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ABSTRACT 
 

Neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease are 

characterized by the loss of neuronal cells due to the accumulation of toxic proteins, namely β-

amyloid, tau, α-synuclein, and others. Studies have demonstrated that several contributing 

factors, such as aging, mitochondrial dysfunction, DNA damage, misfolded protein 

aggregation, impaired ubiquitin-proteasome system and autophagy-lysosomal pathway, and 

environmental toxins involved in the progression and pathogenesis of Alzheimer’s and 

Parkinson’s disease. However, post-translational modifications play a crucial role in the 

alteration of misfolded protein aggregates and impaired protein degradation pathways. Post-

translational modifications are covalently attached modifications that alter the functions of 

proteins without changing the structure of protein. Additionally, lysine residues are known for 

the post-translational modifications, namely acetylation, ubiquitination, and SUMOylation. In 

acetylation, histone deacetylases and its interactors cause transcriptional deregulation, and 

cause mitochondrial dysfunction, apoptosis, inflammatory response, and cell-cycle 

impairment, that cause brain homeostasis and neuronal cell death. Another regulatory post-

translational modification involved in the pathogenesis of neurodegenerative diseases are 

ubiquitination and SUMOylation for the degradation of the misfolded proteins. Additionally, 

mounting evidence demonstrated that heavy metals, such as copper, chromium, cobalt, and nickel, 

increases the β-amyloid and tau aggregation in the pathogenesis of Alzheimer’s and Parkinson’s disease 

by activating different signaling events. For instance, copper induces the formation of reactive oxygen 

species to cause mitochondrial dysfunction and DNA damage, whereas, chromium elevates 

neuroinflammatory response and neuronal apoptosis. Similarly, cobalt increases tau 

hyperphosphorylation and promotes tau aggregation, whereas, nickel elevates β-amyloid aggregation.  

Moreover, integration of omics data and deciphering the mechanism of a biological regulatory network 

could be a promising approach to reveal the molecular mechanism involved in the progression of 
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complex diseases, including Alzheimer’s and Parkinson’s. Despite having an overlapping mechanism 

in the etiology of Alzheimer’s and Parkinson’s disease, the exact mechanism and signaling molecules 

behind them are still unknown. Further, the acetylation mechanism and histone deacetylase 

enzymes provide a positive direction towards studying shared phenomenon between 

Alzheimer’s disease and Parkinson’s disease pathogenesis. Herein, we employed an integrative 

approach to analyze the transcriptomics data that established a potential relationship between 

Alzheimer’s and Parkinson’s disease. Firstly, we aim to investigate the potential conventional 

biomarkers and regulatory TFs involved in the pathogenesis of AD and PD simultaneously 

with the help of microarray datasets and the network-biology approach. The identified 

proteomics and transcriptomics signatures were further analyzed to investigate the potential 

lysine residue for acetylation and deacetylation activity, along with the determination of the 

type of histone deacetylase enzyme being involved in the disease progression. Lately, the study 

focuses on investigating conserved amino acid residues involved in the lysine-

acetylation/deacetylation process along with the structural selectivity of molecular signatures, 

which could be crucial for protein acetylation or deacetylation activity. Further, we aim to 

investigate the potential acetylation/ubiquitination/SUMOylation crosstalk sites in the histone 

deacetylase interactors, which causes NDDs. Further, we aim to identify the influence of post-

translational modifications on structural features of proteins and the impact of lysine mutation 

on disease susceptibility. Additionally, we aim to examine the impact of the mutation on 

acetylated lysine for the ubiquitination and SUMOylation. Moreover, we aim to identify the 

crucial proteins involved in metal toxicity-induced Alzheimer’s disease through network 

biology, followed by identifying regulatory transcription factors associated with crucial 

proteins. Further, we aim to determine the critical lysine residue and the role of CREBBP-

induce acetylation on transcription factors. Lately, we have focused on identifying micro RNAs 

associated with CREBBP and transcription factors simultaneously. Lastly, we aim to identify 
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the potential long non-coding RNA, serving as a sponge to micro RNAs. Lastly, we investigate 

the potential histone deacetylase 10 inhibitor using machine learning approach. 

Our results highlighted the importance of CREBK292 and HINFPK330 as a potential 

biomarker in Alzheimer’s and Parkinson’s pathology. Further, we reported the importance of 

PARP1 as a crucial regulatory molecule in Alzheimer’s disease and Parkinson’s disease. 

Lately, we demonstrated that the OIP5-AS1/miR-129-5p/CREBBP axis is a potential 

therapeutic target in metal toxicity-induced Alzheimer’s disease pathogenesis. Lastly, we 

reported the role of anti-psychotic drugs, namely Zimeldine and Dibenzapine as potential 

histone deacetylase 10 inhibitors in Alzheimer’s disease therapeutics. 
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CHAPTER I: INTRODUCTION  
 

1.1.OVERVIEW 

Alterations in transcriptional machinery play critical function in the development and 

progression of central nervous system (CNS) disorders, including neurodegenerative diseases 

(NDDs). NDDs are characterized by loss of motor neurons leading to neuronal death that 

causes Alzheimer’s Disease (AD), Parkinson’s Disease (PD), Huntington’s Disease (HD) and 

Amyotrophic Lateral Sclerosis (ALS) [1,2]. Although different experimental models have been 

developed to understand the molecular phenomenon of biomarkers and pathophysiology of 

disease progression, research has yet to provide a therapeutic approach [3]. Epigenetic 

modifications such as DNA methylation, histone post-translational modifications (PTMs) and 

RNA interference result in altered transcriptional activity and gene expression patterns [4]. 

Mounting evidence suggests a plausible connection for targeting histone PTMs with their 

specific inhibitor for treating neurologic deficits, including synaptogenesis, neurogenesis, 

neural plasticity and cognition [5–7]. Histone acetylation and deacetylation are covalent but 

reversible modifications that alter transcriptional activity via modulation of histone and non-

histone substrate acetylation status [8,9]. Recently, the reversal of histone acetylation through 

inhibition of histone deacetylase (HDAC) activity at specific lysine-residue through HDAC 

inhibitors, naturally-occurring biomolecules, micro-RNAs (miRNAs), and multi-target drug 

ligands has emerged as a potential therapeutic agent to treat NDDs.  

1.2.MOTIVATION OF RESEARCH 

➢ Lysine acetylation and deacetylation of substrates are involved in transcriptional regulation. 

➢ Inhibition of HDAC enzymes or activation of histone acetyltransferase (HAT) enzymes 

provides promising therapeutic avenues against NDDs. 



3 | P a g e  

 

➢ However, traditional HDAC inhibitors have limitations, such as specificity and selectivity. 

Similarly, current therapeutic biomarkers failed to show effective treatment or diagnosis. 

➢ Thus, there is a growing need to identify novel biomarkers with site-specific acetylation 

that will eliminate the issues with current HDAC inhibitors. 

➢ In addition, multi-target drug ligand targeting HDACs will provide a cost-effective and less 

toxic therapeutic approach in NDDs therapeutics. 

1.3.AIM AND OBJECTIVES 

1.3.1. AIM:  

➢ Molecular signaling effects of HDAC inhibitors and key lysine residues in 

neurodegenerative diseases. 

1.3.2. OBJECTIVES: 

➢ To identify novel common biomarkers in AD and PD based on a multi-omics approach. 

➢ To dissect the HDAC mechanism and critical lysine residues associated with novel 

biomarkers. 

➢ To identify potential miRNA – biomarkers regulatory networks in the pathogenesis of 

neurodegenerative diseases. 

➢ To explore novel HDAC inhibitors using a machine learning approach. 

1.4.SUMMARY OF THE THESIS 

The thesis is structured into eight different chapters. Chapter 1 briefly discuss the overview of 

the topic, motivation or rationale of the current study, aims and objectives of the research work, 

and overview of the current study. Chapter 2 introduces the etiology of the acetylation 

mechanism and HDAC enzymes and associated signaling pathways and molecules known for 

the onset and progression of NDDs, especially AD and PD. Additionally, chapter 2 reviews the 

interplay of HDAC in neurologic function and highlights the complex nature of HDAC in 

neurogenesis, neural plasticity, and synaptic function. Chapter 2 also reflects the role of HDAC 
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in regulating biologic and cellular phenomena, such as inflammatory response, oxidative stress, 

and autophagic degradation. Lately, chapter 2 describes the role of HDAC as a potential 

therapeutic target and potential implementation of HDAC inhibitors, such as natural 

compounds, multi-target ligands, miRNAs, and chemically synthesized compounds in the 

progression and pathogenesis of NDDs, namely AD and PD. Chapter 3 is dedicated to the 

methodology adopted, experimental procedures performed and tools and techniques used to 

realize the above objectives. In chapter 4, we aim to investigate the potential conventional 

biomarkers and regulatory transcription factors (TFs) involved in the pathogenesis of AD and 

PD, simultaneously with the help of microarray datasets and the network-biology approach. 

The identified proteomics and transcriptomics signatures were further analyzed to investigate 

the potential lysine residue for acetylation and deacetylation activity, along with the 

determination of the type of HDAC enzyme involved in the disease progression. Lastly, the 

study investigates conserved amino acid residues involved in the lysine-

acetylation/deacetylation process along with the structural selectivity of molecular signatures, 

which could be crucial for protein acetylation or deacetylation activity. Chapter 5 of the thesis 

deals with identifying potential lysine residues of non-histone substrates involved in the 

crosstalk between acetylation, ubiquitination, SUMOylation, and HDAC interactors that 

regulate the pathogenesis of AD and PD. Herein, we integrated AD and PD-related genes with 

HDAC interactors and identified the HUB genes through protein-protein interaction (PPI) 

network and clustering analysis. Further, we examined the molecular functions and biological 

pathways in which shared genes (AD, PD, and HDAC) were involved. Lastly, PTM data were 

integrated through dbPTM and PLMD databases on 32 proteins, which are the regulatory 

sequences. Afterward, the proteins with high frequency for acetylation, ubiquitination, and 

SUMOylation were extracted among the 32 selected proteins. Finally, structural features and 

crosstalk sites were identified, along with the impact of lysine mutation on disease 
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susceptibility and protein stability. Lastly, our study investigates the potential implementation 

of the loss of crucial lysine residues on ubiquitination and SUMOylation function. Thus, till 

date, this is the first study that deals with the crosstalk of acetylation with ubiquitination and 

SUMOylation simultaneously among HDAC interactors. Chapter 6 of the thesis is dedicated 

to identifying potential miRNAs and long non-coding RNAs that will regulate the acetylation 

status of neurotoxic proteins involved in the pathology of metal toxicity-induced AD. Here, we 

aim to identify the mechanism of CREBBP acetyltransferase in the pathogenesis of metal 

toxicity-induced AD. Further, we aim to determine the potential miRNA regulates the 

acetylation level of non-histone substrates through the regulation of CREBBP. Lastly, we 

investigate the implication of long non-coding RNAs that serves as a sponge to a particular 

micro-RNA. 

In chapter 7 of the thesis, we recognize the potential inhibitor of class IIb HDAC inhibitor that 

may be involved in the reversal of AD pathology. Herein, we employed machine learning 

algorithms and IC50 value-based compound screening to identify potential HDAC inhibitors. 

Lately, we have applied ADMET analysis and blood-brain barrier (BBB) prediction to assess 

the pharmacokinetic and pharmacodynamic properties of the selected compounds. Lastly, 

molecular docking analysis of the shortlisted compounds was performed to select the best 

possible HDAC inhibitor. Finally, the results obtained through various experimental and virtual 

screening procedures have been discussed in Chapter 6. Further, chapter 6 also deals with the 

conclusion and future perspectives of the current study. 
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CHAPTER II: REVIEW OF LITERATURE 
 

2. INTRODUCTION 

Transcriptional dysregulation plays an essential character in the progression and development 

of numerous brain disorders such as AD, PD, ALS, and HD [10–12]. Although various animals 

and diseased cellular models have been designed to study the selective biomarkers, molecular 

mechanism and pathophysiology of neurological diseases but clinical implications have failed 

to provide a promising approach to correct cognitive impairment [13].  

HAT is an essential enzyme in the acetylation process. In contrast, HDAC carries out the 

deacetylation of histone proteins on their protruding N-terminal lysine residue of histone and 

non-histone substrates, which is involved in the regulation of diverse cellular and molecular 

functions [14]. They alter the transcriptional regulation, gene expression patterns, metabolic 

processes, and energy homeostasis in a specific cell [15,16]. HAT carries the acetyl group to 

the lysine residue from acetyl coenzyme A, decreasing the overall positive charge on histone 

and thus, inhibiting DNA-histone interaction and promoting euchromatin [17]. This 

phenomenon is associated with enhanced gene transcription, whereas, histone deacetylation 

promotes compact chromatin organization that leads to the downregulation of transcription 

process [18]. HDAC inhibitors are considered a promising therapeutic in reversing memory 

dysfunction and cognitive defects that eliminate these diverse molecular and cellular functions 

of HDAC enzymes in the brain [19,20]. Evidence suggests that HDAC has been characterized 

as a therapeutic marker for various human disorders such as cancer, depression, diabetes, and 

CNS diseases [21–25] [Figure 2.1]. 
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Figure 2.1: Epigenetic modifications in neurodegenerative diseases: Functional effect of epigenetics-
based chromatin remodeling/histone post-translational modification in neurodegeneration via histone 
acetylation/deacetylation carried out by two classes of enzymes are histone acetyltransferase and histone 
deacetylases which modulate transcriptional status of histone and non-histone substrates. 
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For the past two decades, researchers have focused on the impact of these covalent histone 

modifications on brain diseases. Apart from these modifications, some TFs also bring 

remodeling of chromatin in neurodegeneration. Two major gene silencing complexes, REST 

and polycomb proteins, were viewed as the chromatin remodelers in the brain through histone 

acetylation and methylation effects on synaptic vesicles protein, channels, and adhesion 

proteins [26,27]. These chromatin-associated modifications were highly regulated in 

neurological disorders, which alter transcriptional regulation along with gene expression [28]. 

Epigenetic modifications are known to participate in the pathogenesis of NDDs. For this 

reason, researchers have hypothesized that small molecule inhibitors have the capability to 

regulate these altered covalent epigenetic modifications [29]. The process of acetylation and 

deacetylation respectively targets both histone and non-histone substrates that carried out 

transcriptional regulation [30]. Histone deacetylation through HDAC enzymes compacts 

chromatin structure and favors transcription repression. Further, HDACs negatively regulate 

biological processes, including apoptosis and autophagy, DNA damage response, immune and 

inflammatory response, metabolic dysfunction, and cell cycle regulation [31]. 

2.1. NEURODEGENERATIVE DISEASES 

2.1.1. ALZHEIMER’S DISEASE 

AD is one of the most prominent types of dementia worldwide, which can be characterized by 

the deposition and accumulation of neurotoxic protein, namely neurofibrillary tangles and 

senile plaques in the medial temporal lobe and neocortical structures [32]. Studies have 

demonstrated that the accumulation of misfolded β-amyloid (Aβ) and tau 

hyperphosphorylation are the significant reasons for the deposition of neurofibrillary tangles 

and plaques [33,34]. Currently, there are around 52 million AD patients worldwide, and studies 

have predicted that this number would be doubled in every 5 years and will increase to reach 

150 million by 2050. Until now, no effective treatment is available for AD, which will impact 
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the global economy [35,36]. Aβ is generated through proteolytic processing of Aβ precursor 

protein through the combined action of α-secretase, β-secretase, and γ-secretase [37]. Amyloid 

precursor protein (APP) is cleaved via two pathways, namely the amyloidogenic pathway and 

the non-amyloidogenic pathway. In the amyloidogenic pathway, APP is firstly cleaved by β-

secretase to generate C-terminal fragments β (C99) and N-terminal soluble APPβ, which is 

further cleaved by γ-secretase to generate extracellular Aβ and APP intracellular domain. On 

the other hand, in the non-amyloidogenic pathway, APP is cleaved with the action of α-

secretase to produce α-C terminal fragment (C83), and the N-terminal fragment soluble APPα, 

which is on proteolytic action of γ-secretase generate extracellular P3 peptide and the APP 

intracellular domain [37–39] [Figure 2.2].  

 

Figure 2.2: APP processing cascade in Alzheimer’s disease: The amyloid precursor protein (APP) can be 
processed by two pathways: the non-amyloidogenic α-secretase pathway and the amyloidogenic β-
secretase pathway. In the non-amyloidogenic pathway, α-secretase cleaves in the middle of the β-amyloid 
(Aβ) region to release the soluble APP-fragment sAPP-α. The APP C-terminal fragment 83 (APP-CTF83, 
αCTF) is then cleaved by γ-secretase to release the APP intracellular domain (AICD) and P3 fragment. In 
the amyloidogenic pathway, β-secretase cleaves APP to produce the soluble fragment sAPP-β. APP-CTF99 
(βCTF) is then cleaved by γ-secretase to produce Aβ 40, Aβ 42, and AICD. 
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Recent studies have identified various contributing factors that elevate the progression of AD, 

namely DNA damage response, aging, genetic factors, protein misfolding, protein degradation 

pathways, membrane damage, and mitochondrial dysfunction [40]. For example, mutations in 

the APP, Presenilin-1, and Presenilin-2 genes increase Aβ production and accumulation, 

whereas, defects in DNA damage repair result from a mutation in breast cancer type 1 (BRAC1) 

and other DNA repair genes facilitate the Aβ accumulation in the cerebral cortex [41]. 

Likewise, impaired energy metabolism implicates mitochondrial dysfunction in AD through 

reduced glucose utilization in the hippocampus and cortex [42]. Additionally, Adler et al., 2018 

demonstrated the linkage between aging and AD through hippocampal subfield morphometry 

and found similar histology of neurons in AD pathogenesis and aging [43]. Likewise, Liyanage 

et al., 2019 highlighted the importance of misfolded proteins as a potential therapeutic target 

in the pathogenesis and progress of AD. It concluded that misfolded proteins increase 

neurotoxicity in the hippocampus and cerebral cortex, leading to neuronal cell death [44]. 

Protein degradation pathways, namely ubiquitin-proteasome system (UPS) and autophagy-

lysosomal pathway (ALP), play a critical role in the pathogenesis of AD. For instance, 

ubiquitin-B mutant protein, a mutant ubiquitin, has been shown to inhibit ubiquitin-dependent 

proteolysis in neuronal cells, whereas, Presenilin-1 deficiency or mutation causes the 

mammalian target of rapamycin complex 1 activation that inhibits transcription factor EB-

mediated autophagy and lysosomal biogenesis [45,46]. In addition, various PTMs, such as 

acetylation, phosphorylation, SUMOylation, and others, are involved in regulating UPS and 

ALP to maintain the protein homeostasis network to achieve protein balance [47].  

Despite having a worldwide problem, only two classes of drugs, namely cholinesterase 

inhibitors and N-methyl d-aspartate antagonists, have been approved to treat AD. 

Acetylcholinesterase inhibitors, which are classified as reversible, irreversible, and pseudo-

reversible, act by blocking cholinesterase enzymes from breaking down acetylcholinesterase, 
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which results in increasing acetylcholinesterase levels in the synaptic cleft [48,49]. On the other 

hand, overactivation of N-methyl d-aspartate receptors leads to increasing levels of influx 

calcium ions, which promotes cell death and synaptic dysfunction. N-methyl d-aspartate 

receptor antagonist prevents overactivation of N-methyl d-aspartate receptor glutamate 

receptor and hence, calcium ions influx, and restores its normal activity [50]. 

2.1.2. PARKINSON’S DISEASE 

PD is the second most progressive NDD characterized by the loss of neuronal cells in the 

substantia nigra pars compacta [51]. There are two forms of PD: familial and sporadic [52]. 

The familial form is caused by genetic aberrations, among others, in the gene for α-synuclein 

[53,54]. The cause for sporadic PD is unknown, but some progress has been made in searching 

for potential causes, implicating both genetic and environmental factors [55]. According to 

Braak’s hypothesis, sporadic PD is caused by a pathogen that enters the body through the nasal 

cavity and subsequently is swallowed and reaches the gut, initiating Lewy pathology in the 

nose and the digestive tract [56]. Early PD symptoms include bradykinesia, tremor, rigidity, 

and postural disability caused by the accumulation of toxic α-synuclein in the basal ganglia. 

The incidence and prevalence of PD increase with increasing age, which is known to present 

in almost 1% of the people over the age of 60. Further, the genetic forms of PD include only 

5-10% of all cases [57]. Genetic factors, such as genetic mutations in α-synuclein, ubiquitin C-

terminal hydrolase like 1, parkin, Leucine-rich repeat kinase 2 (LRRK2), PINK 1 and DJ-1 

genes were responsible for the onset of PD [58,59]. Duplication or triplication of the SNCA gene 

in affected members leads to PD symptoms developing at a later age in the fourth or fifth decades, 

raising the possibility that overexpression of SNCA may be a factor in sporadic disease [60,61]. 

Additionally, mutations in the LRRK2 gene are the most common feature of familial PD, whereas, a 

single mutation in DJ-1 with an autosomal recessive inheritance pattern is known to cause PD [62,63]. 

Apart from genetic factors, environmental factors play an essential role in the pathophysiology of PD 

[64]. For instance, exposure to pesticides, heavy metals, and air pollution increase the concentration of 
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reactive oxygen species (ROS) inside the brain, which leads to oxidative stress, and, ultimately, 

dopaminergic neuronal cell death [65]. Not limited to this, PD is also caused by the incidence of head 

injury, where mild to moderate head injury was associated with a higher risk of the onset of PD [66].  

The characteristics features of PD are neuronal cell death and aggregation of toxic protein, termed 

“Lewy Bodies” [67]. Pathogenic mutations directly influence abnormal protein aggregates that damage 

the ability of cellular machinery to detect and degrade misfolded aggregates [68]. The accumulated 

misfolded protein aggregates enhance the generation of ROS inside the brain that directly induces 

oxidative stress, which leads to mitochondrial dysfunction and impaired dopamine metabolism [69] 

[Figure 2.3]. Further, studies have demonstrated that endotoxicity derived from increasing dopamine 

levels, dopamine oxidation, and dopamine reactive catabolites are recognized as one of the major causes 

of oxidative stress in PD. Further, several PTMs of neurotoxic proteins have been involved in the 

pathogenesis of PD through increasing misfolded protein aggregation [70,71]. For instance, 

phosphorylation of α-synuclein, PARKIN, and Drp-1 causes the formation of inclusion bodies to 

increase E3 ligase activity and mitochondrial localization, respectively. Likewise, SUMOylation of α-

synuclein, PARKIN, and Drp-1 causes enhanced aggregation propensity, self-ubiquitination, and 

mitochondrial localization, respectively [72].  
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Figure 2.3: α-synuclein in the pathophysiology of Parkinson’s disease: The crucial neurotoxic protein in 
the pathogenesis of Parkinson’s disease is α-synuclein. Environmental toxins increase the concentration 
of reactive oxygen species that causes mitochondrial dysfunction and ultimately leads to the generation 
of misfolded protein aggregates. Neuroinflammation and ubiquitin E3 ligase PARKIN deficiency also lead 
to neuronal cell death through misfolded protein aggregation.  

2.2. POST-TRANSLATIONAL MODIFICATIONS IN NEURODEGENERATION 

PTMs and protein-quality control systems, for instance, a molecular chaperone, UPS, and ALP 

are crucial factors responsible for the accumulation of misfolded proteins [73]. Aberrant PTMs 

in the cellular milieu modulates dysregulated conformation, enzymatic activity, protein 

turnover rate, and toxic aggregates generation, which causes different proteinopathies [74]. 

PTMs are considered as covalent or enzymatic modifications of protein occurring after protein 

synthesis. PTMs generally occur in the amino acid side chain or at the protein’s C-terminal or 

N-terminal, depending upon the type of modification. PTMs are classified into different groups 

such as the addition of functional groups/chemical groups (acetylation, methylation, 

formylation, phosphorylation, amidation, and others), the addition of polypeptide chain 

(ubiquitination, SUMOylation, neddylation), the addition of complex molecules 
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(palmitoylation, oxidation, glycation, pegylation, carbamylation, and others), and amino acids 

modifications (racemization, citrullination, isoaspartate, proteolytic cleavage) [75]. Different 

studies demonstrated the implementation of different aberrant PTMs in the pathogenesis of 

proteinopathies disorders such as cancer, heart disease, NDDs, diabetes, and metabolic 

syndromes [76]. Common NDDs such as AD, PD, HD and Spinocerebellar ataxias are best 

described as progressive and slow neuronal death due to misfolded and pathogenic protein 

aggregates, whereas, another common NDD, ALS, also characterizes protein aggregation but 

is a rather very fast progressing disease with a median survival time ranging from 20 to 48 

months. The neuronal cell death causes brain cellular machinery malfunction, which results in 

memory impairment, synaptic dysfunction, learning disability, and cognitive defects [77]. 

These NDDs can be further classified into amyloidosis, tauopathies, synucleinopathies, and 

transactivation response DNA binding protein-43 proteinopathies (TDP-43), depending upon 

the pathogenic protein accumulated.  

Many studies have been conducted to explain the exact mechanism of protein aggregation and 

its pathogenicity in NDDs, which concluded that dysregulated PTMs are crucial for neuronal 

proteinopathies [78–80]. For example, in AD and PD, a decrease in H3 and H4 acetylation 

causes transcriptional deactivation, which leads to a decrease in neurotrophic factor expression. 

A decrease in H3 and H4 acetylation also causes an increase in Aβ plaques, neurofibrils tangles, 

and deposition of Lewy bodies [81]. Apart from acetylation, another modification is 

methylation. Studies show that hypermethylation through the addition of methyl groups causes 

transcription deactivation, leading to the accumulation of toxic proteins and, ultimately, 

neuronal cell death [82]. Similarly, hyperphosphorylation of tau protein, α-synuclein, and 

mutant htt causes their misfolding and subsequent aggregation [83]. Ubiquitination, 

SUMOylation, and neddylation are crucial for misfolded protein degradation through a 

polypeptide chain made up of small chemical groups. Aberrant ubiquitination, SUMOylation, 
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and neddylation hamper the lysosomal degradation pathway and ubiquitin-proteasome 

degradation pathway, which causes the accumulation of toxic proteins [84–86]. 

Further, studies demonstrated the role of the addition of complex molecules to the protein’s 

side chain in the progression and pathogenesis of NDDs. For instance, glycation causes the 

formation of β-sheets in Aβ, α-synuclein, superoxide dismutase 1 (SOD1), TDP-43 and prion 

protein structure, which causes the generation of fibrillar structures and misfolded proteins 

[87]. Similarly, palmitoylation and carbamylation disrupt synaptic plasticity and neural 

differentiation, which causes the accumulation of toxic proteins that lead to memory 

impairment and cognitive defects [88,89]. Moreover, aberrant S-nitrosylation alters 

mitochondrial function, synaptogenesis, misfolded protein fragmentation, apoptosis, and 

autophagy, which leads to the accumulation of excessive nitric oxide and ultimately causes 

neuronal cell death [90]. Similarly, myristoylation is the addition of myristate to the N-terminal 

of newly synthesized glycine residue followed by caspase cleavage. However, myristoylation 

has been considered as both neuroprotective as well as neurotoxic. Studies demonstrated that 

myr-ctPAK2 prevents neuronal apoptosis, whereas, myr- huntingtin provides an additional link 

between caspases and positive autophagy [91]. Likewise, succinylation has been involved in 

AD progression with site-specific succinylation of Aβ peptides and tau tangles, which 

promotes amyloidosis and tauopathy, respectively [92]. Further, mounting evidence 

demonstrated that irregular PTMs hamper endoplasmic reticulum functioning, which leads to 

the progression of NDDs. These data suggest that PTM enzymes have beneficial therapeutic 

activity in neuronal dysfunction. Thus, various drugs have been tested for NDDs but with low 

success, highlighting the gaps in comprehending their pathogenic mechanism. To date, no full-

proof medicine is available that can block the progression of NDDs by inhibiting or modulating 

the activity of PTM enzymes [93,94]. 
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2.2.1. ROLE IN MISFOLDED PROTEIN AGGREGATION 

During the translation process, a newly synthesized protein falls off as a chain of amino acids 

in the cytoplasm, forming linear polypeptides that interact with each other to form an 

adequately folded native protein structure. This native 3D conformation of a protein symbolizes 

a biologically active protein [95]. However, a protein's failure to fold into its native 

conformation results in the inception of inactive misfolded proteins that eventually give rise to 

abnormal protein clusters [96]. In their non-native state, misfolded proteins expose their inner 

hydrophobic core to the outer hydrophilic environment, which accumulates and leads to the 

formation of toxic aggregates [97]. It has been established that intracellular and extracellular 

pathogenic protein aggregates are the main culprit in many NDDs that disrupt neuronal 

homeostasis [98]. These pathogenic proteins can also self-replicate and can be transmitted from 

one cell to another, thus promoting their neuropathogenicity [94]. In healthy conditions, cells 

have a highly orchestrated machinery to maintain the protein quality control system, consisting 

of chaperones, a UPS, and an ALP. Chaperones are protein superfamilies defined as the first 

line of defense against protein aggregation, which helps a misfolded protein reach its native 

conformation, thus preventing aggregation [99]. Various chaperones, such as heat shock 

protein (HSP90), HSP70, HSP60, HSP40, and small HSPs, play a crucial role in maintaining 

protein homeostasis. However, when the chaperone system is overburdened and/or mutated, 

they cannot perform their normal functions, contributing to its dysfunction and protein 

aggregation. Beyond a threshold, when chaperones cannot maintain protein homeostasis, cells 

are overburdened with non-functional proteins, where the UPS comes into action for the 

breakdown of those abnormal proteins. The ubiquitin E3 ligase has played a decisive role in 

the UPS, where the non-functional protein is tagged with another ubiquitin. The process of 

tagging a protein with multiple ubiquitin moieties serves as a signal for its breakdown by the 

proteasome [100]. In NDDs, ubiquitinated proteins have been observed in many protein 
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aggregates, suggesting a dysfunction in the UPS machinery. An E3 ligase, HRD1, can reduce 

the Aβ aggregation by ubiquitination of APP protein, whereas, the knockdown of CHIP, an E3 

ligase, showed PolyQ aggregation in ALS [101]. Also, the autophagy-lysosome system is used 

to degrade bulk protein aggregates, which cannot be degraded by the UPS system. In the 

autophagy system, abnormal protein aggregates are degraded by enzymes present in the 

lysosome's acidic milieu. Macroautophagy and chaperone-mediated autophagy are the two 

main types of autophagic processes involved in protein degradation. In macroautophagy, 

aberrant proteins are engulfed by autophagosomes; this double-membraned autophagosome 

then fuses with the lysosomes to form autolysosomes, where abnormal proteins are deposited 

and then degraded by the enzymes present in it [102,103]. Chaperone-mediated autophagy 

targets specific abnormal proteins with the KFERQ motif, which are recognized by the HSC70 

chaperone, and forms a complex that interacts with lysosome membrane receptors. Abnormal 

proteins are then deposited in lysosomes' lumen for degradation [104].  

However, many PTMs can also cause protein aggregation in NDDs, depending upon the amino 

acid residues modified by them. For example, phosphorylation of Aβ at S8 residue promotes 

Aβ aggregation and its toxicity in AD [105]. Similarly, SUMOylation refers to a covalent 

attachment of small Ubiquitin-like modifiers (SUMO) to the amino acid residues, where 

SUMOylation at K75 residue of SOD1 has been reported to stimulate the aggregation of fALS-

linked SOD1 mutants in ALS [106]. Some important PTMs such as acetylation, nitrosylation, 

glycation, nitration, palmitoylation, and carbamylation promote toxic aggregation in the NDDs. 

Acetylation is the covalent coupling of an acetyl group on amino acid residues, and acetylation 

at K145 and K192 within the RRM domain of TDP-43 protein leads to pathogenic aggregation 

of TDP-43 proteins in ALS [107]. Glycation involves the attachment of the sugar molecules to 

the polypeptide chain of proteins. MGO-induced glycation has been reported to promote 

huntingtin aggregation and toxicity in HD models [108].  
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Figure 2.4: Implementation of different post-translational modifications in neurodegenerative diseases 
(NDDs): post-translational modifications of histone and non-histone substrates were involved in the 
pathogenesis and progression of deadly NDDs, such as Alzheimer’s Disease (AD), Parkinson’s Disease 
(PD), Amyotrophic Lateral Sclerosis (ALS), and Huntington’s Disease (HD). More than 50 PTMs have been 
discovered so far in which phosphorylation, Acetylation, ubiquitination, SUMOylation, and palmitoylation 
were prominent were regulating different cell-signaling cascades involved in the pathogenesis of NDDs. 
Other PTMs such as Glycosylation, nitration, amidation, adenylation, citrullination, crotonylation, and 
methylation are also involved in the progression of NDDs. PTMs alter substrate protein activity, which 
causes an increase in stress conditions such as oxidative stress and ER stress. An increase in oxidative 
stress increases mitochondrial dysfunction, inflammatory response, neuronal apoptosis, autophagic cell 
death, and DNA damage response. This molecular phenomenon causes synaptic dysfunction, impaired 
neural plasticity, and memory impairment leading to neurodegeneration. 
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Furthermore, nitration involves the addition of the nitro group to the polypeptide chain, and 

research has shown that nitration at Y39 of α-synuclein facilitates its oligomer formation [109]. 

Palmitoylation is the covalent linkage of palmitate to cysteine residues, and palmitoylation of 

APP at C186 and C187 promotes Aβ aggregation in AD [110]. Additionally, nitrosylation 

covalently attaches nitric oxide moiety to cysteine residues, S-Nitrosylation of deubiquitinase 

enzyme UCHL1 at C90, C152, and C220 induces α-synuclein aggregation in PD [111]. 

Carbamylation refers to the covalent adduction of carbamoyl moiety to amino acid residues, 

and one study showed that carbamylation stimulates tau aggregation and induces 

amyloidogenesis [89]. Glutathionylation is a covalent linkage of glutathione moiety to cysteine 

groups, S-Glutathionylation of SOD1 at C111 increases the propensity of SOD1 towards 

aggregation [112]. 

Moreover, Truncation is a PTM that refers to the N-terminal or C-terminal termination of a 

protein chain, and it has been observed that truncation of α-synuclein’s C-terminal stimulates 

aggregation of α-syn in PD [70]. Glycosylation is the covalent adduction of the carbohydrate 

moiety to proteins. In AD, it has been observed that tau glycosylation amplifies aberrant tau 

hyperphosphorylation [113]. Additionally, ADP-ribosylation is the coupling of ADP-ribose to 

proteins, and in ALS, it has been observed that ADP-ribosylation induces TDP-43 aggregation 

[114]. Further, trans-glutamination results in isopeptide bond formation between the γ-

carboxamide group of glutamines in one protein and the ε-amino group of lysine in another 

protein. [Figure 2.4]. 

2.3. ACETYLATION IN ALZHEIMER’S AND PARKINSON’S DISEASE 

PATHOLOGY 

Acetylation, a lysine-induced PTM, is the process of transfer of acetyl group from acetyl 

coenzyme A to the specific site of a polypeptide chain. Basically, acetylation changes the 

overall charge of the histone protein from positive to neutral and thus enhances the 
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transcriptional activity. Acetylation occurs on both histone and non-histone substrates, which 

is carried out with the help of enzymes called as lysine acetyltransferases (KAT and GNAT). 

Mounting evidence suggests that dysfunction in lysine acetylation is associated with the 

pathogenesis and progression of various NDDs, namely AD and PD. For example, in APP/PS1 

mice model, decreased histone H4 acetylation levels that cause impaired memory formation, 

whereas, a decrease in histone H3 acetylation at lysine 9 causes an increased tau pathology 

[115,116]. Marzi et al., 2018 demonstrated that in entorhinal cortex samples from AD, an 

altered histone H3 acetylation at lysine 27 causes an increase in the progression of Aβ and tau-

related pathology [117]. In another study, the authors of AD patients observed the 

hypoacetylation of AD hippocampus through GTPase-mediated mechanisms [118]. Apart from 

histone substrates, deregulated acetylation status of non-histone substrates is also involved in 

the progression of AD. For instance, acetylation of Beclin-1 through p300 inhibits 

autophagosome formation and maturation that leads to the impaired autophagic flux, whereas, 

acetylation of tau causes tau-interactome changes that result in tau degradation and leads to the 

recovery of synaptic pathology [119,120]. Further, Min et al., 2010 demonstrated that 

acetylation of tau inhibits its degradation that contributes to tauopathy [121]. Subsequently, 

another study concluded that acetylation of tau at lysine 274 and lysine 281 inhibits the 

expression of long-term potentiation at hippocampal synapses that contribute to AD pathology 

[122] [Figure 2.5]. 

The altered acetylation status of both histone and non-histone substrates is involved in the 

pathogenesis and progression of PD [Figure 2.5]. For example, site-specific acetylation of 

H2A, H2B, H3, and H4 was found in dopaminergic neurons of PD patients when compared 

with matched controls [123]. Further, the administration of sirtuin 2 causes enhanced 

dopaminergic neuronal cell death through microglial activation [124]. Additionally, Yakhine-

Diop et al., 2019 demonstrated that inhibition of HATs activity promotes neuroprotection 
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through enhanced mitophagy [125]. Not limited to this, acetylation of neurotoxic proteins, 

namely α-synuclein, promotes its oligomerization and aggregation, leading to the progression 

of PD [126]. For instance, N-terminal acetylation of α-synuclein induces transient helical 

propensity and decreased aggregation rates in the intrinsical disorder monomer [127]. 

Moreover, increased acetylation of peroxiredoxin ½ and NDUFV1 through HDAC6 inhibition 

promotes neuroprotection and rescues dopaminergic neuronal cell death [128,129]. Another 

study found that acetylation and phosphorylation of PGC-1α promote nuclear translocation and 

protect from oxidative stress [130]. Thus, from the above-mentioned evidences, it will be 

concluded that site-specific acetylation of neurotoxic proteins is associated with the 

pathogenesis and progression of NDDs, especially AD and PD.  

 

Figure 2.5: Domain architectures and position of post-translational modifications in the neurotoxic 
proteins involved in the pathogenesis and progression of Alzheimer’s and Parkinson’s disease. 

2.4. CLASSIFICATION OF HISTONE DEACETYLASES ENZYMES 

SUPERFAMILY 

There are 18 mammalian HDAC discovered, which were divided into two families (HDAC 

family and sirtuins regulator family), and four classes based on their sequence and structure 

similarities to yeast deacetylases [Figure 2.6]. Class I (HDAC1, HDAC2, HDAC3, and 
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HDAC8), Class IIa (HDAC4, HDAC5, HDAC7, and HDAC9), Class IIb (HDAC6 and 

HDAC10), Class III (Sir1, Sir2, Sir3, Sir4, Sir5, Sir6, and Sir7), and Class IV (HDAC11). Class 

I have sequence similarity to yeast transcription regulator reduced potassium dependency 3 

(Rpd3) protein, while Class II has sequence similarity to yeast HDAC-A 1 (Hda1) protein. 

Rpd3 has 35%-49% homology to Hos1, Hos2, and Hos3 found in yeast, while Hda1 has 21%-

28% homology to these proteins. Thus, it can be concluded that mammalian deacetylases (Class 

I and Class II) are somehow related to yeast hos protein. Mammalian class I, class II (IIa and 

IIb), and class IV belongs to the arginase/deacetylase superfamily of catalytic enzymes 

containing amido hydrolases, whereas, class III containing sirtuins belongs to nicotinamide 

adenine dinucleotide and flavin adenine dinucleotide (NAD/FAD) binding domain superfamily 

of enzymes containing carboxy-terminal domain, pyruvate oxidase, and decarboxylase middle 

domain. Class I HDAC is considered a transcription repressor because they bind to DNA as a 

corepressor recruited by TFs. They can be found in both cytoplasm and nucleus and are 

ubiquitously expressed to perform tissue-specific functions. For example, HDAC1, HDAC2, 

and HDAC3 regulate the deacetylation activity of MAP kinase phosphatase, and this histone 

modification increases intrinsic mitogen-activated protein kinase (MAPK) and alteration in 

innate immune signaling [131]. At the same time, class II HDAC can be translocated between 

the nucleus and cytoplasm associated with transcription dysregulation, as in the case of class I 

HDAC. The mechanism and distribution of HDAC11 (Class IV HDAC) are not well 

established. However, studies suggested the role of HDAC11 in regulating the expression of 

DNA replication factor CDT1 and interleukin 10 (IL10). Further, Finnin et al., 1999 [132] 

proposed that the catalytic mechanism followed by arginase dependent family required a 

transition metal ion which is zinc (Zn2+) and shares a common structural motif sequence. 

Moreover, catalysis of histone and non-histone substrates by HDAC commences with 

intermediate chelation of water and the carbonyl group of acetylated lysine residue to the 
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central Zn2+ atom, which results in histidine (HIS132) protonation followed by protonation of 

water due to rate-determining step that is nucleophile attack and deprotonation of HIS131. This 

result in the generation of hydroxide ion, which facilitates the stabilization of acyloxanion 

generated due to carbonyl attack of acetyl groups and thus interacts with the hydroxyl group at 

tyrosine (TYR297). The resulting complex leads to the formation of acetate ion and the 

production of terminal ammonium on the lysine side chain. Importantly, at the last step of this 

process HIS131 and not HIS132 is protonated, and the catalytic complex consists of a Zn2+ atom 

bound by two histidine and aspartic acid dyads (HIS131-ASP166, HIS132-ASP173), one tyrosine 

(TYR297), and the proton donor molecule which is coordinated with two aspartic acids (ASP258 

and ASP168), and a histidine (HIS170). The model of HDAC catalysis seems to be more 

analogous to classical metalloenzymes such as thermolysin and carboxypeptidase [133,134]. 

Later studies on catalytic activities showed that class IIa HDAC does not form a complex with 

histone terminal and has less catalytic activity than class IIb and class I due to the replacement 

of conserved tyrosine residue accountable for a catalytic mechanism with histidine in class II 

HDAC [135–137]. Experiments performed by Fischle and colleagues confirmed the proposed 

mechanism. They demonstrated that Class IIb HDAC (HDAC4 and HDAC5) do not possess 

catalytic activity in isolation but are found in complex with HDAC3 in association with 

transcriptional repressor complex containing silencing mediator for retinoid and thyroid 

receptors and nuclear receptor corepressor (N-CoR). Furthermore, it was discovered that class 

II HDACs are bound to heterochromatin protein 1 and C-terminal binding protein, which 

facilitates transcriptional repression and downregulated expression [138,139] [Table 2.1]. 
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Figure 2.6: Classification of histone deacetylase enzymes and their domain structure: Metal-dependent 
and arginase-dependent histone deacetylase (HDAC) enzymes superfamily was divided into four 
subgroups that are Class I (HDAC1, HDAC2, HDAC3, and HDAC8), Class IIa (HDAC4, HDAC5, HDAC7, and 
HDAC9), Class IIb (HDAC6 and HDAC10), Class III consisting of sirtuins (Sirt 1–7), and Class IV (HDAC11) 
according to their homology similarity along with the biological process regulated by them. The figure also 
represents the nuclear localization signal, nuclear export signal, ubiquitin-binding site, and catalytic sites. 

Class III HDAC or sirtuins family have vigorous deacetylase activity and are known to regulate 

mitochondrial activity in numerous biological and cellular signaling pathways [140–144]. 

Compared with the classical HDAC, sirtuins require NAD+ as a cofactor for their catalytic 

activity. It consists of a large Rossmann fold and small zinc-binding, which form a cleft amidst 

where conserved catalytic residues of sirtuins reside, which then interact with the substrate 

after forming a tunnel between them [145]. Deacetylation catalysis performed by sirtuins is the 

thermodynamically stable reaction followed by the generation of 2’-AADPR, which in turn 

catalyzes the formation of an ester through amide resulting in the breakdown of NAD+ 

[146]. As a predominant regulator of the transcriptional machinery, HDAC’s catalytic activity 

should be highly regulated at each and every step. There are several governing phenomena 
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among which PPI and HDACs PTMs are studied thoroughly, whereas alternative RNA 

splicing, availability of co-factors, subcellular localization, and proteolytic processing of 

HDACs are equally important but less studied. The formation of the complex with another 

protein substrate to induce their catalytic activity is a common mechanism to control HDAC 

activity. For example, HDAC1 and HDAC2 are found in multiprotein complexes such as paired 

amphipathic helix protein Sin3a, N-CoR, and REST corepressor 1 (CoREST). Sin3 and N-CoR 

share the same structural components and consist of HDAC1, HDAC2, retinoblastoma binding 

protein 7 (RbAp46), and retinoblastoma binding protein 4 (RbAp48). A study established that 

the association of HDAC1 and HDAC2 with the CoREST complex is necessary for catalytic 

activity, and the activity of HDAC1 increases in association with the Sin3 corepressor 

multiprotein complex. 

Moreover, HDAC proteins undergo several PTMs striking their activity. Phosphorylation is 

essential in regulating HDAC1/2 activity, which is a reversible reaction monitored by protein 

phosphatase 1 (PP1) [147]. Mitotic disruption without affecting G1/S repression results in 

hyperphosphorylation of HDAC2. Similarly, the activity of HDAC3 also increases 

phosphorylation due to CK2 and DNA-dependent protein kinase catalytic subunit. Further, the 

hyperphosphorylation of HDAC3 with glycogen synthase kinase 3 beta (GSK3β) protects 

against HDAC3-induced neurodegeneration [148]. Protein phosphatase 1b and protein 

phosphatase 2A perform phosphorylation of Class II HDAC and regulate their catalytic 

activities. Phosphorylation of HDAC6 at S22 and T30 by Aurora A kinase leads to tubulin 

deacetylation activation [149,150]. HDAC5 consists of 17 conserved phospho-acceptor 

residues, which explain the importance of phosphorylation-mediated regulation of structure 

and function. In HDAC5, phosphorylation by PKD and CaMKII at Ser259 and Ser498 induces 

nuclear export that prevents binding of 14-3-3 proteins, while phosphorylation of protein kinase 

A (PKA) at Ser279 induces nuclear retention [151–154]. HDAC4 and HDAC5 regulate the 



27 | P a g e  

 

activity of myocyte enhancer factor (MEF) 2 dependent transcription upon ubiquitination and 

SUMOylation, which has a significant role in regulating HDAC’s expression [155,156]. 

Table 2.1: Classification of HDAC superfamily along with their substrates (histone and non-histone), 
catalytic active ligand binding sites, and molecular function [157–161] 

 
Class 

Name 
Amino 
Acids 

Family and 
Co-Factor 

Subcellular 
Localization 

Tissue 
Distribution 

Yeast 
Homologous 

Substrates 
Specificity 

Catalytic Sites 
Molecular 
Function 

I 

HDAC1 482 

Arginase/ 
Histone 

Deacetylase 
Family and 

Zinc 
Dependent 

Nucleus 

Ubiquitous 
Expression 
with higher 

levels in 
heart and 
pancreas 
and lower 

level in 
brain and 

lungs 

Rpd3 

p53, RUNX3, 
AR, SMAD7, 

STAT3, E2F1, 
MyoD 

HIS140, HIS141, 
GLY149, 
PHE150, 

ASP176, HIS178, 
ASP264, LEU271 

Chromatin 
modeler, 

transcriptional 
inhibition, cell 
proliferation 
regulator, 

tumorigenesis 

HDAC2 488 
Nucleus and 
Cytoplasm 

STAT3, BTCL6, 
Glucocorticoid 
Receptor, YY1 

HIS141, HIS142, 
GLY150, 
PHE151, 

ASP177, HIS179, 
ASP265, LEU272, 
GLY302, TYR304 

Chromatin 
remodeling, 

transcriptional 
repression, 

modulation of 
plasticity, 

memory, and 
senescence 

HDAC3 428 
Nucleus, 

Cytosol, and 
Cytoplasm 

STAT3, 
GATA1, RelA, 
MEF2D, YY1, 

SHP 

HIS134, HIS135, 
GLY143, 
PHE144, 

ASP170, HIS172, 
ASP259, LEU266, 
GLY296, TYR298 

Transcriptional 
control, cell 

cycle 
progression, cell 
cycle-dependent 

DNA damage 
and repair, 
apoptosis 

HDAC8 377 
Nucleus and 
Cytoplasm 

Expressed 
in most 

tissues with 
higher 

levels in 
brain, heart, 
kidney, and 
pancreas  

ND 

TYR100, 
ASP101, 

TRP141, HIS142, 
HIS143, GLY151, 

PHE152, 
ASP178, HIS180, 

PHE208, 
ASP267, 
MET274, 

GLY304, TYR306 

Transcriptional 
repression, 

smooth muscle 
cell 

differentiation 
and contractility, 

modulation of 
telomerase 

activity, 
neuroblastoma 
tumorigenesis 

IIa 

HDAC4 1084 
Nucleus and 
Cytoplasm 

Ubiquitous 
expressed 
with higher 
expression 

in Brain, 
heart, and 
skeletal 
muscles   

Hda1 

GCMa, GATA1, 
HP-1, importin 

1 (CRM1), 
nucleoporin 155 

(Nup155) 

HIS802, HIS803, 
GLY811, 
PHE812, 

ASP840, HIS842, 
ASP934, GLY974 

Cellular 
differentiation 

and 
development, 
involvement in 
block of muscle 
differentiation, 
neuron survival 

HDAC5 1122 
Nucleus and 
Cytoplasm 

Brain, heart, 
and skeletal 

muscles 

RUNX3, 
SMAD7, HP-1, 

GCMa 

HIS832, HIS833, 
GLY841, 
PHE842, 

ASP870, HIS872, 
ASP964, 
GLY1004 

Cellular 
differentiation 

and 
development, 
involvement in 
block of muscle 
differentiation, 
regulation of 

nuclear genes 
that promote 

cardiac 
hypertrophy 
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HDAC7 952 
Nucleus and 
Cytoplasm 

Platelet, 
lung, heart, 

skeletal 
muscles, 

and 
pancreas 

FLAG1, FLAG2 

PHE542, 
ASP626, HIS669, 
HIS670, GLY678, 

PHE679, 
ASP707, HIS709, 

PHE738, 
ASP801, 

PRO809, LEU810 

Cellular 
differentiation 

and 
development, 
involvement in 
block of muscle 
differentiation 

HDAC9 1011 Nucleus 
Brain and 
skeletal 
muscles 

ND 

HIS782, HIS783, 
GLY791, 
PHE792, 

ASP820, HIS822, 
ASP914, GLY954 

Cellular 
differentiation 

and 
development, 
regulation of 

nuclear 
genes that 

promote cardiac 
hypertrophy 

IIb  

HDAC6 1215 
Nucleus and 
Cytoplasm 

Brain, heart, 
liver, kidney, 

and 
pancreas 

HSP70, HSP90, 
α-tubulin, SHP, 

SMAD7 

HIS215, HIS216, 
GLY224, 
TYR225, 

ASP253, HIS255, 
ASP346, GLY384 

Microtubule 
stability and 

function, 
ubiquitin 

proteasome 
system, 

autophagy 

HDAC 
10 

669 
Nucleus and 
Cytoplasm 

Spleen, 
liver, and 

kidney 
HSP90 

HIS134, HIS135, 
GLY143, 
PHE144, 

ASP172, HIS174, 
ASP265, GLY303 

Transcriptional 
repression, 

HSP-mediated 
regulation of 

VEGFR 

III 

SIRT1 747 

Sirtuin 
Regulator 
Containing 
Carboxyl 
Terminal 
Domain 

Family and 
NAD 

Dependent 

Nucleus, 
Cytoplasm 

Brain, heart, 
and kidney 

Sir2, Hst1, 
Hst2, Hst3, 
and Hst4 

H3K9, H3K14, 
H3K56, H4K16, 

H1K26, p53, 
FOXO1, 
FOXO3, 

FOXO4, PARP-
1, APE1, DNA-

PK, RARβ, 
PGC1α, 

PPARγ, NF-κB, 
IGF1, Ku70 

ILE347, HIS363, 
VAL412, PHE414, 

GLY415, 
GLU416, 
ASN417, 

LEU418, LYS444, 
VAL445, ARG446 

Modulation of 
the 

mitochondrial 
functions, anti-
inflammatory 

mediator 

SIRT2 389 Cytoplasm 
Brain, and 

skeletal 
muscles 

H4K16, H3K56, 
α-tubulin 

ILE140, HIS158, 
VAL202, PHE204, 

GLY205, 
GLU206, 
ASN207, 
LEU208, 

GLU234, VAL235, 
GLN236 

Regulation of 
the microtubule 
acetylation and 

stability 

SIRT3 399 
Nucleus, 

Mitochondria 

Ubiquitarian 

H4K16, Acetyl-
coA 

synthetase, 
glutamate 

dehydrogenase, 
Ku70, 

isocitrate 
dehydrogenase 

ILE230, HIS248, 
VAL292, PHE294, 

GLY295, 
GLU296, 
PRO297, 
LEU298, 

GLU323, VAL324, 
GLU325 

Deacetylation of 
several key 
metabolic 

enzymes, acetyl 
coenzyme a 
synthetase, 
glutamate 

dehydrogenase 

SIRT4 314 Mitochondria 
Glutamate 

dehydrogenase 

VAL145, HIS161, 
VAL232, PHE234, 

GLY235, 
ASP236, 

THR237, VAL238, 
GLN264, VAL265, 

TYR266 

Regulation of 
insulin secretion 
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SIRT5 310 Mitochondria 

Cytochrome c, 
Carbamoyl 
phosphate 

synthetase 1, 
Urate oxidase 

ILE142, HIS158, 
VAL221, PHE223, 

GLY224, 
GLU225, 
ASN226, 

LEU227, VAL253, 
VAL254, TYR255,  

Deacetylation of 
cytochrome c, 

apoptosis 
initiation, 

promotion of 
neuronal death 

SIRT6 355 Nucleus 
H3K9, H3K56, 
PARP-1, DNA-

PK 

VAL115, HIS133, 
LEU186, TRP188, 

GLU189, 
ASP190, 
SER191, 
LEU192, 

GLN218, ILE219, 
ARG220 

Modulation of 
gene 

expression, 
apoptosis, 

cellular 
senescence 

SIRT 7 400 Nucleolus 

H3K18, RNA 
Pol I complex, 

RNA Pol II 
complex 

CYS169, HIS187, 
VAL237, PHE239, 

GLY240, 
GLU241, 
ARG242, 

GLY243, LYS272, 
VAL273, TYR277 

Activation Of 
RNA 

polymerase I 
transcription 

IV 
HDAC 

11 
347 

Arginase/ 
Histone 

Deacetylase 
Family and 

Zinc 
Dependent 

Nucleus 
Brain, testis, 
kidney, and 

heart 
Rpd3 ND 

LYS41, GLY140, 
PHE141, HIS142, 
HIS143, GLY151, 

PHE152, 
CYS153, 

ASP181, HIS183, 
ASN257, 
ASP261, 
SER301, 

GLY302, TYR304 

Carcinogenesis, 
expression 

modulation of 
the gene 
encoding 

interleukin 10 
(IL10) 

 

2.5. HISTONE DEACETYLASE ENZYMES MEDIATED NEUROTOXICITY 

HDACs are known to regulate the gene expression pattern, which is involved in the 

pathogenesis and progression of various life-threatening diseases, namely diabetes, cancer, 

NDDs, stroke, and others. Mounting evidence sheds light on the possible implication of HDAC 

enzymes in NDDs causing neurotoxicity. For instance, HDAC1 decreases the potential of 

binding of motor proteins and α-tubulin with cargo proteins, whereas, overexpression of the 

HDAC1/2 complex inhibits the apoptotic process by decreasing p53 acetylation and PUMA 

expression. Hence, inhibition of HDAC1 and HDAC2 in Schwann cells and conditional 

knockout mouse model targeting retinal ganglion cells promised neuroprotective effects 

[162,163]. In the PD model (in vivo and in vitro), inhibition of HDAC 1 and HDAC2 complex 

with K560 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced neurotoxicity 

promotes neuroprotection and increases XIAP expression [164]. Further, the R6/2 mice model 
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and Ube3a-maternal deficient mice model demonstrated the neurotoxic effect of HDAC1 and 

HDAC3 complex. Increased expression of HDAC1/2 has a detrimental effect on ubiquitin-

protein ligase E3A, also promoting decreased acetylation of histone H3 and H4 causing 

intellectual and development deficits [165,166]. In one study, it was seen that c-Abl tyrosine 

kinase activity increases HDAC2 gene expression in the neuronal model and knocked out the 

Npc1 mouse model mediated through the c-Abl/HDAC2 signaling pathway [167]. Moreover, 

cognitive impairment caused by the decreased synapse number and synaptic plasticity due to 

overexpression of HDAC2 results in acetylation of H4 histone on specific lysine residues, such 

as Lys12 and Lys5 [168]. Likewise, HDAC3 promotes the inhibition of the neuroprotective cell 

cycle inhibitory protein cyclin-dependent kinase inhibitor 1A (CDKN1A) when in complex 

with HDAC1, whereas, in a non-neuronal experimental model, HDAC3 is known to be 

CDKN1A inhibitor [169–172]. Further,  HDAC3 is also linked to the onset of AD and PD, two 

common forms of neurodegeneration where it promotes Aβ and LRRK2-induced cell death 

[173–175]. In another experimental condition, it was shown that HDAC3 increases tau 

phosphorylation, increases Aβ expression in the brain and periphery regions, and causes 

memory and cognitive impairment in the 3xTg-AD mice model [176]. Nuclear exportation of 

HDAC4 is linked with detrimental effects on neuronal cell life, and brain-derived neurotrophic 

factor (BDNF) treatment suppresses the nuclear transport while administration of the 

Calcium/calmodulin-dependent protein kinase inhibitors upsurges in nuclear accumulation 

[177]. In another experiment performed on dopaminergic neurons overexpressing A53T 

mutant α-synuclein treated with MPTP in vitro and in vivo, intracellular nuclear transport of 

HDAC4 was shown to be involved in the pathogenesis of PD where it causes dopaminergic 

cell death, resulting in suppression of cAMP response element-binding protein (CREB), 

MEF2A, and enhanced neuronal apoptosis [178]. Moreover, inhibition of HDAC6 with a 

selective inhibitor causes neurite extension, reverse oxidative stress-induced neuronal cell 
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death, reverse impaired axonal transport through recruitment of kinesin and dynein motor 

complexes, enhance microtubule stability, mitochondrial transport [179–182] improves 

memory and cognitive conditions in disease phenotypes such as AD, Tauopathy, HD, Charcot-

Marie-Tooth disease both in cell culture and animal experimental models [78,183–186] 

whereas its overexpression reduces tau degradation and increases its accumulation in the brain 

which promotes toxicity [78]. Altogether, these studies proved the plausible implications of 

selective or pan HDAC inhibitors as therapeutic agents in NDDs. 

2.5.1. ALZHEIMER’S DISEASE 

AD is the most prevalent NDD in the elderly. It is characterized by neurotoxic Aβ oligomer 

aggregates and tau hyperphosphorylation leading to neuronal dysfunction and, ultimately, 

neuronal cell death. Recently, histone deacetylation and HDAC have been implicated in 

neuronal dysfunction, cognitive defects, memory and learning impairment and decreased 

synaptic plasticity in vivo and in vitro AD experimental models [158,187,188]. For example, 

Mahady et al., 2018 [189] found that HDAC and sirtuin expression in post-mortem frontal 

cortex tissue correlated to the degree of cognitive impairment. HDAC1 and 3 were increased 

in mild and moderate AD versus non-impaired subjects. HDAC2 was relatively constant, 

whereas HDAC4 significantly increased in mild and moderately impaired cases. Interestingly, 

HDAC4 was found to decrease in severe AD. HDAC6 increased continuously throughout 

disease progression from non- to severe cognitive impairment. Increased APP expression in 

cultured cortical neurons decreased H3 and H4 acetylation. 

In contrast, increased histone acetylation via HDAC inhibitor improved memory and cognitive 

function in aged neurons. Thus, it may be concluded that H3 and H4 hyperacetylation and 

HDAC inhibitors mitigated AD by enhancing memory function and improving cognition 

[24,190–192]. Prolonged administration of sodium butyrate (NaB) increased H3 and H4 

acetylation, and p53 acetylation improved cognition and memory and re-established synaptic 
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plasticity. In aged murine studies, transcriptional p53 deregulation has been linked to tau 

hyperphosphorylation and Aβ aggregation, i.e., pathologic changes consistent with AD [193–

196]. Further, the dose-dependent administration of 4-phenylbutyric acid in Tg2576 AD mice 

enhanced spatial memory and cognitive function in the hippocampus through normalizing tau 

hyperphosphorylation without alteration in Aβ concentration [197]. 4-phenylbutyric acid also 

increased H3 acetylation status. H4 acetylation increased glutamate receptor 1, postsynaptic 

density protein 95 and microtubule-associated protein 2 expressions resulting in transcriptional 

repression. In the fear mice model, HDAC inhibitors altered H3/H4 acetylation in 

synaptogenesis genes to improve spatial and contextual learning [115,168,198–200]. In 3xTg 

AD murine studies, W2, a mercaptoacetamide-based class II HDAC inhibitor, decreased tau 

hyperphosphorylation and Aβ concentration by increasing β- and γ-secretase expression, thus 

improving memory and learning [201].  

Moreover, neuron-specific HDAC2 over-expression reduced spine density, synapse 

number/plasticity and cognitive function and thus negatively regulated memory and learning 

ability mediated through transcriptional repression [168]. In the AD murine model, HDAC6 

expression led to Aβ deposition and mitochondrial trafficking impairment, causing cognitive 

and memory impairment [202]. HDAC2 is deregulated in the nucleus basalis of meynert, and 

its reduction decreases the expression of genes involved in the memory-associated immune 

signaling cascade. Also, over-expressed HDAC2 and HDAC5 reduced BDNF production, 

decreased H3 and H4 acetylation and increased Aβ aggregation [203,204]. Increased HDAC3 

and 1 activity in primary culture neurons and SHSY-5Y neuronal cells cause histone 

hypoacetylation, increased Aβ oligomers mediated hippocampal impairment, and long-term 

memory and synaptotoxicity lead to cognitive defects and memory impairment [205,206]. 

Further, HDAC inhibitor MGCD0103 in primary neurons of AD mice ameliorated histone 

hypoacetylation, impaired α-tubulin acetylation, tau protein phosphorylation, and Aβ toxicity, 
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thus preventing neuronal loss [207]. Because HDAC appears strongly associated with histone 

hypoacetylation and transcriptional regulation of genes associated with AD, developing a 

specific HDAC inhibitor is of therapeutic importance [Figure 2.7]. 

 

Figure 2.7: Interplay between the histone deacetylase (HDAC) biological activity and etiology of 
neurodegenerative disorders. Histone deacetylase manipulates various signaling cascades such as 
proteasomal degradation, inflammation, apoptosis, and autophagic cell death. Moreover, histone 
deacetylase decreases the acetylation level of neuroprotective proteins, such as brain-derived 
neurotrophic factor (BDNF), GDNF, α-Tubulin, and other neurotrophic factors leading to memory 
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impairment. Altogether, HDAC cause neurotoxicity and eventually leads to neuronal cell death by 
mitochondrial dysfunction, inflammation effect, increasing oxidative stress, and decreases the activity of 
pro-survival factors such as Bcl-2 and Bcl-xl. HDAC was also known to regulate intracellular cytoskeletal 
stability causing tau hyperphosphorylation and toxic amyloid protein. HDAC decreases the expression of 
ubiquitin-protein ligase E3 causes proteasomal degradation, and cognitive defects lead to Alzheimer’s and 
Parkinson’s disease. 

2.5.2. PARKINSON’S DISEASE 

PD is the most common neurodegenerative brain disorder [273,274]. It is characterized by 

motor dysfunction, sleep behavior disorders, mood disturbance, cognitive decline and dementia 

caused by Lewy body aggregation and dopaminergic neuronal loss in the substantia nigra pars 

compacta. Data implicates α-synuclein mediated transcriptional deregulation and altered 

histone acetylation in PD in animal and cell culture models [208,209]. Pan-HDAC inhibitors 

have been used as a therapeutic agent to alter HDAC activity in PD models [29]. For example, 

valproate prevented dopaminergic neuronal degeneration in the substantia nigra pars compacta 

and inhibited α-synuclein accumulation in the MPTP and rotenone-induced PD models [210]. 

Valproic acid (VPA) increased H3 and H4 acetylation, increased neurotrophic glial cell line-

derived neurotrophic factor and BDNF expression, and ameliorated cognitive defects in vitro 

and in vivo PD models [211,212]. Furthermore, valproate activated neuroprotection molecular 

targets such as GSK3β, Akt/Erk pathway, Na+, and K+ channels, the oxidative phosphorylation 

pathway, and the suppression of neuroinflammation and oxidative stress associated markers 

[213]. Administration of 4-phenylbutyric acid in the transgenic fly PD model and 6-

hydroxydopamine induced rat model prevented dopaminergic neuronal loss mediated by 

increased histone acetylation, BDNF and glial cell line-derived neurotrophic factor expression, 

reduced caspase-3 and attenuation of inflammatory response and oxidative stress [214–216] 

[Figure 2.7]. 

In a transgenic PD animal model, 4-phenylbutyric acid prevented loss of dopaminergic neurons 

and 3,4-dihydroxy phenylacetic acid, reduced motor defects and cognitive impairment, up-

regulated DJ-1 expression and inhibited α-synuclein accumulation and cytotoxicity [217–219]. 

Trichostatin A increased histone H3 and H4 acetylation, inhibited inflammatory response, 
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prevented microglial cells apoptosis and up-regulated BDNF and glial cell line-derived 

neurotrophic factor expression in dopaminergic neurons, and MPTP and rotenone treated 

neuron-glial co-cultures [220–222]. In SHSY-5Y neuroblastoma cell culture and PD mice 

model, HDAC1/2 inhibitor K560 attenuated dopaminergic neuronal cell death mediated 

through decreased ROS production, anti-inflammatory effect, and increased anti-apoptotic 

XIAP expression, decreased p53 phosphorylation and inhibited MAPK activation [164]. 

HDAC6 promotes deacetylation of cortactin, HSP90, and α-synuclein, prevents misfolded 

protein accumulation, promotes autophagy in the aggresomes, and protects from α-synuclein 

cytotoxicity mediated dopaminergic neuronal cell death [223–228]. In the Drosophila model 

of PD, inhibition of HDAC6 with tubastatin prevented protein aggregation. It protected against 

neuronal degeneration via ROS-induced oxidative stress reduction, increased peroxiredoxin1/2 

acetylation, and improved microtubule axonal transport [128,229]. VPA in SHSY-5Y culture 

and LRRK2-R1441G PD mice model attenuates dopaminergic cell death through increased 

acetylation, reduced microglial activation and inflammatory response, reduced pro-apoptotic 

genes expression, and decreased Bax/Bcl-2 ration resulted into increased motor neuron 

functions [230,231]. Harrison et al., 2013 [232] demonstrated that nicotinamide in the 

lactacystin PD rat model prevented neuronal apoptosis and increased neurotrophic factor 

expression. Although pharmacologic inhibition of HDAC appears promising and effective, 

additional studies are required to understand their exact mechanism of action in developing an 

isoform-specific HDAC inhibitor for PD. 

2.6. ACETYLATION AND HISTONE DEACETYLASE ENZYMES INTERFERE 

WITH BIOLOGICAL AND CELLULAR PROCESSES IN ALZHEIMER’S AND 

PARKINSON’S DISEASE 

CNS development and function depend on gene expression regulation in response to external 

stimulus and internal stress signaling. PTMs and chromatin remodeling mechanisms are 
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essential in regulating neural gene expression mediated neurogenesis, neural migration, 

synaptic plasticity and transmission, glial cell differentiation, and neural behavior [233]. 

Moreover, these modifications do not only regulate neural gene expression but are also 

involved in higher-order brain functions such as memory and cognition. HDAC provides an 

essential function in neural cell lineage, i.e., HDAC inhibition promotes increased neural 

differentiation [234]. Interestingly, HDAC appears to be involved in both neurotoxic and 

neuroprotective effects in neuronal function regulation in aging and age-related disorders. 

Additionally, Transcriptional regulation through HAT and HDAC has been extensively studied 

as the therapeutic targets for NDD. Before the development and prosecution of HDAC 

inhibitors, the exact mechanism of different HDACs in the pathogenesis of neurological defects 

must be understood. HDAC causes chromatin condensation leading to transcriptional 

repression of regulatory genes involved with normal CNS function. These include neural 

differentiation and plasticity, synaptogenesis, synaptic function, cognition and neurological 

behavior. HDAC regulate these processes through modulation of signaling pathways or 

molecules. HDACs are also involved in biological processes and molecular phenomena that 

include oxidative stress, inflammatory response, autophagic cell death, mitochondrial 

dysfunction, cell-cycle progression, and ubiquitin-proteasome degradation. In the next section, 

we discuss the potential of HDAC in neurological defects mediated through different signaling 

cascades leading to abnormal cell death. 

2.6.1. SYNAPTIC PLASTICITY AND TRANSMISSION 

Synapses degeneration caused by plasticity impairment and transmission deficit promotes 

neuronal cell death involved in NDD. Synapse plasticity and memory potential in the brain 

region is highly controlled with transcriptional process and positive gene regulation provided 

by histone acetylation [235]. In the hippocampal CA1 region, HAT Kat2a was upregulated and 

is involved in synaptic plasticity and memory consolidation mediated through nuclear factor 
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kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, the dysregulation of which 

occurs in NDD and dementia [236]. Similarly, increased Tip60 expression required for 

upregulation of synaptic proteins and early environmental benefits cause restoration of 

cognitive functions and memory impairment mediated through H4K45 and H4K12 

hyperacetylation in human APP overexpressing flies’ model [237]. L. Peng et al., 2019 [238] 

demonstrated that lipopolysaccharides-induced neonatal inflammation reduces H4K12ac and 

c-FOS expression, enhancing spatial cognitive impairment and inducing memory deficits. 

However, specific Trichostatin A-induced inhibition improved lipopolysaccharides-induced 

neurologic deficits that were mediated via increased acetylation and c-FOS in murine 

hippocampus. Also, decreased ANP32A expression in the human tau transgenic mice model 

caused H3K9 and 14, H4K5 and 12 acetylations that promoted increased expression of 

synaptophysin, glutamate receptor 1 and synapsis-1 associated with synaptic function and 

memory consolidation. Selective inhibition of HDAC1 and 2 co-repressor complexes, 

including CoREST with Rodin-A, promoted increased spine density, improved long-term 

potentiation, and synaptic protein expression to improve synaptopathies [239]. Further, 

selective inhibition of class I HDAC with MS-275 caused increased miniature inhibitory post-

synaptic currents plasticity and synaptic transmission in the hippocampus, improved synaptic 

and memory function [240]. A recent study highlighted the potential of HDAC and 

phosphodiesterase type 5 dual inhibitor CM-414 in synaptopathies. Administration of CM-414 

in Tg2576 mice decreased Aβ and tau, increased inactive GSK3β and decreased dendritic spine 

density associated with cognitive defects mediated through increased synaptic transmission 

[241,242]. TF Sp3 is upregulated in AD patients that interact with HDAC2, facilitates its 

recruitment to synaptic proteins, and isoform-specific inhibition of HDAC2-Sp3 complex 

causes restoration of synaptic functions and ameliorates memory impairment in the CK-p25 

mouse model [24,243,244]. The HDAC2 inhibitor, NaB, promoted H3K9 and H3K14 
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acetylation, increased synaptosome-associated protein 25 (SNAP25) expression and up-

regulated neurotransmitter release in a hypoxia-mediated neurodegeneration rodent model. 

Also, HDAC2 inhibition with vorinostat restored memory deficits and synaptic function via 

increased synaptic numbers, a finding not observed in a knockout HDAC2 mouse model [168].  

BDNF, also known to regulate synaptic plasticity and transmission and memory consolidation, 

was down-regulated in NDDs [245–247]. In 3xTg-AD mice, HDAC inhibitors, such as 

sulforaphane, NaB, and Trichostatin A, increase BDNF activity that, causes an enhanced H3 

and H4 acetylation and subsequent increase in microtubule-associated protein 2, synaptophysin 

and post-synaptic density protein 95 (PSD-95) expression [248,249].  

 

Figure 2.8: Role of histone deacetylase enzymes in synaptic plasticity and transmission: histone 
deacetylase decreases overall histone acetylation and thus inhibits transcriptional activation of genes 
involved in synaptogenesis and synaptic plasticity. Consequently, transcriptional repression of genes 
decreases spine density and synapse number, inhibits the p-ERK pathway, and deregulates the p-CaMKII 
signaling cascade, decreasing synaptic plasticity and transmission. 

However, administration of the HDAC2 selective inhibitor, NaB, in the rat hippocampus 

ameliorated ethanol-induced memory impairment and N-methyl-D-aspartate receptor-

dependent long-term synaptic depression mediated through positive regulation of glutamate 

receptor subunit epsilon-2 [250,251]. Chronic treatment of HDAC2 with Cl-994 increased H3 

acetylation and GABAergic and glutamatergic plasticities in dopaminergic neurons to improve 

cognitive and synaptic function [252]. Inhibition of HDAC3 provoked H3 and H4 acetylation 

in the hippocampal and infra limbic cortex region along with positive regulation of gene 
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expression [253]. VPA and vorinostat ameliorated fear conditioning, increased histone 

acetylation and improved synaptic and memory function [254,255]. Post-natal ethanol 

exposure increased HDAC1-3 expression, up-regulated caspase-3 activity, decreased H3 and 

H4 acetylation and repressed synaptic plasticity genes. Trichostatin A administration reversed 

H3 and H4 deacetylation, prevented caspase-3 over-expression and positively regulated BDNF, 

Egr1 and Arc to improve synaptogenesis and cognition [256]. In class IIa HDAC, inhibition of 

HDAC5 mediated by antidepressants such as imipramine and reboxetine increased H3 and H4 

acetylation, increased BDNF expression, and enhanced vesicular glutamate transporter 1 

activity to protect against cognitive and synaptic defects [257,258]. Environmental enrichment 

mediated HDAC3 inhibition and miR-132 upregulation prevents Aβ oligomers from inducing 

synaptotoxicity, causing synaptic plasticity impairment and long-term potentiation [205]. 

Unfortunately, the role of HDAC4, 7, 9 and 10 in regulating synaptic transmission and function 

remains largely unclear. Additional research is clearly warranted to more fully understand the 

HDAC mechanism of action in synaptic defect-induced neurodegeneration [Figure 2.8]. 

2.6.2. NEUROGENESIS AND NEURAL MIGRATION 

HDAC1 and 2 are highly expressed in neuroepithelial cells (NEC) and neural progenitor cells 

(NPC) during cortical development, wherein HDAC1 is primarily expressed in glial cells while 

HDAC2 is expressed in mature neuronal cells in the neocortex. Genetic ablation of hdac1 or 2 

did not alter brain phenotypic expression or contribute to other brain abnormalities [259]. 

Simultaneous deletion of both proteins in NPC and astrocytes through glial fibrillary acidic 

protein promoter (GFAP)-Cre results in cell death-induced pathology, including that of the 

hippocampus, cortex and cerebellum. These results implicate HDAC1 and 2 in brain 

development, wherein redundancy in one protein might be compensated by the other [260]. 

Hagelkruys et al., 2014 [261] demonstrated that genetic ablation of hdac1/2 did not alter brain 

development using Nestin-Cre, in which mice that lacked both proteins showed CNS-related 
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abnormalities along with reduced proliferation and premature differentiation of NPC. In 

another study, hdac1 was implicated in maintaining neural cell proliferation in NSC in 

zebrafish [107]. This finding was mediated through prevention from premature cell cycle exit 

and differentiation in which hdac1 deletion promoted reduced proliferation and reduced brain 

size. Tang et al., 2019 [262] demonstrated that genetic knockout hdac1 and 2 resulted in 

decreased NPC via apoptotic cell death followed by reduced neocortex size. The study 

concluded that HDAC1 and 2 were critical for maintaining the density of NPC, neural 

migration and differentiation, and for correctly positioning NPC in the developing cortex. The 

external granule layer (EGL) in the developing cerebellar cortex demonstrated increased 

HDAC1 expression. The study also demonstrated that in Purkinje cells, GABAergic 

interneurons and migrating granule neurons, HDAC1 expression was low, and HDAC2 was 

high [263]. Thus, it may be concluded that HDAC1 and 2 were critical regulators of adult 

neurogenesis, wherein HDAC1 was essential for NPC proliferation, whereas HDAC2 regulated 

differentiation and maturation [Figure 2.9]. HDAC3 is the only HDAC in which deletion 

causes an adverse effect on neural proliferation and differentiation. Calcium/Calmodulin 

Dependent Protein Kinase II Alpha (CaMK2a)-Cre and Thy-1-Cre mediated knockout hdac3 

mice demonstrated neurologic deficits in the forebrain [264]. HDAC3 is required for cell cycle 

progression mediated through cyclin-dependent kinase 1 (CDK1), and genetic knockdown of 

HDAC3 resulted in reduced NPC proliferation and neuronal differentiation in the hippocampus 

[265]. However, in the cortex, siRNA-mediated hdac3 knockdown resulted in increased neural 

differentiation via increased BDNF, tubulin beta 3 class III (Tubb3) and neurogenin-2 

(Neurog2) expression [266]. TF TLX has an essential role in NSC proliferation via the 

recruitment of specific HADC to target loci such as p21 and phosphatase and tensin homolog 

(Pten) and promotes neuronal growth [267]. Ankyrin repeats domain-containing protein 11 

(ANKRD11) that interacts with HDAC3 and positively regulates gene expression associated 
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with neurogenesis, while genetic deletion of hdac3 causes decreased precursor proliferation. 

Unfortunately, little is known about the involvement of HDAC8 in neural differentiation and 

migration. However, in retinoic acid-treated P19 embryonic carcinoma cells, HDAC8 

regulated neuronal differentiation via cell cycle progression in which genetic deletion led to 

the formation of embryonic bodies [268]. HDAC8 deacetylates complex cohesion proteins 

involved in cohesion function, affecting transcription and mitosis mediated through the loss of 

topologically associated domain functions [269,270].  

 

Figure 2.9: Involvement of histone deacetylase enzymes in neurogenesis and neural migration: HDAC 
enzymes modulate transcriptional activity of histone and non-histone substrates that are involved in 
neuronal functions such as neurogenesis, neural migration, synaptic plasticity, synaptogenesis, and 
synaptic transmission. Genetic deletion of HDAC3 in hippocampal neurons inhibits neural differentiation, 
whereas, in the cortex neurons, HDAC3 deletion increases neural differentiation. HDAC9 and HDAC6 
overexpression negatively regulate the transcriptional activity of genes involved in neurogenesis and thus 
inhibits axonal regeneration and mitochondrial transport in axons. Further, HDAC1 regulates the 
proliferation of neural progenitor cells (NPCs), while HDAC2 regulates the differentiation and maturation 
of NPCs. Genetic deletion of HDAC8 causes embryoid body formation and consequently increases neural 
differentiation. 

In class IIa, genetic deletion of hdac4 promotes abnormal cerebellum development, including 

Purkinje neurons. Similarly, CaMK-Cre or Thy1-Cre mediated hdac4 deletion did not impart 

abnormalities, thereby implicating early embryonic mechanisms in knockout hdac4 mediated 

cerebellum defects [271–273]. Further, HDAC5 and 9 deletions did not alter neurogenesis and 

neural cell migration long with neuronal deficits. However, HDAC9 interaction with MEF2 

regulated axonal branching in an activity-dependent manner [274,275]. In contrast, HDAC6 

promoted axonal elongation through its localization in the distal end of axons and regulated 
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microtubule stabilization to enhance neuronal function and neurogenesis. Further, HDAC6 

inhibited axonal regeneration mediated through deacetylating calcium-binding outer 

mitochondrial protein, resulting in decreased mitochondrial transport in axons [276,277]. 

Despite mounting evidence, the full potential of HDAC in adult neurogenesis and neural 

migration remains to be elucidated. 

2.6.3. OXIDATIVE STRESS AND AUTOPHAGY 

Oxidative stress is essential in the etiology of neurodevelopmental disorders and NDD. 

Oxidative stress increases HDAC expression causing transcriptional repression and subsequent 

cell death. HDAC inhibitors, such as Trichostatin A, VPA, NaB, SAHA, and 4-phenylbutyric 

acid, have neuroprotective effects against oxidative stress, neuroinflammatory response, 

mitochondrial dysfunction, calcium signaling defects, and excitotoxicity. In SHSY-5Y 

dopaminergic neurons, 6-hydroxydopamine-induced oxidative stress results in increased 

HDAC activity. At the same time, the administration of VPA and NaB reversed HDAC over-

expression, increased H3 acetylation, reduced Bax/Bcl2 ratio, increased BDNF expression, and 

decreased pro-apoptotic factors activity [215,231]. Additionally, HDAC inhibitor butyrate in 

C57BI/6 female mice improved metabolism via reduced oxidative stress and apoptosis markers 

along with altered antioxidant activity [278]. Moreover, the administration of NaB in Sprague 

Dawley rat ganglion and PC12-NeuroD6 cells ameliorated oxidative stress-induced cell death 

and induced neurodevelopment and neurogenesis mediated through increased H3 and H4 

acetylation, increased CREB activity and enhanced oxidative phosphorylation biogenesis 

thereby reducing mitochondrial dysfunction [279,280]. Additionally, NaB increased protein 

kinase Cδ expression in cultured neurons, brain slices and animal models through Sp1, 3 and 

4 regulated increase in H4 acetylation and increased CBP/CREB binding, resulting in 

augmentation of dopaminergic neuronal cell death [281]. Administration of hydroxamate-

based HDAC inhibitors, such as BRD3811 and PCI-34051, ameliorated oxidative stress-
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induced neurotoxic effects through histone hyperacetylation and inhibited HDAC [282,283]. 

In mouse neural stem cells, NaB and VPA inhibited HDAC1 activity, reduced nitric oxide 

production and induced NSC proliferation via decreased tumor necrosis factor-alpha (TNF-α) 

and COX2 [284]. Dose-dependent pharmacologic inhibition of HDAC2 with Trichostatin A in 

ethanol-treated SK-N-MC ameliorated oxidative stress-induced cell death through decreased 

ROS production and increased memory function [285,286]. In AD, neuronal and murine model 

over-expressing tau increased oxidative stress-induced cell death mediated by HDAC6 and 2 

overexpression [213,214]. Increased insoluble tau led to neurofibrillary tangle formation, 

impaired proteasomal degradation and decreased microtubule stability. Vorinostat ameliorated 

traumatic brain injury and exhibited anti-depressant activity associated with reduced oxidative 

stress and neuroinflammatory response in mice neuronal tissue via H3 and H4 acetylation, 

HDAC and nuclear factor erythroid 2–related factor 2 (Nrf2)/ARE pathways [287,288]. 

Moreover, HDAC inhibitors, namely ING-6 and -66, promoted selective HDAC6 and hypoxia-

inducible factor (HIF1) prolyl hydroxylase inhibition along with Nrf2 activation leading to 

neuroprotection by reducing oxidative stress response [289]. Administration of VPA in the 

MPTP-treated PD mouse model attenuated neuronal cell death induced by increased oxidative 

stress and ameliorated histone hypoacetylation [290]. Wang et al., 2017 [291] demonstrated 

that a ketogenic diet ameliorated oxidative stress-induced neuronal cell death in Sprague-

Dawley rats post spinal cord injury. They concluded that the ketogenic diet inhibited HDAC 

activity and increased H3 and H4 acetylation. Moreover, this diet increased the expression of 

antioxidant-related genes such as SOD1 and Forkhead Box O3a (FOXO3a). Thus, 

hypoacetylation of histone and non-histone substrates due to increased HDAC activity caused 

oxidative stress [Figure 2.10]. 
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Figure 2.10: Histone deacetylase modulates autophagic cell death and oxidative stress: A decrease in 
histone acetylation results in autophagy impairment through mammalian target of rapamycin complex 1 
activation and consequently decreases in lysosomes function and autophagosomes formation. 
Additionally, activation of glycogen synthase kinase 3 beta through decreased H3 and H4 acetylation 
results in synaptic damage, and an increase in misfolded protein aggregates causes a decrease in synaptic 
plasticity and an increase in neurotoxicity, respectively. Moreover, enhanced histone deacetylases activity 
increases hypoxia-inducible factor 1-alpha activity and decreases antioxidants expression, which in turn 
increases oxidative stress-mediated decrease in cyclin-dependent kinase 5 expressions, resulting in 
protein misfolding aggregation and consequently increases neurotoxicity. 

Autophagy interference induces stress responses such as oxidative stress, endoplasmic 

reticulum stress, proteasome and aggresomes, and UPS via transcriptional regulating enzymes 

known as HDACs. In HeLa cells, HDAC6 functions to autophagy degradation of misfolded 

huntingtin aggregates, while in the mice model of HD, VCP mutations cause disease 

phenotypes mediated through impaired aggresomes followed by autophagic degradation of 

misfolded proteins rescued by HDAC6 overexpression [292]. Similarly, the HDAC1 and 3 

selective inhibitors 4b in N171-82Q transgenic mice ameliorated behavioral defects through I 

kappa B kinase (IKK) activation, increased mHtt degradation in the proteasome and the 
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lysosomes, and increased autophagic degradation [293]. However, in the AD mice model, 

HDAC6 played a different role as it increased tau hyperphosphorylation and impaired 

autophagy leading to misfolded protein accumulation [294].  Zhang et al., 2014 [185] 

demonstrated that selective HDAC6 inhibition with tubastatin A and ACY-1215 alleviates 

neurological defects, reduces tau hyperphosphorylation, and promotes autophagic clearance of 

Aβ aggregates in the AD transgenic mice model. Microtubule-associated protein tau inhibited 

the IST1 factor associated with ESCRT-III expression, followed by reduced autophagosome-

lysosome fusion required for autophagic degradation of misfolded protein aggregates leading 

to enhanced LC3-II and sequestosome I activity [295]. Recently, Wu et al., 2020 [296] 

demonstrated the different regulatory functions of yeast Rpd3 and its mammalian homolog 

HDAC1 in autophagy. Cholesterol derivatives increased dephosphorylation and nucleus-

cytoplasm shifting of the BmRpd3/HsHDAC1 complex via mammalian target of rapamycin 

(mTOR) complex inhibition and autophagic induction. Unfortunately, there is limited evidence 

on the functional effect of HDAC, apart from HDAC6, on autophagy in neurologic defects. 

Additional research is clearly required to characterize HDAC in autophagic degradation of 

misfolded protein aggregates to more fully understand their potential role in cognition and 

memory [Figure 2.10]. 

2.6.4. INFLAMMATORY AND IMMUNE RESPONSE 

Pathogenesis and progression of various neurologic defects have been associated with 

microglial activation and subsequent release of toxic cytokines. HDAC regulates inflammatory 

response and microglial activation through modulation of histone acetylation, which 

consequently activates pro-inflammatory genes and suppresses anti-inflammatory genes. 

Durham et al., 2017 [297] observed that specific KO of HDAC1 or 2 and selective inhibition 

of HDAC activity with MS-275, apicidine, or MI-192 in BV-2 murine microglia activated with 

lipopolysaccharides decreased pro-inflammatory cytokines TNF-α and interleukin 6 (IL-6) 
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expression. Pharmacologic inhibition of HDAC1 with SAHA in a mouse model of cerebral 

occlusion attenuated ischemia-induced H3 deacetylation, decreased COX2 expression, nitric 

oxide synthase and IL1β mRNA expression, and increased Bcl-2 and HSP70 expression 

[298,299]. Trichostatin A administration increased the expression of inflammatory markers 

such as TNF-α, IL-6, and nitric oxide synthase during lipopolysaccharides induction in glial 

cultures and hippocampal tissues [300]. The time and dose-dependent administration of VPA 

in primary neurons or enriched glial cultures exhibited chromatin condensation and DNA 

fragmentation [193]. Subsequent apoptotic cell death was mediated through disruption of the 

mitochondrial membrane potential and increased acetylation. VPA promoted neuroprotection 

against glutamate excitotoxicity in rat cortical neurons through HSP70 induction and increased 

specificity protein 1 (Sp1) acetylation and subsequent association with acetyltransferase p300 

[301]. Likewise, Chen et al., 2018 [302], demonstrated that VPA administration following 

spinal cord injury caused a phenotypic microglia shift from M1 to M2, followed by microglial 

deactivation. VPA induced STAT1/NF-κB acetylation and inhibited HDAC3 activity and the 

inflammatory response [Figure 2.11]. 

Similarly, SB administration in C57Bl/6NTac mice and a rodent model of hypoxia-ischemia 

stimulated neurogenesis, inhibited microglial activation, up-regulated the anti-inflammatory 

marker IL10 and decreased pro-inflammatory cytokine expression [303,304]. MS-275 and 

SAHA increased mGlu2 expression in dorsal root ganglion and spinal cord via increased 

p65/RelA acetylation, thus inhibiting neuroinflammatory response in a mouse model of 

persistent inflammatory pain [305]. Further, specific administration of DMA-PB in the 

traumatic brain injury rodent model enhanced H3 acetylation associated with the reduced 

neuroinflammatory response [306]. Park et al., 2016 [307] observed that NaB administration 

decreased lipid peroxides and serum GFAP, inhibited over-expression of pro-inflammatory 

cytokines in the cortex and striatum, and thus exhibited an anti-neuroinflammatory effect. 
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Figure 2.11: Histone deacetylase enzymes regulate neuroinflammation in neurodegeneration: HDAC 
decreases histone acetylation resulting in increased pro-inflammatory cytokines expression and 
decreased production of antioxidants. This will increase reactive oxygen species production and 
microglial activation that exhibit neuroinflammation. 

2.7. HISTONE DEACETYLASES INHIBITORS IN ALZHEIMER’S AND 

PARKINSON’S THERAPEUTICS 

Evolving research on the role of histone erasers (HDAC) and writers (HAT) in the human 

nervous system has improved our understanding of their potential involvement in 

neurodevelopmental deficits and NDDs. It is widely recognized that these enzymes modulate 

synaptic plasticity, cognition, neural plasticity, neural differentiation and neurogenesis. These 

processes are mediated through various biological and molecular pathways impacting neuronal 

function and potentially cell death. Further, it is well-established that these enzymes function 

through the deacetylation of histone and non-histone substrates along with interaction with 

each other. Thus, inhibiting specific HDAC enzymes and activating HAT enzymes is crucial 
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to promote neuroprotection. The following section discusses the potential mechanisms of 

HDAC inhibitors in the pathogenesis of NDDs. 

2.7.1. ROLE OF CHEMICALLY-SYNTHESIZED COMPOUNDS 

HDAC inhibitors have been divided into four groups based on structural and functional groups 

[255]. These include hydroxamate, tetra-peptide, aliphatic acid and benzamide inhibitors. 

Hydroxamate inhibitors have a short half-life and exhibit prolonged effects [376]. These 

include Trichostatin A, pyridoxamine, scriptaid and SAHA. Trichostatin A inhibits HDAC6 

activity, decreases calpain acetylation, and reduces calcium ions-induced neuronal cell death 

[308]. SAHA decreases histone acetylation and increases SMN2 expression in neuronal 

ectodermal tissues [309]. Further, non-selective hydroxamate inhibitors promote 

neuroprotection against ROS-mediated oxidative stress-induced neuronal cell death [282]. 

Moreover, VPA, Trichostatin A and NaB up-regulate BDNF and glial cell line-derived 

neurotrophic factor expression via increased histone acetylation and are neuroprotective in 

NDD [211]. PBA ameliorates disease progression via significantly increased DJ-1 expression 

(300%) in N27 dopamine cell lines, thus decreasing oxidative stress and α-synuclein toxicity 

[218]. PBA is neuroprotective in MPTP and rotenone-induced toxicity in mice models and 

ALS, HD and SMA models [310–312]. For neuroprotection, 4-phenylbutyric acid alters tau 

pathology by increasing inactive GSK3β [313]. SB and 4-phenylbutyric acid enhance tissue 

damage in the hypoxia mice model, whereas VPA reduces lesion volume and neurologic 

defects post-CNS injury [197] [Table 2.2]. 

Apicidin regulates HDAC2-3 activity and is neuroprotective against MPTP-induced 

neurotoxicity [159]. In cortical neurons, apicidine increased protein acetylation and HSP70 

expression [314], whereas, oral administration of MS-275 inhibited microglial activation, 

amyloid deposition and aggregation in the hippocampus and cortex and minimized the 

production of pro-inflammatory cytokines and nitric oxide. MS-275 can cross the BBB and has 
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a critical role in the development of any therapeutics for NDD [315].  

Table 2.2: Administration effects of histone deacetylase inhibitors in cellular and animal models and their 
implications in neurodegenerative disorders 

Inhibitor  
Dise
ase 

Model Interactions Results Dose References 

MS-
275/Entinostat 

AD  
APP/PS1-21 
Mice Model  

TNF, IL- 
1β, and iNOS  

Increases Acetylation, 
promotes neuroprotection  

 20 ng/ml [316]  

Vorinostat/ 
SAHA 

PD 

Mesencephalic 
neuron–glia 
cultures and 
reconstituted 

cultures  

 GDNF and 
BDNF 

prolongation cell survival 
and protection against 

neurotoxin-mediated cell 
death of dopaminergic 

neurons  

 1.25 μM [212]  

PD 
SH-SY5Y 

neuroblastoma 
cells 

GAPDH, α-
synuclein, 

CBP, P/CAF 

Prevention against alpha 
synuclein mediated 

neurotoxicity 
10 μM [317] 

AD 

Neuro-2a 
luciferase 

reporter cell 
line 

GRN 
Increases GRN expression 

level and promote 
neuroprotection 

0.51 μM [318] 

AD 
APPswe/PS1d
E9 Mice Model 

_ 
Rescue contextual memory 

formation and increases 
histone acetylation 

100 mg/kg [199] 

Trichostatin A 

PD  
mesencephalic 

neuron-glia 
cultures  

 BDNF and 
GDNF 

Neuroprotection  
50 nM and 

100 nM  
[211]  

PD 
SH-SY5Y Cell 

Line 

NRSF, UCH-
L1, mGluR1 
and BDNF 

Protect against MPTP 
mediated neurotoxicity 

1 mg/kg [319] 

AD 
APPswe/PS1δ
E9 transgenic 

(Tg) mice 

Gelsolin and 
Aβ 

Increases gelsolin 
mediated clearance of Aβ, 
promotes neuroprotection 

5 mg/kg [320] 

AD 
Swiss Albino 

Mice 
BDNF 

Provides neuroprotection 
and rescue memory deficits 

0.5 and 1 
mg/kg 

[286] 

Sodium butyrate 
[NaB] 

PD  
 6-

hydroxydopami
ne Rat Model 

BDNF  

Increases global H 
acetylation and 

upregulation of BDNF 
expression, reduces motor 

deficits  

150 and 
300 

mg/kg  
[215]  

PD 

Rotenone 
Induced 

Drosophila 
Model 

Sin3A 
complex 

Rescue locomotor deficits, 
induces neuroprotection, 
and decreases rotenone-

mediated dopamine 
deficiency 

10 mM [216] 

PD 
Cell Culture 

and Transgenic 
Drosophila 

Sin3A 
complex 

Rescues toxicity 
associated with synWT and 
synNLS constructs in SH-

SY5Y cells 

100 and 
200 mM 

[317] 

PD 
Dopaminergic 

Cell Model 
P53, H3 

Reverse the acetylation 
level of histone proteins, 
Reverses DNA damage 

due to transcriptional 
dysregulation 

 [321] 

AD APPPS1-21 

Myst4, Fmn2, 
Marcksl1, 
Gsk3β, 
GluR1, 

Snap25, 
Prkca, and 

Shank3 

Increases histone 
acetylation levels, restores 

memory functions 
1.2 g/kg [322] 

AD 
Sprague–

Dawley (SD) 
Rats 

Nrf2 

Increases hippocampus 
associated memory and 
learning ability, promotes 
global hypo acetylation 

840 
mg/kg/day 

[323] 

PD   Drosophila 
 CaMK, 
MEF2A 

Provides neuroprotection  
250 

mg/kg  
[217]  

Phenyl butyrate/ 
Sodium 

Phenylbutyrate 

PD 
Cell Culture 
and Animal 

Model 

PARK7 and 
DJ1 

Upregulate expression of 
DJ1 and provides 
neuroprotection 

 [218] 

PD 
MPTP Mouse 

Model 
P21, Nf-κB 

Regulate 
neuroinflammation and 

100 mg/kg 
body wt/d 

[324] 
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oxidative stress 

AD 
Tg2576 Mouse 

Model 

GSK3β, 
GluR1, PSD-

95 

Rescue brain histone 
acetylation and decreases 

tau phosphorylation 
200 mg/kg [197] 

AD 
Tg2576 Mouse 

Model 
NR2B, 

SAP102 

Promotes synaptic 
plasticity and structural 
modification, reverse 
memory deficits and 

abnormalities in spine 
density 

200 mg/kg [200] 

PD  

Mesencephalic 
neuron-glia 

cultures Mice 
Model 

GDNF and 
BDNF  

Protection against DA 
neuronal death, increases 

neurotropic factors 
expression in astrocytes  

 0.6 mM  [212] 

Valproate/ 
Valproic Acid 

[VPA] 

PD 
Rotenone 

Induced PD 
mouse Model  

α-Synuclein 
Increases H3 acetylation 
and reduces neurotoxicity 

2% VPA [325] 

PD 
MPTP Mouse 

Model 
H3 and α-
Synuclein 

Promotes histone 
hyperacetylation and 

promotes neuroprotection 
400 mg/kg [326] 

PD 
SH‐SY5Y Cell 

Culture 
HSP70, Akt, 

ERK1/2, Bcl-2 
Provide Neuroprotection 

against DA cell death 
5 mM  [327] 

AD 
APP(V717F) 
Mice Model 

GSK3β and 
Aβ 

Reduces Aβ deposition and 
rescue GSK3β mediated 

neurotoxicity 
400 mg/kg [328] 

AD 
APP23/ 
APP751 

APP, BACE1, 
and PS1 

Inhibits APP processing, 
neurite plaque formation, 

and rescue memory deficits 
30 mg/kg [329] 

AD 
CA1 pyramidal 
neuronal Rat 

Model  
 HDAC3 

 Reduces amyloid-β-
oligomer-induced synaptic 

plasticity impairment 
 20 μM  [173] 

RGFP966 PD  
SH-SY5Y Cells, 
C57BL/6 mice 

HDAC1, 
HADC2, p53, 

XIAP 

Protection against MPTP 
induced toxicity and DA 

neuronal cell death 

45 
mg/kg/day

  
 [164] 

 

2.7.2. IMPLEMENTATION OF NATURAL COMPOUNDS AND MICRO-RNAs  

Along with the positive effects of the HDAC inhibitors discussed above, natural-occurring 

biomolecules and small non-coding miRNA also play a pivotal role in neuroprotection via 

altering the histone acetylation level [330]. Curcumin, a natural flavonoid, has been found to 

be a potential neuroprotective role. Along with SAHA, a specific HDAC inhibitor, curcumin 

was found to induce neuroprotection in the AD cell culture model. Curcumin and SAHA have 

a synergistic effect on neuronal apoptosis due to Aβ toxicity at the concentration level of 1 μM 

and 5 μM for SAHA and curcumin, respectively [331]. Also, curcumin was found to regulate 

neuropathic pain by altering the HAT activity and transcriptional regulation of BDNF and Cox-

2 genes [332]. Experiments performed by Kwon et al., 2010 confirmed the possible 
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implications of resveratrol and melatonin in the neuroprotection from Aβ-induced 

neurotoxicity. Melatonin and resveratrol attenuate neuronal cell apoptosis via inducing Sirt1 

class III HDACs. At the concentration level of 20µM and 500µM for resveratrol and melatonin, 

respectively, expression activity of Extracellular signal-regulated kinases (ERK) increases 

while the level of ROS decreases and restores intracellular Glutathione (GSH) levels [333]. 

The in vitro analysis concluded that resveratrol deacetylates histone H3K9 and (NF-κB-p65) 

K310, which promotes transcriptional attenuation of NOX and NF-κB-p65 and eventually 

decreases cell apoptosis and DNA damage [334]. Melatonin, another naturally occurring 

HDAC inhibitor, promotes the induction of the glial cell-derived neurotrophic factors potent 

factor for alleviating neuronal apoptosis. Melatonin induces hyperacetylation of histone H3 via 

inhibiting HDAC3, HDAC5, and HDAC7 and regulates gene expression with the help of 

activating neuroprotective signaling pathways such as ERK 1/2 and PI3K/Akt along with an 

increase in NeuroD, GDNF and BDNF gene expression level both in vitro and in vivo [335]. 

Melatonin, a pleiotropic molecule, regulates the acetylation level of histone H3 proteins via 

increasing the expression of CBP/p300 along with the ERK signaling pathway, due to which 

expression level of Neurogenin1 and NeuroD1 increases, which promotes neuronal 

differentiation [336]. Melatonin also increases cell proliferation and cell survival rate, which 

promotes neurogenesis in the hippocampal region and decreases memory deficits [337]. 

Nicotine and cocaine, two chief agents of drug abuse, increase the accumulation of the FosB 

gene through the hyperacetylation of H3 and H4 at the promoter region, which is necessary for 

the behavioral addict. Further, nicotine-induced hyperacetylation of histone increases cognitive 

performance and has a significant role in synaptic plasticity via altering transcriptional 

regulation of gene expression [338].  

Small non-coding miRNA acts as a repressor of the gene expression phenomenon, which is 

modulated at the transcriptional level, regulated by epigenetic alterations and involved in the 
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modification of several biological functions such as cell differentiation, cell survival, axonal 

regeneration, DNA damage repair, shortening of telomere, inflammation, apoptosis, and 

autophagy. For example, HDAC3 regulated the expression pattern of miR29 and reduced the 

binding of HDAC3 and EZH2, which resulted in hyperacetylation of histones and reduced 

H3K27 trimethylation [339]. MiR-124 and miR-9 provide a significant role in regulating the 

expression level of HDAC5, which is the direct interacting partner of neural membrane 

glycoprotein GPM6A and plays a pivotal role in neural differentiation and elongation. HDAC5 

regulated the expression pattern of transcriptional factor MEF2C. miRNAs such as miR-124 

and miR-9 regulate neural elongation via inhibiting HDAC5 activity through regulation of the 

HDAC5-MEF2C-GPM6A pathway [340]. Mir-9, which is highly expressed in the neural 

region, also regulates long-term memory and improves neuronal cell survival post-ischemic 

stroke via inhibiting the expression activity of HDAC4, leading to an increase in H3 and H4 

acetylation status. In the study conducted, the expression level of miR9 slightly increased after 

20h of OGD treatment implicated the neural regeneration. Here, Sreekala et al., 2019 found 

that upregulation of miR-9 prevents neuronal apoptosis via targeting Bcl-2, while inhibition 

results in increased expression of BACE1 and CREB1 involved in resetting memory deficits 

[341] [Table 2.3]. 

Table 2.3: Neuroprotective role of biomolecules and micro-RNAs mediated inhibition of histone 
deacetylase enzymes 

Compound Disease Model Interactors Biological Function Dose References 

Curcumin  
  
  

 AD 
(N2a/APPswe) 

and (N2a/APPwt) 
AD Cell Model 

BACE1, PS1, 
P300  

Inhibit H3 acetylation, 
decreases BACE1 and 

PS1 expression  
20μM   [342] 

 AD 

Rat 
pheochromocyto

ma PC12 cells AD 
model  

Akt, CBP, 
p300, EP300  

Decreases neuronal cell 
apoptosis, promotes 

neuroprotection 
 5μM [331]  

 AD 

Chronic 
Constriction 

Injury (CCI) Rat 
Model 

 BDNF and 
Cox-2 

Curcumin inhibits the 
acetylation of H3 through 
reduction in p300/CBP 

activity and its binding to 
BDNF and Cox-2  

40 and 
60 

mg/kg  
[332]  

Resveratrol   AD 
HT22 

hippocampal cell 
line  

GSK3β, 
AMPK, GSH  

Promotes neuroprotection 
and decreases oxidative 
stress, induces SIRT1 

activity 

20µM  [333]  

Withania 
somnifera 

AD 
SH-SY5Y cell 
culture model 

NLRP3, 
HDAC2 

Inhibits the 
neuroinflammatory 

50 nM–1 
μM 

[343] 
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response through 
inhibiting the activity of 

NLRP3 and HDAC2 

Protopine AD 

3xTg-AD and 
P301S tau 

transgenic models 
of AD 

HDAC6, 
HSC70, UPS 

Promotes ubiquitination 
and degradation of 

pathological tau 
aggregates 

289.47 
ng/g 

[344] 

Oleuropein 
Aglycone 

AD Patient samples AMPK/mTOR 
Induce autophagy and 

reverses cognitive 
impairment 

12.5 mg/
kg 

[345] 

Melatonin  AD 
HT22 

hippocampal cell 
line  

GSK3β, 
AMPK, GSH  

 Acts as SIRT1 modulators 
promotes deacetylation of 

histones 
 500 µM  [333] 

miR-124 

__ 
P19 cells and 

primary neurons  
 HDAC5, 
MEF2C 

Inhibitor of HDAC5, 
increases neurite 

elongation  
0.4μg  [340] 

AD Mice Model Sirt1 
Improved synaptic 

plasticity and enhanced 
expression of BDNF 

__ [346] 

miR-134 AD 
Hippocampal CA1 

neurons  
CREB, YY1, 

and Sirt1  

 Promotes neuroprotection 
with increase in the 
expression level of 

neurotropic factors such 
as CREB and BDNF 

__ [347]  

miR-149-5p AD 293/APPsw cells BACE1, KAT8 

miR‐149‐5p regulated 
KAT8 and H4K16ac 

expression in an AD cell 
model, which may be 
associated with the 

pathological process of AD 

__ [348] 

miR-149 AD SH-SY5Y cells 
BACE1 and 

HDAC4 

Overexpression of miR-
149 may suppress Aβ 

accumulation and promote 
neuronal viability by 

targeting BACE1 in AD 
model cells 

__ [349] 

miR-138-5p PD 
SH-SY5Y Cell 
Culture Model 

Sirt1, Beclin1, 
P62 

Suppress MnCl2 induced 
autophagy, provide 

neuroprotection 
__ [350] 

miR-212-5p PD 
MPTP-induced 
mouse model 

SIRT2, p62, 
LC3 B 

Promotes neuroprotection 
through enhanced 

autophagy 
__ [351] 

 

2.7.3. EMERGENCE OF MULTI-TARGET DRUG LIGAND AS A POTENTIAL 

THERAPEUTIC AGENTS IN ALZHEIMER’S AND PARKINSON’S 

PATHOLOGY 

To overcome problems of toxicity and isoform-selectivity, multi-targeted ligands open up new 

doors for the development of therapeutic agents in neurodegeneration. However, it is a well-

established fact that chemical molecules able to modulate the activity of two or more targets 

have a synergistic or additive effect at low dose concentration along with the increase in 

pharmacokinetic properties [352]. This strategy shows possible implications in the case of 

NDDs because of their multifactorial state of origin with a special focus on AD and PD. Thus, 

the effect of a particular drug may be nullified due to the emergence of different pathological 
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pathways, which can be overcome by using multi-target drug ligands, in which one formulation 

consists of different drugs targeting different biological processes. The development and 

prosecution of multi-target drug ligands are emerging approach because of high patient 

compliance, ease of administration, development, and cost-effectiveness [353,354] [Figure 

2.12].  
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Figure 2.12: Histone deacetylase inhibitors as a potential multi-target directed ligand: Isoform selectivity 
of HDAC inhibitors remains the key issue to be addressed, which causes neuronal toxicity and side effects. 
Multi-target ligand approach becomes an emerging technique to develop dual inhibitor affecting HDAC and 
key proteins involved in Alzheimer’s disease pathology. Till now the combination of HDAC inhibitors with 
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phosphodiesterase type 5 (PDE5), transglutaminase 2 (TG2), and glycogen synthase kinase 3 beta (GSK3β) 
Inhibitors have been discovered as a therapeutic approach for Alzheimer's disease. Vorinostat remains the 
preferable HDAC inhibitor for developing a multi-target ligand. CM-414 is a multi-target ligand developed 
from the combination of Vorinostat and Vardenafil, Vorinostat and Sildenafil, and Tubastatin A and 
Nexturastat A having greater IC50 value as compared to compounds when used alone. Further, 3-
(substituted cinnamoyl) pyridine was developed from the combination of Vorinostat, an HDAC inhibitor 
and B001, a TG2 inhibitor having an IC50 value of 8.50 ± 0.08 μM and 4.75 ± 0.10 μM for HDAC1 and HDAC6, 
respectively. Similarly, GSK3β and HDAC hybrid based on multi-target ligand was developed from a 
combination of Vorinostat and SB-415286, and Vorinostat and Indirubin-3-Monoxime reflect an IC50 value 
of 12.78 ± 0.11 μM and 3.19 ± 0.08 μM for HDAC1 and HDAC6, respectively. 

Drugs such as MK-4305, A2A/MAOB, memoquin, and ChE-MAOB inhibitors have been 

administered in the treatment of AD and PD, which promotes inhibition of Aβ aggregates [355–

358]. In order to develop a multi-targeted ligand based on HDAC, a pharmacophore model of 

different hydrophobic cap moieties should be identified, which can be used as a therapeutic 

agent in HDAC-mediated neurotoxicity. Herein, we explain some recently developed HDAC-

based multi-directed ligands. Collateral modulation of HDAC and phosphodiesterase type 5 

has been developed in the treatment of NDD using the combination of Vorinostat and Tadalafil, 

a known phosphodiesterase type 5  inhibitor [359,360]. Inhibition of HDAC and 

phosphodiesterase type 5 modulates the global histone acetylation level associated with long-

term memory. Three models with different cap moieties, such as Sildenafil, Vardenafil, and 

Tadalafil associated with HDAC inhibitor, have been developed in which CM-414 emerged as 

a promising agent in the treatment of AD. The compound exhibits strong inhibitory activity 

against phosphodiesterase type 5 and HDAC6 but lower inhibitory activity against class I 

HDAC in vitro. The hepatic cell line THLE-2 culture model confirmed that it modulated the 

acetylation level of H3 histone and tubulin, while in the animal model, it showed a decrease in 

APP and tau expression levels [359]. Similarly, combinations of Vardenafil and Vorinostat and 

Tubastatin A and Nexturastat A targeting activity of HDAC6 and phosphodiesterase type 5  

have been developed aimed at the induction of H3 and tubulin acetylation [360,361]. The 

combined administration of Tubastatin A and Ebselen showed a neuroprotective effect in PC-

12 cells against ROS-mediated toxicity, which is higher than the administration of both 

compounds alone at concentrations of 5 μM and 10 μM, respectively [362]. Transglutaminase 
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2 (TG2), which is highly resistant to proteolytic conversion, forms Aβ aggregates. 

Simultaneous inhibition of TG2 and HDAC protects neuronal cell death. The combination of 

vorinostat and 3-(substituted cinnamoyl) pyridine as an interacting partner induced acetylation 

of histone H3 and tubulin. In SHSY-5Y cell culture, the assay confirmed its inhibitory activity 

at 50 μM and protected neurons against glutamate [5 mM] induced toxicity [363]. Additionally, 

inhibiting HDAC and GSK3β with a dual inhibitor is a promising therapeutic strategy for 

minimizing the etiology of AD. The combination of hydroxamic acid and phthalimide moiety 

is known to modulate H3 acetylation, inhibit tau hyperphosphorylation at a concentration level 

up to 100 μM in SH5Y cells and promote the neuroprotective effects in neurons with toxic 6-

hydroxydopamine [364]. Moreover, the compound can provide neurogenesis and decreased 

neuroinflammation. NF-κB is a transcription factor causing inflammation in various NDDs 

regulated by HDAC activity. Developing HDAC and NF-κB-based dual inhibitor is a 

promising strategy for providing neuroprotection. The combination of chalcones-based HDAC 

and NF-κB dual inhibitor promotes the neuroprotective effect and inhibits both HDAC and 

TNF-α induced NF-κB activity at concentration levels 60-190 μM and 8-41 μM, respectively 

[365]. 
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CHAPTER III: MATERIALS AND METHODOLOGY 
 

3. INTRODUCTION 

The following chapter describe the tools and techniques used in the study to achieve pre-

defined objectives. Initially, we have discussed the common techniques that implemented in 

the study, namely data collection and pre-processing, PPI network analysis, network clustering, 

and HUB signatures identification. Lately, we have divided our methodology as per the 

objective’s requirement. For objective 1, techniques such as identification of acetylation 

signatures, involvement of potential HDAC enzymes, and critical lysine residues involved in 

disease pathogenesis. Likewise, for objective 2, techniques, namely crosstalk between lysine-

induced PTMs, impact of lysine mutation on disease pathogenesis, and impact of lysine 

mutation on ubiquitination and SUMOylation. Additionally, for objective 3, we have focused 

on the role of lysine acetylation on metal toxicity-induced AD, whereas, for objective 4, we 

have focused on machine learning algorithms to identify novel HDAC inhibitor [Figure 3.1].  

3.1. DATA COLLECTION AND MINING 

The microarray gene expression datasets for AD and PD were obtained from NCBI-GEO 

database (https://www.ncbi.nlm.nih.gov/geo/) [366]. Further, data from two databases, such as 

DisGeNET (https://www.disgenet.org/) [367] and the comparative toxicogenomics database 

(http://ctdbase.org/) [368] were collected for genes associated with the progression of AD and 

PD. Similarly, Information related to HDAC interactors were extracted from two databases, 

such as comparative toxicogenomics database and HIPPIE (http://cbdm-01.zdv.uni-

mainz.de/~mschaefer/hippie/) [369]. In addition, the datasets related to trace elements, namely 

chromium, cobalt, copper, and nickel were obtained from the online freely accessible 

comparative toxicogenomics database version 2019 (http://ctdbase.org/) [368]. For evaluation 

of protein structure, high-resolution co-crystallized HDAC6 and HDAC10 protein structures 

were extracted from RCSB PDB database (https://www.rcsb.org/) [370]. Similarly, the 

https://www.ncbi.nlm.nih.gov/geo/
https://www.disgenet.org/
http://ctdbase.org/
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/
http://ctdbase.org/
https://www.rcsb.org/
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compounds datasets for training data were extracted from binding database 

(https://www.bindingdb.org/bind/index.jsp) [371] and test sets were collected from DrugBank 

database (https://go.drugbank.com/) [370].  

3.2. DATA PREPROCESSING AND FILTERATION 

The datasets were analyzed in R-environment for data normalization and data pre-processing. 

Further, Limma was used to identify differential expressed genes in both AD and PD compared 

to controls. The p-value <0.05 and І Log2 FC І > 1.1 was regarded as cut-off criteria to screen 

for significant differential expressed genes. The BioMart data-mining tool 

(https://m.ensembl.org/info/data/biomart/index.html) was applied to convert probe symbols 

into gene symbols. The databases were searched for duplicates, and redundancy in data was 

removed manually. Lastly, Venn analysis was performed using the online tool called as Venny 

2.1 (https://bioinfogp.cnb.csic.es/tools/venny/) to identify common signatures. Additionally, 

these structures additionally went through the dock prep section of UCSF Chimera 1.10 

(https://www.cgl.ucsf.edu/chimera/) [372] on account of including charges and missing 

residues. Binding and catalytic mode information of HDAC6 and HDAC10 has been studied 

from different scientific sources. Protein Pdb structures undergo energy minimization through 

ModRefiner: High-Resolution Protein structure Refinement 

(https://zhanglab.ccmb.med.umich.edu/ModRefiner/) [373] from Zhang Lab available online 

freely. 

3.3. PROTEIN-PROTEIN INTERACTION ANALYSIS 

The interaction network of common signatures was obtained from STRING database version 

11.0 (https://string-db.org/) [374]. The search criteria in the STRING database are limited to a 

confidence score of 0.5. The obtained networks were imported into Cytoscape software version 

3.8.0 (https://cytoscape.org/) [375] for protein data integration, PPI network visualization, and 

PPI network analysis. Subsequently, node degree, number of edges, clustering coefficient, 

https://www.bindingdb.org/bind/index.jsp
https://go.drugbank.com/
https://m.ensembl.org/info/data/biomart/index.html
https://bioinfogp.cnb.csic.es/tools/venny/
https://www.cgl.ucsf.edu/chimera/
https://zhanglab.ccmb.med.umich.edu/ModRefiner/
https://string-db.org/
https://cytoscape.org/
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network homogeneity, shortest path length, and network density of AD and PD PPI network 

were calculated. 

3.4. NETWORK CLUSTERING AND HUB SIGNATURE IDENTIFICATION 

The AD and PD networks were merged using network merge tool of cytoscape based on two 

methods, namely network union and network intersection. Afterwards, network clustering was 

performed through molecular complex detection (http://apps.cytoscape.org/apps/mcode) [376] 

plugin of Cytoscape software. The clusters so formed were analyzed and visualized on different 

parameters such as the number of proteins (nodes) and physical interactions between them 

(edges), network clustering coefficient, characteristics path length, network centralization and 

homogeneity, and network density. The clusters of all PPI networks were statistically analyzed 

and ranked separately based on node degree. Lastly, the HUB proteins were identified using 

CytoHubba (http://apps.cytoscape.org/apps/cytohubba) [377] through default parameters.  

3.5. FUNCTIONAL ENRICHMENT ANALYSIS OF HUB SIGNATURES 

HUB proteins overrepresentation was performed through bioinformatics resource EnrichR 

(http://amp.pharm.mssm.edu/Enrichr/) [378] and QuickGO (https://www.ebi.ac.uk/QuickGO/) 

[379] to identify the molecular function, biological process, cellular function. Further, pathway 

analysis of HUB proteins was carried out using freely accessible online databases and tools 

such as the REACTOME database (https://reactome.org/) [380] and FunRich version 3.1.3 

(http://funrich.org/) [381]. For statistical assessment of GO analysis and pathway analysis a p-

value, less than 0.05 was considered significant, and fold enrichment value was taken 

considered. Here, p-value reflects the chance of observing “n” number of genes in a gene list 

annotated to a specific term, whereas, fold enrichment of a term was designated as 

overrepresented compared to the background, where overrepresentation is denoted as positive 

fold enrichment. 

 

http://apps.cytoscape.org/apps/mcode
http://apps.cytoscape.org/apps/cytohubba
http://amp.pharm.mssm.edu/Enrichr/
https://www.ebi.ac.uk/QuickGO/
https://reactome.org/
http://funrich.org/
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3.6. OBJECTIVE 1: TO IDENTIFY NOVEL COMMON BIOMARKERS IN AD AND 

PD BASED ON MULTI-OMICS APPROACH 

In this section, we have presented a detailed picture of tools used to crucial signatures that 

involved in the pathogenesis of AD and PD, simultaneously. Further, we discussed the 

techniques implemented to identify the acetylation signatures of HUB signatures, that is, 

common proteins and TFs. In addition, we have defined the tools and techniques to determine 

the critical acetylated residues and their respective HDAC enzymes in the pathogenesis of AD 

and PD. 

3.6.1. IDENTIFICATION OF HUB SIGNATURES-TRANSCRIPTION FACTORS 

REGULATORY NETWORK AND CELLULAR LOCALIZATION PREDICTION 

The subcellular localization of HUB genes was calculated to understand the mechanism of 

action of protein and its associated functions using CELLO version 2.5: subCELlular 

LOcalization predictor (http://cello.life.nctu.edu.tw/) [382]. To identify the TFs that control the 

HUB proteins at a transcriptional level, TFs-target interactions were obtained from JASPAR 

version 8 (http://jaspar.genereg.net/) [383] and an interaction network between TFs and HUB 

proteins was created using NetworkAnalyst tool version 3.0 

(https://www.networkanalyst.ca/home.xhtml) [384].  

3.6.2. PREDICTION OF ACETYLATION SIGNATURES AND DEACETYLATION 

SITES 

Based on the previous experimental studies, it was evident that acetylation signatures were 

associated with the pathogenesis of AD and PD through altering gene expression patterns. 

Thus, we used the Epigenomics Roadmap CHIP-seq dataset, which is an inbuilt feature of 

EnrichR for their potential acetylation marks of HUB proteins. Moreover, acetylation sites in 

CREB1 and HINFP have been predicted through machine learning algorithm-based, freely 

accessible online tools such as MuSite Deep (https://www.musite.net/) [385] and PSKAcePred 

http://cello.life.nctu.edu.tw/
http://jaspar.genereg.net/
https://www.networkanalyst.ca/home.xhtml
https://www.musite.net/
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(http://bioinfo.ncu.edu.cn/inquiries_PSKAcePred.aspx) [386]. Lastly, the type of deacetylating 

enzyme associated with CREB and HINFP was predicted with the help of a freely accessible 

online web server named Deep-PLA (http://deeppla.cancerbio.info/index.html) [387].   

3.6.3. PREDICTION OF CONSERVED LYSINE RESIDUES 

The conserved sequence was predicted using multiple sequence alignment of 21 window sizes 

of lysine site residues that are ten residues on both left and right end containing lysine 

acetylating site in the middle for both CREB1 and HINFP using ClustalW multiple sequence 

alignment tool (https://www.genome.jp/tools-bin/clustalw) [388]. Additionally, the structural 

selectivity of lysine acetylating sites has been predicted with the help of PSIPRED: protein 

structure prediction server (http://bioinf.cs.ucl.ac.uk/psipred/) [389]. Subsequently, the 

secondary structure of the protein has been correlating with their respective protein acetylating 

sites. 

3.7. OBJECTIVE 2: TO DISSECT HISTONE DEACETYLASE MECHANISM AND 

KEY LYSINE RESIDUES IN ASSOCIATION WITH NOVEL BIOMARKERS 

In the following section, we have described the tools and techniques to identify the potential 

crosstalk between acetylation, ubiquitination, and SUMOylation in AD and PD pathogenesis, 

simultaneously in relation with HDAC interactors. 

3.7.1. INTEGRATE POST-TRANSLATIONAL MODIFICATION SITES 

Two databases, such as dbPTM (http://dbptm.mbc.nctu.edu.tw/) [390] and PLMD 

(http://plmd.biocuckoo.org/) [391] were used to extract the information of PTM (Acetylation, 

Ubiquitination, and SUMOylation) on regulatory proteins. Once the data were extracted, they 

were combined manually, and redundancy in PTM sites was removed. The PTM sites are sorted 

out according to PTM and modification sites. 

 

 

http://bioinfo.ncu.edu.cn/inquiries_PSKAcePred.aspx
http://deeppla.cancerbio.info/index.html
https://www.genome.jp/tools-bin/clustalw
http://bioinf.cs.ucl.ac.uk/psipred/
http://dbptm.mbc.nctu.edu.tw/
http://plmd.biocuckoo.org/
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3.7.2. STRUCTURAL ANALYSIS OF HUB SIGNATURES 

3.7.2.1. SECONDARY STRUCTURE ANALYSIS 

PTM influence the secondary structure of the protein, which regulates its biological functions. 

We extract the protein secondary structure information from DISOPRED3 

(http://bioinf.cs.ucl.ac.uk/psipred/) [392] on both PTM and non-PTM lysine residue. 

DISOPRED3 is an open-source tool created by the UCL Department of Computer Science: 

Bioinformatics Group. The output was classified into three categories, such as coiled, helix, 

and strand. 

3.7.2.2. DISORDER PREDICTION 

The sequence for regulatory proteins-containing PTMs were extracted from the PMLD 

database. Structural order and disorder for these proteins were predicted through DISOPRED3, 

which uses PSIPRED software for disorder prediction. The extracted data were separated into 

two categories, such as the ordered region and the disordered region, as analyzed from the 

output.  

3.7.2.3. IN-SITU CROSSTALK ANALYSIS 

In-situ crosstalk analysis was performed to check the competition of PTMs on the same site. 

Data collected from PLMD and dbPTM were used to identify different PTMs on the same 

amino acid residues. The residues which have more than one PTMs were selected for further 

analysis. 

3.7.2.4. HOTSPOT ANALYSIS 

For all the identified PTM crosstalk sites, a motif of +7 and -6 amino acid stretch was extracted 

from the PLMD database from the corresponding protein sequence. For each identified 

acetylation site, the frequency of probable PTM site was calculated in the vicinity for the 

defined motif. Every motif containing ≥2 lysine residues, excluding the central lysine residue, 

was called a PTM hotspot region. Further, if a motif contained ≥2 PTMs on the same site, it 

http://bioinf.cs.ucl.ac.uk/psipred/
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will be considered a PTM crosstalk hotspot.  

 

Figure 3.1: Workflow of the current study. The study is divided according to the different objectives as 
mentioned in the figure.  
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3.7.3. IMPACT OF LYSINE MODIFICATION 

3.7.3.1. LYSINE MUTATION AND DISEASE SUSCEPTIBILITY 

The functional impact of lysine mutations was studied with the help of online tools such as 

Pmut (http://mmb.irbbarcelona.org/PMut/) [393], PolyPhen2 

(http://genetics.bwh.harvard.edu/pph2/) [394], PANTHER 

(http://www.pantherdb.org/tools/csnpScoreForm.jsp) [395], and SNAP2 

(https://rostlab.org/services/snap/) [396]. The obtained results were transformed into numerical 

values in order to visualize them on the stack bar graph. The particular mutation is said to be 

disease susceptible if its confidence score is greater than or equal to ‘3’, which is called a 

threshold value. 

3.7.3.2. IMPACT OF LYSINE MUTATION ON PROTEIN STABILITY 

The protein structure was analyzed for force field energy upon lysine mutation. The lysine 

residue was mutated into glutamine (Q) and Leucine (L), and their total energy was calculated 

with the help of an online prediction tool that is DynaMut 

(http://biosig.unimelb.edu.au/dynamut/) [397]. The variation in the energy was estimated to 

observe the impact of lysine mutation on poly (ADP-ribose) polymerase 1 (PARP1) protein 

stability.  

3.7.4. IMPACT OF LYSINE MUTATION ON ACETYLATION, UBIQUITINATION, 

AND SUMOYLATION 

To investigate the contribution of lysine in acetylation, ubiquitination and SUMOylation on 

the nearby sites, substitute lysine residue to glutamine (Q) and leucine (L). MutPred2 

(http://mutpred.mutdb.org/) [398], an online tool was used to predict the physical significance 

of lysine mutation on acetylation, ubiquitination, and SUMOylation. The same tool was also 

used to predicted the affected motifs and pathogenic score upon lysine mutation either with 

glutamine and leucine. Further, BDM-PUB (http://bdmpub.biocuckoo.org/) [399] and 

http://mmb.irbbarcelona.org/PMut/
http://genetics.bwh.harvard.edu/pph2/
http://www.pantherdb.org/tools/csnpScoreForm.jsp
https://rostlab.org/services/snap/
http://biosig.unimelb.edu.au/dynamut/
http://mutpred.mutdb.org/
http://bdmpub.biocuckoo.org/
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SUMOgo (http://predictor.nchu.edu.tw/SUMOgo/) [400] were employed to predict the 

potential ubiquitination and SUMOylation on nearby sites, respectively. The sites which are 

affected due to modification of lysine by either glutamine and leucine were tallied. The affected 

sites were classified into two groups that are gain in function on nearby sites and loss of 

function on nearby sites.  

3.8. OBJECTIVE 3: TO IDENTIFY POTENTIAL MICRO-RNAs AND BIOMARKERS 

REGULATORY NETWORK IN THE PATHOGENESIS OF 

NEURODEGENERATIVE DISEASES 

In the following section, we have discussed the tools and techniques that have been employed 

to identify the potential regulatory network of biomarkers-miRNAs in the pathogenesis of 

metal toxicity-induced AD. Herein, we identified the TFs-HUB markers interaction followed 

by putative lysine sites of TFs. Lately, through the different tools, we have identified putative 

miRNAs and long ncRNAs in the pathogenesis of metal toxicity-induced AD.  

3.8.1. IDENTIFICATION OF HUB PROTEINS-TRANSCRIPTION FACTORS 

ASSOCIATION 

It is a well-established fact that regulatory biomolecules, such as TF’s, play a crucial role in 

gene regulation. TFs determine the transcriptional fate of target genes and, based on that, 

activates or deactivates the transcriptional activity of a particular gene. HUB genes were 

analyzed with JASPAR (http://jaspar.genereg.net/) [383], an open-source and online database 

of curated TFs. The information extracted from JASPAR was imported into NetworkAnalyst 

version 3.0 (https://www.networkanalyst.ca/) [384], an online freely available tool to form an 

interaction network between genes-TFs. Top interacting nodes were selected for further 

investigation and analysis.  

 

 

http://predictor.nchu.edu.tw/SUMOgo/
http://jaspar.genereg.net/
https://www.networkanalyst.ca/
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3.8.2. PREDICTION OF PUTATIVE ACETYLATION SITES 

Acetylation is a lysine-specific PTM, which promotes euchromatin structure and activates the 

transcription process. To find out the potential acetylated lysine residues of identified TFs, two 

online web-servers, such as Deep PLA (http://deeppla.cancerbio.info/) [387] and GPS-PAIL 

(http://pail.biocuckoo.org/) [401] were used. The study is restricted to identify the potential 

CREBBP induced acetylation sites. Deep PLA is a deep neural network-based online prediction 

tool, where four models are combined into one complete connection layer. Similarly, GPS-

PAIL is a machine learning-based online prediction tool, which predicts acetylated sites of 

seven different acetyltransferases. 

3.8.3. IDENTIFICATION OF MICRO-RNAs INTERACT WITH TRANSCRIPTION 

FACTORS AND ACETYLATING ENZYME 

miRNA are post-transcriptional regulators, which regulate the expression of particular proteins. 

To predict the putative miRNAs bound with CREBBP and identified TFs simultaneously, we 

used an online integrated miRNA target database known as mirDIP 

(https://ophid.utoronto.ca/mirDIP/) [402]. Only those miRNAs with confidence scores high 

(top 5%) and very high (top 1%) were selected for further studies. Further, the Venny tool was 

used to identify the common miRNAs among identified TFs and acetylating enzyme. 

Moreover, the predicted miRNAs were subjected to TissueAtlas (https://ccb-web.cs.uni-

saarland.de/tissueatlas/) [403], an online web server to identify the potential of predicted 

miRNAs for expressing in healthy brain tissues. 

3.8.4. EXPRESSION OF MICRO-RNAs IN BRAIN AND PREDICTION OF 

PUTATIVE LONG NON-CODING RNA 

It is crucial to validate that the predicted miRNAs are involved in the pathogenesis of AD and 

CNS diseases. MIENTURNET (http://userver.bio.uniroma1.it/apps/mienturnet/) [404], an 

online web tool devised for miRNA functional enrichment analysis and miRNA-target 

http://deeppla.cancerbio.info/
http://pail.biocuckoo.org/
https://ophid.utoronto.ca/mirDIP/
https://ccb-web.cs.uni-saarland.de/tissueatlas/
https://ccb-web.cs.uni-saarland.de/tissueatlas/
http://userver.bio.uniroma1.it/apps/mienturnet/
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prediction. Similarly, miRNAs involved in signaling transduction were predicted using the 

MIENTURNET web tool. Further, it is a well-established notion that gene expression is 

regulated by non-coding RNAs, such as long non-coding RNAs and circular RNAs. Thus, it is 

equally important to identify the long non-coding RNAs that will regulate the activity of 

selected miRNAs in the pathogenesis of AD. StarBase V2.0 (http://starbase.sysu.edu.cn/) [405] 

was used to identify the potential non-coding RNA that simultaneously binds with selected 

miRNAs.  

3.9. OBJECTIVE 4: TO EXPLORE NOVEL HISTONE DEACETYLASE INHIBITOR 

USING MACHINE LEARNING APPROACH 

HDAC inhibitors known to promote neuroprotection through inhibition of HDAC activity. 

Thus, identification of novel HDAC inhibitor is critical to reverse AD and PD pathology. Thus, 

we have defined a methodology consisting of machine learning algorithms and toxicological 

analysis of anti-psychotic drugs that targets HDAC10 to reverse AD and PD pathology. 

3.9.1. DATA COLLECTION AND TARGET REFINEMENT 

A total of 543 compounds annotated with IC50 values for human HDAC3 were downloaded 

from the ChEMBL database (https://www.ebi.ac.uk/chembl/) [406].  and submitted for data 

pre-processing. First, the compounds without definite IC50 values were discarded. Second, the 

salt components were removed from the compounds with the “SaltRemover” function of 

RDKit. The compounds were then neutralized and canonicalized by the “Uncharged” and 

“standardize smiles” methods of MolVS (version 0.1.1). Third, for any compound with 

multiple IC50 values determined by different bioassays, de-duplication was applied by 

averaging the IC50 values as its bioactivity. Thus, 476 compounds were extracted as training 

set. For test set, anti-depressive drugs were collected from ChEMBL Database. After removing 

duplications and other filters, a total of 239 compounds were selected as test set. 

  

http://starbase.sysu.edu.cn/
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3.9.2. MOLECULAR DESCRIPTORS CALCULATION 

Apart from the descriptors-based molecular features, two types of fingerprints were calculated 

with RDKit (version 2019.9.3) and used for modeling, i.e., MACCS keys (166 bits) and 

Morgan2 fingerprints (1024 bits). Unlike descriptors, no feature selection was applied to 

molecular fingerprints [407]. 

3.9.3. MACHINE LEARNING MODEL PREPERATION 

Compounds having the highest inhibitory effect that is IC50 < 40 nM were classified as 

inhibitor/actives, while the compounds having weak inhibitory potential that is IC50 > 40 nM 

were classified as non-inhibitor/decoys. In order to compute the 2D and 3D chemical, physical, 

and geometrical properties freely available software and tools were used such as DataWarrior 

(http://www.openmolecules.org/datawarrior/) [408] from openmolecules and ACD 

ChemSketch (https://www.acdlabs.com/resources/freeware/chemsketch/) [409] used to draw 

the chemical structure and to calculate molecular properties. Machine learning models were 

applied to test set data in order to compute their binding effect with the help of freely available 

software Weka 3.8 (https://www.cs.waikato.ac.nz/ml/weka/) developed by The University of 

Waikato (New Zealand) [39]. Weka developed four classification model based on different 

algorithms which are as follow random forest model, deep learning model, logistic model, and 

k-star model. 

3.9.4. ADMET ANALYSIS AND BLOOD BRAIN BARRIER PREDICTION 

Pharmacokinetic and pharmacodynamics properties were used to study the pharmacological 

action of compounds administered to a particular cell. The compounds obtained from data 

sorting and filtering were subjected to analyze ADMET properties, bioactivity score, and BBB 

permeability using different online web servers, such as LightBBB 

(http://bioanalysis.cau.ac.kr:7030/) [410], CBLigand (https://www.cbligand.org/BBB/) [411], 

and admetSAR (http://lmmd.ecust.edu.cn/admetsar2/) [412]. Further structural comparison 

http://www.openmolecules.org/datawarrior/
https://www.acdlabs.com/resources/freeware/chemsketch/
http://bioanalysis.cau.ac.kr:7030/
https://www.cbligand.org/BBB/
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between HDAC10 control drug, namely pracinostat and selected anti-depressive drugs were 

calculated with the help of ChemMine tools (https://chemminetools.ucr.edu/) [413]. 

3.9.5. MOLECULAR DOCKING AND MOLECULAR DYNAMIC SIMULATION 

In order to check the binding efficiency of filtered compounds with HDAC10, molecular 

docking studies were performed with the help of freely available web service Webina 1.0.3 

(https://durrantlab.pitt.edu/webina/) [414]. Total binding energy and binding pose of ligand to 

specific HDAC were examined carefully. Before docking studies, ligand set preparation is done 

with the help of the OpenBabel tool (http://openbabel.org/wiki/Main_Page) [415], which 

converts the ligand format from mol to mol2. 

3.10. STATISTICAL ANALYSIS 

All the data are expressed as mean + SEM. The statistical measurement was done using one 

way ANOVA followed by Tukey’s multiple comparison test. The statistically significant 

values were considered for p<0.05. 
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CHAPTER IV: CREB1K292 AND HINFPK330 AS PUTATIVE 

COMMON THERAPEUTIC TARGETS IN ALZHEIMER’S 

AND PARKINSON’S DISEASE 
 

4. INTRODUCTION 

Integration of omics data and deciphering the mechanism of a biological regulatory network 

could be a promising approach to reveal the molecular mechanism involved in the progression 

of complex diseases, including AD and PD. Despite having an overlapping mechanism in the 

etiology of AD and PD, the exact mechanism and signaling molecules behind them are still 

unknown. Further, the acetylation mechanism and HDAC enzymes provide a positive direction 

towards studying shared phenomenon between AD and PD pathogenesis. For instance, 

increased expression of HDACs causes a decrease in protein acetylation status, resulting in 

decreased cognitive and memory function. Herein, we employed an integrative approach to 

analyze the transcriptomics data that established a potential relationship between AD and PD. 

Data preprocessing and analysis of four publicly available microarray datasets revealed 10 

HUB proteins, namely CDC42, CD44, FGFR1, MYO5A, NUMA1, TUBB4B ARHGEF9, 

USP5, INPP5D, and NUP93 that may be involved in the shared mechanism of AD and PD 

pathogenesis. Further, we identified the relationship between the HUB proteins and TFs that 

could be involved in the overlapping mechanism of AD and PD. CREB1 and HINFP were the 

crucial regulatory TFs that were involved in the AD and PD crosstalk. Further, lysine 

acetylation sites and HDAC enzyme prediction revealed the involvement of 15 and 27 potential 

lysine residues of CREB1 and HINFP, respectively. Our results highlighted the importance of 

HDAC1(K292) and HDAC6(K330) association with CREB1 and HINFP, respectively, in AD 

and PD crosstalk. In conclusion, our study potentially highlighted the crucial proteins, TFs, 

biological pathways, lysine residues, and HDAC enzymes shared between AD and PD at the 

molecular level. The findings can be used to study molecular studies to identify the possible 

relation in AD-PD crosstalk. 
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4.1. RESULTS AND DISCUSSION 

4.1.1. TRANSCRIPTOMICS SIGNATURES INVOLVED IN ALZHEIMER’S AND 

PARKINSON’S PATHOLOGY 

The obtained datasets were normalized through quantile normalization and log2 

transformation. Statistically, in microarray data, the intensity values are relative numbers, and 

thus log2 transformation is necessary to make variations similar across the order of magnitude. 

Boxplots of data before normalization and after normalization were prepared to check the 

background corrections in the datasets [Annexure 1]. Further, independent histograms of 

normalized data with a color intensity such as green for control and red for the disease were 

prepared to check the variation in the required datasets [Annexure 2(A)]. Our results identified 

4736 (GSE7621), 2961 (GSE19587), 1989 (GSE1297), and 3634 (GSE28146) DEGs [Table 

4.1]. Independent volcano plots of different datasets were used to measure the extent of DEGs 

in AD and PD [Annexure 2(B)]. After identifying DEGs, the probe IDs were converted into 

respective gene symbols, and then Venn analysis of DEGs was performed. Venn analysis 

results demonstrated 579 DEGs in AD while 406 DEGs in PD. 

Table 4.1: Datasets obtained from the gene expression omnibus database for Alzheimer’s and Parkinson’s 
disease 

GEO 

Accession 

Number 

Platform 
Total 

Samples 

Control 

Samples 

Disease 

Samples 

Total 

DEGs 

Upregulated 

DEGs 

Downregulated 

DEGs 

Alzheimer’s Disease 

GSE1297 

Affymetrix 

Human Genome 

U133A Array 

31 9 22 1989 949 1040 

GSE28146 

Affymetrix 

Human Genome 

U133 Plus 2.0 

Array 

30 8 22 3634 1718 1916 

Parkinson’s Disease 

GSE7621 

Affymetrix 

Human Genome 

U133 Plus 2.0 

Array 

25 9 16 4736 2508 2228 

GSE19587 

Affymetrix 

Human Genome 

U133A 2.0 Array 

22 10 12 2961 1457 1504 
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4.1.2. PROTEIN-PROTEIN INTERACTION NETWORK IN ALZHEIMER’S AND 

PARKINSON’S DISEASE 

PPI interaction analysis confirmed the presence of 492 proteins with 2335 physical interactions 

and 311 proteins and 1014 physical interactions in the AD and PD network, respectively. The 

clustering coefficient of AD and PD networks was found to be 0.244 and 0.248, which implies 

the higher co-expression of DEGs in AD networking than PD networking. Further, the 

characteristic path length of AD and PD networks are 3.504 and 3.390, respectively. Herein, 

the network centralization was found to be 0.107 and 0.200, whereas, the network 

heterogeneity was found to be 1.028 and 1.057 for AD and PD PPIs network, respectively. The 

analysis found out that the network density of AD and PD networks is 0.019 and 0.021, 

respectively, which implements that particular node in the PD PPI network has more 

participants compared to the AD PPI network [Figure 4.1].  

Further, network biology using PPI networking becomes the important tool to establish a 

relationship between two proteins and identify the interactive pattern of proteomics data  [416]. 

In addition, PPI networking provides an in-depth understanding of the biological characteristics 

of proteins encoded through DEG’s and helps in estimating their biological significance [417]. 

PPI network is characterized by the presence of nodes and edges along with other topological 

features, namely clustering coefficient, characteristics path length, network density, and 

network centralization [418]. The protein in the networks were represented as nodes marked in 

a circle, while their biological association with other proteins were represented as edges marked 

as lines [419]. The clustering of the network determines the extent up to which genes in the 

network co-expressed in biological conditions based on distance calculation. Thus, the higher 

the clustering coefficient, the lower the probability of proteins co-expressing in the biological 

network [420]. Characteristic path length denotes the best possible configuration of the 

biological network [421] [Table 4.2].  
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Figure 4.1: It represents the protein-protein interaction network of the top 15 ranked or HUB genes involved 
in Alzheimer's disease, Parkinson's disease, Alzheimer's disease-Parkinson's disease union merged 
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network, and Alzheimer's disease-Parkinson's disease intersection merged network. Further, the top 15 
proteins of the individual network were mapped against the clusters of AD, PD, AD-PD intersection, and 
AD-PD union network to extract HUB proteins. 

Network homogeneity refers to non-uniformity in character [422,423], while network 

centralization or centrality identifies the network’s essential vertices or proteins [424,425]. 

Another essential feature of biological networks is network density, which measures the 

average number of connections of a particular protein or node divided by the total number of 

participant proteins in the network [426]. Statistically, the topological coefficient is a relative 

measure for the extent to which a particular protein in the given network shares neighbors with 

other proteins. The proteins that have one or no neighbors are assigned a topological coefficient 

of zero [427]. The topological analysis of the PPI network provides a way to identify HUB 

proteins, which pass signaling stimulus to other proteins or nodes in the network. Subsequently, 

HUB proteins were identified based on topological features of the PPT network, especially 

node degree (number of proteins interact with single protein), which may serve as potential 

biomarkers in AD and PD therapeutics. 

Table 4.2: (A) Parameters and characteristics features of complex Alzheimer’s disease, Parkinson’s 
disease, Alzheimer’s-Parkinson’s disease intersection network, and Alzheimer’s-Parkinson’s disease 
union networks; (B) characteristic features of top 5 ranked clusters from Alzheimer’s disease, Parkinson’s 
disease, Alzheimer’s-Parkinson’s disease merged network; (C) parameters of HUB genes protein-protein 
interaction network 

Network Nodes Edges 
Clustering 
Coefficient 

Network 
Density 

Network 
Heterogeneity 

Network 
Centralization 

Characteristics 
Path Length 

(A) CHARACTERISTICS FEATURES OF CORE PPI NETWORK 

AD 492 2335 0.244 0.019 1.028 0.107 3.504 

PD 311 1014 0.248 0.021 1.057 0.2 3.39 

AD-PD 784 3344 0.243 0.011 1.091 0.1 3.878 

COMMON 19 5 0 0.029 1.556 0.154 1.727 

(B) CHARACTERISTICS FEATURES OF AP, PD, and AD-PD CLUSTERS PPI NETWORK 

B.1 Alzheimer's Disease 

Cluster 1 
(12.847) 

188 1214 0.412 0.069 0.877 0.265 2.586 

Cluster 2 
(8.47) 

148 631 0.334 0.058 0.782 0.155 2.67 

Cluster 3 
(7.553) 

205 778 0.345 0.037 0.813 0.155 3.163 

Cluster 4 
(5.531) 

80 224 0.406 0.071 1.023 0.447 2.553 

Cluster 5 
(4.897) 

28 71 0.469 0.188 0.745 0.316 2.225 

B.2 Parkinson's Disease 
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Cluster 1 
(7.974) 

152 610 0.39 0.053 0.983 0.402 2.559 

Cluster 2 
(5.856) 

96 284 0.294 0.062 0.709 0.141 2.849 

Cluster 3 
(4.239) 

91 195 0.32 0.048 0.828 0.144 3.274 

Cluster 4 
(2.963) 

26 40 0.246 0.123 0.704 0.17 2.975 

Cluster 5 
(2.629) 

34 36 0.415 0.082 0.899 0.267 3.449 

B.3 AD-PD Merged Union Network 

Cluster 1 
(12.947) 

188 1214 0.412 0.069 0.877 0.265 2.586 

Cluster 2 
(8.216) 

147 608 0.335 0.057 0.787 0.158 2.697 

Cluster 3 
(7.703) 

342 1321 0.347 0.023 0.874 0.175 3.499 

Cluster 4 
(5.557) 

211 589 0.309 0.027 0.834 0.122 3.735 

Cluster 5 
(4.479) 

145 327 0.344 0.031 1.078 0.306 3.518 

(C) CHARACTERISTICS FEATURES OF AP, PD, and AD-PD HUB GENES PPI NETWORK 

AD 15 76 0.841 0.724 0.33 0.236 1.314 

PD 15 47 0.594 0.448 0.38 0.308 1.59 

AD-PD 15 58 0.845 0.552 0.345 0.187 1.667 

COMMON 15 5 0 0.048 1.304 0.192 1.727 

 

4.1.3. PROTEIN-PROTEIN INTERACTION NETWORK CLUSTERING AND 

PROTEOMIC SIGNATURES IN ALZHEIMER’S AND PARKINSON’S 

PATHOGENESIS 

The merging of two PPI networks was done in two steps. In the first step, the PPIs network of 

AD and PD were combined by the union to ensures complete coverage of relevant proteins 

involved in the study, followed by extracting common proteins (nodes) of individual PPIs 

networks. AD-PD union PPI network consists of 784 proteins and 3344 physical/functional 

interactions, while the AD-PD intersection biological network consists of 19 proteins and 5 

physical/functional interactions [Figure 4.1]. The top 15 highly connected proteins of 

individual AD, PD, AD-PD (union), and AD-PD (intersection) PPI networks were extracted. 

The HUB proteins were marked according to their presence in the respective PPI cluster. 

CDC42, CD44, FGFR1, MYO5A, NUMA1, TUBB4B, ARHGEF9, USP5, INPP5D, and 

NUP93 were found to be the most prominent proteins found in clusters of AD, PD, and AD-

PD (union) PPIs networks [Table 4.3].  
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Table 4.3: List of HUB genes identified in different protein-protein interaction networks and list of common 
proteins that were found in the cluster of all three protein-protein interaction networks such as Alzheimer’s 
disease, Parkinson’s disease, and Alzheimer’s-Parkinson’s disease union network 

 

Rank 
HUB 

Genes 
Alzheimer's 

Disease 
Parkinson's 

Disease 

Merged 
Network 

(Intersection) 
Frequency 

A
lz

h
e

im
e

r'
s

 D
is

e
a

s
e
 

1 SNAP25 Cluster 1 
 

Cluster 1 2 

2 CDC42 Cluster 2 Cluster 1 Cluster 5 3 

3 GRIA2 Cluster 1 
 

Cluster 1 2 

4 GRM5 Cluster 1 
 

Cluster 1 2 

5 GRIA1 Cluster 1 
 

Cluster 1 2 

6 CAMK2A Cluster 1 
 

Cluster 1 2 

7 GABRG2 Cluster 1 
 

Cluster 1 2 

8 SYT1 Cluster 1 
 

Cluster 1 2 

9 NRXN1 Cluster 1 
 

Cluster 2 2 

10 SYP Cluster 1 
 

Cluster 1 2 

11 GFAP Cluster 1 
 

Cluster 1 2 

12 CALM1 Cluster 1 
 

Cluster 1 2 

13 GAP43 Cluster 1 
 

Cluster 1 2 

14 SLC17A7 Cluster 1 
 

Cluster 1 2 

15 PLCB1 Cluster 1 
 

Cluster 1 2 

P
a

rk
in

s
o

n
's

 D
is

e
a

s
e
 

1 TP53 
 

Cluster 1 Cluster 3 2 

2 ACTB 
 

Cluster 1 Cluster 3 2 

3 HRAS 
 

Cluster 1 Cluster 3 2 

4 CDC42 Cluster 2 Cluster 1 Cluster 5 3 

5 CAT 
 

Cluster 1 Cluster 3 2 

6 EEF2 
 

Cluster 1 Cluster 3 2 

7 PRKACA 
 

Cluster 1 Cluster 3 2 

8 ACTG1 
 

Cluster 1 Cluster 3 2 

9 TUBB 
 

Cluster 1 Cluster 3 2 

10 MDM2 
 

Cluster 1 Cluster 3 2 

11 GART 
 

Cluster 1 Cluster 3 2 

12 TUBB4B Cluster 3 Cluster 1 Cluster 3 3 

13 SMARCA4 
 

Cluster 1 Cluster 3 2 

14 TUFM 
 

Cluster 1 Cluster 3 2 

15 EIF4E 
 

Cluster 1 Cluster 3 2 

M
e

rg
e

d
 N

e
tw

o
rk

 (
U

n
io

n
) 

1 CDC42 Cluster 2 Cluster 1 Cluster 5 3 

2 TP53 
 

Cluster 1 Cluster 3 2 

3 SNAP25 Cluster 1 
 

Cluster 1 2 

4 GRIA2 Cluster 1 
 

Cluster 1 2 

5 GRM5 Cluster 1 
 

Cluster 1 2 

6 GRIA1 Cluster 1 
 

Cluster 1 2 

7 CAMK2A Cluster 1 
 

Cluster 1 2 

8 GABRG2 Cluster 1 
 

Cluster 1 2 

9 CD44 Cluster 3 Cluster 1 Cluster 1 3 

10 NRXN1 Cluster 1 
 

Cluster 1 2 

11 SYT1 Cluster 1 
 

Cluster 1 2 

12 SYP Cluster 1 
 

Cluster 1 2 

13 GFAP Cluster 1 
 

Cluster 1 2 

14 CALM1 Cluster 4 
 

Cluster 1 2 
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15 ACTB 
 

Cluster 1 Cluster 3 2 

M
e

rg
e

d
 N

e
tw

o
rk

 (
In

te
rs

e
c

ti
o

n
) 

1 CDC42 Cluster 2 Cluster 1 Cluster 5 3 

2 CD44 Cluster 3 Cluster 1 Cluster 1 3 

3 FGFR1 Cluster 4 Cluster 1 Cluster 3 3 

4 MYO5A Cluster 4 Cluster 1 Cluster 1 3 

5 NUMA1 Cluster 3 Cluster 1 Cluster 3 3 

6 TUBB4B Cluster 3 Cluster 1 Cluster 3 3 

7 ARHGEF9 Cluster 1 Cluster 1 Cluster 1 3 

8 CDS2 
   

0 

9 KATNB1 
 

Cluster 1 Cluster 3 2 

10 USP5 Cluster 1 Cluster 3 Cluster 1 3 

11 PKP4 Cluster 3 
 

Cluster 3 2 

12 NFIA Cluster 1 Cluster 2 Cluster 1 3 

13 APLNR Cluster 2 
 

Cluster 3 2 

14 INPP5D Cluster 3 Cluster 1 Cluster 3 3 

15 NUP93 Cluster 2 Cluster 2 Cluster 2 3 

 

Table 4.4 describes the role of HUB proteins in the pathogenesis of AD and PD. Here, our 

network analysis study demonstrates the involvement of CDC42, CD44, FGFR1, MYO5A, 

NUMA1, TUBB4B, ARHGEF9, USP5, INPP5D, and NUP93 in the onset and progression of 

AD and PD. Studies demonstrated that these proteins were associated with different biological 

processes. For instance, activation of FAK/Rac1/CDC42-GTPase signaling rescued impaired 

microglial migration response to Aβ42 in triggering receptor expressed on myeloid cells 2 loss-

of-function [428]. Similarly, inhibition of FGFR1 effectively blocked the GLP-promoted NPC 

proliferation in the mouse model of AD [429]. However, the exact role of FGFR1 and CDC42 

in AD and PD crosstalk is still missing. In addition, Lim et al., 2018 concluded that CD44 

activates tau pathology, whereas, Neal et al., 2018 concluded that GPNMB attenuates astrocyte 

inflammatory response through CD44 receptor [430,431]. Further, loss of MYO5A resulted in 

structural and functional alterations in the rat brain through alterations in dopamine 

metabolism, whereas TUBB4B may be a part of the signaling cascade involved in the etiology 

of PD and is related to inflammatory response  [432]. ARHGEF9 that encodes collybistin 

involved in the postsynaptic clustering of glycine and inhibitor gamma-aminobutyric acid 

receptors [433]. Further, Griffin et al., 2020 concluded the upregulation of ARHGEF9 during 

astroglia response to Aβ oligomers [434].  
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Table 4.4: Role of HUB genes in the pathogenesis of Alzheimer’s disease and Parkinson’s disease 
identified with the help of MalaCards 

HUB 

Genes 
Description Involvement in Alzheimer's Disease 

Involvement in Parkinson's 

Disease 

CDC42 Cell Division Cycle 42 

Establishment of neuron polarity, 

regulation of cell morphology and 

mortality, and cell-cycle regulation   

Inhibits the activating features of 

microglia  

TUBB4B Tubulin Beta 4B Regulates inflammatory response 
Serve as a target for PD 

associated toxins 

CD44 
CD44 Molecule (Indian 

Blood Group) 
Interacts with mutant p53 activity 

Causes α‐Synuclein induced 

migration of BV‐2 microglial 

cells   

FGFR1 
Fibroblast Growth Factor 

Receptor 1 

Involved in axonal projection and 

inhibits the apoptosis  

Elevate the DA levels and 

protects the specific midbrain 

neurons  

MYO5A 
Myosin VA (Heavy Chain, 

Myosin) 
Induced cell motility 

 Mutant MYO5A exhibits 

alterations in dopamine 

metabolism   

NUMA1 
Nuclear Mitotic Apparatus 

Protein 1 
Identify transported MSC in the brain  Help in mitotic spindle formation  

ARHGEF9 
CDC42 Guanine Nucleotide 

Exchange Factor (GEF) 9 

Role in integrin signaling and axon 

guidance signaling 

Encodes synaptic proteins and 

loss of function results in 

intellectual disability  

USP5 
Ubiquitin Specific Peptidase 

5 
 Compromised tau levels   

Deletion causes increased p53 

activity  

INPP5D 
Inositol Polyphosphate-5-

Phosphatase, 145kDa 
Modulating Inflammatory Response  Involved in immune response 

NUP93 Nucleoporin 93kDa 
Promotes nuclear accumulation of 

mRNA  
Inhibits mRNA transport 

 

USP5, a stress granule protein, increases TNF-α expression through the ubiquitin-proteasome 

pathway and regulates inflammatory response through Smurf1 [435]. Recently, Tsai et al., 

2021 demonstrated that INPP5D was positively associated with amyloid plaque density in the 

human brain [436]. Thus, these evidences concluded that the above-mentioned HUB proteins 

are associated with neurological disease in some manner through regulation of different 

biological phenomena, yet their relationship in AD and PD crosstalk is still missing. Further, 

HUB proteins, namely NUMA1 and NUP93, lack the potential involvement in the pathogenesis 

of either AD and PD.  
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4.1.4. FUNCTIONAL ENRICHMENT ANALYSIS OF HUB PROTEINS IN 

ALZHEIMER’S AND PARKINSON’S PATHOLOGY 

To identify the complicated relationship between highly dense connected components of PPI 

networks (AD, PD, AD-PD union, and AD-PD intersection), pathway analysis and GO analysis 

was performed. Moreover, we extracted the top 10 biological pathways, cellular components, 

and molecular functions of highly interconnected proteins involved in neurodegeneration, as 

demonstrated in Figure 4.2. Moreover, after GO analysis, the extracted highly interconnected 

proteins were subjected to pathway analysis, which enables to identification of the molecular 

pathway followed by the interconnected proteins in the progression of AD and PD. Figure 4.2 

demonstrates the top 10 biological pathways in which these proteins were involved. Gap 

junction (TUBB4B), GnRH signaling pathway (CDC42), and Rap1 signaling pathway (CDC42 

and FGFR1) were critical pathways in which HUB proteins were involved and maybe potential 

biological pathway targets for AD and PD crosstalk. For instance, Esteves et al., 2017 

demonstrated that nicotine effectively prevented prefrontal long-term potentiation and memory 

deficits induced by streptozotocin in AD [437], whereas, Carvajal-Oliveros et al., 2021 

demonstrated that nicotine suppresses PD like phenotype induced by synphilin-1 

overexpression through increased dopamine levels [438]. Similarly, a study concluded that 

balance between dopamine and adenosine signals regulates the PKA/Rap1 pathway in spiny 

neurons, where D1R and A2AR agonist enhanced PKA-mediated Rap1 phosphorylation in vivo 

and in vitro [439]. Further, studies demonstrated that impaired GnRH production is directly 

linked to oxidative stress and mitochondrial dysfunction in neurons [440,441]. Another 

significantly enriched pathway is the gap junction that is involved in the pathogenesis of AD 

and PD [442,443]. For instance, Angeli et al., 2020 demonstrated the altered expression of glial 

gap junction proteins, namely Cx43, Cx30, and Cx47 in the 5XFAD model of AD [444], 

whereas, Maulik et al., 2020 concluded that Aβ regulates gap junction protein connexin 43 in 
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cultured primary astrocytes [445]. Consistent with this, the results demonstrated the importance 

of CDC42, TUBB4B, and FGFR1 in the pathogenesis of AD and PD. Further, these three HUB 

proteins were a potential target for identifying the relationship between AD and PD.  

 

Figure 4.2: Represents the bar graph of the top 10 biological processes, molecular functions, and biological 

pathways of HUB proteins along with their p-value and involved HUB proteins. The axis of the bar 

represents the p-value. The figures also represent the critical cellular components in which HUB proteins 

lie with their corresponding p-value. Terms with a P-value ≤ 0.05 were considered as significant. 
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4.1.5. TRANSCRIPTION FACTORS ASSOCIATED WITH HUB PROTEINS 

Further, we identified HUB proteins-TF interaction and detected central regulatory molecules 

using topological features. Thus, we extracted seven regulatory TFs, namely FOXC1 (8), 

GATA2 (5), CREB1 (4), FOXL1 (3), NFIC (3), HINFP (3), and SREBF1 (3). Subsequently, 

the cross-validation of TFs in the pathogenesis of AD and PD was identified with the help of 

MalaCards. TFs are transcriptional regulators that are involved in the pathogenesis of AD and 

PD [446–449]. In this study, we also studied the potential relationship between TFs and HUB 

proteins in order to identify mutual transcriptional regulators of identified HUB proteins. The 

identified TFs are FOXC1, GATA2, CREB1, FOXL1, NFIC, HINFP, and SREBF1 as a 

regulator of HUB proteins commonly expressed in AD and PD pathogenesis [Figure 4.3]. For 

instance, Xu et al., 2019 concluded that deletion of CREB1 diminishes the effect of DJ1 on TH 

regulation through deregulation of CaMKKβ/CaMIV/CREB1 pathway [450]. Similarly, 

deletion of CREB1 promotes pro-inflammatory changes in the mouse hippocampus [451]. 

Moreover, He et al., 2021 concluded that deacetylation of EZH2 through SIRT6 causes an 

increased association between EZH2 and FOXC1 that exerts anti-inflammatory response, 

whereas, Emelyanove et al., 2018 concluded the positive correlation between dopamine and 

GATA2 expression in PD [452,453]. FOXL1 is implemented in the pathogenesis of NDDs, 

while, NFIC was identified as novel loci in the AD [454–456]. Studies demonstrated that 

HINFP is a co-activator in the sterol regulated transcription of PCSK9, a target gene of 

SREBP2 involved in the tau alterations, which contribute to disturbed cholesterol homeostasis 

in AD [457][458]. Lastly, genetic mutation analysis concluded that genetic polymorphism 

rs11868035 was associated with susceptibility to PD in the Chinese population [459,460]. 

Thus, the evidences mentioned above prove the potential link of identified TFs in the 

progression and pathogenesis of AD and PD and acts as a specific biomarker for their 

therapeutics. However, their potential role in AD and PD crosstalk is still missing. 
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Figure 4.3: Part A of the figure represents the PPI network of HUB genes with associated regulatory 
transcription factors. FGFR1 with the highest degree of node interacts with 12 transcription factors such 
as BRCA1, FOXC1, GATA2, YY1, MEF2A, HOXA5, PPARG, E2F1, NFKB1, ELK1, SREBF2, and E2F4. 
Similarly, INPP5D and ARHGEF9 interact with ten transcription factors each such as FEV, ZNF354C, 
CREB1, FOXC1, GATA2, FOXL1, TFAP2A, MAX, USF1, USF2, SOX10, and FOXC1, GATA2, FOXL1, YY1, 
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NFYA, STAT3, TP53, USF2, SREBF1, TEAD1, PRDM1 respectively. Moreover, the HUB gene CDC42 (10), 
TUBB4B (7), and NUMA1 (6) involved in the PPI network of HUB genes and transcription factors. CDC42 
interacts with NR2F1, CREB1, FOXC1, HNF4A, KLF5, FOXF2, TP63, FOXA1, NRF1, and ESRRB, TUBB4B 
interacts with GATA2, NFIC, HINFP, TFAP2A, KLF5, SREBF1, and TFAP2C, and NUMA1 interacts with 
GATA2, FOXL1, NFIC, E2F1, HINFP, and NFKB1. Further analysis revealed that CD44 interacts with CREB1, 
FOXC1, SRF, HINFP, and SREBF1 while USP5 and MYO5A interact with CREB1, FOXC1, NFIC, SREBF2, 
and FOXC1, HOXA5, TFAP2C, HNF1B, respectively. Further analysis shows the interaction of NUP93 with 
three transcription factors, such as PRRX2, JUN, and FOXC1. Among the transcription factors, FOXC1 (8) 
has the highest degree of node followed by GATA2 (5), CREB1 (4), FOXL1 (3), NFIC (3), HINFP (3), and 
SREBF1 (3). FOXC1 forms biological association with INPP5D, CDC42, NUP93, FGFR1, USP5, CD44, 
ARHGEF9, MYO5A, while GATA2 interacts with INPP5D, FGFR1, TUBB4B, GATA2, ARHGEF9. Similarly, 
CREB1 interacts with CDC42, USP5, CD44, INPP5D, FOXL1 interacts with ARHGEF9, NUMA1, INPP5D, NFIC 
interacts with TUBB4B, NUMA1, USP5, HINFP interacting partners are TUBB4B, NUMA1, CD44, and 
SREBF1 interacts with TUBB4B, ARHGEF9, CD44. the total number of nodes and edges in HUB genes and 
transcription factors protein-protein interaction network are 52 and 73. the other parameters of the 
biological network are network heterogeneity (1.024), network centralization (0.187), network density 
(0.055), and characteristics path length (3.142). Part B of the figure demonstrated the biological 
significance of top interacting transcription factors in the progression of Alzheimer’s disease and 
Parkinson’s disease along with their degree of node and interacting partners. The figure also reflects the 
radiality and topological coefficient of the top-ranked transcription factors in the protein-protein interaction 
network. 

4.1.6. CELLULAR LOCATION AND ACETYLATION SIGNATURES OF HUB 

PROTEINS AND TRANSCRIPTION FACTORS IN ALZHEIMER’S AND 

PARKINSON’S DISEASE 

Herein, we analyzed the cellular location of HUB proteins with CELLO version 2.5: 

subCELlular LOcalization predictor. Among the extracted 10 HUB proteins, 40% were 

cytoplasmic proteins, 50% were nuclear protein, and 10% were extracellular proteins. CD44 

(1.974), FGFR1 (2.078), INPP5D (3.954), MYO5A (3.300), and NUMA1 (1.858) were 

predicted as nuclear proteins, while CDC42 (2.037) was predicted as extracellular protein. 

Similarly, ARHGEF (2.770), NUP93 (2.534), TUBB4B (3.682), and USP5 (2.207) were 

predicted as cytoplasmic proteins. Studies demonstrated that acetylation activates STAT3 

through the nuclear translocation of CD44, whereas, acetylation of histone proteins controls 

FGFR1 polymorphisms and isoform splicing [461,462]. In addition, lysine acetylation of SCF 

FBXL19 ubiquitin E3 ligase increases its activity and stabilization that targets CDC42 for its 

ubiquitination and degradation [463].  

HUB genes and TFs were analyzed for their acetylation signature to understand the 

involvement of acetylation and deacetylation process associated with HUB genes and TFs in 

the pathogenesis of AD and PD. Herein, CDC42 (10), CD44 (11), FGFR1 (11), MYO5A (13), 
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NUMA1 (14), ARHGEF9 (11), USP5 (14), and NUP93 (15) were predicted as the most non-

histone acetylating substrates among HUB proteins, while CREB1 (16) and HINFP (10) were 

predicted as non-histone acetylating substrates among TFs [Figure 4.4]. Lately, to study the 

epigenetic regulation of HUB proteins and TFs, we investigated histone modification sites 

found in the coding region of HUB proteins and TFs implicated with NDDs and identified a 

range of sites [464,465]. Thus, this raises the possibility that PTMs, namely acetylation, 

deacetylation, ubiquitination, SUMOylation, methylation, and others, are the primary means 

of alteration in these proteins that need further investigation.  
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Figure 4.4: Part A of the figure denotes the acetylation signatures of non-histone protein substrates, such 

as HUB genes and transcription factors. CREB1 and HINFP are the most prominent acetylated transcription 

factors, whereas, CDC42, CD44, TUBB4B are the most crucial non-histone protein acetylated substrates. 

Additionally, part B of the figure represents the relative expression of substrate with respect to change in 

histone acetylation status at particular lysine residue in a tabular format. 
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Further, histone acetylation signatures are primarily related to the markers of activity at 

regulatory elements, namely promoters and enhancers [466]. Moreover, understanding the 

specific role of histone acetylation at different genomic elements has the potential to improve 

disease therapeutics through increasing the target specificity [467]. In addition, histone 

signatures enable to understand the biological phenomenon, namely chromosome packaging, 

transcriptional activation, and DNA packaging. 

4.1.7. POTEINTIAL LYSINE RESIDUES FOR PROTEIN ACETYLATION 

Correlation between acetylation and HDAC enzymes has been studied extensively in the past 

[291,468,469]. For instance, MS-275, a class I HDAC inhibitor, promotes rapid acetylation of 

the YB-1 RNA-binding protein at K81 [470], whereas, HDAC1 complex is able to regulate 

histone H3 acetylation at K18 [471].  Further, Topuz et al., 2019 demonstrated that 

administration of HDAC inhibitor, namely NaB increases H2B acetylation at K5 that leads to 

increased spatial learning and long-term memory in rat hippocampus [472]. Similarly, Choi et 

al., 2017 demonstrated that increased acetylation of peroxiredoxin 1 at K197 through HDAC6 

inhibition leads to recovery of Aβ-induced impaired axonal transport [473].  In addition, the 

role of SIRT1 in regulating pathogenic tau acetylation at K174 and in suppressing the spread 

of tau pathology has been demonstrated in a mouse model of tauopathy [474]. Thus, based on 

the above-mentioned evidences we identified acetylation sites and HDAC enzymes of CREB1 

and HINFP through two online tools, namely MuSite deep and PSKAcePred. For MuSite Deep, 

statistically, a high confidence score relates to the high probability of lysine acetylation at a 

particular lysine amino acid. A score above 0.5 is considered as a high confidence score and a 

high probability of lysine acetylation, whereas, score below 0.2 is considered as a low 

confidence score where the probability of lysine acetylation is negligible, and a score between 

0.2 to 0.5 is considered as the site with moderate probability. Further, for PSKAcePred, a score 

above 0.7 is considered a high confidence score, and the probability of lysine acetylation is 
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very high, whereas, a score between 0.5 to 0.7 is considered a moderate confidence score, and 

the probability of lysine acetylation is relatively less as compared to acetylation at high 

confidence score lysine site. CREB1 peptide sequence (P16220.2) has 15 potential acetylating 

lysine residues. The respective acetylation-sites prediction scores, with the help of MuSite deep 

and PSKAcePred, as shown in Annexure 3. MuSite predicted K330 as an essential lysine 

acetylation site with a high confidence score of 0.557. similarly, PSKAcePred predicted K94, 

K292, K303, K304, and K309 as potential protein acetylation-lysine residues with a high 

confidence score of 0.872, 0.737, 0.856, 0.924, and 0.994, respectively. From the protein 

acetylation-site prediction of CREB1, it may be concluded that K304, K309, and K330 were 

essential acetylating lysine residues. The type of HDAC enzymes involved in the deacetylation 

of CREB1 was predicted and found out that HDAC1, HDAC2, and SIRT7 were important in 

CREB1 deacetylation where HDAC1 was involved in K292 (3.35) deacetylation, HDAC2 

involved in K330 (10.67), and SIRT7 involved in K94 (13.26), K303 (12.54), and K304 (12.90) 

deacetylation. The results demonstrated that the binding propensity of SIRT7 and HDAC2 is 

very low as compared to the binding propensity of HDAC1. Thus, the results show that K292 

is a critical lysine residue for CREB1 acetylation and deacetylation process with HDAC1 is its 

deacetylating enzyme involved in the pathogenesis of AD and PD. In addition, Hassen et al., 

2019 [475] demonstrated the acetylation of CREB1 at K330 and K136, whereas, Paz et al., 

2014 demonstrated that sirtuin 1 directly downregulates the CREB transcriptional activity by 

binding and deacetylating CREB at K136, thereby reducing CREB interaction with CBP [476]. 

Further, Lu et al., 2003 confirmed the acetylation of CREB1 at K91, K94, and K136 within the 

activation domain through CBP. However, they also concluded that that single mutation of the 

putative CBP acetylation sites has no significant effect on the transactivation potential of CREB 

[477]. Thus, these evidences suggest the possibility of CREB1 acetylation and its binding with 

HDAC enzymes in regulation of gene transcription.  
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Moreover, HINFP (AAH17234.1) consists of 27 potential lysine-acetylating residues such as 

K6, K10, K31, K94, K96, K164, K174, K181, K185, K197, K213, K236, K256, K285, K294, 

K301, K330, K335, K346, K352, K366, K367, K371, K382, K439, K446, and K504 as 

observed from Annexure 4. MuSite Deep predicted all 27 sites as potential lysine-acetylating 

residues with no residue of high confidence score. However, five sites were predicted as 

potential acetylation sites with a moderate score, such as K6: 0.318, K213: 0.311, K330: 0.420, 

K371: 0.354, and K382: 0.269. Thus, predicted acetylation sites were essential for triggering 

protein acetylation results in transcription initiation. Among the predicted acetylating-lysine 

residues, HDAC6 (K6 and K330), HDAC1 (K382), and SIRT1 (K371) were important 

deacetylating residues involved in protein deacetylation resulted in the progression of AD and 

PD. However, the binding score of HDAC6 (2.74 and 3.84) was predicted higher than HDAC1 

(6.53) and SIRT1 (7.01). Similarly, PSKAcePred predicted 15 potential lysine-acetylating sites 

in which 8 sites were predicted as potential lysine acetylation sites with a high confidence 

score. K31: 0.730, K96: 0.766, K174: 0.779, K330: 0.726, K335: 0.930, K367: 0.904, K371: 

0.911, and K446: 0.719. Further, the HDAC enzyme prediction tool predicted that SIRT1 

(K31:6.51 and K371:7.01), SIRT2 (K446:0.95), SIRT7 (K174:13.26), HDAC1 (K367:4.23), 

and HDAC6 (K3303.84 and K335:2.74) were crucial enzymes involved in the regulation of 

HINFP deacetylating activity. A comparative analysis of both the acetylation prediction tools 

and the type of deacetylating enzyme reflected that K330 and K371 were crucial protein 

acetylating-lysine residue with HDAC6 and SIRT1 as its interacting partners. However, the 

confidence score of SIRT1 is lower than HDAC6, while the confidence of K330 is higher than 

that of K371. Thus, it will be concluded that K330 interacts with HDAC6 to carry out HINFP 

deacetylation in AD and PD progression. Further, till now, no proteomic study has evident the 

implementation of acetylation sites and HDAC binding residue in the activation domain of 

HINFP. However, mounting evidence suggests that HAT1, an acetyltransferase binding to 
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HINFP promoters, have specific stimulatory effect on H4 gene transcription.  In addition, the 

authors concluded that HAT1 promotes the accumulation of newly synthesized H4 dimers 

without affecting levels of histones embedded in nucleosome [478].  Another study concluded 

that HINFP forms a functional complex with NPAT that recruits HAT cofactor TRRAP to 

facilitate the histone 4 acetylation at PCSK9 promoter[458]. Thus, this in-silico analysis could 

be a milestone in providing an avenue for identifying crucial acetylation or deacetylation 

patterns of CREB1 and HINFP to minimize AD and PD progression [Table 4.5]. 

Table 4.5: List of common crucial lysine residues in CREB1 and HINFP 

CREB1 

Lysine Residue Interactor 

K94 SIRT7 

K292 HDAC1 

K303 SIRT7 

K304 SIRT7 

HINFP 

K31 SIRT1 

K174 SIRT7 

K330 HDAC6 

K335 HDAC6 

K367 HDAC1 

K371 SIRT1 

 

4.1.8.  CONSERVED AMINO ACID RESIDUES AT PROTEIN ACETYLATION 

SITES 

The predicted protein acetylation sites were analyzed for the conserved lysine residues, which 

could be crucial for lysine selectivity and specificity for the acetylation process and binding of 

deacetylating enzymes. CREB1 has 15 potential lysine residues represented by 16220.2, while 
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HINFP has 27 potential lysine residues represented by AAH17234.1. The MSA analysis of 

predicted lysine residues for acetylation revealed the conservation of negative charged glutamic 

acid (E) and neutrally charged leucine (L), methionine (M), valine (V), and glutamine (Q) in 

close association with the positively charged lysine residue as shown in Figure 4.5. These 

conserved residues provided the suitable environment and favorable conditions for associated 

potential lysine residues for the acetylation process, thus imparting lysine selectivity and 

specificity for the acetylation and deacetylation. However, further investigations are required 

to excavate the potential of conserved residues in the acetylation and deacetylation process of 

CREB1 and HINFP. However, glutamic acid is most prominent compared to other conserved 

amino acids as it will decrease the overall positive charge of lysine and impart a negative charge 

to the lysine site that will promote acetylation and deacetylation reactions. For instance, 

Nguyen et al., 2016 concluded that glutamine triggers acetylation-dependent degradation of 

glutamine synthetase, whereas, Son et al., 2020 demonstrated that leucine regulates autophagy 

through acetylation of the mammalian target of rapamycin complex 1 [479,480]. Moreover, the 

role of methionine involvement on lysine acetylation is not studied so far in AD and PD, but 

yet at the same time demonstrated the potential relationship between methionine and lysine 

acetylation in other neurological defects. For instance, Chiki et al., 2021 concluded that the 

presence of oxidation of methionine at position 8 and acetylation at K6 resulted in dramatic 

inhibition of Httex1 fibrilization [481]. Thus, these studies correlate with our results and 

suggest that glutamic acid (E), leucine (L), methionine (M), valine (V), and glutamine (Q) 

could be critical amino acid residues in acetylation and HDAC binding.  
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Figure 4.5: Multiple sequence analysis of potential acetylation/deacetylation-lysine residues by taking 21 
window sizes. 21 window size was taken by lysine at the center and placed ten amino acids on both sides. 

Further, structural information of CREB reveals that it consists of 11 exons and 3 isoforms that 

are produced through alternative splicing [482]. Primary structure studies of CREB identified 

the presence of four functional domains, namely Q1 basal transcriptional activity domain, 

kinase inducible domain, a glutamine-rich region, and basic region/leucine zipper domain 

[483]. Thus, this relates to the importance of glutamine in the structural activity of CREB1. 

Similarly, structural information of HINFP concludes the interaction of HINFP produced TF 
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with methyl-CpG-binding protein-2, a component of the HDAC complex and plays an 

important role in transcription repression. Sekimata et al., 2004 demonstrated that HINFP, 

through its DNA-binding activity, acts as a sequence-specific (conserved CGGAC core) 

transcriptional repressor [484], whereas, Medina et al., 2008 concluded that PSCR motif is 

required for activation of histone H4 gene transcription and promotes its binding with DNA 

[485]. Further, the study revealed the presence of acetylated H4 histone in the binding activity 

of HINFP to USF and GAL4-AH [486]. In addition, a study concluded that lysine residues 

control the conformational dynamics of proteins [487]. Thus, it is equally important to identify 

the structural features of CREB1 and HINFP that were involved in the acetylation mechanism. 

Thus, the potential and possible acetylation-lysine residues were analyzed for their structural 

selectivity for lysine recognition pattern and potential deacetylating enzyme attachment, as 

discussed in Table 4.6. The structural pattern of the putative deacetylating enzyme attachment 

biding to potential acetylation or deacetylation lysine residues revealed the presence of alpha-

helix, strand, and coil region in the CREB1 and HINFP peptide. However, an in-depth analysis 

of the structural configuration of CREB1 and HINFP revealed that the helix region is 

predominant over the strand/coil region in the acetylation of CREB1. Study by Maltsev et al., 

2012 concluded the involvement of helix structure in the acetylation process, where acetylation 

increases α-helicity of the first six residues of α-synuclein [488]. Similarly, the coil region is 

dominant over the helix/strand region in the potential lysine-acetylation of HINFP. The results 

correlates the study by Kulemziana et al., 2016, which concluded that lysine acetylation 

promotes interaction between Smc coiled coils interaction that is required for cohesion ring 

assembly [489]. Further, the results were analyzed precisely and revealed the involvement of 

structural selectivity in acetylation and deacetylation of CREB1 and HINFP. In addition, the 

results also provide an avenue of helix and coil region in the acetylation of predicted lysine 

residues of CREB1 and HINFP, respectively.  
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Table 4.6: Secondary structure of the protein acetylation sites predicted by PSIPRED: protein structure 
prediction server 

CREB1 HNIFP 

Residue 

Structure 

Prediction 

(PSIPRED) 

Score 

(10) 
Residue 

Structure 

Prediction 

(PSIPRED) 

Score 

(10) 
Residue 

Structure 

Prediction 

(PSIPRED) 

Score (10) 

                  

91 Coil 4 6 Coil 9 301 Helix  9 

94 Strand 3 10 Coil 8 330 Helix  3 

123 Helix 8 31 Helix  6 335 Coil 5 

136 Helix 9 94 Coil 8 346 Strand 4 

155 Coil 5 96 Coil 1 352 Coil 9 

285 Helix 9 164 Coil 8 366 Helix  3 

292 Helix 9 174 Coil 9 367 Coil 1 

303 Helix 9 181 Coil 4 371 Coil 9 

304 Helix 9 185 Coil 1 382 Coil 4 

305 Helix 9 197 Coil 9 439 Helix  6 

309 Helix 9 213 Coil 6 446 Coil 9 

323 Helix 9 236 Coil 8 504 Helix  9 

330 Helix 9 256 Coil 8       

333 Helix 9 285 Coil 5       

339 Coil 0 294 Strand 1       

 

4.2. CONCLUSION AND SUMMARY 

In conclusion, the present study focuses on the crosstalk between AD and PD at the molecular 

level. Through this study, we identified the relationship between DEG’s, HUB proteins, TFs, 

acetylation, and HDAC enzymes in the shared pathogenesis of AD and PD.  Our findings 

highlighted the crucial role of CDC42, TUBB4B, and FGFR1 in the AD and PD crosstalk 

through Gap junction (TUBB4B), GnRH signaling pathway (CDC42), and Rap1 signaling 

pathway (CDC42 and FGFR1). In addition, the present study identified the potential TFs that 

regulate the expression of HUB proteins at the transcriptional level through biological network 

analysis. Our analysis identified FOXC1, GATA2, CREB1, FOXL1, NFIC, HINFP, and 

SREBF1 as potential TFs that regulate the activity of HUB proteins shared between AD and 

PD. Our bioinformatic analysis also revealed the effect of subcellular localization of HUB 

proteins and TFs in the AD and PD crosstalk. Lately, the study identified the 15 potential lysine 

residues and 27 potential lysine residues in CREB1 and HINFP, respectively. The study 
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revealed that among 15 possible lysine residues of CREB1, only 4 lysine residues, namely K91, 

K94, K136, and K330 had been studies in the past, while K123, K155, K285, K292, K303, 

K304, K305, K309, K323, K333, and K339 have been reported first time for their role in 

acetylation process. Similarly, among HINFP, all 27 lysine residues have been reported for the 

first time. Further, in-silico analysis of CREB1 and HINFP revealed the importance of HDAC1 

for its deacetylation activity at K292 of CREB1 and HDAC6 for its deacetylation activity at 

K330 of HINFP. This will provide a way to study the role of acetylation and HDAC enzymes 

in the transcriptional activity of CREB1 and HINFP in AD and PD crosstalk. Further, the 

computational analysis identified the importance of negative charged glutamic acid (E) and 

neutrally charged leucine (L), methionine (M), valine (V), and glutamine (Q) amino acid 

residues in the acetylation mechanism of CREB1 and HINFP in AD and PD crosstalk. The 

study also highlighted the importance of the helix region over the strand/coil region in the 

acetylation of CREB1. Similarly, the coil region is dominant over the helix/strand region in the 

potential lysine-acetylation of HINFP. Thus, this study highlighted the importance of two 

prominent biological pathways for the progression of AD and PD simultaneously, such as 

HDAC1-CREB1-TUBB4B/CDC42/CD44 and HDAC6-HINFP-TUBB4B/CDC42/CD44 

[Figure 4.6]. Further studies are required to generate the potential treatments targeting the 

above-mentioned biological pathways to treat AD and PD’s adverse effects. However, the 

current study is associated with some sort of limitation as the study uses only microarray data, 

which is not as comprehensive as transcriptomics data analysis. Thus, there is a growing need 

to simultaneously analyze the different types of AD and PD datasets, namely microarray data, 

epigenetic data, and RNA data, to extract the novel biomarkers involved in disease pathology. 
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Figure 4.6: Literature validation of the involvement of HDAC interaction with CREB1 and HINFP. HDAC 
inhibitors cause a decrease in HDAC activity followed by the increased acetylation status of CREB1, and 
HINFP causes positive transcriptional regulation. Increased transcriptional activity causes an increase in 
transcription of memory associated genes, and Bcl-2 expression leads to an increase in cognitive function 
and memory function. The increased acetylation status of CREB1 and HINFP causes INPP5D and TUBB4B 
activation, which decreases neuronal cell death and leads to neuroprotection. 

4.3. HIGHLIGHTS OF THE STUDY 

4.3.1. TUBB4B, CDC42, and CD44 were identified as common molecules in AD and PD 

4.3.2. CREB1 and HINFP are promising regulatory molecule involved in disease progression 

4.3.3. K292 and K330 are crucial protein lysine-acetylation sites for CREB1 and HINFP 

respectively 

4.3.4. Glutamic acid (E), leucine (L), methionine (M), valine (V), and glutamine (Q) are 

conserved amino acid residues that facilitates protein acetylation/deacetylation 

4.3.5. Involvement of alpha-helix (CREB1) and coil (HINFP) in the structural selectivity for 

acetylation and deacetylation activity 

4.3.6. Identified HDAC1-CREB1-TUBB4B/CDC42/CD44 and HDAC6-HINFP-

TUBB4B/CDC42/CD44 as a promising target pathway 
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CHAPTER V: COMPUTATIONAL ANALYSIS INDICATES 

THAT PARP1 ACTS AS A HISTONE DEACETYLASES 

INTERACTOR SHARING COMMON LYSINE RESIDUES 

FOR ACETYLATION, UBIQUITINATION, AND 

SUMOYLATION IN ALZHEIMER’S AND PARKINSON’S 

DISEASE 
 

5. INTRODUCTION 

Lysine residues are known for the PTMs acetylation, ubiquitination, and SUMOylation. In 

acetylation, HDAC and its interactors cause transcriptional deregulation, and cause 

mitochondrial dysfunction, apoptosis, inflammatory response, and cell-cycle impairment, that 

cause brain homeostasis and neuronal cell death. Another regulatory PTMs involved in the 

pathogenesis of NDDs are ubiquitination and SUMOylation, for the degradation of the 

misfolded proteins. Thus, we aim to investigate the potential 

acetylation/ubiquitination/SUMOylation crosstalk sites in the HDAC interactors, which causes 

NDDs. Further, we aim to identify the influence of PTMs on structural features of proteins and 

the impact of putative lysine mutation on disease susceptibility. Lastly, we aim to examine the 

impact of the putative mutation on acetylated lysine for the ubiquitination and SUMOylation. 

Herein, we integrate 1455 genes, 3094 genes, and 1940 genes related to HDAC interactors, 

AD, and PD, respectively. Further, PPI network and PTMs integrations from different 

databases identified 32 proteins that are associated with HDAC, AD, and PD with 1489 

potential lysine modified sites. HDAC interactors poly (ADP-ribose) polymerase 1 (PARP1), 

nucleophosmin (NPM1), and CDK1 involved in the progression of NDDs and 64% and 75% 

of PTM sites in PARP1, NPM1, and CDK1 fall into coiled and ordered regions, respectively. 

Moreover, 15 putative lysine sites have been found in crosstalk and K148, K249, K528, K637, 

K700, and K796 of PARP1 are crosstalk hotspots. Loss of acetylated hotspot sites results in 

loss of ubiquitination and SUMOylation function on nearby sites, which is relatively higher 

when compared to gain of function. 
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5.1. RESULTS AND DISCUSSION 

5.1.1. INTEGRATION OF PROTEOMICS DATA AND POST-TRANSLATIONAL 

MODIFICATIONS SITES 

After collecting data for HDAC interactors from two databases, such as HIPPIE and CTD, 

Venn analysis was performed to investigate the common interactors among both databases. 

1657 proteins were obtained from HIPPIE, and 1804 proteins were collected from the CTD 

database. The HDAC interactors were associated with class I, class II, and class IV HDACs. 

Venn analysis demonstrated that there are 1455 (72.6%) proteins that were common in both 

the databases. Similarly, for AD and PD associated protein, data were collected from CTD and 

DisGeNET. In CTD, 23268 and 23680 proteins were associated with AD and PD, respectively, 

whereas, in DisGeNET, 3397 and 2078 proteins were involved in the pathogenesis of AD and 

PD, respectively. Further, Venn analysis demonstrated the involvement of 3094 (13.1%) and 

1940 (8.1%) proteins that were common in both the databases. Furthermore, HDAC interactor, 

AD, and PD data were combined manually to check the common proteins among them. 185 

proteins (7.7%) were found to be involved in the pathogenesis of AD and PD, which are 

associated with HDAC interactors [Figure 5.1].  
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Figure 5.1: Interactive Venn analysis of AD, PD, and HDAC interactors collected during the data extraction 
from different databases. For AD and PD, databases such as CTD and DisGeNET were used, whereas HDAC 
interactors databases such as CTD and HIPPIE were used. The figure also shows the Venn analysis of 
common genes involved in AD, PD, and HDAC interactors. Later on, bar graph analysis of protein extracted 
from databases for AD, PD, and HDAC interactors was given in the figure. The blue colour in the graph 
represents the CTD database. The orange colour represents the DisGeNET database for AD and PD, 
whereas, the HIPPIE database for HDAC interactors. Similarly, grey colour represents the common among 
them. In the second bar graph, the blue colour denotes the dbPTM database, whereas the orange colour 
represents the PLMD database. PPI network of cluster 1 including 33 proteins extracted from the core PPI 
network after clustering analysis. Graphical representation of acetylation, ubiquitination, SUMOylation 
sites in protein present in the cluster 1. 
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Moreover, PPI network and clustering analysis demonstrated the involvement of 33 proteins 

as top-ranked proteins, which are associated with HDAC interactors and pathogenesis of 

NDDs. `Further, 1,50,968 PTM sites and 1,15,127 PTM sites were collected from dbPTM 

database and PLMD database, respectively. A total of 45967 and 29942 acetylation sites, 99624 

and 77364 ubiquitination sites, and 5377 and 7821 SUMOylation sites were extracted from the 

dbPTM and PLMD database. The extracted PTM sites were mapped to respective proteins. A 

total of 1463 potential acetylation (426), ubiquitination (879), and SUMOylation (158) sites 

were identified among 32 potential proteins for crosstalk analysis [Figure 5.1]. 

5.1.2. MOLECULAR FUNCTION AND BIOLOGICAL PATHWAYS OF TOP 

INTERACTING HDAC PARTNERS 

A total of 33 proteins identified through clustering analysis involving HDAC interactors, AD, 

and PD were subjected to gene set enrichment analysis. Through this, molecular functions and 

biological processes involved in the pathogenesis of AD and PD through HDAC interaction 

were determined. The cut-off p-value for identifying molecular function and biological 

pathways was set at less than 0.05, as shown in Table 5.1.  

Table 5.1: Functional enrichment analysis (biological pathways and molecular functions) involved in top 
interacting histone deacetylase interactors 

Molecular Function 
Number 
of Genes 

Percentage 
of Genes 

Fold 
Enrichment 

P-Value  Mapped Genes 

MOLECULAR FUNCTION 

Protein serine/threonine 
kinase activity 

7 21.21 12.78 
9.58384E-

07 
ATM; CDK1; MAPK8; AKT1; 
MAPK1; MAPK3; MAPK14;  

Transcription regulator 
activity 

6 18.18 3.96 0.0035 
HDAC1; EZH2; HDAC2; HDAC4; 

RB1; HDAC6;  

Transcription factor activity 2 6.06 1.31 0.45 MYC; HIF1A;  

Transmembrane receptor 
protein tyrosine kinase 

activity 
3 9.09 29.50 0.000142 IGF1R; ERBB2; EGFR;  

Chaperone activity 5 15.15 21.83 
3.04388E-

06 
HSPB1; HSPA5; NPM1; HSPA1A; 

HSP90AA1;  

DNA-methyltransferase 
activity 

1 3.03 138.29 0.0072 DNMT1;  

BIOLOGICAL PATHWAY 

Glypican pathway 26 81.25 3.82 
6.10568E-

13 

AR; HSPB1; ATM; CDK1; NPM1; 
CTNNB1; HSPA1A; MAPK8; MYC; 

IGF1R; HDAC1; HIF1A; APP; 
AKT1; HDAC2; CASP8; MAPK1; 
ERBB2; MAPK3; CDKN2A; RB1; 

HSP90AA1; EGFR; CDKN1A; 
GAPDH; MAPK14;  

TRAIL signaling pathway 27 84.37 4.00 
2.91586E-

14 

AR; HSPB1; ATM; CDK1; NPM1; 
CTNNB1; HSPA1A; MAPK8; MYC; 
IGF1R; HDAC1; PARP1; HIF1A; 
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APP; AKT1; HDAC2; CASP8; 
MAPK1; ERBB2; MAPK3; 

CDKN2A; RB1; HSP90AA1; EGFR; 
CDKN1A; GAPDH; MAPK14;  

Glypican 1 network 26 81.25 3.94 
2.93211E-

13 

AR; HSPB1; ATM; CDK1; NPM1; 
CTNNB1; HSPA1A; MAPK8; MYC; 

IGF1R; HDAC1; HIF1A; APP; 
AKT1; HDAC2; CASP8; MAPK1; 
ERBB2; MAPK3; CDKN2A; RB1; 

HSP90AA1; EGFR; CDKN1A; 
GAPDH; MAPK14;  

Integrin-linked kinase 
signaling 

21 65.62 6.31 
7.17368E-

14 

AR; HSPB1; ATM; CDK1; NPM1; 
CTNNB1; MAPK8; MYC; HDAC1; 
PARP1; HIF1A; AKT1; HDAC2; 

CASP8; MAPK1; MAPK3; 
CDKN2A; RB1; HSP90AA1; 

CDKN1A; MAPK14;  

AP-1 transcription factor 
network 

20 62.5 6.33 
4.19493E-

13 

AR; HSPB1; ATM; CDK1; NPM1; 
CTNNB1; MAPK8; MYC; HDAC1; 
HIF1A; AKT1; HDAC2; CASP8; 

MAPK1; MAPK3; CDKN2A; RB1; 
HSP90AA1; CDKN1A; MAPK14;  

Arf6 downstream pathway 25 78.12 3.82 
3.54199E-

12 

AR; HSPB1; ATM; CDK1; NPM1; 
CTNNB1; HSPA1A; MAPK8; MYC; 

IGF1R; HDAC1; HIF1A; AKT1; 
HDAC2; CASP8; MAPK1; ERBB2; 

MAPK3; CDKN2A; RB1; 
HSP90AA1; EGFR; CDKN1A; 

GAPDH; MAPK14;  

Among macular functions Protein serine/threonine kinase activity (21.21%), Transcription 

regulator activity (18.18%), Transcription factor activity (6.06%), Transmembrane receptor 

protein tyrosine kinase activity (9.09%), Chaperone activity (15.15%), DNA-methyltransferase 

activity (3.03%) was highly enriched having a p-value less than 0.05 [Figure 5.2 (A)]. 

Similarly, among different biological pathways, Glypican pathway (81.25%), TNF-related 

apoptosis-inducing ligand (TRAIL) signaling pathway (84.37%), Glypican 1 network 

(81.25%), Integrin-linked kinase signaling (65.62%), AP-1 transcription factor network 

(62.50%), and ADP-ribosylation factor 6 (Arf6) downstream pathway (78.12%) [Figure 5.2 

(B)]. However, from table 5.1, it will be observed that only two pathways, such as the TRAIL 

signaling pathway and Integrin-linked kinase signaling, constitute nucleophosmin (NPM1), 

cyclin-dependent kinase 1 (CDK1), and PARP1 (highlight in blue script with a green fill). 

Thus, the above-said pathways were crucial in the AD and PD pathogenesis with HDAC 

interactors.  
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Figure 5.2: (A) Graphical representation of acetylation, ubiquitination, SUMOylation sites in protein present 
in the cluster 1 (B) Molecular functions of top 33 proteins involved in HDAC interactors, Alzheimer’s and 
Parkinson’s disease. 

5.1.3. STRUCTURAL CHARACTERIZATION OF PARP1, NPM1, AND CDK1 

For crosstalk analysis, a protein should be selected on the basis that the individual frequency 

of acetylation, ubiquitination, and SUMOylation is ≥10 [Table 5.2].  

Table 5.2: List of histone deacetylase interactors having more than 50 lysine modified sites (acetylation, 
ubiquitination, and SUMOylation). The proteins marked in blue colour and filled with grey colour represents 
those proteins have individual acetylation, ubiquitination, and SUMOylation sites more than 10 

  Acetylation Ubiquitination SUMOylation K Modified Sites 

HSP90AA1 50 101 4 155 

DNMT1 44 94 8 146 

PARP1 65 43 33 141 

HSPA5 29 52 2 83 

NPM1 27 27 26 80 

HIF1A 9 61 5 75 

ATM 5 69 1 75 

HSPA1A 29 41 5 75 

CDK1 15 42 15 72 

GAPDH 27 26 6 59 

Thus, PARP1, NPM1, and CDK1 were found to be the most prominent protein for crosstalk 

between acetylation, ubiquitination, and SUMOylation [Figure 5.3].  
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Figure 5.3: (A) Stack-bar representation of ‘K’ modified sites (B) Secondary-structure representation in 
PARP1, CDK1, and NPM1. 

Secondary structure analysis of PARP1, NPM1, and CDK1 revealed the importance of coiled 

structure as compared to helix and strand in the PTM region. A coiled region regulates protein 

interactions and aggregation propensity, and thus mutations, which impair coiled regions, 

deregulate aggregation and protein activity, whereas, mutations, which increase coiled 

structure enhance aggregation propensity [490]. In PARP1, 42 PTM sites fall into the coiled 

region, whereas, 22 and 18 PTM sites formed a coiled structure in NPM1 and CDK1, 

respectively.  
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Figure 5.4: Classification of PTM sites of PARP1, NPM1, and CDK1 into ordered and disordered region. 

Further, our analysis demonstrates that the frequency of helix structure is greater in PARP1 

(27), NPM1 (11), and CDK1 (15) PTM sites as compared to non-PTM sites [Table 5.3]. 

However, in NPM1, the frequency of strands is almost equal in both PTM and non-PTM sites. 

Moreover, PTMs preferred disordered regions as compared to the ordered region, which 

affecting its functions and interactions. Further, the involvement of PTM in the disordered 

region influences disorder to order transition, thus altering protein’s stability and its associated 

mechanisms.  
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Table 5.3: List of post-translational modification and non-post-translational modification sites of PARP1, 
NPM1 and CDK1 (histone deacetylase interactors) in coiled, helix, and strand region 

  
PARP1 NPM1 CDK1 

PTM Non-PTM PTM Non-PTM PTM Non-PTM 

Coiled 42 22 22 1 18 1 

Helix 27 16 11 1 15 1 

Strand 10 2 2 1 8 0 

 

This mechanism could be beneficial in diversifying the functional effect of protein by forming 

new structural sites or PPI by proving a binding region. Interestingly, our analysis of PTM sites 

revealed that 75% of sites fall in the ordered region, whereas, 25% of sites fall in the disordered 

region [Figure 5.4]. Our data suggest that there is no PTM site in the disordered region for 

CDK1. Similarly, PARP1 has 12 acetylation, 9 SUMOylation, and 5 ubiquitination sites fall in 

the disordered region, whereas, NPM1 has 16 acetylation, 21 SUMOylation, and 13 

ubiquitination sites fall in the disordered region. Although previous studies reported that 

acetylation, ubiquitination, and SUMOylation preferred the ordered region, and thus PARP1 

has more acetylation and ubiquitination sites in the ordered region, which is 53 and 38, 

respectively. However, in NPM1, the number of acetylation sites in the ordered region is less 

than that of the disordered region, whereas, the number of ubiquitination sites in the ordered 

region (18) is higher than that of ubiquitination sites in the disordered region (13). Similarly, 

the SUMOylation sites of PARP1 in the ordered region (24) is greater than that of the 

disordered region (9), whereas, the SUMOylation sites of NPM1 in the ordered region (5) is 

less than that of the disordered region (21). Thus, our study demonstrates the deviation in 

NPM1, whereas, PARP1 data goes well with previously reported literature for acetylation, 

ubiquitination, and SUMOylation. Moreover, to identify PTM hotspots and crosstalk hotspots 

and their susceptibility to neurodegeneration, we separated the proteins based on PTM sites 

and hotspot sites. In-situ crosstalk analysis in PARP1 revealed 15 potential 

acetylation/ubiquitination/SUMOylation sites, 19 acetylation/ubiquitination sites, 7 
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acetylation/SUMOylation sites, and 3 ubiquitination/SUMOylation sites. Similarly, in CDK1, 

there are 11 acetylation/ubiquitination/SUMOylation sites, 3 acetylation/ubiquitination sites, 

and 4 ubiquitination/SUMOylation sites [Figure 5.5 (A)].  

 

Figure 5.5: Crosstalk analysis between acetylation, ubiquitination, and SUMOylation in PARP1, CDK1, and 
NPM1 (B) Identification of Hotspot regions in PARP1 and CDK1.  

The acetylation/ubiquitination/SUMOylation crosstalk sites of CDK1 and PARP1 were 

selected to identify crosstalk hotspots. Later on, we selected high density stretches containing 

the +7 and -6 motif starch, excluding the central PTM. Our analysis observed that K148, K249, 
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K528, K637, K700, and K796 have crosstalk hotspots in PARP1, whereas, no such hotspot has 

been observed in CDK1 [Figure 5.5 (B)].  

5.1.4. IMPACT OF LYSINE MUTATION ON PARP1 

The disease susceptibility of putative lysine mutation, either with glutamine and leucine, were 

investigated through mutational analysis tools such as PANTHER, Pmut, PolyPhen2, and 

SNAP2. Our results observed that all sites have an impact on disease susceptibility. However, 

K249, K331, K337, K528, K600, K637, K700, and K796 have a high confidence score on 

disease susceptibility. The highly intolerant mutation that is disease susceptible were shown in 

[Figure 5.6] and [Table 5.4].  

 

Figure 5.6: Impact of lysine mutation in hotspot sites on disease susceptibility. The selected lysine 
residues such as K148, K249, K262, K331, K337, K433, K528, K600, K637, K700, K748, and K796 were 
subjected to mutation with both glutamine or leucine. Afterwards, the mutations were checked for their 
impact on disease susceptibility. The results indicate that mutations such as K249L, K331Q, K331L, K337Q, 
K337L, K528Q, K528L, K600Q, K600L, K637Q, K637L, K700Q, K700L, and K796L have a pathogenic score 
above than 3 (taken as reference). 

Mutational analysis study also revealed that mutation of K249, K331, and K796 residue with 

leucine decreases PARP1 stability, whereas, mutation of K331, K528, K600, K637, and K700 

with glutamine decreases PARP1 stability. However, the decrease in PARP1 stability at K331 

is higher when mutated with glutamine as compared to mutation with leucine [Figure 5.7 (A)]. 

Thus, the investigation suggests that mutation with glutamine on crosstalk sites impacts the 

stability of PARP1 to a great extent as compared to leucine. 
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Table 5.4: Impact of PARP1's "K" mutation to either Q or L on disease susceptibility predicted with the help 
of Pmut, PolyPhen2, Panther, and SNAP2 

Residue Pmut PolyPhen2 Panther SNAP2 Confidence 

K148Q 0.16 0.075 1 0 1.235 
K148L 0.39 0.097 1 0 1.487 
K249Q 0.23 0.656 2 0 2.886 

K249L 0.54 0.86 2 1 4.4 

K262Q 0.15 0.138 2 0 2.288 
K262L 0.42 0.529 2 0 2.949 

K331Q 0.42 0.924 2 1 4.344 
K331L 0.41 0.696 2 1 4.106 
K337Q 0.24 0.935 2 0 3.175 
K337L 0.56 0.731 2 0 3.291 

K433Q 0.08 0.005 0 0 0.085 
K433L 0.26 0.522 0 0 0.782 

K528Q 0.47 1 2 1 4.47 
K528L 0.86 1 2 1 4.86 
K600Q 0.43 1 2 1 4.43 
K600L 0.48 0.999 2 1 4.479 
K637Q 0.61 0.988 2 1 4.598 
K637L 0.68 0.318 2 1 3.998 
K700Q 0.66 0.997 2 1 4.657 
K700L 0.84 0.979 2 1 4.819 

K748Q 0.38 0.084 2 0 2.464 
K748L 0.51 0.01 2 0 2.52 
K796Q 0.28 0.148 2 0 2.428 

K796L 0.47 0.961 2 1 4.431 

"Probably Begin" and "Neutral" Marked as 0 
"Possible Damage" Marked as 1 

"Probably Damaging" and "Effect" Marked as 2 

 

5.1.5. POTENTIAL LYSINE RESIDUES INVOLVED IN ACETYLATION, 

UBIQUITINATION, AND SUMOYLATION 

Herein, we investigated the impact of an acetylated lysine residue on ubiquitination and 

SUMOylation, either at the same location or at the nearby sites. Our data revealed that putative 

mutation in 15 lysine-acetylated sites (K7, K97, K148, K249, K262, K331, K337, K433, K528, 

K600, K637, K653, K700, K748, K796) out of a total of 65 acetylated sites in PARP1 affect 

the process of ubiquitination to a great extent as compared to SUMOylation [Table 5.5]. Table 

5.5 demonstrates the functional impact of putative lysine residue mutation on acetylation, 

ubiquitination, and SUMOylation. Further, the collective results depict the role of putative 

lysine mutation on other cellular functions. The results revealed that mutation in K7, K249, 

K337, K528, and K796 results in loss of acetylation on the same site, whereas, loss of lysine 

on K637 results in loss of acetylation at K633. Similarly, loss of putative lysine residue on K7 



112 | P a g e  

 

results in loss of ubiquitination at K7, whereas, loss of putative lysine residue on K600 results 

in loss of SUMOylation at K600. Further, our analysis demonstrates that putative mutation in 

lysine either with glutamine or leucine at K528 results in loss of acetylation at K528, loss of 

ubiquitination at K528, and loss of SUMOylation at K524 with ELME000051, ELME000231, 

ELME000336, and PS00005 as affected motifs.  

 

Figure 5.7: Impact of lysine mutation on protein stability. Afterward, the selected disease susceptible 
mutations were subjected to investigate their impact on protein structure stability. The results indicate that 
mutations such as K337Q, K337L, K528L, K600L, K637L, and K700L have positive energy value and 
increases protein stability. Similarly, K249L, K331Q, K331L, K528Q, K600Q, K637Q, K700Q, and K796L have 
negative energy value and thus, decreases the stability of the protein. (B) Investigation of acetylated lysine 
residue mutations on ubiquitination and SUMOylation. Here the results suggest that out of a total of 65 
potential lysine sites, 15 sites were mutated and predicted the change in ubiquitination and SUMOylation 
states of the PARP1. The results suggested that total of 28 sites have a gain of ubiquitination, whereas, 32 
sites have loss of ubiquitination when mutated with either glutamine or leucine. Similarly, 4 sites have gain 
of SUMOylation, whereas, 25 sites have loss of SUMOylation when mutated with both glutamine or leucine. 
Further, K233 have gain of both ubiquitination and SUMOylation, whereas, 14 sites have loss of both 
ubiquitination and SUMOylation as represented with pink colour in the figure. 

The results collectively show the importance of K528 of PARP1, which regulates acetylation, 

ubiquitination, and SUMOylation collectively in NDDs such as AD and PD. Further, SUMOgo 
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and BDM-PUB predict 117 SUMOylation sites and 80 ubiquitination sites, respectively. The 

cut-off value for SUMOylation and ubiquitination prediction was set at 0.5 and 1.5, 

respectively, which filters 12 SUMOylation sites and 39 ubiquitination sites in PARP1. 

Through the in-silico approach, we substitute the lysine residue with glutamine and leucine, 

which promotes neutral side chain and hydrophobic side chain, respectively. The predicted 

residues were then compared with the integrated ubiquitination and SUMOylation residues. 

Here, we classified the affected ubiquitination and SUMOylation sites into two groups, which 

are the gain of function on nearby sites and loss of function on nearby sites. Our prediction 

demonstrated that loss of crucial lysine residue alters the ubiquitination function to a great 

extent as compared to SUMOylation. In ubiquitination, 28 sites were resulted in a gain of 

function, whereas, 32 sites resulted in the loss of function. Similarly, in SUMOylation, only 4 

sites were predicted to gain in function, whereas, 25 sites resulted in the loss of function 

[Figure 5.7 (B)]. Further, our results suggest that loss of lysine residue at crucial sites either 

with glutamine and leucine resulted in both ubiquitination and SUMOylation gain in function 

at K233. Similarly, 14 sites (K7, K148, K239, K262, K331, K337, K394, K528, K600, K637, 

K653, K700, K748, K798) predicted to the loss in function for both ubiquitination and 

SUMOylation upon lysine substitution with either glutamine or leucine.  

Table 5.5: Physical significance of lysine (K) residue in PARP1 acetylation, ubiquitination, and 
SUMOylation through an online analysis tool known as MutPred2 (http://mutpred.mutdb.org/) 

Lysine 
Residue 

Mutation Affected Molecular Mechanism (P ≤ 0.05) 
Affected 
Motifs 

Pathogenic 
Score 

K7 

Lys(K)-
Gln(Q) 

____ ____ 0.273 

Lys(K)-
Leu(L) 

Loss of Intrinsic disorder  
Loss of Acetylation at K7  

Loss of Phosphorylation at Y9  
Loss of Methylation at K7  

Loss of Ubiquitylation at K7  

ELME000149 
PS00005 

0.517 

K97 

Lys(K)-
Gln(Q) 

____ ____ 0.196 

Lys(K)-
Leu(L) 

____ ____ 0.383 

K148 

Lys(K)-
Gln(Q) 

____ 
ELME000155 

PS00347 

0.545 

Lys(K)-
Leu(L) 

Gain of Loop  
Altered Transmembrane protein  

0.742 

K249 Lys(K)- ____ ____ 0.479 
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Gln(Q) 

Lys(K)-
Leu(L) 

Altered Coiled 
Loss of Intrinsic disorder  

Gain of Loop  
Loss of Helix  

Altered Disordered interface  
Loss of Acetylation at K249  

ELME000002 0.737 

K262 

Lys(K)-
Gln(Q) 

____ ____ 0.453 

Lys(K)-
Leu(L) 

Altered Coiled ____ 0.771 

K331 

Lys(K)-
Gln(Q) 

____ ____ 0.272 

Lys(K)-
Leu(L) 

Altered Transmembrane protein ____ 0.575 

K337 

Lys(K)-
Gln(Q) 

Loss of Acetylation at K337  

ELME000064 
ELME000117 
ELME000133 
ELME000136 
ELME000159 

0.694 

Lys(K)-
Leu(L) 

Loss of Acetylation at K337  ____ 0.825 

K433 

Lys(K)-
Gln(Q) 

____ ____ 0.113 

Lys(K)-
Leu(L) 

____ ____ 0.385 

K528 

Lys(K)-
Gln(Q) 

____ ____ 0.370 

Lys(K)-
Leu(L) 

Loss of Intrinsic disorder  
Loss of Acetylation at K528  

Loss of Strand  
Loss of Helix  

Loss of SUMOylation at K524  
Loss of Ubiquitylation at K528  

Loss of Methylation at K528  

ELME000051 
ELME000231 
ELME000336 

PS00005 

0.687 
 

K600 

Lys(K)-
Gln(Q) 

Loss of SUMOylation at K600  
Gain of GPI-anchor amidation at N599 

PS00005 

0.718 

Lys(K)-
Leu(L) 

Loss of SUMOylation at K600  0.862 

K637 

Lys(K)-
Gln(Q) 

Gain of Strand  
Loss of Acetylation at K633  

Altered Transmembrane protein  

ELME000163 
ELME000233 

0.713 

Lys(K)-
Leu(L) 

Loss of Acetylation at K633  
Altered Transmembrane protein  

ELME000120 
ELME000233 

0.886 

K653 

Lys(K)-
Gln(Q) 

____ ____ 0.273 

Lys(K)-
Leu(L) 

____ ____ 0.489 

K700 

Lys(K)-
Gln(Q) 

____ ____ 0.499 

Lys(K)-
Leu(L) 

Altered Coiled  ELME000333 0.768 

K748 

Lys(K)-
Gln(Q) 

____ ____ 0.562 

Lys(K)-
Leu(L) 

Altered Coiled  ____ 0.775 

K796 

Lys(K)-
Gln(Q) 

Loss of Acetylation at K796  
Altered Transmembrane protein  

Altered Coiled  
Gain of Proteolytic cleavage at D791  

ELME000020 
ELME000120 
ELME000173 
ELME000233 

0.546 

Lys(K)-
Leu(L) 

Altered Ordered interface  
Loss of Acetylation at K796  

Altered Transmembrane protein  
Altered Coiled  

Gain of Proteolytic cleavage at D791  

0.776 
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5.2. CONCLUSION AND SUMMARY 

NDDs such as AD and PD are best characterized as progressive loss of neuronal cells leading 

to memory deficits and cognitive dysfunction. Mounting evidence suggests the possible 

implementation of PTMs in the pathogenesis of NDDs. One important PTM is acetylation, 

which is the process of the addition of the acetyl group to the N-terminal lysine residue. 

Acetylation and deacetylation are reversible processes, which are carried out with the help of 

HATs and HDACs enzymes, respectively. HATs/HDACs promote euchromatin and 

heterochromatin structure, respectively, which involves in the transcriptional regulation. Apart 

from acetylation, ubiquitination and SUMOylation are two important PTMs, which help in the 

removal of misfolded toxic protein aggregates such as Aβ and α-synuclein. The common 

characteristics feature of acetylation, ubiquitination, and SUMOylation is the involvement of 

lysine (K) residue, and thus crosstalk between three PTMs becomes a fascinating topic for 

research. Studies indicate that acetylation of PARP1 leads to its hyperactivation, which will 

intensify oxidative stress and causes mitochondrial dysfunction and, subsequently, neuronal 

cell death through parthanatos. Mounting evidence indicates that PARP1 acetylation increases 

Aβ and α-synuclein aggregates, which increases neurotoxicity [491]. Studies demonstrated that 

activation of PARP1 decreases Aβ clearance and increases AIF expression. Love et al., 1999 

first reported the activation of PARP1 in brain samples of AD patients. The authors conducted 

immunostaining analysis, which indicated the increased levels of PAR in AD patients in frontal 

and temporal lobes as compared to control patients [492]. Similarly, Abeti et al., 2011 in mixed 

cultures of hippocampal neurons and glial cells from Sprague-Dawley rat concluded that 

PARP1 activation leads to oxidative stress in the presence of Aβ causes metabolic failure and 

neuronal death [493].  Further, Li et al., 2010 in ischemic mice demonstrated that PARP1 

causes nuclear translocation of AIF, which results in neuronal cell death, whereas, in another 
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study conducted on rats concluded that PARP1 increased expression causes suppression of AIF 

protein expression [494]. In MPTP mouse model of PD, FAF1 plays a key role in PARP-1 

dependent necrosis in response to oxidative stress. Further, FAF1 depletion prevented PARP1-

linked downstream events such as mitochondrial depolarization and nuclear translocation of 

AIF [495]. [Figure 5.8].   

 

Figure 5.8: Mechanism of PARP1 acetylation in neurodegenerative diseases. Similarly, increased PARP1 
acetylation causes inhibition of DNA repair and increased ROS activity, which decreases cell-cycle activity 
and increases mitochondrial function, respectively. Decreased cell-cycle regulation and increased 
mitochondrial dysfunction causes increased neuronal apoptosis, which results in memory impairment and 
cognitive defects. Increased ROS activity by increased PARP1 acetylation lead to NF-κB activation, which 
increases pro-inflammatory cytokines release and results in microglial activation. 

In this study, we have examined the PTMs and their crosstalk in HDAC interactors, which are 

involved in the progression of NDDs such as AD and PD. The interactors of HDAC and 

proteins involved in AD and PD were collected from different databases such as HIPPIE, CTD, 

and DisGeNET. Venn analysis and PPI interaction of HDAC interactors, AD, and PD 

demonstrated the involvement of the Top 33 proteins. Gene set enrichment analysis of 33 

proteins confirmed the involvement of six different molecular functions and biological 

pathways in the pathogenesis of AD and PD through HDAC interactors. Protein 
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serine/threonine kinase activity (21.21%), Transcription regulator activity (18.18%), 

Transcription factor activity (6.06%), Transmembrane receptor protein tyrosine kinase activity 

(9.09%), Chaperone activity (15.15%), DNA-methyltransferase activity (3.03%) were top-

ranked molecular functions performed by HDAC interactors having a p-value less than 0.05. 

Similarly, Glypican pathway (81.25%), TRAIL signaling pathway (84.37%), Glypican 1 

network (81.25%), Integrin-linked kinase signaling (65.62%), AP-1 transcription factor 

network (62.50%), and Arf6 downstream pathway (78.12%) were top-ranked biological 

pathways involved in the pathogenesis of AD and PD. Lately, 1,50,968 PTMs sites from 

dbPTM and 1,15,127 PTMs sites from PLMD were integrated to 32 proteins in which 1489 

were acetylation, ubiquitination, and SUMOylation sites. Among 32 proteins, only three 

proteins, such as PARP1, NPM1, and CDK1, have individual acetylation, ubiquitination, and 

SUMOylation frequency greater than 10. Secondary structure prediction confirmed 42, 22, and 

18 PTMs sites formed coiled structure in PARP1, NPM1, and CDK1 respectively, 

demonstrating that the probability of PTMs site is higher in the coiled region as compared to 

helix and strand region. However, in NPM1, the probability of forming a strand region is higher 

as compared to PARP1 and CDK1. Further investigation revealed that 75% of PTMs sites were 

associated with the ordered region, whereas, 25% of PTMs sites were associated with the 

disordered region. Thus, it will be concluded that PTM distribution is higher in the ordered 

region as compared to the disordered region. Further, crosstalk analysis of acetylation, 

ubiquitination, and SUMOylation sites in PARP1 revealed that 19 PTM sites were associated 

with acetylation and ubiquitination crosstalk. Similarly, acetylation-SUMOylation (7 sites), 

ubiquitination-SUMOylation (3 sites), and acetylation-ubiquitination-SUMOylation (15 sites) 

were identified. Hotspot analysis identified that K148, K249, K528, K637, K700, and K796 

have potential crosstalk sites having ≥2 potential lysine residue in the vicinity of +7 and -6 

motif sequence. In order to predict crucial crosstalk sites, the impact of putative lysine mutation 
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on disease susceptibility was predicted, which demonstrated that among hotspot sites, K249L, 

K528Q, K528L, K637Q, K637L, K700Q, K700L, K796L were involved in the progression of 

NDDs. Further, our study investigated the role of putative lysine mutation on ubiquitination 

and SUMOylation, which shows that putative mutation in lysine residue will result in loss of 

SUMOylation and ubiquitination function. However, the gain of function after putative lysine 

mutation will also be observed, but the frequency is low as compared to the loss of function. 

In conclusion, K249, K331, K337, K528, K600, K637, K700, and K796 of PARP1 play a vital 

role in ubiquitination, acetylation, and SUMOylation crosstalk, which can potentially be useful 

for newer leads into acetylation mechanism, HDAC interactions, disease progression, 

biomarkers, or as a therapeutic target. Further, from this study, we also concluded that site-

specific inhibition of PARP1 acetylation (K249, K331, K337, K528, K600, K637, K700, and 

K796) and simultaneous activation of ubiquitination and SUMOylation at the same residues 

rescue neuronal cell death that involved in AD pathology. 

5.3. HIGHLIGHTS OF THE STUDY 

5.3.1. Lysine residues are important for acetylation, ubiquitination, and SUMOylation 

crosstalk 

5.3.2. HDAC interactors such as PARP1, NPM1, and CDK1 acts as a central player in PTM 

crosstalk 

5.3.3. K249, K331, K337, K528, K600, K637, K700, and K796 involved in PTM crosstalk 

5.3.4. Loss of acetylation causes loss of ubiquitination and SUMOylation function 
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CHAPTER VI: INTEGRATIVE ANALYSIS OF OIP5-AS1/MIR-

129-5P/CREBBP AXIS AS A POTENTIAL THERAPEUTIC 

TARGET IN THE PATHOGENESIS OF METAL TOXICITY-

INDUCED ALZHEIMER'S DISEASE 
 

6. INTRODUCTION 

NDDs, namely AD, is characterized by the accumulation of toxic Aβ aggregates and insoluble 

tau tangles. Mounting evidence demonstrated that heavy metals, such as copper, chromium, 

cobalt, and nickel, increases the Aβ and tau aggregation in the pathogenesis of AD by activating 

different signaling events. For instance, copper induces the formation of ROS to cause 

mitochondrial dysfunction and DNA damage, whereas, chromium elevates neuroinflammatory 

response and neuronal apoptosis. Similarly, cobalt increases tau hyperphosphorylation and 

promotes tau aggregation, whereas, nickel elevates Aβ aggregation. Further, acetylation, a 

lysine-specific post-translational modification, has been linked to transcriptional activation, 

which regulates the transcription of genes associated with metal toxicity-induced AD. 

However, miRNAs can reduce the activity of acetyltransferase, which decreases the 

transcriptional activation and thus inhibits the pathogenesis of AD. In contrast, long non-coding 

RNAs modulate the expression of specific miRNA and serve as a sponge to particular miRNA. 

In this study, we aim to identify the crucial proteins involved in metal toxicity-induced AD 

through network biology, followed by identifying regulatory TFs associated with crucial 

proteins. Further, we aim to determine the critical lysine residue and the role of CREBBP-

induce acetylation on TFs. Lately, we have focused on identifying miRNAs associated with 

CREBBP and TFs simultaneously. Lastly, we aim to identify the potential long non-coding 

RNA, serving as a sponge to miRNAs. Our results demonstrated that the OIP5-AS1/miR-129-

5p/CREBBP axis is a potential therapeutic target in metal toxicity-induced AD pathogenesis. 
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6.1. RESULTS AND DISCUSSION 

6.1.1. GENES INVOLVED IN METAL TOXICTY-INDUCED ALZHEIMER’S 

DISEASE  

Data extraction from the CTD database identified that genes involved in chromium, cobalt, 

copper, and nickel toxicity are 2149, 4804, 5862, and 7649, respectively. The Venn analysis of 

the genes revealed that 376 genes were common among them. Similarly, a total of 3397 genes 

involved in AD pathogenesis were extracted from the DisGeNET database. Furthermore, Venn 

analysis of metal toxicity linked genes and AD-related genes identified 199 shared genes.  

6.1.2. GENE SET ENRICHMENT ANALYSIS OF COMMON GENES 

A total of 199 common genes identified in metal toxicity and AD were subjected to functional 

enrichment analysis such as GO analysis and pathway analysis. Gene set enrichment analysis 

of common genes enables identifying cellular functions, molecular functions, biological 

processes, and pathways. The cut-off p-value for identifying cellular, molecular, biological, 

and pathway functions was set at less than 0.05, as shown in Table 6.1.  

Table 6.1: Gene set enrichment analysis (GO analysis and Pathway analysis) of 199 common genes related 
to metal toxicity and Alzheimer’s disease 

Name 
Fold 

enrichment 
P-value  Genes Mapped 

Biological Process 

Apoptosis 4.206953589 0.000145225 
TP53; CASP3; MAPK9; BCL2; BAX; CASP7; 

BBC3; CASP9; BCL2L11; CASP8;  

Regulation of cell 
cycle 

8.125736768 0.000372966 MAPK9; CDKN1A; CCNE2; CHEK2; KLF4;  

Anti-apoptosis 11.58336557 0.000376289 SOD2; GPX1; FAS; IGF1;  

Protein metabolism 1.747940437 0.004511294 

PARP1; MMP1; MMP2; ADAMTS1; EIF4A1; 
HSPA5; MMP13; ANPEP; BMP1; CALR; CCT2; 
DNAJB1; DPP4; F3; HSPA9; HSPB1; HSPH1; 

HYOU1; PDIA6; RPL15; SERPINA1; SERPINC1; 
SERPING1; SQSTM1; THOP1;  

Metabolism 1.593812016 0.008086365 

CAT; NQO1; GSR; SOD1; HMOX1; PTGS2; GPT; 
NOS2; TXN; GSK3β; LYZ; G6PD; HMGCR; 

NAT10; ACHE; ALDH1L1; CD36; CYCS; FDPS; 
GCHFR; GPX4; IDH2; LDHA; NME1; PHYHD1; 

PRDX1; PSAT1; SIRT1; TXNRD1;  

Signal transduction 1.339959419 0.009037422 

MAPK8; MAPK1; AKT1; MAPK3; TNF; MAPK9; 
VEGFA; CCND1; FYN; IRS1; PLK1; CDK1; 
MAP2K4; EGFR; ICAM1; CHEK2; LDLR; 

NOTCH1; PLK2; SGK1; TGFB1; TGFBI; AGT; 
ARHGEF2; ATM; BMP4; CCL5; CD44; CD68; 
CXCR4; DENR; DKK1; DUSP6; EDN1; FAS; 
FGFR4; FZD4; GDF15; GPNMB; HSP90AB1; 

IGF1; IGF2; IL1RL1; MAPK14; NTS; PGF; PHB; 
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PRKCD; RAB31; RGCC; RGS2; S100A6; ST13; 
STIP1; TAX1BP1; TGFBR2; TLR4;  

Cellular Component 

Extracellular 3.124166679 3.33129E-21 

CAT; SOD1; IL6; TNF; CXCL8; CDKN1A; VEGFA; 
GPT; GPX1; STAT3; TF; IFNG; TIMP1; TXN; 

APOA1; EGFR; ICAM1; IL1B; LYZ; MMP1; MMP2; 
MT2A; TFRC; VIM; ADAMTS1; C3; EGR1; 

FABP3; G6PD; HMGCR; IL4; MMP13; TGFB1; 
TGFBI; ACHE; ADM; AGT; ALB; ANPEP; APOB; 

APOC3; BMP1; BMP4; CALR; CCL2; CCL5; CFB; 
CFI; CXCL1; DKK1; DPP4; EDN1; F3; FAS; 

FGFR4; FN1; GDF15; HMGB1; HSP90AB1; IGF1; 
IGF2; IL10; IL1RL1; IL2; NME1; NTS; PDIA6; 
PGF; PHB; RGS2; SERPINA1; SERPINC1; 

SERPING1; SHBG; THOP1; TXNRD1;  

Extracellular space 5.943226358 3.12411E-16 

SOD1; IL6; HMOX1; TNF; CXCL8; VEGFA; 
APOA1; EGFR; ICAM1; IL1B; LYZ; MMP2; IL4; 

MMP13; TGFB1; TGFBI; ADM; AGT; ALB; 
APOC3; CALR; CCL2; CXCL1; EDN1; F3; FN1; 

HMGB1; IGF1; IL10; IL2; SERPINA1; SERPINC1;  

Cytosol 3.311818965 4.53947E-15 

TP53; CASP3; GSR; SOD1; HMOX1; MAPK8; 
MAPK1; AKT1; MAPK3; CDKN1A; CCND1; FYN; 
GPX1; IRS1; RELA; BCL2; HDAC1; BAX; CASP7; 

PLK1; CASP9; CDK1; MAP2K4; NOS2; TXN; 
GSK3β; TCF4; VIM; BCL2L11; CASP8; CCNE2; 

EIF4A1; G6PD; NOTCH1; ARHGEF2; CALR; 
CCT2; CYCS; DNAJB1; FAS; GART; HSP90AB1; 
HSPH1; LDHA; MAPK14; PPIA; PRKCD; PSAT1; 

RPL15; S100A6; SQSTM1; TXNRD1;  

Exosomes 2.533787837 3.15643E-14 

NQO1; GSR; SOD1; GPT; TF; BAX; CASP9; 
CDK1; TXN; APOA1; EGFR; ICAM1; LYZ; 

SLC2A1; TFRC; VIM; C3; EIF4A1; FABP3; G6PD; 
HSPA5; NOTCH1; PCNA; TGFB1; TGFBI; AGT; 
ALB; ALDH1L1; ANPEP; APOB; CALR; CCT2; 

CD36; CD44; CFI; CXCR4; DNAJB1; DPP4; FAS; 
FDPS; FN1; GART; GPX4; HSP90AB1; HSPA9; 
HSPB1; HSPH1; HYOU1; LDHA; NME1; OPTN; 
PDIA6; PHB; PPIA; PRDX1; PRKCD; PSAT1; 

RBM3; RPL15; S100A6; SERPINA1; SERPING1; 
SLC2A3; SQSTM1; ST13; STIP1; TAX1BP1; 

TPM1; TXNRD1;  

Nucleoplasm 4.679352988 9.37804E-12 

TP53; CASP3; JUN; MAPK8; MAPK1; AKT1; 
MAPK3; MAPK9; CDKN1A; CCND1; RELA; MYC; 

CASP7; PLK1; CDK1; ATF2; CCNE2; MCM2; 
PCNA; ATM; DUSP6; HMGB1; MAPK14; PHB; 

PPARGC1A; SFPQ; SIRT1; SQSTM1;  

Cytoplasm 1.61016101 1.28598E-11 

CAT; TP53; NQO1; CASP3; GSR; HIF1A; SOD1; 
JUN; MAPK8; MAPK1; PTGS2; AKT1; MAPK3; 
MAPK9; PARP1; CDKN1A; VEGFA; CCND1; 
FYN; GPT; GPX1; IRS1; RELA; STAT3; TF; 

BCL2; HDAC1; BAX; CASP7; NFE2L2; PLK1; 
BBC3; CASP9; CDK1; MAP2K4; NOS2; TXN; 
AHR; APOA1; ATF2; EGFR; GSK3β; ICAM1; 

IL1B; MT2A; SLC2A1; VIM; BCL2L11; C3; 
CASP8; CHEK2; CREBBP; EIF4A1; ESR1; 

FABP3; G6PD; HSPA5; PCNA; PLK2; PPARA; 
SGK1; SLC11A2; SLC40A1; TGFB1; TGFBI; 
ADM; AGT; ALB; ALDH1L1; ARHGEF2; ATM; 
BMP1; C1QBP; CALR; CCL5; CCT2; CD36; 

CD44; CXCR4; CYCS; DHFR; DNAJB1; DUSP6; 
EDN1; FAS; FDPS; FZD4; GCHFR; GPX4; 

HMGB1; HSP90AB1; HSPA9; HSPB1; HSPH1; 
HYOU1; IGF1; KLF4; LDHA; MAPK14; NFIA; 
NME1; OPTN; PHB; PPIA; PRDX1; PRKCD; 
RAB31; RGCC; RGS2; S100A6; SERPINA1; 

SFPQ; SIRT1; SQSTM1; ST13; STIP1; TAX1BP1; 
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TGFBR2; THOP1; TLR4; TPM1; TXNRD1;  

Molecular Functions 

Protein 
serine/threonine 
kinase activity 

4.303851101 5.27737E-06 
MAPK8; MAPK1; AKT1; MAPK3; MAPK9; PLK1; 

CDK1; GSK3β; CHEK2; PLK2; SGK1; ATM; 
MAPK14; PRKCD;  

Peroxidase activity 18.53093404 5.61002E-05 PTGS2; GPX1; GPX4; PRDX1;  

Metallopeptidase 
activity 

6.417319661 0.000113325 
MMP1; MMP2; ADAMTS1; MMP13; ANPEP; 

BMP1; THOP1;  

Cytokine activity 6.057503589 0.000162709 IL6; CXCL8; IFNG; IL1B; IL4; IL10; IL2;  

Superoxide 
dismutase activity 

61.74895155 0.000346553 SOD1; SOD2;  

Chaperone activity 5.144142997 0.00044355 
HSPA5; CALR; CCT2; HSP90AB1; HSPA9; 

HSPB1; HYOU1;  

Biological Pathways 

AP-1 transcription 
factor network 

4.375449634 1.06375E-30 

TP53; CASP3; HIF1A; IL6; JUN; HMOX1; MAPK8; 
MAPK1; PTGS2; AKT1; MAPK3; TNF; CXCL8; 

MAPK9; CDKN1A; VEGFA; CCND1; FYN; RELA; 
STAT3; TF; BCL2; HDAC1; IFNG; MYC; BAX; 

CDK1; MAP2K4; NOS2; TIMP1; TXN; ATF2; FOS; 
GSK3β; ICAM1; MMP1; MMP2; MT2A; SLC2A1; 

TCF4; TFRC; BCL2L11; CASP8; CREBBP; 
DDIT3; EGR1; ESR1; IL4; SGK1; SP1; TGFB1; 

ACHE; ADM; AGT; ATM; BHLHE40; CCL2; 
CXCR4; DKK1; EDN1; GJA1; HSPB1; IL10; IL2; 

JUNB; KLF4; LDHA; MAPK14; NTS; PPARGC1A; 
PRDX1; PRKCD; TGFBR2;  

Integrin-linked kinase 
signaling 

4.21157898 4.56458E-30 

TP53; CASP3; HIF1A; IL6; JUN; HMOX1; MAPK8; 
MAPK1; PTGS2; AKT1; MAPK3; TNF; CXCL8; 
MAPK9; PARP1; CDKN1A; VEGFA; CCND1; 

FYN; RELA; STAT3; TF; BCL2; HDAC1; IFNG; 
MYC; BAX; CDK1; MAP2K4; NOS2; TIMP1; TXN; 

ATF2; FOS; GSK3β; ICAM1; MMP1; MMP2; 
MT2A; SLC2A1; TCF4; TFRC; BCL2L11; CASP8; 
CREBBP; DDIT3; EGR1; ESR1; IL4; SGK1; SP1; 

TGFB1; ACHE; ADM; AGT; ATM; BHLHE40; 
CCL2; CXCR4; DKK1; EDN1; GJA1; HSPB1; 
IL10; IL2; JUNB; KLF4; LDHA; MAPK14; NTS; 

PPARGC1A; PRDX1; PRKCD; TGFBR2;  

TRAIL signaling 
pathway 

2.837162097 1.33272E-28 

CAT; TP53; CASP3; HIF1A; IL6; JUN; HMOX1; 
MAPK8; MAPK1; PTGS2; AKT1; MAPK3; TNF; 

CXCL8; MAPK9; PARP1; CDKN1A; SOD2; 
VEGFA; CCND1; FYN; GPX1; IRS1; RELA; 

STAT3; TF; BCL2; HDAC1; IFNG; MYC; BAX; 
CASP7; PLK1; BBC3; CASP9; CDK1; MAP2K4; 
NOS2; TIMP1; TXN; ATF2; EGFR; FOS; GSK3β; 
ICAM1; MMP1; MMP2; MT2A; SLC2A1; TCF4; 

TFRC; VIM; BCL2L11; CASP8; CHEK2; CREBBP; 
DDIT3; EGR1; EIF4A1; ESR1; IL4; MMP13; 

PCNA; SGK1; SP1; TGFB1; ACHE; ADM; AGT; 
ATM; BHLHE40; BMP4; CCL2; CCL5; CXCR4; 

CYCS; DKK1; DUSP6; EDN1; FAS; FGFR4; FN1; 
GDF15; GJA1; HSPB1; IGF1; IGF2; IL10; IL2; 
JUNB; KLF4; LDHA; MAPK14; NME1; NTS; 

PPARGC1A; PRDX1; PRKCD; RGCC; SIRT1; 
TGFBR2;  

VEGF and VEGFR 
signaling network 

2.860893735 1.62998E-28 

CAT; TP53; CASP3; HIF1A; IL6; JUN; HMOX1; 
MAPK8; MAPK1; PTGS2; AKT1; MAPK3; TNF; 

CXCL8; MAPK9; CDKN1A; SOD2; VEGFA; 
CCND1; FYN; GPX1; IRS1; RELA; STAT3; TF; 
BCL2; HDAC1; IFNG; MYC; BAX; PLK1; BBC3; 
CASP9; CDK1; MAP2K4; NOS2; TIMP1; TXN; 
ATF2; EGFR; FOS; GSK3β; ICAM1; MMP1; 
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MMP2; MT2A; SLC2A1; TCF4; TFRC; BCL2L11; 
CASP8; CHEK2; CREBBP; DDIT3; EGR1; 

EIF4A1; ESR1; IL4; MMP13; PCNA; SGK1; SP1; 
TGFB1; ACHE; ADM; AGT; ATM; BHLHE40; 
BMP4; CCL2; CCL5; CXCR4; CYCS; DKK1; 

DUSP6; EDN1; FAS; FGFR4; FN1; GDF15; GJA1; 
HSP90AB1; HSPB1; IGF1; IGF2; IL10; IL2; JUNB; 

KLF4; LDHA; MAPK14; NME1; NTS; PGF; 
PPARGC1A; PRDX1; PRKCD; RGCC; SIRT1; 

TGFBR2;  

Signaling events 
mediated by VEGFR1 

and VEGFR2 
2.849811345 5.67443E-28 

CAT; TP53; CASP3; HIF1A; IL6; JUN; HMOX1; 
MAPK8; MAPK1; PTGS2; AKT1; MAPK3; TNF; 

CXCL8; MAPK9; CDKN1A; SOD2; VEGFA; 
CCND1; FYN; GPX1; IRS1; RELA; STAT3; TF; 
BCL2; HDAC1; IFNG; MYC; BAX; PLK1; BBC3; 
CASP9; CDK1; MAP2K4; NOS2; TIMP1; TXN; 
ATF2; EGFR; FOS; GSK3β; ICAM1; MMP1; 

MMP2; MT2A; SLC2A1; TCF4; TFRC; BCL2L11; 
CASP8; CHEK2; CREBBP; DDIT3; EGR1; 

EIF4A1; ESR1; IL4; MMP13; PCNA; SGK1; SP1; 
TGFB1; ACHE; ADM; AGT; ATM; BHLHE40; 
BMP4; CCL2; CCL5; CXCR4; CYCS; DKK1; 

DUSP6; EDN1; FAS; FGFR4; FN1; GDF15; GJA1; 
HSP90AB1; HSPB1; IGF1; IGF2; IL10; IL2; JUNB; 
KLF4; LDHA; MAPK14; NME1; NTS; PPARGC1A; 

PRDX1; PRKCD; RGCC; SIRT1; TGFBR2;  

IFN-gamma pathway 2.849811345 5.67443E-28 

CAT; TP53; CASP3; HIF1A; IL6; JUN; HMOX1; 
MAPK8; MAPK1; PTGS2; AKT1; MAPK3; TNF; 

CXCL8; MAPK9; CDKN1A; SOD2; VEGFA; 
CCND1; FYN; GPX1; IRS1; RELA; STAT3; TF; 
BCL2; HDAC1; IFNG; MYC; BAX; PLK1; BBC3; 
CASP9; CDK1; MAP2K4; NOS2; TIMP1; TXN; 

ATF2; EGFR; FOS; GSK3β; ICAM1; IL1B; MMP1; 
MMP2; MT2A; SLC2A1; TCF4; TFRC; BCL2L11; 

CASP8; CHEK2; CREBBP; DDIT3; EGR1; 
EIF4A1; ESR1; IL4; MMP13; PCNA; SGK1; SP1; 

TGFB1; ACHE; ADM; AGT; ATM; BHLHE40; 
BMP4; CCL2; CCL5; CXCR4; CYCS; DKK1; 

DUSP6; EDN1; FAS; FGFR4; FN1; GDF15; GJA1; 
HSPB1; IGF1; IGF2; IL10; IL2; JUNB; KLF4; 
LDHA; MAPK14; NME1; NTS; PPARGC1A; 
PRDX1; PRKCD; RGCC; SIRT1; TGFBR2;  

 

Among biological processes, apoptosis (5.1%), regulation of cell cycle (2.6%), anti-apoptosis 

(2%), protein metabolism (12.8%), and metabolism (14.8%) were top 5 ranked processes. 

Similarly, extracellular (39.2%), extracellular space (16.5%), cytosol (26.8%), exosomes 

(35.6%), and nucleoplasm (14.4%) were top-ranked cellular components, while protein 

serine/threonine kinase activity (7.1%), peroxidase activity (2%), metallopeptidase activity 

(3.6%), cytokine activity (3.6%), and superoxide dismutase activity (1%) were top-ranked 

molecular functions of common genes.  
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Figure 6.1: Gene set enrichment analysis of common genes between chromium, cobalt, copper, and nickel-
associated Alzheimer’s disease (FunRich and KEGG pathway database). (A) represents the bar-graph of 
biological process, cellular components, molecular function, and associated pathway. Among the 
biological process, signal transduction, metabolism, protein metabolism, anti-apoptosis, apoptosis, and 
cell cycle regulation with p-value 1, 1, 0.803, 0.067, 0.066, and 0.026 were top-ranked. Similarly, chaperon’s 
activity, superoxide dismutase activity, cytokine activity, metallopeptidase activity, peroxidase activity, 
and protein serine/threonine activity were top-ranked molecular functions. At the same time, cytoplasm, 
nucleoplasm, exosomes, cytosol, extracellular space, and extracellular were top-ranked cellular 
components. Moreover, signaling events mediated by VEGFR1 and VEGFR2 (58.6%), IFN-gamma pathway 
(58.6%), VEGF and VEGFR signaling network (59.2%), TRAIL signaling pathway (59.8%), integrin-linked 
kinase signaling (43.8%), and AP-1 transcription factor network (43.2%) were top-ranked biological 
pathway associated with shared genes. (B) Subcellular localization of the shared genes involved in metal 
toxicity-induced AD through BUSCA:  Bologna Unified Subcellular Component Annotator. 
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Further, pathway analysis of common genes demonstrated the involvement of AP-1 

transcription factor network (43.2%), Integrin-linked kinase signaling (43.8%), TRAIL 

Signaling pathway (59.8%), VEGF and VEGFR signaling cascade (59.2%), and VEGFR1 and 

VEGFR2 mediated signaling cascade (58.6%). Moreover, the fold enrichment value of the 

above-described cellular pathways is 4.375, 4.211, 2.837, 2.860, and 2.849, respectively. Thus, 

the results concluded that the common genes were mainly involved in apoptosis, and cell-cycle 

regulation causes neuronal cell death in metal toxicity induced AD.  

Figure 6.1 (A) demonstrated the functional enrichment analysis of common genes such as 

cellular components, biological processes, molecular functions, and pathways. Further, 

subcellular localization prediction of shared genes involved in metal toxicity-induced AD 

indicates the crucial role of cytoplasm (60 genes: 30.2%). The analysis found that the 

percentage of genes present in the extracellular space (58 genes: 29.1%) is almost comparable 

to that of the cytoplasm. In addition, apart from the cytoplasm and extracellular space, the 

shared genes were found in the nucleus (35 genes: 17.6%), plasma membrane (21 genes: 

10.6%), mitochondria (14 genes: 7.0%), endomembrane system (6 genes: 3.0%), and organelle 

membrane (5 genes: 2.5%) [Figure 6.1 (B)].  

6.1.3. PROTEIN-PROTEIN INTERACTION ANALYSIS AND HUB PROTEINS IN 

NETWORK 

To construct a global PPI network of common genes involved in metal toxicity and AD, the 

genes were entered as a list in the STRING database with a medium confidence score. The 

obtained output was imported into the Cytoscape software as input with the help of the 

Reactome FI plugin for data visualization. The results of the PPI network show 175 nodes and 

1138 edges in the network [Figure 6.2]. Nodes represent the protein signature, while edges are 

the interaction between different signatures. The size of the particular node decreases as the 

degree of the node decreases. Similarly, the edge thickness depends on the experimental 
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validation of the interaction among two different nodes. The characteristics and parameters of 

the PPI network are given in Table 6.2. 

Table 6.2: Characteristics and parameters of core, cluster, HUB genes, transcription factors, and micro-
RNAs protein-protein interaction network 

Network 
Number 

of 
Nodes 

Number 
of 

Edges 

Clustering 
Coefficient 

Network 
Density 

Network 
Centralization 

Network 
Heterogeneity 

Characteristics 
Path Length 

Average 
No of 

Neighbors 

Core PPI 175 1138 0.422 0.075 0.36. 1.14 2.426 13.006 

Cluster 
(11.524) 

22 121 0.713 0.524 0.419 0.385 0.419 11 

HUB Genes 10 40 0.916 0.889 0.139 0.148 1.111 8 

Transcription 
Factors 

47 73 0.071 0.068 0.202 0.896 3.192 3.106 

 

 

Figure 6.2: It represents the protein-protein interaction network of 199 common genes between chromium, 
cobalt, copper, and nickel associate metal toxicity induced Alzheimer’s disease. The nodes in the network 
were ranked according to their degree. The size of the node decreases as the degree of node decreases. 
Similarly, the color of the node increases from a light color to dark color as the degree of the node 
decreases. Furthermore, the size of the edge between nodes depends on edge betweenness. 
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Further, the global PPI network clustering was carried out to extract the highly-dense connected 

region of the network with the help of M-Code [Figure 6.3 (A)]. Cluster 1 with an MCode 

score of 11.524, the number of nodes equal to 22, and the number of edges equal to 121 were 

selected for further investigations. Herein, we selected cluster 1 as it has a higher MCODE 

score and, thus, higher accuracy and biological significance than other predicted clusters. The 

density, centralization, and heterogeneity of the cluster network are 0.524, 0.419, and 0.385, 

respectively. Other parameters and characteristics of the cluster network are given in Table 

6.2. Furthermore, the top 10 proteomic signatures or HUB genes were selected from the cluster 

network with the help of the CytoHubba. STAT3 (19), RELA (19), MAPK3 (18), C-FOS (17), 

EGFR (14), NOS2 (12), HIFIA (12), PTGS2 (7), MAPK8 (13), and AKT1 (12) were identified 

as HUB genes in the network [Figure 6.3 (B)]. The network density, network centralization, 

and network heterogeneity of the HUB genes network are 0.889, 0.139, and 0.148, respectively. 
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Figure 6.3: (A) it represents the clustering protein-protein interaction network and aims to identify the 
highly-dense or connected region in the global biological interaction network. (B) It represents the top 10 
ranked HUB genes in the network. Here, darker is the color of the node; more is the rank of the HUB gene. 
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6.1.4. REGULATORY POST-TRANSCRIPTIONAL SIGNATURES IN THE 

REGULATION OF HUB PROTEINS ACTIVITY 

The selected HUB genes were further analyzed to identify transcriptional signatures that are 

TFs involved in regulating metal toxicity induced AD. The HUB genes were analyzed with the 

JASPAR tool to identify regulatory TFs, and then with the help of network analyst interaction 

networks between HUB genes and TFs, were identified [Figure 6.4]. Analysis of the HUB 

genes-TFs network demonstrated 47 nodes and 73 edges in the network. Table 6.2 describes 

the parameters of the HUB genes-TFs interaction network. 47 TFs were identified, which 

regulate the transcriptional activity of HUB genes. To minimize the number of transcriptional 

signatures, the TFs with node degrees equal to or greater than 3 were selected for further 

investigations.  

 

Figure 6.4: Protein-protein interaction network of transcription factors-HUB genes through Cytoscape 
Software: network analysis from network analyst identified the potential transcription factors associated 
with HUB genes. Among transcription factors, CREB1 (5), FOXC1 (4), GATA2 (4), NFκβ (4), SRF (3), TFAP2A 
(3), FOXA1 (3), and MEF2A (3) were the top interacting partners of HUB genes. Similarly, among HUB genes, 
FOS (11), RELA (9), MAPK3 (8), STAT3 (8), EGFR (8), HIF1A (8), AKT1 (6), PTGS2 (6), MAPK8 (5), and NOS2 
(4) interacting partners. 

The rationale behind selecting TFs with node degrees equal to or greater than 3 is to minimize 
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the number of TFs for further analysis. Another necessary explanation for selecting TFs with 

node degree equal to 3 or greater than 3 is to remove irrelevant TFs associated with molecular 

signatures of metal toxicity-induced AD. The node degree equal or greater than three signifies 

that a particular TFs is associated with either 3 molecular signatures or above 3 molecular 

signatures involved in metal toxicity-induced AD. Thus, these TFs have a higher weightage or 

higher probability of being involved in metal toxicity-induced AD. Thus, CREB1 (5), FOXC1 

(4), GATA2 (4), NFKB1 (4), SRF (3), TFAP2A (3), FOXA1 (3), and MEF2A (3) were 

identified as top interacting TFs [Table 6.3].  

Table 6.3: Top interacting transcriptional regulatory factors involved in metal toxicity induced Alzheimer’s 
disease 

TFs Degree Partners Role in Disease Pathogenesis 

CREB1 5 
C-FOS, RELA, MAPK8, PTGS2, 

STAT3  
Reduction in CREB1 activation promotes memory 

impairment  

FOXC1 4 C-FOS, STAT3, EGFR, MAPK3 
Mutation in FOXC1 cause neurodevelopmental 

disorder  

GATA2 4 HIF1A, PTGS2, EGFR, AKT1 
Reduction in GATA2 expression decreases 

neuroglobin expression  

NFKB1 4 RELA, EGFR, AKT1, HIF1A Regulate immunological response  

SRF 3 MAPK3, MAPK8, C-FOS Regulate LRP mediate amyloid-β clearance  

TFAP2A 3 AKT1, RELA, C-FOS 
 Regulate the proliferation and apoptosis of 

neuronal cells 

FOXA1 3 C-FOS, RELA, NOS2 
 Required for adult dopamine neuronal cells 

maintenance and functioning 

MEF2A 3 RELA, MAPK8, HIF1A 
 Reduction in MEF2A expression causes 
decreased activity of anti-apoptotic genes 

 

6.1.5. LITERATURE VALIDATION OF REGULATORY MOLECULES AND 

PROTEIN SUB-CELLULAR LOCALIZATION 

Transcriptomics signatures and post-transcriptomics signatures were further investigated and 

validated to identify their potential role in regulating HUB genes or involvement in disease 

pathogenesis. The TFs were analyzed with MalaCards to extract the role of regulatory 

molecules in the progression of the disease [Table 6.3]. Furthermore, HUB genes were 

analyzed for their sub-cellular localization. Among the HUB genes, 50% were cytoplasmic 

(MAPK3, RELA, NOS2, MAPK8, AKT1), 30% were nuclear proteins (STAT3, C-FOS, 

HIF1A), 10% were endoplasmic reticulum complex protein (PTGS2), and 10% were Golgi 
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complex proteins (EGFR). 

6.1.6. POTENTIAL ACETYALTED LYSINE RESIDUES OF REGULATORY 

MOLECULES 

Acetylation of TFs at specific lysine residues causes transcriptional activation and thus 

promotes the cellular and biological processes. The identified TFs, such as CREB1, FOXC1, 

GATA2, NFKB1, SRF, TFAP2A, FOXA1, and MEF2A, were analyzed with Deep-PLA and 

GPS-PAIL to determine the crucial common CREBBP-induce acetylated lysine residues with 

high confidences score. For Deep-PLA, if the score is less than 5%, it must be said as acetylated 

lysine residue with high confidence, whereas, for GPS-PAIL, if the score is greater than 1.0, it 

is said to be acetylated lysine residue with high confidence. Our analysis identified a total of 4 

acetylated lysine residues with high confidence, each one in four identified TFs. CREB1 

(K122), GATA2 (K399), FOXA1 (K350), and NFKB (K967) were identified as critical lysine 

residues [Table 6.4].  

Table 6.4: Prediction of CREBBP-induced acetylation sites of identified transcription factors through Deep 

PLA and GPS-PAIL 

TF 
Acetylation (CREBBP) 

Common K Sites 
Deep PLA (Score < 5%) GPS-PAIL (Score: > 1.0) 

CREB1 122 122, 271, 278, 289, 295, 316, 325 122 

FOXC1 256 181, 552 -- 

GATA2 102, 281, 285, 399 324, 378, 389, 390, 399, 403, 405, 406, 399 

NFKB1 277, 431, 967 362, 425, 448, 896, 967 967 

SRF 147, 154 506 -- 

TFAP2A 271 411, 427, 431, 434, 437 -- 

FOXA1 316, 350, 389 6, 350 350 

MEF2A Nil  403, 498 -- 

 

FOXC1, SRF, TFAP2A, and MEF2A did not have any common acetylated lysine residue and 

thus were excluded for further analysis. Further, our prediction of CREBBP-induced 

acetylation sites for CREB coincides with the previously reported study. For instance, Lu et 

al., 2003 reported that the acetylation of CREB at K91, K94, K122, and K136 by CREBBP 

enhanced CREB-dependent transcription [477]. In addition, a previously published study 
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identified the GATA2 acetylation on K399 by p300, where the authors concluded that 

acetylation of GATA2 in 293T cells increases its DNA-binding activity [496]. 

6.1.7. MICRO-RNAs REGULATING THE ACTIVITY OF IDENTIFIED 

SIGNATURES 

miRNAs are post-transcriptional regulators, which regulate the activity of a particular gene. 

Moving forward, we aim to identify the critical miRNAs that regulate the expression of 

CREBBP, CREB1, GATA2, NFKB1, and FOXA1. mirDIP, an online miRNA-target 

prediction tool, identified 379 miRNAs, 640 miRNAs, 145 miRNAs, 127 miRNAs, and 223 

miRNAs in CREBBP, CREB1, GATA2, NFKB1, and FOXA1, respectively. Further, miRNAs 

having confidence score high or very high with a particular target, such as CREBBP (85 very 

high and 294 high), CREB1 (220 very high and 420 high), GATA2 (36 very high and 109 

high), NFKB1 (32 very high and 95 high), and FOXA1 (71 very high and 152 high) were 

selected for further analysis. Moreover, Venn analyses were carried to identify the common 

miRNAs associated with CREBBP, CREB1, GATA2, NFKB1, and FOXA1 [Figure 6.5]. Our 

analysis identified five miRNAs, such as hsa-miR-338-5p, hsa-miR-335-5p, hsa-miR-429, hsa-

miR-200c-3p, and hsa-miR-129-5p, were important miRNAs associated with all five selected 

targets. Furthermore, it is equally important to check whether the selected miRNA was 

expressed in brain tissues or not. For this, we analyzed the expression of putative miRNA in 

brain tissue samples from TissueAtlas, where we identified the expression of particular miRNA 

in the brain. hsa-miR-338-5p (23.09484), hsa-miR-335-5p (169.42783), hsa-miR-429 

(4.26456), hsa-miR-200c-3p (2.72829), and hsa-miR-129-5p (251.58495) were expressed in 

43, 46, 21, 28, and 47 brain tissue samples, respectively [Figure 6.5]. Further, we checked the 

role of putative miRNAs in the pathogenesis of AD. Our study identified that miRNAs, such 

as hsa-miR-335-5p (169.42783) and hsa-miR-129-5p (251.58495), were significantly enriched 

in the AD pathway with a p-value less than 0.05 [Figure 6.5]. Thus, hsa-miR-338-5p 
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(23.09484), hsa-miR-429 (4.26456), and hsa-miR-200c-3p (2.72829) were excluded from 

further analysis. 

 

Figure 6.5: Micro-RNAs interacting with putative acetylated transcription factors and acetylating enzyme 
CREBBP were identified. Five micro-RNAs, such as hsa-miR-338-5p, hsa-miR-335-5p, hsa-miR-429, hsa-
miR-200c-3p, and hsa-miR-129-5p, were common micro-RNAs interacting with acetylated transcription 
factors and CREBBP with the help of Venny 2.0 Software. Further, expression analysis of the predicted 
micro-RNAs in the brain tissue identified that micro-RNAs, namely hsa-miR-335-5p (146.427, 46 samples) 
and hsa-miR-129-5p (251.584, 47 samples), have the highest expression in the brain tissue among all five 
predicted micro-RNAs. Lately, network analysis of predicted micro-RNAs with identified transcription 
factors through Cytoscape software. Moreover, disease ontology analysis confirmed the involvement of 
hsa-miR-335-5p and hsa-miR-129-5p in the pathogenesis of Alzheimer’s disease with the significantly 
enriched p-value of 0.0373 and 0.0174, respectively. 
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6.1.8. OIPS-AS1 REGULATES THE EXPRESSION AND ACTIVITY OF HSA-MIR-

129-5P AND HSA-MIR-335-5P IN THE PATHOGENESIS OF METAL 

TOXICITY-INDUCE AD 

Apart from AD, it is equally important to analyze the role of identified miRNAs in the 

pathogenesis and progression of brain diseases. hsa-miR-335-5p is involved in AD (0.03), 

developmental disorder of mental health (0.2), and tauopathy (0.03), whereas, hsa-miR-129-

5p is involved in the pathogenesis of AD (0.002), dementia (0.107), Lewy body dementia 

(0.03), PD (0.13), and tauopathy (0.002). thus, the analysis concluded that both hsa-miR-335-

5p and hsa-miR-129-5p are significantly involved in the pathogenesis of AD and tauopathy 

[Figure 6.6]. 

  

Figure 6.6: Involvement of predicted micro-RNAs, such as hsa-miR-338-5p, hsa-miR-335-5p, hsa-miR-429, 
hsa-miR-200c-3p, and hsa-miR-129-5p in the brain disease, such as Alzheimer’s disease, Parkinson’s 
disease, tauopathy, neuropathy, brain ischemia, brain edema, autism spectrum disorder, cerebral 
degeneration, and others through mirDIP database. 
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Further, our study also concluded that hsa-miR-338-5p is significantly enriched in the 

pathogenesis of Ataxia Telangiectasia (0.019), whereas, hsa-miR-429 is significantly enriched 

in autism spectrum disorder (0.020), brain edema (0.03), brain ischemia (0.001), CNS 

vasculitis (0.004), a developmental disorder of mental health (0.026), and peripheral nervous 

system disease (0.02). Similarly, hsa-miR-200c-3p is significantly enriched in ARMD (0.007), 

autism spectrum disorder (0.003), brain ischemia (0.005), CNS vasculitis (0.013), cerebral 

arterial disease (0.006), dementia (0.04), developmental disorder of mental health (0.0008), 

diabetic neuropathy (0.005), and macular degeneration (0.007). Further, we analyzed the 

signaling mechanism followed by hsa-miR-335-5p and hsa-miR-129-5p in the pathogenesis of 

AD. Our results demonstrated that hsa-miR-129-5p significantly enriches corticotropin-

releasing hormone pathway (9.91805E-05), IL17 signaling pathway (0.000468125), 

EGF/EGFR signaling pathway (0.000533398), Interleukin-11 signaling pathway 

(0.000945926), and VEGFA-VEGFR2 (0.001582748) signaling pathway. Similarly, the TGF-

beta signaling pathway (5.90563E-06), IL-2 signaling pathway (8.98756E-06), ErbB signaling 

pathway (9.29391E-05), B cell receptor signaling pathway (0.000115973), and IL-7 signaling 

pathway (0.000302961) are the top 5 signaling cascade in the hsa-miR-335-5p [Figure 6.7]. It 

is well-known that non-coding RNAs, namely long non-coding RNAs and circular RNAs, bind 

to the miRNA response element and alter the binding activity of miRNA to a target gene. Thus, 

keeping this in mind, we analyzed the putative long non-coding RNAs that alter the activity of 

five identified miRNAs. OIP5-AS1 is identified as long non-coding RNAs that alter the binding 

affinity of hsa-miR-335-5p and hsa-miR-129-5p to CREBBP in the pathogenesis of AD.  
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Figure 6.7: Pathway analysis of hsa-miR-335-5p and hsa-miR-129-5p with the help of TissueAtlas database: 
hsa-miR-129-5p is significantly enriched in corticotropin-releasing hormone pathway (9.91805E-05), IL17 
signaling pathway (0.000468125), EGF/EGFR signaling pathway (0.000533398), Interleukin-11 signaling 
pathway (0.000945926), and VEGFA-VEGFR2 (0.001582748) signaling pathway, whereas, hsa-miR-335-5p 
is significantly enriched in TGF-beta signaling pathway (5.90563E-06), IL-2 signaling pathway (8.98756E-
06), ErbB signaling pathway (9.29391E-05), B cell receptor signaling pathway (0.000115973), and IL-7 
signaling pathway (0.000302961). 

6.2. CONCLUSION AND SUMMARY 

In the following study, we utilized a publicly accessible database, the CTD database and the 

DisGeNET database were used to identify common molecular signatures in metal toxicity and 

AD. The Venn analysis of genes involved in copper, chromium, cobalt, and nickel toxicity 

identified 376 shared genes. Furthermore, the Venn analysis of shared metal toxicity genes 

with the genes expressed in the AD revealed the presence of 199 common molecular genes that 

has been linked to heavy metal toxicity and AD. the gene set enrichment analysis of shared 

molecular targets identified the involvement of apoptosis, regulation of cell cycle, anti-

apoptosis, protein metabolism, metabolism, signal transduction as the crucial biological 

process followed by shared molecular targets. Moreover, pathway analysis of common 
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molecular targets identified the potential involvement of AP-1 transcription factor network 

(43.2%), Integrin-linked kinase signaling (43.8%), TRAIL Signaling pathway (59.8%), VEGF 

and VEGFR signaling cascade (59.2%), and VEGFR1 and VEGFR2 mediated signaling 

cascade (58.6%). Further, the common molecular targets were analyzed to identify associated 

proteomic signatures, highly dense regions of the network, and highly connected nodes with 

the help of network biology. The PPI network has 175 nodes, and 1138 edges, where nodes 

were mapped according to their degree of nodes and edges were mapped according to FI score. 

Clustering of global PPI network identified highly dense regions with a clustering score of 

11.524 with 22 nodes and 121 edges. Further investigation identified HUB genes in the cluster 

network, which are STAT3, MAPK3, RELA, C-FOS, EGFR, NOS2, HIF1A, PTGS2, MAPK8, 

and AKT1. PPI network analysis of HUB genes identified that the network has 10 nodes and 

40 edges with network density and clustering coefficient of 0.889 and 0.916, respectively. 

Apart from identified 10 nodes or proteomic signatures or HUB genes, other nodes of cluster 

1, such as IL2, IL6, Bcl-2, HDAC1, TNF, IL1β, ATF2, and others were found to be associated 

with AD pathways through metal toxicity [Figure 6.8]. For instance, Cobalt chloride mimics 

hypoxia in R28 cells, which causes mitochondrial membrane potential disruption and 

activation of caspase 3 and ultimately leads to neuronal cell death. The same study also 

concluded that IL6 mediated its pro-survival effect against cobalt toxicity via STAT3 

phosphorylation and activation of anti-apoptotic proteins [497]. Similarly, another study 

demonstrated that administration of cobalt nanoparticles causes an increase in inflammation-

relation proteins, such as NLRP3 and IL1β in C57BL/6J mice brain, suggesting the role of 

microglia-involved inflammation [498]. Further, Yubolphan et al., 2021 demonstrated that 

administration of nickel at 600.60 µM and >1000 µM in astrocytoma cells and primary human 

astrocytes, respectively, triggered apoptotic pathway through decreased activity of Bcl-2 and 

increased activity of caspase 3 [499].  
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Figure 6.8: Mechanism of long non-coding RNA and micro-RNAs in metal toxicity-induced Alzheimer’s 
disease: long non-coding RNA, namely Opa interacting protein 5 antisense RNA 1 (OIP5-AS1), alters the 
binding activity of hsa-miR-129-5p, hsa-miR-335-5p, hsa-miR-338-5p, hsa-miR-429, and hsa-miR-200c-3p 
to CREB Binding Protein (CREBBP), and thus alters the acetylation-inducing activity of CREBBP. CREBBP 
induces acetylation of CAMP responsive element binding protein 1 (CREB1) at lysine122, nuclear factor 
kappa-light-chain-enhancer of activated B cells (NFκβ) at lysine967, forkhead box A1 (FOXA1) at lysine350, 
and GATA binding protein 2 (GATA2) at lysine399. The acetylation of CREB1, NFκβ, FOXA1, and GATA2 
increases their transcriptional activity, which furthers activates the activation of genes, such as PTGS2, C-
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FOS, RELA, STAT3, MAPK8, AKT1, EGFR, HIF1A, and NOS2. The activation of such genes activates the 
different signaling cascades. For instance, acetylation of CREB1 activates transcriptional regulation, 
activation of NFκβ activates neuroinflammation cascade, acetylation of FOXA1 activates Wnt signaling 
pathway, and acetylation of GATA2 activates MAOA gene regulation pathway. Activation of these signaling 
pathways leads to neuronal cell death, which causes memory and synaptic impairment and ultimately 
leads to the pathogenesis of Alzheimer’s disease. 

Kitazawa et al., 2016 concluded that the copper-Aβ complex inhibits microglial phagocytosis 

and increases TNF-α and IL1β clearance, leading to decreased activity of LRP1, which 

activates the inflammatory pathway [500,501]. Further, CREB1 (5), FOXC1 (4), GATA2 (4), 

NFKB1 (4), SRF (3), TFAP2A (3), FOXA1 (3), and MEF2A (3) were identified as top 

interacting TFs, which regulates the expression activity of HUB genes. Lately, literature 

validation confirmed the role of identified TFs in the pathogenesis and progression of AD 

[455,502–506]. For instance, activation of CREB1 and acquisition of transcription cofactors, 

such as CREBBP, is crucial for memory formation, whereas, deficiency of NFKB1 causes early 

onset of memory loss [507,508]. Similarly, silencing SRF reversed contractile protein content 

and rescued from a hypercontractile phenotype in AD, while TFAP2A is involved in the genetic 

variants associated with a high risk of dementia [509,510]. Lately, we identified the CREBBP-

induced acetylation sites of the eight TFs. CREBBP, also called CBP or KAT3A is involved 

in acetylation by modulating different signaling pathways, such as calcium signaling, notch 

signaling, response to hypoxia, and NF-κB signaling [511]. Recent studies demonstrated the 

potential link between metal toxicity and the acetylation process. For instance, Kang et al., 

2004 concluded that copper at both toxic and non-toxic levels (100 or 200 µM) causes histone 

hypoacetylation in Hep3B cultured cells through inhibiting specific HAT activity [512]. 

Further, it was concluded that administration of hexavalent chromium (10 µM) downregulates 

histone H4 acetylation at K16 through activation of stressor protein Nupr1 [513]. Similarly, 

chromium (12.5 µM) administration causes inhibition of biotinidase, which could be reversed 

by increased acetylation levels [514]. Recently, Zhou et al., 2021 demonstrated that 

administration of nickel causes a reduction in H3K9 acetylation levels, which leads to 

repression of H3K9-modulate neural genes expression [515]. Apart from nickel, copper, and 
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chromium, another metal that interferes with acetylation is cobalt. Evidence suggests the 

potential relationship between cobalt and acetylation status. For example, Guo et al., 2021 

demonstrated that cobalt chloride administration at 400 µM for 24 hours in the SHSY5Y cell 

culture model inhibits H3 and H4 acetylation [516]. The same study concluded that cobalt 

chloride selectively decreased the activity of HAT and did not alter the activity of HDAC. 

Thus, these evidences validate the role of metal toxicity and acetylation status. Further different 

studies also investigated the role of metal exposure on the expression of CREBBP. For 

example, administration of chromium hexavalent ion results in decreased expression of 

CREBBP protein, whereas, exposure to copper caused decreased expression of CREBBP 

mRNA [517,518]. However, in another study, it was concluded that administration of nickel 

monoxide results in increased expression of CREBBP mRNA [519]. Further, some evidences 

suggest the role of metal exposure on the activity of CREBBP and its targets. For instance, 

chromium inhibits the transcriptional activity of NF-κB by decreasing the interaction between 

p65 and CBP [520]. Similarly, Cobalt causes increased activity of SRC protein, which activates 

HIF1A/STAT3/VEGFA and leads to binding of APEX1 to CREBBP promoter [521]. Thus, 

these evidences demonstrated the potential link between metal exposure and CREBBP and 

acetylation. However, no study was reported that concluded the exact role of metal exposure 

in CREBBP and its target acetylation. Thus, we aim to identify the potential targets of CREBBP 

involved in metal toxicity and AD pathogenesis. Our study identified that CREBBP-Induces 

CREB1, GATA2, NFKB1, and FOXA1 acetylation at K122, K399, K967, and K350. Thus, 

K122 of CREB1, K399 of GATA2, K967 of NFKB1, and K350 of FOXA1 were considered 

crucial lysine residues for the acetylation process in the pathogenesis of AD. In addition, post-

transcriptional signatures, namely miRNA and long non-coding RNAs, regulate the expression 

of proteins, where long non-coding RNAs serve as a sponge for miRNA. Our results identified 

five potential miRNAs that were associated with CREBBP and identified TFs simultaneously, 



142 | P a g e  

 

such as hsa-miR-338-5p, hsa-miR-335-5p, hsa-miR-429, hsa-miR-200c-3p, and hsa-miR-129-

5p. However, hsa-miR-335-5p and hsa-miR-129-5p, having expression values of 169.427 and 

251.584, respectively, in the brain tissue, were selected for further studies. In addition, 

literature validation suggests the potential applicability of hsa-miR-335-5p and hsa-miR-129-

5p in the pathogenesis and progression of AD. For instance, Wang et al., 2020 demonstrated 

that overexpression of miR-335-5p significantly decreased the expression of c-Jun N-terminal 

kinase 3 (JNK3) and Aβ and thus, inhibited the neuronal apoptosis in SH-SY5Y/APPswe cells 

[522]. Similarly, overexpression of miR-129-5p rescued nerve injury and inflammatory 

response through decreased expression of SRY-box transcription factor 6 (SOX6) in the Aβ25-

35-induced AD rat model [523]. In addition, Li et al., 2020 concluded that knockdown of miR-

129-5p decreased the neuroprotective effects of exercise on cognition and neuroinflammation 

in the AD mice model [524]. Thus, it could be concluded that overexpression of both hsa-miR-

335-5p and hsa-miR-129-5p promotes neuroprotection. Furthermore, disease ontology 

confirmed the involvement of hsa-miR-335-5p and hsa-miR-129-5p in the pathogenesis of AD, 

having a p-value of 0.0373 and 0.0027, respectively. Further, mounting evidence suggests the 

potential link between metal toxicity and miRNA expression. For instance, administration of 

cadmium at 0.6 mg/kg increased the expression levels of miR-21-5p, miR-34a-5p, miR-224-

5p, miR-451-5p, and miR-1949, whereas, administration of cadmium in human prostrate 

epithelial cells at 10 µM increases the expression of miR-96, miR-134, and miR-9 [525,526]. 

Similarly, administration of cobalt increases the pri-miRNA processing activity of DGCR8, 

which enhanced the expression of miR-9 [527]. Further, Jeon et al., 2014 concluded that 

administration of cobalt chloride-induced neuronal differentiation of human mesenchymal 

stem cells through upregulation of miR-124a, which inhibits the expression of SCP1 and SOX9 

[528]. Chiou et al., 2015 demonstrated that administration of nickel contributes to EGFR 

mutation and miR-21 overexpression, whereas, Wu et al., 2017 concluded that upregulation of 
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miR-4417 contributes to nickel-induced fibrogenesis [529,530]. Another study identified that 

administration of arsenic in Patu8988 cells at 3 µmol/L causes increased expression of miR-

330-5p, whereas, administration of lead in blood samples of battery factory workers causes and 

upregulation of miR-520c-3p, miR-148a, miR-141, and miR-211 [531,532]. Jia et al., 2020 

reported that chromium in exposed electroplating workers causes upregulation of miR-941 and 

miR-590-3p, whereas, Chandra et al., 2015 concluded that administration of chromium at 10 

and 20 µg/ml for 24 hours upregulated the expression of miR-34-5p [533,534]. Further, studies 

demonstrated that exposure to cobalt chloride regulates the expression of miR-129-5p and its 

target genes [535,536]. Moreover, pathway analysis demonstrated the possible pathways 

through which hsa-miR-335-5p and hsa-miR-129-5p are involved in the pathogenesis of AD 

[522,524]. hsa-miR-129-5p is involved in corticotropin-releasing hormone pathway, IL17 

signaling pathway, EGF/EGFR signaling pathway, Interleukin signaling pathway, and 

VEGFA-VEGFR2 signaling pathway [537–541], whereas, hsa-miR-335-5p is involved in 

TGF-beta signaling pathway, IL-2 signaling pathway, ErbB signaling pathway, B cell receptor 

signaling pathway, and IL-7 signaling pathway [542–545]. Lastly, we identified the potential 

long non-coding RNA that is OPI5-AS1 that regulates the activity of hsa-miR-335-5p and hsa-

miR-129-5p. Literature analysis validated our results as downregulation of OPI5-AS1 causes 

upregulation of has-miR-129-5p [546]. Thus, we concluded that downregulation of OPI5-AS1 

causes upregulation of miR-129-5p, which modulate CREBBP-induced hyperacetylation of 

CREB1, GATA2, NFKB1, and FOXA1 acetylation at K122, K399, K967, and K350. 

Regulation of hyperacetylation of CREB1, GATA2, NFKB1, and FOXA1 modulate their 

transcriptional activation, neuroinflammation, Wnt Signaling, and MAOA gene regulation, 

respectively, which inhibits neuronal cell death. In addition, decreased neuronal cell death 

rescued memory impairment and cognitive defects, which inhibits the pathogenesis of AD. 

Thus, the OIP5-AS1/miR-129-5p/CREBBP axis could be a possible therapeutic target in metal 
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toxicity-induced AD. Further, these results provide a gateway for the future in vivo and in vitro 

studies targeting OIP5-AS1/miR-129-5p/CREBBP axis in a metal toxicity-induced AD. 

6.3. HIGHLIGHTS OF THE STUDY 

6.3.1. OIP5-AS1/miR-129-5p/CREBBP axis is involved in metal toxicity-induced AD 

6.3.2. FOXC1, CREB1, SRF, NFKB1, FOXA1, TFAP2A, and GATA2 were identified as 

regulatory TFs 

6.3.3. CREBBP-induces CREB1, GATA2, NFKB1, and FOXA1 acetylation at K122, K399, 

K967, and K350 

6.3.4. miR-129-5p and miR-335-5p as potential post-transcriptional signatures involved in 

AD pathogenesis 

6.3.5. miR-129-5p and miR-335-5p regulate the activity of CREBBP in metal toxicity-

induced AD 

6.3.6. OPI5-AS1 regulates the expression of miR-129-5p and miR-335-5p 
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CHAPTER VII: IDENTIFICATION OF NOVEL CLASS IIB 

HISTONE DEACETYLASE INHIBITOR FOR ALZHEIMER'S 

DISEASE THERAPEUTICS 
 

7. INTRODUCTION 

HDAC enzymes acts as potential chromatin modifier agents that targets the progression and 

pathogenesis of AD. Various studies have confirmed the overexpression of HDAC activity in 

the pathology of AD that causes transcriptional downregulation. Thus, inhibition of HDAC 

activity could be a promising therapeutic approach in reversing AD pathology. However, 

HDAC inhibitors are associated with some sort of limitations, such as isoform selectivity and 

specificity. Hence, we aim to set up a methodology describing the rational development of 

isoform-selective HDAC class IIb inhibitor targeting HDAC10. A convenient multistage 

virtual screening followed by machine learning and IC50 screenings were used to classify the 

239 anti-depressive compounds into inhibitors and non-inhibitors classes retrieved from the 

ChEMBL database. ADMET analysis identified the pharmacokinetics and pharmacodynamics 

properties of selected compounds. Molecular docking, along with mutational analysis of seven 

compounds, characterized the inhibiting potency. Herein, for the first time, we reported 

Zimeldine and Dibenzapine as the potential HDAC10 inhibitor, which interact central Zn2+ 

atom.  

7.1. RESULTS AND DISCUSSION 

7.1.1. DATA COLLECTION AND PREPROCESSING 

Total of 543 compounds that binds with HDAC10 in in vitro and in vivo assay were extracted. 

After removing blanks and duplicates, a list of 503 compounds were selected for further steps. 

Lately, the compounds were filtered based on their IC50 values. Sorting of compounds based 

on IC50 value yield 122 inhibitors and 354 non-inhibitors. Similarly, for test set, 444 anti-

depressive drugs were collected. After data processing and removing duplicates, a total of 283 

compounds were selected. Further, only those compounds were selected for machine learning 
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classification those have passed phase IV of clinical trials.  

A .pdb structure of HDAC10 (5TD7) were extracted form PDB database. The protein was 

processed and remove non-protein molecules and add hydrogen atoms. Further, energy 

minimization of HDAC10 was performed for efficient molecular docking.  

7.1.2. MACHINE LEARNING MODEL PREPARATION AND EVALUATION 

As mentioned above, three kinds of molecular features, i.e., MACCS keys (166 bits), Morgan2 

fingerprints (1024 bits) and Mordred descriptors (27 descriptors after feature selection) and 

five ML algorithms (i.e., KNN, SVM, RF, XGBoost and DNN) were used for model building. 

All the models were tested and measured by AC, SE, SP, MCC and AUC. All the models 

showed pretty good and close performance on the test set. The MCC values of the models 

ranged from 0.514 to 0.739, while the AUC values were between 0.863 and 0.946. All the 

models could predict actives better than inactives as the mean value of SE was 0.921 while the 

average SP value was 0.705. For different feature sets, the classifiers built based on the 

Morgan2 fingerprints performed better than those based on the other two feature sets, as the 

average AUC was 0.934 for the Morgan2 fingerprints, 0.914 for the MACCS keys, and 0.893 

for Mordred descriptors. The above data indicate that, among the three features, the Morgan2 

fingerprints were the most suitable for building ML models to classify HDAC3 inhibitors. 

Further, the classification identified 16 anti-depressive drugs as potential HDAC10 inhibitor 

[Table 7.1]. 

Table 7.1: List of 16 anti-depressive drugs as a potential HDAC10 inhibitors predicted from machine 
learning classification 

Class SMILES ChEMBL ID NAME 

Inhibitor Cc1cc2c(s1)Nc1ccccc1N=C2N1CCN(C)CC1 CHEMBL715 OLANZAPINE 

Inhibitor COc1ccc2c(c1)N(C[C@H](C)CN(C)C)c1ccccc1S2 CHEMBL1764 LEVOMEPROMAZINE 

Inhibitor CN1CCN2c3ncccc3Cc3ccccc3C2C1 CHEMBL654 MIRTAZAPINE 

Inhibitor 
CN(C)c1ccc(O)c2c1C[C@H]1C[C@H]3[C@H](N(C)
C)C(O)=C(C(N)=O)C(=O)[C@@]3(O)C(O)=C1C2=O 

CHEMBL1434 MINOCYCLINE 

Inhibitor CN(C)CCN1C(=O)c2ccccc2N(C)c2ccccc21 CHEMBL1442422 DIBENZEPIN 

Inhibitor CN(C)CCCN1c2ccccc2Sc2cccnc21 CHEMBL2111030 PROTHIPENDYL 

Inhibitor CN(C)CC/C=C1\c2ccccc2CSc2ccccc21 CHEMBL1492500 DOTHIEPIN 



148 | P a g e  

 

Inhibitor Clc1ccc2c(c1)C(N1CCNCC1)=Nc1ccccc1O2 CHEMBL1113 AMOXAPINE 

Inhibitor CN1CCC[C@H]1c1cccnc1 CHEMBL3 NICOTINE 

Inhibitor Cc1ccc(-c2nc3ccc(C)cn3c2CC(=O)N(C)C)cc1 CHEMBL911 ZOLPIDEM 

Inhibitor 
CO[C@]12C[C@@H](COC(=O)c3cncc(Br)c3)CN(C)[
C@@H]1Cc1cn(C)c3cccc2c13 

CHEMBL1372950 NICERGOLINE 

Inhibitor C#CCN(C)[C@H](C)Cc1ccccc1 CHEMBL972 SELEGILINE 

Inhibitor 
CN1CCN(C(=O)OC2c3nccnc3C(=O)N2c2ccc(Cl)cn2
)CC1 

CHEMBL135400 ZOPICLONE 

Inhibitor OCCOCCN1CCN(C2=Nc3ccccc3Sc3ccccc32)CC1 CHEMBL716 QUETIAPINE 

Inhibitor CCCC(CCC)C(=O)O.CCCC(CCC)C(=O)[O-].[Na+] CHEMBL2105613 
DIVALPROEX 
SODIUM 

Inhibitor CN(C)C/C=C(/c1ccc(Br)cc1)c1cccnc1 CHEMBL37744 ZIMELDINE 

 

7.1.3. ADMET ANALYSIS AND BLOOD BRAIN BARRIER OF SELECTED 

COMPOUNDS 

BBB permeability of 16 novels predicted hits were calculated with the help of CBLigand and 

LightBBB, which is necessary for any compound to be said as drug molecule. BBB prediction 

of 16 novel compounds identified that two compounds, namely MINOCYCLINE 

(CHEMBL1434) and NICERGOLINE (CHEMBL1372950) [Table 7.2]. Thus, 14 potential 

anti-depressive drugs were carried out for ADMET analysis with the help of online tool, 

namely admetSAR. 

Table 7.2: List of compounds selected from blood-brain barrier prediction 

SMILES LightBBB CBLigand 

Cc1cc2c(s1)Nc1ccccc1N=C2N1CCN(C)CC1 Permeable Positive 

COc1ccc2c(c1)N(C[C@H](C)CN(C)C)c1ccccc1S2 Permeable Positive 

CN1CCN2c3ncccc3Cc3ccccc3C2C1 Permeable Positive 

CN(C)c1ccc(O)c2c1C[C@H]1C[C@H]3[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)
[C@@]3(O)C(O)=C1C2=O 

Non-Permeable Negative 

CN(C)CCN1C(=O)c2ccccc2N(C)c2ccccc21 Permeable Positive 

CN(C)CCCN1c2ccccc2Sc2cccnc21 Permeable Positive 

CN(C)CC/C=C1\c2ccccc2CSc2ccccc21 Permeable Positive 

Clc1ccc2c(c1)C(N1CCNCC1)=Nc1ccccc1O2 Permeable Positive 

CN1CCC[C@H]1c1cccnc1 Permeable Positive 

Cc1ccc(-c2nc3ccc(C)cn3c2CC(=O)N(C)C)cc1 Permeable Positive 

CO[C@]12C[C@@H](COC(=O)c3cncc(Br)c3)CN(C)[C@@H]1Cc1cn(C)c3cc
cc2c13 

Permeable Negative 

C#CCN(C)[C@H](C)Cc1ccccc1 Permeable Positive 

CN1CCN(C(=O)OC2c3nccnc3C(=O)N2c2ccc(Cl)cn2)CC1 Permeable Positive 

OCCOCCN1CCN(C2=Nc3ccccc3Sc3ccccc32)CC1 Permeable Positive 
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CCCC(CCC)C(=O)O.CCCC(CCC)C(=O)[O-].[Na+] Permeable Positive 

CN(C)C/C=C(/c1ccc(Br)cc1)c1cccnc1 Permeable Positive 

 

ADMET analysis of novel compounds was carried out to check the pharmacokinetics and 

pharmacodynamics properties of lead compounds. In our study, we predict 10 ADMET 

properties of selected compounds out of them 3 of absorption properties, 1 of distribution 

properties, 2 of metabolism properties, 1 of excretion properties, and 3 of toxicity properties. 

For a compound to be an effective drug it must fulfill these parameters. Hepatotoxicity predicts 

the action of compound on normal liver function. Furthermore, if the given compound is found 

to be AMES positive, then it will be considered as mutagenic. Our study found out that only 7 

compounds (OLANZAPINE, MIRTAZAPINE, DIBENZEPIN, PROTHIPENDYL, 

AMOXAPINE, QUETIAPINE, ZIMELDINE) were show promising results, whereas, other 

seven compounds were removed after ADMET analysis [Table 7.3].  

Table 7.3: ADMET analysis of 14 potential anti-depressive drugs as histone deacetylase 10 inhibitor 

Anti-Depressive 
Drugs 

Adsorption Distribution Metabolism Excretion Toxicity 

Water 
Solubility 

Intestinal 
Absorption 

Skin 
Permeability 

VDss 
CYP2D6 

Substrate 
CYP3A4 

Substrate 
Total 

Clearance 
AMES 

Toxicity 
Hepatotoxicity 

Skin 
Sensitisation 

OLANZAPINE -3.656 91.841 -2.737 1.816 Yes Yes 0.659 No Yes No 

LEVOMEPROMAZINE -4.483 93.306 -2.505 1.691 No Yes 0.463 Yes Yes No 

MIRTAZAPINE -2.68 96.586 -2.568 1.226 No Yes 0.745 No Yes No 

DIBENZEPIN -3.579 97.686 -2.541 1.158 No Yes 0.71 No No No 

PROTHIPENDYL -3.681 95.109 -2.398 1.159 No Yes 0.598 No Yes No 

DOTHIEPIN -2.841 82.458 -2.638 -1.125 No Yes 0.786 No Yes No 

AMOXAPINE -4.221 92.727 -2.822 1.303 No Yes 0.471 No Yes No 

NICOTINE -0.748 95.867 -2.143 0.577 No No 0.858 No Yes Yes 

ZOLPIDEM -2.838 92.713 -2.773 -0.099 No No 0.752 Yes Yes No 

SELEGILINE -2.29 94.876 -1.88 1.1 Yes No 1.045 No Yes Yes 

ZOPICLONE -3.03 80.53 -2.769 -0.332 No Yes 0.249 No Yes No 

QUETIAPINE -3.446 93.076 -2.665 1.23 Yes Yes 0.636 No Yes No 

DIVALPROEX SODIUM -2.569 75.058 -2.735 -1.725 No Yes 1.966 No No No 

ZIMELDINE -3.126 87.536 -2.561 0.685 Yes Yes 1.249 No Yes No 

 

Afterwards, Structural comparison of novel potential hits with HDAC10 known inhibitor, 

namely pracinostat were performed with the help of online tool, such as ChemMine. 
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ChemMine calculates the atom pair and maximum common substructure (MCS) similarities 

with the Tanimoto coefficient as the similarity measure. The MCS tool identifies the largest 

substructure two compounds have in common. The MCS method provides the most accurate 

and sensitive similarity measure, especially for compounds with large size differences [Table 

7.4]. The results indicated that anti-depressive drugs, namely DIBENZEPIN, 

PROTHIPENDYL, and ZIMELDINE have maximum similarity with HDAC10 known 

inhibitor, namely pracinostat with MCS size of 13, 10, and 10, respectively [Table 7.4]. 

Table 7.4: Structural similarity comparison of selected ant-depressive drugs with histone deacetylase 10 
known inhibitor i.e., pracinostat 

SMILES MCS Tanimoto MCS Size MCS Min MCS Max 

Cc1cc2c(s1)Nc1ccccc1N=C2N1CCN(C)CC1 0.3495 8 0.3636 0.3077 

CN1CCN2c3ncccc3Cc3ccccc3C2C1 0.1795 7 0.3500 0.2692 

CN(C)CCN1C(=O)c2ccccc2N(C)c2ccccc21 0.3714 13 0.5909 0.5000 

CN(C)CCCN1c2ccccc2Sc2cccnc21 0.2778 10 0.5000 0.3846 

Clc1ccc2c(c1)C(N1CCNCC1)=Nc1ccccc1O2 0.2000 8 0.3636 0.3077 

OCCOCCN1CCN(C2=Nc3ccccc3Sc3ccccc32)CC1 0.1778 8 0.3077 0.2963 

CN(C)C/C=C(/c1ccc(Br)cc1)c1cccnc1 0.2857 10 0.5263 0.3846 

 

7.1.4. MOLECULAR DOCKING STUDIES OF PREDICTED COMPOUNDS 

Comparison between the full fitness of 7 anti-depressive compounds to 1 known inhibitor 

(Pracinostat) explained that the three compounds, such as Zimeldine, Prothipendyl, and 

Dibenapine have a higher binding affinity to HDAC10 due to which they have strong potential 

to be used as isoform-selective HDAC inhibitors. From the study of binding pocket and binding 

site analysis, it is cleared that Zimeldine and Dibenzapine can be used to inhibit HDAC10, 

whereas, Prothipendyl is unable to bind with central Zn2+ atom and cannot be used as HDAC10 

inhibitor. 

Table 7.5: Molecular docking analysis of 7 predicted ant-depressive compounds and their comparison with 
known HDAC10 inhibitor 

Compound Docking Score Residues 

Pracinostat -2890.03 Kcal/mol 
PRO

134
, HSD

136
, HSD

137
, PHE

146
, HSE

176
, TRP

205
, ASP

267
, 

GLU
274

, GLU
304

, GLY
305

 

Zimeldine -2962.57 Kcal/mol PRO
134

, HSD
136

, GLY
145

, PHE
146

, CYS
147

, HSE
176

, GLY
305
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Mirtazapine -2830.36 Kcal/mol 
ASP

93
, HSD

134
, HSD

135
, GLY

143
, CYS

145
, ASP

170
, HSE

172
, 

TYR
198

, PHE
199

, PHE
200

, ASP
259

, LEU
266

, GLY
296

, TYR
298

 

Prothipendyl -2892.25 Kcal/mol PRO
134

, HSD
136

, HSD
137

, GLY
145

, TRP
205

, ASP
267

, GLU
274

 

Olanzapine -2836.52 Kcal/mol 
GLY

609
, PHE

610
, CYS

611
, VAL

616
, VAL

619
, ALA

620
, GLY

643
, 

GLU
651

, ASP
652

, ALA
743

, ASP
747

 

Dibenzapine -2915.14 Kcal/mol GLY
145

, PHE
146

, CYS
147

, ASP
267

, GLU
274

, GLU
304

, GLY
305

 

Amoxapine -2809.27 Kcal/mol 
TYR

100
, ASP

101
, GLY

140
, TRP

141
, HSD

142
, HSD

143
, GLY

151
, 

PHE
152

, CYS
153

, ASP
178

, HSE
180

, PHE
208

, GLN
263

, ASP
267

, 

GLY
303

, TYR 
306

 

Quetiapine -2810.47 Kcal/mol 
ASP

93
, HSD

134
, HSD

135
, GLY

143
, CYS

145
, ASP

170
, HSE

172
, 

TYR
198

, PHE
199

, PHE
200

, ASP
259

, LEU
266

, GLY
296

, TYR
298

 

 

7.2. CONCLUSION AND SUMMARY 

Ligand-based drug designing follows machine learning, and the molecular docking analysis 

approach based on the binding or full fitness energy of ligand to the receptor is considered as 

an effective tool in the drug detection procedure. Here we screen the data of anti-depressive 

from the ChEMBL compound library for HDAC10 by creating machine learning models, for 

example, logistic model, k-star model, random forest model, and deep learning model in order 

to classify them into inhibitors and non-inhibitors based on 2D/3D molecular and chemical 

properties. Total of around 1400 molecular descriptors belongs to the physical, chemical, and 

biological properties that were taken in order to classify the compounds. The average accuracy 

(94.53), precision (0.950), TP rate (0.950), FP rate (0.071), and area under the ROC curve of 

our generated models was quite high as compared to the previously created model for selecting 

a novel HDAC10 inhibitor. Consequently, 16 novel hits were identified through their BBB 

permeability and ADME properties. Also, the data for testing the inhibitor potential includes 

more than 6000 novel compounds. ADMET analysis of 16 novel hits explained the potential 

of compounds to be taken as a drug. Altogether, these compounds were subjected to molecular 

docking technique in order to check the binding efficiency of novel hits in the active position 

of HDAC10. Through molecular docking studies, the novel compounds with binding energy 

or full fitness for HDAC10 were selected for comprehensive analysis. The predicted 

compounds had the characteristics feature that is a central Zn2+ atom in its binding region. Out 
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of these Zimeldine, Prothipendyl, and Dibenapine possess the greater binding energy for the 

HDAC10.  

In this study, we developed and identified a broad range inhibitor, which will be capable of 

inhibiting HDAC10 isoform as a therapeutic approach for Alzheimer’s disease. Here, we 

deployed a machine learning classification algorithm in order to classify sets of compounds 

into inhibitors and non-inhibitors and after multiple level screening identified novel inhibitors 

known as Zimeldine and Dibenzapine. This study is a novel approach to incorporate machine 

learning classification and virtual screening of compounds based on IC50 value and different 

types of molecular descriptors for the drug-discovery process. As a therapeutic approach, this 

study enables scientists to study the compound in vitro or in vivo studies. Although we have 

validated our results from multiple in silico approaches such as multiple-target validation and 

literature validation, there is a gap that will be filled by cell culture and animal model studies. 

From in silico studies, we identified the common residues through which inhibitor can 

potentially bind with the target, but the molecular mechanism behind the inhibition of target 

expression should be validated only from in vitro studies. Moreover, the work will further 

highlight the importance of epigenetic alterations in the pathology of NDDs such as AD. 

 

 

 

 

 

 

 

 

 

 

 



153 | P a g e  

 

 

CHAPTER VIII 

 

 

 

 

 

 

 

 

 

 

Summary, Discussion, and Future 

Perspectives 
 

 

 

 

 

 

 

 

 

 

 

 

 



154 | P a g e  

 

 

CHAPTER VIII: SUMMARY, DISCUSSION, AND FUTURE 

PERSPECTIVES 

NDDs, including AD and PD are characterized by the presence of misfolded protein 

aggregates, such as Aβ, tau, α-synuclein, and others that causes neuronal cell death. Further, 

excessive neuronal cell death due to protein aggregates causes synaptic dysfunction, memory 

impairment, and cognitive defects [547]. AD is the most prevalent form of dementia best 

characterized by the presence of amyloid plaques and neurofibrillary tangles produced by 

unsystematic proteolytic processing of amyloid peptide-protein and hyperphosphorylation of 

tau protein [548]. For example, Kollmer et al., 2019 demonstrated that Aβ fibrils from 

meningeal Alzheimer’s brain tissue are polymorphic but consist of similarly structured 

protofibrils [549]. Similarly, Bu et al., 2017 concluded that blood-derived Aβ protein induces 

AD pathologies that result in functional impairment of neurons [550]. In contrast, PD, which 

is the second most common NDDs, is characterized by progressive loss of dopaminergic 

neurons in the substantia nigra pars compacta. The pathological feature of PD is the 

accumulation of toxic α-synuclein [551] protein and the formation of Lewy bodies, which 

causes neuronal cell death and ultimately leads to synaptic dysfunction and memory loss 

[552,553]. Mounting evidence suggests the common overlapping molecular phenomenon in 

the pathology of AD and PD. However, the exact molecular pathways and signaling molecules 

being involved are poorly understood. Moreover, the active treatment of AD and PD is still 

unknown due to a lack of understanding of the molecular mechanism of disease progression.  

Accumulating evidence suggests that protein acetylation and deacetylation play a significant 

role in the pathogenesis of AD and PD [121,554,555]. For instance, Choi et al., 2019 

demonstrated that acetylation of tau facilitated the recruitment of Hsp40, Hsp70, and Hsp110, 

which causes tau association with E3 ligases and results in its degradation through proteasomal 
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pathway[120]. Similarly, Wang et al., 2020 concluded that AMPK reduces tau acetylation and 

rescues memory impairment by activating sirtuin 1 in APP/PS1 mice[556]. Further, Fan et al., 

2020 concluded that PGC-1α translocation due to its acetylation promotes neuroprotection 

from oxidative damage in PD experimental model [130]. Further, acetylation and deacetylation 

of transcription factors (TFs) play a vital role in regulating cellular and molecular processes, 

which activates different neuronal signal transduction pathways such as PI3K/Akt, MAPK 

pathways, cAMP/PKA pathways, and Ca2+/CaMK cascade.  For instance, Fusco et al., 2016 

concluded that acetylation of CREB1 at K122 increases the Hes-1 expression under low 

glucose concentration, facilitating neurogenesis by removing sirtuin 1 on the Hes-1 promoter 

region [557]. Similarly, Paz et al., 2014 demonstrated that acetylation of CREB at K136 

facilitated its interaction with CBP bromodomain that augmented recruitment of this 

coactivator to the promoter [476]. Thus, these evidences concluded the importance of 

acetylation of TFs in gene regulation.  

The present study focuses on the crosstalk between AD and PD at the molecular level. Through 

this study, we identified the relationship between DEG’s, HUB proteins, TFs, acetylation, and 

HDAC enzymes in the shared pathogenesis of AD and PD.  Our findings highlighted the crucial 

role of CDC42, TUBB4B, and FGFR1 in the AD and PD crosstalk through Gap junction 

(TUBB4B), GnRH signaling pathway (CDC42), and Rap1 signaling pathway (CDC42 and 

FGFR1). In addition, the present study identified the potential TFs that regulate the expression 

of HUB proteins at the transcriptional level through biological network analysis. Our analysis 

identified FOXC1, GATA2, CREB1, FOXL1, NFIC, HINFP, and SREBF1 as potential TFs 

that regulate the activity of HUB proteins shared between AD and PD. Our bioinformatic 

analysis also revealed the effect of subcellular localization of HUB proteins and TFs in the AD 

and PD crosstalk. Lately, the study identified the 15 potential lysine residues and 27 potential 

lysine residues in CREB1 and HINFP, respectively. The study revealed that among 15 possible 
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lysine residues of CREB1, only 4 lysine residues, namely K91, K94, K136, and K330 had been 

studies in the past, while K123, K155, K285, K292, K303, K304, K305, K309, K323, K333, 

and K339 have been reported first time for their role in acetylation process. Similarly, among 

HINFP, all 27 lysine residues have been reported for the first time. Further, in-silico analysis 

of CREB1 and HINFP revealed the importance of HDAC1 for its deacetylation activity at K292 

of CREB1 and HDAC6 for its deacetylation activity at K330 of HINFP. This will provide a 

way to study the role of acetylation and HDAC enzymes in the transcriptional activity of 

CREB1 and HINFP in AD and PD crosstalk. Further, the computational analysis identified the 

importance of negative charged glutamic acid (E) and neutrally charged leucine (L), 

methionine (M), valine (V), and glutamine (Q) amino acid residues in the acetylation 

mechanism of CREB1 and HINFP in AD and PD crosstalk. The study also highlighted the 

importance of the helix region over the strand/coil region in the acetylation of CREB1. 

Similarly, the coil region is dominant over the helix/strand region in the potential lysine-

acetylation of HINFP. Thus, this study highlighted the importance of two prominent biological 

pathways for the progression of AD and PD simultaneously, such as HDAC1-CREB1-

TUBB4B/CDC42/CD44 and HDAC6-HINFP-TUBB4B/CDC42/CD44 (Figure 6). Further 

studies are required to generate the potential treatments targeting the above-mentioned 

biological pathways to treat AD and PD’s adverse effects. 

Moreover, the study highlighted the role of PTMs and their crosstalk in HDAC interactors, 

which are involved in the progression of NDDs such as AD and PD. The interactors of HDAC 

and proteins involved in AD and PD were collected from different databases such as HIPPIE, 

CTD, and DisGeNET. Venn analysis and PPI interaction of HDAC interactors, AD, and PD 

demonstrated the involvement of the Top 33 proteins. Gene set enrichment analysis of 33 

proteins confirmed the involvement of six different molecular functions and biological 

pathways in the pathogenesis of AD and PD through HDAC interactors. Protein 
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serine/threonine kinase activity (21.21%), Transcription regulator activity (18.18%), 

Transcription factor activity (6.06%), Transmembrane receptor protein tyrosine kinase activity 

(9.09%), Chaperone activity (15.15%), DNA-methyltransferase activity (3.03%) were top-

ranked molecular functions performed by HDAC interactors having a p-value less than 0.05. 

Similarly, Glypican pathway (81.25%), TRAIL signaling pathway (84.37%), Glypican 1 

network (81.25%), Integrin-linked kinase signaling (65.62%), AP-1 transcription factor 

network (62.50%), and Arf6 downstream pathway (78.12%) were top-ranked biological 

pathways involved in the pathogenesis of AD and PD. Lately, 1,50,968 PTMs sites from 

dbPTM and 1,15,127 PTMs sites from PLMD were integrated to 32 proteins in which 1489 

were acetylation, ubiquitination, and SUMOylation sites. Among 32 proteins, only three 

proteins, such as PARP1, NPM1, and CDK1, have individual acetylation, ubiquitination, and 

SUMOylation frequency greater than 10. Secondary structure prediction confirmed 42, 22, and 

18 PTMs sites formed coiled structure in PARP1, NPM1, and CDK1 respectively, 

demonstrating that the probability of PTMs site is higher in the coiled region as compared to 

helix and strand region. However, in NPM1, the probability of forming a strand region is higher 

as compared to PARP1 and CDK1. Further investigation revealed that 75% of PTMs sites were 

associated with the ordered region, whereas, 25% of PTMs sites were associated with the 

disordered region. Thus, it will be concluded that PTM distribution is higher in the ordered 

region as compared to the disordered region. Further, crosstalk analysis of acetylation, 

ubiquitination, and SUMOylation sites in PARP1 revealed that 19 PTM sites were associated 

with acetylation and ubiquitination crosstalk. Similarly, acetylation-SUMOylation (7 sites), 

ubiquitination-SUMOylation (3 sites), and acetylation-ubiquitination-SUMOylation (15 sites) 

were identified. Hotspot analysis identified that K148, K249, K528, K637, K700, and K796 

have potential crosstalk sites having ≥2 potential lysine residue in the vicinity of +7 and -6 

motif sequence. In order to predict crucial crosstalk sites, the impact of lysine mutation on 
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disease susceptibility was predicted, which demonstrated that among hotspot sites, K249L, 

K528Q, K528L, K637Q, K637L, K700Q, K700L, K796L were involved in the progression of 

NDDs. Further, our study investigated the role of lysine mutation on ubiquitination and 

SUMOylation, which shows that mutation in lysine residue will result in loss of SUMOylation 

and ubiquitination function. However, the gain of function after lysine mutation will also be 

observed, but the frequency is low as compared to the loss of function. In conclusion, K249, 

K331, K337, K528, K600, K637, K700, and K796 of PARP1 play a vital role in ubiquitination, 

acetylation, and SUMOylation crosstalk, which can potentially be useful for newer leads into 

acetylation mechanism, HDAC interactions, disease progression, biomarkers, or as a 

therapeutic target. Further, from this study, we also concluded that site-specific inhibition of 

PARP1 acetylation (K249, K331, K337, K528, K600, K637, K700, and K796) and 

simultaneous activation of ubiquitination and SUMOylation at the same residues rescue 

neuronal cell death that involved in AD pathology. 

The study also discussed the potential of miRNAs and long non-coding RNA in relation with 

acetylation in the pathogenesis of metal toxicity-induced AD. we concluded that 

downregulation of OPI5-AS1 causes upregulation of miR-129-5p, which modulate CREBBP-

induced hyperacetylation of CREB1, GATA2, NFKB1, and FOXA1 acetylation at K122, 

K399, K967, and K350. Regulation of hyperacetylation of CREB1, GATA2, NFKB1, and 

FOXA1 modulate their transcriptional activation, neuroinflammation, Wnt Signaling, and 

MAOA gene regulation, respectively, which inhibits neuronal cell death. In addition, decreased 

neuronal cell death rescued memory impairment and cognitive defects, which inhibits the 

pathogenesis of AD. Thus, the OIP5-AS1/miR-129-5p/CREBBP axis could be a possible 

therapeutic target in metal toxicity-induced AD. Further, these results provide a gateway for 

the future in vivo and in vitro studies targeting OIP5-AS1/miR-129-5p/CREBBP axis in a metal 

toxicity-induced AD. Lastly, we concluded the potential of Zimeldine and Dibenzapine as 
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potential therapeutic compound against HDAC10 in AD therapeutics. 

However, the current study is associated with some sort of limitation as the study uses only 

microarray data, which is not as comprehensive as transcriptomics data analysis. Thus, there is 

a growing need to simultaneously analyze the different types of AD and PD datasets, namely 

microarray data, epigenetic data, and RNA data, to extract the novel biomarkers involved in 

disease pathology. Further, there should be a greater number of control as well as disease 

samples to conclude a general discussion. In addition, samples from different tissue could be 

more beneficial in understanding the molecular mechanism and role of HDAC in AD and PD 

simultaneously. Further, the study is solely depending on the analysis parameters, such as log 

Fc value, node degree, network merging parameters, or acetylation signatures. Slightly changes 

in the analysis parameters or addition of other datasets might cause some deviation in the 

molecular signatures.  
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ANNEXURE 
 

 

Annexure 1: Box plots of Alzheimer’s disease (GSE1297 and GSE28146) and Parkinson’s disease 
(GSE7621 and GSE19587) before and after normalization of microarray datasets 
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Annexure 2: (A) histograms of microarray datasets of Alzheimer’s disease (GSE1297 and GSE28146) and 
Parkinson’s disease (GSE7621 and GSE19587). (B) volcano plots of publicly available microarray datasets 
for GSE1297, GSE28146, GSE7621, and GSE19587 
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Annexure 3: Prediction of putative lysine residues and HDAC enzymes in the CREB1 

MuSite Deep / Deep-PLA 

Residue Score Confidence Type FPR (%) 

91 0.25 Low SIRT7 14.7 

94 0.166 Low SIRT7 13.26 

123 0.12 Low HDAC6 2.74 

136 0.309 Moderate SIRT1 0.03 

155 0.162 Low SIRT1 3.35 

285 0.129 Low SIRT7 9.68 

292 0.139 Low HDAC1 4.96 

303 0.114 Low SIRT7 12.54 

304 0.133 Low SIRT7 12.9 

305 0.185 Low SIRT7 13.98 

309 0.29 Moderate ---- ---- 

323 0.318 Moderate ---- ---- 

330 0.557 High HDAC2 10.67 

333 0.288 Moderate SIRT6 6.92 

339 0.199 Low SIRT6 2.31 

PSKAcePred / Deep-PLA 

Residue Score Confidence Type FPR (%) 

91 0.692 Moderate SIRT7 14.7 

94 0.872 High SIRT7 13.26 

136 0.659 Moderate SIRT1 0.03 

292 0.737 High HDAC1 3.35 

303 0.856 High SIRT7 12.54 

304 0.924 High SIRT7 12.9 

305 0.653 Moderate SIRT7 13.98 

309 0.994 High ---- ---- 
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Annexure 4: Prediction of putative lysine residues and HDAC enzymes in the HINFP 

MuSite Deep / Deep-PLA 

Residue Score Confidence Type FPR (%) 

6 0.318 Moderate HDAC6 2.74 

10 0.164 Low HDAC6 3.84 

31 0.163 Low SIRT1 6.51 

94 0.176 Low ---- ---- 

96 0.159 Low ---- ---- 

164 0.206 Low SIRT3 14.56 

174 0.191 Low SIRT7 13.26 

181 0.182 Low ---- ---- 

185 0.177 Low SIRT3 14.94 

197 0.168 Low ---- ---- 

213 0.311 Moderate ---- ---- 

236 0.189 Low ---- ---- 

256 0.191 Low ---- ---- 

285 0.174 Low ---- ---- 

294 0.186 Low ---- ---- 

301 0.21 Low ---- ---- 

330 0.42 Moderate HDAC6 3.84 

335 0.198 Low HDAC6 2.74 

346 0.178 Low HDAC6 6.3 

352 0.228 Low HDAC3 8.6 

366 0.175 Low HDAC1 5.8 

367 0.157 Low HDAC1 4.23 

371 0.354 Moderate SIRT1 7.01 

382 0.269 Moderate HDAC1 6.53 

439 0.153 Low SIRT2 4.77 

446 0.11 Low SIRT2 0.95 

504 0.154 Low SIRT1 6 

PSKAcePred / Deep-PLA 

Residue Score Confidence Type FPR (%) 

31 0.73 High SIRT1 6.51 

96 0.766 High ---- ---- 

174 0.779 High SIRT7 13.26 

185 0.591 Moderate SIRT3 14.94 

197 0.65 Moderate ---- ---- 

213 0.616 Moderate ---- ---- 

236 0.522 Moderate ---- ---- 

330 0.726 High HDAC6 3.84 

335 0.93 High HDAC6 2.74 

352 0.5 Moderate HDAC3 8.6 

366 0.629 Moderate HDAC1 5.8 

367 0.904 High HDAC1 4.23 

371 0.911 High SIRT1 7.01 

446 0.719 High SIRT2 0.95 

504 0.506 Moderate SIRT1 6 
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Annexure 5: List of anti-depressive drugs used as a test compound 

 
ChEMBL ID Name Molecular Formula 

CHEMBL1696 DESIPRAMINE HYDROCHLORIDE C18H23ClN2 

CHEMBL517 DISOPYRAMIDE C21H29N3O 

CHEMBL1201293 ACAMPROSATE C5H11NO4S 

CHEMBL1201066 VENLAFAXINE HYDROCHLORIDE C17H28ClNO2 

CHEMBL595 PIOGLITAZONE C19H20N2O3S 

CHEMBL1199080 BRETYLIUM C11H17BrN+ 

CHEMBL1200420 MIDAZOLAM HYDROCHLORIDE C18H14Cl2FN3 

CHEMBL1201082 FLUOXETINE HYDROCHLORIDE C17H19ClF3NO 

CHEMBL741 LAMOTRIGINE C9H7Cl2N5 

CHEMBL315795 CLOMETHIAZOLE C6H8ClNS 

CHEMBL1200322 ESCITALOPRAM OXALATE C22H23FN2O5 

CHEMBL715 OLANZAPINE C17H20N4S 

CHEMBL16 PHENYTOIN C15H12N2O2 

CHEMBL896 HYDROXYZINE C21H27ClN2O2 

CHEMBL636 RIVASTIGMINE C14H22N2O2 

CHEMBL2110816 BUTRIPTYLINE C21H27N 

CHEMBL418995 AMINEPTINE C22H27NO2 

CHEMBL511142 BUPRENORPHINE C29H41NO4 

CHEMBL1764 LEVOMEPROMAZINE C19H24N2OS 

CHEMBL654 MIRTAZAPINE C17H19N3 

CHEMBL1200399 BUSPIRONE HYDROCHLORIDE C21H32ClN5O2 

CHEMBL1201242 INDECAINIDE C20H24N2O 

CHEMBL631 PROPAFENONE C21H27NO3 

CHEMBL558 MEXILETINE C11H17NO 

CHEMBL490 PAROXETINE C19H20FNO3 

CHEMBL130 CHLORAMPHENICOL C11H12Cl2N2O5 

CHEMBL533 IBUTILIDE C20H36N2O3S 

CHEMBL1294 QUINIDINE C20H24N2O2 

CHEMBL1464 WARFARIN C19H16O4 

CHEMBL894 BUPROPION C13H18ClNO 

CHEMBL1200710 CLOMIPRAMINE HYDROCHLORIDE C19H24Cl2N2 

CHEMBL1234579 NITROUS OXIDE N2O 

CHEMBL350221 OXITRIPTAN C11H12N2O3 

CHEMBL54 HALOPERIDOL C21H23ClFNO2 

CHEMBL502 DONEPEZIL C24H29NO3 

CHEMBL667 ACETYLCHOLINE C7H16NO2+ 

CHEMBL86304 MOCLOBEMIDE C13H17ClN2O2 

CHEMBL6437 MIANSERIN C18H20N2 

CHEMBL54976 TRYPTOPHAN C11H12N2O2 

CHEMBL1628234 DOXEPIN HYDROCHLORIDE C19H22ClNO 

CHEMBL1508 ESCITALOPRAM C20H21FN2O 

CHEMBL1628227 DOXEPIN C19H21NO 

CHEMBL1201314 VALGANCICLOVIR C14H22N6O5 

CHEMBL1434 MINOCYCLINE C23H27N3O7 
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CHEMBL1621 PALIPERIDONE C23H27FN4O3 

CHEMBL1256818 DEXTROMETHORPHAN HYDROBROMIDE C18H28BrNO2 

CHEMBL297302 BENPERIDOL C22H24FN3O2 

CHEMBL14370 REBOXETINE C19H23NO3 

CHEMBL1200332 PROTRIPTYLINE HYDROCHLORIDE C19H22ClN 

CHEMBL2105581 VERALIPRIDE C17H25N3O5S 

CHEMBL439849 VILAZODONE C26H27N5O2 

CHEMBL70418 CLOBAZAM C16H13ClN2O2 

CHEMBL1722 METHYLPHENIDATE HYDROCHLORIDE C14H20ClNO2 

CHEMBL796 METHYLPHENIDATE C14H19NO2 

CHEMBL2364609 ESKETAMINE HYDROCHLORIDE C13H17Cl2NO 

CHEMBL22097 LORMETAZEPAM C16H12Cl2N2O2 

CHEMBL1112 ARIPIPRAZOLE C23H27Cl2N3O2 

CHEMBL415 CLOMIPRAMINE C19H23ClN2 

CHEMBL643 PROMETHAZINE C17H20N2S 

CHEMBL1643 RIBAVIRIN C8H12N4O5 

CHEMBL1698 BUPROPION HYDROCHLORIDE C13H19Cl2NO 

CHEMBL58323 ERLOSAMIDE C13H18N2O3 

CHEMBL1237082 MECAMYLAMINE HYDROCHLORIDE C11H22ClN 

CHEMBL807 MEMANTINE C12H21N 

CHEMBL1237021 LURASIDONE C28H36N4O2S 

CHEMBL1491 AMLODIPINE C20H25ClN2O5 

CHEMBL652 FLECAINIDE C17H20F6N2O3 

CHEMBL2105732 LEVOMILNACIPRAN HYDROCHLORIDE C15H23ClN2O 

CHEMBL2105760 BREXPIPRAZOLE C25H27N3O2S 

CHEMBL12 DIAZEPAM C16H13ClN2O 

CHEMBL640 PROCAINAMIDE C13H21N3O 

CHEMBL1059 PREGABALIN C8H17NO2 

CHEMBL455917 CHLORAL HYDRATE C2H3Cl3O2 

CHEMBL452 CLONAZEPAM C15H10ClN3O3 

CHEMBL1442422 DIBENZEPIN C18H21N3O 

CHEMBL1201222 LISDEXAMFETAMINE C15H25N3O 

CHEMBL1715 PIOGLITAZONE HYDROCHLORIDE C19H21ClN2O3S 

CHEMBL259209 MILNACIPRAN C15H22N2O 

CHEMBL395091 ESKETAMINE C13H16ClNO 

CHEMBL2111030 PROTHIPENDYL C16H19N3S 

CHEMBL545 ALCOHOL C2H6O 

CHEMBL243712 AMISULPRIDE C17H27N3O4S 

CHEMBL1492500 DOTHIEPIN C19H21NS 

CHEMBL1521 ZALEPLON C17H15N5O 

CHEMBL49 BUSPIRONE C21H31N5O2 

CHEMBL1113 AMOXAPINE C17H16ClN3O 

CHEMBL1286 LEVETIRACETAM C8H14N2O2 

CHEMBL1091 HYDROCORTISONE ACETATE C23H32O6 

CHEMBL108 CARBAMAZEPINE C15H12N2O 

CHEMBL2028019 CARIPRAZINE C21H32Cl2N4O 
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CHEMBL207538 BREXANOLONE C21H34O2 

CHEMBL1762 TOCAINIDE C11H16N2O 

CHEMBL12713 SERTINDOLE C24H26ClFN4O 

CHEMBL477 ADENOSINE C10H13N5O4 

CHEMBL190 THEOPHYLLINE C7H8N4O2 

CHEMBL10878 AGOMELATINE C15H17NO2 

CHEMBL573 NIACIN C6H5NO2 

CHEMBL315838 ENCAINIDE C22H28N2O2 

CHEMBL968 FLURAZEPAM C21H23ClFN3O 

CHEMBL277062 BROMAZEPAM C14H10BrN3O 

CHEMBL657 DIPHENHYDRAMINE C17H21NO 

CHEMBL139 DICLOFENAC C14H11Cl2NO2 

CHEMBL669 CYCLOBENZAPRINE C20H21N 

CHEMBL596 FENTANYL C22H28N2O 

CHEMBL580 LORAZEPAM C15H10Cl2N2O2 

CHEMBL3 NICOTINE C10H14N2 

CHEMBL142438 NITROGEN N2 

CHEMBL27 PROPRANOLOL C16H21NO2 

CHEMBL1373 MODAFINIL C15H15NO2S 

CHEMBL135 ESTRADIOL C18H24O2 

CHEMBL1200781 CITALOPRAM HYDROBROMIDE C20H22BrFN2O 

CHEMBL1200492 NEFAZODONE HYDROCHLORIDE C25H33Cl2N5O2 

CHEMBL1089 PHENELZINE C8H12N2 

CHEMBL1218 RAMELTEON C16H21NO2 

CHEMBL1214124 PERAMPANEL C23H15N3O 

CHEMBL940 GABAPENTIN C9H17NO2 

CHEMBL36 PYRIMETHAMINE C12H13ClN4 

CHEMBL1237135 MAPROTILINE HYDROCHLORIDE C20H24ClN 

CHEMBL21731 MAPROTILINE C20H23N 

CHEMBL655 MIDAZOLAM C18H13ClFN3 

CHEMBL1200964 AMITRIPTYLINE HYDROCHLORIDE C20H24ClN 

CHEMBL628 PENTOXIFYLLINE C13H18N4O3 

CHEMBL568 OXAZEPAM C15H11ClN2O2 

CHEMBL1509 DROSPIRENONE C24H30O3 

CHEMBL1064 SIMVASTATIN C25H38O5 

CHEMBL549 CITALOPRAM C20H21FN2O 

CHEMBL668 PROTRIPTYLINE C19H21N 

CHEMBL644 TRIMIPRAMINE C20H26N2 

CHEMBL1431 METFORMIN C4H11N5 

CHEMBL52440 DEXTROMETHORPHAN C18H25NO 

CHEMBL85 RISPERIDONE C23H27FN4O2 

CHEMBL1200328 DULOXETINE HYDROCHLORIDE C18H20ClNOS 

CHEMBL90593 PRASTERONE C19H28O2 

CHEMBL526 PROPOFOL C12H18O 

CHEMBL103 PROGESTERONE C21H30O2 

CHEMBL646 TRIAZOLAM C17H12Cl2N4 
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CHEMBL1201168 ISOCARBOXAZID C12H13N3O2 

CHEMBL1714 KETAMINE HYDROCHLORIDE C13H17Cl2NO 

CHEMBL911 ZOLPIDEM C19H21N3O 

CHEMBL45 MELATONIN C13H16N2O2 

CHEMBL273575 NOMIFENSINE C16H18N2 

CHEMBL95889 BETAINE C5H12NO2+ 

CHEMBL537669 YOHIMBINE HYDROCHLORIDE C21H27ClN2O3 

CHEMBL1175 DULOXETINE C18H19NOS 

CHEMBL1372950 NICERGOLINE C24H26BrN3O3 

CHEMBL696 ETHOSUXIMIDE C7H11NO2 

CHEMBL220492 TOPIRAMATE C12H21NO8S 

CHEMBL267936 MECAMYLAMINE C11H21N 

CHEMBL1503 OMEPRAZOLE C17H19N3O3S 

CHEMBL637 VENLAFAXINE C17H27NO2 

CHEMBL2103822 TASIMELTEON C15H19NO2 

CHEMBL679 EPINEPHRINE C9H13NO3 

CHEMBL181 DIAZOXIDE C8H7ClN2O2S 

CHEMBL26 SULPIRIDE C15H23N3O4S 

CHEMBL13209 NITRAZEPAM C15H11N3O3 

CHEMBL24441 BETAHISTINE C8H12N2 

CHEMBL72 DESIPRAMINE C18H22N2 

CHEMBL28218 BROMPERIDOL C21H23BrFNO2 

CHEMBL1237044 TRAMADOL C16H25NO2 

CHEMBL25 ASPIRIN C9H8O4 

CHEMBL814 FLUVOXAMINE C15H21F3N2O2 

CHEMBL742 KETAMINE C13H16ClNO 

CHEMBL1771 CLOPIDOGREL C16H16ClNO2S 

CHEMBL972 SELEGILINE C13H17N 

CHEMBL1075 MORICIZINE C22H25N3O4S 

CHEMBL1201192 ARMODAFINIL C15H15NO2S 

CHEMBL777 CLAVULANIC ACID C8H9NO5 

CHEMBL41 FLUOXETINE C17H18F3NO 

CHEMBL451 CHLORDIAZEPOXIDE C16H14ClN3O 

CHEMBL41355 EZOGABINE C16H18FN3O2 

CHEMBL1101 BIPERIDEN C21H29NO 

CHEMBL967 TEMAZEPAM C16H13ClN2O2 

CHEMBL196 ASCORBIC ACID C6H8O6 

CHEMBL708 ZIPRASIDONE C21H21ClN4OS 

CHEMBL714 ALBUTEROL C13H21NO3 

CHEMBL40 PHENOBARBITAL C12H12N2O3 

CHEMBL1201010 FLUDROCORTISONE ACETATE C23H31FO6 

CHEMBL1068 OXCARBAZEPINE C15H12N2O2 

CHEMBL600 ACETYLCYSTEINE C5H9NO3S 

CHEMBL629 AMITRIPTYLINE C20H23N 

CHEMBL500 PINDOLOL C14H20N2O2 

CHEMBL771 CYCLOSERINE C3H6N2O2 
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CHEMBL621 TRAZODONE C19H22ClN5O 

CHEMBL109 VALPROIC ACID C8H16O2 

CHEMBL126224 IPRINDOLE C19H28N2 

CHEMBL36715 PIRACETAM C6H10N2O2 

CHEMBL569713 SCOPOLAMINE C17H21NO4 

CHEMBL2107387 VORTIOXETINE HYDROBROMIDE C18H23BrN2S 

CHEMBL1437 NOREPINEPHRINE C8H11NO3 

CHEMBL135400 ZOPICLONE C17H17ClN6O3 

CHEMBL445 NORTRIPTYLINE C19H21N 

CHEMBL716 QUETIAPINE C21H25N3O2S 

CHEMBL278819 MINAPRINE C17H22N4O 

CHEMBL1201735 BUPROPION HYDROBROMIDE C13H19BrClNO 

CHEMBL2105613 DIVALPROEX SODIUM C16H31NaO4 

CHEMBL142703 VILDAGLIPTIN C17H25N3O2 

CHEMBL567 PERPHENAZINE C21H26ClN3OS 

CHEMBL42 CLOZAPINE C18H19ClN4 

CHEMBL1256841 NIALAMIDE C16H18N4O2 

CHEMBL37744 ZIMELDINE C16H17BrN2 

CHEMBL1118 DESVENLAFAXINE C16H25NO2 

CHEMBL92401 IPRONIAZID C9H13N3O 

CHEMBL1201728 DESVENLAFAXINE SUCCINATE C20H31NO6 

CHEMBL623 NEFAZODONE C25H32ClN5O2 

CHEMBL473 DOFETILIDE C19H27N3O5S2 

CHEMBL1678 DONEPEZIL HYDROCHLORIDE C24H30ClNO3 

CHEMBL1201178 LISDEXAMFETAMINE DIMESYLATE C17H33N3O7S2 

CHEMBL59 DOPAMINE C8H11NO2 

CHEMBL1234886 OXYGEN O2 

CHEMBL2104993 VORTIOXETINE C18H22N2S 

CHEMBL2103774 TIBOLONE C21H28O2 

CHEMBL1496 ROSUVASTATIN C22H28FN3O6S 

CHEMBL661 ALPRAZOLAM C17H13ClN4 

CHEMBL691 ETHINYL ESTRADIOL C20H24O2 

CHEMBL118 CELECOXIB C17H14F3N3O2S 

CHEMBL2111101 PIMAVANSERIN C25H34FN3O2 

CHEMBL1140 NIACINAMIDE C6H6N2O 

CHEMBL1005 REMIFENTANIL C20H28N2O5 

CHEMBL656 OXYCODONE C18H21NO4 

CHEMBL99946 LEVOMILNACIPRAN C15H22N2O 

CHEMBL934 METYRAPONE C14H14N2O 

CHEMBL306700 VILOXAZINE C13H19NO3 

CHEMBL1200798 TRAZODONE HYDROCHLORIDE C19H23Cl2N5O 

CHEMBL521 IBUPROFEN C13H18O2 

CHEMBL3306803 LUMATEPERONE C24H28FN3O 

CHEMBL11 IMIPRAMINE C19H24N2 

CHEMBL1201156 NORTRIPTYLINE HYDROCHLORIDE C19H22ClN 

CHEMBL19019 NALTREXONE C20H23NO4 
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CHEMBL1718 NALOXONE HYDROCHLORIDE C19H22ClNO4 

CHEMBL1615374 VILAZODONE HYDROCHLORIDE C26H28ClN5O2 

CHEMBL744 RILUZOLE C8H5F3N2OS 

CHEMBL3188993 QUETIAPINE FUMARATE C46H54N6O8S2 

CHEMBL1708 PAROXETINE HYDROCHLORIDE C19H21ClFNO3 

CHEMBL1201027 GLYCOPYRROLATE C19H28BrNO3 

CHEMBL659 GALANTAMINE C17H21NO3 

CHEMBL1692 IMIPRAMINE HYDROCHLORIDE C19H25ClN2 

CHEMBL70 MORPHINE C17H19NO3 

CHEMBL301265 PRAMIPEXOLE C10H17N3S 

CHEMBL3989861 DESVENLAFAXINE FUMARATE C20H31NO7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



170 | P a g e  

 

 
Annexure 6: List of compounds used as training set for HDAC10 inhibitors 

 

Molecule ChEMBL ID Standard Value Class 

CHEMBL4066920 3.981 Inhibitor 

CHEMBL4578278 3.981 Inhibitor 

CHEMBL2018302 30000 Non-Inhibitor 

CHEMBL4577299 7700 Non-Inhibitor 

CHEMBL4283105 6400 Non-Inhibitor 

CHEMBL4293438 30000 Non-Inhibitor 

CHEMBL3347696 30000 Non-Inhibitor 

CHEMBL4516095 14700 Non-Inhibitor 

CHEMBL1091474 32.8 Inhibitor 

CHEMBL4532304 660 Non-Inhibitor 

CHEMBL2103863 3.981 Inhibitor 

CHEMBL4468860 5011.87 Non-Inhibitor 

CHEMBL98 97 Non-Inhibitor 

CHEMBL4437432 4997 Non-Inhibitor 

CHEMBL98 199.53 Non-Inhibitor 

CHEMBL2105763 10 Inhibitor 

CHEMBL4470067 19.95 Inhibitor 

CHEMBL4545091 5300 Non-Inhibitor 

CHEMBL1630208 3.7 Inhibitor 

CHEMBL99 22.8 Inhibitor 

CHEMBL98 430 Non-Inhibitor 

CHEMBL99 31 Inhibitor 

CHEMBL98 58 Non-Inhibitor 

CHEMBL99 20.1 Inhibitor 

CHEMBL251011 179 Non-Inhibitor 

CHEMBL1631912 958 Non-Inhibitor 

CHEMBL1631916 320 Non-Inhibitor 

CHEMBL1631918 200 Non-Inhibitor 

CHEMBL4554522 2690 Non-Inhibitor 

CHEMBL1914702 776 Non-Inhibitor 

CHEMBL466031 30000 Non-Inhibitor 

CHEMBL466033 30000 Non-Inhibitor 

CHEMBL3670680 8547 Non-Inhibitor 

CHEMBL1631913 70.7 Non-Inhibitor 

CHEMBL1631915 152 Non-Inhibitor 

CHEMBL488747 19.2 Inhibitor 

CHEMBL483892 34.3 Inhibitor 

CHEMBL483693 18.5 Inhibitor 

CHEMBL99 5 Inhibitor 

CHEMBL4445342 2073 Non-Inhibitor 

CHEMBL29362 280 Non-Inhibitor 

CHEMBL1767031 100000 Non-Inhibitor 
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CHEMBL3793310 10200 Non-Inhibitor 

CHEMBL2105763 1.96 Inhibitor 

CHEMBL4294514 1510 Non-Inhibitor 

CHEMBL1767032 100000 Non-Inhibitor 

CHEMBL1767044 21800 Non-Inhibitor 

CHEMBL1767045 98500 Non-Inhibitor 

CHEMBL598797 125.89 Non-Inhibitor 

CHEMBL4475240 1000 Non-Inhibitor 

CHEMBL1088734 14.5 Inhibitor 

CHEMBL3911566 11900 Non-Inhibitor 

CHEMBL1094707 9.8 Inhibitor 

CHEMBL3670668 316 Non-Inhibitor 

CHEMBL466032 30000 Non-Inhibitor 

CHEMBL2431862 3700 Non-Inhibitor 

CHEMBL3098687 227 Non-Inhibitor 

CHEMBL4093691 8230 Non-Inhibitor 

CHEMBL356066 8.41 Inhibitor 

CHEMBL609583 4.3 Inhibitor 

CHEMBL564876 870 Non-Inhibitor 

CHEMBL2152613 30000 Non-Inhibitor 

CHEMBL99 32 Inhibitor 

CHEMBL4534503 158.49 Non-Inhibitor 

CHEMBL4466930 199.53 Non-Inhibitor 

CHEMBL98 208 Non-Inhibitor 

CHEMBL4438279 398.11 Non-Inhibitor 

CHEMBL4537561 21000 Non-Inhibitor 

CHEMBL4557665 10000 Non-Inhibitor 

CHEMBL4469098 14000 Non-Inhibitor 

CHEMBL4577107 1462.81 Non-Inhibitor 

CHEMBL4207182 9100 Non-Inhibitor 

CHEMBL466459 13300 Non-Inhibitor 

CHEMBL4445862 164 Non-Inhibitor 

CHEMBL2417782 6 Inhibitor 

CHEMBL483254 10.24 Inhibitor 

CHEMBL27759 3150 Non-Inhibitor 

CHEMBL1767043 15400 Non-Inhibitor 

CHEMBL4541796 50.12 Non-Inhibitor 

CHEMBL471043 5430 Non-Inhibitor 

CHEMBL470843 6100 Non-Inhibitor 

CHEMBL1767033 100000 Non-Inhibitor 

CHEMBL1767036 73300 Non-Inhibitor 

CHEMBL1767039 23100 Non-Inhibitor 

CHEMBL1631914 62.5 Non-Inhibitor 

CHEMBL1631917 190 Non-Inhibitor 

CHEMBL427510 29700 Non-Inhibitor 

CHEMBL180911 1540 Non-Inhibitor 
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CHEMBL389687 46.1 Non-Inhibitor 

CHEMBL1088736 5.8 Inhibitor 

CHEMBL440018 3430 Non-Inhibitor 

CHEMBL483254 4 Inhibitor 

CHEMBL1914708 140 Non-Inhibitor 

CHEMBL561604 250 Non-Inhibitor 

CHEMBL446512 840 Non-Inhibitor 

CHEMBL468595 17.5 Inhibitor 

CHEMBL511715 471 Non-Inhibitor 

CHEMBL1091475 10.7 Inhibitor 

CHEMBL487106 17.6 Inhibitor 

CHEMBL487742 55.7 Non-Inhibitor 

CHEMBL27759 50100 Non-Inhibitor 

CHEMBL98 456 Non-Inhibitor 

CHEMBL467793 44.9 Non-Inhibitor 

CHEMBL1767047 100000 Non-Inhibitor 

CHEMBL227118 173 Non-Inhibitor 

CHEMBL1094710 16.6 Inhibitor 

CHEMBL4290191 7.55 Inhibitor 

CHEMBL469275 891 Non-Inhibitor 

CHEMBL2177587 3400 Non-Inhibitor 

CHEMBL598797 26.1 Inhibitor 

CHEMBL1767030 100000 Non-Inhibitor 

CHEMBL1767037 100000 Non-Inhibitor 

CHEMBL1767046 37800 Non-Inhibitor 

CHEMBL513160 155 Non-Inhibitor 

CHEMBL468842 73 Non-Inhibitor 

CHEMBL511749 90.7 Non-Inhibitor 

CHEMBL1243289 23900 Non-Inhibitor 

CHEMBL3774414 1176 Non-Inhibitor 

CHEMBL3917405 80 Non-Inhibitor 

CHEMBL483893 13 Inhibitor 

CHEMBL519491 36.1 Inhibitor 

CHEMBL483494 112 Non-Inhibitor 

CHEMBL4129930 10000 Non-Inhibitor 

CHEMBL1796689 0.5 Inhibitor 

CHEMBL3329621 0.2 Inhibitor 

CHEMBL109654 1220 Non-Inhibitor 

CHEMBL3356523 11 Inhibitor 

CHEMBL4556817 1470 Non-Inhibitor 

CHEMBL3622727 138 Non-Inhibitor 

CHEMBL3622728 395 Non-Inhibitor 

CHEMBL2414098 3 Inhibitor 

CHEMBL467998 852 Non-Inhibitor 

CHEMBL3262727 4130 Non-Inhibitor 

CHEMBL3098604 30 Inhibitor 
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CHEMBL98 77 Non-Inhibitor 

CHEMBL4452620 899 Non-Inhibitor 

CHEMBL3827814 2.8 Inhibitor 

CHEMBL483254 4.45 Inhibitor 

CHEMBL99 34.5 Inhibitor 

CHEMBL29814 50 Non-Inhibitor 

CHEMBL99 38.1 Inhibitor 

CHEMBL98 72 Non-Inhibitor 

CHEMBL1087053 30000 Non-Inhibitor 

CHEMBL4206537 100000 Non-Inhibitor 

CHEMBL98 68.4 Non-Inhibitor 

CHEMBL356769 3710 Non-Inhibitor 

CHEMBL98 200 Non-Inhibitor 

CHEMBL96051 300 Non-Inhibitor 

CHEMBL1631910 1530 Non-Inhibitor 

CHEMBL468841 401 Non-Inhibitor 

CHEMBL483495 86.5 Non-Inhibitor 

CHEMBL2425955 17500 Non-Inhibitor 

CHEMBL3335283 94 Non-Inhibitor 

CHEMBL3335300 29 Inhibitor 

CHEMBL3621988 235 Non-Inhibitor 

CHEMBL4210907 47900 Non-Inhibitor 

CHEMBL4210107 7050 Non-Inhibitor 

CHEMBL4213856 5890 Non-Inhibitor 

CHEMBL3622533 2.8 Inhibitor 

CHEMBL4205609 7740 Non-Inhibitor 

CHEMBL4069287 5000 Non-Inhibitor 

CHEMBL4210305 15500 Non-Inhibitor 

CHEMBL520056 24.5 Inhibitor 

CHEMBL483477 1350 Non-Inhibitor 

CHEMBL3098695 113 Non-Inhibitor 

CHEMBL1631911 683 Non-Inhibitor 

CHEMBL511432 250 Non-Inhibitor 

CHEMBL4532398 0.58 Inhibitor 

CHEMBL2177582 5000 Non-Inhibitor 

CHEMBL3356923 4 Inhibitor 

CHEMBL3356927 14 Inhibitor 

CHEMBL1094709 6.8 Inhibitor 

CHEMBL471041 7360 Non-Inhibitor 

CHEMBL2431902 50000 Non-Inhibitor 

CHEMBL2431901 50000 Non-Inhibitor 

CHEMBL99 8 Inhibitor 

CHEMBL98 210 Non-Inhibitor 

CHEMBL487533 188 Non-Inhibitor 

CHEMBL469134 254 Non-Inhibitor 

CHEMBL4551095 30000 Non-Inhibitor 
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CHEMBL4215954 100000 Non-Inhibitor 

CHEMBL519668 27.7 Inhibitor 

CHEMBL99 9 Inhibitor 

CHEMBL1243261 9050 Non-Inhibitor 

CHEMBL487741 64.7 Non-Inhibitor 

CHEMBL3426803 40 Inhibitor 

CHEMBL4202838 100000 Non-Inhibitor 

CHEMBL3670675 723 Non-Inhibitor 

CHEMBL519746 70.1 Non-Inhibitor 

CHEMBL4095596 31 Inhibitor 

CHEMBL356769 30000 Non-Inhibitor 

CHEMBL4104247 10000 Non-Inhibitor 

CHEMBL1767029 100000 Non-Inhibitor 

CHEMBL1767038 100000 Non-Inhibitor 

CHEMBL3827894 2.83 Inhibitor 

CHEMBL3792392 78310 Non-Inhibitor 

CHEMBL3981567 10000 Non-Inhibitor 

CHEMBL4764787 5780 Non-Inhibitor 

CHEMBL4086093 10000 Non-Inhibitor 

CHEMBL2177588 1600 Non-Inhibitor 

CHEMBL472631 7840 Non-Inhibitor 

CHEMBL389688 28.3 Inhibitor 

CHEMBL227119 178 Non-Inhibitor 

CHEMBL2425953 10000 Non-Inhibitor 

CHEMBL487107 15.8 Inhibitor 

CHEMBL3098606 163 Non-Inhibitor 

CHEMBL3098694 88 Non-Inhibitor 

CHEMBL227120 176 Non-Inhibitor 

CHEMBL98 1258.93 Non-Inhibitor 

CHEMBL4468860 39810.72 Non-Inhibitor 

CHEMBL1851943 1584.89 Non-Inhibitor 

CHEMBL3958794 63.1 Non-Inhibitor 

CHEMBL1851943 3162.28 Non-Inhibitor 

CHEMBL2103863 7.943 Inhibitor 

CHEMBL3971436 630.96 Non-Inhibitor 

CHEMBL4214502 100000 Non-Inhibitor 

CHEMBL3086767 5000 Non-Inhibitor 

CHEMBL4218789 5240 Non-Inhibitor 

CHEMBL4552057 1.43 Inhibitor 

CHEMBL1767034 100000 Non-Inhibitor 

CHEMBL1767035 100000 Non-Inhibitor 

CHEMBL1767040 100000 Non-Inhibitor 

CHEMBL1767041 100000 Non-Inhibitor 

CHEMBL99 11.3 Inhibitor 

CHEMBL487943 74.8 Non-Inhibitor 

CHEMBL3828518 6.85 Inhibitor 
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CHEMBL4550526 5.7 Inhibitor 

CHEMBL2364628 125.89 Non-Inhibitor 

CHEMBL2170177 39810.72 Non-Inhibitor 

CHEMBL3907295 25.12 Inhibitor 

CHEMBL3670669 35 Inhibitor 

CHEMBL3675758 126 Non-Inhibitor 

CHEMBL99 34.81 Inhibitor 

CHEMBL4777961 10000 Non-Inhibitor 

CHEMBL2018302 25000 Non-Inhibitor 

CHEMBL2018302 12.59 Inhibitor 

CHEMBL3907295 19.95 Inhibitor 

CHEMBL2431907 50000 Non-Inhibitor 

CHEMBL4593729 2910 Non-Inhibitor 

CHEMBL3086768 5000 Non-Inhibitor 

CHEMBL4459443 10000 Non-Inhibitor 

CHEMBL4534503 251.19 Non-Inhibitor 

CHEMBL3621988 100 Non-Inhibitor 

CHEMBL4438279 316.23 Non-Inhibitor 

CHEMBL2105763 39.81 Inhibitor 

CHEMBL4539040 16900 Non-Inhibitor 

CHEMBL4517151 102 Non-Inhibitor 

CHEMBL3827281 17.55 Inhibitor 

CHEMBL98 170 Non-Inhibitor 

CHEMBL2105763 0.5 Inhibitor 

CHEMBL4536605 26000 Non-Inhibitor 

CHEMBL2170177 20000 Non-Inhibitor 

CHEMBL3940985 66200 Non-Inhibitor 

CHEMBL1173445 2210 Non-Inhibitor 

CHEMBL3827517 0.86 Inhibitor 

CHEMBL180064 8780 Non-Inhibitor 

CHEMBL3394285 6320 Non-Inhibitor 

CHEMBL4561073 950 Non-Inhibitor 

CHEMBL1213492 331 Non-Inhibitor 

CHEMBL2364628 194 Non-Inhibitor 

CHEMBL227118 270 Non-Inhibitor 

CHEMBL3335288 774 Non-Inhibitor 

CHEMBL326433 252 Non-Inhibitor 

CHEMBL3356921 116 Non-Inhibitor 

CHEMBL2179618 100 Non-Inhibitor 

CHEMBL511749 794.33 Non-Inhibitor 

CHEMBL4445881 199.53 Non-Inhibitor 

CHEMBL4798571 246.53 Non-Inhibitor 

CHEMBL487253 72 Non-Inhibitor 

CHEMBL4066043 3000 Non-Inhibitor 

CHEMBL4080014 20400 Non-Inhibitor 

CHEMBL4087897 290 Non-Inhibitor 
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CHEMBL98 982 Non-Inhibitor 

CHEMBL4078721 3.6 Inhibitor 

CHEMBL4087616 10500 Non-Inhibitor 

CHEMBL469274 28.2 Inhibitor 

CHEMBL98 278 Non-Inhibitor 

CHEMBL99 20 Inhibitor 

CHEMBL471042 1580 Non-Inhibitor 

CHEMBL4066920 5.012 Inhibitor 

CHEMBL467792 690 Non-Inhibitor 

CHEMBL561483 240 Non-Inhibitor 

CHEMBL564382 4700 Non-Inhibitor 

CHEMBL564916 73000 Non-Inhibitor 

CHEMBL4218266 59800 Non-Inhibitor 

CHEMBL4206021 18900 Non-Inhibitor 

CHEMBL4217319 8240 Non-Inhibitor 

CHEMBL4218915 100000 Non-Inhibitor 

CHEMBL4099942 21 Inhibitor 

CHEMBL4104117 9791 Non-Inhibitor 

CHEMBL178456 10700 Non-Inhibitor 

CHEMBL387924 11.1 Inhibitor 

CHEMBL227170 42.1 Non-Inhibitor 

CHEMBL427135 30000 Non-Inhibitor 

CHEMBL3622533 3 Inhibitor 

CHEMBL4078458 20000 Non-Inhibitor 

CHEMBL3356931 189 Non-Inhibitor 

CHEMBL3356939 6000 Non-Inhibitor 

CHEMBL4790998 78.24 Non-Inhibitor 

CHEMBL98 57.25 Non-Inhibitor 

CHEMBL27759 11100 Non-Inhibitor 

CHEMBL4280303 9.12 Inhibitor 

CHEMBL3235463 100000 Non-Inhibitor 

CHEMBL538364 100000 Non-Inhibitor 

CHEMBL3235787 100000 Non-Inhibitor 

CHEMBL3098690 93 Non-Inhibitor 

CHEMBL3098605 649 Non-Inhibitor 

CHEMBL3098691 125 Non-Inhibitor 

CHEMBL4097399 30000 Non-Inhibitor 

CHEMBL1767042 100000 Non-Inhibitor 

CHEMBL3356929 9 Inhibitor 

CHEMBL3356936 3930 Non-Inhibitor 

CHEMBL556332 11000 Non-Inhibitor 

CHEMBL4451623 1502 Non-Inhibitor 

CHEMBL3356918 15 Inhibitor 

CHEMBL3356926 7 Inhibitor 

CHEMBL3356928 14 Inhibitor 

CHEMBL3356933 310 Non-Inhibitor 
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CHEMBL98 80 Non-Inhibitor 

CHEMBL3104851 8400 Non-Inhibitor 

CHEMBL4464421 2.1 Inhibitor 

CHEMBL2425956 29800 Non-Inhibitor 

CHEMBL511749 316.23 Non-Inhibitor 

CHEMBL3971436 316.23 Non-Inhibitor 

CHEMBL2018451 158.49 Non-Inhibitor 

CHEMBL4790678 5750 Non-Inhibitor 

CHEMBL3356917 4 Inhibitor 

CHEMBL3356919 11 Inhibitor 

CHEMBL213934 5210 Non-Inhibitor 

CHEMBL3098693 147 Non-Inhibitor 

CHEMBL3098692 244 Non-Inhibitor 

CHEMBL2431912 50000 Non-Inhibitor 

CHEMBL3098602 10.6 Inhibitor 

CHEMBL4079541 700 Non-Inhibitor 

CHEMBL4066043 79.43 Non-Inhibitor 

CHEMBL2018451 199.53 Non-Inhibitor 

CHEMBL2170177 10000 Non-Inhibitor 

CHEMBL3098604 30.3 Inhibitor 

CHEMBL3098689 51 Non-Inhibitor 

CHEMBL4548759 3000 Non-Inhibitor 

CHEMBL3104855 8100 Non-Inhibitor 

CHEMBL3356526 6 Inhibitor 

CHEMBL4532181 5.012 Inhibitor 

CHEMBL4541796 25.12 Inhibitor 

CHEMBL4066043 316.23 Non-Inhibitor 

CHEMBL598797 398.11 Non-Inhibitor 

CHEMBL3958794 158.49 Non-Inhibitor 

CHEMBL4571886 33730 Non-Inhibitor 

CHEMBL4448385 10000 Non-Inhibitor 

CHEMBL325676 270 Non-Inhibitor 

CHEMBL3356524 32 Inhibitor 

CHEMBL3356930 1170 Non-Inhibitor 

CHEMBL3356932 6290 Non-Inhibitor 

CHEMBL3356935 658 Non-Inhibitor 

CHEMBL343448 11 Inhibitor 

CHEMBL3098695 125 Non-Inhibitor 

CHEMBL3356922 5 Inhibitor 

CHEMBL1089495 374 Non-Inhibitor 

CHEMBL3098697 6830 Non-Inhibitor 

CHEMBL3353927 7 Inhibitor 

CHEMBL3356924 2 Inhibitor 

CHEMBL146250 3.9 Inhibitor 

CHEMBL3353053 41000 Non-Inhibitor 

CHEMBL4749146 10000 Non-Inhibitor 
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CHEMBL4514330 2670 Non-Inhibitor 

CHEMBL2170166 1995.26 Non-Inhibitor 

CHEMBL164868 40 Inhibitor 

CHEMBL3098603 503 Non-Inhibitor 

CHEMBL3098696 4890 Non-Inhibitor 

CHEMBL4475116 320 Non-Inhibitor 

CHEMBL4749655 2.5 Inhibitor 

CHEMBL2425954 5140 Non-Inhibitor 

CHEMBL3098602 11 Inhibitor 

CHEMBL3356916 1 Inhibitor 

CHEMBL3356937 81 Non-Inhibitor 

CHEMBL3356938 2930 Non-Inhibitor 

CHEMBL98 64 Non-Inhibitor 

CHEMBL3098688 210 Non-Inhibitor 

CHEMBL4636189 200000 Non-Inhibitor 

CHEMBL178456 10650 Non-Inhibitor 

CHEMBL4209463 100000 Non-Inhibitor 

CHEMBL4784006 1000 Non-Inhibitor 

CHEMBL3670674 294 Non-Inhibitor 

CHEMBL2408778 51 Non-Inhibitor 

CHEMBL98 432 Non-Inhibitor 

CHEMBL98 686 Non-Inhibitor 

CHEMBL3356915 11 Inhibitor 

CHEMBL3356925 5 Inhibitor 

CHEMBL4443548 9996 Non-Inhibitor 

CHEMBL2012815 150 Non-Inhibitor 

CHEMBL2179618 7570 Non-Inhibitor 

CHEMBL4303643 15000 Non-Inhibitor 

CHEMBL2170177 13000 Non-Inhibitor 

CHEMBL98 460 Non-Inhibitor 

CHEMBL3335298 136 Non-Inhibitor 

CHEMBL3335299 25 Inhibitor 

CHEMBL3233755 886 Non-Inhibitor 

CHEMBL3356920 40 Inhibitor 

CHEMBL99 61 Non-Inhibitor 

CHEMBL3622730 1930 Non-Inhibitor 

CHEMBL3338418 100000 Non-Inhibitor 

CHEMBL99 1.61 Inhibitor 

CHEMBL27759 1000 Non-Inhibitor 

CHEMBL99 71 Non-Inhibitor 

CHEMBL98 27 Inhibitor 

CHEMBL1851943 82 Non-Inhibitor 

CHEMBL2018302 3710 Non-Inhibitor 

CHEMBL4445881 125.89 Non-Inhibitor 

CHEMBL4531802 1000 Non-Inhibitor 

CHEMBL4470067 15.85 Inhibitor 



179 | P a g e  

 

CHEMBL4445312 13000 Non-Inhibitor 

CHEMBL343448 0.9 Inhibitor 

CHEMBL3329622 0.5 Inhibitor 

CHEMBL3593247 0.5 Inhibitor 

CHEMBL1370863 200000 Non-Inhibitor 

CHEMBL4642821 10000 Non-Inhibitor 

CHEMBL4283683 10000 Non-Inhibitor 

CHEMBL4460552 1.98 Inhibitor 

CHEMBL4563988 1600 Non-Inhibitor 

CHEMBL4280893 39500 Non-Inhibitor 

CHEMBL4763995 10000 Non-Inhibitor 

CHEMBL3338404 71100 Non-Inhibitor 

CHEMBL2431906 50000 Non-Inhibitor 

CHEMBL4060201 19 Inhibitor 

CHEMBL4450128 9400 Non-Inhibitor 

CHEMBL4781177 13.24 Inhibitor 

CHEMBL3356527 9 Inhibitor 

CHEMBL3356934 2990 Non-Inhibitor 

CHEMBL3758457 42 Non-Inhibitor 

CHEMBL3353925 11 Inhibitor 

CHEMBL3098691 113 Non-Inhibitor 

CHEMBL4126661 10000 Non-Inhibitor 

CHEMBL2103863 52 Non-Inhibitor 

CHEMBL4069287 13000 Non-Inhibitor 

CHEMBL4095667 1256 Non-Inhibitor 

CHEMBL4103801 33000 Non-Inhibitor 

CHEMBL4165684 1870 Non-Inhibitor 

CHEMBL4759256 420 Non-Inhibitor 

CHEMBL2364628 1584.89 Non-Inhibitor 

CHEMBL2179618 501.19 Non-Inhibitor 

CHEMBL4475240 2511.89 Non-Inhibitor 

CHEMBL2170166 3981.07 Non-Inhibitor 

CHEMBL4562244 1995.26 Non-Inhibitor 

CHEMBL4444176 268 Non-Inhibitor 

CHEMBL98 70 Non-Inhibitor 

CHEMBL3318732 85000 Non-Inhibitor 

CHEMBL561209 91000 Non-Inhibitor 

CHEMBL594544 42.6 Non-Inhibitor 

CHEMBL4281014 2910 Non-Inhibitor 

CHEMBL3426804 1800 Non-Inhibitor 

CHEMBL3622731 751 Non-Inhibitor 

CHEMBL3622729 37.4 Inhibitor 

CHEMBL2417781 70 Non-Inhibitor 

CHEMBL2364628 10000 Non-Inhibitor 

CHEMBL99 37.9 Inhibitor 

CHEMBL4785064 1.7 Inhibitor 
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CHEMBL4744689 2.3 Inhibitor 

CHEMBL3310505 1 Inhibitor 

CHEMBL3235118 3220 Non-Inhibitor 

CHEMBL98 91.8 Non-Inhibitor 

CHEMBL4082995 51.6 Non-Inhibitor 

CHEMBL3605506 100000 Non-Inhibitor 

CHEMBL4514808 923 Non-Inhibitor 

CHEMBL3622533 4.1 Inhibitor 

CHEMBL4087968 78 Non-Inhibitor 

CHEMBL4531802 630.96 Non-Inhibitor 

CHEMBL4562244 501.19 Non-Inhibitor 

CHEMBL4466930 79.43 Non-Inhibitor 

CHEMBL4531108 5900 Non-Inhibitor 

CHEMBL4471619 30000 Non-Inhibitor 

CHEMBL4579366 30000 Non-Inhibitor 

CHEMBL4744479 8000 Non-Inhibitor 

CHEMBL4450285 114 Non-Inhibitor 

CHEMBL3235790 63900 Non-Inhibitor 

CHEMBL483254 2.1 Inhibitor 

CHEMBL98 150 Non-Inhibitor 
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ABSTRACT: Integration of omics data and deciphering the mechanism of a biological regulatory network
could be a promising approach to reveal the molecular mechanism involved in the progression of complex
diseases, including Alzheimer’s and Parkinson’s. Despite having an overlapping mechanism in the etiology
of Alzheimer’s disease (AD) and Parkinson’s disease (PD), the exact mechanism and signaling molecules
behind them are still unknown. Further, the acetylation mechanism and histone deacetylase (HDAC)
enzymes provide a positive direction toward studying the shared phenomenon between AD and PD
pathogenesis. For instance, increased expression of HDACs causes a decrease in protein acetylation status,
resulting in decreased cognitive and memory function. Herein, we employed an integrative approach to
analyze the transcriptomics data that established a potential relationship between AD and PD. Data
preprocessing and analysis of four publicly available microarray datasets revealed 10 HUB proteins, namely,
CDC42, CD44, FGFR1, MYO5A, NUMA1, TUBB4B, ARHGEF9, USP5, INPP5D, and NUP93, that may
be involved in the shared mechanism of AD and PD pathogenesis. Further, we identified the relationship
between the HUB proteins and transcription factors that could be involved in the overlapping mechanism
of AD and PD. CREB1 and HINFP were the crucial regulatory transcription factors that were involved in the AD and PD crosstalk.
Further, lysine acetylation sites and HDAC enzyme prediction revealed the involvement of 15 and 27 potential lysine residues of
CREB1 and HINFP, respectively. Our results highlighted the importance of HDAC1(K292) and HDAC6(K330) association with
CREB1 and HINFP, respectively, in the AD and PD crosstalk. However, different datasets with a large number of samples and wet
lab experimentation are required to validate and pinpoint the exact role of CREB1 and HINFP in the AD and PD crosstalk. It is also
possible that the different datasets may or may not affect the results due to analysis parameters. In conclusion, our study potentially
highlighted the crucial proteins, transcription factors, biological pathways, lysine residues, and HDAC enzymes shared between AD
and PD at the molecular level. The findings can be used to study molecular studies to identify the possible relationship in the AD−
PD crosstalk.

1. INTRODUCTION
Neurodegenerative diseases (NDDs) such as Alzheimer’s
disease (AD) and Parkinson’s disease (PD) are forms of
dementia characterized by the progressive loss of neuronal cells
due to the accumulation of toxic protein aggregates. Further,
excessive neuronal cell death due to protein aggregates causes
synaptic dysfunction, memory impairment, and cognitive
defects.1 AD is the most prevalent form of dementia best
characterized by the presence of amyloid plaques and neuro-
fibrillary tangles produced by unsystematic proteolytic process-
ing of amyloid peptide-protein and hyperphosphorylation of the
tau protein.2 For example, Kollmer et al., 2019, demonstrated
that β-amyloid (Aβ) fibrils from meningeal Alzheimer’s brain
tissue are polymorphic but consist of similarly structured
protofibrils.3 Similarly, Bu et al., 2017, concluded that blood-
derived Aβ protein induces AD pathologies that result in the
functional impairment of neurons.4 In contrast, PD, which is the
secondmost commonNDDs, is characterized by the progressive
loss of dopaminergic neurons in the substantia nigra pars
compacta. The pathological feature of PD is the accumulation of
the toxic α-synuclein5 protein and the formation of Lewy bodies,
which cause neuronal cell death and ultimately lead to synaptic

dysfunction and memory loss.6,7 Mounting evidence suggests
the common overlapping molecular phenomenon in the
pathology of AD and PD. However, the exact molecular
pathways and signaling molecules being involved are poorly
understood.Moreover, the active treatment of AD and PD is still
unknown due to a lack of understanding of the molecular
mechanism of disease progression. Accumulating evidence
suggests that protein acetylation and deacetylation play a
significant role in the pathogenesis of AD and PD.8−10 For
instance, Choi et al., 2019, demonstrated that acetylation of tau
facilitated the recruitment of Hsp40, Hsp70, and Hsp110, which
causes tau association with E3 ligases and results in its
degradation through a proteasomal pathway.11 Similarly,
Wang et al., 2020, concluded that AMPK reduces tau acetylation
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and rescues memory impairment by activating sirtuin 1 in APP/
PS1 mice.12 Further, Fan et al., 2020, concluded that PGC-1α

translocation due to its acetylation promotes neuroprotection
from oxidative damage in a PD experimental model.13

Figure 1. Methodology of the study: workflow and steps that were considered along with the datasets collected and processed to identify shared
molecular signatures between AD and PD. The figure also highlights the involvement of the acetylationmechanism andHDAC enzymes in the AD and
PD crosstalk.
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In the pathogenesis of NDDs such as AD and PD, HDACs/
HATs are involved in the regulation of biological processes such
as apoptosis and autophagy, cell-cycle arrest, inflammatory and
immune response, oxidative stress, and mitochondrial dysfunc-
tion, which cause neuronal cell death and lead to memory
impairment and cognitive defects.14−18 Different experimental
studies have confirmed the role of HDAC and its inhibitors in
the pathogenesis of AD and PD. For instance, the over-
expression of HDAC3 in the hippocampus increases spatial
memory deficits and amyloid plaque load, whereas HDAC2
dysregulation in the nucleus basalis of Meynert was observed
during the progression of AD.19,20 Similarly, the inhibition of
HDAC through valproic acid increases histone acetylation levels
and decreases the expression of proinflammatory biomarkers in
the LRRK2R1441Gmicemodel of PD.21 Further, the inhibition
of HDAC4/5 with the administration of LMK235 protects
dopaminergic neurons against 1-methyl-4-phenylpyridinium
(MPP+) and α-synuclein-induced neuronal cell death.22 Apart
from HDAC and its inhibitors, acetylated lysine residues of
histone and non-histone substrates also play a crucial role in AD
and PD pathogenesis. For example, Yakhine-Diop et al., 2018,
demonstrated the acetylation of H4 at K5, K8, and K12 and its
increased expression in IPD cells in PD pathogenesis. The
authors also confirmed the acetylation of α-tubulin at K40 and
the role of PCAF/p300 in α-tubulin acetylation.15 Similarly,
Pilkington et al., 2020, concluded that the acetylation of Aβ at
K16 and K28 promotes the extent of aggregation and inhibits
fibril formation and oligomerization. However, the authors
concluded that the acetylation of Aβ at K16 is preferred over the
acetylation at K28.23 A recent study demonstrated the crucial
role of lysine residues in the PTM crosstalk, namely, acetylation,
ubiquitination, and SUMOylation in AD and PD pathogenesis.
The authors concluded that the inhibition of PARP1 acetylation
(K249, K331, K337, K528, K600, K637, K700, and K796) and
the simultaneous activation of ubiquitination and SUMOylation
at identical lysine residues rescue neuronal cell death.24 Further,
lysine residues are also crucial for subcellular localization of
proteins, where the loss of K304 resulted in CREB nuclear
localization and modification of HDAC1 at K444 and K476,
resulting in increased biological activity.25,26 In addition, Kirsh
et al., 2002, demonstrated that SUMOylation of HDAC4 at
K559 takes place at a nuclear pore complex RanBP2 and is
coupled to its nuclear import.27 Thus, the identification of
crucial lysine acetylating/deacetylating residues in novel
pathological biomarkers provide considerable significance in
unraveling a novel therapeutic approach for the treatment of AD
and PD. Extensive research is ongoing on proteomics,
transcriptomics, and epigenetic-based approaches to determine
the molecular signatures and pathways involved in disease

progression using a network biology approach based on
microarray datasets. This will enable us to understand the
molecular basis of the disease and the exact mechanism of
disease progression.
Further, the acetylation and deacetylation of transcription

factors (TFs) play a vital role in regulating cellular andmolecular
processes, which activate different neuronal signal transduction
pathways such as PI3K/Akt and MAPK pathways, cAMP/PKA
pathways, and Ca2+/CaMK cascade. For instance, Fusco et al.,
2016, concluded that the acetylation of CREB1 at K122
increases Hes-1 expression under low glucose concentrations,
facilitating neurogenesis by removing sirtuin 1 on the Hes-1
promoter region.28 Similarly, Paz et al., 2014, demonstrated that
the acetylation of CREB at K136 facilitated its interaction with
the CBP bromodomain that augmented the recruitment of this
coactivator to the promoter.29 Thus, these pieces of evidence
concluded the importance of acetylation of TFs in gene
regulation.
Herein, we aim to investigate the potential conventional

biomarkers and regulatory TFs involved in the pathogenesis of
AD and PD simultaneously with the help of microarray datasets
and the network biology approach. The identified proteomic
and transcriptomic signatures were further analyzed to
investigate the potential lysine residue for acetylation and
deacetylation activity, along with the determination of the type
of HDAC enzyme being involved in the disease progression.
Lastly, the study focuses on investigating conserved amino acid
residues involved in the lysine acetylation/deacetylation process
along with the structural selectivity of molecular signatures,
which could be crucial for protein acetylation or deacetylation
activity.

2. RESULTS AND DISCUSSION

2.1. Transcriptomic Signatures of AD and PD. The
obtained datasets were normalized through quantile normal-
ization and log2 transformation. Statistically, in microarray data,
the intensity values are relative numbers, and thus log2
transformation is necessary to make variations similar across
the order of magnitude. Boxplots of data before normalization
and after normalization were created to check the background
corrections in the datasets (Supplementary Figure 1). Further,
independent histograms of normalized data with a color
intensity such as green for control and red for the disease were
prepared to check the variation in the required datasets
(Supplementary Figure 2B). Our results identified 4736
(GSE7621), 2961 (GSE19587), 1989 (GSE1297), and 3634
(GSE28146) differentially expressed genes (DEGs) (Figure 1)
(Table 1). Independent volcano plots of different datasets were
used to measure the extent of DEGs in AD and PD

Table 1. Datasets Obtained from the GEO Database for AD and PD

GEO accession
number platform sample source

total
samples

control
samples

disease
samples

total
DEGs

upregulated
DEGs

downregulated
DEGs

Alzheimer’s Disease
GSE1297 Affymetrix Human Genome U133A

Array
hippocampal
region

31 9 22 1989 949 1040

GSE28146 Affymetrix Human Genome U133
Plus 2.0 Array

hippocampal
region

30 8 22 3634 1718 1916

Parkinson’s Disease
GSE7621 Affymetrix Human Genome U133

Plus 2.0 Array
Substantia nigra 25 9 16 4736 2508 2228

GSE19587 Affymetrix Human Genome U133A
2.0 Array

Substantia nigra 22 10 12 2961 1457 1504
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Figure 2. It represents the protein−protein interaction network of the top 15 ranked or HUB genes involved in Alzheimer’s disease, Parkinson’s
disease, Alzheimer’s disease−Parkinson’s disease union merged network, and Alzheimer’s disease−Parkinson’s disease intersection merged network.
Further, the top 15 proteins of the individual network were mapped against the clusters of AD, PD, AD−PD intersection, and AD−PD union network
to extract HUB proteins.
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(Supplementary Figure 2A). After identifying DEGs, the probe
IDs were converted into respective gene symbols, and then Venn
analysis of DEGs was performed. Venn analysis results
demonstrated 579 DEGs in AD while 406 DEGs in PD.
2.2. PPI Interaction Analysis. PPI interaction analysis

confirmed the presence of 492 proteins with 2335 physical
interactions and 311 proteins and 1014 physical interactions in
the AD and PD network, respectively. The clustering coefficients
of AD and PD networks were found to be 0.244 and 0.248,
respectively, which implies a higher coexpression of DEGs in AD
networking than in PD networking. Further, the characteristic
path lengths of AD and PD networks were 3.504 and 3.390,
respectively. Herein, the network centralization was found to be
0.107 and 0.200, whereas the network heterogeneity was found
to be 1.028 and 1.057 for AD and PDPPI networks, respectively.
The analysis found that the network densities of AD and PD
networks are 0.019 and 0.021, respectively, which indicates that
a particular node in the PD PPI network has more participants
compared to the AD PPI network (Figure 2).
Further, network biology using PPI networking becomes an

important tool to establish a relationship between two proteins
and identify the interactive pattern of proteomics data.30 In
addition, PPI networking provides an in-depth understanding of
the biological characteristics of proteins encoded through DEGs
and helps in estimating their biological significance.31,32 The PPI
network is characterized by the presence of nodes and edges
along with other topological features, namely, clustering
coefficient, characteristic path length, network density, and
network centralization.33 The protein in the networks were
represented as nodes marked in a circle, while their biological
association with other proteins were represented as edges
marked as lines.34 The clustering of the network determines the
extent to which genes in the network coexpressed in biological
conditions based on distance calculation. Thus, the higher the
clustering coefficient, the lower the probability of proteins
coexpressing in the biological network.35 The characteristic path
length denotes the best possible configuration of the biological
network.36 Network homogeneity refers to a nonuniformity in
character,37,38 while network centralization or centrality
identifies the network’s essential vertices or proteins.39,40

Another essential feature of biological networks is network
density, which measures the average number of connections of a
particular protein or node divided by the total number of
participant proteins in the network.41 Statistically, the

topological coefficient is a relative measure for the extent to
which a particular protein in the given network shares neighbors
with other proteins. The proteins that have one or no neighbors
are assigned a topological coefficient of zero.42 The topological
analysis of the PPI network provides a way to identify HUB
proteins, which pass signaling stimulus to other proteins or
nodes in the network. Subsequently, HUB proteins were
identified based on topological features of the PPT network,
especially node degree (number of proteins interacting with
single protein), which may serve as potential biomarkers in AD
and PD therapeutics.

2.3. Network Clustering and Proteomic Signatures of
AD and PD. The merging of two PPI networks was done in two
steps. In the first step, the PPI networks of AD and PD were
combined by a union to ensure complete coverage of relevant
proteins involved in the study, followed by extraction of
common proteins (nodes) of the individual PPI network. The
AD−PD union PPI network consists of 784 proteins and 3344
physical/functional interactions, while the AD−PD intersection
biological network consists of 19 proteins and five physical/
functional interactions (Figure 2). The top 15 highly connected
proteins of individual AD, PD, AD−PD (union), and AD−PD
(intersection) PPI networks were extracted. The HUB proteins
were marked according to their presence in the respective PPI
cluster. CDC42, CD44, FGFR1, MYO5A, NUMA1, TUBB4B,
ARHGEF9, USP5, INPP5D, and NUP93 were found to be the
most prominent proteins found in clusters of AD, PD, and AD−
PD (union) PPI networks. Table 2 describes the role of HUB
proteins in the pathogenesis of AD and PD (Supplementary
Table 1). Here, our network analysis study demonstrates the
involvement of CDC42, CD44, FGFR1, MYO5A, NUMA1,
TUBB4B, ARHGEF9, USP5, INPP5D, and NUP93 in the onset
and progression of AD and PD. Studies demonstrated that these
proteins were associated with different biological processes. For
instance, the activation of FAK/Rac1/CDC42-GTPase signal-
ing rescued the impaired microglial migration response to Aβ42
in triggering the receptor expressed on myeloid cells 2 loss-of-
function.43 Similarly, the inhibition of FGFR1 effectively
blocked the GLP-promoted NPC proliferation in the mouse
model of AD.44 However, the exact role of FGFR1 and CDC42
in the AD and PD crosstalk is still missing. In addition, Lim et al.,
2018, concluded that CD44 activates tau pathology, whereas
Neal et al., 2018, concluded that GPNMB attenuates astrocyte
inflammatory response through the CD44 receptor.45,46

Table 2. Role of HUB Genes in the Pathogenesis of Alzheimer’s Disease and Parkinson’s Disease Identified with the Help of
MalaCards

HUB genes description involvement in Alzheimer’s disease involvement in Parkinson’s disease

CDC42 Cell Division Cycle 42 establishes neuron polarity, regulates cell morphology and
mortality, and regulates cell cycle

inhibits the activating features of microglia

TUBB4B Tubulin β 4B regulates inflammatory response serves as a target for PD-associated toxins
CD44 CD44 Molecule (Indian Blood

Group)
interacts with mutant p53 activity causes α-synuclein-induced migration of BV-2

microglial cells
FGFR1 Fibroblast Growth Factor

Receptor 1
involved in axonal projection and inhibits apoptosis elevates DA levels and protects the specific

midbrain neurons
MYO5A Myosin VA (Heavy-Chain, Myoxin) induces cell motility mutant MYO5A exhibits alterations in dopamine

metabolism
NUMA1 NuclearMitotic Apparatus Protein 1 identifies transported MSC in the brain helps in mitotic spindle formation
ARHGEF9 CDC42 Guanine Nucleotide

Exchange Factor (GEF) 9
plays a role in integrin signaling and axon guidance signaling encodes synaptic proteins, and loss of function

results in intellectual disability
USP5 Ubiquitin-Specific Peptidase 5 compromises tau levels deletion causes increased p53 activity
INPP5D Inositol Polyphosphate-5-

Phosphatase, 145 kDa
modulates inflammatory response involved in immune response

NUP93 Nucleoporin 93 kDa promotes nuclear accumulation of mRNA inhibits mRNA transport
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Further, loss of MYO5A resulted in structural and functional
alterations in the rat brain through alterations in dopamine

metabolism, whereas TUBB4B may be a part of the signaling
cascade involved in the etiology of PD and is related to an

Figure 3.Represents the bar graph of the top 10 biological processes, molecular functions, and biological pathways of HUB proteins along with their p-
value and involved HUB proteins. The axis of the bar represents the p-value. The figures also represent the critical cellular components in which HUB
proteins lie with their corresponding p-value. Terms with a P-value ≤ 0.05 were considered significant.
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inflammatory response.47,48 ARHGEF9 encodes collybistin
involved in the postsynaptic clustering of glycine and inhibitor
γ-aminobutyric acid receptors.49 Further, Griffin et al., 2020,
concluded the upregulation of ARHGEF9 during astroglia
response to Aβ oligomers.50 USP5, a stress granule protein,
increases TNFα expression through the ubiquitin-proteasome
pathway and regulates inflammatory response through
Smurf1.51 Recently, Tsai et al., 2021, demonstrated that
INPP5D was positively associated with amyloid plaque density
in the human brain.52 Thus, these pieces of evidence concluded
that the abovementioned HUB proteins are associated with
neurological diseases in some manner through the regulation of
different biological phenomena, yet their relationship in the AD
and PD crosstalk is still missing. Further, HUB proteins, namely,
NUMA1 and NUP93, lack the potential involvement in the
pathogenesis of either AD and PD.
2.4. Gene-Set Enrichment Analysis and Pathway

Analysis. To identify the complicated relationship between
the highly dense connected components of PPI networks (AD,
PD, AD−PD union, and AD−PD intersection), pathway
analysis and GO analysis were performed. Moreover, we
extracted the top 10 biological pathways, cellular components,
and molecular functions of highly interconnected proteins
involved in neurodegeneration, as demonstrated in Figure 3.
Moreover, after GO analysis, the extracted highly intercon-
nected proteins were subjected to pathway analysis, which
enables the identification of the molecular pathway, followed by
the interconnected proteins in the progression of AD and PD.
Figure 3 demonstrates the top 10 biological pathways in which
these proteins were involved. Gap junction (TUBB4B), GnRH
signaling pathway (CDC42), and Rap1 signaling pathway
(CDC42 and FGFR1) were critical pathways in which HUB
proteins were involved and may be potential biological pathway
targets for the AD and PD crosstalk. For instance, Esteves et al.,
2017, demonstrated that nicotine effectively prevented
prefrontal long-term potentiation and memory deficits induced
by streptozotocin in AD,53 whereas Carvajal-Oliveros et al.,
2021, demonstrated that nicotine suppresses the PD-like
phenotype induced by synphilin-1 overexpression through

increased dopamine levels.54 Similarly, a study concluded that
the balance between dopamine and adenosine signals regulates
the PKA/Rap1 pathway in spiny neurons, where D1R and A2AR
agonist enhanced PKA-mediated Rap1 phosphorylation in vivo
and in vitro.55 Further, studies demonstrated that impaired
GnRH production is directly linked to oxidative stress and
mitochondrial dysfunction in neurons.56,57 Another significantly
enriched pathway is the gap junction that is involved in the
pathogenesis of AD and PD.58,59 For instance, Angeli et al.,
2020, demonstrated the altered expression of glial gap junction
proteins, namely, Cx43, Cx30, and Cx47, in the 5XFAD model
of AD,60 whereas Maulik et al., 2020, concluded that Aβ
regulates the gap junction protein connexin 43 in cultured
primary astrocytes.61 Consistent with this, the results demon-
strated the importance of CDC42, TUBB4B, and FGFR1 in the
pathogenesis of AD and PD. Further, these three HUB proteins
were a potential target for identifying the relationship between
AD and PD.

2.5. CREB1 and HINFP: Essential RegulatoryMolecules
in AD and PDCrosstalk with High AcetylationMarks.The
functions of a particular protein depend on its subcellular
location. Mounting evidence demonstrated that acetylation was
highly observed on nuclear proteins involved in chromatin
regulation and transcription. This observation is consistent with
the known nuclear function of acetyltransferase, deacetylase, and
acetylated lysine-binding bromodomain proteins.62 For in-
stance, a study demonstrated that in response to oxidative
stress, TyrRS becomes highly acetylated, which causes its
nuclear translocation, where sirtuin 1 and PCAF/p300 regulate
its nuclear translocation in an acetylation-dependent manner.63

Further, Zhao et al., demonstrated that silica nanoparticle-
mediated sirtuin 1 suppression markedly increased p53
acetylation and cytoplasmic localization.64

Herein, we analyzed the cellular location of HUB proteins
with CELLO version 2.5: subCELlular LOcalization predictor.
Among the 10 HUB proteins extracted, 40% were cytoplasmic
proteins, 50% were nuclear proteins, and 10% were extracellular
proteins. CD44 (1.974), FGFR1 (2.078), INPP5D (3.954),
MYO5A (3.300), and NUMA1 (1.858) were predicted as

Table 3. Biological Significance of Top Interacting Transcription Factors in the Progression of Alzheimer’s Disease and
Parkinson’s Disease, along with Their Degree of Node and Interacting Partners
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Figure 4. (A) PPI network of HUB genes with associated regulatory transcription factors. Among the transcription factors, FOXC1 (8) has the highest
number of interacting proteins, followed by GATA2 (5), CREB1 (4), FOXL1 (3), NFIC (3), HINFP (3), and SREBF1 (3). The total number of
proteins and physical/functional interaction in HUB proteins and transcription factors in protein−protein interaction networks are 52 and 73. (B)
Acetylation signatures of non-histone protein substrates, such as HUB genes and transcription factors. CREB1 and HINFP are the most prominent
acetylated transcription factors, whereas CDC42, CD44, and TUBB4B are the most crucial non-histone protein acetylating substrates.
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nuclear proteins, while CDC42 (2.037) was predicted as an
extracellular protein. Similarly, ARHGEF (2.770), NUP93
(2.534), TUBB4B (3.682), and USP5 (2.207) were predicted
as cytoplasmic proteins. Studies demonstrated that acetylation
activates STAT3 through the nuclear translocation of CD44,
whereas the acetylation of histone proteins controls FGFR1
polymorphisms and isoform splicing.65,66 In addition, lysine
acetylation of SCF FBXL19 ubiquitin E3 ligase increases its
activity and stabilization that targets CDC42 for its ubiquitina-
tion and degradation.67

Further, we identified HUB protein−TF interaction and
detected central regulatory molecules using topological features.
Thus, we extracted seven regulatory TFs, namely, FOXC1 (8),
GATA2 (5), CREB1 (4), FOXL1 (3), NFIC (3), HINFP (3),
and SREBF1 (3). Subsequently, the cross-validation of TFs in
the pathogenesis of AD and PD was identified with the help of
MalaCards, as demonstrated in Table 3. TFs are transcriptional
regulators that are involved in the pathogenesis of AD and
PD.68−71 In this study, we also studied the potential relationship
between TFs and HUB proteins to identify mutual transcrip-
tional regulators of the identified HUB proteins. The identified
TFs are FOXC1, GATA2, CREB1, FOXL1, NFIC, HINFP, and
SREBF1 as a regulator of HUB proteins commonly expressed in
AD and PD pathogenesis (Figure 4A). For instance, Xu et al.,
2019, concluded that the deletion of CREB1 diminishes the
effect of DJ1 on TH regulation through the deregulation of the
CaMKKβ/CaMIV/CREB1 pathway.72 Similarly, the deletion of
CREB1 promotes proinflammatory changes in the mouse
hippocampus.73 Moreover, He et al. concluded that the
deacetylation of EZH2 through SIRT6 causes an increased
association between EZH2 and FOXC1 that exerts anti-
inflammatory response, whereas Emelyanov et al., 2018,
concluded the positive correlation between dopamine and
GATA2 expression in PD.74,75 FOXL1 is implemented in the
pathogenesis of NDDs, while NFIC was identified as novel loci
in AD.76−78 Studies demonstrated that HINFP is a coactivator in
the sterol-regulated transcription of PCSK9, a target gene of
SREBP2 involved in the tau alterations, which contribute to
disturbed cholesterol homeostasis in AD.79,80 Lastly, genetic
mutation analysis concluded that genetic polymorphism
rs11868035 was associated with susceptibility to PD in the
Chinese population.81,82 Thus, the evidence mentioned above
proves the potential link of identified TFs in the progression and
pathogenesis of AD and PD and acts as a specific biomarker for
their therapeutics. However, their potential role in the AD and
PD crosstalk is still missing.
Moreover, HUB genes and TFs were analyzed for their

acetylation signature to understand the involvement of
acetylation and deacetylation processes associated with HUB
genes and TFs in the pathogenesis of AD and PD. Herein,
CDC42 (10), CD44 (11), FGFR1 (11), MYO5A (13),
NUMA1 (14), ARHGEF9 (11), USP5 (14), and NUP93 (15)
were predicted as the most non-histone acetylating substrates
amongHUB proteins, while CREB1 (16) andHINFP (10) were
predicted as non-histone acetylating substrates among TFs
(Figure 4B) (Supplementary Figure 3). Lately, to study the
epigenetic regulation of HUB proteins and TFs, we investigated
histone modification sites found in the coding region of HUB
proteins and TFs implicated with NDDs and identified a range
of sites.83,84 Thus, this raises the possibility that PTMs, namely,
acetylation, deacetylation, ubiquitination, SUMOylation, meth-
ylation, and others, are the primary means of alteration in these
proteins that need further investigation. Further, histone

acetylation signatures are primarily related to the markers of
activity at regulatory elements, namely, promoters and
enhancers.85 Moreover, understanding the specific role of
histone acetylation at different genomic elements has the
potential to improve disease therapeutics by increasing the
target specificity.86 In addition, histone signatures enable us to
understand the biological phenomenon, namely, chromosome
packaging, transcriptional activation, and DNA packaging.
Further, studies demonstrated the correlation between histone
acetylation levels and gene expression in vivo and in vitro studies.
For instance, curcumin, a CREBHAT activity inhibitor, causes a
reduction in acetylation levels of both histone H4 and H3,
whereas HDAC inhibitors, namely, butyric acid and valproic
acid, inhibit the H4 acetylation and CREB1 activity in vivo.87,88

Similarly, Guo et al., 2011, demonstrated that excessive alcohol
exposure decreases CREB-binding protein expression and
acetylation status of both H3 and H4 in the cerebellum of
ethanol-induced rats.89 Similarly, another study identified that
GATA1 displaces GATA2, which is associated with transcrip-
tional repression, and causes a reduction in the histone H3K4
acetylation status.90 In addition, Li and Liu et al. concluded that
HINFP forms a complex with NPAT that recruits the HAT
cofactor TRRAP to facilitate H4 acetylation at the PCSK9
promoter, whereas Gruber et al. concluded that the requirement
for the acetyltransferase activity of HAT1 for proliferation might
point to the HAT1-dependent acetylation of non-histone
substrates, for example, Hinfp, a factor also shown to bind H4
promoters.91,92 Forma et al., 2018, demonstrated that an
increased expression of FOXA1 and FOXC1 was associated
with increased acetylation levels of histone H3, whereas He et al.
concluded that increased FOXC1 protein levels in RAW246.7
cells were associated with altered levels of H3 acetylation.74,93

2.6. Potential Lysine Residues for Protein Acetylation.
The correlation between acetylation and HDAC enzymes has
been studied extensively in the past.94−96 For instance, MS-275,
a class I HDAC inhibitor, promotes rapid acetylation of the YB-1
RNA-binding protein at K81,97 whereas the HDAC1 complex is
able to regulate histone H3 acetylation at K18.98 Further, Topuz
et al., 2019, demonstrated that administration of the HDAC
inhibitor, namely, sodium butyrate, increases H2B acetylation at
K5 that leads to increased spatial learning and long-term
memory in the rat hippocampus.99 Similarly, Choi et al., 2017,
demonstrated that increased acetylation of peroxiredoxin 1 at
K197 through HDAC6 inhibition leads to the recovery of Aβ-
induced impaired axonal transport.100 In addition, the role of
SIRT1 in regulating pathogenic tau acetylation at K174 and in
suppressing the spread of tau pathology has been demonstrated
in a mouse model of tauopathy.101 Thus, based on the
abovementioned evidence, we identified acetylation sites and
HDAC enzymes of CREB1 and HINFP through two online
tools, namely, MuSite deep and PSKAcePred. For MuSite Deep,
statistically, a high confidence score relates to the high
probability of lysine acetylation at a particular lysine amino
acid. A score above 0.5 is considered as a high confidence score
and a high probability of lysine acetylation, whereas a score
below 0.2 is considered as a low confidence score where the
probability of lysine acetylation is negligible, and a score
between 0.2 and 0.5 is considered as the site with moderate
probability. Further, for PSKAcePred, a score above 0.7 is
considered a high confidence score and the probability of lysine
acetylation is very high, whereas a score between 0.5 and 0.7 is
considered a moderate confidence score and the probability of
lysine acetylation is relatively less as compared to acetylation at a
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high confidence score lysine site. The CREB1 peptide sequence
(P16220.2) has 15 potential acetylating lysine residues. The
respective acetylation-site prediction scores were determined
with the help of MuSite deep and PSKAcePred, as shown in
Supplementary Table 2. MuSite predicted K330 as an essential
lysine acetylation site with a high confidence score of 0.557.
Similarly, PSKAcePred predicted K94, K292, K303, K304, and
K309 as potential protein acetylation lysine residues with a high
confidence score of 0.872, 0.737, 0.856, 0.924, and 0.994,
respectively. From the protein acetylation-site prediction of
CREB1, it may be concluded that K304, K309, and K330 were
essential for acetylating lysine residues. The type of HDAC
enzymes involved in the deacetylation of CREB1 was predicted
and found that HDAC1, HDAC2, and SIRT7 were important in
CREB1 deacetylation, where HDAC1 was involved in K292
(3.35) deacetylation, HDAC2 involved in K330 (10.67), and
SIRT7 involved in K94 (13.26), K303 (12.54), and K304
(12.90) deacetylation. The results demonstrated that the
binding propensity of SIRT7 and HDAC2 is very low as
compared to the binding propensity of HDAC1. Thus, the
results show that K292 is a critical lysine residue for CREB1
acetylation and deacetylation processes with HDAC1 as its
deacetylating enzyme involved in the pathogenesis of AD and
PD. In addition, Hansen et al., 2019,62 demonstrated the
acetylation of CREB1 at K330 and K136, whereas Paz et al.,
2014, demonstrated that sirtuin 1 directly downregulates the
CREB transcriptional activity by binding and deacetylating
CREB at K136, thereby reducing CREB interaction with
CBP.102 Further, Lu et al., 2003, confirmed the acetylation of
CREB1 at K91, K94, and K136 within the activation domain
through CBP. However, they also concluded that a single
mutation of the putative CBP acetylation sites has no significant
effect on the transactivation potential of CREB.103 Thus, these
pieces of evidence suggest the possibility of CREB1 acetylation
and its binding with HDAC enzymes in the regulation of gene
transcription.
Moreover, HINFP (AAH17234.1) consists of 27 potential

acetylating lysine residues such as K6, K10, K31, K94, K96,
K164, K174, K181, K185, K197, K213, K236, K256, K285,
K294, K301, K330, K335, K346, K352, K366, K367, K371,
K382, K439, K446, and K504, as observed in Supplementary
Table 3. MuSite Deep predicted all 27 sites as potential
acetylating lysine residues with no residue of high confidence
score. However, five sites were predicted as potential acetylation
sites with a moderate score as follows: K6, 0.318; K213, 0.311;
K330, 0.420; K371, 0.354; and K382, 0.269. Thus, predicted
acetylation sites were essential for triggering protein acetylation
results in transcription initiation. Among the predicted
acetylating lysine residues, HDAC6 (K6 and K330), HDAC1
(K382), and SIRT1 (K371) were important deacetylating
residues involved in protein deacetylation, resulting in the
progression of AD and PD. However, the binding score of
HDAC6 (2.74 and 3.84) was predicted higher than HDAC1
(6.53) and SIRT1 (7.01). Similarly, PSKAcePred predicted 15
potential lysine acetylation sites, of which eight sites were
predicted as potential lysine acetylation sites with a high
confidence score: K31, 0.730; K96, 0.766; K174, 0.779; K330,
0.726; K335, 0.930; K367, 0.904; K371, 0.911; and K446, 0.719.
Further, the HDAC enzyme prediction tool predicted that
SIRT1 (K31, 6.51 and K371, 7.01), SIRT2 (K446, 0.95), SIRT7
(K174, 13.26), HDAC1 (K367, 4.23), and HDAC6 (K330, 3.84
and K335, 2.74) were crucial enzymes involved in the regulation
of HINFP deacetylating activity. A comparative analysis of both

the acetylation prediction tools and the type of deacetylating
enzyme reflected that K330 and K371 were crucial proteins
acetylating lysine residues with HDAC6 and SIRT1 as their
interacting partners. However, the confidence score of SIRT1 is
lower than that of HDAC6, while the confidence of K330 is
higher than that of K371. Thus, it will be concluded that K330
interacts with HDAC6 to carry out HINFP deacetylation in AD
and PD progression. Further, until now, no proteomic study has
investigated the implementation of acetylation sites and HDAC
binding residues in the activation domain of HINFP. However,
mounting evidence suggests that HAT1, an acetyltransferase
binding toHINFP promoters, has a specific stimulatory effect on
H4 gene transcription. In addition, the authors concluded that
HAT1 promotes the accumulation of newly synthesized H4
dimers without affecting the levels of histones embedded in the
nucleosome.92 Another study concluded that HINFP forms a
functional complex with NPAT that recruits the HAT cofactor
TRRAP to facilitate the histone 4 acetylation at the PCSK9
promoter.91 Thus, this in silico analysis could be a milestone in
providing an avenue for identifying crucial acetylation or
deacetylation patterns of CREB1 and HINFP to minimize AD
and PD progression (Table 4).

2.7. Glutamic Acid and Leucine Predominately
Conserved Residues at Protein Acetylation Sites. The
predicted protein acetylation sites were analyzed for the
conserved lysine residues, which could be crucial for lysine
selectivity and specificity for the acetylation process and binding
of deacetylating enzymes. CREB1 has 15 potential lysine
residues represented by 16220.2, while HINFP has 27 potential
lysine residues represented by AAH17234.1. The multiple
sequence alignment (MSA) analysis of predicted lysine residues
for acetylation revealed the conservation of negatively charged
glutamic acid (E) and neutrally charged leucine (L), methionine
(M), valine (V), and glutamine (Q) in close association with the
positively charged lysine residue, as shown in Figure 5A. These
conserved residues provided a suitable environment and
favorable conditions for associated potential lysine residues for
the acetylation process, thus imparting lysine selectivity and
specificity for the acetylation and deacetylation. However,
further investigations are required to determine the potential of
conserved residues in the acetylation and deacetylation
processes of CREB1 and HINFP. However, glutamic acid is
most prominent compared to other conserved amino acids as it
decreases the overall positive charge of lysine and imparts a
negative charge to the lysine site, which will promote acetylation

Table 4. List of Common Crucial Lysine Residues in CREB1
and HINFP

CREB1

lysine residue interactor

K94 SIRT7
K292 HDAC1
K303 SIRT7
K304 SIRT7

HINFP
K31 SIRT1
K174 SIRT7
K330 HDAC6
K335 HDAC6
K367 HDAC1
K371 SIRT1
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and deacetylation reactions. For instance, Nguyen et al., 2016,
concluded that glutamine triggers acetylation-dependent

degradation of glutamine synthetase, whereas Son et al., 2020,
demonstrated that leucine regulates autophagy through

Figure 5. (A)Multiple sequence analysis of potential acetylation/deacetylation lysine residues by taking 21 window sizes. 21 window size was taken by
lysine at the center with ten amino acids on both sides. (B) Proposed action of mechanism or the signaling transduction pathway in CREB1- and
HINFP-mediated neurodegeneration.
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acetylation of the mTORC1.104,105 Moreover, the role of
methionine involvement in lysine acetylation is not studied so
far in AD and PD, but yet at the same time demonstrated the
potential relationship between methionine and lysine acetyla-
tion in other neurological defects. For instance, Chiki et al.,
2021, concluded that the presence of oxidation of methionine at
position 8 and acetylation at K6 resulted in the dramatic
inhibition of Httex1 fibrilization.106 Thus, these studies correlate
with our results and suggest that glutamic acid (E), leucine (L),
methionine (M), valine (V), and glutamine (Q) could be critical
amino acid residues in acetylation and HDAC binding.
Further, structural information of CREB reveals that it

consists of 11 exons and three isoforms that are produced
through alternative splicing.107 Primary structure studies of
CREB identified the presence of four functional domains,
namely, Q1 basal transcriptional activity domain, kinase
inducible domain, a glutamine-rich region, and basic region/
leucine zipper domain.108 Thus, this relates to the importance of
glutamine in the structural activity of CREB1. Similarly,
structural information of HINFP confirms that the interaction
of HINFP produced TF with methyl-CpG-binding protein-2, a
component of the HDAC complex, and plays an important role
in transcription repression. Sekimata et al., 2004, demonstrated
that HINFP, through its DNA-binding activity, acts as a
sequence-specific (conserved CGGAC core) transcriptional
repressor,109 whereas Medina et al. concluded that the PSCR
motif is required for the activation of histone H4 gene
transcription and promotes its binding with DNA.110 Further,
the study revealed the presence of acetylated H4 histone in the
binding activity of HINFP to USF and GAL4-AH.111 In
addition, a study concluded that lysine residues control the
conformational dynamics of proteins.112 Thus, it is equally
important to identify the structural features of CREB1 and
HINFP that were involved in the acetylation mechanism. Thus,
the potential and possible acetylation lysine residues were
analyzed for their structural selectivity for lysine recognition
pattern and potential deacetylating enzyme attachment, as
discussed in Supplementary Table 4. The structural pattern of
the putative deacetylating enzyme attachment binding to
potential acetylation or deacetylation lysine residues revealed
the presence of α-helix, strand, and coil region in the CREB1 and
HINFP peptide. However, an in-depth analysis of the structural
configuration of CREB1 and HINFP revealed that the helix
region is predominant over the strand/coil region in the
acetylation of CREB1. A study byMaltsev et al., 2012, concluded
the involvement of the helical structure in the acetylation
process, where acetylation increases α-helicity of the first six
residues of α-synuclein.113 Similarly, the coil region is dominant
over the helix/strand region in the potential lysine acetylation of
HINFP. The results correlate with the study by Kulemzina et al.,
2016, which concluded that lysine acetylation promotes
interactions between Smc coiled coils that are required for
cohesion ring assembly.114 Further, the results were analyzed
precisely and revealed the involvement of structural selectivity in
the acetylation and deacetylation of CREB1 and HINFP. In
addition, the results also provide an avenue of helix and coil
regions in the acetylation of predicted lysine residues of CREB1
and HINFP, respectively (Figure 5B). However, due to limited
structural information of CREB1 and HINFP and the potential
effect of acetylation on CREB1 and HINFP structural changes,
these results need to be verified in vitro.

3. MATERIALS AND METHODS

3.1. Data Collection and Identification of Differentially
Expressed Genes (DEGs). The microarray gene expression
datasets for AD (GSE1297115 and GSE28146116) and PD
(GSE7621117 and GSE19587118) were obtained from the
NCBI-GEO database (https://www.ncbi.nlm.nih.gov/geo/
),119 irrespective of the population. The datasets were analyzed
in an R-environment for data normalization and data
preprocessing. Further, Limma was used to identify DEGs in
both AD and PD compared to controls. The p-value < 0.05 and
ILog 2FcI > 1.1 was regarded as cutoff criteria to screen for
significant DEGs. The significance for the selection of Log 2Fc is
that the expression is slightly more than twice for both
upregulated and downregulated genes. The BioMart data-
mining tool (https://m.ensembl.org/info/data/biomart/index.
html)120 was applied to convert probe symbols into gene
symbols. Lastly, Venn analysis was performed using the online
tool called Venny 2.1 (https://bioinfogp.cnb.csic.es/tools/
venny/)121 to identify common DEGs from the four datasets.

3.2. Protein−Protein Interaction Network Analysis
and Visualization. The interrelation between different DEGs
of AD and PD was obtained from STRING database version
11.0 (https://string-db.org/).122 The search criteria in the
STRING database are limited to a confidence score of 0.5. The
obtained networks were imported into Cytoscape software
version 3.8.0 (https://cytoscape.org/)123 for protein data
integration, PPI network visualization, and PPI network analysis.
Subsequently, node degree, number of edges, clustering
coefficient, network homogeneity, shortest path length, and
network density of AD and PD PPI networks were calculated.

3.3. PPI Network Clustering and Identification of HUB
Proteins. The AD and PD networks were merged using a
network merging tool of Cytoscape based on two methods,
namely, network union and network intersection. Afterward,
network clustering was performed through molecular complex
detection (MCODE) (http://apps.cytoscape.org/apps/
mcode)124 plugin of Cytoscape software. The clusters so
formed were analyzed and visualized on different parameters
such as the number of proteins (nodes) and physical interactions
between them (Edges), network clustering coefficient, charac-
teristics of path length, network centralization and homogeneity,
and network density. The clusters of all PPI networks were
statistically analyzed and ranked separately based on node
degree. Lastly, the HUB proteins were identified using
CytoHubba (http://apps.cytoscape.org/apps/cytohubba)125

through default parameters. Subsequently, the HUB proteins
were mapped from all PPI network clusters individually, which
include AD, PD, and AD−PD union PPI networks.

3.4. Functional Enrichment and Pathway Analysis of
HUB Proteins. HUB protein overrepresentation was per-
formed through the bioinformatics resource EnrichR (http://
amp.pharm.mssm.edu/Enrichr/)126 and QuickGO (https://
www.ebi.ac.uk/QuickGO/)127 to identify the molecular func-
tion, biological process, and cellular function. Further, pathway
analysis of HUB proteins was carried out using freely accessible
online databases and tools such as the REACTOME database
(https://reactome.org/)128 and FunRich version 3.1.3 (http://
funrich.org/).129 For statistical assessment of GO analysis and
pathway analysis, a p-value less than 0.05 was considered
significant, and a fold-enrichment value was considered. Here,
the p-value reflects the chance of observing “n” number of genes
in a gene list annotated to a specific term, whereas fold
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Figure 6. Literature validation of the involvement of HDAC interaction with CREB1 and HINFP. HDAC inhibitors cause a decrease in HDAC
activity, followed by the increased acetylation status of CREB1, andHINFP causes positive transcriptional regulation. Increased transcriptional activity
causes an increase in the transcription of memory-associated genes, and Bcl-2 expression leads to an increase in cognitive function and memory
function. The increased acetylation status of CREB1 and HINFP causes INPP5D and TUBB4B activation, which decreases neuronal cell death and
leads to neuroprotection.
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enrichment of a term was designated as overrepresented
compared to the background, where overrepresentation is
denoted as positive fold enrichment.
3.5. HUB Proteins−Transcription Factors (TFs) Inter-

action and Prediction of Protein Subcellular Local-
ization. The subcellular localization of HUB genes was
calculated to understand the mechanism of action of protein
and its associated functions using CELLO version 2.5:
subCELlular LOcalization predictor (http://cello.life.nctu.edu.
tw/).130 To identify the TFs that control the HUB proteins at a
transcriptional level, TF-target interactions were obtained from
JASPAR version 8 (http://jaspar.genereg.net/)131 and an
interaction network between TFs and HUB proteins was
created using NetworkAnalyst tool version 3.0 (https://www.
networkanalyst.ca/home.xhtml).132

3.6. Identification of Histone Lysine Signatures and
Prediction of Protein Deacetylating Enzymes. Based on
the previous experimental studies, it was evident that acetylation
signatures were associated with the pathogenesis of AD and PD
by altering gene expression patterns. Thus, we used the
Epigenomics Roadmap CHIP-seq dataset, which is an inbuilt
feature of EnrichR for their potential acetylation marks of HUB
proteins. Moreover, acetylation sites in CREB1 and HINFP
have been predicted through machine learning algorithm-based,
freely accessible online tools such as MuSite Deep (https://
www.musite.net/)133 and PSKAcePred (http://bioinfo.ncu.
edu.cn/inquiries_PSKAcePred.aspx).134 Lastly, the type of
deacetylating enzyme associated with CREB and HINFP was
predicted with the help of a freely accessible online web server
named Deep-PLA (http://deeppla.cancerbio.info/index.
html).135

3.7. Prediction of Conserved Lysine Residues and
Structural Features for HDAC’s Binding. The conserved
sequence was predicted using a multiple sequence alignment
(MSA) of 21 window size of lysine site residues that includes 10
residues on both the left and the right end and containing a
lysine acetylating site in the middle for both CREB1 and HINFP
using ClustalW MSA tool (https://www.genome.jp/tools-bin/
clustalw).136 Additionally, the structural selectivity of lysine
acetylating sites has been predicted with the help of PSIPRED:
protein structure prediction server (http://bioinf.cs.ucl.ac.uk/
psipred/).137 Subsequently, the secondary structure of the
protein has been correlated with their respective protein
acetylating sites.

4. CONCLUSIONS
In conclusion, the present study focuses on the crosstalk
between AD and PD at the molecular level. Through this study,
we identified the relationship between DEGs, HUB proteins,
TFs, acetylation, and HDAC enzymes in the shared patho-
genesis of AD and PD. Our findings highlighted the crucial role
of CDC42, TUBB4B, and FGFR1 in the AD and PD crosstalk
through Gap junction (TUBB4B), GnRH signaling pathway
(CDC42), and Rap1 signaling pathway (CDC42 and FGFR1).
In addition, the present study identified the potential TFs that
regulate the expression of HUB proteins at the transcriptional
level through biological network analysis. Our analysis identified
FOXC1, GATA2, CREB1, FOXL1, NFIC, HINFP, and
SREBF1 as potential TFs that regulate the activity of HUB
proteins shared between AD and PD. Our bioinformatic analysis
also revealed the effect of subcellular localization of HUB
proteins and TFs in the AD and PD crosstalk. Lately, the study
identified the 15 potential lysine residues and 27 potential lysine

residues in CREB1 andHINFP, respectively. The study revealed
that among 15 possible lysine residues of CREB1, only four
lysine residues, namely, K91, K94, K136, and K330, had been
studied in the past, while K123, K155, K285, K292, K303, K304,
K305, K309, K323, K333, and K339 have been reported first
time for their role in the acetylation process. Similarly, among
HINFP, all 27 lysine residues have been reported for the first
time. Further, the in silico analysis of CREB1 and HINFP
revealed the importance of HDAC1 for its deacetylation activity
at K292 of CREB1 and HDAC6 for its deacetylation activity at
K330 of HINFP. This will provide a way to study the role of
acetylation and HDAC enzymes in the transcriptional activity of
CREB1 and HINFP in the AD and PD crosstalk. Further, the
computational analysis identified the importance of negatively
charged glutamic acid (E) and neutrally charged leucine (L),
methionine (M), valine (V), and glutamine (Q) amino acid
residues in the acetylation mechanism of CREB1 and HINFP in
the AD and PD crosstalk. The study also highlighted the
importance of the helix region over the strand/coil region in the
acetylation of CREB1. Similarly, the coil region is dominant over
the helix/strand region in the potential lysine acetylation of
HINFP. Thus, this study highlighted the importance of two
prominent biological pathways for the progression of AD and
PD simultaneously, such as HDAC1-CREB1-TUBB4B/
CDC42/CD44 and HDAC6-HINFP-TUBB4B/CDC42/
CD44 (Figure 6). Further studies are required to generate the
potential treatments targeting the abovementioned biological
pathways to treat the adverse effects of AD and PD. Further, the
current study is associated with some sort of limitation as the
study uses only microarray data, which is not as comprehensive
as transcriptomics data analysis. Thus, there is a growing need to
simultaneously analyze the different types of AD and PD
datasets, namely, microarray data, epigenetic data, and RNA
data, to extract the novel biomarkers involved in disease
pathology. Further, there should be a greater number of control
as well as disease samples to conclude a general discussion. In
addition, samples from different tissues could be more beneficial
in understanding the molecular mechanism and role of HDAC
in AD and PD simultaneously. In the current study, using
Bioinformatics tools, we identified that CREB1 and HINFP are
putative targets in the pathogenesis of AD and PD
simultaneously; however, the different datasets with a large
number of samples and wet lab experimentation are absolutely
necessary to establish the molecular signature and validate the
role of CREB1 and HINFP in AD and PD.
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ABSTRACT: Aim/Hypothesis: Lysine residues are known for the post-translational modifications
(PTMs) such as acetylation, ubiquitination, and SUMOylation. In acetylation, histone deacetylase
(HDAC) and its interactors cause transcriptional deregulation and cause mitochondrial dysfunction,
apoptosis, inflammatory response, and cell-cycle impairment that cause brain homeostasis and neuronal
cell death. Other regulatory PTMs involved in the pathogenesis of neurodegenerative diseases (NDDs)
are ubiquitination and SUMOylation for the degradation of the misfolded proteins. Thus, we aim to
investigate the potential acetylation/ubiquitination/SUMOylation crosstalk sites in the HDAC
interactors, which cause NDDs. Furthermore, we aim to identify the influence of PTMs on the
structural features of proteins and the impact of putative lysine mutation on disease susceptibility. Last,
we aim to examine the impact of the putative mutation on acetylated lysine for ubiquitination and
SUMOylation. Results: Herein, we integrate 1455 genes, 3094 genes, and 1940 genes related to HDAC
interactors, Alzheimer’s disease (AD), and Parkinson’s disease (PD), respectively. Furthermore, the
protein−protein interaction and PTM integrations from different databases identified 32 proteins that
are associated with HDAC, AD, and PD with 1489 potential lysine-modified sites. HDAC interactors
poly(ADP-ribose) polymerase 1 (PARP1), nucleophosmin (NPM1), and cyclin-dependent kinase 1 (CDK1) involved in the
progression of NDDs and 64 and 75% of PTM sites in PARP1, NPM1, and CDK1 fall into coiled and ordered regions, respectively.
Moreover, 15 putative lysine sites have been found in the crosstalk and K148, K249, K528, K637, K700, and K796 of PARP1 are
crosstalk hotspots. Conclusion: The loss of acetylated hotspot sites results in the loss of ubiquitination and SUMOylation function on
nearby sites, which is relatively higher when compared to the gain of function.

1. INTRODUCTION

Neurodegenerative diseases (NDDs) such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), Huntington’s disease
(HD), amyotrophic lateral sclerosis (ALS), frontotemporal
dementia, and multiple sclerosis occur due to the progressive
loss of neuronal cells, which causes synaptic dysfunction and
memory impairment. AD and PD are the two most prevalent
forms of NDDs in older people.1 Recent studies demonstrated
the potential role of post-translational modifications (PTMs)
such as acetylation/deacetylation, methylation/demethylation,
ubiquitination, SUMOylation, phosphorylation, and others in
the pathogenesis of NDDs.2 These PTMs cause transcriptional
alteration, which leads to mitochondrial dysfunction, apoptosis
and autophagic cell death, DNA damage response, inflamma-
tory response, cell-cycle dysregulation, stress response, and
microglial activation, which are prominent features of AD and
PD.3,4 Among different PTMs, acetylation of essential
regulatory proteins via lysine acetyltransferase (HATs/KATs)
promotes the euchromatin structure and leads to transcrip-
tional activation.5−8 Acetylation of lysine residues neutralizes

the charges on histone proteins, increasing the chromatin
accessibility for transcription factors, which is called
euchromatin or relaxed chromatin structure.9 Transcriptional
activation of regulatory proteins reverses cellular processes’
impairment, which restores synaptic functions and learning
ability.10

On the contrary, histone deacetylases (HDACs) are a class
of lysine deacetylases that reverse the process of acetylation
and cause transcriptional repression, which causes neuro-
degeneration.11 Along with acetylation, ubiquitination and
SUMOylation are two other significant PTMs, which are
involved in the pathogenesis of NDDs. Ubiquitination plays an
essential role in the clearance of accumulated toxic proteins in
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the brain through the ubiquitin−proteasome system (UPS),
where any impairment in ubiquitination is known to exaggerate
the neurodegenerative malignancies.12 Similarly, SUMOylation
is a process that involves the addition of a small ubiquitin-
related modifier (SUMO) protein to the lysine side chain of
regulatory proteins, which assists in protein folding and the
clearance of toxic protein aggregates through chaperone-
mediated autophagy, macroautophagy, and proteolytic sys-

tems.13 Thus, targeting acetylation, ubiquitination, and
SUMOylation pathways provides a new mechanism toward
neuroprotection. Recent studies demonstrated the implemen-
tation of PTM crosstalk in the progression of NDDs, where
negative crosstalk at the same site between different lysine
modifications or commonly called as in situ crosstalk, has been
highlighted on different occasions.14,15 Previous studies
confirmed that HDAC and its interactors play a crucial role

Figure 1. (A) Brief description of the methodology in the current study and (B) interactive Venn analysis of AD, PD, and HDAC interactors
collected during the data extraction from different databases. For AD and PD, databases such as CTD and DisGeNET were used, whereas for
HDAC interactors, databases such as CTD and HIPPIE were used. The figure also shows the Venn analysis of common genes involved in AD, PD,
and HDAC interactors. Later on, bar graph analysis of protein extracted from databases for AD, PD, and HDAC interactors is given in the figure.
The blue color in the graph represents the CTD database. The orange color represents the DisGeNET database for AD and PD and the HIPPIE
database for HDAC interactors. Similarly, gray color represents the common among them. In the second bar graph, the blue color denotes the
dbPTM database, whereas the orange color represents the PLMD database.
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in the PTMs, such as acetylation, ubiquitination, and
SUMOylation in neurodegeneration. For example, the non-
covalent attachment of SUMO-2 to repressor element-1
silencing the transcription factor corepressor 1 (CoREST1)
causes transcriptional activation and changes the acetylation
level of coREST1/lysine (K)-specific demethylase 1 (LSD1)/
HDAC target genes.16 Similarly, decreased HDAC activity
promotes the acetylation of Htt protein and also causes an
increase in Ube2e3, SUMo2, and USp28 expression.
Furthermore, decreased HDAC expression causes increased
proteasomal degradation of mHtt aggregates due to the
increased activity of HDAC interactor IkappaB kinase (IKK).17

Tao et al. (2017) demonstrated that in APP/PS1 mice, acute
Aβ increases the protein inhibitor of activated STAT 1
(PIAS1) and Mcl-1 expression through MAPK/ERK signaling
activation. Increased PIAS1 expression enhances HDAC1
SUMOlyation in rat hippocampus.18 Table1 describes the
mechanism of different HDAC interactors in acetylation,
ubiquitination, and SUMOylation. Our previous studies
confirmed the role of lysine residues in ubiquitination19 and
acetylation,20 which enables us to investigate the crosstalk
between acetylation, ubiquitination, and SUMOylation at
HDAC interactors. Moreover, acetylation, ubiquitination, and
SUMOylation individual in situ crosstalk have been demon-
strated in different large-scale proteome studies. However,
crosstalk between the three has not been discussed until now,
and the possible effect of acetylation on ubiquitination and
SUMOylation is still unexplored.
Herein, we integrated AD- and PD-related genes with

HDAC interactors and identified the HUB genes through the
protein−protein interaction (PPI) network and clustering
analysis. Furthermore, we examined the molecular functions
and biological pathways in which shared genes (AD, PD, and
HDAC) were involved. Last, PTM data were integrated
through dbPTM and PLMD databases on 32 proteins, which
are the regulatory sequences. Afterward, the proteins with high
frequency for acetylation, ubiquitination, and SUMOylation
were extracted among the 32 selected proteins. Finally,
structural features and crosstalk sites were identified along
with the impact of putative lysine mutation on disease
susceptibility and protein stability. Last, our study investigates
the potential implementation of the loss of crucial lysine
residues on ubiquitination and SUMOylation function. Thus,
to the best of our knowledge, this is the first study that deals
with the crosstalk of acetylation with ubiquitination and
SUMOylation simultaneously among HDAC interactors.

2. MATERIALS AND METHODS
2.1. Integration of PPI of HDAC, AD, and PD Genes.

Data from two databases, such as DisGeNET (https://www.
disgenet.org/)54 and The Comparative Toxicogenomics Data-
base (CTD) (http://ctdbase.org/),55 were collected for genes
associated with the progression of AD and PD. Similarly,
information related to HDAC interactors was extracted from
two databases, such as CTD and HIPPIE (http://cbdm-01.
zdv.uni-mainz.de/~mschaefer/hippie/).56 The databases were
searched for duplicates, and redundancy in data was removed
manually (Figure 1A). The proteins that were common in two
databases were selected, and Venn analysis was carried out
through Bioinformatics & Evolutionary Genomics Venn
creator (http://bioinformatics.psb.ugent.be/webtools/Venn/)
in order to identify common proteins in AD, PD, and HDAC
interactors (Figure 1B). Furthermore, the PPI network and

clustering analysis of proteins were carried out with the
STRING database (https://string-db.org/)57 and The Cyto-
scape Software (https://cytoscape.org/).58

2.2. Molecular Function and Biological Pathway
Analysis of HDAC Interactors. Gene set enrichment analysis
was performed to extract the information related to molecular
functions and biological pathways in which the defined set of
genes (HDAC interactors) were involved. The gene set’s
molecular functions were determined through a freely available
software known as FunRich (http://www.funrich.org/).59

Furthermore, signal transduction pathways in which the
genes were involved were determined with the Kyoto
encyclopedia of genes and genomes (KEGG) pathway
database (https://www.genome.jp/kegg/).60

2.3. Integration of PTM Sites. Two databases, such as
dbPTM (http://dbptm.mbc.nctu.edu.tw/)61 and protein
lysine modification database (PLMD) (http://plmd.
biocuckoo.org/),62 were used to extract the information of
PTM (acetylation, ubiquitination, and SUMOylation) on
regulatory proteins. Once the data were extracted, they were
combined manually, and redundancy in PTM sites was
removed. The PTM sites are sorted out according to PTM
and modification sites.

2.4. Structural Analysis of Regulatory Proteins.
2.4.1. Secondary Structure Prediction. PTM influences the
secondary structure of the protein, which regulates its
biological functions. We extracted the protein secondary
structure information from DISOPRED3 (http://bioinf.cs.
ucl.ac.uk/psipred/)63 on both PTM and nonPTM lysine
residues. DISOPRED3 is an open-source tool created by the
UCL Department of Computer Science: Bioinformatics
Group. The output was classified into three categories, such
as coiled, helix, and strand.

2.4.2. Disorder Prediction. The sequences for regulatory
proteins containing PTMs were extracted from the PMLD
database. Structural order and disorder for these proteins were
predicted through DISOPRED3, which uses PSIPRED
software for disorder prediction. The extracted data were
separated into two categories, such as the ordered region and
the disordered region, as analyzed from the output.

2.4.3. PTM Crosstalk. In situ crosstalk analysis was
performed to check the competition of PTMs on the same
site. Data collected from PLMD and dbPTM were used to
identify different PTMs on the same amino acid residues. The
residues which have more than one PTM were selected for
further analysis.

2.4.4. Hotspot Analysis. For all the identified PTM crosstalk
sites, a motif of +7 and −6 amino acid stretch was extracted
from the PLMD database from the corresponding protein
sequence. For each identified acetylation site, the frequency of
the probable PTM site was calculated in the vicinity for the
defined motif. Every motif containing ≥2 lysine residues,
excluding the central lysine residue, was called a PTM hotspot
region. Furthermore, if a motif contained ≥2 PTMs on the
same site, it will be considered a PTM crosstalk hotspot.

2.5. Impact of Lysine Modification. 2.5.1. Acetylated
Lysine Mutation and Disease Susceptibility. The functional
impact of lysine mutations was studied with the help of online
tools such as PMut (http://mmb.irbbarcelona.org/PMut/),64

PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/),65 PAN-
THER (http://www.pantherdb.org/tools/csnpScoreForm.
jsp),66 and SNAP2 (https://rostlab.org/services/snap/).67

The obtained results were transformed into numerical values
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in order to visualize them on the stack bar graph. The

particular mutation is said to be disease susceptible if its

confidence score is greater than or equal to “3”, which is called

a threshold value.

2.5.2. Involvement of Acetylated Lysine Mutation on

Protein Stability. The protein structure was analyzed for force

field energy upon lysine mutation. The lysine residue was

mutated into glutamine (Q) and leucine (L), and their total

Figure 2. (A) PPI network of cluster 1 including 33 proteins extracted from the core PPI network after clustering analysis, (B) graphical
representation of acetylation, ubiquitination, and SUMOylation sites in the protein present in cluster 1, (C) molecular functions of top 33 proteins
involved in HDAC interactors, AD, and PD, (D) biological pathway analysis of HDAC interactors involved in the pathogenesis of AD and PD, (E)
stack-bar representation of “K”-modified sites, and (F) secondary structure representation in PARP1, CDK1, and NPM1.
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energy was calculated with the help of an online prediction
tool, that is, DynaMut (http://biosig.unimelb.edu.au/
dynamut/).68 The variation in the energy was estimated to
observe the impact of lysine mutation on poly(ADP-ribose)
polymerase 1 (PARP1) protein stability.
2.6. Crosstalk Analysis of Acetylated Lysine with

Ubiquitination and SUMOylation. To investigate the
contribution of lysine in acetylation, ubiquitination, and
SUMOylation on the nearby sites, substitute lysine residue
to glutamine (Q) and leucine (L). MutPred2 (http://mutpred.
mutdb.org/),69 an online tool, was used to predict the physical
significance of lysine mutation on acetylation, ubiquitination,
and SUMOylation. The same tool was also used to predict the
affected motifs and pathogenic score upon lysine mutation
with either glutamine or leucine. Furthermore, BDM-PUB
(http://bdmpub.biocuckoo.org/)70 and SUMOgo (http://
predictor.nchu.edu.tw/SUMOgo/)71 were employed to pre-
dict the potential ubiquitination and SUMOylation on nearby
sites, respectively. The sites which are affected due to
modification of lysine by either glutamine or leucine were
tallied. The affected sites were classified into two groups that
are gain in function on nearby sites and loss of function on
nearby sites.

3. RESULTS AND DISCUSSION

3.1. Integration of Data and PTM Sites. After collecting
data for HDAC interactors from two databases, such as
HIPPIE and CTD, Venn analysis was performed to investigate
the common interactors among both databases. A total of 1657
proteins were obtained from HIPPIE, and 1804 proteins were
collected from the CTD database. The HDAC interactors were
associated with class I, class II, and class IV HDACs. Venn
analysis demonstrated that there are 1455 (72.6%) proteins
that were common in both the databases. Similarly, for AD-
and PD-associated protein, data were collected from CTD and
DisGeNET. In CTD, 23268 and 23680 proteins were
associated with AD and PD, respectively, whereas in
DisGeNET, 3397 and 2078 proteins were involved in the
pathogenesis of AD and PD, respectively. Furthermore, Venn
analysis demonstrated the involvement of 3094 (13.1%) and
1940 (8.1%) proteins that were common in both the databases.
Furthermore, HDAC interactor, AD, and PD data were
combined manually to check the common proteins among
them. A total of 185 proteins (7.7%) were found to be involved
in the pathogenesis of AD and PD, which are associated with
HDAC interactors.
Moreover, the PPI network and clustering analysis

demonstrated the involvement of 33 proteins as top-ranked
proteins (Figure 2A), which are associated with HDAC

Table 2. Functional Enrichment Analysis (Biological Pathways and Molecular Functions) Involved in Top Interacting HDAC
Interactorsa

aIn the above table, the blue color highlights the involvement of key HDAC interactors such as PARP1, CDK1, and NPM1 in the biological
pathways. The table observed that CDK1 and NPM1 were involved in the glypican pathway, glypican 1 network, AP-1 transcription factor network,
and Arf6 downstream pathway. Similarly, CDK1, PARP1, and NPM1 were involved in the TRAIL signaling pathway and integrin-linked kinase
signaling.
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interactors and the pathogenesis of NDDs. Furthermore,
150,968 PTM sites and 115,127 PTM sites were collected
from the dbPTM database and PLMD database, respectively. A
total of 45,967 and 29,942 acetylation sites, 99,624 and 77,364
ubiquitination sites, and 5377 and 7821 SUMOylation sites
were extracted from the dbPTM and PLMD database. The
extracted PTM sites were mapped to respective proteins. A
total of 1463 potential acetylation (426), ubiquitination (879),
and SUMOylation (158) sites were identified among 32
potential proteins for crosstalk analysis (Figure 2B).
3.2. Different Molecular Functions and Biological

Pathways Followed by Top Interacting HDAC Partners.
A total of 33 proteins identified through clustering analysis
involving HDAC interactors, AD, and PD were subjected to
the gene set enrichment analysis. Through this, molecular
functions and biological processes involved in the pathogenesis
of AD and PD through HDAC interaction were determined.
The cutoff p-value for identifying the molecular function and
biological pathways was set at less than 0.05, as shown in Table
2. Among molecular functions, protein serine/threonine kinase
activity (21.21%), transcription regulator activity (18.18%),
transcription factor activity (6.06%), transmembrane receptor
protein tyrosine kinase activity (9.09%), chaperone activity
(15.15%), and DNA-methyltransferase activity (3.03%) were
highly enriched having a p-value less than 0.05 (Figure 2C).
Similarly, among different biological pathways, glypican
pathway (81.25%), TNF-related apoptosis-inducing ligand
(TRAIL) signaling pathway (84.37%), glypican 1 network
(81.25%), integrin-linked kinase signaling (65.62%), AP-1
transcription factor network (62.50%), and ADP-ribosylation
factor 6 (Arf6) downstream pathway (78.12%) (Figure 2D).
However, from Table 1, it is observed that only two pathways,
such as the TRAIL signaling pathway and integrin-linked
kinase signaling, constitute nucleophosmin (NPM1), cyclin-
dependent kinase 1 (CDK1), and PARP1 (highlight in blue
script with a green fill). Thus, the above-said pathways were
crucial in the AD and PD pathogenesis with HDAC
interactors.
3.3. Structural Characterization of PARP1, NPM1, and

CDK1. For crosstalk analysis, a protein should be selected on
the basis that the individual frequency of acetylation,
ubiquitination, and SUMOylation is ≥10 (Table 3). Thus,
PARP1, NPM1, and CDK1 were found to be the most
prominent proteins for crosstalk between acetylation, ubiquiti-
nation, and SUMOylation (Figure 2E). Secondary structure
analysis of PARP1, NPM1, and CDK1 revealed the importance
of the coiled structure as compared to helix and strand in the
PTM region. A coiled region regulates protein interactions and

aggregation propensity, and thus mutations, which impair
coiled regions and deregulate aggregation and protein activity,
whereas mutations, which increase the coiled structure,
enhance aggregation propensity.72 In PARP1, 42 PTM sites
fall into the coiled region, whereas 22 and 18 PTM sites
formed a coiled structure in NPM1 and CDK1, respectively.
Furthermore, our analysis demonstrates that the frequency of
the helix structure is greater in PARP1 (27), NPM1 (11), and
CDK1 (15) PTM sites as compared to that in nonPTM sites
(Figure 2F) (Table 4). However, in NPM1, the frequency of
strands is almost equal in both PTM and nonPTM sites.

PTMs preferred disordered regions as compared to the
ordered region, which affect their functions and interactions.
Furthermore, the involvement of PTM in the disordered
region influences disorder to order transition, thus altering
protein’s stability and its associated mechanisms. This
mechanism could be beneficial in diversifying the functional
effect of protein by forming new structural sites or PPI by
proving a binding region. Interestingly, our analysis of PTM
sites revealed that 75% of sites fall in the ordered region,
whereas 25% of sites fall in the disordered region (Figure 3A).
Our data suggest that there is no PTM site in the disordered
region for CDK1. Similarly, PARP1 has 12 acetylation, 9
SUMOylation, and 5 ubiquitination sites falling in the
disordered region, whereas NPM1 has 16 acetylation, 21
SUMOylation, and 13 ubiquitination sites falling in the
disordered region. Although previous studies reported that
acetylation, ubiquitination, and SUMOylation preferred the
ordered region, and thus, PARP1 has more acetylation and
ubiquitination sites in the ordered region, which is 53 and 38,
respectively. However, in NPM1, the number of acetylation
sites in the ordered region is less than that of the disordered
region, whereas the number of ubiquitination sites in the
ordered region (18) is higher than that of ubiquitination sites
in the disordered region (13). Similarly, the SUMOylation
sites of PARP1 in the ordered region (24) are greater than that
in the disordered region (9), whereas the SUMOylation sites

Table 3. List of HDAC Interactors Having More Than 50 Lysine-Modified Sites (Acetylation, Ubiquitination, and
SUMOylation)a

aThe proteins marked in blue color and filled with gray color indicate that proteins have individual acetylation, ubiquitination, and SUMOylation
sites more than 10.

Table 4. List of PTM and NonPTM Sites of PARP1, NPM1,
and CDK1 (HDAC Interactors) in Coiled, Helix, and Strand
Regions

PARP1 NPM1 CDK1

PTM nonPTM PTM nonPTM PTM nonPTM

coiled 42 22 22 1 18 1
helix 27 16 11 1 15 1
strand 10 2 2 1 8 0

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c06168
ACS Omega 2021, 6, 5739−5753

5745

https://pubs.acs.org/doi/10.1021/acsomega.0c06168?fig=tbl3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06168?fig=tbl3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c06168?ref=pdf


of NPM1 in the ordered region (5) are less than that in the
disordered region (21). Thus, our study demonstrates the
deviation in NPM1, whereas PARP1 data go well with the
previously reported literature for acetylation, ubiquitination,
and SUMOylation. Moreover, to identify PTM hotspots and
crosstalk hotspots and their susceptibility to neurodegenera-
tion, we separated the proteins based on PTM sites and
hotspot sites. In situ crosstalk analysis in PARP1 revealed 15
potential acetylation/ubiquitination/SUMOylation sites, 19
acetylation/ubiquitination sites, 7 acetylation/SUMOylation
sites, and 3 ubiquitination/SUMOylation sites. Similarly, in
CDK1, there are 11 acetylation/ubiquitination/SUMOylation
sites, 3 acetylation/ubiquitination sites, and 4 ubiquitination/

SUMOylation sites (Figure 3B). The acetylation/ubiquitina-
tion/SUMOylation crosstalk sites of CDK1 and PARP1 were
selected to identify crosstalk hotspots. Later on, we selected
high-density stretches containing the +7 and −6 motif starch,
excluding the central PTM. Our analysis observed that K148,
K249, K528, K637, K700, and K796 have crosstalk hotspots in
PARP1, whereas no such hotspot has been observed in CDK1
(Figure 3C).

3.4. Impact of Lysine Mutation on PARP1. The disease
susceptibility of putative lysine mutation, either with glutamine
or with leucine, was investigated through mutational analysis
tools such as PANTHER, PMut, PolyPhen2, and SNAP2. Our
results observed that all sites have an impact on disease

Figure 3. (A) Classification of PTM sites of PARP1, NPM1, and CDK1 into the ordered and disordered region, (B) crosstalk analysis between
acetylation, ubiquitination, and SUMOylation in PARP1, CDK1, and NPM1, and (C) identification of hotspot regions in PARP1 and CDK1.
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Figure 4. (A) Impact of lysine mutation in hotspot sites on disease susceptibility. The selected lysine residues such as K148, K249, K262, K331,
K337, K433, K528, K600, K637, K700, K748, and K796 were subjected to mutation with both glutamine and leucine. Afterward, the mutations
were checked for their impact on disease susceptibility. The results indicate that mutations such as K249L, K331Q, K331L, K337Q, K337L,
K528Q, K528L, K600Q, K600L, K637Q, K637L, K700Q, K700L, and K796L have a pathogenic score above 3 (taken as reference). (B) Impact of
lysine mutation on protein stability. Afterward, the selected disease-susceptible mutations were subjected to investigate their impact on protein
structure stability. The results indicate that mutations such as K337Q, K337L, K528L, K600L, K637L, and K700L have a positive energy value and
increase the protein stability. Similarly, K249L, K331Q, K331L, K528Q, K600Q, K637Q, K700Q, and K796L have a negative energy value and thus
decrease the stability of the protein. (C) Investigation of acetylated lysine residue mutations on ubiquitination and SUMOylation. Here, the results
suggest that out of a total of 65 potential lysine sites, 15 sites were mutated and predicted the change in ubiquitination and SUMOylation states of
the PARP1. The results suggested that a total of 28 sites result in a gain of ubiquitination, whereas 32 sites exhibit loss of ubiquitination when
mutated with either glutamine or leucine. Similarly, 4 sites result in a gain of SUMOylation, whereas 25 sites exhibit loss of SUMOylation when
mutated with both glutamine and leucine. Furthermore, K233 exhibits gain of both ubiquitination and SUMOylation, whereas 14 sites result in a
loss of both ubiquitination and SUMOylation as represented with pink color in the figure.
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susceptibility. However, K249, K331, K337, K528, K600,
K637, K700, and K796 have a high confidence score on disease
susceptibility. The highly intolerant mutation that is disease
susceptible is shown in Figure 4A and Table 5. The mutational

analysis study also revealed that the mutation of K249, K331,
and K796 residue with leucine decreases PARP1 stability,
whereas the mutation of K331, K528, K600, K637, and K700
with glutamine decreases PARP1 stability. However, the
decrease in PARP1 stability at K331 is higher when mutated
with glutamine as compared to mutation with leucine (Figure
4B). Thus, the investigation suggests that mutation with
glutamine on crosstalk sites impacts the stability of PARP1 to a
great extent as compared to leucine.
3.5. Crosstalk between Acetylation, Ubiquitination,

and SUMOylation. Herein, we investigated the impact of an
acetylated lysine residue on ubiquitination and SUMOylation,
either at the same location or at the nearby sites. Our data
revealed that putative mutation in 15 lysine-acetylated sites
(K7, K97, K148, K249, K262, K331, K337, K433, K528, K600,
K637, K653, K700, K748, and K796) out of a total of 65
acetylated sites in PARP1 affects the process of ubiquitination
to a great extent as compared to SUMOylation (Table 6).
Table 6 demonstrates the functional impact of putative lysine
residue mutation on acetylation, ubiquitination, and SUMOy-
lation. Furthermore, the collective results depict the role of
putative lysine mutation on other cellular functions. The
results revealed that mutation in K7, K249, K337, K528, and
K796 results in loss of acetylation on the same site, whereas the
loss of lysine on K637 results in loss of acetylation at K633.
Similarly, the loss of putative lysine residue on K7 results in
loss of ubiquitination at K7, whereas the loss of putative lysine
residue on K600 results in the loss of SUMOylation at K600.
Furthermore, our analysis demonstrates that putative mutation
in lysine either with glutamine or with leucine at K528 results
in loss of acetylation at K528, loss of ubiquitination at K528,
and loss of SUMOylation at K524 with ELME000051,

ELME000231, ELME000336, and PS00005 as the affected
motifs. The results collectively show the importance of K528 of
PARP1, which regulates acetylation, ubiquitination, and
SUMOylation collectively in NDDs such as AD and PD.
Furthermore, SUMOgo and BDM-PUB predict 117 SUMOy-
lation sites and 80 ubiquitination sites, respectively. The cutoff
value for SUMOylation and ubiquitination prediction was set
at 0.5 and 1.5, respectively, which filters 12 SUMOylation sites
and 39 ubiquitination sites in PARP1. Through the in silico
approach, we substitute the lysine residue with glutamine and
leucine, which promotes the neutral side chain and hydro-
phobic side chain, respectively. The predicted residues were
then compared with the integrated ubiquitination and
SUMOylation residues.
Here, we classified the affected ubiquitination and

SUMOylation sites into two groups, which are the gain of
function on nearby sites and loss of function on nearby sites.
Our prediction demonstrated that the loss of crucial lysine
residue alters the ubiquitination function to a great extent as
compared to SUMOylation. In ubiquitination, 28 sites resulted
in a gain of function, whereas 32 sites resulted in the loss of
function. Similarly, in SUMOylation, only 4 sites were
predicted to gain in function, whereas 25 sites resulted in
the loss of function (Figure 4C). Furthermore, our results
suggest that the loss of lysine residue at crucial sites either with
glutamine or with leucine resulted in both ubiquitination and
SUMOylation gain in function at K233. Similarly, 14 sites (K7,
K148, K239, K262, K331, K337, K394, K528, K600, K637,
K653, K700, K748, and K798) predicted to the loss in function
for both ubiquitination and SUMOylation upon lysine
substitution with either glutamine or leucine.

4. CONCLUSIONS
NDDs such as AD and PD are best characterized as
progressive loss of neuronal cells leading to memory deficits
and cognitive dysfunction. Mounting evidence suggests the
possible implementation of PTMs in the pathogenesis of
NDDs. One important PTM is acetylation, which is the
process of the addition of the acetyl group to the N-terminal
lysine residue. Acetylation and deacetylation are reversible
processes, which are carried out with the help of HATs and
HDAC enzymes, respectively. HATs/HDACs promote
euchromatin and heterochromatin structure, respectively,
which is involved in the transcriptional regulation. Apart
from acetylation, ubiquitination and SUMOylation are two
important PTMs, which help in the removal of misfolded toxic
protein aggregates such as β-amyloid (Aβ) and α-synuclein.
The common characteristic feature of acetylation, ubiquitina-
tion, and SUMOylation is the involvement of the lysine (K)
residue, and thus, crosstalk between three PTMs becomes a
fascinating topic for research. Studies indicate that the
acetylation of PARP1 leads to its hyperactivation, which will
intensify oxidative stress and cause mitochondrial dysfunction
and subsequently neuronal cell death through parthanatos.
Mounting evidence indicates that PARP1 acetylation increases
Aβ and α-synuclein aggregates, which increases neuro-
toxicity.78 Studies demonstrated that the activation of PARP1
decreases Aβ clearance and increases AIF expression. Love et
al. (1999) first reported the activation of PARP1 in brain
samples of AD patients. The authors conducted immunostain-
ing analysis, which indicated the increased levels of PAR in AD
patients in frontal and temporal lobes as compared to control
patients.79 Similarly, Abeti et al. (2011) in mixed cultures of

Table 5. Impact of PARP1’s “K” Putative Mutation to Either
Q or L on Disease Susceptibility Predicted with the Help of
PMut, PolyPhen2, Panther, and SNAP2
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hippocampal neurons and glial cells from a Sprague-Dawley rat
concluded that PARP1 activation leads to oxidative stress in
the presence of Aβ and causes metabolic failure and neuronal
death.80 Furthermore, Li et al. (2010) in ischemic mice
demonstrated that PARP1 causes nuclear translocation of AIF,
which results in neuronal cell death, whereas in another study
conducted on rats, it was concluded that PARP1 increased
expression causes suppression of the AIF protein expression.81

In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse
model of PD, FAF1 plays a key role in PARP-1-dependent
necrosis in response to oxidative stress. Furthermore, FAF1
depletion prevented PARP1-linked downstream events such as
mitochondrial depolarization and nuclear translocation of
AIF.82 (Figure 5A).
In this study, we have examined the PTMs and their

crosstalk in HDAC interactors, which are involved in the
progression of NDDs such as AD and PD. The interactors of
HDAC and proteins involved in AD and PD were collected
from different databases such as HIPPIE, CTD, and

DisGeNET. Venn analysis and PPI interaction of HDAC
interactors, AD, and PD demonstrated the involvement of the
top 33 proteins. Gene set enrichment analysis of 33 proteins
confirmed the involvement of six different molecular functions
and biological pathways in the pathogenesis of AD and PD
through HDAC interactors. Protein serine/threonine kinase
activity (21.21%), transcription regulator activity (18.18%),
transcription factor activity (6.06%), transmembrane receptor
protein tyrosine kinase activity (9.09%), chaperone activity
(15.15%), and DNA-methyltransferase activity (3.03%) were
the top-ranked molecular functions performed by HDAC
interactors having a p-value less than 0.05. Similarly, glypican
pathway (81.25%), TRAIL signaling pathway (84.37%),
glypican 1 network (81.25%), integrin-linked kinase signaling
(65.62%), AP-1 transcription factor network (62.50%), and
Arf6 downstream pathway (78.12%) were the top-ranked
biological pathways involved in the pathogenesis of AD and
PD. Lately, 150,968 PTM sites from dbPTM and 115,127
PTM sites from PLMD were integrated to 32 proteins in which

Table 6. Physical Significance of Lysine (K) Residue in PARP1 Acetylation, Ubiquitination, and SUMOylation through an
Online Analysis Tool Known as MutPred2 (http://mutpred.mutdb.org/)a

lysine
residue mutation affected molecular mechanism (p ≤ 0.05) affected motifs

pathogenic
score

K7 Lys(K)-Gln(Q) 0.273
Lys(K)-Leu(L) loss of intrinsic disorder, loss of acetylation at K7, loss of phosphorylation at Y9,

loss of methylation at K7, loss of ubiquitination at K7
ELME000149, PS00005 0.517

K97 Lys(K)-Gln(Q) 0.196
Lys(K)-Leu(L) 0.383

K148 Lys(K)-Gln(Q) ELME000155, PS00347 0.545
Lys(K)-Leu(L) gain of loop, altered transmembrane protein 0.742

K249 Lys(K)-Gln(Q) 0.479
Lys(K)-Leu(L) altered coiled, loss of intrinsic disorder, gain of loop, loss of helix, altered

disordered interface, loss of acetylation at K249
ELME000002 0.737

K262 Lys(K)-Gln(Q) 0.453
Lys(K)-Leu(L) altered coiled 0.771

K331 Lys(K)-Gln(Q) 0.272
Lys(K)-Leu(L) altered transmembrane protein 0.575

K337 Lys(K)-Gln(Q) loss of acetylation at K337 ELME000064, ELME000117,
ELME000133, ELME000136,
ELME000159

0.694

Lys(K)-Leu(L) loss of ascetylation at K337 0.825
K433 Lys(K)-Gln(Q) 0.113

Lys(K)-Leu(L) 0.385
K528 Lys(K)-Gln(Q) 0.370

Lys(K)-Leu(L) loss of intrinsic disorder, loss of acetylation at K528, loss of strand, loss of helix,
loss of SUMOylation at K524, loss of ubiquitination at K528, loss of
methylation at K528

ELME000051, ELME000231,
ELME000336, PS00005

0.687

K600 Lys(K)-Gln(Q) loss of SUMOylation at K600, gain of GPI-anchor amidation at N599 PS00005 0.718
Lys(K)-Leu(L) loss of SUMOylation at K600 0.862

K637 Lys(K)-Gln(Q) gain of strand, loss of acetylation at K633, altered transmembrane protein ELME000163, ELME000233 0.713
Lys(K)-Leu(L) loss of acetylation at K633, altered transmembrane protein ELME000120, ELME000233 0.886

K653 Lys(K)-Gln(Q) 0.273
Lys(K)-Leu(L) 0.489

K700 Lys(K)-Gln(Q) 0.499
Lys(K)-Leu(L) altered coiled ELME000333 0.768

K748 Lys(K)-Gln(Q) 0.562
Lys(K)-Leu(L) altered coiled 0.775

K796 Lys(K)-Gln(Q) loss of acetylation at K796, altered transmembrane protein, altered coiled, gain of
proteolytic cleavage at D791

ELME000020, ELME000120,
ELME000173, ELME000233

0.546

Lys(K)-Leu(L) altered ordered interface, loss of acetylation at K796, altered transmembrane
protein, altered coiled, gain of proteolytic cleavage at D791

0.776

aIn the given table, the pathogenic score represents the probability that the amino acid substitution is pathogenic. A score threshold of 0.50 would
suggest pathogenic for a particular substitution. However, a threshold of 0.68 yields a false positive rate of 10%, whereas a threshold of 0.80 yields a
false positive rate of 5%.
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1489 were acetylation, ubiquitination, and SUMOylation sites.
Among the 32 proteins, only three proteins, such as PARP1,
NPM1, and CDK1, have individual acetylation, ubiquitination,
and SUMOylation frequency greater than 10. Secondary
structure prediction confirmed that 42, 22, and 18 PTM sites
formed coiled structure in PARP1, NPM1, and CDK1,
respectively, demonstrating that the probability of the PTM
site is higher in the coiled region as compared to that in the
helix and strand region. However, in NPM1, the probability of
forming a strand region is higher as compared to that in
PARP1 and CDK1. Further investigation revealed that 75% of
PTM sites were associated with the ordered region, whereas
25% of PTM sites were associated with the disordered region.
Thus, it will be concluded that the PTM distribution is higher
in the ordered region as compared to that in the disordered
region. Furthermore, crosstalk analysis of acetylation, ubiquiti-
nation, and SUMOylation sites in PARP1 revealed that 19
PTM sites were associated with acetylation and ubiquitination
crosstalk. Similarly, acetylation-SUMOylation (7 sites), ubiq-
uitination-SUMOylation (3 sites), and acetylation-ubiquitina-
tion-SUMOylation (15 sites) were identified. Hotspot analysis
identified that K148, K249, K528, K637, K700, and K796 have
potential crosstalk sites having ≥2 potential lysine residue in
the vicinity of +7 and −6 motif sequence. In order to predict
crucial crosstalk sites, the impact of putative lysine mutation on
disease susceptibility was predicted, which demonstrated that
among hotspot sites, K249L, K528Q, K528L, K637Q, K637L,
K700Q, K700L, and K796L were involved in the progression
of NDDs. Furthermore, our study investigated the role of
putative lysine mutation on ubiquitination and SUMOylation,
which shows that putative mutation in the lysine residue will
result in the loss of SUMOylation and ubiquitination function.
However, the gain of function after putative lysine mutation

will also be observed, but the frequency is low as compared to
the loss of function. In conclusion, K249, K331, K337, K528,
K600, K637, K700, and K796 of PARP1 play a vital role in
ubiquitination, acetylation, and SUMOylation crosstalk, which
can potentially be useful for newer leads into acetylation
mechanism, HDAC interactions, disease progression, bio-
markers, or as a therapeutic target. Furthermore, from this
study, we also concluded that site-specific inhibition of PARP1
acetylation (K249, K331, K337, K528, K600, K637, K700, and
K796) and simultaneous activation of ubiquitination and
SUMOylation at the same residues rescue neuronal cell death
that is involved in AD pathology..

■ AUTHOR INFORMATION

Corresponding Author
Pravir Kumar − Molecular Neuroscience and Functional
Genomics Laboratory, Department of Biotechnology, Delhi
Technological University (Formerly DCE), Delhi 110042,
India; orcid.org/0000-0001-7444-2344; Phone: +91-
9818898622; Email: pravirkumar@dtu.ac.in, kpravir@
gmail.com

Author
Rohan Gupta − Molecular Neuroscience and Functional
Genomics Laboratory, Department of Biotechnology, Delhi
Technological University (Formerly DCE), Delhi 110042,
India

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.0c06168

Author Contributions
P.K. and R.G. conceived and designed the manuscript. R.G.
has collected, analyzed, and critically evaluated these data. P.K.

Figure 5. (A) Mechanism of PARP1 acetylation in NDDs. HDAC inhibitors increase the level of PARP1 acetylation and lead to PARP1 activation.
This level is involved in the pathogenesis of AD.73,74 Increased PARP1 acetylation levels induce increased levels of AIF expression and decreased
levels of Aβ clearance, which in turn increase neurotoxicity by increasing the levels of misfolded protein aggregates.75−77 Similarly, the increased
PARP1 acetylation causes inhibition of DNA repair and increased ROS activity, which decreases the cell-cycle activity and increases the
mitochondrial function, respectively. The decreased cell-cycle regulation and increased mitochondrial dysfunction cause increased neuronal
apoptosis, which results in memory impairment and cognitive defects. Increased ROS activity by increased PARP1 acetylation leads to NF-κβ
activation, which increases proinflammatory cytokine release and results in microglial activation.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c06168
ACS Omega 2021, 6, 5739−5753

5750

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pravir+Kumar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-7444-2344
mailto:pravirkumar@dtu.ac.in
mailto:kpravir@gmail.com
mailto:kpravir@gmail.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rohan+Gupta"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06168?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06168?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06168?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06168?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06168?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c06168?ref=pdf


and R.G. have prepared figures and tables. P.K and R.G.
analyzed the entire data and wrote the manuscript.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We would like to thank the senior management of the Delhi
Technological University for constant support and encourage-
ment. This study was funded by the Delhi Technological
University (Established under Govt. of Delhi Act 6 of 2009),
Delhi-110042, India.

■ ABBREVIATIONS

PTMs, post-translational modifications; HDAC, histone
deacetylase; NDDs, neurodegenerative diseases; PARP1,
poly(ADP-ribose) polymerase 1; NPM1, nucleophosmin;
CDK1, cyclin-dependent kinase 1; AD, Alzheimer’s disease;
PD, Parkinson’s disease; HD, Huntington’s disease; ALS,
amyotrophic lateral sclerosis; HATs, histone acetyltransferases;
HDACs, histone deacetylases; UPS, ubiquitin proteasome
system; SUMO, small ubiquitin-related modifier; CoREST1,
repressor element-1 silencing transcription factor corepressor
1; LSD1, lysine (K)-specific demethylase 1; IKK, IkappaB
kinase; PIAS1, protein inhibitor of activated STAT 1; CTD,
Comparative Toxicogenomics Database; KEGG, Kyoto
Encyclopedia of Genes and Genomes; PLMD, protein lysine
modifications database; Arf6, ADP-ribosylation factor 6;
TRAIL, TNF-related apoptosis-inducing ligand; HSP90AA1,
heat shock protein 90α; DNMT1, DNA methyltransferases 1;
HSPA5, heat shock protein family A (Hsp70) member 5;
HIF1A, hypoxia-inducible factor 1-alpha; ATM, ataxia-
telangiectasia mutated; HSPA1A, heat shock 70 kDa protein
1; GAPDH, glyceraldehyde 3-phosphate dehydrogenase

■ REFERENCES
(1) Dawson, T. M.; Golde, T. E.; Lagier-Tourenne, C. Animal
Models of Neurodegenerative Diseases. Nat. Neurosci. 2018, 21, 1370.
(2) Didonna, A.; Benetti, F. Post-Translational Modifications in
Neurodegeneration. AIMS Biophys. 2016, 3, 27.
(3) Barrett, P. J.; Timothy Greenamyre, J. Post-Translational
Modification of α-Synuclein in Parkinson’s Disease. Brain Res.
2015, 1628, 247.
(4) Buuh, Z. Y.; Lyu, Z.; Wang, R. E. Interrogating the Roles of Post-
Translational Modifications of Non-Histone Proteins. J. Med. Chem.
2018, 61, 3239.
(5) Bannister, A. J.; Kouzarides, T. Regulation of Chromatin by
Histone Modifications. Cell Res. 2011, 21, 381.
(6) Eberharter, A.; Becker, P. B. Histone Acetylation: A Switch
between Repressive and Permissive Chromatin. Second in Review on
Chromatin Dynamics. EMBO Rep 2002, 3, 224.
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A B S T R A C T   

Neurodegenerative disease, namely Alzheimer's disease (AD), is characterized by the accumulation of toxic 
β-amyloid aggregates and insoluble tau tangles. Mounting evidence demonstrated that heavy metals, such as 
copper, chromium, cobalt, and nickel, increase the β-amyloid and tau aggregation in the pathogenesis of AD by 
activating different signaling events. For instance, copper induces the formation of reactive oxygen species to 
cause mitochondrial dysfunction and DNA damage, whereas, chromium elevates neuroinflammatory response 
and neuronal apoptosis. Similarly, cobalt increases tau hyperphosphorylation and promotes tau aggregation, 
whereas, nickel elevates β-amyloid aggregation. Further, acetylation, a lysine-specific post-translational modi-
fication, has been linked to transcriptional activation, which regulates the transcription of genes associated with 
metal toxicity-induced AD. However, micro-RNAs (miRNAs) can reduce the activity of acetyltransferase, which 
decreases the transcriptional activation and thus inhibits the pathogenesis of AD. In contrast, long non-coding 
RNAs modulate the expression of specific miRNA and serve as a sponge to particular miRNA. In this study, 
we aim to identify the crucial proteins involved in metal toxicity-induced AD through network biology, followed 
by identifying regulatory transcription factors associated with crucial proteins. Further, we aim to determine the 
critical lysine residue and the role of CREBBP-induce acetylation on transcription factors. Lately, we have focused 
on identifying miRNAs associated with CREBBP and transcription factors simultaneously. Lastly, we aim to 
identify the potential long non-coding RNA, serving as a sponge to miRNAs. Our results demonstrated that the 
OIP5-AS1/miR-129-5p/CREBBP axis is a potential therapeutic target in metal toxicity-induced Alzheimer's dis-
ease pathogenesis.   

1. Introduction 

Neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD) 
and Parkinson's disease (PD) are disorders of the central nervous system 
characterized by excessive loss of neuronal cells due to toxic protein 
aggregates. The aggregation of toxic proteins inside the brain causes 
disturbance in cellular and molecular processes, which leads to mito-
chondrial dysfunction, immunological response, oxidative stress, auto-
phagy and apoptosis, and cell-cycle dysregulation, ultimately causes 
neuronal cell death (Soldan et al., 2016). AD is the most prevalent NDDs 

that occurs mainly in people aged above 65 years, which is characterized 
by neurofibrillary tangles and amyloid-β (Aβ) aggregates due to hyper-
phosphorylation of tau and irregular proteolytic processing of amyloid 
peptide protein (Weller and Budson, 2018). Despite having extensive 
research on the subject information regarding the exact etiology of the 
disease, the mechanism of disease progression, the involvement of 
different biomarkers, and therapeutic interventions remain uneluci-
dated. Moreover, environmental risk factors such as excessive exposure 
to toxic metals play an essential role in the pathogenesis of AD. For 
example, several studies demonstrated that excessive concentration of 
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chromium, nickel, cobalt, and copper causes oxidative stress and mito-
chondrial DNA damage, which leads to mitochondrial dysfunction and, 
ultimately, neuronal apoptosis and neuroinflammation (Huat et al., 
2019). In addition, excessive accumulation of copper initiates Aβ ag-
gregation, the formation of neurite plaques and cell damage due to 
excessive generation of reactive oxygen species, decreases hydrogen 
peroxide, and decreases in ATP production (Mayes et al., 2014). 

Similarly, chromium, another trace metal inferred with genes 
involved in the inflammatory response and apoptotic cell death through 
increasing caspase 3 expressions, elevating tumor necrosis factor-alpha 
and interleukin 6 activity and decreasing phosphorylation of glycogen 
synthase kinase 3 beta (GSK3β) (Ge et al., 2008; Padmavathi et al., 2010; 
Park et al., 1997; Rafael et al., 2007). Moreover, a high lead concen-
tration in neuronal cells inhibits calcium homeostasis, decreases nitric 
oxide generation, and increases inflammatory action in glial cells. 
Further, the dose-dependent administration of copper elevates reactive 
oxygen species, which leads to mitochondrial dysfunction and inhibits 
DNA repair response (P. Chen et al., 2016). Cobalt exposure damages the 
brain's structure and functions, impairing visual learning transmission to 
the brain. Cobalt administration leads to promotes tau hyper-
phosphorylation and induces tau aggregates, which causes neuronal cell 
death (Gorantla et al., 2019). Furthermore, the dose-dependent 
administration of nickel elevates amyloid deposition and amyloid ag-
gregation, which leads to neuronal apoptosis (Kim et al., 2012). 

Further, different studies demonstrated that cAMP response element- 
binding protein (CREBBP) or CBP-mediated lysine acetylation plays a 
crucial role in the pathogenesis of AD (Barral et al., 2014; Caccamo 
et al., 2010; Chatterjee et al., 2013; Song et al., 2015). For instance, 
Chen et al., 2020 demonstrated that p300/CBP activated in tauopathies, 
which degraded the autophagy-lysosomal pathway and caused excessive 
secretion of insoluble tau aggregates (Chen et al., 2020). Similarly, 
Schueller et al., 2020 concluded that CBP or CREBBP-induces histone 
acetylation was dysregulated in the hippocampus and frontal cortex of 
AD patients (Schueller et al., 2020). Further, Portillo et al., 2021 
demonstrated that excessive DNA damage or absence of sirtuin 6 in-
creases Tau(K174) acetylation through CREBBP or CBP, which leads to 
Tau accumulation (Portillo et al., 2021). Moreover, post-transcriptional 
regulators, namely micro-RNAs (miRNAs) and long non-coding RNAs, 
regulate the expression pattern of proteins either upregulated or 
downregulated, which causes the pathogenesis of AD (Ahmadi et al., 
2020; Catana et al., 2020; Doxtater et al., 2020; Kou et al., 2020; Kumar 
and Reddy, 2020; Wei et al., 2020; Zoltowska et al., 2020). For example, 
reduced miR-134 levels increase cyclic AMP-responsive element-bind-
ing protein (CREB) activity, increasing BDNF expression and improving 
synaptic plasticity, whereas, increasing miR-34c activity targets sirtuin 
1, which results in memory impairment (Bourassa and Ratan, 2014; 
Zhao et al., 2013). Similarly, L. Li et al. (2020) demonstrated that 
overexpression of long non-coding RNAs, namely MALAT1 or CNR1, 
reduced neuronal injury in rat hippocampus and decreased the activity 
of pro-inflammatory cytokines, such as interleukin-6 and tumor necrosis 
factor-alpha. Further, the authors demonstrated that MALAT1 could be 
served as a sponge to miR-30b, which upregulated CNR1 expression and 
activated the phosphorylation of phosphoinositide 3-kinases (PI3K) and 

protein kinase B (Akt) (L. Li et al., 2020). Recently, Yue et al., 2020 
concluded that silencing of long non-coding RNA, such as XIST, rescued 
from AD progression through miR124-induced deregulation of beta- 
secretase 1 (BACE1) (Yue et al., 2020). Thus, from the accumulating 
evidence, it might be concluded that metal toxicity leads to the patho-
genesis of AD and deregulation in acetylation levels of non-histone 
substrates elevates AD progression. Further, miRNA and long non- 
coding RNAs regulate the expression of CREBBP or CBP acetyltransfer-
ase, which might alter the pathogenesis of AD. Thus, in this study, we 
aim to identify the mechanism of CREBBP acetyltransferase in the 
pathogenesis of metal toxicity-induced AD. Further, we aim to deter-
mine the potential miRNA regulates the acetylation level of non-histone 
substrates through the regulation of CREBBP. Lastly, we aim to identify 
the potential long non-coding RNA, serving as a sponge to miRNA. 

2. Materials and methodology 

2.1. Data collection and data integration 

The AD-related dataset was obtained from a publicly available gene- 
disease association database known as DisGeNET version 7.0 (https: 
//www.disgenet.org/), containing information about the complicated 
biological relationship between 30,170 diseases and 21,671 genes 
(Piñero et al., 2020). Similarly, the datasets related to trace elements 
such as chromium, cobalt, copper, and nickel were obtained from the 
online freely accessible comparative toxicogenomics database (CTD) 
version 2019 (http://ctdbase.org/). The reason for selection of trace 
metals, such as chromium, cobalt, copper, and nickel are the negligence 
of these metals as compared to heavy metals, namely iron, cadmium, 
mercury, arsenic, and other. Further, accumulation of these metals leads 
to the pathological conditions. CTD is an online database that contains 
information regarding associations between genes, disease, chemicals, 
and phenotypes (Davis et al., 2019). Furthermore, after datasets 
collection, chemical data (chromium, cobalt, copper, and nickel) were 
integrated, followed by integration with AD-related datasets using an 
online Venn analysis tool known as Venny version 2.1.0 (https://bioinfo 
gp.cnb.csic.es/tools/venny/) (Oliveros, 2007). 

2.2. Gene set enrichment analysis and pathway analysis 

To extract the exact biological, molecular, and cellular functions of 
genes involved in heavy metal toxicity induced AD, functional enrich-
ment analysis of genes was performed. Gene ontology (GO) was iden-
tified through an online web-server for functional enrichment analysis of 
gene sets known as FunRich (http://www.funrich.org/) (Pathan et al., 
2015). Further, pathways followed by shared genes between metal 
toxicity and AD were identified using the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis with the help of the KEGG 
pathway database (https://www.genome.jp/kegg/) (Ogata et al., 1999). 
KEGG is an online database for understanding the exact biological 
function of the cell. Further, the common molecular signatures of metal 
toxicity-induced AD were imported into BUSCA: Bologna Unified Sub-
cellular Component Annotator (http://busca.biocomp.unibo.it/) 

Fig. 1. Methodology of the current study: firstly, datasets related to chromium, cobalt, copper, and nickel were extracted from the CTD database, while the dataset 
related to the AD was obtained from the DisGeNET database. Venn analysis through Venny 2.1.0 identified 199 common genes among metal toxicity and AD. Further, 
functional enrichment analysis of identified genes was carried out to identify the cellular components, molecular function, biological functions, and pathways 
followed by the common genes. Later on, a protein-protein interaction network through the STRING database and the Cytoscape tool, followed by the network 
clustering, identified the potential biological network with 22 nodes and 121 edges. Furthermore, CytoHubba identified 10 HUB genes involved in the metal toxicity- 
induced AD, such as STAT3 (19), RELA (19), MAPK3 (18), C-FOS (17), EGFR (14), NOS2 (12), HIFIA (12), PTGS2 (7), MAPK8 (13), and AKT1 (12). Transcription 
factors associated with HUB genes were identified with the help of JASPAR and NetworkAnalyst version 3.0. Furthermore, putative CREBBP binding sites and micro- 
RNAs interact with CREBBP, and potential transcription factors were identified. hsa-miR-335-5p, hsa-miR-338-5p, hsa-miR-429, hsa-miR-200c-3p, hsa-miR-129-5p 
were putative micro-RNAs regulates the expression and activity of CREBBP and identified transcription factors. Lastly, long non-coding RNAs that alter the binding 
activity of putative micro-RNAs to target genes were identified. 
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(Savojardo et al., 2018), an online web-server to predict the subcellular 
localization of molecular signatures. 

2.3. Protein-protein interaction network analysis and visualization 

To identify the complex biological association between the genes 
involved in both metal toxicity and AD, an online freely available 
database STRING version 11.0 (https://string-db.org/) (Szklarczyk 
et al., 2019) was used. The confidence score of the protein-protein 
interaction (PPI) network in STRING was set to >0.4, which is me-
dium confidence. Furthermore, to visualize the network and identifi-
cation of network characteristics, a freely available software, Cytoscape 
version 3.8.0 (https://cytoscape.org/) (Excoffier et al., 2017), was used, 
which draws complex biological interactions between them. 

2.4. PPI network clustering and HUB genes identification 

After extracting the information related to the interaction between 
genes, and the visualization of parameters, the clustering of the network 
was done to minimize the network nodes. The Cytoscape software plugin 
MCODE (https://apps.cytoscape.org/apps/mcode) (Bader and Hogue, 
2003) was used to cluster the PPI network. MCODE identifies the highly- 
dense regions of a given PPI network based on network topology. 
Furthermore, to determine the HUB genes from a given network, the 
Cytoscape software plugin CytoHubba (https://apps.cytoscape.org/ 
apps/cytohubba) (Chin et al., 2014) was used. The CytoHubba iden-
tifies the central elements of a given network and sub-network identi-
fication based on characteristic features of a complex interactome. The 
CytoHubba plugin predictions were based on two algorithms, such as 
maximum neighborhood component and maximal clique centrality. 

2.5. Identification of regulatory transcription factors interacts with HUB 
genes 

It is a well-established fact that regulatory biomolecules, such as 
transcription factors (TFs), play a crucial role in gene regulation. TFs 
determine the transcriptional fate of target genes and, based on that, 
activate or deactivate the transcriptional activity of a particular gene. 
HUB genes were analyzed with JASPAR (http://jaspar.genereg.net/) 
(Bryne et al., 2008), an open-source and online database of curated TFs. 
The information extracted from JASPAR was imported into NetworkA-
nalyst version 3.0 (https://www.networkanalyst.ca/) (Zhou et al., 
2019), an online freely available tool to form an interaction network 
between genes-TFs. Top interacting nodes were selected for further 
investigation and analysis. 

2.6. Identification of putative lysine acetylation sites in identified 
transcription factors 

Acetylation is a lysine-specific post-transcriptional modification 
(PTM), which promotes euchromatin structure and activates the tran-
scription process. To find out the potential acetylated lysine residues of 
identified transcription factors, two online web-servers, such as Deep 
PLA (http://deeppla.cancerbio.info/) (Yu et al., 2020) and GPS-PAIL 
(http://pail.biocuckoo.org/) (Deng et al., 2016) were used. The study 
is restricted to identify the potential CREBBP induced acetylation sites. 
Deep PLA is a deep neural network-based online prediction tool, where 
four models are combined into one complete connection layer. Simi-
larly, GPS-PAIL is a machine learning-based online prediction tool, 
which predicts acetylated sites of seven different acetyltransferases. 

2.7. Prediction of potential micro-RNA interacts with acetylated 
transcription factors 

miRNAs are post-transcriptional regulators, which regulate the 
expression of particular proteins. To predict the putative miRNAs bound 

Table 1 
Gene set enrichment analysis (GO analysis and pathway analysis) of 199 com-
mon genes related to metal toxicity and AD.  

Name Fold 
enrichment 

P-value Genes mapped 

Biological process 
Apoptosis  4.206953589 0.000145225 TP53; CASP3; 

MAPK9; BCL2; BAX; 
CASP7; BBC3; CASP9; 
BCL2L11; CASP8; 

Regulation of cell 
cycle  

8.125736768 0.000372966 MAPK9; CDKN1A; 
CCNE2; CHEK2; 
KLF4; 

Anti-apoptosis  11.58336557 0.000376289 SOD2; GPX1; FAS; 
IGF1; 

Protein metabolism  1.747940437 0.004511294 PARP1; MMP1; 
MMP2; ADAMTS1; 
EIF4A1; HSPA5; 
MMP13; ANPEP; 
BMP1; CALR; CCT2; 
DNAJB1; DPP4; F3; 
HSPA9; HSPB1; 
HSPH1; HYOU1; 
PDIA6; RPL15; 
SERPINA1; 
SERPINC1; 
SERPING1; SQSTM1; 
THOP1; 

Metabolism  1.593812016 0.008086365 CAT; NQO1; GSR; 
SOD1; HMOX1; 
PTGS2; GPT; NOS2; 
TXN; GSK3B; LYZ; 
G6PD; HMGCR; 
NAT10; ACHE; 
ALDH1L1; CD36; 
CYCS; FDPS; GCHFR; 
GPX4; IDH2; LDHA; 
NME1; PHYHD1; 
PRDX1; PSAT1; 
SIRT1; TXNRD1; 

Signal transduction  1.339959419 0.009037422 MAPK8; MAPK1; 
AKT1; MAPK3; TNF; 
MAPK9; VEGFA; 
CCND1; FYN; IRS1; 
PLK1; CDK1; 
MAP2K4; EGFR; 
ICAM1; CHEK2; 
LDLR; NOTCH1; 
PLK2; SGK1; TGFB1; 
TGFBI; AGT; 
ARHGEF2; ATM; 
BMP4; CCL5; CD44; 
CD68; CXCR4; DENR; 
DKK1; DUSP6; EDN1; 
FAS; FGFR4; FZD4; 
GDF15; GPNMB; 
HSP90AB1; IGF1; 
IGF2; IL1RL1; 
MAPK14; NTS; PGF; 
PHB; PRKCD; RAB31; 
RGCC; RGS2; S100A6; 
ST13; STIP1; 
TAX1BP1; TGFBR2; 
TLR4;  

Cellular component 
Extracellular  3.124166679 3.33129E− 21 CAT; SOD1; IL6; TNF; 

CXCL8; CDKN1A; 
VEGFA; GPT; GPX1; 
STAT3; TF; IFNG; 
TIMP1; TXN; APOA1; 
EGFR; ICAM1; IL1B; 
LYZ; MMP1; MMP2; 
MT2A; TFRC; VIM; 
ADAMTS1; C3; EGR1; 
FABP3; G6PD; 
HMGCR; IL4; MMP13; 
TGFB1; TGFBI; ACHE;  
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with CREBBP and identified TFs simultaneously, we used an online in-
tegrated miRNA target database known as mirDIP (https://ophid. 
utoronto.ca/mirDIP/) (Tokar et al., 2018). Only those miRNAs with 
confidence scores high (top 5%) and very high (top 1%) were selected 
for further studies. Further, the Venny tool was used to identify the 
common miRNAs among CREBBP, NFKβ1, CREB1, GATA2, and FOXA1. 
Moreover, the predicted miRNAs were subjected to TissueAtlas (https 
://ccb-web.cs.uni-saarland.de/tissueatlas/) (Ludwig et al., 2016), an 
online web server to identify the potential of predicted miRNAs for 
expressing in healthy brain tissues (Fig. 1). 

2.8. Validation of predicted micro-RNA's through disease ontology and 
reactome pathway analysis 

It is crucial to validate that the predicted miRNAs are involved in the 
pathogenesis of AD and central nervous system diseases. MIENTURNET 
(http://userver.bio.uniroma1.it/apps/mienturnet/) (Licursi et al., 
2019), an online web tool devised for miRNA functional enrichment 
analysis and miRNA-target prediction. Similarly, miRNAs involved in 
signaling transduction were predicted using the MIENTURNET web tool. 
Further, it is a well-established notion that gene expression is regulated 
by non-coding RNAs, such as long non-coding RNAs and circular RNAs. 
Thus, it is equally important to identify the long non-coding RNAs that 
will regulate the activity of selected miRNAs in the pathogenesis of AD. 
StarBase V2.0 (http://starbase.sysu.edu.cn/) (Li et al., 2014) was used 
to identify the potential non-coding RNA that simultaneously binds with 
selected miRNAs. 

3. Results 

3.1. Common genes involved in metal toxicity and AD 

Data extraction from the CTD database identified that genes involved 
in chromium, cobalt, copper, and nickel toxicity are 2149, 4804, 5862, 
and 7649, respectively. The Venn analysis of the genes revealed that 376 
genes were common among them. Similarly, a total of 3397 genes 
involved in AD pathogenesis were extracted from the DisGeNET data-
base. Furthermore, Venn analysis of metal toxicity linked genes and AD- 
related genes identified 199 shared genes. 

3.2. Functional enrichment analysis of common genes: GO analysis, 
pathway analysis, and subcellular localization 

A total of 199 common genes identified in metal toxicity and AD 
were subjected to functional enrichment analysis such as GO analysis 
and pathway analysis. Gene set enrichment analysis of common genes 
enables identifying cellular functions, molecular functions, biological 
processes, and pathways. The cut-off p-value for identifying cellular, 
molecular, biological, and pathway functions was set at less than 0.05, 
as shown in Table 1. Among biological processes, apoptosis (5.1%), 
regulation of cell cycle (2.6%), anti-apoptosis (2%), protein metabolism 
(12.8%), and metabolism (14.8%) were top 5 ranked processes. Simi-
larly, extracellular (39.2%), extracellular space (16.5%), cytosol 
(26.8%), exosomes (35.6%), and nucleoplasm (14.4%) were top-ranked 
cellular components, while protein serine/threonine kinase activity 
(7.1%), peroxidase activity (2%), metallopeptidase activity (3.6%), 
cytokine activity (3.6%), and superoxide dismutase activity (1%) were 
top-ranked molecular functions of common genes. 

Further, pathway analysis of common genes demonstrated the 
involvement of AP-1 transcription factor network (43.2%), Integrin- 
linked kinase signaling (43.8%), TRAIL Signaling pathway (59.8%), 
VEGF and VEGFR signaling cascade (59.2%), and VEGFR1 and VEGFR2 
mediated signaling cascade (58.6%). Moreover, the fold enrichment 
value of the above-described cellular pathways is 4.375, 4.211, 2.837, 
2.860, and 2.849, respectively. Thus, the results concluded that the 
common genes were mainly involved in apoptosis, and cell-cycle 

Table 1 (continued ) 

Name Fold 
enrichment 

P-value Genes mapped 

ADM; AGT; ALB; 
ANPEP; APOB; 
APOC3; BMP1; BMP4; 
CALR; CCL2; CCL5; 
CFB; CFI; CXCL1; 
DKK1; DPP4; EDN1; 
F3; FAS; FGFR4; FN1; 
GDF15; HMGB1; 
HSP90AB1; IGF1; 
IGF2; IL10; IL1RL1; 
IL2; NME1; NTS; 
PDIA6; PGF; PHB; 
RGS2; SERPINA1; 
SERPINC1; 
SERPING1; SHBG; 
THOP1; TXNRD1; 

Extracellular space  5.943226358 3.12411E− 16 SOD1; IL6; HMOX1; 
TNF; CXCL8; VEGFA; 
APOA1; EGFR; 
ICAM1; IL1B; LYZ; 
MMP2; IL4; MMP13; 
TGFB1; TGFBI; ADM; 
AGT; ALB; APOC3; 
CALR; CCL2; CXCL1; 
EDN1; F3; FN1; 
HMGB1; IGF1; IL10; 
IL2; SERPINA1; 
SERPINC1; 

Cytosol  3.311818965 4.53947E− 15 TP53; CASP3; GSR; 
SOD1; HMOX1; 
MAPK8; MAPK1; 
AKT1; MAPK3; 
CDKN1A; CCND1; 
FYN; GPX1; IRS1; 
RELA; BCL2; HDAC1; 
BAX; CASP7; PLK1; 
CASP9; CDK1; 
MAP2K4; NOS2; TXN; 
GSK3B; TCF4; VIM; 
BCL2L11; CASP8; 
CCNE2; EIF4A1; 
G6PD; NOTCH1; 
ARHGEF2; CALR; 
CCT2; CYCS; 
DNAJB1; FAS; GART; 
HSP90AB1; HSPH1; 
LDHA; MAPK14; 
PPIA; PRKCD; PSAT1; 
RPL15; S100A6; 
SQSTM1; TXNRD1; 

Exosomes  2.533787837 3.15643E− 14 NQO1; GSR; SOD1; 
GPT; TF; BAX; CASP9; 
CDK1; TXN; APOA1; 
EGFR; ICAM1; LYZ; 
SLC2A1; TFRC; VIM; 
C3; EIF4A1; FABP3; 
G6PD; HSPA5; 
NOTCH1; PCNA; 
TGFB1; TGFBI; AGT; 
ALB; ALDH1L1; 
ANPEP; APOB; CALR; 
CCT2; CD36; CD44; 
CFI; CXCR4; DNAJB1; 
DPP4; FAS; FDPS; 
FN1; GART; GPX4; 
HSP90AB1; HSPA9; 
HSPB1; HSPH1; 
HYOU1; LDHA; 
NME1; OPTN; PDIA6; 
PHB; PPIA; PRDX1; 
PRKCD; PSAT1; 
RBM3; RPL15; 
S100A6; SERPINA1; 
SERPING1; SLC2A3; 
SQSTM1; ST13;  
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regulation causes neuronal cell death in metal toxicity induced AD. 
Fig. 2(A) demonstrated the functional enrichment analysis of common 
genes such as cellular components, biological processes, molecular 
functions, and pathways. Further, subcellular localization prediction of 
shared genes involved in metal toxicity-induced AD indicates the crucial 
role of cytoplasm (60 genes: 30.2%). The analysis found that the per-
centage of genes present in the extracellular space (58 genes: 29.1%) is 
almost comparable to that of the cytoplasm. In addition, apart from the 
cytoplasm and extracellular space, the shared genes were found in the 
nucleus (35 genes: 17.6%), plasma membrane (21 genes: 10.6%), 
mitochondria (14 genes: 7.0%), endomembrane system (6 genes: 3.0%), 
and organelle membrane (5 genes: 2.5%) Fig. 2(B). 

3.3. PPI network of common genes and HUB genes in the network 

To construct a global PPI network of common genes involved in 
metal toxicity and AD, the genes were entered as a list in the STRING 
database with a medium confidence score. The obtained output was 
imported into the Cytoscape software as input with the help of the 
Reactome FI plugin for data visualization. The results of the PPI network 
show 175 nodes and 1138 edges in the network (Fig. 3(A)). Nodes 
represent the protein signature, while edges are the interaction between 
different signatures. The size of the particular node decreases as the 
degree of the node decreases. Similarly, the edge thickness depends on 
the experimental validation of the interaction among two different 
nodes. The characteristics and parameters of the PPI network are given 
in Table 2. 

Further, the global PPI network clustering was carried out to extract 
the highly-dense connected region of the network with the help of M- 
Code (Fig. 3(B)). Cluster 1 with an MCode score of 11.524, the number 
of nodes equal to 22, and the number of edges equal to 121 were selected 
for further investigations. Herein, we selected cluster 1 as it has a higher 
MCODE score and, thus, higher accuracy and biological significance 
than other predicted clusters. The density, centralization, and hetero-
geneity of the cluster network are 0.524, 0.419, and 0.385, respectively. 
Other parameters and characteristics of the cluster network are given in 
Table 2. Furthermore, the top 10 proteomic signatures or HUB genes 
were selected from the cluster network with the help of the CytoHubba. 
STAT3 (19), RELA (19), MAPK3 (18), C-FOS (17), EGFR (14), NOS2 
(12), HIFIA (12), PTGS2 (7), MAPK8 (13), and AKT1 (12) were identi-
fied as HUB genes in the network (Fig. 3(C)). The network density, 
network centralization, and network heterogeneity of the HUB genes 
network are 0.889, 0.139, and 0.148, respectively. 

3.4. Regulatory TFs involved in the regulation of HUB genes expression 

The selected HUB genes were further analyzed to identify tran-
scriptional signatures that are TFs involved in regulating metal toxicity 
induced AD. The HUB genes were analyzed with the JASPAR tool to 
identify regulatory TFs, and then with the help of network analyst 
interaction networks between HUB genes and TFs, were identified 
(Fig. 4(A)). Analysis of the HUB genes-TFs network demonstrated 47 
nodes and 73 edges in the network. Table 2 describes the parameters of 
the HUB genes-TFs interaction network. 47 TFs were identified, which 
regulate the transcriptional activity of HUB genes. To minimize the 
number of transcriptional signatures, the TFs with node degrees equal to 
or greater than 3 were selected for further investigations. The rationale 
behind selecting transcription factors with node degrees equal to or 
greater than 3 is to minimize the number of transcription factors for 
further analysis. Another necessary explanation for selecting transcrip-
tion factors with node degree equal to 3 or greater than 3 is to remove 
irrelevant transcription factors associated with molecular signatures of 
metal toxicity-induced AD. The node degree equal or greater than three 
signifies that a particular transcription factor is associated with either 3 
molecular signatures or above 3 molecular signatures involved in metal 
toxicity-induced AD. Thus, these transcription factors have a higher 

Table 1 (continued ) 

Name Fold 
enrichment 

P-value Genes mapped 

STIP1; TAX1BP1; 
TPM1; TXNRD1; 

Nucleoplasm  4.679352988 9.37804E− 12 TP53; CASP3; JUN; 
MAPK8; MAPK1; 
AKT1; MAPK3; 
MAPK9; CDKN1A; 
CCND1; RELA; MYC; 
CASP7; PLK1; CDK1; 
ATF2; CCNE2; MCM2; 
PCNA; ATM; DUSP6; 
HMGB1; MAPK14; 
PHB; PPARGC1A; 
SFPQ; SIRT1; 
SQSTM1; 

Cytoplasm  1.61016101 1.28598E− 11 CAT; TP53; NQO1; 
CASP3; GSR; HIF1A; 
SOD1; JUN; MAPK8; 
MAPK1; PTGS2; 
AKT1; MAPK3; 
MAPK9; PARP1; 
CDKN1A; VEGFA; 
CCND1; FYN; GPT; 
GPX1; IRS1; RELA; 
STAT3; TF; BCL2; 
HDAC1; BAX; CASP7; 
NFE2L2; PLK1; BBC3; 
CASP9; CDK1; 
MAP2K4; NOS2; TXN; 
AHR; APOA1; ATF2; 
EGFR; GSK3B; 
ICAM1; IL1B; MT2A; 
SLC2A1; VIM; 
BCL2L11; C3; CASP8; 
CHEK2; CREBBP; 
EIF4A1; ESR1; 
FABP3; G6PD; 
HSPA5; PCNA; PLK2; 
PPARA; SGK1; 
SLC11A2; SLC40A1; 
TGFB1; TGFBI; ADM; 
AGT; ALB; ALDH1L1; 
ARHGEF2; ATM; 
BMP1; C1QBP; CALR; 
CCL5; CCT2; CD36; 
CD44; CXCR4; CYCS; 
DHFR; DNAJB1; 
DUSP6; EDN1; FAS; 
FDPS; FZD4; GCHFR; 
GPX4; HMGB1; 
HSP90AB1; HSPA9; 
HSPB1; HSPH1; 
HYOU1; IGF1; KLF4; 
LDHA; MAPK14; 
NFIA; NME1; OPTN; 
PHB; PPIA; PRDX1; 
PRKCD; RAB31; 
RGCC; RGS2; S100A6; 
SERPINA1; SFPQ; 
SIRT1; SQSTM1; 
ST13; STIP1; 
TAX1BP1; TGFBR2; 
THOP1; TLR4; TPM1; 
TXNRD1;  

Molecular functions 
Protein serine/ 

threonine kinase 
activity  

4.303851101 5.27737E− 06 MAPK8; MAPK1; 
AKT1; MAPK3; 
MAPK9; PLK1; CDK1; 
GSK3B; CHEK2; PLK2; 
SGK1; ATM; MAPK14; 
PRKCD; 

Peroxidase activity  18.53093404 5.61002E− 05 PTGS2; GPX1; GPX4; 
PRDX1; 

Metallopeptidase 
activity  

6.417319661 0.000113325 MMP1; MMP2; 
ADAMTS1; MMP13;  
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weightage or higher probability of being involved in metal toxicity- 
induced AD. Thus, CREB1 (5), FOXC1 (4), GATA2 (4), NFKB1 (4), SRF 
(3), TFAP2A (3), FOXA1 (3), and MEF2A (3) were identified as top 
interacting TFs (Table 3). 

3.5. Literature validation of regulatory molecules and protein sub-cellular 
localization 

Transcriptomics signatures and post-transcriptomics signatures were 
further investigated and validated to identify their potential role in 
regulating HUB genes or involvement in disease pathogenesis. The TFs 
were analyzed with MalaCards to extract the role of regulatory mole-
cules in the progression of the disease (Table 3). Furthermore, HUB 
genes were analyzed for their sub-cellular localization. Among the HUB 
genes, 50% were cytoplasmic (MAPK3, RELA, NOS2, MAPK8, AKT1), 
30% were nuclear proteins (STAT3, C-FOS, HIF1A), 10% were endo-
plasmic reticulum complex protein (PTGS2), and 10% were Golgi 
complex proteins (EGFR). 

3.6. CREBBP-induces CREB1, GATA2, NFKB1, and FOXA1 acetylation 
at K122, K399, K967, and K350 

Acetylation of TFs at specific lysine residues causes transcriptional 
activation and thus promotes the cellular and biological processes. The 
identified TFs, such as CREB1, FOXC1, GATA2, NFKB1, SRF, TFAP2A, 
FOXA1, and MEF2A, were analyzed with Deep-PLA and GPS-PAIL to 
determine the crucial common CREBBP-induce acetylated lysine resi-
dues with high confidences score. For Deep-PLA, if the score is less than 
5%, it must be said as acetylated lysine residue with high confidence, 
whereas, for GPS-PAIL, if the score is greater than 1.0, it is said to be 
acetylated lysine residue with high confidence. Our analysis identified a 
total of 4 acetylated lysine residues with high confidence, each one in 
four identified TFs. CREB1 (K122), GATA2 (K399), FOXA1 (K350), and 
NFKB (K967) were identified as critical lysine residues (Table 4). 
FOXC1, SRF, TFAP2A, and MEF2A did not have any common acetylated 
lysine residue and thus were excluded for further analysis. Further, our 
prediction of CREBBP-induced acetylation sites for CREB coincides with 
the previously reported study. For instance, Lu et al., 2003 reported that 
the acetylation of CREB at K91, K94, K122, and K136 by CREBBP 
enhanced CREB-dependent transcription (Lu et al., 2003). In addition, a 
previously published study identified the GATA2 acetylation on K399 by 
p300, where the authors concluded that acetylation of GATA2 in 293T 
cells increases its DNA-binding activity (Hayakawa et al., 2004). 

3.7. hsa-miR-129-5p and hsa-miR-335-5p are putative micro-RNAs 
involved in the pathogenesis of AD 

miRNAs are post-transcriptional regulators, which regulate the ac-
tivity of a particular gene. Moving forward, we aim to identify the 
critical miRNAs that regulate the expression of CREBBP, CREB1, GATA2, 
NFKB1, and FOXA1. mirDIP, an online miRNA-target prediction tool, 
identified 379 miRNAs, 640 miRNAs, 145 miRNAs, 127 miRNAs, and 
223 miRNAs in CREBBP, CREB1, GATA2, NFKB1, and FOXA1, respec-
tively. Further, miRNAs having confidence score high or very high with 
a particular target, such as CREBBP (85 very high and 294 high), CREB1 
(220 very high and 420 high), GATA2 (36 very high and 109 high), 
NFKB1 (32 very high and 95 high), and FOXA1 (71 very high and 152 
high) were selected for further analysis. Moreover, Venn analyses were 
carried to identify the common miRNAs associated with CREBBP, 
CREB1, GATA2, NFKB1, and FOXA1 (Fig. 4(B)). Our analysis identified 
five miRNAs, such as hsa-miR-338-5p, hsa-miR-335-5p, hsa-miR-429, 
hsa-miR-200c-3p, and hsa-miR-129-5p, were important miRNAs asso-
ciated with all five selected targets. Furthermore, it is equally important 
to check whether the selected miRNA was expressed in brain tissues or 
not. For this, we analyzed the expression of putative miRNA in brain 
tissue samples from TissueAtlas, where we identified the expression of 

Table 1 (continued ) 

Name Fold 
enrichment 

P-value Genes mapped 

ANPEP; BMP1; 
THOP1; 

Cytokine activity  6.057503589 0.000162709 IL6; CXCL8; IFNG; 
IL1B; IL4; IL10; IL2; 

Superoxide dismutase 
activity  

61.74895155 0.000346553 SOD1; SOD2; 

Chaperone activity  5.144142997 0.00044355 HSPA5; CALR; CCT2; 
HSP90AB1; HSPA9; 
HSPB1; HYOU1;  

Biological pathways 
AP-1 transcription 

factor network  
4.375449634 1.06375E− 30 TP53; CASP3; HIF1A; 

IL6; JUN; HMOX1; 
MAPK8; MAPK1; 
PTGS2; AKT1; 
MAPK3; TNF; CXCL8; 
MAPK9; CDKN1A; 
VEGFA; CCND1; FYN; 
RELA; STAT3; TF; 
BCL2; HDAC1; IFNG; 
MYC; BAX; CDK1; 
MAP2K4; NOS2; 
TIMP1; TXN; ATF2; 
FOS; GSK3B; ICAM1; 
MMP1; MMP2; MT2A; 
SLC2A1; TCF4; TFRC; 
BCL2L11; CASP8; 
CREBBP; DDIT3; 
EGR1; ESR1; IL4; 
SGK1; SP1; TGFB1; 
ACHE; ADM; AGT; 
ATM; BHLHE40; 
CCL2; CXCR4; DKK1; 
EDN1; GJA1; HSPB1; 
IL10; IL2; JUNB; 
KLF4; LDHA; 
MAPK14; NTS; 
PPARGC1A; PRDX1; 
PRKCD; TGFBR2; 

Integrin-linked kinase 
signaling  

4.21157898 4.56458E− 30 TP53; CASP3; HIF1A; 
IL6; JUN; HMOX1; 
MAPK8; MAPK1; 
PTGS2; AKT1; 
MAPK3; TNF; CXCL8; 
MAPK9; PARP1; 
CDKN1A; VEGFA; 
CCND1; FYN; RELA; 
STAT3; TF; BCL2; 
HDAC1; IFNG; MYC; 
BAX; CDK1; MAP2K4; 
NOS2; TIMP1; TXN; 
ATF2; FOS; GSK3B; 
ICAM1; MMP1; 
MMP2; MT2A; 
SLC2A1; TCF4; TFRC; 
BCL2L11; CASP8; 
CREBBP; DDIT3; 
EGR1; ESR1; IL4; 
SGK1; SP1; TGFB1; 
ACHE; ADM; AGT; 
ATM; BHLHE40; 
CCL2; CXCR4; DKK1; 
EDN1; GJA1; HSPB1; 
IL10; IL2; JUNB; 
KLF4; LDHA; 
MAPK14; NTS; 
PPARGC1A; PRDX1; 
PRKCD; TGFBR2; 

TRAIL signaling 
pathway  

2.837162097 1.33272E− 28 CAT; TP53; CASP3; 
HIF1A; IL6; JUN; 
HMOX1; MAPK8; 
MAPK1; PTGS2; 
AKT1; MAPK3; TNF; 
CXCL8; MAPK9; 
PARP1; CDKN1A;  
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particular miRNA in the brain. hsa-miR-338-5p (23.09484), hsa-miR- 
335-5p (169.42783), hsa-miR-429 (4.26456), hsa-miR-200c-3p 
(2.72829), and hsa-miR-129-5p (251.58495) were expressed in 43, 46, 
21, 28, and 47 brain tissue samples, respectively (Fig. 4(B)). Further, we 
checked the role of putative miRNAs in the pathogenesis of AD. Our 
study identified that miRNAs, such as hsa-miR-335-5p (169.42783) and 
hsa-miR-129-5p (251.58495), were significantly enriched in the AD 
pathway with a p-value less than 0.05 (Fig. 4(B)). Thus, hsa-miR-338-5p 
(23.09484), hsa-miR-429 (4.26456), and hsa-miR-200c-3p (2.72829) 
were excluded from further analysis. 

3.8. OIPS-AS1 regulates the expression and activity of hsa-miR-129-5p 
and hsa-miR-335-5p in the pathogenesis of metal toxicity-induce AD 

Apart from AD, it is equally important to analyze the role of identi-
fied miRNAs in the pathogenesis and progression of brain diseases. hsa- 
miR-335-5p is involved in AD (0.03), developmental disorder of mental 
health (0.2), and tauopathy (0.03), whereas, hsa-miR-129-5p is involved 
in the pathogenesis of AD (0.002), dementia (0.107), Lewy body de-
mentia (0.03), Parkinson's disease (0.13), and tauopathy (0.002). Thus, 
the analysis concluded that both hsa-miR-335-5p and hsa-miR-129-5p 
are significantly involved in the pathogenesis of AD and tauopathy 
(Fig. 5(A)). Further, our study also concluded that hsa-miR-338-5p is 
significantly enriched in the pathogenesis of Ataxia Telangiectasia 
(0.019), whereas, hsa-miR-429 is significantly enriched in autism 
spectrum disorder (0.020), brain edema (0.03), brain ischemia (0.001), 
CNS vasculitis (0.004), a developmental disorder of mental health 
(0.026), and peripheral nervous system disease (0.02). Similarly, hsa- 
miR-200c-3p is significantly enriched in ARMD (0.007), autism spec-
trum disorder (0.003), brain ischemia (0.005), CNS vasculitis (0.013), 
cerebral arterial disease (0.006), dementia (0.04), developmental dis-
order of mental health (0.0008), diabetic neuropathy (0.005), and 
macular degeneration (0.007). 

Further, we analyzed the signaling mechanism followed by hsa-miR- 
335-5p and hsa-miR-129-5p in the pathogenesis of AD. Our results 
demonstrated that hsa-miR-129-5p significantly enriches corticotropin- 
releasing hormone pathway (9.91805E− 05), IL17 signaling pathway 
(0.000468125), EGF/EGFR signaling pathway (0.000533398), 
Interleukin-11 signaling pathway (0.000945926), and VEGFA-VEGFR2 
(0.001582748) signaling pathway. Similarly, the TGF-beta signaling 
pathway (5.90563E− 06), IL-2 signaling pathway (8.98756E− 06), ErbB 
signaling pathway (9.29391E− 05), B cell receptor signaling pathway 
(0.000115973), and IL-7 signaling pathway (0.000302961) are the top 5 
signaling cascade in the hsa-miR-335-5p (Fig. 5(B)). 

It is well-known that non-coding RNAs, namely long non-coding 
RNAs and circular RNAs, bind to the miRNA response element and 
alter the binding activity of miRNA to a target gene. Thus, keeping this 
in mind, we analyzed the putative long non-coding RNAs that alter the 
activity of five identified miRNAs. OIP5-AS1 is identified as long non- 
coding RNAs that alter the binding affinity of hsa-miR-335-5p and 
hsa-miR-129-5p to CREBBP in the pathogenesis of AD. 

4. Discussion and conclusion 

In the following study, we utilized a publicly accessible database, the 
CTD database and the DisGeNET database were used to identify com-
mon molecular signatures in metal toxicity and AD. The Venn analysis of 
genes involved in copper, chromium, cobalt, and nickel toxicity identi-
fied 376 shared genes. Furthermore, the Venn analysis of shared metal 
toxicity genes with the genes expressed in the AD revealed the presence 
of 199 common molecular genes that has been linked to heavy metal 
toxicity and AD. The gene set enrichment analysis of shared molecular 
targets identified the involvement of apoptosis, regulation of cell cycle, 
anti-apoptosis, protein metabolism, metabolism, signal transduction as 
the crucial biological process followed by shared molecular targets. 
Moreover, pathway analysis of common molecular targets identified the 

Table 1 (continued ) 

Name Fold 
enrichment 

P-value Genes mapped 

SOD2; VEGFA; 
CCND1; FYN; GPX1; 
IRS1; RELA; STAT3; 
TF; BCL2; HDAC1; 
IFNG; MYC; BAX; 
CASP7; PLK1; BBC3; 
CASP9; CDK1; 
MAP2K4; NOS2; 
TIMP1; TXN; ATF2; 
EGFR; FOS; GSK3B; 
ICAM1; MMP1; 
MMP2; MT2A; 
SLC2A1; TCF4; TFRC; 
VIM; BCL2L11; 
CASP8; CHEK2; 
CREBBP; DDIT3; 
EGR1; EIF4A1; ESR1; 
IL4; MMP13; PCNA; 
SGK1; SP1; TGFB1; 
ACHE; ADM; AGT; 
ATM; BHLHE40; 
BMP4; CCL2; CCL5; 
CXCR4; CYCS; DKK1; 
DUSP6; EDN1; FAS; 
FGFR4; FN1; GDF15; 
GJA1; HSPB1; IGF1; 
IGF2; IL10; IL2; 
JUNB; KLF4; LDHA; 
MAPK14; NME1; NTS; 
PPARGC1A; PRDX1; 
PRKCD; RGCC; SIRT1; 
TGFBR2; 

VEGF and VEGFR 
signaling network  

2.860893735 1.62998E− 28 CAT; TP53; CASP3; 
HIF1A; IL6; JUN; 
HMOX1; MAPK8; 
MAPK1; PTGS2; 
AKT1; MAPK3; TNF; 
CXCL8; MAPK9; 
CDKN1A; SOD2; 
VEGFA; CCND1; FYN; 
GPX1; IRS1; RELA; 
STAT3; TF; BCL2; 
HDAC1; IFNG; MYC; 
BAX; PLK1; BBC3; 
CASP9; CDK1; 
MAP2K4; NOS2; 
TIMP1; TXN; ATF2; 
EGFR; FOS; GSK3B; 
ICAM1; MMP1; 
MMP2; MT2A; 
SLC2A1; TCF4; TFRC; 
BCL2L11; CASP8; 
CHEK2; CREBBP; 
DDIT3; EGR1; 
EIF4A1; ESR1; IL4; 
MMP13; PCNA; SGK1; 
SP1; TGFB1; ACHE; 
ADM; AGT; ATM; 
BHLHE40; BMP4; 
CCL2; CCL5; CXCR4; 
CYCS; DKK1; DUSP6; 
EDN1; FAS; FGFR4; 
FN1; GDF15; GJA1; 
HSP90AB1; HSPB1; 
IGF1; IGF2; IL10; IL2; 
JUNB; KLF4; LDHA; 
MAPK14; NME1; NTS; 
PGF; PPARGC1A; 
PRDX1; PRKCD; 
RGCC; SIRT1; 
TGFBR2; 

Signaling events 
mediated by 
VEGFR1 and 
VEGFR2  

2.849811345 5.67443E− 28 CAT; TP53; CASP3; 
HIF1A; IL6; JUN; 
HMOX1; MAPK8; 
MAPK1; PTGS2;  
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potential involvement of AP-1 transcription factor network (43.2%), 
Integrin-linked kinase signaling (43.8%), TRAIL Signaling pathway 
(59.8%), VEGF and VEGFR signaling cascade (59.2%), and VEGFR1 and 
VEGFR2 mediated signaling cascade (58.6%). Further, the common 
molecular targets were analyzed to identify associated proteomic sig-
natures, highly dense regions of the network, and highly connected 
nodes with the help of network biology. The protein-protein interaction 
network has 175 nodes, and 1138 edges, where nodes were mapped 
according to their degree of nodes and edges were mapped according to 
FI score. Clustering of global PPI network identified highly dense regions 
with a clustering score of 11.524 with 22 nodes and 121 edges. Further 
investigation identified HUB genes in the cluster network, which are 
STAT3, MAPK3, RELA, C-FOS, EGFR, NOS2, HIF1A, PTGS2, MAPK8, 
and AKT1. PPI network analysis of HUB genes identified that the 
network has 10 nodes and 40 edges with network density and clustering 
coefficient of 0.889 and 0.916, respectively. Apart from identified 10 
nodes or proteomic signatures or HUB genes, other nodes of cluster 1, 
such as IL2, IL6, Bcl-2, HDAC1, TNF, IL1β, ATF2, and others were found 
to be associated with AD pathways through metal toxicity. For instance, 
Cobalt chloride mimics hypoxia in R28 cells, which causes mitochon-
drial membrane potential disruption and activation of caspase 3 and 
ultimately leads to neuronal cell death. The same study also concluded 
that IL6 mediated its pro-survival effect against cobalt toxicity via 
STAT3 phosphorylation and activation of anti-apoptotic proteins (Tha-
kur et al., 2021). Similarly, another study demonstrated that adminis-
tration of cobalt nanoparticles causes an increase in inflammation- 
relation proteins, such as NLRP3 and IL1β in C57BL/6J mice brain, 
suggesting the role of microglia-involved inflammation (J. Li et al., 
2021). Further, Yubolphan et al., 2021 demonstrated that administra-
tion of nickel at 600.60 μM and >1000 μM in astrocytoma cells and 
primary human astrocytes, respectively, triggered apoptotic pathway 
through decreased activity of Bcl-2 and increased activity of caspase 3 
(Yubolphan et al., 2021). Kitazawa et al., 2016 concluded that the 
copper-Aβ complex inhibits microglial phagocytosis and increases TNFα 
and IL1β clearance, leading to decreased activity of LRP1, which acti-
vates the inflammatory pathway (Kitazawa et al., 2016; Newcombe 
et al., 2018). 

Further, CREB1 (5), FOXC1 (4), GATA2 (4), NFKB1 (4), SRF (3), 
TFAP2A (3), FOXA1 (3), and MEF2A (3) were identified as top inter-
acting TFs, which regulates the expression activity of HUB genes. Lately, 
literature validation confirmed the role of identified TFs in the patho-
genesis and progression of AD (Ascolani et al., 2012; Bartolotti et al., 
2016; Cong et al., 2021; H. Li et al., 2021; Rahman et al., 2020, 2019). 
For instance, activation of CREB1 and acquisition of transcription co-
factors, such as CREBBP, is crucial for memory formation, whereas, 
deficiency of NFKB1 causes early onset of memory loss (Bartolotti and 
Lazarov, 2019; Fielder et al., 2020). Similarly, silencing SRF reversed 
contractile protein content and rescued from a hypercontractile 
phenotype in AD, while TFAP2A is involved in the genetic variants 
associated with a high risk of dementia (Chow et al., 2007; Ho et al., 
2020). Lately, we identified the CREBBP-induced acetylation sites of the 
eight TFs. CREBBP, also called CBP or KAT3A is involved in acetylation 
by modulating different signaling pathways, such as calcium signaling, 
notch signaling, response to hypoxia, and NFκB signaling (Dancy and 
Cole, 2015). Recent studies demonstrated the potential link between 
metal toxicity and the acetylation process. For instance, Kang et al., 
2004 concluded that copper at both toxic and non-toxic levels (100 or 
200 μM) causes histone hypoacetylation in Hep3B cultured cells through 
inhibiting specific histone acetyltransferase activity (Kang et al., 2004). 
Further, it was concluded that administration of hexavalent chromium 
(10 μM) downregulates histone H4 acetylation at K16 through activa-
tion of stressor protein Nupr1 (D. Chen et al., 2016). Similarly, chro-
mium (12.5 μM) administration causes inhibition of biotinidase, which 
could be reversed by increased acetylation levels (Xia et al., 2011). 
Recently, Zhou et al., 2021 demonstrated that administration of nickel 
causes a reduction in H3K9 acetylation levels, which leads to repression 

Table 1 (continued ) 

Name Fold 
enrichment 

P-value Genes mapped 

AKT1; MAPK3; TNF; 
CXCL8; MAPK9; 
CDKN1A; SOD2; 
VEGFA; CCND1; FYN; 
GPX1; IRS1; RELA; 
STAT3; TF; BCL2; 
HDAC1; IFNG; MYC; 
BAX; PLK1; BBC3; 
CASP9; CDK1; 
MAP2K4; NOS2; 
TIMP1; TXN; ATF2; 
EGFR; FOS; GSK3B; 
ICAM1; MMP1; 
MMP2; MT2A; 
SLC2A1; TCF4; TFRC; 
BCL2L11; CASP8; 
CHEK2; CREBBP; 
DDIT3; EGR1; 
EIF4A1; ESR1; IL4; 
MMP13; PCNA; SGK1; 
SP1; TGFB1; ACHE; 
ADM; AGT; ATM; 
BHLHE40; BMP4; 
CCL2; CCL5; CXCR4; 
CYCS; DKK1; DUSP6; 
EDN1; FAS; FGFR4; 
FN1; GDF15; GJA1; 
HSP90AB1; HSPB1; 
IGF1; IGF2; IL10; IL2; 
JUNB; KLF4; LDHA; 
MAPK14; NME1; NTS; 
PPARGC1A; PRDX1; 
PRKCD; RGCC; SIRT1; 
TGFBR2; 

IFN-gamma pathway  2.849811345 5.67443E− 28 CAT; TP53; CASP3; 
HIF1A; IL6; JUN; 
HMOX1; MAPK8; 
MAPK1; PTGS2; 
AKT1; MAPK3; TNF; 
CXCL8; MAPK9; 
CDKN1A; SOD2; 
VEGFA; CCND1; FYN; 
GPX1; IRS1; RELA; 
STAT3; TF; BCL2; 
HDAC1; IFNG; MYC; 
BAX; PLK1; BBC3; 
CASP9; CDK1; 
MAP2K4; NOS2; 
TIMP1; TXN; ATF2; 
EGFR; FOS; GSK3B; 
ICAM1; IL1B; MMP1; 
MMP2; MT2A; 
SLC2A1; TCF4; TFRC; 
BCL2L11; CASP8; 
CHEK2; CREBBP; 
DDIT3; EGR1; 
EIF4A1; ESR1; IL4; 
MMP13; PCNA; SGK1; 
SP1; TGFB1; ACHE; 
ADM; AGT; ATM; 
BHLHE40; BMP4; 
CCL2; CCL5; CXCR4; 
CYCS; DKK1; DUSP6; 
EDN1; FAS; FGFR4; 
FN1; GDF15; GJA1; 
HSPB1; IGF1; IGF2; 
IL10; IL2; JUNB; 
KLF4; LDHA; 
MAPK14; NME1; NTS; 
PPARGC1A; PRDX1; 
PRKCD; RGCC; SIRT1; 
TGFBR2;  
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Fig. 2. Gene set enrichment analysis of common genes between chromium, cobalt, copper, and nickel-associated Alzheimer's disease (FunRich and KEGG pathway 
database). (A) represents the bar-graph of biological process, cellular components, molecular function, and associated pathway. Among the biological process, signal 
transduction, metabolism, protein metabolism, anti-apoptosis, apoptosis, and cell cycle regulation with p-value 1, 1, 0.803, 0.067, 0.066, and 0.026 were top-ranked. 
Similarly, chaperon's activity, superoxide dismutase activity, cytokine activity, metallopeptidase activity, peroxidase activity, and protein serine/threonine activity 
were top-ranked molecular functions. At the same time, cytoplasm, nucleoplasm, exosomes, cytosol, extracellular space, and extracellular were top-ranked cellular 
components. Moreover, signaling events mediated by VEGFR1 and VEGFR2 (58.6%), IFN-gamma pathway (58.6%), VEGF and VEGFR signaling network (59.2%), 
TRAIL signaling pathway (59.8%), integrin-linked kinase signaling (43.8%), and AP-1 transcription factor network (43.2%) were top-ranked biological pathway 
associated with shared genes. (B) Subcellular localization of the shared genes involved in metal toxicity-induced AD through BUSCA: Bologna Unified Subcellular 
Component Annotator. 
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Fig. 3. (A) It represents the protein-protein interaction network of 199 common genes between chromium, cobalt, copper, and nickel associate metal toxicity 
induced Alzheimer's disease. The nodes in the network were ranked according to their degree. The size of the node decreases as the degree of node decreases. 
Similarly, the color of the node increases from a light color to dark color as the degree of the node decreases. Furthermore, the size of the edge between nodes 
depends on edge betweenness. (B) It represents the clustering protein-protein interaction network and aims to identify the highly-dense or connected region in the 
global biological interaction network. (C) It represents the top 10 ranked HUB genes in the network. Here, darker is the color of the node; more is the rank of the 
HUB gene. 
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of H3K9-modulate neural genes expression (Zhou et al., 2021). Apart 
from nickel, copper, and chromium, another metal that interferes with 
acetylation is cobalt. Evidence suggests the potential relationship be-
tween cobalt and acetylation status. For example, Guo et al., 2021 
demonstrated that cobalt chloride administration at 400 μM for 24 h in 
the SHSY5Y cell culture model inhibits H3 and H4 acetylation (Guo 
et al., 2021). The same study concluded that cobalt chloride selectively 
decreased the activity of histone acetyltransferases and did not alter the 
activity of histone deacetylase. Thus, these evidences validate the role of 
metal toxicity and acetylation status. Further different studies also 
investigated the role of metal exposure on the expression of CREBBP. For 
example, administration of chromium hexavalent ion results in 
decreased expression of CREBBP protein, whereas, exposure to copper 
caused decreased expression of CREBBP mRNA (Liao and Liu, 2012; 
Shobana et al., 2020). However, in another study, it was concluded that 
administration of nickel monoxide results in increased expression of 
CREBBP mRNA (Fujita et al., 2009). Further, some evidences suggest the 
role of metal exposure on the activity of CREBBP and its targets. For 
instance, chromium inhibits the transcriptional activity of NF-κB by 
decreasing the interaction between p65 and CBP (JA et al., 1999). 
Similarly, Cobalt causes increased activity of SRC protein, which acti-
vates HIF1A/STAT3/VEGFA and leads to binding of APEX1 to CREBBP 
promoter (Gray et al., 2005). Thus, these evidences demonstrated the 
potential link between metal exposure and CREBBP and acetylation. 
However, no study was reported that concluded the exact role of metal 
exposure in CREBBP and its target acetylation. Thus, we aim to identify 
the potential targets of CREBBP involved in metal toxicity and AD 
pathogenesis. Our study identified that CREBBP-Induces CREB1, 
GATA2, NFKB1, and FOXA1 acetylation at K122, K399, K967, and K350. 
Thus, K122 of CREB1, K399 of GATA2, K967 of NFKB1, and K350 of 
FOXA1 were considered crucial lysine residues for the acetylation pro-
cess in the pathogenesis of AD. In addition, post-transcriptional signa-
tures, namely miRNA and long non-coding RNAs, regulate the 
expression of proteins, where long non-coding RNAs serve as a sponge 
for miRNA. Our results identified five potential miRNAs that were 
associated with CREBBP and identified TFs simultaneously, such as hsa- 
miR-338-5p, hsa-miR-335-5p, hsa-miR-429, hsa-miR-200c-3p, and hsa- 
miR-129-5p. However, hsa-miR-335-5p and hsa-miR-129-5p, having 
expression values of 169.427 and 251.584, respectively, in the brain 
tissue, were selected for further studies. In addition, literature validation 
suggests the potential applicability of hsa-miR-335-5p and hsa-miR-129- 
5p in the pathogenesis and progression of AD. For instance, Wang et al., 
2020 demonstrated that overexpression of miR-335-5p significantly 
decreased the expression of c-Jun N-terminal kinase 3 (JNK3) and Aβ 
and thus, inhibited the neuronal apoptosis in SH-SY5Y/APPswe cells 
(Wang et al., 2020). Similarly, overexpression of miR-129-5p rescued 
nerve injury and inflammatory response through decreased expression 
of SRY-box transcription factor 6 (SOX6) in the Aβ25–35-induced AD rat 
model (Z. Zeng et al., 2019). In addition, Z. Li et al. concluded that 
knockdown of miR-129-5p decreased the neuroprotective effects of 

exercise on cognition and neuroinflammation in the AD mice model (Z. 
Li et al., 2020). Thus, it could be concluded that overexpression of both 
hsa-miR-335-5p and hsa-miR-129-5p promotes neuroprotection. 
Furthermore, disease ontology confirmed the involvement of hsa-miR- 
335-5p and hsa-miR-129-5p in the pathogenesis of AD, having a p- 
value of 0.0373 and 0.0027, respectively. Further, mounting evidence 
suggests the potential link between metal toxicity and miRNA expres-
sion. For instance, administration of cadmium at 0.6 mg/kg increased 
the expression levels of miR-21-5p, miR-34a-5p, miR-224-5p, miR-451- 
5p, and miR-1949, whereas, administration of cadmium in human 
prostrate epithelial cells at 10 μM increases the expression of miR-96, 
miR-134, and miR-9 (Fay et al., 2018; Ngalame et al., 2016). Simi-
larly, administration of cobalt increases the pri-miRNA processing ac-
tivity of DGCR8, which enhanced the expression of miR-9 (Barr et al., 
2015). Further, Jeon et al., 2014 concluded that administration of cobalt 
chloride-induced neuronal differentiation of human mesenchymal stem 
cells through upregulation of miR-124a, which inhibits the expression of 
SCP1 and SOX9 (Jeon et al., 2014). Chiou et al., 2015 demonstrated that 
administration of nickel contributes to EGFR mutation and miR-21 
overexpression, whereas, Wu et al., 2017 concluded that upregulation 
of miR-4417 contributes to nickel-induced fibrogenesis (Chiou et al., 
2015; Wu et al., 2017). Another study identified that administration of 
arsenic in Patu8988 cells at 3 μmol/l causes increased expression of miR- 
330-5p, whereas, administration of lead in blood samples of battery 
factory workers causes and upregulation of miR-520c-3p, miR-148a, 
miR-141, and miR-211 (Ghaffari et al., 2011; Xu et al., 2017). Jia et al., 
2020 reported that chromium in exposed electroplating workers causes 
upregulation of miR-941 and miR-590-3p, whereas, Chandra et al., 2015 
concluded that administration of chromium at 10 and 20 μg/ml for 24 h 
upregulated the expression of miR-34-5p (Chandra et al., 2015; Jia et al., 
2020). Further, studies demonstrated that exposure to cobalt chloride 
regulates the expression of miR-129-5p and its target genes (Mao et al., 
2021; Zhu et al., 2021). Moreover, pathway analysis demonstrated the 
possible pathways through which hsa-miR-335-5p and hsa-miR-129-5p 
are involved in the pathogenesis of AD (Z. Li et al., 2020; Wang et al., 
2020). hsa-miR-129-5p is involved in corticotropin-releasing hormone 
pathway, IL17 signaling pathway, EGF/EGFR signaling pathway, 
Interleukin signaling pathway, and VEGFA-VEGFR2 signaling pathway 
(Belaya et al., 2020; Glaesel et al., 2020; Li et al., 2017; Tian et al., 2019; 
Yang et al., 2019), whereas, hsa-miR-335-5p is involved in TGF-beta 
signaling pathway, IL-2 signaling pathway, ErbB signaling pathway, B 
cell receptor signaling pathway, and IL-7 signaling pathway (Khokhar 
et al., 2021; Li et al., 2016; Tang and Qin, 2019; Yu et al., 2021; Yue 
et al., 2017). Lastly, we identified the potential long non-coding RNA 
that is OPI5-AS1 that regulates the activity of hsa-miR-335-5p and hsa- 
miR-129-5p. Literature analysis validated our results as downregulation 
of OPI5-AS1 causes upregulation of has-miR-129-5p (H. Zeng et al., 
2019). Thus, we concluded that downregulation of OPI5-AS1 causes 
upregulation of miR-129-5p, which modulate CREBBP-induced hyper-
acetylation of CREB1, GATA2, NFKB1, and FOXA1 acetylation at K122, 

Table 2 
Characteristics and parameters of core, cluster, HUB genes, transcription factors, and miRNA PPI network.  

Network Number of 
nodes 

Number of 
edges 

Clustering 
coefficient 

Network 
density 

Network 
centralization 

Network 
heterogeneity 

Characteristics path 
length 

Average no of 
neighbors 

Core PPI  175  1138  0.422  0.075  0.36.  1.14  2.426  13.006 
Cluster (11.524)  22  121  0.713  0.524  0.419  0.385  0.419  11 
HUB genes  10  40  0.916  0.889  0.139  0.148  1.111  8 
Transcription 

factors  
47  73  0.071  0.068  0.202  0.896  3.192  3.106  
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K399, K967, and K350. Regulation of hyperacetylation of CREB1, 
GATA2, NFKB1, and FOXA1 modulate their transcriptional activation, 
neuroinflammation, Wnt Signaling, and MAOA gene regulation, 
respectively, which inhibits neuronal cell death. In addition, decreased 
neuronal cell death rescued memory impairment and cognitive defects, 
which inhibits the pathogenesis of AD. Thus, the OIP5-AS1/miR-129- 
5p/CREBBP axis could be a possible therapeutic target in metal 
toxicity-induced AD. Further, these results provide a gateway for the 
future in vivo and in vitro studies targeting OIP5-AS1/miR-129-5p/ 
CREBBP axis in a metal toxicity-induced AD. 
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Fig. 4. (A) Protein-protein interaction network of transcription factors-HUB genes through Cytoscape Software: network analysis from network analyst identified the 
potential transcription factors associated with HUB genes. Among transcription factors, CREB1 (5), FOXC1 (4), GATA2 (4), NFκβ (4), SRF (3), TFAP2A (3), FOXA1 
(3), and MEF2A (3) were the top interacting partners of HUB genes. Similarly, among HUB genes, FOS (11), RELA (9), MAPK3 (8), STAT3 (8), EGFR (8), HIF1A (8), 
AKT1 (6), PTGS2 (6), MAPK8 (5), and NOS2 (4) interacting partners. (B.1) Further, micro-RNAs interacting with putative acetylated transcription factors and 
acetylating enzyme CREBBP were identified. Five micro-RNAs, such as hsa-miR-338-5p, hsa-miR-335-5p, hsa-miR-429, hsa-miR-200c-3p, and hsa-miR-129-5p, were 
common micro-RNAs interacting with acetylated transcription factors and CREBBP with the help of Venny 2.0 Software. (B.2) Expression analysis of the predicted 
micro-RNAs in the brain tissue identified that micro-RNAs, namely hsa-miR-335-5p (146.427, 46 samples) and hsa-miR-129-5p (251.584, 47 samples), have the 
highest expression in the brain tissue among all five predicted micro-RNAs. (B.3) network analysis of predicted micro-RNAs with identified transcription factors 
through Cytoscape software. (B.4) Moreover, disease ontology analysis confirmed the involvement of hsa-miR-335-5p and hsa-miR-129-5p in the pathogenesis of 
Alzheimer's disease with the significantly enriched p-value of 0.0373 and 0.0174, respectively. 

Table 3 
Top interacting transcriptional regulatory factors involved in metal toxicity induced AD.  

TFs Degree Partners Role in disease pathogenesis 

CREB1 5 C-FOS, RELA, MAPK8, PTGS2, STAT3 Reduction in CREB1 activation promotes memory impairment 
FOXC1 4 C-FOS, STAT3, EGFR, MAPK3 Mutation in FOXC1 cause neurodevelopmental disorder 
GATA2 4 HIF1A, PTGS2, EGFR, AKT1 Reduction in GATA2 expression decreases neuroglobin expression 
NFKB1 4 RELA, EGFR, AKT1, HIF1A Regulate immunological response 
SRF 3 MAPK3, MAPK8, C-FOS Regulate LRP mediate amyloid-β clearance 
TFAP2A 3 AKT1, RELA, C-FOS Regulate the proliferation and apoptosis of neuronal cells 
FOXA1 3 C-FOS, RELA, NOS2 Required for adult dopamine neuronal cells maintenance and functioning 
MEF2A 3 RELA, MAPK8, HIF1A Reduction in MEF2A expression causes decreased activity of anti-apoptotic genes  

Table 4 
Prediction of CREBBP-induced acetylation sites of identified transcription factors through Deep PLA and GPS-PAIL.  

TF Acetylation (CREBBP) Common K sites 

Deep PLA (score < 5%) GPS-PAIL (score: >1.0) 

CREB1 122 122, 271, 278, 289, 295, 316, 325 122 
FOXC1 256 181, 552 – 
GATA2 102, 281, 285, 399 324, 378, 389, 390, 399, 403, 405, 406, 399 
NFKB1 277, 431, 967 362, 425, 448, 896, 967 967 
SRF 147, 154 506 – 
TFAP2A 271 411, 427, 431, 434, 437 – 
FOXA1 316, 350, 389 6, 350 350 
MEF2A Nil 403, 498 –  
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