshift z reads

H = H0

[
3γ(6+6ε −ωε2 −6b2)

2(6+6ε −ωε2)k1
+

(
1− 3γ(6+6ε −ωε2 −6b2)

2(6+6ε −ωε2)k1

)
(1+ z)k1

]
. (5.3.8)
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Using H = ȧ/a and 1+ z = a−1, integration of the above expression, in normalized unit

of the scale factor at present time, gives

a =

[
1+

2(6+6ε −ωε2)k1

3γ(6+6ε −ωε2 −6b2)

(
e

3γ(6+6ε−ωε2−6b2)
2(6+6ε−ωε2)

H0(t−t0)−1

)]1/k1

. (5.3.9)

We observe that as (t − t0)→ 0, a → [1+ k1H0(t − t0)]1/k1 , which shows the power-law

expansion in early time. As (t−t0)→∞, the scale factor tends to a→ e
3γ(6+6ε−ωε2−6b2)

2(6+6ε−ωε2)
H0(t−t0),

which corresponds to the expansion like de Sitter. Thus, the model has early deceler-

ation phase followed by an acceleration phase in the later stage of the evolution.

The cosmic time t(a) in terms of the scale factor is given by

t(a)− t0 =
2(6+6ε −ωε2)H−1

0
3γ(6+6ε −ωε2 −6b2)

ln
(

1+
3γ(6+6ε −ωε2 −6b2)

2(6+6ε −ωε2)k1
(ak1 −1)

)
(5.3.10)

Thus, the cosmic time tBB when the Big-Bang a(tBB) = 0 happens, is given by

tBB = t0 +
2(6+6ε −ωε2)H−1

0
3γ(6+6ε −ωε2 −6b2)

ln
(

1− 3γ(6+6ε −ωε2 −6b2)

2(6+6ε −ωε2)k1

)
(5.3.11)

The age of the universe, i.e., the elapsed time between the time tBB until the present

time t0, is given by

|t0 − tBB|=

∣∣∣∣∣ 2(6+6ε −ωε2)H−1
0

3γ(6+6ε −ωε2 −6b2)
ln
(

1− 3γ(6+6ε −ωε2 −6b2)

2(6+6ε −ωε2)k1

)∣∣∣∣∣ . (5.3.12)

Using (5.3.8) into (1.7.11), the deceleration parameter in terms of redshift is given by

q(z) =−1+
1

2(6+6ε −ωε2)

(
2(6+6ε −ωε2)k1 −3γ(6+6ε −ωε2 −6b2)

)
(1+ z)k1

3γ(6+6ε−ωε2−6b2)
2(6+6ε−ωε2)k1

+
(

1− 3γ(6+6ε−ωε2−6b2)
2(6+6ε−ωε2)k1

)
(1+ z)k1

.

(5.3.13)

Thus, the parameter q is time-dependent, which means that the transition of the uni-

verse from deceleration to late-time acceleration is possible. One can obtain transition

redshift by taking q = 0 in Eq. (5.3.13), which implies that

ztr =−1+
[

3γ(6+6ε −ωε2 −6b2)

(k1 −1){2(6+6ε −ωε2)k1 −3γ(6+6ε −ωε2 −6b2)}

] 1
k1
. (5.3.14)
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The present value of q at z = 0 is obtained as

q0 =
2(6+6ε −ωε2)(k1 −1)−3γ(6+6ε −ωε2 −6b2)

2(6+6ε −ωε2)
. (5.3.15)

Thus, the transition from decelerated to accelerated phase occurs at present for 2(6+

6ε −ωε2)(k1 − 1) = 3γ(6+ 6ε −ωε2 − 6b2). At this value, the transition scale factor

atr = 1 which is the value of scale factor to be assume at present. For 2(6+ 6ε −

ωε2)(k1 − 1) > 3γ(6+ 6ε −ωε2 − 6b2), we have decelerated universe in the present

time and for 2(6+6ε −ωε2)(k1 −1)< 3γ(6+6ε −ωε2 −6b2), we have an accelerated

one today.

For this model, we get the effective EoS, given by

we f f =−1+
H0

3H
[(3+ ε −3γ)(6+6ε −ωε2)+18(wh + γ)b2](1+ z)k1

(6+6ε −ωε2)
. (5.3.16)

The present effective EoS parameter when H = H0, is given by

we f f (z = 0) =−1+
1
3
(3+ ε −3γ)(6+6ε −ωε2)+18(wh + γ)b2]

(6+6ε −ωε2)
. (5.3.17)

The condition of EoS parameter, we f f <−1/3 for acceleration of the present universe

can be obtained as

3we f f (z = 0)+1 = (1+ ε −3γ)(6+6ε −ωε2)+18(wh + γ)b2 < 0. (5.3.18)

Now, it is interesting to discuss in what sense this HDE model with matter creation be-

haves like an irreversible process. Let us consider the entropy behavior of the model.

In adiabatic matter creation the specific entropy (per particle) σ = S/N, where S and N

are, respectively, the entropy of the dominant component and the corresponding num-

ber of particles, remains constant, i.e., σ̇ = 0. This implies that Ṡ
S = Ṅ

N . Since N = na3,

it follows from (1.11.7) and (5.3.6) that N increases as N = N0 a3β e3γH0(t−t0), where a is

obtained in Eq. (5.3.9). The corresponding S can be obtained as S = S0 a3β e3γH0(t−t0).

Using (5.2.8), (5.2.9) and (5.2.15), one can check that the consistency condition

(5.2.14) can be written as

2(ωε −3)Ḣ +(ωε2 +6ωε −12)H2 = 0 (5.3.19)
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Putting (5.3.8) in (5.3.19), we obtain

2(ωε −3)(X − k1)a−k1 +(ωε2 +6ωε −12)
[

X
k1

+

(
1− X

k1

)
a−k1

]
= 0, (5.3.20)

where X = 3γ(6+6ε−ωε2−6b2)
2(6+6ε−ωε2)

. The above equation can not be always satisfied. So,

we assume this equation is satisfied nowadays, i.e., when a = a0 = 1, which gives a

relation between the constants as

2(ωε −3)(X − k1)+(ωε2 +6ωε −12) = 0. (5.3.21)

5.4 Observational data and method

In this section, we consider most recent following observational data sets to con-

strain free parameters of our models (HDE 1 and HDE 2):

• SNe(Pantheon data): We use the latest compilation of SNe (Pantheon sam-

ple), consisting 40 binned data points in the redshift range 0.014 ≤ z ≤ 1.62 or

1048 data points in the redshift range of z ∈ [0.014,2.3] from SNLS, SDSS, Pan-

STARRS1, HST survey [211].

• OHD: We use Hubble data H(z) to study the cosmic expansion history which

includes 36 measurements in which 31 measurements are determined from the

cosmic chronometric technique (CC) [215].

• Local Hubble constant: In addition, we take the recently measured local Hub-

ble constant H0 as H0 = 73.5±1.4 km s−1Mpc−1 by SH0ES as mentioned in [241].

In order to constrain the model parameters with the above datasets we perform a

Bayesian MCMC method. In our calculation, we have minimized the chi-square for

two combinations of data set, which we believe are helpful for better fit values. The

first one is labeled DS1 and contains chi-square function as χ2
DS1 = χ2

Pan+χ2
CC+H0 and

the second one, DS2 as χ2
DS2 = χ2

Pan +χ2
CC where the minimised χ2 for each dataset is

mentioned in section 1.14.
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Figure 5.1: The contour map of HDE2 model using DS1 data set with marginalized probability
for the parameters

5.5 Results and discussion

In this section we present and discuss our results obtained in Bayesian analysis. Ta-

ble 5.1 presents the mean fitting values obtained for HDE1, HDE2 and ΛCDM models

using two data sets, DS1 and DS2. The reported uncertainties correspond to 1σ

confidence level (CL). In our study, keeping due consideration of (5.3.21), we choose

−1 < ε < 1, 0 < β < 1, 0 < γ < 1, ω > 0, −20 < ωh < 0 and 0 < b < 1. The contour maps

of space parameters of HDE2 model for DS1 and DS2 data sets with 1σ(68.3%) and

2σ(95.4%) confidence level are shown in Figs. 5.1 and 5.2.

Using best-fit values, we find the matter density Ωm and dark energy density Ωl pa-

rameters for the HDE2 and ΛCDM models with DS1 and DS2 data sets which are

listed in Table 5.1. The data set DS1 for HDE2 model yields the present density pa-

rameters Ωm = 0.279+0.032
−0.077 and Ωl = 0.7200.077

−0.032 where as these are Ωm = 0.255+0.1487
−0.1245

and Ωl = 0.7450.124
−0.148 with DS2 data set. It is observed that Ωm is less and Ωl is more

than ΛCDM model for these two data sets.
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Figure 5.2: The contour map of HDE2 model using DS2 data set with marginalized probability
for the parameters

In comparison with ΛCDM, we see that HDE1 and HDE2 models push the value

of H0 towards a smaller direction for DS1 and DS2. The H0 tension between HDE

models and local measurement value 73.5±1.4 km s−1Mpc−1 are mentioned in Table

5.1. We also notice the similar tension between ΛCDM model and local measurement

value of the Hubble constant. Also, the value of the Hubble constant obtained from

DS2 is close to the local value H0 = 69.8±0.8 km s−1Mpc−1 based on a calibration of

the Tip of Red Giant Branch (TRGB) [303].

In what follows, we reconstruct the cosmological parameters, such as scale factor,

deceleration parameter, effective equation of state parameter for both HDE models

using best fit value obtained from two data sets, DS1 and DS2.

We calculate the corresponding deceleration- acceleration transition scale factor

(redshift), the present value of deceleration parameter q0 and effective EoS parame-

ter we f f (z = 0), and the present age of the universe t0 for HDE1 and HDE2 models

using DS1 and DS2 data sets which are listed in Table 5.2.

The evolutions of the scale factor of HDE1 and HDE2 models with the cosmic time

are shown in Fig. 5.3. It is observed that the scale factor of HDE 1 model, for data

sets DS1 and DS2, evolve from finite past big-bang singularity and expand with accel-
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Table 5.1: The best fit values for the considered models (HDE 1, HDE 2 and ΛCDM) using
two datasets DS1, i.e., SNe(Pan)+CC+H0 and DS2, i.e., SNe(Pan)+CC.

DS1 DS2
Parameter HDE1 HDE2 ΛCDM HDE1 HDE2 ΛCDM

H0 71.903+1.360
−1.114 71.926+1.222

−1.057 72.525+1.274
−1.305 68.964+2.645

−1.888 68.957+1.540
−1.511 69.030+2.196

−2.591
ε 0.032+0.397

−0.277 −0.746+0.226
−0.189 − 0.041+0.363

−0.316 −0.763+0.137
−0.168 −

β − 0.380+0.266
−0.288 − − 0.347+0.460

−0.257 −
γ − 0.758+0.163

−0.167 − − 0.805+0.105
−0.207 −

ω 12.967+12.398
−8.459 27.495+7.058

−6.700 − 13.212+6.218
−6.409 27.136+2.537

−2.359 −
wh −4.501+1.906

−2.547 −5.153+1.804
−2.330 − −4.124+2.131

−3.346 −5.101+1.057
−1.601 −

b 0.345+0.153
−0.124 0.648+0.171

−0.303 − 0.333+0.183
−0.104 0.667+0.204

−0.221 −
Ωm − 0.279+0.032

−0.077 0.284+0.021
−0.023 − 0.255+0.1487

−0.1245 0.300+0.032
−0.022

Ωl − 0.7200.077
−0.032 0.676+0.023

−0.018 − 0.7450.124
−0.148 0.697+0.041

−0.034

Table 5.2: Summary of the computed values of atr, ztr, q0, we f f (z = 0) and t0 coming from
best fit results of HDE model with and without matter creation obtained from DS1 and DS2
data sets

DS1 DS2
Model HDE1 HDE2 HDE1 HDE2

atr − 0.557+0.201
−0.310 − 0.549+0.047

−0.161
ztr − 0.794+0.476

−1.09 − 0.821+0.172
−2.402

q0 −0.264+0.456
−0.504 −0.478+0.046

−0.103 −0.140+0.066
−0.415 −0.509+0.023

−0.185
we f f (z = 0) −0.509+0.304

−0.336 −0.402+0.033
−0.023 −0.427+0.44

−0.277 −0.461+0.063
−0.029

t0 15.782+0.745
−0.406Gyr 13.67+0.558

−0.406Gyr 14.6018+0.676
−0.506Gyr 13.75+0.721

−0.036Gyr

erated rate through out the evolution. Therefore, HDE1 model does not show phase

transition. However, in case of HDE 2 model for DS1 and DS2, the scale factors start

to evolve from finite past with decelerated rate and take the transition to accelerated

phase at atr = 0.557+0.201
−0.310 (ztr = 0.794+0.476

−1.099) and atr = 0.549+0.047
−0.161 (ztr = 0.821+0.172

−2.402) re-

spectively.

In Fig. 5.4, we plot the trajectory of deceleration parameter with redshift for HDE1

and HDE2 models with their respective best-fit values obtained from DS1 and D-

S2. The HDE 1 has negative constant value of q =−0.264+0.456
−0.504 and q =−0.140+0.066

−0.415

through out the evolution for both DS1 and DS2, respectively. Hence, this model ex-

pands with accelerated rate through out the evolution. In HDE2 model, q shows a

transition from decelerated phase (positive value of q) to accelerated phase (negative

value of q) at transition redshifts ztr = 0.794+0.476
−1.099 and ztr = 0.821+0.172

−2.402, for DS1 and

DS2, respectively. The corresponding current values of q are q0 = −0.478+0.046
−0.103 and

q0 = −0.509+0.023
−0.185, respectively. It is to be noted that the latest observations indicate

that q0 ≃ −0.63± 0.12 [304, 305]. It is observed that q →−1 in late time evolution of
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Figure 5.3: The evolution of the scale factor for the best-fit value of the free parameters of HDE
models using DS1 and DS2 data sets. A dot denotes the transition point where the transition
from decelerated phase to accelerated phase occurs.
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Figure 5.4: The deceleration parameter versus redshift for best fit values of HDE model for
DS1 and DS2 data sets. A dot denotes the current value of q (hence, q0)
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Figure 5.5: The effective EoS parameter as a function of redshift for best fit values of HDE1
and HDE2 models using DS1 and DS2 data sets. A dot denotes the present value of we f f .

the universe with both the data sets.

The evolution of effective EoS parameter we f f with redshift z is plotted in Fig.5.5

for different models with their respective best fit values. The present values of ωe f f

for HDE 1 and HDE 2 models are listed in Table 5.2. In HDE 1 model, we f f is neg-

ative constant values, we f f = −0.509+0.304
−0.336 and we f f = −0.427+0.44

−0.277 for DS1 and DS2,

respectively, which are less than we f f = −(1/3) showing the accelerated phase. The

respective present values of we f f for HDE2 at z = 0 are we f f (z = 0) =−0.402+0.033
−0.023 and

we f f (z = 0) =−0.461+0.063
−0.029. These values are relatively higher than the values predict-

ed by the joint analysis of WMAP+BAO+H0 + SNe data which is approx −0.93+0.13
−0.13

[14]. The data obtained in [14] is consistent with a flat universe dominated by a cos-

mological constant. In late time, we f f of these two models approaches to −1 leading

to Einstein-de-Sitter behavior. It has been observed that these models do not cross

the phantom-divide line we f f =−1.

Figure 5.6 plots the evolution of Hubble function versus redshift with the error bar of

Hubble dataset in the range z ∈ (0,4) and compare HDE 1 and HDE 2 models with the

ΛCDM model. It can be observed that for both the combination of data sets, HDE 1 do

not fit with the error bar of Hubble data set at higher redshift. However, HDE 2 gives

the best fit with ΛCDM model through out the evolution for both DS1 and DS2. The

trajectories of these models pass through most of the data set of error bar of Hubble

parameter.

In HDE 1, the current age of the universe are found to be 15.78+0.745
−0.406 Gyr and

14.60+0.676
−0.506 Gyr with DS1 and DS2, respectively, which are higher than the age predict-
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Figure 5.6: The Hubble function as a function of the redshift z for the best fit values of HDE1
and HDE2 models. The observational 31 H(z) data points are shown with error bars (grey
colour). The variation of the Hubble function in the standard ΛCDM model is also represented
as the Grey and black solid curves for DS1 and DS2 respectively.

ed by ΛCDM model(13.978+0.234
−0.140 Gyr for DS1 and 13.889+0.24

−0.103 Gyr for DS2) . However,

in HDE 2, the current age of universe is calculated as 13.67+0.558
−0.406 Gyr and 13.75+0.721

−0.036

Gyr, for DS1 and DS2 respectively, which are agreeing with the age deduced from

ΛCDM model.

The reduced χ2, denoted by χ2
red, is defined as χ2

red = χ2
min/(N −d), where N and d

are respectively the total number of data points used in the model and the number of

free parameters of model, and their values are N = 1080 for DS1 (or 1079 for DS2)

and d = 3 for ΛCDM, d = 5 for HDE1, d = 7 for HDE 2 models. The values of χ2 and

χ2
red of ΛCDM and HDE models are given in Table 5.3. The HDE 1 and HDE 2 models

have the values χ2
red < 1 for both the data sets DS1 and DS2. Thus, HDE 1 and HDE

2 are in good agreement with the observational data.

We shall now use Akaike information criterion (AIC) and Bayesian information cri-

Table 5.3: Summary of χ2, χ2
red , AIC and BIC values and their differences from the reference

model of ΛCDM obtained from DS1 and DS2 data sets

DS1 DS2
Model HDE1 HDE2 ΛCDM HDE1 HDE2 ΛCDM

χ2 50.45 30.19 27.67 64.88 28.31 27.43
χ2

red 0.046 0.028 0.025 0.060 0.026 0.025
AIC 60.45 44.19 33.67 74.88 42.31 33.43
BIC 85.35 79.07 48.61 99.78 77.19 48.37

∆AIC 26.78 10.52 0 41.45 8.88 0
∆BIC 36.74 30.46 0 51.41 28.82 0
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Figure 5.7: The trajectory of {r,s} in s− r plane corresponds to best fitted parameters of HDE
2 model for DS1 and DS2. The arrow shows the direction of the evolution of the trajectory

terion (BIC) as model selection criteria.We present the calculation results of AIC and

BIC, and relative value between different models, ∆AIC and ∆BIC in Table 5.3. Since

ΛCDM model is an important reference model for the study of DE models, we also

include its results in Table 5.3.

It is observed from Table 5.3 that HDE 1 model is not supported over ΛCDM taking

into account DS1 and DS2 data. However, HDE 2 is much better, though they are still

less accurate than the ΛCDM model. Also, it has been found that the concordance

ΛCDM model remains the best one to explain current data. Therefore, the HDE mod-

els are punished due to the large number of parameters, thus is not favoured by the

Information criterion from a model selection point of view. On the other hand, the HDE

models give good fit to the data from reduced chi-square point of view because it does

not contain the information of the complexity as Information criterion have.

5.6 Diagnostic parameters

In this section, we discuss the geometric view of HDE model with matter creation

through statefinder and Om parameters.

5.6.1 Statefinder parameter

The expressions for r and s can be obtained by using (5.3.8) and (5.3.13) into (1.12.1).

It is observed that as a → ∞, {r,s} → {1,0} which coincide with the ΛCDM model.
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Figure 5.8: The trajectory of {r,q} in q−r plane for the best fitted parameters of HDE 2 model
for DS1 and DS2. The arrow shows the direction of the evolution of the trajectory

The s− r plane trajectory of the HDE 2 models for their best fit values of parameters

obtained by observational data sets are shown in Fig. 5.7. The direction of evolution

of trajectory is shown by the arrows. The trajectories of both the models start from

the Chaplygin gas region (r > 1,s < 0) at early time and in intermediate time pass

through quintessence region (r < 1,s > 0) and then ultimately reach to ΛCDM in late

time. The present position of the universe corresponds to {r0,s0}= {0.680,0.108} and

{r0,s0} = {0.711,0.095} for HDE 2 model for DS1 and DS2, respectively, which are

different from the ΛCDM model. Thus, our HDE model with matter creation is well

discriminated from the ΛCDM model.

We have also plotted the {r,q} trajectory of HDE 2 model for DS1 and DS2 as shown

in Fig. 5.8. The trajectories show that both the models approach to SS model as the

standard model like ΛCDM in late time [200].

5.6.2 Om(z) parameter

Another diagnostic approach to distinguish different dark energy models is by eval-

uating the Om. Using (5.3.8) into (1.12.2), we can write the expression of Om(z) for

HDE 2 as

Om(z) =

[
−1+

(
3γ(6+6ε−ωε2−6b2)

2(6+6ε−ωε2)k1
+(1− 3γ(6+6ε−ωε2−6b2)

2(6+6ε−ωε2)k1
)(1+ z)k1

)2
]

(1+ z)3 −1
, (5.6.1)
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Figure 5.9: The trajectory of Om(z) for the best fit value of parameters of HDE 2 model for
DS1 and DS2

Figure 5.9 shows the evolution of Om(z) with respect to the redshift z for HDE 2 model

for DS1 and DS2, corresponding to different best-fit values of model parameters. The

negative slope of each trajectory shows that the model behaves like quintessence.

5.7 Thermodynamics analysis

This section provides the thermodynamics analysis of the models presented in the

previous sections. The validity of a cosmological model is tested from its thermody-

namical behavior. Many authors [302, 306–312] have studied the relation between

gravity and thermodynamics. In Ref. [289], it has been demonstrated that cosmologi-

cal apparent horizons are also endowed with thermodynamic properties. It can relate

temperature and entropy to the apparent horizon like to the black hole event horizon.

Macroscopic systems tend towards a thermodynamical equilibrium where, accord-

ing to the generalized second law (GSL) of thermodynamic, the total entropy S =

Shor + Sm + Sh of an isolated system never decreases, i.e., Ṡhor + Ṡm + Ṡh ≥ 0. Here,

Shor is the entropy of the apparent horizon, Sm and Sh are the entropy of dark matter

and HDE, respectively enclosed by the horizon. The entropy of apparent horizon is

defined as Shor = κBA/4l2
Pl [313], where κB is the Boltzmann’s constant, A = 4πr2

hor is

the horizon area in which rhor = H−1 is the horizon radius for flat FLRW universe and

lPl = 1/
√

8πMPl is the Planck’s length.
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Using (5.3.8), we obtain

˙Shor =−2πκB

l2
pl

Ḣ
H3 =

2πκBH0

l2
plH

2
a−k1

2(6+6ε −ωε2)
×

[(3(1−β − γ)+ ε)(6+6ε −ωε2)+18b2(wh +β + γ)]. (5.7.1)

Now, we need to study the entropy of fluids S f (dark matter and HDE), which arises

from Gibb’s equation [314] for the fluid

T dS f = d(ρV )+ pdV =V dρ +ρdV + pdV, (5.7.2)

where V = 4πr3
h/3 is the spatial volume enclosed by the horizon and T is the fluid

temperature.

The “gravity- thermodynamics" conjecture says that the temperature and the entropy

of horizon can be interpreted by the corresponding quantities of black-hole thermody-

namics, but with the apparent horizon in place of the black-hole one. According to this

conjecture, the universe background geometry becomes FLRW once the equilibrium

establishes. At this position, all the fluids in the universe acquire the same temper-

ature T [93], which is moreover equal to the temperature of the horizon Thor [315],

otherwise the energy flow would deform the geometry of flat FLRW [290]. However,

this happens when the universe fluids and the horizon will have interacted for a long

time in late time. In general, two systems must interact for some length of time before

they can attain thermal equilibrium. The assumption of equilibrium is widely accepted

in the GSL literature [290, 316, 317]. We can see that this choice is also backed by

the holographic principle [58–60]. Therefore, we follow this assumption keeping in

mind that the results hold at late times of the evolution of the universe. Thus, under

the thermal equilibrium condition between the fluids and horizon, we have T = Thor,

where Thor = 1/2πrhor = H/2π, which is equal to the Hawking temperature of the hori-

zon. Using (5.3.8), the above equation for HDE gives

Ṡh =
24π2ρh(1+wh)H0

H4

[ a−k1

2(6+6ε −ωε2)

{
(3(1−β − γ)+ ε)(6+6ε −ωε2)

+18b2(wh +β + γ)
}
− H

H0

]
(5.7.3)
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From (5.7.2), the change of entropy for pressureless dark matter is given by

Ṡm =
24π2ρmH0

3H4

[
3γ +

a−k1

2(6+6ε −ωε2)

{
(3(1−β − γ)+ ε)(6+6ε −ωε2)

+18b2(wh +β + γ)
}
− (1−β )

H
H0

]
(5.7.4)

From (5.7.1), (5.7.3) and (5.7.4), it is observed that ˙Shor, Ṡh and Ṡh would be positive

for 0 < (β + γ) < 1 and (6+ 6ε −ωε2) > 0 in an expanding universe. Thus, the total

change in entropy is always positive with this best fit value. This indicates that the

GSL of thermodynamics is satisfied for HDE model with Hubble horizon as IR cut-off

in the presence of matter creation in BD theory.

5.8 Conclusion

In this chapter, we have carried out a study on matter creation dominated HDE mod-

el with Hubble horizon as an IR cut-off in BD theory. We have studied two different

HDE models with Γ = 0 and Γ = 3γH0+3βH, respectively. We have presented the ex-

act solution for these HDE models using a power-law relation between the BD scalar

field and the scale factor. It can be observed that the HDE model gives the constant

deceleration parameter in the absence of matter creation (Γ = 0). However, the HDE

model, with suitable choice of Γ gives the time-dependent deceleration parameter,

which describes the phase transition from decelerated phase to accelerated phase.

We have constrained the model parameters by using two latest data sets DS1:

SNe(Pantheon) +CC +H0 and DS2: SNe(Pantheon) +CC. The best fit values of pa-

rameters for both HDE models have been given in Table 5.1. We have presented a

comparative study of these models by studying the evolution of cosmological param-

eters through plotting the graphs using the best fit parameters. We summarise the

main results as follows.

It has been found that the HDE 1 (Γ = 0) model with Hubble horizon as an IR cut-off

is not able to describe the transition of the universe. In this model, the scale factor

varies as power-law form, and q and we f f are constant. These show that the model

may decelerate or accelerate through out the evolution depending upon the conditions

applied. Using best fit values obtained from DS1 and DS2 in the analytical solution-

s, we have obtained q = −0.264+0.456
−0.504 and q = −0.140+0.066

−0.415, respectively where as

the respective effective EoS are we f f = −0.509+0.304
−0.336 and we f f = −0.427+0.44

−0.277. These
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observations show that this model expands with accelerated rate for both the com-

bination of data sets. The evolution of the Hubble functions of this model is far from

evolution of ΛCDM model and Hubble data points. The age of the universe are found

to be 15.78+0.745
−0.406 Gyr and 14.601+0.676

−0.506 Gyr, respectively which are very high from the

predicted value. The respective reduced χ2 are 0.046 and 0.06 which are less than

χ2
red = 0.025 and χ2

red = 0.025 of ΛCDM model, respectively. We have also studied the

model selection criterion for this model and have found the values ∆AIC=26.78 and

∆BIC=36.74 from DS1, and ∆AIC=41.45 and ∆BIC=51.41 from DS2. Thus, we do not

have support for the HDE1 model over ΛCDM. The statefinder parameters {r,s} of

this model for both data sets are found to be constant,i.e., {r,s}= {−0.101,0.572} and

{r,s}= {−0.124,0.490}, respectively, which show the quintessence behavior.

To consider the phase transition we have introduced matter creation in HDE mod-

el with the same IR cut-off in BD theory. We have assumed the functional form of

matter creation rate as Γ = 3γH0 + 3βH. The best fit values of HDE 2 model ob-

tained from data sets DS1 and DS2 have been given in Table 5.1. Using best fit

values, we have plotted the trajectory of various cosmological parameters and have

discussed the evolution accordingly. We have observed that the both the models

describe a universe having Big-bang at finite past, then entering an early stage of

decelerated expansion followed by acceleration in the later stage of the evolution as

shown in Fig. 5.3. The transitions from the decelerated to accelerated expansion

in HDE 2 model occur at atr = 0.557+0.201
−0.310 (or ztr = 0.794+0.476

−1.099) and atr = 0.549+0.047
−0.161

(or ztr = 0.821+0.172
−2.402), respectively which are higher than the ΛCDM value (ztr = 0.66).

We have found a time-dependent deceleration parameter, which shows that q tran-

sits from positive to negative values corresponds to the transition from deceleration

to acceleration in the expansion of the universe (Fig. 5.4). From the observational

results, the present values of q for HDE 2 using DS1 and DS2 are q0 = −0.478+0.046
−0.103

and q0 = −0.509+0.023
−0.185, respectively, which are higher than the current observational

value q0 =−0.64±0.03 [148].

The evolutions of effective EoS parameter of both the data sets of HDE2 model are

shown in Fig. 5.5. It has been observed that as z →−1 (a → ∞), we f f →−1 in future,

which corresponds to the de Sitter universe. Since it does not cross the phantom

divide line, both the model is free from Big-rip singularity. Using the best fit values

obtained from DS1 and DS2, the present values of effective EoS for HDE2 model

are found to be we f f (z = 0) =−0.402+0.033
−0.023 and we f f (z = 0) =−0.461+0.063

−0.029, respective-

ly, which are higher than the current value −0.93+0.13
−0.13 [14]. The evolutions of Hubble
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functions is shown in Fig. 5.6. The ages of universe for this model with data sets DS1

and DS2 have been found as t0 ∼ 13.67 Gyr and t0 ∼ 13.75 Gyr, respectively which

are in very good agreement with the age predicted by ΛCDM model ∼ 13.97 Gyr and

∼ 13.88 Gyr, respectively.

We have calculated the χ2
red of ΛCDM and HDE models using the best fit values

(See, Table 5.3). It has been found that the χ2
red of these two models are very close

to ΛCDM model. We have also studied the AIC and BIC to test the stability of the

models. It has been found that the concordance ΛCDM model remains the best one

to explain current data. The HDE model with matter creation are punished by AIC

and BIC mainly because of large number of parameters and thus is not favoured by

the current joint data set from a model selection point of view. It is to be noted that

AIC and BIC strongly penalize the models when they have large number of free pa-

rameters. However, the HDE models with matter creation give good fit to the data

from reduced chi-square point of view as it does not contain the information of the

complexity.

We have studied the geometrical diagnostic, like statefinder parameters and Om

to compare the HDE 2 model with other existing DE models, like ΛCDM model. We

have found that as a → ∞ (z →−1), {r,s} and {r,q} tend to {1,0} and {1,−1}, respec-

tively, which are in good agreement with ΛCDM model. Using best fit values from

DS1 and DS2, the current values of {r,s} for this model are {r0,s0} = {0.680,0.108}

and {r0,s0}= {0.711,0.095}, respectively, which show deviation from the ΛCDM mod-

el, and thus, the models are well discriminated from ΛCDM model. The evolution of

Om shows that the model behaves like quintessence. Using AIC and BIC with data

obtained from both the combination of data sets, we compare the HDE model with

ΛCDM model. It has been found that the model has less evidence in favour.

In the last section we have studied the thermodynamics of generalized second law

in the present HDE2 model. It has been found that the generalized second law of

thermodynamics is valid with apparent horizon as the boundary.

We therefore conclude that the present HDE model with suitable form of matter cre-

ation is capable of producing acceleration of the universe in BD theory with Hubble

horizon as an IR cut-off.

****************





Chapter 6

Evolution of holographic dark energy

model with matter creation

In this chapter 1, we study the holographic dark energy (HDE) with adiabatic matter

creation process to explain the present-day accelerated expansion of the universe.

The HDE model with Hubble horizon as an IR cut-off with matter creation is solved

with a more generalized form of particle creation rate. The statistical analysis of model

has been done using the three different combinations of latest datasets. Various

cosmological and geometric parameters have been plotted for the best fit values of

model parameters to check the viability of our model. The HDE model, with IR cut-

off as Hubble horizon does not show the phase transition. While the induction of

matter creation to the same model shows the recent transition from a decelerating

to an accelerated phase. The outcomes show that the model with matter creation is

compatible with the data sets used.

1This chapter is based on a published research paper “Evolution of holographic dark energy model with
adiabatic matter creation, Modern Physics Letters A 37, No. 24, 2250161 (2022)".
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6.1 Introduction

The late-time era observed by various astronomical observations is known as ‘dark

energy’(DE) era which is so far a mystery in modern cosmology. In this regard, the

most successful model is the standard ΛCDM model. However, this model suffers

some theoretical problems like fine-tuning [16,318] and cosmic coincidence [20,319],

and observational problems such as the unprecedented precision in the evaluation of

basic cosmological parameters.

As discussed in chapter 5, one interesting way for describing the DE arises from

holographic principle [58–60], which is based on the quantum gravity theory. But the

holographic dark energy models suffer with the possibilities of IR cut-offs. We have

discussed the results of HDE model with IR cut-off as Hubble Horizon in previous

chapters. As the source of HDE is still a mystery, some more forms of IR cut-off such

as Granda -Oliveros [80], Ricci scalar [97], etc., have been studied to explain the evo-

lution of the universe.

It is worthwhile to note that in the context of relativistic cosmology, an accelerating

regime of the universe can be obtained in the presence of negative pressure. Many

authors have explained the late time acceleration of universe has been explained

through the matter creation cosmology which provides us a viable alternative to the

ΛCDM model. The dynamics of matter creation is generally described by the mat-

ter creation rate, Γ. In this chapter we consider the matter creation rate by taking a

combination of H, H2 and its derivatives. In a recent paper [186], the authors have

proposed a class of Γ(H0,H, Ḣ) in general relativity which successfully describes the

quintessence behavior of the universe.

The aim of this chapter is to extend the work carried out in Ref. [186] in a more

dynamical framework, i.e., in HDE framework. As discussed earlier, the HDE models

suffer with the proper choice of IR cut off. Hsu [62] tried to exhibit the current expan-

sion of Universe by choosing the IR cut-off as Hubble horizon on HDE model but he

could not do so. In this chapter, keeping the same Hubble horizon as an IR cut-off, we

induce matter creation in holographic dark energy model, with the possibility that this

model with proper choice of matter creation rate as proposed in Ref. [186], would be

consistent with the current observations. We examine the evolution of the HDE model

with matter creation by constraining the parameter space using the joined observa-

tional data of Type Ia supernovae(Pantheon), Hubble data, combine data of baryon
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acoustic oscillations/ cosmic microwave background and local Hubble constant.

The content of the chapter is as follows: Section 6.2 presents HDE model with adi-

abatic matter creation and derives it’s basic evolution equations. In Section 6.3, with

the appropriate choice of matter creation rate, we solve the evolution equations to get

the various cosmological parameters. In Section 6.4, we present the observational

data to constraint the main parameters of HDE model by using joint likelihood statisti-

cal analysis. Section 6.5 presents the results and discussion on various cosmological

parameters. In Section 6.6, geometric and cosmographic analyses of the HDE model

are carried out to compare the model with ΛCDM model. In Section 6.7, we draw our

conclusions.

6.2 HDE model with matter creation

Let us assume a homogeneous and isotropic flat Friedmann-Lemaître-Robertson-

Walker (FLRW) universe described by the line element (1.3.8). We assume that the

universe contains HDE and pressureless dark matter (excluding baryonic matter). The

Einstein’s Field Equations (EFEs) are given by

Rµν −
1
2

R gµν = Tµν , (6.2.1)

where Tµν is the total energy-momentum tensor of the cosmic fluid. The other sym-

bols have their usual meaning. We assume that the universe contains HDE and pres-

sureless dark matter (excluding baryonic matter). In open thermodynamical system-

s where the irreversible matter creation/ decay occurs, we include the matter cre-

ation mechanism in the energy-momentum tensor phenomenologically and define it

as [170,171]

Tµν = (ρ + P̄)uµuν + P̄ gµν , (6.2.2)

where ρ = ρm+ρh represents total energy density and P̄ is the effective pressure which

is the sum of pressures of HDE fluid and matter creation, i.e., P̄ = ph + pc. Here, ρm

and ρh are the energy densities of dark matter and HDE respectively, while ph and pc

are the corresponding pressures due to HDE and matter creation.

In the framework of FLRW metric (1.3.8), the basic field equations of (6.2.1) in case

of matter-dominated epoch (pm = 0), are as follows

3H2 = ρ = ρm +ρh, (6.2.3)
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and

ρ̇m + ρ̇h +3H(ρm +ρh + ph + pc) = 0, (6.2.4)

where pc is the particle creation pressure.

The particle flux vector Nµ defined as Nµ = nuµ , which obeys the general balance

equation ∇µNµ = Γ. Here Γ is the matter creation rate, uµ is the particle four-velocity

and n = N/V is the particle number density. The quantity Γ has a special meaning.

A positive Γ represents a particle source and a negative Γ indicates to a particle

sink. Using FLRW metric and comoving observer, uµ = δ µ
i , in which uµuµ = −1, we

transform the balance equation into

ṅ+3nH = nΓ, (6.2.5)

where the comoving volume is V = a3. We know that the particles and entropy are

created during the adiabatic matter creation process but the entropy per particle does

not change. In this scenario, the second law of thermodynamics with equation(1.11.7),

leads to the emergence of a negative pressure which is related to the creation rate

as [181,182,186]

pc =− ρm

3H
Γ. (6.2.6)

where Γ is the particle creation rate.

We suppose that the two fluids ( HDE and dark matter) considered in this chapter

do not interact to each other. It means that the energy conservation equation (6.2.4)

conserves separately for these two fluids, which are given by

ρ̇m +3H
(

1− Γ
3H

)
ρm = 0, (6.2.7)

ρ̇h +3(ρh + ph)H = 0. (6.2.8)

As we know that the HDE model depends on the choices of IR cut-off L such as

particle horizon, Hubble horizon, event horizon, Granda-Oliveros cut-off, Ricci scalar,

etc. It is also noticeable that the HDE model with Hubble horizon does not explain

the present scenario of the universe [62, 63]. To alleviate this problem, we propose

the HDE model with matter creation with same Hubble horizon as an IR cut-off, i.e.,

assuming the infra-red cut-off as the inverse of Hubble scale (L = H−1). In this case,
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the HDE energy density is given by

ρh = 3b2H2. (6.2.9)

Using the usual equation of state for HDE, ph = whρh, where wh is the equation of

state parameter (EoS) of HDE, and (6.2.9), a combined evolution equation from Eqs.

(6.2.3), (6.2.7) and (6.2.8) for Hubble function is obtained as

Ḣ +
3
2

[
(1−b2)

(
1− Γ

3H

)
+(1+wh)b2

]
H2 = 0. (6.2.10)

It is clear that by considering a particular functional form of Γ as a function of H,

it may be developed the dynamics of the universe. The adiabatic creation models

with Γ ∝ H are always decelerating or accelerating depending on the proportionality

constant. Such type of model does not show a transition redshift from decelerating

to an accelerating phase as needed by observations. In order to overcome such

difficulty, some constant term was added [181]. In this work, we assume Γ as a

linear combination of these three terms: first term being constant, second term is

proportional to Hubble parameter (expansion ratio or velocity) and the third term takes

the acceleration [186], that is,

Γ = 3
(

γH0 +βH +α
ä
ȧ

)
= 3

[
γH0 +βH +α

(
Ḣ
H

+H
)]

(6.2.11)

where γ, β and α are dimensionless parameters which are defined in the interval [0,1]

and H0 is the current value of Hubble parameter. The constant 3 has been considered

for calculation purpose. The reason behind for assuming the above mentioned form

of matter creation rate is that the rate of transfer of gravitationally induced matter

creation is related to the velocity and acceleration of the expansion of the universe.

Hence, keeping in mind this thermodynamical behaviour of matter creation and the

dynamical behavior of HDE, we explore the HDE model with the above generalized

matter creation rate (6.2.11) in describing the current observed expansion of universe.

As we shall see that this scenario is compatible to show the transition redshift from

decelerating to accelerating regime.
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6.3 Cosmological solutions

In this section, we will solve equation(6.2.10) for the matter creation rate defined in

Eq.(6.2.11). Using (6.2.11), the dynamical equation (6.2.10) becomes

H ′+3k
H
a
=

3γ(1−b2)H0

[2−3(1−b2)α ]a
(6.3.1)

where k =
3((1−β−α)+(β+α+wh)b2)

2−3(1−b2)α and a prime indicates the derivative with respect to

lna. On solving (6.3.1), we get the Hubble parameter as

H = H0

[
3γ(1−b2)

k[2−3α(1−b2)]
+

(
1− 3γ(1−b2)

k[2−3α(1−b2)]

)
a−k
]

(6.3.2)

We can see that if b = 0, i.e., without HDE, the solution (6.3.2) reduces to the solution

obtained in paper [186]. Further, by putting α = 0, it reduces to the solution of [276]

and by setting β = 0 and α = 0, the solution reduces to [187]. Also, one can find the

solution of matter-dominated epoch H = H0a−3/2 by setting all the parameters equal

to zero.

We can further solve (6.3.2) to get scale factor as

a(t) =

[
1+

(2−3(1−b2)α)k
3γ(1−b2)

{e
3γ(1−b2)H0
2−3(1−b2)α

(t−t0)−1}

]1/k

. (6.3.3)

From the above equation, it can be observed that the scale factor varies as a power-

law a(t) ∝ [1+ kH0(t − t0)]
1/k in early time where as it varies as an exponential form

a(t) ∝ e
(1−b2)γ

k(2−3(1−b2)α)
H0(t−t0) in late epoch, which describes the de Sitter universe. Thus,

holographic dark energy model with matter creation describes the phase transition

from decelerated epoch to accelerated epoch.

Now, using, a = (1+ z)−1, Eq. (6.3.2) in terms of redshift z can be rewritten as

H(z) = H0

[
3γ(1−b2)

k(2−3α(1−b2))
+

(
1− 3γ(1−b2)

k(2−3α(1−b2))

)
(1+ z)k

]
(6.3.4)

Next, We know that a cosmological parameter is required to describe the phase

transition from of universe. In this context, the first cosmological parameter is the

deceleration parameter, which measures the cosmic acceleration of Universe, This

parameter plays a vital role in describing the transition phase and it is straightforward
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to calculate this parameter from (1.7.11) and (6.3.4) for our present model, which takes

the form

q(z) =−1+
k− 3γ(1−b2)

2−3(1−b2)α

1+ 3γ(1−b2)
(2−3(1−b2)α)k{(1+ z)−k −1}

. (6.3.5)

The transition redshift ztr, which is defined at q = 0, is given by

ztr =−1+
[

3γ(1−b2)

3γ(1−b2)+ k(1−3γ −3β +3γb2 +3βb2 +3whb2)

]1/k

(6.3.6)

It is noted that if γ = 0, there will be no phase transition. The present value of q at

z = 0 is

q0 =

(
1−3γ −3β +3γb2 +3βb2 +3b2wh

)
(2−3(1−b2)α)

. (6.3.7)

The second cosmological parameter is the equation of state (EoS) parameter. It de-

scribes the evolution of universe filled with matter. The effective EoS we f f for this

model is given by

we f f =−1+
2
3

 k− 3γ(1−b2)
2−3(1−b2)α

1+ 3γ(1−b2)
(2−3(1−b2)α)k{(1+ z)−k −1}

 . (6.3.8)

The present value of we f f is calculated as

we f f (z = 0) =−1+
2
3

(
k− 3γ(1−b2)

2−3(1−b2)α

)
. (6.3.9)

In the next section, we constrain the model parameters coming from the background

tests and discuss the evolution of the universe.

6.4 Observational Data

In this section, we estimate the model parameters of Eq.(6.3.2) through statistical

analysis using the latest observational data obtained from Type Ia SNe (Pantheon

data), Hubble parameter H(z) (CC + galaxy distribution) observation, combined data

of baryon acoustic oscillations/cosmic microwave background and latest local H0 by

SH0ES. The brief outlines of these datasets are given as

• SNe(Pantheon data): We use the latest compilation of SNe (Pantheon sample),

consisting 1048 data points from SNLS, SDSS, Pan-STARRS1, HST survey in
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the redshift range of 0.014 ≤ z ≤ 2.3 [211].

• Hz(CC + Galaxy distribution): We use Hubble data H(z) to study the cosmic

expansion history which includes 36 measurements in which 31 measurements

are determined from the cosmic chronometric technique (CC) [215], 3 correlated

measurements from the radial BAO signal in the galaxy distribution [216], and

2 measurements determined from the BAO signal in Lyman forest distribution

alone [217,218].

• BAO: BAO are excellent geometrical probes. We include the sample of BAO dis-

tances measurements from from SDSS(R) [236], the 6dF Galaxy survey [237],

BOSS CMASS [229] and three parallel measurements from WiggleZ survey

[238].

• Local Hubble constant: We also take the recently measured local Hubble con-

stant H0 as H0 = 73.5±1.4 km s−1Mpc−1 by SH0ES as mentioned in [241].

6.4.1 Estimation of parameters

Now, using MCMC method in EMCEE library [209], we constrain our model param-

eters. In particular, we consider prior constraints 0 < γ < 1, 0 < β < 1 and 0 < α <

1. Since supernovae, H(z), BAO and H0 are effectively independent measurements,

we can take the different joint analysis by simply adding together the χ2 functions.

Here, the most probable values of the model free parameters are estimated corre-

spond to the minimal χ2
total values of the three different combined datasets, namely

DS1: χ2
DS1 = χ2

pan + χ2
H(z)36 + χ2

BAO + χ2
H0

, DS2: χ2
DS2 = χ2

pan + χ2
H(z)36 + χ2

H0
and DS3:

χ2
DS3 = χ2

pan +χ2
H(z)36 + χ2

BAO, where the minimised χ2 for each dataset is mentioned in

section 1.14. The best fit ranges of free parameters are presented in Table 6.1 and

the 1σ(68.3%) and 2σ(95.4%) likelihood contours using DS1, DS2 and DS3 data sets

are represented in Figs. 6.1-6.3 .

The chi-square, χ2 from DS1, DS2 and DS3 are 52.93, 34.01 and 50.88, respec-

tively. The reduced chi-squared χ2
red statistics are very useful for model comparison

and error estimation in cosmology. It is defined as χ2
red = χ2

min/(Ntot −n f it), where Ntot

represents total number of data points used and n f it is the number of free parameters.

The value Ntot −n f it is said to be degree of freedom (dof). If we fit our model to data
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Figure 6.1: 68.3% and 95.4% confidence level contours and posterior distributions from M-
CMC analysis of data set DS1 : pan,H(z),BAO and H0.
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Figure 6.2: 68.3% and 95.4% confidence level contours and posterior distributions from M-
CMC analysis of data set DS2 : pan,H(z) and H0.
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Table 6.1: The best fit values of model parameters obtained through different combination of
datasets.

Parameters DS1 DS2 DS3
H0 71.001+0.882

−1.253 71.017+1.070
−0.892 68.713+1.424

−1.379

α 0.418+0.077
−0.143 0.408+0.105

−0.120 0.412+0.085
−0.056

β 0.068+0.089
−0.047 0.076+0.096

−0.046 0.075+0.085
−0.056

γ 0.324+0.126
−0.066 0.327+0.088

−0.136 0.318+0.142
−0.078

wh −0.543+0.222
−0.312 −0.564+0.277

−0.200 −0.586+0.256
−0.229

b 0.127+0.107
−0.095 0.121+0.161

−0.191 0.129+0.118
−0.138

and obtained χ2
red < 1 and closer to 1, it is considered a best fit where as χ2

red > 1 is

considered as a bad fit. In our observation, we have included 40 data of SNe Pan-

theon, 36 data of H(z), 6 data of BAO and 1 data of H0. Therefore, we have Ntot = 83,

n f it = 6 for DS1, Ntot = 77, n f it = 6 for DS2 and Ntot = 82, n f it = 6 for DS3 data sets.

In this way, we get χ2
red as 0.687, 0.479 and 0.669 with data sets DS1, DS2 and DS3,

respectively, which are less than unity. These show that our matter created induced

HDE model is well fitted with each data set.

The present values H0 of Hubble parameter from DS1, DS2 and DS3 data set-

s are extracted as 71.001+0.882
−1.253 Km sec−1 Mpc−1, 71.017+1.070

−0.892 Km sec−1 Mpc−1 and

68.713+1.424
−1.379 Km sec−1 Mpc−1, respectively. The constraints on H0 are slightly high

as compared to some latest observations. The constraints from DS1 and DS2 show

a slight variation from the observational value of WMAP sky survey value 71.9+2.6
−2.7

Km sec−1 Mpc−1 [320] where as the constraint from DS3 shows a slight variation from

Planck 2018 observation 67.4+0.5
−0.5 Km sec−1 Mpc−1 [281].

6.5 Dynamics of Cosmological parameters

The dynamics of universe can be discussed through the graphs of different cosmo-

logical parameters with respect to redshift by using best fit values obtained through

statistical analysis of our model. In what follows, we discuss the dynamics of three

parameters, namely deceleration parameter, EoS parameter and Hubble parameter.

The evolutions of deceleration parameter for all three combinations of data set-

s are shown in Fig. 6.4. The transition redshift ztr and present value of deceler-
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Figure 6.3: 68.3% and 95.4% confidence level contours and posterior distributions from M-
CMC analysis of data set DS3 : pan,H(z)36 and BAO.
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Table 6.2: The values of ztr, q0, weff(z = 0) and t0 (Gyr) using different combinations of data
sets.

Values DS1 DS2 DS3
ztr 0.827+0.312

−0.424 0.843+0.500
−0.701 0.862+0.100

−0.201

q0 −0.441+0.053
−0.045 −0.440+0.061

−0.047 −0.438+0.043
−0.036

weff(z = 0) −0.621+1.7
−1.6 −0.627+1.9

−1.4 −0.625+1.9
−1.5

ation parameter q0 are calculated for the best fit values of our model parameters

and their values are listed in Table 6.2. In all the three combinations of data set,

the HDE model shows the phase transition which take place at transition redshift

ztr = 0.827+0.312
−0.424, ztr = 0.843+0.500

−0.701 and ztr = 0.862+0.100
−0.201 for DS1, DS2 and DS3, re-

spectively. We observe that ztr with these data sets are slightly higher than ΛCDM

model (ztr = 0.662± 0.014) which shows that the transition takes place earlier than

ΛCDM model. The present values of q obtained from DS1, DS2 and DS3 data sets

are q0 ≈ −0.441, q0 ≈ −0.440 and q0 ≈ −0.438 which show good agreement with the

ΛCDM model with q0 ≈−0.59 [281,321].

The evolutions of effective EoS parameter with respect to redshift z, for all three

combinations of data sets are shown in Fig. 6.5 and the respective present values

are mentioned in Table 6.2. Figure 6.5 shows that for all three combinations DS1,

DS2 and DS3, we f f →−1 in the late time which implies that our model converges to

a de sitter universe in late time. Note that EoS parameter for each dataset is w <−1

i.e., it does not cross the phantom divide line which shows that our derived model is

free from big-rip singularity. As w >−1, our HDE model is of quintessence type. The

present values of we f f for DS1, DS2 and DS3 are ≈−0.621 , ≈−0.627 and ≈−0.625,

respectively.

Figure 6.6 plots the evolution of Hubble function with respect to redshift along with

the error bar of Hubble data set in the range z ∈ (0,4) and presents a comparison

with the standard ΛCDM model. Here, for ΛCDM model, the parameters are estimat-

ed from the Planck spacecraft data [281]. The trajectories of the model for all the

data sets DS1, DS2 and DS3 coincide with the most of the data set of error bar of

Hubble parameter, which shows that our HDE model with matter creation is in good

agreement with ΛCDM model. In this cosmological scenario, the current ages of the

universe are found to be t0 ≈ 14.2 Gyr, t0 ≈ 14.1 Gyr and t0 ≈ 14.2 Gyr, respectively. The

ages obtained are very much compatible with that obtained from the CMB anisotropic
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Figure 6.4: Plot of the deceleration parameter q versus redshift z for best-fit values of model
parameters obtained from DS1, DS2 and DS3 data sets. We plot the corresponding q for
ΛCDM to compare the phenological model. A dot on the trajectory represents the present
value q0.

ΛCDM

HDE(DS3)
HDE(DS2)
HDE(DS1)

-1.0 -0.5 0.0 0.5 1.0 1.5
-2.0

-1.5

-1.0

-0.5

0.0

z

w
e
ff
(z
)

Figure 6.5: Plot of effective EoS parameter weff versus redshift z for best-fit values of param-
eters obtained from DS1, DS2 and DS3 data sets. We plot the corresponding weff for ΛCDM
(solid curve) in order to compare the phenological model. A dot on the trajectory shows the
current weff(z = 0).
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data, t0 ≈ 14.03 Gyr [322]. However, these values are relatively higher than the ΛCDM

obtained from joint data of WMAP, BAO and SNe, t0 ≈ 13.7 [320].
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Figure 6.6: The Hubble function with respect to redshift for our derived HDE model from
DS1, DS2 and DS3 data sets. The solid curve relates to the ΛCDM model. The Hobs(z) data
are also plotted with their error bars.

6.6 Geometric and Cosmographic Analyses

As χ2 statistics is good at finding the best-fit values of parameters. Using the χ2 s-

tatistic we can compare our derived dark energy model with the most compatible and

accepted model of the universe. The ineffectiveness of this method arises for models

with more number of parameters as χ2
min lowers down in such cases, hence it is not

well advised to use χ2
min with likelihood contours or best-fit parameters to compare

dark energy models always.

In this respect, we have a model-independent technique to compare various DE

models by studying their cosmographical features. In this section, we will study vari-

ous geometric and cosmographic parameters which are used to distinguish many DE

models. Firstly, we discuss geometrical analysis of our model. Using (6.3.3), for our

derived holographic dark energy model with matter creation, r and s are obtained as

r = 1+
k(k+1)

(
1− 3γ(1−b2)

k(2−3(1−b2)α)

)
a−(k+2)

H0
2
{

3γ(1−b2)
k(2−3(1−b2)α)

+(1− 3γ(1−b2)
k(2−3(1−b2)α)

)
}3 −

3
(

k− 3(1−b2)γ
2−3(1−b2)α

)
1+ 3(−1+ak)(1−b2)γ

k(2−3(1−b2)α)

(6.6.1)
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Figure 6.7: The evolutions of {r,s} in s− r plane corresponding to best fit values of model
parameters obtained from data sets DS1, DS2 and DS3. The direction of the evolution are
shown by the arrows on each trajectory.

s =

k(k+1)
(

1− 3γ(1−b2)
k(2−3(1−b2)α

)
a−(k+2)

H0
2
{

3γ(1−b2)
k(2−3(1−b2)α)

+(1− 3γ(1−b2)
k(2−3(1−b2)α)

)

}3 −
3
(

k− 3(1−b2)γ
2−3(1−b2)α

)
1+ 3(−1+ak)(1−b2)γ

k(2−3(1−b2)α)

3

(
−3
2 +

k− 3γ(1−b2)
2−3(1−b2)α

1+ 3γ(1−b2)
(2−3(1−b2)α)k

{ak−1}

) (6.6.2)

We plot the {r,s} and {r,q} evolutions of the trajectory in s− r and q− r planes for

the best fit values of model parameters obtained by observational data sets DS1, DS2

and DS3 which are shown in Figs. 6.7 and 6.8, respectively. It can be observed that

the all the trajectory of {r,s} begin from chaplygin gas type DE (r > 1, and s < 0) [323]

in early times and go to the quintessence region (r < 1 and s> 0) [198,199] in interme-

diate phase, and finally approach to ΛCDM model (r = 1 and s = 0) in late time. The

present values {r0,s0} parameters are {0.627,0.120}, {0.615,0.126} and {0.608,0.128}

corresponding to DS1, DS2 and DS3, respectively. From equations (6.6.1) and (6.6.2),

we can also observe analytically that at the asymptotic limit a → ∞, {r,s} → {1,0}

which shows that the present model will tend to ΛCDM in late time evolution.

In Fig. 6.8, the evolutions of the trajectory corresponding to data sets DS1, DS2 and

DS3 show that the model starts from decelerated phase in early time and after transi-

tion to accelerated phase, the model with each data sets approach to de Sitter model.

Apart from the above mentioned two geometric parameters, the comparing of mod-

els can also be extracted by cosmography. We obtain the cosmographic parameter

(CP) usually referred to as jerk ( j), snap (s), lerk (l) and m parameters for our model

using (1.2) As jerk, snap, lerk and m parameters involve third, fourth, fifth and sixth

derivative of scale factor a(t), they help in measuring more accurate rate of cosmic
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Figure 6.8: The evolutions of {r,q} in q− r plane corresponding to best fit values of model
parameters for data sets DS1, DS2 and DS3. The direction of the evolution are shown by the
arrows on each trajectory.
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Figure 6.9: Plot of the cosmographic parameters j, s, l and m with redshift z for best fit values
of model parameters using DS1.

expansion. As per the current observations about the evolution of universe it can be

concluded that the jerk of the universe is one [324]. These CP are important, for in-

stance, when one attempts at comparing the ΛCDM model with any alternative DE

such as HDE. In Fig. 6.9, we plot the trajectory of the CP for HDE model with matter

creation, using data set DS1. We can find almost similar trajectories of CP using data

sets DS2 and DS3. The present values of jerk, snap, lerk and m parameters, us-

ing data set DS1, DS2 and DS3 are ( j0 = 0.627, s0 =−0.077, l0 = 1.692, m0 =−6.238),

( j0 = 0.615, s0 =−0.113, l0 = 1.74, m0 =−6.623) and ( j0 = 0.608, s0 =−0.077, l0 = 1.692,

m0 =−6.238), respectively. It is observed that the parameters j and l have similar evo-

lution where as s and m show an equivalent evolution.

We find that j, s, l and m → 1 as z → −1, i.e., in late time evolution, all CP ap-

proach to the values of CP of standard ΛCDM model. It can also be seen through
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the graph that jerk and lerk parameters are positive throughout the cosmic evolution,

which implies that the universe has gone under a phase transition from deceleration

to acceleration. The jerk parameter informs about inflection points in the expansion

history of the Universe. However, there is no such physical significance of snap and

m parameters but being important part of the Taylor series of the Hubble parameter in

cosmography, they give us more precision in the preferred model. Figure 6.9 shows

that snap and m transit from initial negative values to later positive ones.

6.7 Conclusion

As mentioned, with Hubble horizon as an IR cut-off the HDE model can not explain

the phase transition (see, Appendix A). So, in order to overcome this drawback we

have presented the HDE model using same IR cut-off but with gravitationally induced

matter creation mechanism to show the possible transition phase of the universe.

In solving the field equations, our motive is to find one correct form of particle cre-

ation rate which can describe the current observable expansion of universe. But, an

accurate functional form of Γ is still unknown. Therefore, in general, different phe-

nomenological forms of Γ have been proposed in literature to fit the corresponding

model parameters with the latest observational data.

In this chapter, we have assumed the most general phenomenological form of Γ

in terms of H and Ḣ and investigated the evolution equation by using three different

latest observational data sets: DS1 (SNe Pantheon, H(z)(36), BAO and local H0 by

SH0ES), DS2: (SNe Pantheon, H(z) and local H0) and DS3: (SNe Pantheon, H(Z)

and BAO) to observe how the HDE model with matter creation depicts the present

scenario of the universe. It should be emphasized that Bayesian joint analysis cannot

automatically show inconsistencies between the datasets. However, for the purpose

of investigating whether our model can relieve the tension or not, we still combine the

joint local H0 measurement with SNe, H(z) and BAO to perform the joint analysis.

It is noted that in papers [186, 187], different data sets of SNe (JLA), observational

Hubble data (OHD) and BAO have been taken as background observation. We found

that the HDE model with matter creation predicts the phase transition from deceler-

ating epoch to accelerating epoch at transitional redshift ztr ∼ 0.83. Further, we have

discussed two model independent tests, namely, the statefinder and the cosmograph-

ic parameters to measure the divergence of our model from the best described model
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of universe i.e., ΛCDM.

We have plotted the trajectories of different cosmological parameters with respect to

redshift to observe the evolution of the model. We know that the current observational

data favours an EoS for DE greater than −1. The present values q0 and ωe f f (z = 0)

for HDE model are very much compatible with the present value of these parameters

of ΛCDM model. The evolutions of these parameters almost match with the evolution

of the ΛCDM from the data sets of DS1, DS2 and DS3. We find that the evolution

of the universe commences from higher redshift, from a decelerating phase to lower

redshift, i.e. to accelerating phase. In late time, the HDE model with matter creation

tends to standard ΛCDM model. The present values of effective EoS parameter are

relatively higher than the one anticipated by the joint analysis of WMAP, BAO, H0 and

SNe [14]. The age of universe with each data set is found to be slightly higher than

that of ΛCDM model.

We have calculated the chi-squared minimum and reduced chi-squared for the mod-

el using DS1, DS2 and DS3 data sets. We have observed that the χ2
red is less than

unity with all the combinations implying that the model shows the good support to

ΛCDM model. We have also discussed the statefinder parameters and have plotted

the trajectories of {r, s} in s− r plane and {r, q} in q− r plane using best fit values of

model parameters for all three combination of data sets. It can be noticed that each

trajectory starts from chaplygin gas region in early times, enters into quintessence

region in medieval time and finally approaches to ΛCDM in late times.

In conclusion, we have discussed the overall dynamics of HDE model with matter

creation using a more general form of matter creation rate along with the Hubble hori-

zon as an IR cut-off. This dynamical HDE model provides a transition phase from

decelerating to accelerating phase of the cosmic expansion. The analytical and nu-

merical analysis show that the HDE model with inclusion of matter creation provides

a good fitting to the cosmological parameters at all redshifts and it mimics the global

dynamics of the standard ΛCDM model.

****************





Chapter 7

Conclusion and Future Scope

7.1 Conclusion

In relativistic cosmology, the current accelerating expansion of the universe is ob-

tained by assuming the existence of a dark energy component in addition to cold dark

matter. Dark energy (DE) is an exotic fluid endowed with negative pressure which

violates the strong energy condition. The negative pressure occurs naturally in many

different context when the physical systems depart from thermodynamic equilibrium

states.

In this connection, the bulk viscosity and the process of cosmological matter cre-

ation at the expense of the gravitational field can phenomenologically be described by

a negative pressure. It has been observed since long ago that bulk viscosity in cos-

mology can produce an accelerated expansion. It may be assumed that the expansion

process is a collection of states out of thermal equilibrium which gives the existence

of bulk viscosity. The explicit form of bulk viscosity is still unknown, therefore, its form

has to be assumed a priori or obtained from a known or proposed physical mecha-

nism. We have chosen the first option to discuss the effect of bulk viscosity, but we

can explore the section option in future works. It has been found that bulk viscous

cosmology explains the present accelerating universe.

The matter creation process in cosmology at the expenses of gravitational field can

phenomenologically be described by a negative pressure. Earlier, the consequences

of matter creation was studied macroscopically mainly as a byproduct of bulk viscos-

ity near the Planck era. However, the first self-consistent macroscopic formulation of

matter creation was put forward by Prigogine and coworkers [170, 171] through co-

149
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variant formulation. It has also been shown that matter creation can effectively be

discussed in the realm of relativistic non-equilibrium thermodynamics. The process of

bulk viscosity and matter creation has been investigated in literature by many authors

to discuss the early and late-time evolution of the universe.

It is to be noted that matter creation is an irreversible process which is completely

different from bulk viscosity mechanism [172].

In the thesis, we have studied the effects of bulk viscosity and matter creation on

various cosmological models. In chapter 2, we have checked if bulk viscosity can be

a possible candidate of DE to explain the expansion of universe. We have explored

a bulk viscous matter dominated model with constant bulk viscous coefficient ζ = ζ0

in the framework of BD theory. We have identified three possible conditions for bulk

viscous coefficient, 0 ≤ ζ̄0 < (3−n), ζ̄0 = (3−n) and ζ̄0 > (3−n). Depending on these

conditions, we have analyzed the different possible evolutions predicted by the vis-

cous model. We have observed that the viscous model predicts a universe with a

Big-bang in the past and then transition from decelerating epoch to an accelerating

epoch in late times for the values of ζ̄0 in the range 0 < ζ̄0 ≤ (3−n). For ζ̄0 = (3−n),

the model corresponds to the de Sitter and it always predicts accelerated expansion

for ζ̄0 > (3 − n). We have found that the transition from decelerated phase to ac-

celerated one occurs in future in 0 < ζ̄ < (1− n). When ζ̄0 = (1− n), the transition

from decelerated to accelerated epoch takes place today. The transition between the

deceleration-acceleration epoch takes place in past in (1−n)< ζ̄0 ≤ (3−n). In limiting

case, when ζ̄0 approaches to (3−n), the transition takes place very close to Big-bang.

We have constrained the model parameters through the MCMC method on the latest

observational data to discuss various cosmological parameters and then compared

using the tools taken from information criterion.

In chapter 3, we have extended the work to explore the effect of bulk viscosity in HDE

model. We have discussed a viscous HDE model with Granda-Oliveros as an infra red

cutoff in the framework of FLRW space-time to show the current observable expansion

of universe. We have obtained the solutions of the field equations by assuming the

parameterized form of ζ = ζ0 + ζ1H + ζ2

(
Ḣ
H +H

)
. We have constrained the space

parameters of model using the two combinations of latest observational datasets to

find the best fit values of model parameters which are used to depict the universe

which matches the current observable universe. Using statefinder and cosmographic

parameters it has been found that our model starts from a region of Chaplygin gas
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model and tends to ΛCDM model in future i.e. ,model explains the late time evolution

of universe.

Further, chapter 4 deals with the adiabatic matter creation process in Brans-Dicke

theory with matter creation rate as Γ = 3γH0 +3βH with the motivation of considering

it as an alternative choice to explain the recent accelerating phase of the universe.

The model is studied statistically using the available astronomical data. We have dis-

cussed the evolution of model using the deceleration parameter, equation of state

parameter and statefinder diagnostic parameters. Under certain conditions the gen-

eralized second law of thermodynamics remained valid for the model.

In chapter 5, we have extended the work of chapter 4 and explored the effect of

matter creation in the HDE model in the framework of Brans Dicke theory to observe

the current accelerated phase. We have analysed the model without (Γ = 0) and with

(Γ = 3γH0+3βH) particle creation. We have constrained the model parameters using

two different combinations of latest available datsets. Using best-fitted model parame-

ters, we have analysed the evolution of various cosmological parameters. Diagnostic

analysis of model has been done to distinguish the model with matter creation from

model without matter creation and other standard dark energy models. The result

shows that the HDE model with Hubble horizon as an Infra red cutoff does not show

the phase transition while the same model with matter creation shows the phase tran-

sition.

Chapter 6 explores the matter-dominated model with matter creation in the FLRW

model to show the current accelerated expansion of universe. We have proposed

a generalized form of matter creation rate, Γ = 3
[
γH0 +βH +α

(
Ḣ
H +H

)]
. We have

performed the statistical analysis to find the best-fit values of model parameters us-

ing the MCMC technique on a different combination of publicly available data sets.

Exact solutions of deceleration parameter and effective equation of state parameter

have been found and their evolution for the best-fit values of model parameters has

been discussed. Phase transition from deceleration to recent acceleration has been

shown through their trajectories. The model has been distinguished from other exist-

ing dark energy models using two geometrical diagnostics: statefinder parameter and

cosmographic parameters.
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7.2 Future Scope

We know that the cosmological model is a mathematical representation of the uni-

verse. We try to formulate a model which must be consistent with what is already

known about the universe. To define the physical processes governing the model,

we must know the types of material within the universe and its evolution equations.

There are the cosmological parameters whose values can be obtained from the ob-

servations. There are some dynamical frame where we can model the physical laws.

In this thesis, we have obtained few new results by analyzing bulk viscous and matter

creation cosmology in the framework of GTR and BD theory to explain the current

observable universe.

The BD theory which is a simple extension of GR where Newton’s constant is as-

sumed as a time varying scalar field. It is one of the scalar-tensor theories that has

been studied by many authors. The BD gravity theory introduces an additional scalar

field ϕ besides the metric tensor gµν of spacetime and is considered a viable alterna-

tive to GR, one which respects Mach’s principle. The effective gravitational constant

G is proportional to the inverse of the scalar field. We have used the power-law form

of BD scalar field to show the late-time evolution of universe. The study of structure

formation and perturbation theory with this form of BD scalar field will be interesting.

It has been found that the HDE model is also a dynamical model which explains

the present-day accelerated expansion of the universe. Various choices of IR cut-

offs in HDE models have been proposed. We have considered Hubble Horizon as

an IR cut-off, i.e. L = H−1 and HDE density proposed by Granda-Oliveros as ρh =

3(n1H2 + n2Ḣ) in different viscous and matter creation cosmological models in GTR

and BD theory. In the forthcoming papers it could be interesting to study the viscous

and particle creation cosmology with other different cut-offs available in literature in

GTR, BD theory or in other modified theories of gravity.

We have assumed various particular and appropriate choices of bulk viscous co-

efficient ζ and particle creation rate Γ. It has been found out that the choice of bulk

viscous coefficient and particle creation rate led to sudden change in the evolution

of universe from decelerated phase to accelerated phase. Since the nature of bulk

viscous coefficient and matter creation are still unknown, therefore, the other choices

for these coefficients may be assumed to study the late time evolution of universe.
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We have analysed all proposed cosmological models statistically using the vari-

ous combinations of available datsets. We have various other available datasets like

gamma-ray bursts, which we have not used in our thesis and may be used in the forth-

coming papers. As in today’s data driven era, new observational data may provide the

better results for the cosmological models in understanding the problems faced by the

standard ΛCDM model. Thus, present thesis put forward the theoretical and obser-

vational understanding of cosmological models which provides further to study the

evolution of universe with recent available observational data.

****************
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