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Preface

The theory of quantum entanglement is a burgeoning field of quantum information
theory. The fact that measurements on spatially separated systems cannot always be
described by a locally causal theory is one of the most remarkable features in quan-
tum physics. Although the basic understanding of the bipartite system has been es-
tablished over the last few decades, still there are many unanswered questions about
the entanglement properties of the multipartite system. It is particularly unclear how
several concepts from the bipartite case can be generalized to multipartite scenarios
in a meaningful way. The detection and classification of multipartite entanglement are
discussed in this thesis. The differences and similarities between the bipartite and
multipartite situations are discussed, various possible generalizations are presented,
and results in several areas are obtained.

The detection and classification of entanglement properties in a multi-qubit system is
a topic of great interest. This topic has been extensively studied, and as a result, we
discovered various approaches for detecting and classifying multi-qubit, in particular
three-qubit entangled states. The emphasis of this work is on a formalism of meth-
ods for the detection and classification of bipartite as well as multipartite quantum
systems. We have used the method of structural physical approximation of partially
transposed matrix (SPA-PT) for the detection of entangled states in arbitrary dimen-
sional bipartite quantum systems. Also, we have proposed criteria for the classifica-
tion of all possible stochastic local operations and classical communication (SLOCC)
inequivalent classes of a pure and mixed three-qubit state using the SPA-PT map. To
quantify entanglement, we have defined a new measure of entanglement based on
the method of SPA-PT, which we named as "structured negativity". We have shown
that this measure can be used to quantify entanglement for negative partial trans-
posed entangled states (NPTES). Since the methods for detection, classification and
quantification of entanglement, defined in this thesis are based on SPA-PT, they may

be realized in an experiment.

Xiil



Three-qubit systems have two types of SLOCC inequivalent genuine entangled classes.
These classes are known as the GHZ class and the W class. The GHZ class has
been proven to be very useful for various quantum information processing tasks such
as quantum teleportation, controlled quantum teleportation, and so on. We divide
pure three-qubit states from the GHZ class into four distinct subclasses namely Sy, S»,
S3, S4 and shown that three-qubit states either belong to S, or S3 or S, may be more
efficient than the three-qubit state belonging to S;. Moreover, we have constructed
various witness operators that can classify the subclasses and demonstrated that the
constructed witness operator can be decomposed into Pauli matrices and thus exper-
imentally realized.

Also, we have used coherence to detect and classify the entanglement property of
three-qubit states. We have obtained the necessary conditions to discriminate bisep-
arable states from other classes of the three-qubit system. Moreover, we have also
obtained the necessary condition that may classify the separable states from other
classes of three-qubit entangled states. Since there are only three types of states in
a three-qubit system, so if we found that the detected state is neither a separable nor
a biseparable state, we may conclude that the given three-qubit state is a genuine
entangled state.

P

Date : 28.10.2022 (ANU KUMARI)
Place : Delhi, India
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Chapter 1

General Introduction

The introductory chapter consists of basic definitions, basic concepts of linear alge-
bra, and the preliminaries of the results obtained in the literature. We then provide a
brief review of the theory of bipartite and multipartite entanglement. In the theory of
bipartite entanglement, we have discussed various entanglement detection criteria for
the two-qubit system as well as the higher dimensional bipartite quantum system. In
the case of multipartite entanglement, we have specifically considered a three-qubit
system and studied different schemes for the classification of different classes that

may exist in the tripartite entangled system.



The study of data storage and transmission through a noisy channel is known as in-
formation theory. It focuses on the quantification of data for communication purposes.
It is concerned with determining how much information is contained in a message.
Since information is related to uncertainty or randomness, so, to quantify the amount
of information, we need to determine the amount of uncertainty. The amount of un-
certainty in the value of a random variable or the outcome of a random process can
be measured in entropy and thus, entropy can be considered an important metric in
information theory. For example, determining the result of a fair coin flip (with two
equally likely outcomes) offers less information (lower entropy) than determining the
result of a dice roll (with six equally likely outcomes).

Nowadays, we can split the whole concept of information theory into two parts: (i)
classical information theory and (ii) quantum information theory. Classical informa-
tion theory is the mathematical theory of information-processing tasks utilizing laws
of classical physics whereas, quantum information theory is the study of how such
tasks can be done using quantum mechanical systems. Quantum Information The-
ory is concerned with the use of quantum-mechanical features of physical systems to
facilitate effective data storage and transfer. Quantum and classical information theo-
ries differ significantly due to the underlying features of quantum physics that do not
exist in classical physics. For instance, quantum entanglement is one such feature in

quantum physics that has no classical analog.

1.1 Basics of Linear Algebra

Let us first recapitulate some basic concepts of linear algebra that would be needed to
discuss the topics of quantum information theory. The basic objects of linear algebra
are vector spaces. In quantum mechanics, we generally consider the vector space
over the field of complex numbers C. The elements of vector spaces are known as
vectors. They can be represented by column vectors.

l. Linearly independent and dependent vectors: A set of vectors V = {v|,vs,...,v,,}

is said to be linearly independent if there exist scalars a;,as,....,a, such that

aivit+avy+...+ayv, =0 = q; =0V i (1.1.1)



otherwise, the set V is said to be linearly dependent.

Il. Basis: A basis 3 of a vector space is the spanning set 8 = {v;,v»,...,v,} such that
every vector in the vector space can be expressed as a linear combination of vectors
present in the basis set such that the set B is linearly independent. Let v be any
vector in the vector space, then v can be expressed as v =Y, a;v;,a € C. The number
of elements in a basis set is the dimension of the vector space.

lll. Linear space: A linear space (or vector space) over the field F is a set X which
satisfies the following properties:

x+yeXVxyeX

(i)x+y=y+xVx,yeX

(i) x+y)+z=x+(y+2) Vx,y,z€X

(iv) There is a zero element (additive identity), denoted by, 0 in X such that

x+0=ux, \xeX

(v) For every x € X,3 additive inverse —x € X such that x4+ (—x) =0 = —x+x

(vi) Foreveryac e Fandxe€ X, ax€ X

(vii) For every a,B € F and x,y € X:

(a) a(Bx) = (aP)x

(b)(ax+ B)x = ax+ Px

(©)ar(x+y) = ax+aty

(viii) There is a unit element (multiplicative identity), denoted by 1, in F such that
l.x=x, VxeX.

IV. Complete linear space: A normed linear space is said to be complete if every
Cauchy sequence converges in the space.

V. Norm: Consider a vector space X defined over a field F. A norm ||.|| on X is defined

as a function
f:X—>F (1.1.2)

which satisfies the following properties:

1. ||| >0, VxeX.

2. ||x|]|=0 < x=0.

3. ||ax|| = |a]||X||, VX € X, Va € F.

4. x4yl < [x]|+lyll, vx,y € X.

VI. Normed linear space: A normed linear space is a linear vector space over the

field of real or complex numbers, on which a norm is defined.



For example, the set Cla,b] of all continuous functions f(x), x € [a,b], is @ normed

linear space with respect to norm defined as

b I
=L U@, p=1 (113)

VIl. Banach Space: A complete normed linear space is known as a Banach space.
For instance, The set of all real valued continuous functions x = x(¢) defined on the

set [a, D], denoted by Cla,b], is a Banach space with respect to the norm defined as

||| = sup |x(t)|, x=x(r) € Cla,b] (1.1.4)
t€la,b]
VIII. Inner Product: Inner product on a complex linear space X may be defined as a

map:
<., >XxX—>C (1.1.5)

If we take three arbitrary vectors a,b, ¢ € X and two scalars «, 8 € C, then the following
properties holds

(a) <a,ob+fpc >=a* <a,b>+p* <a,c >, where a* and B* denote the complex
conjugate of a and 3 respectively.

(b) <b,a>=<a,b>

(c)<a,a>>0

(d) <a,a>=0ifand only ifa=0.

If X(F) is a vector space with inner product < .,. > defined on X. Then, a norm can

be defined from inner product as

a|| =v/<a,a>, VaeX (1.1.6)

IX. Inner product space: Let X be a linear space over the field of complex number
C. Then, X is called an inner product space if for every pair of elements x,y € X, 3
a complex number denoted by < x,y > and is called the inner product of x and y.
For example, the n dimensional space R, or C, forms an inner product space. Let
x=(&1,&,...,&) and y = (v, 2,...,v,,) be two elements of C,. The inner product of x
and y is denoted by < x,y > and is given by the formula

n
<xy>=) &vf (1.1.7)
i=1



With the help of this inner product , the length of x = (£, &, ...,&,) can be written as

Il = (3 8 = e (1.18)
im

X. Hilbert Space: Hilbert space is a normed linear space which is complete with
respect to the norm derived by the inner product.
(i) A Hilbert space is an inner product space and is complete.
(if) Inner product spaces are normed linear spaces.
(iii) Hilbert spaces are Banach spaces.
(iv) If for an inner product space, the scalar field is the set of real numbers, then we
obtain real inner product space and corresponding real Hilbert space.
(v) In real Hilbert space, we simply have < x,y >=<y,x >.
(vi) If for an inner product space, the scalar field is the set of complex numbers, then
we obtain complex inner product space and corresponding complex Hilbert space.
Xl. Orthogonal vectors: In a vector space, two vectors are said to be orthogonal if
their inner product is zero.
XIl. Unit vector: If ||a|| = 1, then a is known as unit vector.
XIll. Orthonormal vector: A set of vectors {v;,vs,...,v,} is said to be orthonormal if
each vector v; in the set is a unit vector and distinct vectors v; and v; are orthogonal
.e. (vilvj) =&;j,i,j€{1,2,..n}.
XIV. Linear operator: Let X and Y be two vector spaces over the field F. An operator
T :X — Y is said to be linear if

T(Y civi)=) ciTvi, vieX, c;€F (1.1.9)
i i

A linear operator on a vector space X is a linear transformation from X into X. Linear
operators may be expressed in terms of matrices.

XV. Matrix representation: Consider two vector spaces X and Y of dimension m and
n respectively. Then a linear operator from X to Y may be expressed by a (m x n)

matrix. Let B; = {vi,v2,...v,} be basis of X and B, = {w;,w»,...w, } be basis of Y, then
T(vj):Zaijwi7j€{1727'“7m} (1.1.10)
i=1

Then, the matrix of T with respect to the basis B; and B, can be represented as

A = ajjlmn-



XVI. Eigenvalue and eigenvector: Let X be a vector space over the field of complex
numbers C and T : X — X be a linear operator. An eigenvector of a linear operator
T is a non zero vector x € X such that Tx = Ax, A € C is known as the eigenvalue of
the operator T corresponding to eigenvector x. Eigenvalues are the solutions of the
characteristic equation, which is given by det|T — AI| = 0 where der denote the deter-
minant and I denote the identity operator.

XVII. Transpose of a matrix: The transpose of a matrix can be defined by inter-
changing the rows of the matrix into columns or by transforming the columns of the
matrix into rows. For a given matrix A, the transpose of the matrix A is represented by
AT,

XVIIl. Conjugate transpose of a matrix: For a linear operator A, the conjugate trans-
pose of A is obtained by applying transposition operation on A and applying complex
conjugate on each entry. For a given matrix A, the conjugate transpose of the matrix
A is represented A",

XIX. Normal operator: An operator A is said to be normal if and only if
AAT=ATA (1.1.11)
XX. Orthogonal operator: An operator A is said to be orthogonal if and only if
AAT =ATA =1 (1.1.12)
XXI. Unitary operator: An operator A is said to be unitary if and only if
AAT=ATA=1 (1.1.13)
XXIl. Hermitian operator: An operator H is said to be Hermitian if and only if
H —H (1.1.14)

The eigenvalues of a Hermitian operators are real numbers.

For example, Pauli Matrices are Hermitian matrices and it can be represented as

op=1= , Oy = Oy =1 ,0, = (1.1.15)



XXIil. Properties of Pauli matrices:
(i) Pauli matrices are Hermitian and unitary.
(i) 67 = 6} = 62 =1, where | is the identity matrix.
(iii) det(o;)=-1, i=x,y,z
(iv) Tr(o;)=0, i=x,y,z
(v) Eigenvalues of Pauli matrices are + 1.
(vi) [0y, 0y] = 2i0:, [0y, 0] = 2ioy, [0, 0y = 2i0y, where [.] denote the commutation re-
lation.
(vii){oi,0;} =0, i#j, i,j€{x,y,z}, where {.} denote anti-commutation relation.
XXIV. Partial transpose of a matrix: Given A = [A; j[ ;| € M,(My), it's partial trans-
pose AT is given by,

AT =[A7] o (1.1.16)
Here M, (My) is the set of nxn block matrices with each block in M.
A state p,; in d ® d dimensional quantum system is represented by a d? x d* density
matrix. This d? x d* density matrix may be divided into d submatrices of order d x d.
The partial transposition of the state p;, may be calculated by taking the transposition
of each of the submatrices. For example, let us consider the density matrix p48 of
a two-qubit composite system AB. It is represented by a 4 x 4 matrix with 4 subma-
trices of size 2 x 2. The partial transposition of p4? can be calculated by taking the

transposition of each of the submatrices.

ajl aip | a3 aw ajy az1 | a3 a3
az1 axp |ax ax aiy ap |ais ax
AB AB\T,
py" = ) =(py")"*  (L117)
az1 axy |as as az| as |as dss
as) asg | as3 ass ax ag |az as

where Tg denote the partial transposition with respect to the subsystem B.

XXV. Positive Partial Transpose: A bipartite density matrix p has a positive partial
transpose (or the matrix is PPT) if it’s partial transposition has no negative eigenval-
ues i.e. it is positive semidefinite.

XXVI. Non Positive Partial Transpose: A bipartite density matrix p has a non posi-
tive partial transpose (or the matrix is non PPT) if it's partial transposition has atleast
one negative eigenvalues.

XXVII. Realignment operation on a matrix: For a matrix X = (x;;) € C"*", the vector



vec(X) is defined as
vec(X) = (X]],...,Xm],xlz,...,xmz,...,X]n,...,xmn)T (1.1.18)

where T denote the transposition operator.
Let Y be an m x m block matrix with n x n subblocks Y; ;,i, j = 1,...,m. Then the realign-
ment matrix of Y is defined as

R(Y) = (vec(Y11)...,vec(Ym.1), ...,vec(Ylvm),...,vec(Ymm))T (1.1.19)

A state in d ® d dimensional system may be represented by d? x d> density matrix and
this matrix may be further divided in d submatrices of order d x d. The realigned matrix
may be obtained by expressing the element of each submatrix in row. For example

for a two-qubit density matrix p, the realigned matrix p® may be obtained as

ayl app | a3 a4 ay apx az ax
ar| ay |axs ax4 aiz ai4 ay a4 R
p= R —p (1.1.20)
as| asp | asz a4 asz| as a4 a4
asl a4 | a4q3  aqg asy as4 a43 aq4

XXVIIl. Inner product of two operators: For two operators A and B in finite dimen-

sional Hilbert space(H), inner product of A and B may be defined as
(A,B) = Tr[A"B] (1.1.21)

where A" denotes the Hermitian conjugate of A and the corresponding norm may be

defined as

|A]|=+/(A,A), A€H (1.1.22)

XXIX. Positive and Completely positive map: Let v: H| — H, be a linear map. yis
said to be a positive map if it maps positive operators of H; to positive operators of
H,, i.e.

Y(A) >0, VA >0 (1.1.23)



A positive map 7 is said to be a completely positive if the map defined by,
yR Iy H @My — Hy @ My (1.1.24)

is also positive for d=2,3,4,... where I, is the identity matrix of the matrix space M, of
d x d matrices.

XXX. Dual space of a Vector Space: For a vector space V(F), then the collection of
all linear functionals on V forms a vector space over and it is called the dual space of
V.

V*=L(V,F) (1.1.25)

XXXI. Dual basis of a Vector Space: Let § = {a;,a,,...,a,} be a basis for the vector
space V. Then there exist basis B* = {f1, f2, ..., fn} of V* that satisfies

filaj) =&, (1 <i,j<n) (1.1.26)

B* is known as dual basis of .

1.2 Quantum states

Quantum states can be considered as vectors in a Hilbert space (H). The notation

used in quantum mechanics for a vector belong to a vector space is given by

<1

22

vy =| (1.2.1)

in

where vy is the label for the vector and the notation |.) denotes the object is a vector.
This notation is also known as a ket vector. Here, z; € C,i € {1,2,...n} denote the com-
ponent of the |y). Some standard notations related to the description of a quantum
mechanical system are given below

(i) z* denote the complex conjugate of z.
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(i) (y| is the dual of |y). It is known as bra notation of vector .
(iii) (y|¢) denote the inner product of two vectors |y) and |¢).
(iv) ly) ®|¢9) denote the tensor product of two vector |y) and |¢).

1.2.1 Qubit

Quantum bits are used to define quantum states. Qubits, or quantum bits, are the
most fundamental unit of quantum information, just as bits are the most fundamental
unit in classical information theory. In a two-dimensional Hilbert space, a qubit can
be written as a linear combination of two classical bits |0) and |1). Mathematically, a

qubit can be expressed as
W) =al0)+B1), |a’+|B]>=1 (1.2.2)

where « and 8 are complex numbers. ||> +|B|*> = 1 represent the normalization con-
dition. Geometrically, the normalization condition represents all the quantum states
|w) that lie on the boundary of the sphere.

1.2.2 Pure and mixed state

A quantum system can be found in any of the following two forms: pure states and
mixed states. A pure state is always represented by a vector in a Hilbert space while a
mixed state can be expressed as a convex combination of more than one pure state.
A mixed state is denoted by an operator p which is associated with some ensemble

{pi,|vi) }. Mathematically, a mixed state p can be expressed in terms of the ensemble

{pi;|vi)} as
p=Yplwidyil, Ypi=1, 0<pi<li=12.. (1.2.3)

An operator p which represents a mixed state is popularly known as a density op-
erator. An operator p is said to be the density operator if it satisfies the following

properties:

(i) Trlp] =1 (1.2.4)

(ii) p >0 i.e. p has non-negative eigenvalues (1.2.5)
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1)

Figure 1.1: Bloch sphere

In terms of Tr[p?], the pure state and the mixed state may be classified as
(i) p is a pure state if and only if Tr(p?) = 1.
(i) p is a mixed state if and only if Tr(p?) < 1.

1.2.3 Geometrical interpretation of a qubit

Geometrically, a two-level quantum mechanical system can be represented by a Bloch
sphere. A two-level quantum mechanical system is described by four parameters in a
complex plane. But the normalization condition reduces one parameter and therefore
the system finally is described by three parameters which can be represented in a
Bloch sphere [1,2]. The state lies on the surface of the sphere are pure states of the

form
0 io i 0
ly) = cos(E)m) +e Szn(§)|l), 0<0<m 0<¢<2m (1.2.6)
The states lying inside the sphere are mixed states given by
@o_-lyiz5
p'? = E(1+a.cy) (1.2.7)

where @ = (ay,ay,a;) € R is a vector in three dimensional space and 6 = (oy, 0y, 0;)
denotes the Pauli matrices. The center of the sphere represent a maximally mixed

state which is described by the identity matrix.
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1.2.4 Bloch vectors for d-dimensional quantum system

Generalizing the idea of two-dimensional system to d-dimensional system, we call the
quantum state lying in d-dimensional Hilbert space as qudit. Any matrix basis that can
be used for Bloch vector decomposition in case of qudits must satisfy the following two
properties:

() The set of basis elements must contain 7 and d — 1 traceless matrices {A;} of order
dxd.

(if) The matrices {A;} must be orthogonal.

The Bloch vector expansion of the density matrix p(¢) may be expressed as

pd) = $I+B.7\ (1.2.8)

where b.A is a linear combination of 5 € R¥’~! and the element of basis matrices {A;}.
The coefficient b; may be calculated as b; = (A;) = Tr[p@A,]. The vector b is known
as the Bloch vector. Unlike the two-qubit case, the map induced is not bijective this
means that it is not necessary that every point on the Bloch sphere in d> — 1 dimension
corresponds to a physical state [3].

The geometric properties of the Bloch sphere in higher dimensions are rather com-
plex as distinct matrix basis induces a different Bloch vector in a Bloch hypersphere,
however, every point on the Bloch hypersphere may not correspond to a physical state

but all distinct hyper balls are isomorphic as they correspond to the density matrix p.

1.2.5 Representing a d-dimensional quantum state in terms of different

basis

Since there are various basis such as the generalized Gell-Mann matrix basis, the po-
larization operator basis, Weyl operator basis so it is important to know which matrix
basis is ideal for a certain goal, like calculating the entanglement degree [4]. Here
we will define the generalized Gell-Mann matrix basis, the polarization operator ba-
sis, Weyl operator basis, and then we will compare these three bases for a particular

qutrit-qutrit example.

I. The generalized Gell-Mann matrix (GGM) basis

The GGM [3] are the extensions of Pauli matrices (the basis for a two-qubit system)
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and the Gell-Mann matrices (the basis for a two-qutrit system). They are the genera-
tors of special unitary matrices of order d (SU(d)). They are defined by three different
operators as

1. 441 symmetric GGM

AF = KR G, 1< j<k<d (129)

2, 41 antisymmetric GGM

AR = —i|| )k +ilk) G, 1< j<k<d (1.2.10)

3. d—1 diagonal GGM

2 l
I _ Y B
A —\/Z(ZH)(;IDUI NI+1)I+1]), 1<I1<d—1 (1.2.11)

Thus, there are d> — 1 hermitian and traceless GGM. Also, they are orthogonal and

form a basis for a density matrix of order d.

Decomposition of standard matrix basis into GGM basis

The standard matrix basis is formed by using d x d density matrices such that only
one entry has value 1 and all other entries have value 0. These matrices form an
orthonormal basis for the Hilbert-Schmidt space. In terms of operators, they can be
expressed as

)kl Jk=1,....d (1.2.12)

In general, the Bloch vector expansion of the density matrix using the GGM basis is

shown below:
1 N
PGGm = Z1+b.G (1.2.13)

where b = ({bJ*},{bi*},{b'}) and the components are given by, bJ* = Tr[A*peoul,
bl = TriAff poeu] and b = Tr[Alpgey] for 1 < j<k<dand 1 <I1<d—1. All Bloch
vectors are contained in a hypersphere of a radius 5| < /(d —1)/2d [4].

The elements of a density matrix in standard matrix basis may be decomposed into
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GGM basis as

.

{l(A£k+iAi;k> j<k

i) (k| = ¢ LAY —iny) >k (1.2.14)

|

——L ATl =k

j—1
TR BV

Il. The polarization operator basis (POB)

For a d x d density matrix, POB may be defined as

2L+1

Tin =\l 577 T, Z Com k) (1.2.15)
where s =41, L=0,1,...25, M= —L,—L+1,..,L— L, my =5, my =5 — 1,..,my =
—s. The coefficients C; ¢, are Clebsch-Gordan coefficients Cj”fn _m, Of the angular

momentum theory and explicit expression are given in [5].

The polarization operator is a multiple of the ldentity matrix for L=M=0 [5]. Except
for Too, all polarization operators are traceless and orthogonal but may or may not
be Hermitian. Therefore these d” polarization operators form an orthonormal matrix
basis of d dimensional Hilbert Schmidt space.

Any d x d density matrix p can be decomposed into a Bloch vector using the POB,
and it often takes the following form:

2s L

1 1 - =
pros==I+Y Y bTim=-I1+bT (1.2.16)
d L=1M=—-L d

where B = (bl,fl,bl,Oybl,l7b2.,727b251;b2,07 ---,bLM) is the Bloch vector and by is given
by by = Tr[TLTMp]. In general, the POB is not hermitian so, the components by, are

complex. All Bloch vectors are contained in a hypersphere with a radius [b| < /<.

Decomposition of standard matrix basis into POB

The standard matrix basis can be transformed to POB using the following relation

2L+ 1
ZZ 21 SSZ;LMTLM (1.2.17)

lll. Weyl operator basis (WOB)
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For d-dimensional Hilbert-Schmidt space, d> Weyl’s operators may be defined by

d—1
Wm =Y, e%k"]kﬂ(k%—m)mod dl, nnm=0,1,....d—1 (1.2.18)
k=0
The operators W, given in (1.2.18) are all unitary operators and form an orthonormal
basis of the Hilbert spaces [6—8]

Tr[erm‘/Vlj] = danlsmj (1.2.19)

The operator Wyy = 1. Any d x d density matrix p can be decomposed into a Bloch
vector using WOB as
d—1

1 1. - -
Pwos = 51+ Y bW = 31+b.W, nm=0,1,..d—1 (1.2.20)

n,m=0

Assuming by = 0, the other components of the Bloch vector b are given by by, =
Tr[Wampwos]- In general, Weyl operators are not Hermitian so, b,,,, are complex num-
—2ITi

bers and b;,, satisfies b}, =e<« "b_,_,. Bloch vectors are contained in a hyper-
sphere with radius [b| < Y4~ [4].

Decomposition of standard matrix basis into WOB
The elements of d x d density matrix may be expressed in terms of WOB as

l—Hi

. 1 ;
)k = Y. ¢ Wi jmod a (1.2.21)

In particular, for a two-dimensional system, the GGB, WOB, and POB can be ex-
pressed in terms of Pauli matrices. The corresponding relationship between the Pauli
matrices and the basis GGM, WOB, and POB are given by

{Woo, Wo1,Wi0,W11} = {I,0yiocy, 0.}, (1.2.22)
(LA A2 A = {I,0,,0),0.}), (1.2.23)

1 1
{To0, 711,110, T1 -1} = {%Iy—amﬁo'zaol} (1.2.24)

where o} = 3(o, £ ioy).
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1.2.6 An illustration: A two-qutrit system

Let us consider a two-qutrit isotropic state described by the density operator pg. In

standard basis, the state pg may be defined as

1-B

9 L, 0<B<1 (1.2.25)

pp = Blo+)(0+|+

where Iy denotes the identity matrix of order 9 and the state |¢,) represents a Bell

state in a two-qutrit system and may be expressed as

1
V3

I. Expansion of ps in terms of GGM basis

|9,) = (|11) +|22) + |33)) (1.2.26)

We are now in a position to express a two-qutrit system in terms of GGM basis. For a
single-qutrit system, the GGM basis can be expressed as [9, 10]
1. Symmetric GGM

010 0 01 0 0O
)lez =11 0 0 72/513 =10 0 O 72,33 =10 0 1 (1227)
0 0O 1 00 010

2. Antisymmetric GGM

0 —i 0 00 —i 00 0
A2=1i 0o ol,.A%=]o0 o.A®=]0 0 —i (1.2.28)
0 0 0 i 00 0 i 0
3. Diagonal GGM
1 0 0 10 0
1
At=1o -1 o], A’=—1|0 1 0 1.2.29
7 ( )
0 0 0 00 -2
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Let us first write the Bell state |¢..) (¢, | in the standard basis as

0:) (04| = %(\11><11!+\11><22I+|11><33\
122) (1] +]22) (22| +[22)(33]

-

133)(11]+[33)(22]| 4 33)(33|)
A+B (1.2.30)

where A and B may be expressed as

A = %(;11><2z|+y11><33|+|22><33y)
+(22)(11] £ 33)(11] + 33)(22))
B = %(;11><11|+yzz><22|+|33><331) (1.2.31)

For a qutrit system, the GGM basis is related to the standard basis in the following

way
AZ = DI 2) (LA = [1D)G]+ B)(LLAT = 12)3] +13)(2|
A = =D IFI2) (1A = =il )G +il3) (1, AZ = —il2) (3] +i]3)(2|
1
Al = (= 2) 2, A7 = —=[1){1]+[2)(2] - 213) 3] (1.2.32)
V3
The matrices A and B can be re-expressed in terms of GGM basis as
A = GAPEARFARGAR AR AT AR AR AR oAl AR AT
1.1 1 1
B = —[zA'@A'+ZA2OAN +ZI01 1.2.33
3[2 DA+ IATOA+ 2 ®1] ( )

Therefore, the Bell state (1.2.30), then can be re-expressed in terms of GGM basis as

1
9:)(0+] = CIATOATHATOAT AT QAT - A DA - AT @A

1

Thus in terms of GGB, the two-quitrit isotropic state (1.2.25) may be expressed as

1
pPp = §A+§I®I (1.2.35)
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where A= AP QAP+ AP QAP +AP QAP —APQAP - AP QAP — AP QAZ +A'®
Al +A2 ®A2

Il. Expansion of pg in terms of POB

Let us first write the polarizing operators for a three-dimensional system. For a qutrit
system, we have s = 1 and nine polarizing operators are denoted by 7; », L =0,1,2

and M = —L,...,L and they are given by

1 00 010 1 0 O
1 1 1
Toon = —=|01 0|, TTii=—7—=|0 0 1|, TTo=—7]0 0 O .2.36
0.0 /3 1,1 /2 1,0 5 (1 )
0 0 1 000 0 0 —1
0 0O 0 0 1 0 -1 0
1 1
.1 = —11 0 0|, 22=]10 0 0|, 21=—71]0 O 1 1.2.37
1—1 7 22 2.1 NG ( )
010 0 0O 0 0 O
1 0 O 0O 0 O 0 0O
1 1
oy = 7 0 -2 0 ,Tzﬁlzﬁ I 0 0|, 2=1|0 0 0] (1.2.38)
0 0 1 0 -1 0 1 0 0

To express the state pg defined in (1.2.25) in terms of POB, we first need to express
Bell state (1.2.26) in terms of POB. In the standard basis, Bell state may be written as
1 3
[p)(e+] = 3[X DG (1.2.39)

i,j=1

Using (1.2.17), the Bell state (1.2.39) may be re-expressed as

2L+1
[9)(0+| = ZZ Com, LMTLM®ZZ ;:Z’ o Tum] (1.2.40)

Since M = m; —m; hold good so ¥y, now reduces to ¥; ;. Thus, the above equation
(1.2.40) reduces to

1 2L+ 1 2L’ +1 ;
|¢+ ¢+| - g Z \/ Z Cj,:; LM sm; L/M)TLM®TL’M]
LL= i,j=1

(1.2.41)
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The sum rule for the Clebsch-Gordan coefficients [5] is given by

dy Y . 2d+1
Caa,bﬁ aob'B — m@;b/%p/ (1.2.42)

I

Using the sum rule for the Clebsch-Gordan coefficients, the equation (1.2.41) can now

be purely expressed in terms of POB as

3LL/ TLM ® TL/M]

3 /
PRITSEEEES] Sy (CEEMNERET

Lr 2L+1

3. /2L+1)(2L +1)
)y 2L+ 1

1
= 3 [ O Tim @ Tyl
LI—1

1 3
= 21 T @ T (1.2.43)
L=1

Using (1.2.15)

1 1
91) (94| = §I®I+ 3( Z Tim @ Trim) (1.2.44)
L.M#0,0

Using POB Bloch vector notation, the two-qudit state (1.2.25), may be written as

1
pp = SIS+ 5( ¥ Tu o) (12.45)

9 3 L aZo0
lll. Expansion of pg in terms of WOB
To express the state pg defined in (1.2.25) in terms of WOB, let us first write Weyl's
operator for a qutrit system. For a qutrit system (d = 3), the Weyl operator may be

expressed as

1 00 010 0 01

Woo = [0 1 Of,Wo1=1]0 0 1|,W2=1]1 0 0], (1.2.46)
0 01 1 00 010
1 O 0 0 1 0 0 0 1

Wio = |0 e5 0 |Wu=| 0 0 5 [,Wa=]|e5 0 o247
0 0 e e 0 0 e3
1 0 0 0 1 0 0 0 1

Wao = [0 e3 0 | Wa=| 0 0 e | Wa=[e3 o @248
0 0 e3 e 00 0 €3 0
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Let us start with the expression of Bell state (1.2.26) on standard basis as

w|>—

3
04) (04| == Y LYk @]))(k (1.2.49)
k=

Jik=1

Equation (1.2.49), in terms of Weyl operators, can be written as

1j —2IT; /
VVl(k J)mod3 ® 7 3 Z e s VVI’(kfj)modS]
I'=0

2Hl

[:?N

Z ]
[01) (04| = §,Z [g

T
=

721'11
Jr )‘/Vl( J)mod3 ® VVI’(k—j)mod3 (1.2.50)

I
E et
o

~
=~
Il
=]
~
~
Il
(e}

Substituting m = (k — j)mod3, m =0,1,2. The above equation may be re-written as

1

900060 = o

Z e—23r11 (k— m)(lH)VVlm@VVl/
mk=011"=

Ml\)

2
L. WOm®WOm+ Z Z 1-‘/Vlm ®VVI’m
=0 m,k=011"14+1'=d
2

I
l\)| _
“’“M'\’

m

2 =208 (g, !
+ ) (Yo ) W, |
m | I'400+1'=d k
1 1
= § W0m®W0m+§Z Wlm®Wl/m
m m I+ =d
! - 3 () (147)
T E[Z Y Qe YWim @ Wy (1.2.51)
m ol i+l=d k
Using the equivalence
-1 dif x=0
Y i = x€Z (1.2.52)
n=0 0 if x+#£0,

We are now in a position to express the Bell state (1.2.26) in terms of WOB. Using the
notation —I(mod3) = (3 —1) and Wy, = I, the Bell state (1.2.26) in terms of WOB may

be expressed as

1 1 &
[6:)(9+] = GI®I+g Y Wim@W_pm, (I,m)#(0,0) (1.2.53)
I,m=0
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The two-qutrit state pg in terms of WOB may be expressed as

1 2
Pp = §1®1+§ Y W @W_pm (1.2.54)
[,m=0

1.2.7 Quantum Measurements

By what process does measurement is carried out on a quantum system? This may
be discussed in the following way: When a measurement is performed on a quantum
system by a measurement apparatus, the quantum state collapses probabilistically
into one of a number of eigenstates of the observable. Can this behavior itself be
explained by quantum mechanics? These are a few interesting and puzzling issue
that has not been settled. It is known as the problem of measurement.

If O denotes the observable and |s) is the corresponding eigenstate, then the mea-
surement process may be described as

Ols) = Als) (1.2.55)

where A denote the eigenvalue of O.

A measurement apparatus is used to calculate the eigenvalue A. After the measure-
ment, the uncertainty of the observable O vanishes at least for the instant, when the
measurement is performed [11]. One of the most fundamental concepts in quantum
physics is the uncertainty principle. The uncertainty principle may be expressed in
different ways such as Robertson uncertainty relation [12], Heisenberg uncertainty
relation for joint measurements [13, 14] and Noise-disturbance uncertainty relation
[15,16]. It is widely accepted that any version of the uncertainty principle has a logical
connection to the restriction on measuring a system without disturbing it, such as a
position measurement often disturbs the momentum.

Let us now explain the idea of measurement when it is performed on a quantum
system |¢). In quantum mechanics, measurements are described by measurement
operators {M,,}" _, where m denote the measurement outcome [2]. These operators
act on the state space of the system being measured. These measurement operators

satisfy the completeness relation

Y MM, =1 (1.2.56)
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where I denotes the identity operator. Consider |¢) to be the state of the quantum sys-
tem before measurement then the state defining the system after the measurement is
given by,

|Om) = Mnl9) (1.2.57)

(0| M}, M| 9)

The probability of getting measurement outcome m is given by

p(m) = (§| M}, My |0) (1.2.58)

Projective measurements: A Projective measurement is described by an observable
M that may be decomposed via Spectral decomposition as

M:me (1.2.59)
m

where P,, are projectors on the eigenspace of M corresponding to eigenvalue m. The
projector P, satisfies the following properties:

(i) P, is Hermitian i.e. Pl = B,.

(i) Idempotent property holds for P, i.e P2 = P,,.

(iii) P, has eigenvalues 0 and 1.

When the projective measurement described by the projectors P, performed on the

state |¢), the state reduces to

|Mﬁ=&w> (1.2.60)
p(m)
where p(m) denotes the probability of getting outcome m and it is given by
p(m) = (¢|Pn[9) (1.2.61)

For projective measurement P, the average value of the measurement is given by

E(P) =Y mp(m) = (¢|P|¢) = (P)y (1.2.62)



23

The standard deviation (A(P)) associated with the observations of P may be ex-

pressed as

[A(PY)o = /(P — (Phg)2)o = \/(P2)g — (P)3 (1.2.63)

von Neumann measurement: Consider a given quantum system described by the
density operator p written in the computation basis {|n), n =0,1,2...}. Then the set of
projection operators that projects any state onto the basis states may be defined by

P, = |n)(n|. After the measurement, the state may be expressed as

v _ Bphy
p(n)

p (1.2.64)

where p(n) denotes the probability of the system being in state |n) and is defined as
p(n) = (nlpln) = TrlP.pPu) = Tr{(P.)*p] = Tr[Pu(p)] (1.2.65)

Let us now understand the concept of von Neumann measurement by considering a

single qubit state |y), which is given by
W) = |0) +B[1), |al>+ (B =1 (1.2.66)

la|?> +|B|*> = 1 denote the normalization condition. Since the state |y) is defined on
a two-dimensional Hilbert space spanned by {|0),|1)} so, the two measurement op-
erators defined on this state space are given by Py =(0)(0| and P, = |1)(1|. It can be
easily shown that the projection operator Py and P, satisfy the following properties:

(i) P> =1,i=0,1.

(ii) PgPo +P1TP1 = Py+ P = I, where I denote the identity operator.

Let us suppose that the state |y) is being measured with the measurement operator
Py and P;. When P, is performed on |y), the state after the measurement reduces to

hly) _ £10). This output may be obtained with probability p(0) which is given by

laf " [a

p(0) = (y|PIPy|y) = (y|Ro|y) = |af? (1.2.67)
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Similarly, when P; is performed on |y), the state after the measurement reduces to
BT = %\U- This output may be obtained with probability p(1) which is given by

p(1) = (y|P/Pi|y) = (y|P|y) = |B|? (1.2.68)

Positive operator-valued measurement (POVM): Let M,, be the measurement op-
erators which is acting on a quantum system |y). Then, the set of operators {E,, =
M M,,} is known as POVM. The operators E,, are known as POVM elements. There-
fore, we are now in a position to define POVM. POVM may be defined as a set of
operators {E,} which satisfies the following two properties:

(i) each operator E,, (m=0,1,2,...) are positive.

(i) ¥,, Em = I, where I is the ldentity operator.

In POVM, the probability of getting outcome m is p(m) = (y|E,,|y). If the measurement
operators and the POVM elements coincide in any measurement then the measure-
ment is a projective measurement.

For instance, suppose Alice send Charlie have one of the two states from the set
{lv1),|v2)} where |y;) =|1) and |y,) = %. Charlie doesn’t know whether he is
given |y;) or |y»), so, he performs POVM to determine the received state. To perform
POVM, we first need to define the POVM elements. In this case, the POVM elements

can be written in the following form

V2
B = L5100 (1.2.69)
V2 ([0) + 1)) ({0 + (1])
— 1.2.70
E> 112 > ( )
Ez = I-E —E (1.2.71)

where [ is 2 x 2 identity matrix. Then the set {E;,E,,E3} form a POVM. Suppose
Charlie is given |y;) and he performs the measurement using {E;,E»,E3}. There
is a zero probability that he will get measurement outcome E;. If the result of the
measurement outcome comes out to be E;, then Charlie can conclude that he was
given |y,). Also, if the measurement outcome comes out to be E,, the state Charlie
has must be |y;). If the measurement outcome is E3, then Charlie can infer nothing
about the identity of the state but whenever Charlie identifies the state he can never
make a mistake in identifying the state.
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1.3 EPR Paradox

To explain the EPR paradox, let us discuss the following experiment: Suppose two
spin 1/2 particles are ejected in opposite directions each time a button is pressed,
and they finally pass through a detector that determines the spin of the particle along
a specific axis. The detectors can be rotated which makes it possible to measure the
spin along any axis, particularly for x and z axis. After a number of tests, the following
observation is made:

Observation-1 (O1): To measure spin along the z-axis, both detectors are configured.
Half of the time, the particles on the right have spin down and the particles on the left
have up spin, and the other half of the time, the particles on the right are up spin and
the particles on the left are down spin.

This implies that we may determine the z-component of the spin of the particle on
the right by measuring the z-component of the spin of the particle on the left without
actually interacting with the particle on the right. Suppose L denotes the particle which
moves to the left and R denotes the particles which move to the right. After performing
the experiment and knowing that L has spin up, we know that R has spin down. Since
the measurement on L couldn’t possibly affect R it means that R was spin down even
before the measurement on L was performed.

Let us consider the spin state of the particles before entering the detectors which may
be denoted by |y)

ly1) = UEDE (13.1)

where U, and D, denote up spin and down spin respectively, along the z-axis. Here

U, = D, = (1.3.2)
0 1

Similarly, if L has a down spin, then R has an up spin and the spin state of the particles

may be written as
lya) = DLUF (1.3.3)

From O1, half of the time, the particles are in state |y;) and in the other half of the

time, the particles are in state |y»). After repeating the experiment many more times
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we can make another observation that can be stated as follows:

Observation-2 (02): The two particles never have spins that are opposite to one
another when both detectors are configured to monitor spin in the x-direction.

The reason is that if the particles were initially in the state |y;), then the probability

that measurement would detect both spins up in the x-direction is given by
[(Ur U ) (1.34)

L’C 7D (1.3.5)

(UFUE ) P = (UL U UEDE) P = [(Ug

Thus

1
UNUSIDEP = 5 (1.3.6)

If the particles were initially in state |y»), then the probability that both particles have
up spin in the x-direction would be

1
(UFUL o) P = (UFUFIDLUZ P = (R IDE) (U U = 4 (1.3.7)

The probability that both the particles with spin up along the x-axis may be defined
as the average of the two probabilities that the particles are in state |y;) and the

probability that the particle is in the |y»)
1 Ly/R 2 1 LyiR 2 1
§|<UxeW1>’ +§’<UxeW2>’ :Z (1.3.8)

From O1 and 02, there is no experiment that satisfies both conclusions. EPR pointed
out that these outcomes can be obtained for certain quantum mechanical states. Sup-
pose that before reaching the detectors, two particles are in the state

1

) =

1
=(1y1) — ly2)) = E(UZLDf—DéUZR) (1.3.9)

S
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Then, along the z-axis, the probability of L with up spin and R with down spin may be

expressed as

LR
(U D

1 1
WI* = S [UEDE ) — (UEDE|yo) P = 3 (13.10)
Similarly, the probability of L with a down spin and R with an up spin is given by

1
) =5 (1.3.11)

1
(D= )P = 5| (UEDR|ya) — (UEDE !

2

These two probabilities are the same as we got in case Ol.

The probability of both L and R with spin up along the x-axis is given by
[(UFUS )P =0 (13.12)

which is the same as the result of O2.

If O1 and O2 both are true, then this would mean that before the measurement, R was
neither in state DX nor in state UX. So, if we measure that L has spin up along the
z-axis, at that very instant we know that R has spin down without actually performing
a measurement on R. Also, before the measurement, R was neither spin up nor spin
down. So, initially, R was not in the spin down direction which means it must have
jumped in a down spin as soon as we found that L has an up spin even when L
and R are very far away at the time of measurement. But EPR argued that how
could a measurement on L influence the state of R even when L and R are spatially
separated? This is known as the EPR paradox. Since this paradox is not explained by
the theory of quantum mechanics, so, it makes Einstein, Podolsky, and Rosen believe
that the quantum theory is not complete. Many experiments have been performed to
solve the EPR paradox but the success came in 1964 when J S Bell put forward his
theory in terms of an inequality. The inequality derived by Bell is popularly known as
Bell's inequality. An experiment has been performed by Alain Aspect et.al. [17,18] to
show that the correlation that may exist between linear polarization of pair of photons
violates Bell’'s inequality. This indicates the fact that the correlation exists between the

linear polarization of two photons may be non-local in nature.
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1.4 Quantum entanglement

The term entanglement was first coined by Schrodinger [19] and at the same time,
Einstein, Podolsky, and Rosen recognized this feature as a special feature of quantum
mechanics that has no classical analog and called it a "spooky action at a distance"
[20]. Quantum entanglement has a very complex structure that is very fragile with
respect to the environment. In an entangled system, the subsystems are distributed
to the regions which are far apart from one another. The amount of entanglement in
the system cannot increase on average when a measurement is performed on one
subsystem. Let us now understand this complex structure of entanglement that may
exist in the bipartite and tripartite systems.

1.4.1 Bipartite and tripartite system

l. Bipartite system

Let us consider two individual systems A and B consisting of the state vectors residing
in the Hilbert spaces H4 and Hp respectively. The composite system of two individual
systems can be considered a bipartite system and it is described in the Hilbert space
Hap. The two individual systems A and B can be referred to as the subsystems of
the composite system. A composite Hilbert space Hap, may be defined as the tensor

product of two subsystems A and B, and it is given by
Hap = H? @ H® (1.4.1)

where d, and dg are the dimensions of individual subsystems A and B.
If |y;)ap denote the pure state in the Hilbert space Hyp then any state in the composite
Hilbert space is described by the density operator psp

pas =) pilVidas(il, 0<pi<1, } pi=1 (1.4.2)

Let us consider a bipartite system described by a density matrix ps5. The subsystem
A or B may be extracted from the composite system AB by using the mathematical

formulation known as the partial trace. The partial trace with respect to subsystem A
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or B may be defined as

pt = Trg(pag)

pB = Tri(pas) (1.4.3)

Here, the operators p4 and p? are positive semi-definite operators and fulfill the con-
dition Tr(p4) = 1 and Tr(p?®) = 1. Thus, the operators p4 and p? satisfy the condition
of a density matrix, and hence, the operators p* and p? are called reduced density
matrices.

(a) Entanglement in bipartite system:

If pAB represents the density matrix of a composite system described in the Hilbert
space H, ® Hp, then it defines a product state if there exist subsystems p4 and p?

such that
ptt = ptwp? (1.4.4)

More generally, we can say that the state is separable if it can be written as the convex

combination of product states
p*f =Y piptwpf, 0<pi<1, Y pi=1 (14.5)

where, p; are the convex weights and p/* ® p? represent the product states.

If the state p5 is not expressed in the above form (1.4.5), then the state p4? is said
to be an entangled state. These states cannot be generated via local operation and
classical communication (LOCC). For instance, a bipartite two-qubit pure state |¢)ap =
|0)4 ® % represent a pure product state in a two-qubit system.

(b) Schmidt Decomposition: Consider a pure state |y)4p of a composite system AB.
Then there exist orthonormal states |i4) and |ip) for subsystems A and B respectively

such that the state |y)4p may be written as
‘WM:ZMWM%ZM:1 (1.4.6)

where A/s > 0 are known as Schmidt coefficients.
In particular, when all Schmidt coefficients, except one of the coefficient, are zero,

then the state |y)4p reduces to a pure product state. When at least two Schmidt co-
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efficients are non-zero, then the pure state |y),p is said to be entangled. In this way,
Schmidt’'s decomposition of any pure state may help us to check whether the given
pure state is entangled or separable.

(c) Entanglement measures (11(p4p)): Entanglement measures quantifies the amount
of entanglement in a quantum state pag = Y pr(Pr)as, Where p; denote the classical
probability. n(pag) can be defined as a non-negative real-valued function that sat-
isfies the following properties, some of which are not satisfied by all entanglement
measure [21]:

(i) n(pag) vanishes for the separable state p.

(i) A bipartite entanglement measure n(pap) defines a mapping from the set of den-
sity matrices to the set of positive real numbers:

p—n(p)ERT (1.4.7)
A normalization condition is generally used, for example, for two qudit maximally en-

tangled state of the form

10,0) 4+ |1,1) +...]d — 1,d — 1)

W)a = d

(1.4.8)

The value is given by n(|y),) = log(d).
(iii) n(pap) does not increase on average under local operation and classical commu-
nication (LOCC)

Z KipK} (1.4.9)
pin( KpKT] 4.
where the K; are the Kraus operators.
(iv) For pure states |v)(w|, n(p) reduces to entropy of entanglement i.e.

n((w){wl) = (SoTrg)(|w)(w]) (1.4.10)

Any function n satisfying the first three conditions is known as an entanglement mono-
tone. If n satisfies the property (i),(ii), and (iv) and also it does not increase under
deterministic LOCC transformations, then 1 is known as an entanglement measure.

(i) von Neumann entropy: Consider a quantum state described by a density operator
pag, then the entropy of entanglement is a way to quantify the amount of entanglement
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in a pure state. The entropy of entanglement of ps may be defined as

E(pag) =V(pa) =V(ps) (1L4.11)

where V(p) = —Tr[plog,p] is the von Neumann entropy of p. Here ps = Trz(pag) and
ps = Tra(pap) are the reduced matrices obtained by tracing out subsystem A and B
respectively.

(ii) Entanglement of formation: The entanglement of formation of a bipartite mixed

state psp may be defined as the convex roof of the von Neumann entropy

= inf \% 1.4.12
Nr(PaB) {p/},lllm)};pk [(Pa)x] ( )

where p, is the reduced state of psp. Physically, it may be understood as the minimum
number of singlets needed to create one copy of the state [22].
(iii) Concurrence: For two-qubit pure state |1//>/2§2, entanglement can be quantified

using an entanglement measure known as concurrence [23—25], which is defined as

C(|y)333) = \/2(1 = Tr(p3)) (1.4.13)

where p, is the reduced state of |y)352. It may also be generalized to d ® d dimen-

sional bipartite pure states as

W)t ") = \/2v4 v, (1~ Tr(p2)] (1.4.14)

where p, is the reduced state of |y)4:** and v,, and v,, are positive constants.

Concurrence for the two-qubit mixed state described by the density operator p4z, may

be defined as,

Clpap) = max(0, /A1 — /2o — /A3 — /) (1.4.15)

where A/s are the eigenvalues of psppap and arranged in descending order. Here,
PAB=(0y ® Oy)Pap(0y ® Oy).

The closed formula for the concurrence of d ® d dimensional mixed bipartite system is
still not known.

(iv) Negativity: Negativity [26] is a popular measure of entanglement used for quan-

tification of entanglement in d ® d dimensional bipartite system. For a given density
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matrix pag, it is defined as the sum of negative eigenvalues of the partially transposed

matrix pZBB. It may be expressed as [27]

—1
N(pss) = P /ﬂll (1.4.16)

where ||.|| denotes the trace norm.

Il. Tripartite system:

In the case of a tripartite system, the structure of entanglement is more complex due to
the existence of several inequivalent classes of entanglement. For a tripartite system,
all states are divided into three inequivalent classes under stochastic local operations
and classical communication (SLOCC). These classes are: (i) class of fully separable
states (ii) class of biseparable states and (iii) class of genuine entangled states.

(i) Class of fully separable states: Fully separable (FS) three-qubit pure states may
be expressed as

0)hpe =1a)a®|B)E®|Y)c (1.4.17)

A fully separable mixed state described by the density operator pS can be expressed

as
=Y plol ) 0<pi<1, Yopi=1 (1.4.18)
! i

where each |¢/5) is a fully separable pure state.
(ii) Class of biseparable states: Three-qubit pure biseparable states may be ex-

pressed as

10)55c = la)a ® |d)sc (1.4.19)

Here |d) denotes the state which represents an entangled state between the subsys-
tem B and C. In the class of biseparable state, two of the three qubits are grouped as
one party. Thus, there may exist three possibilities that can be obtained by taking two

parties at one time. Hence, we can find three kinds of biseparable states in this class.
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One kind of biseparable state is given in (1.4.19) and the other two may be defined as

0)35c = la)s®|di)ac (1.4.20)

0)55c = |a)c®|d)as (14.21)

A mixed biseparable state can be expressed as a convex combination of different
biseparable pure states. Mathematically, biseparable mixed states may be expressed
as [22]

P55 =Y piloF5) (0] (1.4.22)

We should note that the state [¢”°) and [¢%) (i # j) may not belong to the same
partition. For instance, let us consider a three-qubit state described by the density

operator p; as

pr = qll0)a(0[@[@)ac(@T |+ (1—q)[|1)s(1|@ |0 )ac(d ] (1.4.23)

where 0 < ¢ <1 and the Bell states |¢ " )pc and |¢ ~)ac are given by

0% )c = 500+ [11)ac). 167)ac = 5 (100)ac—[1hac)  (1424)

Identifying |955)(¢B5| = (0)4(0|® |¢ ") pc (9T, a biseparable state in A-BC partition and
|925) (985 = |1)p(1| @ |9~ )ac(9 |, a biseparable state in another bipartition cut B-AC,

we can re-express p; as

p1=qlo7") (01" + (1-q)|95°) (97" (1.4.25)

(iii) Class of genuinely entangled state: A three-qubit state is a genuine entangled
state if it is neither separable nor biseparable. Therefore, in a genuine three-qubit
entangled state, all three qubits must be correlated to each other. For a three-qubit
system, there are two SLOCC inequivalent genuine entangled states namely, GHZ
states and W states.
Any three-qubit pure state can be written as,

4

W) ac = 20[000) + 21¢/]100) + A5|101) + A3[110) + A4|111),4; > 0, )" 2> = 1(1.4.26)
i=0
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where, 6 € [0, 7] and {|0),|1)} denotes the computational basis.
A three-qubit state |w)apc given in (1.4.26) can be classified as a three-qubit state of
GHZ type. A three-qubit W state may be expressed as

[W)w = 29|000) + 4,¢%|100) + A5|101) + A3]110) (1.4.27)

To distinguish between GHZ class of states and the W class of states, we need to
define a quantity, popularly known as tangle.

Tangle: Tangle [28] is an entanglement measure used to characterize the three-qubit
entanglement of the state. Consider a three-qubit pure state defined by |@)apc €

Hjy ® Hg ® He. In computational basis, the state |¢)4pc can be expressed as
|9)aBc = a|000) +b|001) +c|010) +d|011) +[100) + f|101) + g[110) +A[111)(1.4.28)

The state |¢)apc is normalised if |a|> + b2 + |c|® + |d|* + |e|> + | f|* + |g|* + |h|* = 1.
The tangle of a pure state |¢)apc may be denoted by 73(|¢)apc) and defined as

53(|9)aBc) = 4|d1 —2dy + 445 (1.4.29)
where,

di = @ +b*F+fr+ed? (1.4.30)
dy = ahde+ahfc+ahgb+defc+degb+ fcgb
di = agfd+ hbce (1.4.31)

The three-qubit mixed state can be written as a convex combination of pure three-

qubit states

|9;)aBc (9]
pasc =Y pimi, W= Pl (1.4.32)

e Zjl T 05195)asc
The tangle of a three-qubit mixed state may be obtained by the convex roof extension
method. Therefore, the tangle for a mixed three-qubit state described by the density

operator papc is given by

73(Papc) = min ZPjrg(nj) (1.4.33)

pj?”j ]
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Three-n: Three-n [29] is another measure of entanglement for a three-qubit system.
For three-qubit pure states, it may be defined as

_ Tt T+ T ’;b 7 (1.4.34)

where, n,, m, and m, may be defined as
Ty = Nac)—Nia—Nic (1.4.36)
Here, N;; = ”’)T"#, i,j={A,B,C}, where ||.|| represent the trace norm and N repre-

sent the negativity of the bipartite system and Ny = 2\/det([trji(piji)])-
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1.5 Entanglement Detection

Quantum entanglement plays a significant role in the development of quantum in-
formation theory. The first revolutionary idea of using entanglement as a resource in
quantum teleportation was proposed by Bennett et.al [30]. Many experimental propos-
als were put forward to realize quantum teleportation [31-35]. Afterward, researchers
applied the concept of entanglement as a resource in many other quantum information
processing tasks such as quantum superdense coding [36—39], remote state prepa-
ration [40—43], entanglement swapping [44—47] and quantum cryptography [48-51].
Therefore, entanglement can be considered a vital ingredient in quantum informa-
tion theory without which the above-mentioned quantum information processing task
cannot be performed. Thus, it is necessary to create entangled states to get a better
result than classical states in performing quantum information processing tasks. Mere
creation of entanglement is not sufficient to fulfill our demand because it is not known
whether the generated state is entangled or not.

Creation and detection of entanglement are thus one of the important problems in
quantum information theory. Hence, efficient physically realizable methods for the
detection, classification, and quantification of quantum entanglement are of great im-
portance. A lot of progress has been achieved in the creation of entangled states
experimentally [52-57] but due to the presence of noise in the environment the gen-
erated state need not be entangled. Thus, it is important to check whether the state
generated in an experiment is entangled or not. The ultimate goal of the detection of
entanglement in a given state is to characterize entanglement in a quantitative way
and identify the states in which entanglement is maximum. The first step towards this
problem is the detection of entanglement in a given state. In the literature, there are
many criteria that may help in the detection of entangled states. We can divide these
criteria for the detection of entanglement into two categories C1 and C2, which may
be given by

C1. Theoretical criteria that may not be realized in an experiment

C2. Criteria that may be realized in an experiment.
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1.5.1 Entanglement detection criterion that may not be implementable

in an experiment

I. The Positive Partial Transposition (PPT) criteria The first necessary criteria for
the detection of entanglement was given by Peres [58]. A bipartite N ® M dimensional
quantum state described by the density matrix pag, may be expressed as,

N M
pas =Y. Y pijuli)(jl@ k)] (1.5.1)
i,j k.,

The partial transposition of psp with respect to subsystem A may be expressed as

plly= L X sl 115 (1.52)
L,J K,

Similarly, one can define partial transposition of the density matrix psp with respect to
subsystem B.

PPT Criteria [58]: If a bipartite quantum state described by density operator p4p is
separable, then p,4 (or pi2) is a positive semidefinite operator.

Later, Horodecki showed that, if psp defines a separable quantum state in 2®2 or
2®3 dimension, then p{4 > 0 and vice-versa. Thus the condition is necessary and
sufficient for 2® 2 or 2 ® 3 dimensional quantum system but only necessary condition
for dy @ d, (except 2®2 or 2® 3 or 3®2) dimensional system [59, 60].

PPT criterion is an important criterion in the sense that this criterion provides (i) nec-
essary and sufficient conditions for 2 ® 2 and 2 ® 3 dimensional system and (ii) it is
based on the spectrum of the partially transposed matrix. This criterion tells us that if
the spectrum of the partially transposed matrix has at least one negative eigenvalue,
then the given state is entangled.

For instance, consider the two-qubit Werner state

T
4

LE 0 0
1+F F
I O <F< 53
pw = o _E LE g , 0<F<1 (1.5.3)
2 4
0 0 0o LE

i
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Then, the partial transpose pVT,B of the density matrix py may be calculated as

1-F F
2 0 0 -3
n |0 2 o0 o0
pls = L 0<F<I (1.5.4)
o o YE o0
F 1-F
The spectrum of p/? is given by {1=3£ 14F 14F 14F1 Thys, the minimum eigenvalue
p Pw T 4 4 0 4

13E of pa? is negative for 1 < F < 1. Hence using PPT criteria, the state pw is

entangled for $ < F < 1.
The PPT criteria define only a necessary condition for a higher dimensional quantum

system. to illustrate this, consider a two-quitrit state p, ;. defined by

a 00 0 b 0 O0O0 D
0O cO0OO0OO0O0OOO0OO
0 0a 0O0O0O0O0O0
00 0aOO0O0OO0O0
Papec=1b 0 0 0 a 0O 0 0 O (1.5.5)
000O0O0¢cO0©WbDO
000O0O0O0OTCO0OOQ
000O0O0GQWbDO0a§6oO
b 00 0O0O0O0O a
Here, a = 3?9{%, b= 3+—92ﬁ andc= ;gg The spectrum of pan;m is given by {3&1{5@,

2V5 2V/5 1+/5 1+V5 =145 145 : : )
3(1+3\5)>3(1+3\@)>3(]+3\@)73(1+3ﬁ)’3(1+3ﬁ)’3(1+3\/§),0,0}. It is clear that all eigenval

ues of p(f%c are positive. But it is known that the state p, ; . is an entangled state [61].
This kind of entangled state which is positive under partial transposition operation is
known as positive partial transpose entangled states (PPTES) or bound entangled
states. The PPTES exist in the higher dimensional system and they are not detected
by PPT criteria. For the detection of PPTES, one may use another criterion such as
range criteria and realignment criteria.

Il. Realignment Criteria [65,66] Let us consider any bipartite state described by the
density operator p,

p=Y ajulij)kl| € H @ Hy? (1.5.6)
ijkl
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where Hjl and ng denote the Hilbert spaces of dimension d; and d, of the subsys-
tems A and B respectively. The realigned matrix p® of the density matrix p may be
expressed as

p* =Y ai jilik) (jl| (1.5.7)
ijkl
The realignment operation can be used to detect entanglement in higher dimensional
systems. Especially, it is useful to detect PPTES, which are not detected by PPT
criteria. The criteria based on the realignment operation is called realignment criteria.
Realignment Criteria: If the state described by a density operator p is separable
then ||p®|| < 1, where ||.|| denote the trace norm defined as ||H|| = Tr(VHHT).

To illustrate the realignment criteria let us consider a two-qutrit state defined in [67].

a 00 0a0O0O 0 0 a
0a0000 0 0 0
00a000 0O 0 0
000a00 0 0 0
pa=8a1+1 a000a0 0 0 a |,0<a<l (1.5.8)
00000a 0 0 0
000000 o o Vi
000000 0O a O
a 000a0 Y& o e

Then, the realigned matrix of the density matrix p, may be calculated as

a 0 0 0 a O 0 0 a
0O a 0 000 O 0 O
0 0 a 000 0O 0 O
00 0 a00 0 0 O
pﬁfzgal+1 a 0 0 0a0 0 0 a |,0<a<l (1.5.9)
0 0 0 00a O 0 O
00 0 000 a O O
00 0 000 O a O
\$¢ 0 Yz 0 g 0 Y o Lo
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It can be seen from the figure given below that ||pX|| > 1 for 0 < a < 1. Thus the state

described by the density matrix p, is entangled for 0 < a < 1.

1.0030
1.0025
1.0020
1.0015
1.0010

1.0005

lll. Reduction Criteria [64] Similar to PPT criteria, another entanglement detection
criteria can be formulated using a positive but not completely positive map. Like the
partial transposition map, there exists another positive but not completely positive map
which is known as the reduction map. Reduction map on a single qubit system X may
be defined as

ARX)=Tr(X).I-X (1.5.10)

Reduction criteria: If a bipartite state described by a density operator p4 is separa-
ble then (Iy ® AR)(pag) = pa @I — pap > 0, where A denote any positive map.

A reduction map is a so-called decomposable map and may be expressed as
AR=P +PoT (1.5.11)

where {P;, P,} are the completely positive maps and 7 denotes the transposition oper-
ator. The reduction criteria is weaker than the PPT criteria because I, ® AR can never
detect entanglement unless I, ® T detects it. It provides a necessary and sufficient
condition for separability in the case of a two-qubit quantum system [22].

For illustration, consider a two-quitrit isotropic state defined as

1_
pa= |0} (0] + 51, €k, 0<a<] (15.12)

where |¢. ) is the maximally entangled state and it is given by

164) :%(|oo>+|11>+|22>) (1.5.13)
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After applying reduction map on the density matrix py, the matrix (py), @ I — po be-

comes

—3(-14a) 0O 0 O o~ 0 0 0 ~¢
0 e 00 0 0 0 0 0
0 0o =2 0 0 0 0 0 0
0 0o o ¢ 0 0 0 0 0
— 0 0 0 —3-1+a) 0 0 O -g 1.5.14)
0 0 0 0 0 e 0 0 0
0 0 0 0 0 0 = 0 0
0 0 0 0 0 0o o ¢ 0
-4 0 0 0 -4 0 0 0 —%-1+a)

The minimum eigenvalue of the resultant matrix (pg)a ® I — po is —3(—1+4a) and it
is negative for 0.25 < a < 1. Thus, using reduction criteria, we can conclude that the
state p, is entangled for 0.25 < a < 1.

IV. Range Criteria [62,63] Range criteria can be considered one of the earliest criteria
for the detection of entangled states. Sometimes, it may detect those higher dimen-
sional entangled states which are not detected by either PPT criteria or realignment
criteria. It asserts that if a state described by a density operator p is separable, then
there exist a set of product vectors |a;b;) such that the set {|a;b;)} spans the range
of density matrix p and the set {|a;b;)} spans the range of p’s. This criterion detects
many entangled states which are not detected by PPT criteria. But the drawback of
this criteria is that it cannot be used when the state is affected by noise because then
the density matrix p and its partially transposed matrix p4 will usually have full rank

and thus the condition for range criteria is automatically satisfied.

1.5.2 Experimentally implementable entanglement detection schemes

All the criteria defined above for the detection of entangled states depend on a pos-
itive but not completely positive map. It is known that positive but not completely
positive maps do not correspond to a physically realizable operator whereas a com-
pletely positive map does. Thus, the above-defined entanglement detection criteria
may not be realized in an experiment. We will now discuss some of the important
experimentally realizable criteria for the detection of entangled states. The first tool

for the detection of entanglement experimentally was given by John Bell in 1964 [68]
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Figure 1.2: Experimental setup for the Bell inequality

Alice . .
Alice can choose to measure either Aor B Bob

A=+1or-1 . C=+lor-1
B=+1 or -1 J Bob can choose to measure either Cor D D=+1 or -1

Assumptions made during the experiment

1. Alice and Bob perform their measurements simultaneously.
2. Alice and Bob are residing far enough apart such that measurement on one
system does not influence the result of another system.

in the form of Bell's inequality. The objective of this study is to quantitatively express
the Einstein-Podolsky-Rosen paradox.

I. Bell Inequality [2,68] The basic idea behind Bell's inequality is that if measurement
is performed by both the parties say, Alice and Bob on their individual subsystems of
a bipartite composite system with the assumption that measurement result exists lo-
cally before the measurement then it is feasible to obtain bounds on certain quantities
composed from the correlation terms of two subsystems of a composite system.

We are now in a position to explain the following experiment described in Figure
1.2. The assumptions made during the experiment are: the assumption of realism
and the assumption of locality. Let us assume that Charlie prepares two particles.
After finishing the preparation, he sends one particle each to Alice and Bob. As soon
as Alice receives her particle, she measures it. Imagine that she has access to two
separate measuring apparatuses, and she may select to perform one of the two mea-
surements. Alice chooses the measurement randomly, where the physical properties
of the measurements may be described by P4, and Py respectively. For simplicity, sup-
pose that each of the measurements can have one of the two possible outcomes, +1
or -1. Assume that the attribute P, of Alice’s particle has value A, where A is thought
to be an objective feature of Alice’s particle that is only disclosed by the measure-
ment, and B stands for the value obtained by measuring the property Ps. Similarly,
Bob is able to measure one of the two physical properties, Pc or Pp, indicating that the

property has an objectively existing value C or D, where each takes a value of either
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+1 or -1. Bob doesn’t know in advance which property he will measure, Once he re-
ceives the particle, he chooses the measurement randomly. It is assumed that Alice
and Bob perform their measurement simultaneously so, Alice’s measurement doesn't
affect Bob’s measurement and vice-versa. We now take the random variables A, B, C,
and D in such a way that the expression constructed from them is nonfactorizable.
Keeping in mind this fact, we may consider the expression AC — BC+ BD +AD. This
expression may be re-expressed as

AC —BC+BD+AD = (A—B)C+(A+B)D (1.5.15)
since, A,B = £1 thus either (A—B)C =0 or (A+B)D = 0. In either case, we have
AC—BC+BD+AD =+2 (1.5.16)
Consider

E(AC—BC+BD+AD) =Y p(a,b,c,d)(ac —be+bd +ad) (1.5.17)
abced

where p(a,b,c,d) denotes the probability of the system before the measurement, and

E(.) denotes the mean of the quantity (.). Thus,

~ Y pla,b,c,d)x2 < E(AC—BC+BD+AD) < Y p(a,b,c,d)x2 (15.18)
abced abed

Since ¥ .0 p(a,b,c,d) =1, so the inequality may be re-written as
—2 <E(AC—BC+BD+AD) <2 (1.5.19)
Further, we have

E(AC—BC+BD+AD) = Z pla,b,c,d)ac — Z pla,b,c,d)bc
abcd abcd

+ Y pla,b.c.d)bd+ Y pla,b,c,d)ad
abcd abcd

= E(AC)—E(BC)+E(BD)+E(AD) (1.5.20)
Comparing equations (1.5.19) and (1.5.20), the following inequality is obtained,

—2 < E(AC) — E(BC)+E(BD)+ E(AD) <2 (1.5.21)
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This inequality is known as Bell’s inequality. If Bell's inequality given in (1.5.21) is
violated by any quantum state, then the state will violate the assumption of local real-
ism. Thus, the state may be considered non-local and thus entangled. All separable
states satisfy Bell's inequality but there may also exist entangled states which satisfy
Bell's inequality. For higher dimensional system Bell's inequality have been devel-
oped in two forms: (i) Clauser-Horne type inequality for two qutrit system and (ii)
CHSH type inequality for two arbitrary d-dimensional systems which is now known
as Collins-Gisin-Linden-MasserPopoescu (CGLMP) inequalities. The tightness of the
CGLMP inequality was demonstrated in [69]. In a two-qubit system, maximally en-
tangled states violate Bell's inequality maximally whereas, in a higher dimensional
system, there may exist non-maximally entangled states that violate Bell’s inequality
maximally. [69]. Acin et.al studied nonlocality in the case of a two-qudit system up to
d = 8 and found that there exists a non-maximally entangled state in which the viola-
tion of CGLMP inequalities is more than the maximally entangled state [70].
Furthermore, we should note that the expression involved in the derivation of Bell’s
inequality is not unique and can be modified in such a way that the resulting expres-
sion would not be factorizable. Otherwise, the inequality derived from the expression
will not take part in the detection of an entangled state.

Il. Withess Operator or Entanglement Witnesses [71,72] Witness operators are
the fundamental tool for the detection of entanglement experimentally. It can be used
to detect entangled states in bipartite as well as multipartite quantum systems. En-
tanglement witnesses are Hermitian operators and have at least one negative eigen-
value.

An observable W is an entanglement witness if it satisfies the following two conditions:

H, : Tr(Wpy) > 0,for all separable states p;.

H, : Tr(Wp,) < 0,for at least one entangled state p,. (1.5.22)

Thus, if Tr(Wp) < 0, then we say that the state p is detected by an entanglement
witness W. The first example of witness operator can be considered as Wz =2/ — B
where B denote the Bell operator which may be defined as

B=AC+BC+BD—-A®D (1.5.23)

Indeed it can be shown that W represents a witness operator.
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Figure 1.3: Hahn Banach Theorem

Geometrically, entanglement witness W represents a hyperplane that separates at
least one entangled state from the set of separable states. This can be seen as the
consequence of the Hahn Banach theorem of functional analysis which states that
for a convex and closed set S in a finite-dimensional Banach space, there exist a
hyperplane that separates p from S, when p is a point in the Banach space that does
not belong to S.

Let us define three sets Sy, S, and S, which are defined by

So=A{p:Tr(Wp) =0}
Sy ={p:Tr(Wp) >0}
So={p:Tr(Wp) <0} (1.5.24)

The set Sy contains all those states p which are lying on the hyperplane W. In this
case, the hyperplane W touches the set Sy and thus the hyperplane W can be consid-
ered as a tangent plane to the set Sy. The set S| contains all those states p which are
either separable states or the states which are not detected by the withess W. The
set S, denotes the set of entangled states which are detected by W.

If Wi and W, are two entanglement witness then W; is said to be finer than W, if W,
detects all entangled states which are detected by W,. An entanglement witness W,
is known as the optimal entanglement witness (OEW) if there exists no entanglement
witness which is finer than W, i.e. if W,,, forms a tangent plane to the set of sep-
arable states S. Entanglement witnesses may be further classified into two classes
as decomposable entanglement witnesses (DEW) and non-decomposable entangle-

ment witnesses (NDEW). Decomposable entanglement witnesses may be expressed
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as
Wp=aP+(1-a)Q"%, ac|0,1] (1.5.25)

where P and Q are positive semidefinite operators. The operators which cannot be
expressed in the form (1.5.25) are non-decomposable entanglement withesses. DEW
cannot detect PPTES. Optimal DEW, W may be expressed as W = Q" for some
positive semidefinite operator Q which contains no product vectors in its range. Also,
for an optimal DEW, W, the partial transposition W’z is not a witness operator. An
entanglement witness is non-decomposable if and only if it detects PPTES. Every
entanglement witness, however, corresponds to a positive but not completely positive

map via the Choi-Jamiolkowski isomorphism [73,74].

lll. Structural Physical Approximation [75] Another method for the experimental
detection of entanglement is the method of structural physical approximation (SPA).
The concept of SPA has been introduced in [75]. In the SPA method, a positive but not
completely positive map is approximated by a completely positive map. The method
is useful in the sense that it transforms a non-physical operator to a physical operator
and hence makes it experimentally realizable [76]. A lot of progress has already been
done in both theoretical as well as experimental aspects of SPA [77-84].

The main idea behind SPA is how much proportion of white noise needs to be added
to a non-physical operator A, such that the approximated operator A will be completely
positive. Mixing the map A with the white noise transforms any density matrix into a
maximally mixed state, thus resulting map can have no negative values. For any non-
physical operator A, the approximated map A can be written as a convex combination

of the operator A and the depolarizing map D that may be expressed as

A=(1—p)A+pD, 0<p<1 (1.5.26)

If a d-dimensional system is described by a density operator p and A be any positive
operator then the approximation of A denoted by A, which may be evolved as

- L
Ap)=(1-p)A(p) +p7. 0<p<1 (1.5.27)

where we have used the fact that D[p] = %’ and I, denote the d-dimensional identity

matrix.
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In particular, let us consider the positive but not completely positive transposition map
T, which is defined in d-dimensional system. The SPA of T may be expressed as

- 1 d
T = T D 1.5.28
d+1 +al—l—l ( )

T is completely positive for p > d+1 [84]. In particular, the SPA of the transposition
map of a qutrit system has been realized in experiments through prepare and mea-
sure strategy [84].

In 2008 [77], a conjecture has been posed that SPA leads to separable states. Var-
ious examples were given in support of this conjecture [77,78]. For instance, let us
take a transposition map acting on one of the subsystems of a composite bipartite
system that may lead to entanglement breaking. Further, assume a d ® d dimensional

maximally entangled state of the form

Py = 1620041, 104) = fz i) (1.5.29)

In particular, taking A =T in (1.5.27), it reduces to

~ 1
I'(p)=p +(1=p)T(p), 0<p<l (1.5.30)

where p takes the minimum value for which T becomes a completely positive map.
The corresponding witness operator E7 acting on the maximally entangled state P,

may be expressed as

p

Er(P) = (d T)(P) = 2

1®1+ Z|u (ii| + Z lij)(jil] = pw (1.5.31)
i#j,i,j=1

Then, E7 is positive and thus T is completely positive when

d
V4 > m = Pmin (1-5-32)

Using the fact that PPT criteria is necessary and sufficient for the detection of d ® d-
dimensional Werner state described by the density operator py [77] and from (1.5.31),
we have

p

(Er)" = Gl@l+(1=p)P; (1.5.33)
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where T" denotes the partial transposition. The operator (]3?)F is non-negative for
0 < p <1 and thus, Er represent a separable state. Hence, the SPA of the transposi-
tion map is entanglement breaking. Later, this SPA conjecture was disproved by Kye
and Ha [79-82].

Now we are in a position to discuss the separability criteria of d ® d dimensional sys-
tem using the structural physical approximation of partial transposition (SPA-PT). If
we have some prior information about the arbitrary dimensional bipartite system de-
scribed by the density matrix p, then the eigenvalues of SPA-PT of p can be used
to detect whether the state p is entangled or not. Using this idea, criteria have been
proposed for the detection of negative partial transpose entangled states (NPTES) in
the arbitrary dimensional bipartite system. Horodecki et.al. [75] have studied SPA-PT
map extensively to develop the entanglement detection criteria for d ® d dimensional
system.

To understand SPA-PT in d ® d dimensional system, let us start our discussion with the
partial transposition operation which is a purely mathematical operation and may not
be directly implementable in an experiment. The partial transposition criteria which is
based on the partial transposition operation may be stated as: If a state described by
the density operator p?®¢ is separable then

([d®T)p >0 (1.5.34)

where T denotes the transposition operation. Since the map, id ® T is not a com-
pletely positive map and thus cannot be implemented in a laboratory. This means
that the partial transposition operation is a non-physical operation and thus, to make
it a physically realizable operator, we approximate it by the method of structural phys-
ical approximation. The structural physical approximation of the map id ® T, where
T denotes the transposition operation for d ® d dimensional quantum system may be
expressed as [85]

—_—

(idRT)=(1—q)(id®T)+gD®D (1.5.35)

—~—

where D(.) = %’ denote the depolarizing channel. When the approximated map (id ® T')

acts on the bipartite d ® 4 dimensional density matrix p?®¢, (1.5.35) reduces to

(id @ T)(p*4) = (1 — gin) ({d © T) (p?*) + 4" (1 5,1 (1.5.36)
d2
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where ¢,,;; denotes the minimum value for which (M/é/T)(pd®d) becomes a positive
semidefinite matrix. (id ® T)(p9®?) becomes a positive semidefinite matrix when

d*A
q> PArl = Gmin (1.5.37)

where —A(4 > 0) denote the most negative eigenvalue obtained when the induced
map [(id ® id) ® (id @ T)] acts on the maximally entangled state %Zﬁl li)]7). Using
(1.5.37) and A = %, the approximated map (1.5.36) may be re-expressed as

—— 1 d

- dody _ - dod Iy

lid 2 T)(p?*?) = e (id 2 T)(p?®!) + d3+1(zd®zd) (1.5.38)
The physically realizable PPT criteria for d ® d dimensional system described by the
density operator p obtained by applying the SPA-PT, which may be read as: If p is
separable then [76]

Aoninlid BT (p494) > —4 (1.5.39)

—d3+1

where Apin [id/g?] (p) denote the minimum eigenvalue of SPA-PT of p.
If any d ® d dimensional quantum state p violate inequality (1.5.39), then the state p
is an entangled state.

Let us now generalize the separability criteria for d; ® d, dimensional system using
the SPA-PT map. To do this, consider a d; ® d, dimensional system described by a
density operator p91942, Here we assume that d; = min{d;,d,}. The SPA-PT for d; @ d,

dimensional system may be defined as

—~——

(id@T) = (1-p)(id=T)+ pD; ®D> (1.5.40)
where
Ad3d, . J
=5 A=— ' 1.5.41
PE Al A = —minTr(Q(id @ T)P'] (1.5.41)
b 1o (00, 104) = =3 i s
P = , =—=) lii (1.5.42)
=19 (04, |0+ dli;

Di(.) = L for i=1,2 denote the depolarizing channel acting on the individual subsys-

tem and the parameter p denote the minimum value for which (id ® T) is completely

positive. Thus, the separability criteria for d; ® d, dimensional system in terms of the
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minimum eigenvalue of SPA-PT map may be stated as: If p91%4 is a separable state

in dy ®d, system, then

D[ (ST (p 0] H’lj_ld‘%z, A= —minTrQid & T)P}) (1.5.43)
If the inequality (1.5.43) is violated then the state p“1©® represent an entangled state.
From (1.5.43), it is clear that to determine whether any arbitrary dimensional quantum
state is entangled or not, we need to find the minimum eigenvalue of the SPA-PT of
the state under consideration. But it would be a tedious task to determine the matrix
elements of the SPA-PT of the higher dimensional quantum system described by the
density operator p¥©%. Thus, we have considered a particular bipartite composite
quantum system such as a qutrit-qubit system described by the density matrix p3%2
and then calculated the matrix elements of the SPA-PT of p>*? [86]. Therefore, by
constructing the general form of the matrix of SPA-PT of p3%2, it would be possible to
calculate Amin[(m/éﬁ)(p3®2)] at least for the quitrit-qubit system.
SPA-PT method not only helps in the detection of entanglement but also has many
applications such as to estimate (i) optimal singlet fraction [87], (ii) entanglement neg-
ativity [88] of the two-qubit density matrix in an experiment, (iii) concurrence of a
two-qubit system using 4 moments [89].

1.6 Classification of entanglement

Another important problem in quantum information theory is the problem of classifica-
tion of multi-qubit quantum state [90], especially when the number of qubits is either
equal to three or more than three. In the case of a two-qubit system, the classification
of entanglement is not that important as compared to the system where three or more
than three qubits are involved because a two-qubit system can be classified as either
separable or entangled state [91]. Therefore, when we increase the number of qubits,
the complicacy in the structure of the multi-qubit system will also increase, and thus,
we may have different classes of entangled states. These classes of entangled states
need to be characterized on the basis of the entanglement present in the different
subsystems and accordingly, we can use that class of entangled states in appropri-
ate quantum information processing tasks. In particular, three-qubit states may be

classified into six inequivalent classes under stochastic local operation and classical
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communication (SLOCC) as one fully separable state, three biseparable states, and
two genuinely entangled states. The fully separable and biseparable states may be
expressed in the form as [92, 93]

Do = szp, 2pf @ p; 7sz=1 (1.6.1)

phisep P1 pl?tselzc + pzpl?zse/;c +p3 pbzse?f’ Zpi =1 (] 62)
i
where,

Phisen = Z lai)a (@i @ |0:)pe (6]
pbB;seI??C Z’b b ‘®’¢z AC<¢1|

plg;se?)B Z |Cl Cl| ® |¢1 AB<¢1|

Here, |a;), |b;) and |c;) are (unnormalized) states of systems A, B and C, respectively
and |¢;) are states of two systems in equations (4.1.2). If any three-qubit state is
neither fully separable nor biseparable state, then the state is said to be a genuine en-
tangled state. There are two classes of genuine three-qubit entangled states namely,
W class of states and GHZ class of states.

The five-parameter canonical form of three-qubit pure state |y)4pc shared between

three distant partners A, B, and C is given by [94]
“/]>ABC = A()|000> —|—7Llei9|100> -{—12’101) +)L3’110> +)~4‘111> (1.6.3)

with 0 < 4; < 1(i=0,1,2,3,4) and 0 < 6 < w. The normalization condition of the state

(1.6.3) is given by
AHA A +HAF+ A =1, (1.6.4)

Equation of the type (1.6.3) represents a GHZ state whereas W vectors can be written

as

W)W = A0|000) + 4,0 100) + A,|101) + A3110) (1.6.5)



52
The tangle for three-qubit state |y)pc is given by
Ty = 4AGA; (1.6.6)

If at least one of the A4y or A4 is zero then the tangle of the given three-qubit state
is zero and if none of the Ay or A4 is zero, then the tangle of the state under investi-
gation is non-zero. Thus, if the tangle is non-zero for any three-qubit state, then the
state belongs to the class of GHZ states and if the tangle is zero for any three-qubit
state then the state can be either separable or biseparable or W state in three qubit
system. Thus, the tangle can be used to classify GHZ class of states from the set of
separable states, biseparable states and W class of states [95]. Now, it is important to
further classify separable states, biseparable states, and W states. In this context, all
possible six SLOCC inequivalent three-qubit pure states can be distinguished with the
help of observables [96]. An experiment has been carried out using an NMR quantum
information processor, to classify these six SLOCC inequivalent classes [97]. Classifi-
cation of genuine three-qubit mixed states has been studied by constructing GHZ and
W witness operator in [98]. Sabin et al. [99] have studied the classification of a three-
qubit system based on reduced two-qubit entanglement. Classification of four qubit
pure states has been studied in [100—102]. For multi-qubit pure system, classification
has been studied in [103—106]. The complete classification of multipartite systems is
still not known due to the complicated nature of multipartite systems.

Although there are various methods for the detection and classification of entangle-
ment which exists in the literature, most of them suffer from a serious drawback that
they cannot be implemented in an experimental setup. To overcome this defect, we
have used the method of withess operator and SPA-PT method to classify a three-

qubit quantum system.
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Chapter 2

Detection of entanglement via structural

physical approximation

Detection of entanglement is an important problem in quantum information theory and
thus various entanglement detection schemes have been proposed to detect entan-
glement in a mixed bipartite quantum system. In this chapter ', we have started with
the study of SPA-PT map acting on the qutrit-qubit system described by the density
operator p>®3 to detect entanglement in the given system. Here, it is shown how to

—_—~

apply SPA-PT on p®3 and thus, obtained explicitly the matrix elements of p2©3, where
p233 denote the SPA-PT of p223. Using the matrix elements of p23, one can find the
minimum eigenvalue of the approximated matrix, and using the minimum eigenvalue
one can check whether the state under investigation is entangled or not. But the en-
tanglement detection procedure based on the minimum eigenvalue of SPA-PT of the
given density matrix will become very tedious when we increase the dimension of the
bipartite quantum system. Thus, to check entanglement in an arbitrary dimensional
bipartite system, we have proposed three different criteria based on SPA-PT. Also,
we have provided a lower and upper bound of concurrence of arbitrary dimensional

mixed bipartite NPTES.

IThis chapter is based on a published research paper “Detection of a mixed bipartite entangled state in arbi-
trary dimension via a structural physical approximation of partial transposition, Physical Review A 100, 052323
(2019)".
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2.1 Introduction

Entanglement [90, 107] is a crucial element that enhanced the power of quantum
computation [108]. This non-local feature of quantum mechanics plays an important
role in the field of quantum information theory. Thus, it is important to check whether
the quantum state under investigation is entangled or not. If in an experiment, one
intends to generate an entangled state, then it is not necessary that the generated
state at the output is entangled. This happens due to the presence of noise and thus
the problem of detection of entanglement will become an important issue. Several
criteria had already been proposed for solving the entanglement detection problem
but yet partial result has been achieved [109-118].

The first entanglement detection criteriai.e. the PPT criteria provides a necessary and
sufficient condition for separability in 2®?2 and 2® 3 dimensional system. But for d; @ d>
(except 2®2 and 2 ® 3) dimensional system, it provides only a necessary condition
due to the existence of PPTES. The other weakness of PPT criteria is that it depends
on the spectrum of partial transposition of the density matrix. Partial transposition
is a positive but not completely positive map and hence, it may not be implemented
in a laboratory. This defect can be rectified by using SPA-PT which transforms a
positive but not completely positive operator into a completely positive operator and
thus, makes the operator experimentally realizable.

H. T. Lim et.al. have studied the SPA-PT of the single qutrit system and shown that
it can be implemented in the laboratory with linear optical elements [84]. Also, the
SPA-PT method has been applied to a two-qubit system to study the entanglement
detection problem [87]. Thus, one may ask that the SPA-PT method works well in
a two-qubit system and can be implemented in an experiment but can we use this
method to detect entanglement in the higher dimensional system also? To answer
this question one first need to determine the density matrix of SPA-PT of any arbitrary
dimensional quantum system. Once the density matrix is obtained, one may calculate
the minimum eigenvalue of the SPA-PT of the given density matrix and this eigenvalue
can be used in the detection of entanglement. But this procedure is very tedious.

In this chapter, we have considered d; ® d, dimensional NPTES and derived three
different criteria for the detection of entanglement employing the SPA-PT method. It
is known that the average fidelity between two quantum states can be realized in an

experiment [119]. Thus, we have expressed our proposed criteria to detect NPTES,
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in terms of the average fidelity between two quantum states, and hence the detection
criteria can be implemented in an experiment. Among three criteria, two of them are
given in terms of the concurrence of the given state so it is essential to find out the
concurrence. As far as we know, there does not exist any procedure to calculate the
actual value of the concurrence of the given mixed state in arbitrary dimension but
in the literature, there exists a lower bound of the concurrence [120]. In the present
work also, we have provided a lower and upper bound of the concurrence that can be
realized in an experiment.

Let us consider a d; ® d, dimensional mixed quantum system and perform the par-
tial transposition operation on the second subsystem. Since the partial transposition
map ids ® T, where T denotes the positive transposition map and id, represent the

identity operator of the individual subsystem A, is not a physical map so we consider

the approximated map ids ® T, which is a completely positive map corresponds to a
quantum channel that can be experimentally implementable [85]. The approximated

map can be expressed as [76]

—_— *

idyoT=(1-g)idaoT)+ -2
dd>

Iy ®1p (2.1.1)

Iy represents the identity operator of the individual subsystem B and ¢* denote the

minimum value of ¢ for which idy ® T become a positive semi-definite operator. Since

—~—

idy ® T is a completely positive map so when it operate on a density matrix p™, it

gives another density matrix p°“ at the output, i.e. (id4 ® T)p™ = p°“. The minimum
eigenvalue of the density matrix p®“ is important in the sense that there exists a
critical value of the minimum eigenvalue 2,,;,(p°*) below which the state described
by the density matrix p™ is entangled. For instance, 2 ®?2 dimensional quantum state
is entangled when the minimum eigenvalue ,,i,(p°*) is less than 3. So the analysis
of minimum eigenvalue of p°* is needed.

Using the idea of SPA, a positive map A can be transformed to a completely positive
map A and the SPA map A may be expressed as

A=(1—-p)A+pD, pelo,1] (2.1.2)

where p denotes the minimum value for which A represents a completely positive
operator. D[p] is the depolarizing operator which may be defined as D[p| = %‘ I is

the d-dimensional identity matrix. For linear maps of the form id ® A, the SPA may be
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expressed as

idoA=(1—-pIRA+pDD, pelo,1] (2.1.3)

where p denote the minimum value for which idoA is positive. Lim et al. have
demonstrated the experimental realization of SPA-PT for a two-qubit system using
single-photon polarization qubits and linear optical devices. The corresponding de-

composition of SPA-PT for a two-qubit system p4, may be expressed as [83, 87]

(id & T)[pan) = %(id 2 T)[pasl + §(§®D) [PaB] (2.1.4)

where T denote the SPA to the transposition map which may be expressed as
4
T[pas) = Z r[Mypag]|vi) (vil (2.1.5)

where M; = L;Vk' for k =1,2,3,4. The basis |v), |v2), |v3) and |v4) may be expressed

as
W) = (10) + b1 1))
VTt bR :
1
= 0)—by|l
2) = == (0~ i)
1
[v3) 1+|b2]2(’ ) +bo|1))
1
S — (2.1.6)
) = (0 —hilD)
21'[- 2H ~
where b; = H and b, ’eT . In (2.1.4), 6 denote the SPA to the inversion map
ite 3 i—e 3 ~
where inversion map may be defined as 0[pap] = —pap- The inversion map 6 may be

expressed as

0[pas] =

-

Tr[MkpAB] Gy|vk><vk’6y (217)

T

where o, is defined in (1.1.15)
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2.2 Preliminary Results

Result-1: For any two hermitian (n,n) matrices X and Y, we have
Anin X)Tr(Y) < Tr(XY) < Apax(X)Tr(Y) (2.2.1)

Proof: It is known that for any hermitian (n,n) matrices X and Y, the following inequal-
ity holds [121]

Y () A (V) € Tr(XY) < Y A(OALY) (222)

where A = A1 <A <Az < ... < A = Aax-

In the LHS of inequality (2.2.2), if we replace all eigenvalues of X by its minimum
eigenvalue, and in the RHS, if we replace all eigenvalues of X by its maximum, then
the inequality (2.2.2) reduces to (2.2.1). Hence proved.

Result-2: If W represents the witness operator that detects the entangled quantum
state described by the density operator psp and C(pap) denote the concurrence of the

state psp then the lower bound of concurrence is given by [122]
C(pap) = —TrWpag], TrW]=1 (2.2.3)

Result-3: If pyp denote the density operator of a bipartite quantum state in any arbi-
trary dimension then all eigenvalues of p}% lying within the interval [‘71, 1] [123].

Result-4: If any arbitrary two-qubit density operator p4p is given by

€1 €12 €13 €4

* 4
e e e e
12 22 23 24
PAB = . . s Z ejj — 1 (2.2.4)

* * *
€14 €24 €34 €44
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where (x) denotes the complex conjugate, then the SPA-PT of pp is given by [87]

pap = [%(1® T) +§((:)®5)]pAB

Eyn Enn Ei3 En
Ef, Ex Ex3 En

_ (2.2.5)
Ef; E5; B3z Esg
Ely Ey E3y En
where
1 1, 1
E = 5(2+€11)7E12 = §€127E13 =913
Eis= on.E (2+e2).En = ¢
= —e = — e = <€
14=gewEn =73 1),k = geu,
1 1 !
Ery = §ez4,E33 = §(Z+e33),E34 = §€§4,
1
Bu= L2+ en) (2.2.6)

2.3 SPA-PT of an arbitrary qutrit-qubit quantum state

Using the idea of SPA-PT on a two-qubit system, in this section, we will obtain the
SPA-PT of the general density matrix of a qutrit-qubit quantum state.

To achieve our goal, let us consider an arbitrary qutrit-qubit quantum state described
by the density operator in the computational basis as

1 t2 H13 hia s e
t, ty 03 ha bs Ity

Hy tyy 1533 s Bs B
13 23 13 3 35 12
PaB = Y =1 (2.3.1)

Zi‘4 t§4 t;4 I1a 145 146 i=1

* * * *
Iis Is B35 I;5 Is5 Is56

*

* * * *
e he e lis 56 o6

where (x) denotes the complex conjugate.

The decomposition of SPA-PT for a qutrit-qubit quantum state p4p is given by

— 1 ~ 3 ~ =~
pap = [1(id®T)+ (©@D)lpas (2.32)
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The operator 7.] denote the SPA of partial transposition of (.) and it is given by
2 1
Z M) (vel, My = g|v;;><v;| (2.3.3)

Moreover, the remaining two operators ® and D denote the SPA of inversion map @
and depolarization map D respectively and they can be defined as

9
O[] = Y (trIMi()]Aalvi) (vilAa)

= T[] (2.34)

-lk |

): (2.3.5)

where oy = I, 0;(i = x,y,z) denote the Pauli matrices and

Aa = a2l o2 £ Al b ceRr

A = —ij0) (1] +i]1)(0|
A = iy el +i2)(|
A = —i]0Y (2] +[2) (0] (2.3.6)

and the vectors |v;), i€ {1,2,...,9} may be given by

vy = 7<|o>+w|1>>,|vz> 7<|o>+w2|1>>,|v3> 7(10>+|1>>
v) = %<|o>+wrz>> vs) = %<|o>+w2|2>> ve) = %(ro>+|2>>
1 1 1
) = 5 O0I0)+ 2D = 2= 0%10) + ) ws) = =0+ [2) - @3)
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where {1,w,w?} are cube roots of unity.
Let pap denote the SPA-PT of pss. The density operator for psp is given by

hir i iz hisa hs he
I, ta 13 hy bs bg

iy by B3 B B3s B | &~
>

pap=|_" = =1 (2.3.8)
Ha by B3y las tas lae | i=1
ﬁks ’Niks tN_iks 72{5 fss 6
e e B B3 13 leo
Py 3 % *
hr = 3—2[(612 + Cz) + a* (t33 +t44) + ? (l‘55 +t66) + ac(t35 + 135 + 146 —|—t46)]
1.2 1
12 1 239
+ 4[3 n+3 2] (2.3.9)
Py 3 2 * *
3 = g5lbe(l+tss+166) —a” (113 +124) — ac(tis +126) +ab(tzs +146)]
1.2 1
12 .1 2.3.10
+ 4[3 13+ 3 24 ( )
_ 3 )
s = 3—2[—05(1 +133 +144) —ac(tiz +ta) — ¢ (t15 +126) — be(t3s + tag)
1.2 1
12 1 23.11
+ 4[3 15+ 3 26] ( )
Py 3 * *
thrhy = 3—2[(612 + C2) + az(t33 +t44) + Cz(t55 +t66) + ac(t35 + 135+ l46 —|—t46)]
1.1 2
1.2 23.12
+ 4[3 n+y 2] ( )
~ 3 2 * *
4 = 55 [be(1 4155 +166) — a”(t13 +124) — ac(tys +tae) + ab(135 + 136
1.1 2
il .2 23.13
+ 4[3 13+ 3 24] ( )
_ 3 )
he = 735 [—ab(1 4133 +1t44) —ac(t13 +12a) — ¢~ (t15 4+ 126) — be(135+146)|
1.1 2
+ Z[§t15 + §t26] (2.3.14)
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~ 3 * *
133 = 3—2[a2—|—b2—i—612(l11+122)+b2(l‘55—|-t66)—ab(l15+t15)—ab(tz6+t26)]
+ 1[2t +1t ] (2.3.15)
713133+ 5l 3.
~ 3 * * 2
s = 3—2[a0(1+f11+t22)—b0(f15 +126) +ab(ty3 +134) — b~ (135 + ta6)]
+ i1t (23.16)
113135+ 3l6 3.
~ 312 42 2 2 * x
tyy = 3—2[a +b"+a”(t1) + 1)+ b (155 +t66)—ab(l‘15—l—t15)—ab(tz6+t26)]
+ N 2 (23.17)
713133+ 5l 3.
~ 3 * * 2
lae = ﬁ[aC(l +t11 +12) — be(tis — tag) +ab(t]s +154) — b (t35 +ta6)]
+ o 2 (2.3.18)
23135+ 3l6 3.
~ 302, 20, 2 2 * *
ts5 = 3—2[(b +c) - (ti1 +12) + b7 (133 +tag) + be(ti3 + 13 +1a +154)]
+ 12 L (23.19)
1 l3ts5 3166 3.
- 3 *
e = ﬁ[(b2 + )+t +12) + D (133 + 14g) + be(tiz + 115+ g +13)]
1.1
B 2.3.2
+ 4[355+366] (2.3.20)
1 = t*?—lt 7—1t ?—lt fhs = —t
12 = plz e =phs, fe= s, 3= 5hss s =Sl
- ~ 1 ~ 1 ~ 1
Re = -—tiy, he=—I t4s = — = —12 3.
34 34 136 = p5las, s 12t36; 156 12%6 (2.3.21)

The value of the parameters a,b,c can be chosen in such a way that Tr(pag) = 1.



62

2.4 Criteria for the detection of bipartite Negative Partial

Transpose Entangled states in arbitrary dimension

In this section, we derive the criteria for the detection of bipartite NPTES in arbitrary
dimensions employing the method of SPA-PT. In the first part, we will derive the lower
and upper bound of the minimum eigenvalue of SPA-PT of the bipartite mixed quan-
tum state in arbitrary dimension, and then using this lower and upper bound in the
second part, we will derive the criterion for detection of NPTES in arbitrary dimen-
sional bipartite systems.

2.4.1 Lower and Upper bound of the minimum eigenvalue of SPA-PT of

a bipartite mixed quantum state in arbitrary dimension

Let us consider a bipartite mixed quantum state in arbitrary dimension described
by the density operator pag. If pap denote the SPA-PT of psap and Q be any positive
semi-definite operator such that Tr(Q) = 1 then the quantity 7r[(paz + Q"8 )pas], where
T denote the partial transposition with respect to the subsystem B, may be expressed
as

Tr((Pa+Q"")pas) = Tr(Paspas+ Q" pas)
= Tr[Pagpag] + Tr[Q"™pas]
= Tr[pappas) + Tr[0p5] (2.4.1)

Taking X = pag and Y = pap in the LHS part of (2.2.1), we get
Amin(PaB) < Tr(PapPAB) (2.4.2)
Similarly, applying Result-1 with X = p}% andY = Qin (2.2.1), we obtain
Ronin (PAR) < TrlQpya) = Tr[Q™ pas] (243)
Adding (2.4.2) and (2.4.3), we get

Ronin(Pas) + Aonin (Pfy) < Tr[Panpas] +Tr(Q"pas]
= Aonin(Pa) < G (2.4.4)
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where G = Tr[ﬁABpAB] —+ TI’[QTBpAB] — A«min(ﬁAB)-

Therefore, the above inequality gives the upper bound on the minimum eigenvalue of
Tp

Pap-

A bipartite density operator p4p in any arbitrary dimension, represent a NPTES if and

only if Amin(p}g) is negative. Further, if we assume that NPTES described by the

density operator p,p detected by the witness operator W = Q5 then we have
Amin(PaB) = Tr(pappas) + Tr[Wpag] (2.4.5)
Again, inequality (2.4.4) can be re-expressed as

Amin(PaB) < —Amin(PAL) + Tr[PasPas)
+ Tr[Q™pyp] (2.4.6)

Using Result-3 in (2.4.6) and W = Q’3, the inequality (2.4.6) reduces to
~ 1 ~
Anin(PaB) < 5t Tr(paspas) + TrWpag| (2.4.7)

Combining inequalities (2.4.5) and (2.4.7), we get the lower bound (L) and upper
bound (U) of the minimum eigenvalue of the SPA-PT of psp and they are given by

L < Apin(pag) <U (2.4.8)
where
L= Tr[ﬁABpAB] + TF[WPAB] (2.4.9)
1 ~
U=-+ Tr[pABpAB] + Tr[WpAB] (2.4.10)

2

We note that the lower bound given by L can be negative also but since the minimum
eigenvalue A,,;,(pag) of the positive semi-definite operator p,p is always positive so
the inequality (2.4.8) can be re-expressed as

max{L,O} S /lmin(ﬁAB) S U (2411)

where L and U are given by (2.4.9) and (2.4.10) respectively.
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2.4.2 Ciriteria for the detection of d; ® d, dimensional bipartite NPTES

The entanglement of a bipartite mixed quantum state psp in d; ® d, dimension can
be detected by computing the value of L. To see this, let us consider the second term
of L, which is given by Tr(Wpag) = Tr(Q™p,3). Since the witness operator has been
constructed by taking the partial transpose of a positive semi-definite operator so it is
not physically realizable and so we would like to approximate the witness operator W
in such a way that it would become a completely positive operator. Therefore, if W is

the approximation of the witness operator W then it can be expressed as

W=pW+-—Lro<p<i, (2.4.12)
did,
The value of the parameter p should be chosen in such a way that W becomes a
positive semi-definite operator. Further, we note that T(W) = 1. Thus, the operator
W represents a quantum state.
Criterion-1: A bipartite d; ® d, dimensional quantum state described by the density
operator psp represent a NPTES iff
~ 1 —p
Tr(WpAB) < —=R (2.4.13)
1d>
Proof: Using (2.4.12), the relation between T+(Wp) and Tr(Wp) can be established
as
1—p

1~
Tr(Wpap) = ;[TF(WPAB) - M] (2.4.14)

Since W denote the witness operator that detect the NPTES pag so Tr(Wpag) < 0 and
hence proved the required criterion.

Since W have all the properties of a quantum state so Tr(Wp,p) can be considered
same as the average fidelity between two mixed quantum state W and paz and there-

fore, it is given by [119]

Tr(WpAB> = Favg(WypAB) (2.4.15)

It is also known that the average fidelity Favg(ﬁ/,pAB) can be estimated experimentally
by Hong-Ou-Mandel interferometry and thus equation (2.4.13) can be re-expressed
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as

- 1—
Fang(W,pa) < — (2.4.16)
did>

Criterion-2: The bipartite state psp of any arbitrary dimension is NPTES iff

Amin(PAB) > Favg(PaB, PaB) — C(PAB) (2.4.17)

where C(psp) denote the concurrence of the density operator psg. The lower and
upper bound of C(pap) is given by

l—p _ Favg(ﬁlapAB)
pdid; p

< C(pAB) < Favg(pAByﬁAB) (2.4.18)

Proof: Let us first recall the lower bound L of the minimum eigenvalue A,,;,(pag) and
using Result-2 in (2.4.9), we get

L> Tr[ﬁABpAB] — C(pAB) (2419)

The RHS of the inequality (2.4.19) may take a non-negative or negative value. Con-
sider the case when Tr[pappas] — C(pag) is non-negative i.e.

C(pag) < Tr(pappas] = Fave(PaB, PAB) (2.4.20)

Then using (2.4.19), we can re-write (2.4.5) as

Amin(PaB) = Favg(PaB,PaB) —C(PaB) (2.4.21)

Moreover, using Result-2, (2.4.14) and (2.4.15), we get

1.1-p ~
>_—P g W, 2.4.22
C(pag) > p[d1d2 Favg(W, pas)] ( )
Combining (2.4.20) and (2.4.22), we get
1—p  Fag(W, __
P FarsW.PAB) (1) < Fag (P, D) (2.4.23)

pdid D

Hence proved.

Since the average fidelity Favg(W,pAB) and F,..(pas, pag) can be estimated experimen-
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tally so the lower bound and upper bound of C(psp) can be estimated experimentally.

Criterion-3: The bipartite state p4p of any arbitrary dimension is NPTES iff

1
U < 3 (2.4.24)

where U™ = I + Foye(pas, Pas) — C(pag) and C(pag) is given by

C(paB) > Fuvg(PaB; PAB) (2.4.25)

Proof: Let us recall the upper bound U of the minimum eigenvalue 4,,,(pag) and
using Result-2 in (2.4.10), we get

1 ~
U > 3 +Tr[papas] = C(pan) = U™ (2.4.26)

If the quantity Tr[pagpas] — C(pag) is non-negative then U > % Also if the state is
separable i.e. if C(pap) = 0 then the value of U again comes out to be greater than
3. So it would be difficult to detect the entangled state when Tr[pagpags] — C(pag) > 0.
If we now consider the case when Tr[pagpag] — C(pag) < 0, which indeed may be the

1

case, then we can obtain U“" < ;. Thus, we can infer when U“" < % for C(pap) >

Tr(paspas) = Fave(PaB,Pas), the state is NPTES. Hence the criterion.

2.5 TIllustrations

In this section, we will verify our entanglement detection criteria given in the previous

section by taking the example of a class of qubit-qubit system and qutrit-qubit system.

2.5.1 Qubit-Qubit system

Let us consider a large class of two-qubit systems described by the density operator

p/gg given as [124]

a 0 00
0 b fO0 I

pll) = U PP 25.1)
0 f* b 0 2
00 0a
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where (x) denotes the complex conjugate.

The two-qubit density matrix of the form (2.5.1) has been studied by many authors
[125-127] as this form of density matrix has high entanglement. In particular, Ishizaka
and Hiroshima [128] have studied such density matrix and maximized the entangle-
ment for a fixed set of eigenvalues with one of the eigenvalues being zero.

The density operator pfxg is positive semi-definite only when

Ifl<b (2.5.2)

The partial transpose of pf‘g) is given by

a 00 f
0 » 00
(Pag)™ = (2.5.3)
A 0 b 0
A0 0 a
(pf(‘g)TB has negative eigenvalue if
[f>a (2.5.4)
Therefore, the state p/(é;) is an entangled state iff
1
a<|f|<b and a+b:§ (2.5.5)
The concurrence of the state pf&) is given by
cip\h) =17 2.5.6
(pAB)—|f| a (2.5.6)

Let us now assume that if p&) is an entangled state then it is detected by the witness

operator W), The witness operator W(!) can be expressed as

1
WO =) (91, ) = s (100) 1) @57)

_=f
where k = e

Since it is not possible to implement partial transposition operation experimentally so
we use Result-4 to obtain the SPA-PT of p\}) and w(1). SPA-PT of p')) and w(!) are
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Table 2.1: Table varifying (2.5.12) for different values of the state parameters (a, b, f)

State parameter Fog(WW), pf(‘g) Criterion-1 | Nature of p( ) )
(a, b, 1)
(0.05, 0.45, 0.4+0.11) 0.04589 satisfied Entangled
(0.1, 0.4, 0.25+0.251) 0.08214 satisfied Entangled
(0.15, 0.35, 0.24+0.21) 0.11253 satisfied Entangled
(0.2, 0.3, 0.27+0.131) 0.13344 satisfied Entangled

given in the following form

% o0 0

Piy = g ? ; 3 (2.5.8)
f oo o e
1000

wi) = 22%2 (2.5.9)
0(6)(6)§

Also, the average fidelities between two pair of mixed quantum state (pﬁ};,ﬁfgg) and

(W, p\t)) respectively, are given by

~(1) 2a 2b

Favg(pAB,pAB) 9 (2+ )+ 9 (2+b) (2510)

~ 1) 2a+b— |f|

FangWW, pi)) = 3 (2.5.11)

Now we are in a position to discuss criterion-1, criterion-2, and criterion-3 for a large

class of qubit-qubit systems described by the density operator pﬂ;.

Criterion-1 for the density operator pf,}g) takes the form as

_ 1
Fung W p{)) < < (25.12)

The satisfaction of the above criterion is given in Table 2.1. Next, let us illustrate
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Table 2.2: Table varifying (2.5.14) for different values of the state parameters (a, b, f)

State parameter Foyg (W('),pf(‘g) Favg(N/gg , pf(\g) C(p/gg))

(a, b, f)
(0.05, 0.45, 0.2+0.21) 0.08905 0.26777 0.23284
(0.1, 0.4, 0.25+0.251) 0.08215 0.26 0.25355
(0.15, 0.35, 0.24+0.21) 0.11253 0.25444 0.16241
(0.2, 0.3, 0.27+0.131) 0.13344 0.25111 0.09966

Table 2.3: Table varifying (2.5.13) for differnt values of the state parameters (a, b, f)

State parameter )‘Wlin(ﬁ,glb)) Criterion-2 | Nature of p[(‘g)

(a, b, )
(0.05, 0.45, 0.2+0.21) 0.19635 satisfied Entangled
(0.1, 0.4, 0.25+0.251) | 0.19405 satisfied Entangled
(0.15, 0.35, 0.24+0.21) | 0.20417 satisfied Entangled
(0.2,0.3,0.27+0.13i) | 0.21114 satisfied Entangled

criterion-2 for the density operator p/(‘z). Criterion-2 can be re-written for p/(&;) as

/lmin(?(x}!;)) 2 Favg(Pf(xg’@(xg) - C(Pf(xg) (2.5.13)

where C(pag) is given by

1

5~ 3Fa (W pi) < C(piy) < Fuvg (Pl Pis) (2.5.14)

We can now verify (2.5.13) and (2.5.14) by taking different values of the parameters
of the state pf‘}g). The newly derived lower and upper bound of the concurrence C(pf\g)

and the criterion-2 can be verified by Table 2.2 and Table 2.3 respectively.

2.5.2  Qutrit-Qubit system

It is known that certain qutrit-qubit entangled state shows the property of time-
invariant entanglement under collective dephasing. Further, it has been observed
that all dimension of Hilbert space studied so far does not exhibit simultaneously two
important properties such as time-invariant entanglement and freezing dynamics. The
qutrit-qubit system given in the example below is important in the sense that it exhibits
time-invariant entanglement, as well as freezing dynamics of entanglement under col-
lective dephasing [129, 130].

Let us now consider an example of a qutrit-qubit quantum state described by the
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density operator pfé) ,

O 0 0 00 o
0 % 0 O % 0
00 =2 o o 1z
pl) = 2 2 [o<a<i (2.5.15)
OO0 0 00 o
0 % 0 O % 0
0 0 1—o 0 0 1—o

[\)‘

2

It has been found that the state pf‘? is entangled for 0 < a <1 [129]. This result can
be verified by the witness operator method. The witness operator that detects the

quantum state pf(‘? as an entangled state is given by

1
W& =)™ (xl, %) = ——==5(x11)+|20)) (2.5.16)

V14x?

_ o+V4-8a+502
where k = e

The operator W2 has been constructed based on the idea of partial transposition
but since it is not practically implementable operation so we use our criteria for the
detection of entanglement, which can be implemented in the laboratory.

To implement our first criteria, we will use the SPA-PT of W2, which is given by

§ 0 0 0 0 0
03 O 0 0 0
. 00 1 0 0 —rx
W = 8 ' (2.5.17)
00 0 g+rk*> 0 0
00 0 0 g+r O
0 0 —rk* 0 0o
_ 1
Where r= W (2)
Therefore, criterion-1 for the density operator p,; reduces to
- 1
Fig(W® p3)) — g <0 (2.5.18)
where F,,, (W, p\2)) is given by
~ l —4ra
Fg(W®,p2hy = ~— 72 (25.19)

8
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Since the parameters o and r lying in [0, 1] S0 Fo, (W2, p\2) is always less than zero
in this range of parameters. Hence the state pﬁ,? is entangled for 0 < o < 1.

Criterion 2 not only detects the entanglement but also provides the lower and upper
bound of the measure of entanglement characterized by concurrence. Therefore, our
next task is to calculate the lower and upper bound of the concurrence of the state
described by the density operator pfé). To achieve our goal, we use (2.3.8,2.3.9-

2.3.21) to obtain the SPA-PT of pfé), which can be expressed as

i 0 f3 0 fs5 te

0 m 0 hs 0 1y
_ t 0 133 0 15 O
p/(\?: B > - 35 _ |.0sa<l] (2.5.20)
0 1ty 0 ta tas las

s 0 B35 B35 iss 0

1
Pr e PES
\fls Bs 0 T3 0 eo

where

?_54+7a?_9?_ 9+3(x

=384 7384 "B~ 1280 "B~ 128 128’
 _ 0= _9+23a s 9

6= 242" 64" 384" "7 128"
- _ 9 Ba. 71 Da. 3+3(x

6= 18 T8 T35 38 T e T 12y
,{_61_705?_1—05? 3 3a

“=3ga 38 ™ T g MO T o T g

61 o 77 o

_ o _ 9 2.521

Iss 384 24770 = 384 " 24 (2.5.21)

The lower and upper bound of the concurrence C(pfé)) is given by

1
5~ 4Fug(W?),p3) < Cpyy) < Fug (Pl Pip) (2.5.22)

where Fj,, (pfé), f‘g

) is given by
780> — 780+ 154

2) ~(2
F“Vg(pf(\B)’ngB)): 768

(2.5.23)

The lower and upper bound of the concurrence C(p/%)) is shown in Figure 2.1.
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== UpperBound

@ 646 — LowerBound

Figure 2.1: Plot of concurrence (C) versus &. The dotted line shows the upper bound and the

solid line represent the lower bound of the concurrence of the qutrit-qubit state described by

the density matrix pf(‘?

2.6 Conclusion

In this chapter, we have discussed the method of SPA-PT on a two-qubit system.
Using the idea for SPA-PT on a two-qubit system, we perform a SPA map on the
qutrit-qubit system and then explicitly calculated the elements of the SPA-PT of the
qutrit-qubit system. We have obtained the criteria based on SPA-PT for the detection
of NPTES in arbitrary dimensional Hilbert space. The first criterion detects NPTES if
and only if the average fidelity of two quantum states described by the density matrix
pag and SPA-PT of the witness operator W is less than a quantity R. The quantity R
depends on (i) the dimension of the composite Hilbert space and (ii) the parameter
that makes the SPA-PT of the witness operator a positive semi-definite. The second
criterion tells us that the given state is NPTES if and only if the minimum eigenvalue
of the SPA-PT of the given state is greater or equal to the difference between the con-
currence of the given state and the average fidelity between the given state and its
SPA-PT. Since it would not be possible to find out the exact value of the concurrence
of dy ® d, dimensional mixed bipartite state so we have derived the lower and upper
bound of the concurrence of the given mixed state which may be realized in an experi-
ment also. The third criterion also dealt with the detection of entanglement. Moreover,
using the elements of a qutrit qubit system one can find the minimum eigenvalue of
the SPA-PT in the qutrit-qubit system. Then, by analyzing the minimum eigenvalue,

one can check whether the given qutrit-qubit composite system is entangled or not.

*kkkkkkkkkkkkkkk



Chapter 3

Classification of multipartite states

through witness operator

GHZ class of states can be considered an important class of three-qubit pure states in
the sense that, it can serve as an efficient quantum channel for quantum communica-
tion purposes. In this chapter ', we have considered this important class of three-qubit
pure states, divide it into different subclasses according to their utility in quantum in-
formation processing task and then studied the classification of different subclasses of
GHZ class of pure states. We have started with the definition of different subclasses
of the canonical form of a pure three-qubit GHZ state and then constructed a classi-
fication witness operator to classify these subclasses. The defined subclasses may
be denoted as S, S», S3, S4. The motivation for the classification of the pure GHZ
class of states into four subclasses is that the GHZ state belonging to S| may be more
efficient than the three-qubit GHZ state belonging to S, or S5 or S4 and vice-versa with
respect to some quantum information processing task. We have constructed different
witness operators that can classify the subclasses S;,i =2,3,4 from S, and further,
shown that the constructed witness operator can be decomposed into Pauli matrices.
The decomposition of the witness operator into Pauli matrices may make it possible

to realize the witness operators in an experiment.

IChapter 3 is based on a research paper entitled “Classification witness operator for the classification of
different subclasses of three-qubit GHZ class, Quantum Information processing 20, 316 (2021)”
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3.1 Introduction

Entanglement is a purely quantum mechanical phenomenon that plays a vital role in
the advancement of quantum information theory. The two basic problems of quantum
information theory are: (i) detection of n-qubit entangled states and (ii) classification
of n-qubit entangled states. The complexity of the system will increase as the number
of qubits in the system increases and thus, the difficulty level of the above-mentioned
two basic problems also increases. Hence, we restrict ourselves here, to study the
classification of three-qubit entangled states. Three-qubit states may be classified
as one separable, three biseparable, and two genuine entangled states [95]. These
six classes of three-qubit pure state can be considered inequivalent classes under
SLOCC. The two SLOCC inequivalent genuine entangled classes are GHZ class and
W class. In the literature, it has been shown that there exist observables that can be
used to distinguish the above-mentioned six inequivalent classes of three-qubit pure
states [96]. The experiment using an NMR quantum information processor has been
carried out to classify six inequivalent classes under SLOCC [97]. Monogamy score
can also be used to classify pure tripartite systems [131].

The first result for the classification of mixed three-qubit states was given by Acin et. al
[98]. They have classified mixed three-qubit states through the method of constructing
the witness operator. Sabin et. al. [99] have studied the classification of pure as well
as mixed three-qubit entanglement based on reduced two-qubit entanglement.

The classification of the system containing more than three qubits has also been
studied in the literature. The classification of different classes of four qubit pure states
has been studied in [100—-102]. The number of different classes of an n-qubit system
increases when we increase the number of qubits and the discrimination of these
different classes of the n-qubit system has been studied in [103—106].

In this chapter, we are focusing on the classification of different subclasses of GHZ
class. To define different subclasses of GHZ class, let us consider the five-parameter
canonical form of three-qubit pure state |y)4pc shared between three distant partners

A, B and C. The three-qubit pure state |y)apc is given by [94]

W)asc = 20/000) + A€ [100) 4 A5|101) + A3 110) + Ag|111) (3.1.1)
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where 4; c Rand 0< 4, < 1(i=0,1,2,3,4); 6 (0 < 0 < &) denote the phase parameter.

The normalization condition of the state (3.1.1) is given by
A+ +HAT+ A =1, (3.1.2)
The three-tangle 7y, for a pure three-qubit state |y)4pc may be defined as [96, 132]
Ty = 4AGA; (3.1.3)

The tangle 7y, # 0 for GHZ class and 7, = 0 for W class of states. To define the sub-
classes of GHZ class, we make the following assumption: (i) the state parameters A
and A4 are not equal to zero, and (ii) the phase factor 6 = 0.

It may be noted that similar calculations can be performed by taking 6 = 0 also. We
are now in a position to divide the three-qubit pure GHZ class of states given in (3.1.1)

into four subclasses as:

Subclass-l :

S1={lws)}, where
|Ws) = 40]000) 4 A4]111) (3.1.4)

Subclass-Il :

S2 ={lwa):1va,), |Wa,) }, where

[w3,) = A0|000) + A1]100) + A4[111),

[W2,) = 401000 + 2] 101) + Aq111),

[Wa,) = 20/000) + A3[110) + A4|111)} (3.1.5)

Subclass-lll :

S3={1Wa, 1,): 1 Wa,.25)+ | Wi 25) > Where

|W2, .2,) = A0|000) + A1]100) + A2[101) 4 A4|111),

|l[/)m;t3> = 0/000) + A;|100) + A3|110) + A4]111),

W, 2,) = 20]000) + 4| 101) + A3] 110) + Ag|111) (3.1.6)
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Subclass-IV (S4) :

S4 = {|Wa, 2,.25) }» Where
W, nds) = A0]000) 4 A1[100) + 22| 101) + A3[110) +
Aq|111) (3.1.7)

Different subclasses of GHZ class of states are distributed in four different sets S, S»,
S3, S4. Classification of these subclasses can be diagrammatically shown in Figure
3.1. In Figure 3.1, the outermost circle represents GHZ states belonging to subclass
IV, the second outermost circle represents the GHZ states belonging to subclass i,
the third outermost circle represents the GHZ states belonging to subclass Il and the
innermost circle represents the standard GHZ class of states belonging to subclass-I.
We should note here that these subclasses are not inequivalent under SLOCC. To
transform a state from one subclass to another, we need to perform local quantum
operations that depend on the state which is to be transformed. So it is necessary to
know the state or at least the subclass in which the state belongs.

The motivation of this chapter is divided into three parts: M1,M2 and M3.

[¥21,22,3)

Figure 3.1: Classification of different subclasses of GHZ class of states described by the four
sets S1,52,953,54

M1: Comparing the teleportation fidelities

Let us consider the teleportation scheme introduced by Lee et.al. [133]. According
to this teleportation scheme, a single-qubit measurement has been performed either
on the qubit A or qubit B or qubit C of the pure three-qubit state. After the measure-
ment, the pure three-qubit state reduces to a two-qubit state at the output. Then the
resulting two-qubit state can be used as a resource state for quantum teleportation.

The efficiency of the resource state is provided by teleportation fidelity. In particular,
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if the single-qubit measurement is performed on either qubit A or qubit B or qubit C
of the state |yy) € S| then the corresponding maximal teleportation fidelities are given
by [133]

2(1 A
FI¥) — E(vs) _ pllvs)) _ ( +37lo 4) (3.1.8)
where E.(“”S», i = A,B,C denote the maximal teleportation fidelity when measurement
is performed on qubit i. In a similar fashion, if the single-qubit measurement is per-
formed on the state |‘Vx’> € S», then the corresponding maximal teleportation fidelities
|

are given by [133]

Mo 204242+ (A0)2)

F, = 3

(lw, 1)) (lw, 1)) "2/

Fy MO F, A :M (3.1.9)

3

Again, if the single-qubit measurement is performed on the state |y, ) € S3, then the
1

corresponding maximal teleportation fidelities are

) 2020

F, - = 3
me 201429/ (R)P+ ()Y
A -
3
(ly,r ) (1+l//7t”)
F. 7 = 22T 0% (3.1.10)

3

and if the single-qubit measurement is performed on the state |y, ) € S4, then the
1
corresponding maximal teleportation fidelities are

W D 21+ )

F, = 3
(‘w'li/,;g)) 2(14 2, (l”’)z—l—(l‘;ﬂ)z)

Fy =

(A7) 21424y /(A2 +(2))?)

F. 1 = 0 33 ! G.1.11)

where

n n " non o n

Y= (A 2y )+ (A 2 (Ag )2+ (A )2(As )? —4A) Ay Ag Ay (3.1.12)
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" n n

It can be easily seen that there exist state parameters A , A, , 4, , Ay, Ay s Ags Ay s Ay s Ay > Ags Aq s Ags Ao

and A4 such that the inequalities
F;w’ll”a» Fffl%{))’F;Wxﬁfm)) . F;W’ll”,z»

FA(W%» § FA(W,LQ)?F;‘VA;WEFA(W

(lw,n ) (ly,m )
F, M2 > FA(|V/S>) F, M2s 2}«;&"”5» (3.1.13)

Y

holds.

In this way, we can compare the teleportation fidelities of the GHZ states belonging
to different subclasses. We can conclude from (3.1.13) that the pure three-qubit state
]wm € S, is more efficient than |ys) € S; in the teleportation scheme [133]. In the
same way, we can say that the states belonging to subclass S5 are more efficient than
the states belonging to S, or S;. Also, it can be observed that the states belonging to
any of the defined subclasses are GHZ states. Thus it is necessary to discriminate
the pure three-qubit states belonging to different subclasses of GHZ class.

M2: Comparing the concurrence of the reduced two-qubit state

We can compare the entanglement between the reduced two-qubit mixed states ob-
tained after tracing out either subsystem A or subsystem B or subsystem C in the
following way: If we have GHZ state belonging to subclass S, then after tracing out
one qubit, the concurrence of the resulting two-qubit system will become zero, that is,
Cap = Cac = Cpc = 0. Thus, after tracing out one subsystem, the remaining two-qubit
state will become a separable state. Now, if we consider GHZ state belonging to sub-
class S,, then we have exactly one of the concurrences either Cap or Cyc or Cpe of the
two-qubit mixed reduced system is non-zero. Thus, if we require any two-qubit entan-
gled state in some quantum information processing protocol, then we can obtain it by
tracing out one qubit from a three-qubit GHZ state belonging to subclass S,. For exam-
ple, if we need any two-qubit shared entangled state between Alice and Bob, then we
can use three-qubit GHZ state(|wapc) = 40|000) + A3|110) + A4|111)), lying in subclass
S».It is possible, since, the concurrence of the reduced state pag = Tre(|W)apc(v]) is
not equal to zero. But this type of situation will not arise in the case of a three-qubit
GHZ state belonging to subclass S;. Not only the subclass S», but we can use other
subclasses such as S3 and S, to get the entangled mixed two-qubit state.

M3: Comparing the three-tangle of the three-qubit state

We can see changes in the tangle in these subclasses as follows:
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For a GHZ state belonging to S;, we have only two parameters Ay and A4. But for the
GHZ state belonging to S, have parameters 4,, A, and 4,. Due to the normalization
condition, the values of parameters get distributed. Thus, using normalization condi-
tion we get, Aody > AyA,. From (3.1.3), we can say that the tangle of the three-qubit
GHZ state belonging to S; will be more than the tangle of the GHZ state belonging to
S>. Again, if we compare the tangle of the three-qubit GHZ state belonging to sub-
class S5 and subclass S», then we will find that the tangle of the GHZ state belonging
to subclass S, will be more than the tangle of the GHZ state belonging to Ss. In this

way, we can conclude that
1@ > 70 > (M) > 0 (3.1.14)

where, 712 is the tangle of the GHZ state belonging to subclass S}, (%) is the tangle of
the GHZ state belonging to subclass S», T is the tangle of the GHZ state belonging
to subclass S3 and 70 is the tangle of the GHZ state belonging to subclass 4.

Therefore, M1, M2 and M3 provide us sufficient motivation to classify different sub-

classes of GHZ class of states.

3.2 Derivation of the inequality required for the construc-

tion of classification witness operator

In this section, we will construct the Hermitian matrices from the component of the
correlation tensor and then use its minimum and maximum eigenvalues to derive the
required inequality for the construction of the classification witness operator.

To start with, let us consider any arbitrary three-qubit state described by the density

operator p. The three-qubit state p may be expressed as

1 - oo o o o - -
p = §[1®I®I+l.6®I®I+I®m.6®l+l®l®n0+u6®va®l+u0®l®wc

+ I®VGQ@WG+ ) 14j30i®0;Q 0] (3.2.1)
i,jk=x.y,z
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where

i = Tr(p(oiRIRI)),

m; = Tr(p(I®o;®I))

ni = Tr(p(I®IR0;)),

uyi = Tr(p(o;i®@o;®I))
uw; = Tr(p(oi®I®0)),
vwi = Tr(pI®o®a)),(i=xy,z) (3.2.2)

The correlation coefficient of the state p can be obtained as
tijk:Tr(p(6i®6j®o-k))a(ivjvk:x7yaz) (3.2.3)
Then the correlation tensor T can be defined as T = (T, T, T.), where

oo Deyx Tagx
Ly Doy Ixzy (3.2.4)

Ixxz txyz Ixzz

and

Lyxe  Lyyx  Tyzx

Lyxy  lyyy  Tygy (3.2.5)

tyxz tyyz tyZZ

and

! XX tzyx L zZx

(3.2.6)

tay Ly Iy

s Xz tZ}’Z tZZZ

3.2.1 Correlation tensor for the canonical form of three-qubit pure state

Let us consider a three-qubit pure state described by the density operator py,

Py = |W)apc(V| (3.2.7)
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where |y)apc is given by (3.1.1).
The components 7,7, and T; of the correlation tensor T for the state Py is given by

200 4 0 2042
I, = 0 —2AoA4 0 (3.2.8)
2A0A3 0 2AoA cosO

0 2 0
Ty=|-2%As O —202 (3.2.9)
0 —2MoA3  2A0Asin0

Toxx tzyx Trzx
toy Iy gy (3.2.10)

! Xz tzyz tZZZ

where 1, = —2(A A3+ A1 Aycos0) .y = 241 Aasin®, to, =2(A3As — A1 Aac0s0) 1y = 241 Aasin®,
tyy = 2(AMA4c0s0 — ApA3) b2y = 2A1 Aasin®, to; = 2(AaAs — M A3c050), t.,. = 241 A3sin0,

t: =A3 — AL+ A3+ A3 — A5

The Hermitian matrices can be constructed from 7, and T; as

a, 0 by
Th=[0 ¢ 0 (3.2.11)
b

where a, = 41()2(),} +?L32), by = 4%02(/12%4 + A1 A3c050), ¢ = 42,(%).2, dy = 4/102(122 +7lecos29).

and

ay, 0 by
T'T,=[0 ¢ d (3.2.12)
by d, ey

where a, = 4A§A7, by = 443 a4, ¢y = 403 (A7 + AF), dy = —4A A1 A3sin0, ey = 4AG(AF +
Alsin®0).
The superscript T refers to the simple matrix transposition operation.
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3.2.2 Inequality for the construction of classification witness operator

Let us recall the canonical form of a three-qubit state |y)apc given in (3.1.1). The
invariants with respect to the state |w)pc under local unitary transformations are given
by [132,134]

Dote = V¥
2
s =
Aohs = L
Mz?g—e%m CBC (3.2.13)

Here 7, denote the three-tangle of the state |y)pc whereas Cap, Cac and Cpc repre-
sent the partial concurrences between the pairs (A,B), (A,C) and (B,C) respectively.
Furthermore, the other invariants of three-qubit states under local unitary transforma-

tions have been studied in [135] and the invariants are given by

= (V|¥)asc
153 :tr( ) 2(11124-1314)2
L=tr(p ) 2(MAs+ 7L27L4)2
L =tr(p}) = 22377
1
Is = 5Ty = 4G A4 (3.2.14)

where ps = Trpc(|W)asc(¥|), P = Trac(|W)asc{W]), pc = Trap(|¥)apc(y]|) denote re-
duced density matrices of a single qubit.
Further, recalling the Hermitian matrices 7./ 7, and T),TTy from (3.2.11) and (3.2.12),

we calculate the traces of the Hermitian matrices as
THTIT) = 8407 A +4X0 A% + 4402 A% + 4% A1 > cos? 0 (3.2.15)
and

THT,TT) = 807 A% 44407 As% + 4202 Aa” + 427 A1 2sin®6 (3.2.16)
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Adding (3.2.15) and (3.2.16), we get
Tr((TIT) +(LTT)] = 1620°A4° + 84232 + 840" L2 +44° A7 (3.2.17)

The expression for Tr[(T:' T,) + (T, T,)] can be re-expressed in terms of invariants

such as three-tangle and partial concurrences as
Tr(L T) + (L,7T,)] = 47y +2Cas> +2Cac” + 4207 2> (3.2.18)

In terms of expectation of the operators, the expression (3.2.18) can further be written

as
1
T”[(TXTTX) + (TyTTy)] = (<01>WABC)2+ §(<O3>V’ABC)2
+ %(<Oz>w3c)2+47to27tlz (3.2.19)
1
Tr(T"T) + (L' Ty)] < (Ot yase+ 75 (Os)wise
1
+ E(OZNABCJFZ)LOM]Z (3.2.20)
where

01 = 2(0:®0,R0y)
0, = 2(0,®0,® 0y)

The expection values of the operator O, 0,, O3 may be written in terms of invariants
as [96],

(01) = 4As =2, /Ty

(07) =4l = %

(03) = 420A3 = % (3.2.22)

Using (3.2.20), the upper bound (U) and the lower bound (L) of Tr[(T," T,) + (T, Ty)] is
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given by
L<Tr(L'T) + (LT <U (3.2.23)

where L = :umax(TxTTx) + .umzn(TyTTy) and U = (41014 + 2\/51013 + 2\/5102«2 + 21011)2-
The lower bound L can be obtained using Weyl's result [136]. ti (T T;) and umm(TyTTy)
denote the maximum and minimum eigenvalue of 7, 7, and T,/ T, respectively.

Thus, equation (3.2.23) can be re-written as

[,umax(z(TT;c) + ,umin(rvTTy)]% S
4o A4 + 2V 2203 + 2V 2200 + 200 M (3.2.24)

I1f 0 < tnax (T Te) + tmin(T,T Ty) < 1 then the inequality (3.2.24) reduces to

.umax(]jvTTx) + ,umln(TyTTS)) S
Ao A4 + 2V 2203 + 2V 200 + 200 M (3.2.25)

The derived inequality (3.2.25) will be useful in constructing the Hermitian operators

for the classification of states that lies within the subclasses of GHZ class.

3.3 Construction of classification witness operator

Let |x) € S| and |w) be any state belong to either S, or S3 or S4. Then, the Hermitian

operator H is said to be the classification witness operator if

(@)Tr(H|x){x]) 20,Y [x) €S
(b)Tr(H|w){w|) < 0,for at least one |@) € S;, (i=2,3,4) (3.3.1)

If the above condition holds then the classification witness operator H classifies the

states between (i) subclass-1 and subclass-II (ii) subclass-l and subclass-lll (iii) subclass-

| and subclass-IV.
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3.3.1 C(lassification witness operator for the classification of states con-

tained in subclass-I and subclass-11

We are now in a position to construct the classification witness operator that can
classify the states residing in subclass-l and subclass-II.
(I) Classification of states confined in subclass-Il with state parameters A, 1,
and A, and subclass-I:
The GHZ class of state within subclass-Il with state parameters Ay, A;, and A4 is given
by

[W2,) = A0/000) + A1[100) + Ag[111) (3.3.2)

with the normalization condition A3 + A2 +A7 = 1.

In particular, for 4; = 0, the state |y;,,) reduces to |y, ) € S1 where
|¥2,—0) = 20(000) + A4|111), A5 + A7 = 1 (3.3.3)

The Hermitian matrices 7, T, and T,/ T, for the state p;, = |y, ) (w3, | is given by

42330 0 0
T'T=| o0 42222 0 (3.3.4)
0 0 4A3A}

4230 0 0
T'T,=| o 42242 0 (3.3.5)
0 0 0
The expression for Tr[(T," Ty) + (T," T,)] is given by
Tri(TT) +(T,TT)] = 16402 A4% +440° A (3.3.6)

The maximum eigenvalue of T T is given by

Umax (T Te) = max{4A3 A3, 425 A3} (3.3.7)
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The minimum eigenvalue of T},TTy is given by
tmin(T," T;) = 0 (3.3.8)

It can be easily observed that in this case 0 < (T Ty) +umin(TyTTy) <1 holds.
Since (T, T;) depends on the value of the two parameters A; and A4 so we will
investigate two cases independently.

Case-l: 14 > A4

If 24 > Ay then (T Ty) = 44577

The inequality (3.2.25) then can be re-expressed in terms of the expectation value of

the operators O; as

(01)3
—20A < (O1)y, 4‘“1

(3.3.9)

If 2; = 0 then the R.H.S of the inequality (3.3.9) is always positive. Further, it can be
observed that since 0 < <01>1,,l1 <1 so the R.H.S of the inequality (3.3.9) still positive
even for A; # 0. Thus the R.H.S of the inequality is positive for every state belonging
to S,. Hence, for A4 > A4, it is not possible to make a distinction between the class of
states |y;,) €S2 and |y, —o) € S; using the inequality (3.3.9).

Case-ll: 14 < A,

If 24 < Ay then W (I Ty) = 4A5 A2

The inequality (3.2.25) can be re-written as

20k < (O1)y, —4A5A7 (3.3.10)

We can now define a Hermitian operator H, as

1 2
H =0;— 4—1(04)%111 (3.3.11)
where,
04=2(0,RIRI) (3.3.12)

The expectation value of the operator Oy, in terms of invariants may be written as,

(O4) =400M =4 (3.3.13)

~N
Sl
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Therefore, the inequality (3.3.10) can be re-formulated as
—2%0A1 < (Hh)y, (3.3.14)

If A; =0 then <H1>w1 > 0 for all states |y, ) € Si.

For A; # 0, we can calculate <H1>w, = Tr(H,py,) which is given by
Tr(Hipy,) = 4Ao(As—Aodi?) (3.3.15)

It can be easily shown that there exist state parameters Ay, A1, A4 for which A4 — QoA 2 <
0 and thus Tr(H;py,) < 0. For instance, if we take Ap = 0.4, 4; =0.911043 and A4 = 0.1,
Then Tr(H,p,;,) = —0.3712, which is negative.

Thus the Hermitian operator H; discriminate the class |y;,) € S» from |y, o) € Si.

(Il Classification of states confined in subclass-ll with state parameters A,
Ai(i=2,3) and 14 and subclass-I:

The GHZ class of state within subclass-Il with state parameters (g, A2, A4) and (Ao,
A3, A4) are given by

[W2,) = A0/000) + 42| 101) + Ag[111) (3.3.16)
with Ag + A7 +Af =1 and
[Wa,) = 40[000) + A3|110) + Aq|111) (3.3.17)

with A3 + A7 + A7 = 1.
The Hermitian matrices 7, 7, and T,/ T; for the state p;, = |y;,)(w;,| may be given by

4232 0 AN
T =TT, = 0 484 0 (3.3.18)
Ao s 0 A
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The Hermitian matrices 7,/ T, and T,/ T, for the state p;, = |y,)(wy,| is given by

IAAMP+AE) 0 0
I/ T, = 0 aA3A7 0 (33.19)
0 0 0
42307 0 0
T'T=| 0  42(A2+12) 0 (3.3.20)
0 0 0
The maximum eigenvalue of T, T, for the state |y, ) (i = 2,3) is given by
Unan(TIT) =403 (A2 +A3),i=2,3 (3.3.21)
The minimum eigenvalue of 7,/ T, for the state |y;,) (i = 2,3) is given by
Wnin(T," T;) = 0 (3.3.22)

For the state either described by the density operator p;, = [ya,) (w2, | of pa, = |wa,) (Wi,
the expression of Tr[(T,I T;) + (T,T T)] is given by

Tr{(T T) + (L' T)] = 16454 + 84547, (3.3.23)
(i=2,3)

The inequality (3.2.25) then can be re-expressed in terms of the expectation value

of the operators O, and 0,4 as

1 1
“2V 2000 < (O1)y,, — Z<01>%/% — Z<0">%’w (i=2,3) (3.3.24)

We can now define classification witness operators H;, (i = 2,3) as

1
H; = 01— 2[(00)y, +(01)3, )1 (3.3.25)

Therefore, the inequality (3.3.24) can be re-formulated as

—2V200% < (Hy)y, ;i =2,3 (3.3.26)
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If A; =0,(i =2,3) then <Hi>w[ > 0 for all states |y, o) (i =2,3) € 5.
For A; # 0, (i = 2,3), we can calculate Tr(H;p;,)(i = 2,3) which is given by

Tr(Hip;,) = 4ods(1—2Aod) —4A°A7,i=2,3 (3.3.27)

It can be easily shown that there exist state parameters Ay, A;(i = 2,3),A4 for which
Tr(H;py,) < 0. For instance, if we take A9 = 0.4,4,=0.894427(i = 2,3) and A4 = 0.2,
we get Tr[H;p,,] = —0.2176. Therefore, the classification witness operator H;(i = 2,3)
classify the class of states v (i=2,3) € S, given in (3.3.16) from the class |y, _)(i =
2,3) €5;.

3.3.2 Classification witness operator for the classification of states con-

tained in subclass-I and subclass-III

In this subsection, we will construct a classification witness operator to discriminate

subclass-I from subclasses of GHZ class spanned by four basis states.

(I) Classification of states confined in subclass-lll with state parameters A, 1,,
A3 and A4 and subclass-I:
The GHZ class of state within subclass-Ill with state parameters Ay, A, A3, and A4 is

given by
(Vo s) = 20/000) 4 A2[101) + A3[110) + A4|111) (3.3.28)

with A3 + A7 + A3 + A} = 1.
The Hermitian matrices 7,/ T, and T,/ T; for the state py, 5, = (W), ;) (Wa,.2,| is given by,

APEAF+AD) 0 A3
T/ T, = 0 42222 0 (3.3.29)
4208 Ao 0 42505

403N} 0 425 A2 s
IIn=| 0  4A2(A2+12) 0 (3.3.30)
423 Mo s 0 ANGA3
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The maximum eigenvalue of 7 T, is given by

Umax(TIT) = max{u,v} (3.3.31)

where u = 4A2A7 and v; = 2A2(1 — A3 + \/—4/122/132 +(1=23)?).

The minimum eigenvalue of TyTTy is given by

tmin (T, Ty) = 0 (3.3.32)

The expression for Tr[(T,' Ty) + (T,T T;)] is given by
Tr(LIT) + (T, T)] = 16AGA7 + 8323 +8A3A% (3.3.33)

Case-l: If e (T.'T,) = u=4A3A7 and pyi(T,T T,) = 0. The inequality (3.2.25) then

can be re-expressed in terms of the expectation value of the operators 0, as

2
<01>WQ~/13

~2V220(Aa+23) < (Oi)y,,, — 4

(3.3.34)

If —2v/240(A2 + A3) = 0, then RHS of inequality (3.3.34) is always positive for every
state |y). Thus, in this case, it is not possible to discriminate between the class of
states |wy,-01,-0) € S1 and the class of states |y, 3,) € Ss.

Case-ll: If e (T." T;) = vi and pin (7,7 T;) = 0 then the inequality (3.2.25) reduces to

—2V2h (M +A3) < <01>l,,M —-P (3.3.35)
where,
o= 23(1-23+1\/-4223 + (1-20))
= 2<05>V’/12,/13 (1- <05>‘I//12./13
1
+ \/—Z<06>%,,M+(1—(05>%%)2) (3.3.36)
where,
1
Os = §(1+GZ®I—|—GZ®I—|—GZ)

Os = 2(®0,80) (3.3.37)
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The expectation values of the operators Os and Og, in terms of invariants may be

written as,

CacCap 1 |214]5
(0s) = Ag= -
2Cpc

Cgc Ty
(06) = 4(AaA3 —AAy) =2Cpc (3.3.38)
We can now define a Hermitian operator Hs as
Hy = O0,—PI (3.3.39)

Therefore, the inequality (3.3.35) can be re-formulated as

—2V20 (A2 +23) < (Ha)y, .. (3.3.40)
If A, + 243 =0 then (H4>%‘l3 > 0 for all states [y, 2,-0)-
For —2v/229(A2 + A3) # 0, we can calculate Tr(Hapy, 4,), Which is given by
Tr(Haps, ;) = 4hoAs—22407(1—Ag> + V1)) (3.3.41)
where,
Ty = Mt — 2202457 4202 0% + (A3 + A42)? (3.3.42)

It can be easily shown that there exist state parameters (Ao, A2, 43, 44) for which Tr(Hypy, 3,) <
0. For instance, if we take Ao = 0.35, 4, = 0.3, A3 = 0.864581 and A4 = 0.2, we get
Tr[Hsp;, 2,] = —0.108386. Therefore, the classification operator Hy classify the class

of states py, 5, € S3 and the class of states p;,_o 3,0 € S1-

(Il) Classification of states confined in subclass-lll with state parameters 4, 1,
Ai(i=2,3) and 14 and subclass-I:

The GHZ class of state within subclass-1ll with state parameters (49, 41, 42, A4) and
(Ao, M, A3, A4) are given by

W2, 2,) = 4]000) + 41 [100) + A2 101) + A4[111) (3.3.43)
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with A5 + A + A7 + A5 = 1.

|Wa,.25) = 40]000) + A1 |100) + A3[110) + A4[111) (3.3.44)
with Ag + A2+ A5 + A7 =1,

The Hermitian matrices 7,/ T, and T;" T, for the state py, 1, = [¥2, 1,) (W2, 1, is given by

403N} 0 423 Aoy
L'T=| o0  4A222 0 (3.3.45)
42,021214 0 4%02(2,12 + ).22)

4030} 0 4
T
Iy Ty = 0 4NN} 0 (3.3.46)
EYRvY VR (R Y F ¥

The Hermitian matrices T, T, and T, T, for the state p;, , = v, ;) (v, ,| is given by

WPEAT+AE) 0 AAMAs

T/ T, = 0 422220 (3.3.47)
4250243 0 403}
428N} 0 0
T'Ty=| 0 43(A3+47) 0 (3.3.48)
0 0 0

The maximum eigenvalue of T T is given by

(T T) = max{u,v;},i=2,3 (3.3.49)

where vi = 223 (A7 + A2 + A7 +\/ (A} + 42 +A3)2 —4A243), i=2,3.

The minimum eigenvalue of 7, 7; is given by

Lonin(T,"T,)) = 0 (3.3.50)
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The expression for Tr[(T," T;) + (T," T,)] is given by
Tr(TT) +(T,TT)] = 16247 +8A3A2 + 42342, (i=2,3) (3351

Case-l: If (" T;) = 425 A7 and pin(T,7 Ty) = 0. The inequality (3.2.25) then can

be re-expressed in terms of the expectation value of the operators O, as

(<01>WM~,%‘)2

. L i=2,3 (3.3.52)

—2(V22i+M) < (O)y, , —

If V2A; + A, = 0(i = 2,3), then RHS of inequality (3.3.52) is always positive. Thus, the
R.H.S of the inequality is positive for every state |y). But since 0 < <01>V’M-ﬂi <1so0
the R.H.S of the inequality (3.3.52) still positive even for v/24; +4; # 0, (i = 2,3). Thus
it is not possible to differentiate between the class of states |y, — 3,-0) € S1(i = 2,3)
and |y, 2.) € S3(i = 2,3), using the inequality (3.3.52) for this case.

Case-ll: If (T Ty) =223 (A2 + A7 + A2 + \/(112 + A2+ A2)r—4A2A2), i=2,3 and
.Umin(TyTTy) =0.

Then the inequality (3.2.25) can be re-written as

—20(V22i+4) < (O1)y, , —P,i=2,3 (3.3.53)

where, for i=2,3

P = 2/13(112+/I,~2+7Lf+\/(/112+7Li2+7tf)2—47t]2142) (3.3.54)

P(i=2,3) can also be re-expressed in terms of the expectation values of the operators
01, O4 and O;(i =2,3) as

1
b = g+ \/qz - E<01>%”Mﬂi <O4>%If/ll,k,~ (3.3.55)

where g = %[(01)%&1‘% + <0,~>%,,MM +(04)2, . ] We can now define an Hermitian operator

Y12
Hi,k=5,6 as

H, = O0,—PI k=5,6,i=23,i=k (3.3.56)
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Therefore, the inequality (3.3.53) can be re-formulated as
—220(V24i+ A1) < (Hi)yy, .0 i=2,3,k=5,6 (3.3.57)

If V22 + 41 =0,i=2,3 then (Hy)y, , >0,k=5,6 for all states |y;, 9 ,-0) € S1(i=2,3).
For v22;+ A1 #0,i=2,3, we can calculate Tr(Hyp;, ;.). (i=2,3,k=>5,6), which is given
by

Tr(Hwpy, 2,) = 4hora—20°(AE+A2+ 03 +VT),i=2,3,k=5,6 (3.3.58)
where
T=* 4202 (A2 = A2 + (AP + A% i=2,3 (3.3.59)

It can be easily shown that there exist state parameters (4o, 41,4, A4), (i = 2,3) for
which Tr(Hp,, 5,) < 0 for k=5,6. For instance, if we take 19 = 0.5, A; = 0.83666,
Ai=0.2,(i=2,3) and A4 = 0.1, we get Tr[Hp;, ».] = —0.540548,(k = 5,6). Thus, the
Hermitian operator H,, k={5,6} serves as a classification withess operator and classify
the class of states described by the density operator p;, 3., (i=2,3) € S3 and the class

of states p;, o 3,—0, (i = 2,3) € S1.

3.3.3 Classification of states confined in subclass-IV with state parame-

ters (g, 41,42 A3, A4) and subclass-I

The GHZ class of state within subclass-I1V with state parameters (A, A1, A2, A3, A4)

is given by
Wi, aoas) = 20/000) + A1 100) + A2|101) + A3[110) + A4|111) (3.3.60)
With 4§ +A7 + A7 + A7 + A7 = 1.

The Hermitian matrices T 7, and T;' T; for the state py, 4, 2, = W4, 1,00 (Wi, 10 25| 1S

given by
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42,02(132 + 142) 0 4)(.02(11 Az + )«214)
T/ T, = 0 AA3A3 0 (3.3.61)
4102(),1 Az + 1214) 0 42,02 (llz + 3.22)

AAGAF 0 403 Moy
L'Ti=| 0 43 +A) 0 (33.62)
4G A2 4 0 4NGA}

The maximum eigenvalue of T T is given by

[.Lmax(TxTY}c) = max{u,vs} (3.3.63)

where vy = 2207 (k+ /= 4oz — MA)Z +K2), k=1—AZ.

The minimum eigenvalue of T_VTT), is given by
tmin (T, Ty) = 0 (3.3.64)
The expression for Tr[(T,I T;) + (T,1 T;)] is given by
Tr(LIT) + (LTT,)] = 16A3A2 +8AZAZ +8A3A2 +4AZA7 (3.3.65)

Case-l: If wuo(T.'Ty) = u=4A5A; and i (T,7T,) = 0. The inequality (3.2.25) then
can be re-expressed in terms of the expectation value of the operators O, as

(01)3

“2M(V2+ V22 + M) < (O)y, i _% (3.3.66)

If V22 +v/2A3 4+ A1 =0, then RHS of inquality (3.3.66) is always positive irrespective
of the values of the state parameter (1;,4,,43) . Thus it is not possible to differentiate
between the class of states |y;, ;, 1,) € S4+ and the class of states |y, o 1,—0.4,-0) € S1-
Case-ll: fae(TT2) = 2207 (1 = 23 +\/—4(haks — i As)2 + (1 — A3)?) and

tmin(T,1 T,) = 0. Then the inequality (3.2.25) can be re-written as

“20(V22o+ V223 +4) < (O1)y, , , — P (3.3.67)
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where,

Po = 200°(1- 23+ ~40ks — Mda) + (1 - A2)?)

<O6>%///11.AQ,/13
- 2<05>Wl,xz./13 (1- <05>wl,12“/13 + 4 + (1 - <05>wl’h7%)203-3.68)

We can now define a Hermitian operator H; as
H; = O1—P4l (3.3.69)
Therefore, the inequality (3.3.67) can be re-formulated as
“20(V2h + V223 + M) < (Hp)y, 0 (3.3.70)

If —220(v/2242 4+ V2434 4;) =0 then (H1)y,, ;. 5, > 0for all states |y3,-0,1,-0.4,-0) € S1-
For —220(v242 + V243 + 1) # 0, we can calculate Tr(Hsp;, ;,.2,) Which is given by

Tr(Hipp ay0,) = “hoda =202 (A2 + A2 + As2 4 A4?
+ VT (3.3.71)

where,

Ty = M50+ 4%+ At 8 A Ay — 22,%45% +
2)«222,42 +2M4 271,22 + 27(422,32 — 2),12%42
+245% 42 (3.3.72)

It can be easily shown that there exist state parameters (4g,41,42,43,44) for which
Tr(H7pp, 2,4,) < 0. Forinstance, if we take 49 = 0.6, 4; = 0.785812, 4, = 0.1, 43 = 0.05
and A4 = 0.1, we get Tr[H7p; ,,] = —0.303798. Thus, the classification witness operator
H; classify the class of states described by the density operator p;, 3, 2, € S4 and the

class of states described by p; —0.2,-01,—0 € S1

3.4 Examples

In this section, we have provided a few examples of three-qubit states for which we

construct classification witness operators.
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Example-1: The three-qubit maximal slice state is given by [137],
1
—(]000) 4 ¢|110) +4d|111)), *+d* =1 3.4.1
ﬁ(! ) +¢|110) +-d[111)) (3.4.1)

Let us consider the classification witness operators H;, H, and Hs. The classification

MS) =

witness operator H; for (3.4.1) is now reduces to
Wys =01—1 (3.4.2)
The expectation value of Wys with respect to the state |MS) can be evaluated as

Tr(WMSPMS) = (2d - 1) (3.4.3)

Therefore, we can verify that Tr(Wys|MS) (MS|) < 0 for the state parameter d < % Fur-
ther, it is easy to verify that the expectation value of the witness operator Hj is positive
for all states belonging to subclass-I. Since the given state is detected by the clas-
sification witness operator Hs so state (3.4.1) belongs to subclass-Il. To investigate
the form of the given state lying within subclass Il, we need to further classify it from
the other classes of states belonging to subclass Il. We can check that in the same
range of the state parameter d i.e. for d < % the value of Tr(H pys) and Tr(Hzpus)
are non-negative. Thus, we can say that the classification witness operators Hs dis-
criminate the maximal slice state from subclass-Il, and also it detects the state in the
form (3.3.17).

Example-2: Let us consider another three-qubit state defined as

|9) =+/p|G)—+/1—p|K) (3.4.4)
where,

|G) = al000)+b|111), a>+b* =1
K) = ¢|]110)+d|101), *+d>=1 (3.4.5)

Now our task is to construct a classification withness operator that may distinguish it
from the state belonging to subclass-I and also detect the form of the given state that
belongs to a particular class within subclass-1ll. To accomplish our task, let us con-

sider classification witness operators Hy, Hs and Hg given in (3.3.39) and (3.3.56).



98

Table 3.1: Range of the parameter p for which the classification witness operator Hy classifies
the given GHZ state within the subclass-III

State parameter p Tr[Hsp] | Tr[Hsp] | Tr[Hep] |
(a, c)

(0.8,0.3) (.291,.3) >0 <0 >0

0.9,0.4) (.548,.57) >0 <0 >0
(0.91, 0.8) (.4,.51) >0 <0 >0
(0.85, 0.35) (.43,.45) >0 <0 >0
(0.88,0.8) (.25,.385) >0 <0 >0
(0.78, 0.3) (.208,.22) >0 <0 >0
(0.95,0.4) (.69,.7) >0 <0 >0
(0.83,0.45) (.26,.31) >0 <0 >0

We find that the expectation value of the witness operator H, is positive for all states
belonging to subclass-I but it gives a negative value for some states belonging to
subclass-Ill. Hence the state (3.4.4) belongs to subclass-lll. Moreover, we have in-
vestigated this classification problem within subclass-1ll by constructing a table below.
It shows that the expectation value of classification witness operator H, is negative
for some range of the state parameter p while the expectation value of other classi-
fication withess operators Hs and Hg gives positive values for the same range of the
state parameters. This means that the given state (3.4.4) belongs to subclass-IIl and
it takes the form (3.3.28). In Table 3.1, we have found the range of p where the wit-
ness operator H, detects the GHZ state given in the example whereas Hs and Hg do

not detect the given GHZ state.

3.5 Classification witness operator for the classification of

states contained in subclass-II and subclass-111

The GHZ class of state within subclass-1ll with state parameters (Ay, A1, A2, A4) is

given by
|WMJ~2> = ).()|000> +2,1|100> -l-lz‘ 101> +7L4|111> (3.5.1)

with Af + A7 + A7 + A} = 1.
The Hermitian matrices 7 T, and T, T, for the state p;, 2, = [Wy, 4,) (W2, 2,| is given by
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403N} 0 4205 Ao s
L= o  43A} 0 (3.5.2)
WA 0 AAZ(AZ+AD)

4230} 0 43
T
Ty = 0 482 0 (3.5.3)
4A3M0A 0 42803

The Hermitian matrices 7, T; and T,/ T; for the state p;, , = |y, ,) (w3, ,| is given by

ANEAF+AD) 0 AR

T/ T = 0 40220 (3.5.4)
45 M2 0 4A3A}
4230} 0 0
L'T=| 0  43(A3+43) 0 (3.5.5)
0 0 0

The maximum eigenvalue of T T; is given by

(T T) = max{u,v;},i=2,3 (3.5.6)

where vi = 223 (A7 + A2 + A7 + /(A7 + 47 +A3)2 —4A7A7), i=2,3.

The minimum eigenvalue of TyTTy is given by
Wnin( Ty Ty) = 0 (3.5.7)
The expression for Tr[(T.T T;) + (T,T T;)] is given by
Tr(L T) + (L)) = 16A3AF +8A3AF +4AGA] (3.5.8)

Case-l: If (T, Ty) = 425 A7 and pyin(T,T T,) = 0. The inequality (3.2.25) then can
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be re-expressed in terms of the expectation value of the operators O, as

(01)3
“200(V2ha+41) £ (Oi)y,,, ——3 2 (3.5.9)
If A, =0, then above inequality becomes,
(01)3
—théamwﬂfﬂ—%ﬂﬁ (3.5.10)

The R.H.S of the inequality is positive for every state |y). Thus it is not possible to
differentiate between the class of states |y, ;,—0) € S2 and |yy, 4,) € S3, using the
inequality (3.5.10) for this case.

Casell: If (T T) = 2A3 (A7 + A7 + A3 + 1/ (A + A2 + A2)2 — 4A222) and
tmin(T,T T,) = 0, then the inequality (3.2.25) can be re-written as

—24(V2ha+41) < (Oi)y, , —P (3.5.11)
We can now define a Hermitian operator Hg, as

1)
m::m—m+§ (3.5.12)

Therefore, the inequality (3.5.11) can be re-formulated as
—2V2M < (Hs)y, ., (3.5.13)

If A, =0 then (Hg>l,,7w12 > 0, for all states |y, 9 1,—0) € S1 and |y, 3,—0) € S2.

For A, # 0, then there exist state parameters (49,41,42,A4) for which Tr(Hgpy, 4,) <
0. For instance, if we take Ao = 0.01, A; = 0.948631, A, = 0.3 and A4 = 0.1, we get
Tr[Hgp,, 5,] = —0.129027. Thus, the Hermitian operator Hg serves as a classification
witness operator and classify GHZ class of states described by the density operator
P, .2, €53 and the GHZ of states p;, o 3,0 € S1 Of Py, 2.—0, (i =2,3) € Ss.

Simillarly, we can construct witness operator that can classify GHZ states belonging

to subclass-1ll and subclass-IV.
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3.6 Conclusion

To summarize, we have defined systematically different subclasses of the pure
three-qubit GHZ class. The subclass-I denoted by S, contain the states of the form
A0|000) + A;[111). In particular, if g = A, = % then the three-qubit state reduces to
standard GHZ state and it is known that this state is very useful in various quan-
tum information processing task. In this chapter, it has been shown that there exist
states either belong to subclass-Il (denoted by S;) or subclass-Ill (denoted by S3) or
subclass-IV (denoted by S,4), that may be more useful in some teleportation scheme
in comparison to the states belong to S;. Also, we found that the tangle of the GHZ
states belonging to subclass S; is more as compared to GHZ states belonging to sub-
class S,. This observation gives the motivation to discriminate the states belonging to
Si,i=2,3,4 from the family of states belonging to S,. We have prescribed the method
for the construction of the witness operator to study the classification of the states
belonging to S;,i =2,3,4.

*kkkkkkkhkkkkkkkk






Chapter 4

Classification of Three-qubit States using

[{-norm of Coherence

In this chapter', we have studied the problem of classification of three-qubit states
using l,-norm of coherence. In the literature, the problem of classification of three-
qubit entangled states has been studied through three-qubit entanglement measures
such as tangle. But since tangle is non-zero for only GHZ class of states and zero for
the set of separable states, biseparable states, and W class of states, so, it cannot be
used to classify the states belonging to separable, biseparable, or W class of states.
To overcome this issue, we have used l;-norm of coherence for the detection and
classification of three-qubit entangled states. In this chapter, we have derived coher-
ence based inequalities that may be satisfied by biseparable states. The inequality
satisfied by the biseparable states is denoted by I,. The violation of I; indicates that
the state under investigation is either separable or genuine entangled. Furthermore,
we have derived an expression E; which is only satisfied by the separable states. If
this expression is not satisfied, then the state may be either biseparable or a genuine
entangled state. Thus if there exists a three-qubit state which violates the inequality I

and also does not satisfy E, then the state under probe is a genuine entangled state.

I'This chapter is based on the research paper entitled “Detection and Classification of Three-qubit States Using
[1-norm of Coherence”.

103
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4.1 Introduction

Quantum entanglement and coherence are two fundamental features that arise from
the superposition principle of quantum mechanics. One notable difference between
these two features is that coherence may exist in a single system while more than
one system or more than one degree of freedom is required for entanglement. Sec-
ondly, the non-zero off-diagonal elements in the density matrix signify the presence
of coherence in the quantum system while it may not ensure the existence of entan-
glement in the given composite quantum system. Both quantum entanglement and
quantum coherence can be used as a resource [67, 138]. M. Hillery has shown that
coherence may act as a useful resource in the Deutsch-Jozsa algorithm [139]. On the
other hand, quantum entanglement has many application in quantum information pro-
cessing tasks, notably, quantum teleportation [30], quantum superdense coding [36],
quantum remote state preparation [40], quantum cryptography [50] etc. Extensive
research has already been carried out to understand the non-classical feature of bi-
partite system [21, 23, 26, 58, 64,67, 140]. Eventually, when we increase the number
of parties in the system, the complications in the shared system between the parties
also increase. Therefore, it is indispensable to understand the entanglement proper-
ties of the shared multipartite system.

In this chapter, we will consider the problem of classification of entanglement and we
have studied this problem specifically in the case of a tripartite system. We will derive
coherence-based inequalities to classify a three-qubit entangled system.

Let us start our discussion on the tripartite system by assuming that the Hilbert spaces
Hy, Hg and H¢, which describe each subsystem A, B, C of a tripartite system, is
spanned by the computational basis states |0) and |1) respectively.

Any three-qubit state may be classified as fully separable states, biseparable states,
or genuinely entangled states [95]. If the three-qubit state is shared by three distant
parties Alice, Bob and Charlie then the shared state may be either in the form of a
fully separable or biseparable state or a genuine entangled state. The fully separable

and biseparable state may be expressed in the form as [92,118]

P’ =Y piptwpf @pf Y pi=1 4.1.1)
i i
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Phisep = P1Phisey + D2Phiscy +P3Phiscys 0<pi< 1, Yopi=1 4.12)
i
where,

p,‘;‘mﬁc Z|a (ai| @ |9:) Bc (@il
pftse?oc Z|b b |®|¢l AC<¢1|

plisel;‘aB Z |Cl Cl‘ b2 ’(Pl AB<¢1‘

Here, |a;), |b;) and |¢;) are (unnormalized) states of systems A, B, and C, respec-
tively, and |¢;) represent the states of two systems jointly. The density operators
p, x=A,B,C lying on the Hilbert spaces of dimension 2.

It has been observed that the three-qubit biseparable states are important and use-
ful in many contexts. The importance of biseparable states comes from the fact that
they may be used as unextendible biseparable bases (UBB) which are proved to be
useful to construct genuinely entangled subspaces [141]. Instead of a genuine tri-
partite entangled state, it has been shown that a biseparable state is enough to use
in the controlled quantum teleportation protocol as a resource state [142]. Barasin-
ski et.al. [143] have analyzed the fidelity of the controlled quantum teleportation via
mixed biseparable state and have concluded that a statistical mixture of biseparable
states can be suitable for the perfect controlled quantum teleportation. Further, it has
been shown that there exists a special class of biseparable state i.e. a non-maximally
entangled mixed biseparable X state, which can be useful as a resource state for the
attainment of high fidelity in controlled quantum teleportation [144]. Recently, it is
shown that the biseparable states can also be used in obtaining the non-zero confer-
ence key [145].

Since the three-qubit biseparable state has potential applications in quantum informa-
tion theory, it is crucial to classify the three-qubit biseparable state. There are a lot
of earlier works in this line of research but we mention here a few of them. Eggeling
and Werner [146] provided the necessary and sufficient criteria in terms of the pro-
jection parameters to detect the biseparable state. But this result is true for only one
bipartition cut A — BC. In [147], it has been shown that the witness operator may be
constructed to distinguish fully separable state, biseparable state, and genuine en-
tangled states for a multipartite system. An n-partite inequality is presented in [148],

whose violation by a state implies that the state under investigation is not a bisepara-
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ble state. A non-linear entanglement witness operator has been constructed to identify
all three types of three-qubit states [149]. Using entanglement measures, bisepara-
bility in mixed three-qubit systems has also been analyzed in detail in [150,151]. The
necessary and sufficient condition for the detection of permutationally invariant three-
qubit biseparable states has been studied in [152]. The multipartite biseparable en-
tangled states under any bipartite partitions can be detected using linear contraction
methods [153]. A set of Bell inequalities was introduced in [154], which can distin-
guish separable, biseparable, and genuinely entangled pure three-qubit states. The
method of construction of biseparable state is given in [155] and the classification of
three-qubit pure states has been studied in [96]. Recently, it has been shown that a
particular class of three-qubit GHZ and W class of states can be discriminated using
coherence-based inequality [156].

In this chapter, we will derive the coherence-based inequality which can be used to
detect the given three-qubit state as a biseparable and separable state. To accom-
plish this task, we first find out the formula for the /;— norm of coherence of the tensor
product of two quantum states, which are subsystems of an n-partite system. Then,
we use the derived formula to establish the required inequality for the classification of

biseparable and separable states.

4.2 [;-norm of coherence of the tensor product of bipartite

states

The coherence can be measured by different measures such as distance measure,
relative entropy of coherence, and /,(p = 1,2)-norms. Any function C which maps the
set of all states to the non-negative real numbers and satisfies the following properties
is a valid measure of coherence [157]:

(Cy) It vanishes for incoherent states i.e.

C(p) =0, whenever p is an incoherent state 4.2.1)

(C>) Any valid coherence measure C, should not increase under incoherent opera-

tions.
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(C3) Monotonicity under incoherent completely positive and trace-preserving maps i.e

C(p) > C(¢rcrre(p)) (4.2.2)

for all incoherent completely positive and trace-preserving maps ¢;cprp.

(C4) Monotonicity under selective measurements on average i.e.
P) > anc(pn) v {Kn} (4.2.3)
n

where p, = "”K

represent the state corresponding to the outcome »n and the prob-
ability of occurrence of the state p, is given by p, = Tr[K,pK,']. {K,} are the Kraus
operators such that ¥, K,,'K, =I and K,IK," C I, I denote the identity operator and I
represent the set of incoherent states.

(Cs) A valid coherence monotone should satisfy the convexity property i.e.
Y puC(pn) = C(Y. pupn), 0< pu <1,y pu=1 (4.2.4)

for any set of states p,. Here p, = "pK and p, = Tr[K,pK,']. {K,} are the Kraus
operators.

In this chapter, we will use the /; norm of coherence which is defined as

C,(p) = Z |0ijl 4.2.5)
L,Ji#]

where p;; denotes the complex numbers corresponding to the ij-th entry of the density
matrix p. I;-norm of coherence of a state depends on the choice of basis in which
the given state is expressed and thus from now on, we are considering only compu-
tational basis to describe the density matrix of the given state. /;-norm of coherence
satisfies all the properties (C,-Cs) and thus, it can be considered as a valid coherence
monotone. Therefore, it may serve as a useful measure of coherence [157].
Now, we are in a position to state the result on the /;-norm of coherence of the tensor
product of two quantum states which are the subsystems of an n-partite system.
Result-1: If the density operators pa, a,...a,, @nd Pa,., Ay.o,...Ay denote the subsys-

tem of a n-partite system, then the /;-norm of coherence of the tensor product of
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PA; As,... Ay and PAy 1 Apsa,e Ax is given by

G, (pA1,A2-,~~,AM 2 pAM+1:AM+2a~~7AN)

Cl] (pAlyAza“'yAM) + Cll (pAM+1>AM+2‘,"'7AN)

+ Ci(PAy A, An) Cly (P 1 Avin,Ay)  (4:2.6)

Proof: Consider two quantum states described by the density matrices pa, 4,...ay,

and pa,,. . Au.a...Ay- The matrix representation of the density operators py; 4,.,...4,, and

PAyi1.Au12,-Ay @re given by

agr adi2 - - . A1m

az a272 .- . m
PA Ay, Ay =

am1 Am2 - - - Amm

Where, ai 1 —|-61272 +.+.+. +am,m =1,

PAy1 Az, Ay =

Am+1.m+1 Am+im+2 - - - Amtln
Am+2m+1 Am2m+2 - - - Aumi2n
anm+-1 an.m+-2

ann

4.2.7)

(4.2.8)

where, aui1mt1+ami2mi2+ ... +an, =1 and a;; denotes the complex conjugate of

al-.J-.

Then, the /1 norm of coherence of the density matrices pa, a,,...4, @Nd P4y, | Apo,.... Ay

are given by

and

m

Ci(ALAy,...Am) = Y laijl
=Tk
n

C,(PAys1 Aprinndy) = Y, ai

i, j=mt i

(4.2.9)

(4.2.10)
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Then,
n n
Cr (PAy Aoy @ Py Arrianndy) = laral( Y, laij)+lara( Y, aij)
n n
+ et laml(C Y, ail) +lazal( Y laijl)
i,j=m+1 i,j=m+1
n n
+ a2l ) aigl) o Hlazal(Y, laigl)
n n
+ ot lama (), Jaii) oA lamml (Y aigl)
i,j=m+1 i,j=m+1,i#j
4.2.11)
Simplifying the above equation, we get
n
Cry (Pay Aseo Ay @ PAy 1 Avya,dn) = Y laijlllani|+lazal+ o+ amml]
i, j=m+ 1,
n
+ Y laijlllaal+laial 4 -+ larm| +laz)
i,j=m+1

+ |aoz|+ ...+ azn

+ . Flami| + -+ |amm—1]]

(4.2.12)
Using normalization condition of pa, 4,.....4,, @Nd Pa,,. 1 Ays....Ay, WE Q€L
n n n
Cr(PA Asye At @ PAY 1 Aty Ay) = Z lai j| + Z lai jl].| Z |ai ]
i, j=m+1,i#] i, j=m+1 i, j=m+1,i#]
n n
= Y a0+ Y aigllx
i,j=m+1,i#£j i,j=m+1,i#j
n
Y aigl]
(4.2.13)

From equations (4.2.9) and (4.2.10), we get,

Cr (PA Ay Art @ PAvisr ArtiarAn) = Cli (PA As...An)

+ 14+ Ch (P Arpinran)]-(Cry (PAy Ay Ay)]

Thus, the I;-norm of coherence of the tensor product of an m-qubit and an (n-m) qubit,
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which are a part of an n-partite quantum system, is given by

Gy (pA17A27-~~»AM ® pAM+1~,AM+2»~~-~,AN)
= Cll (pA1;A2,-~~,AM) +C11 (pAM+17AM+27--~7AN)

+ Cll (pAl 7A2,-~,AM)'C11 (pAM+1 aAM+2:~~~~AN) (4.2.14)

Corollary-1: For any two single qubit quantum states described by the density oper-
ators p; and p», the /; norm of coherence of the tensor product of p; and p; is given
by

Ciy (1 p2) = Cy (p1) +Ci, (p2) +Co, (p1) € (P2) (4.2.15)

Proof: Any two single-qubit quantum states described by the density matrices p; and
p2 are given by
a; bl'

pi = 7ai+di:1a l:172 (4216)
b d;

The I; norm of coherence of the density matrices p; and p, are given by
Cr,(pi) =2/bi|, i=1,2 (4.2.17)
The tensor product of p; and p, may be defined as

ai b] ay b2

pP1®p2 =
by di by d

ajan a1b2 b1a2 b1b2
. a1b§ a1d2 blbz bldz (4 ’ 18)
biay biby diay dib;

biby bidy diby dydy
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The I/;-norm of coherence of the tensor product p; ® p; is given by

Ch(p1®@p2) = ailba|+[bilaz+ |bi1||b2] + a1 b2
+ |b1||b2| + |b1|d2 + |b1|az + |b1]|b2|
+  di|ba| + |b1]|b2] + |b1|d2 + di s
= 2(ay+d1)|ba|+2(az+dy)|b1|+4|b1].|b2|
= 2|by|+2|by|+4|b1]|.|b2| 4.2.19)

Using equation (4.2.17), the equation (4.2.19) reduces to

Ci, (p1®p2) = Cpy (p1) +Cpy (p2) +Ciy (P1)-Cp, (P2) (4.2.20)

Hence proved.
Corollary-2: If the three-qubit biseparable system described either by the density

operator ps—pc = pa ® Ppc OF Pp—ac = PB X Pac OF Pc—aB = Pc ¥ Pap, then the [j-norm

of coherence for the density operator ps_pc, pp_ac and pc_ap are given by

Ci,(Pa—Bc) = C1,(pa) +Ci, (PBc) +Ci, (pa)-Ci, (pBC) (4.2.21)
oF (PB-aC) = G, (pB) +C, (Pac) + G, (pB)'Cll (Pac) (4.2.22)
G, (pC—AB) =G (PC) +C (PAB) +C (pC)'Cll (PAB) (4.2.23)

1. If the equality given by (4.2.21) is violated by any three-qubit state, then the state

under investigation is not a biseparable state of the form p4 ® pgc.

2. If the equality given by (4.2.22) is violated by any three-qubit state, then the state

under investigation is not a biseparable state of the form pp ® pac-

3. If any three-qubit state does not satisfy the equality given by (4.2.23), then the

given state is not a biseparable state of the form pc ® pag.

Corollary-3: If the three-qubit system represent the separable system described by

the density operator ps_p ¢ = pa @ pp ® pc, then the [;-norm of coherence for the
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density operator ps_p_¢ is given by

Cy(pa-p-c) = Ciy(pa)+Cy(ps)+Cy(pc)

1(P4)-Ciy (pB) +Ciy (Pa).Ciy (Pc)

. (pB)-C1, (Pc)

Ci, (pa)-Cy, (pB)-Cy (pc) (4.2.24)

+
+ G
_|_

If the equality given by (4.2.24) is violated by any three-qubit state, then the state
under probe is not a separable state.

4.2.1 Coherence-based inequality for the detection of a particular form

of three-qubit biseparable states

In this subsection, we deduce coherence based inequality for the detection of three-
qubit biseparable state of the form pi=/(i # j # k;i, j,k = A,B,C). To verify this in-
equality, we need only the information on the density matrix elements of the given
three-qubit system under investigation.

Result-2: If the three-qubit state described by the density operator pA—5¢ =¥, p;p} ® pl’;C
is biseparable such that the /;,-norm of coherence of at least one of the reduced sys-

tem is non zero, then the /; norm of coherence of the biseparable state satisfies
A—BC X'2
C,(p"7) < Zpi(j +X)) (4.2.25)
i
where
X; =G, (py) +Cp(phe), i=1,2,3,... (4.2.26)

Proof: Let us consider a biseparable state for A — BC partition. The biseparable

state in this partition is given by

PP =Y piPa® Psc (4.2.27)



Then, I; norm of coherence of pA~2C is given by
Cu(p*™") = [} piPa @ Pic]

< ZP:‘CA [P} ® phc]

= Zpi(cl] (P;\) +Cll (pllBC) +Cl1 (ng)'cll (plli’C))
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(4.2.28)

We have used the convexity property of the /;-norm of coherence in the second step.

The last step follows from Corollary-1.

Now, Arithmetic mean (AM) and Geometric mean (GM) of C,, (p}) and C;, (pj.) are

given by

Ci,(py) +Ci, (i ' '
zl(PA)JFZ n(Pic) and \/Cll(Pﬁ\)'Cll(péC)

Using AM-GM inequality [136] on C;, (p}) and C;, (pj.), we get

Ci,(p}) +Ci, (Phe))? i /
(Cr, (p4) 4ll(pBC)) > Cy, (p4)-C1, (Ppe)

From (4.2.28), we get

(CL(Py) +Ci(Ppe))? )
4

C,(p5¢) < Zpi(cll (P4) +Ci, (Phe) +

X2
= Zi:l?i(XmLT’)

where X; = C, (p}) +Cy, (phe) fori=1,2,3,...
Hence proved.

4.2.2 Example

(4.2.29)

(4.2.30)

(4.2.31)

Example-1: Let us consider a biseparable state described by the density operator

p = |W)asc (Y|, where |y)apc is given by

W) asc = Ao|101) + Ay 110) + A 111)

(4.2.32)
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where Ag,A1,42 € RT and A3 + A7 + A7 = 1. Let us assume that Ao > A; > A».
The value of C;, (pa) and C, (ppc) is given by

Ci,(pa) =0, Cp,(pac) =2(AoA +Aid2 + Ao A2) (4.2.33)
For the state |y)agc given in (4.2.32), we can calculate C;, (p#5¢) as
G, (pA5) = 2(MoA1 + A1 A+ Aoh2) (4.2.34)

Using (4.2.33) and (4.2.34), it can be shown that the inequality (4.2.31) is satisfied.
Example-2: Consider a |W)pc state of the form

1

\/§(|1OO>ABC+|010>ABC+ ’001>ABC) (4.2.35)

\W)apc =

The [;-norm of coherence of the |W)4pc state is given by C;, (|W)agc) = 2.

The reduced single-qubit state may be expressed as
1 . -
pi" = Trjx(IW)asc) = 3(2(0)aC0+[1a(l]), i#j#ki j,ke{A,B.C}  (4.2.36)

Since the single-qubit density operators p\, p} and p! does not contain any off-
diagonal elements so the /;-norm of coherence for these single qubit states is given
by C,, (pY ) =Ci, (p} ) =Cy, (pl) = 0. Therefore, it can be easily shown that the equality
condition given in (4.2.24) is not maintained for the state (4.2.35). Further, it can be
shown that the set of equality conditions given by (4.2.21), (4.2.22) and (4.2.23) are
not satisfied by the state (4.2.35). Thus, the state (4.2.35) is neither a fully separable
state of the form p} @ py @ pl nor a biseparable state of the form pY @ p}¥. or p¥ @ p}t,

or pY @ pe.
4.3 Detection of general three-qubit biseparable states and

separable states

A mixed state is said to be fully separable if it can be written as the convex combination
of fully separable pure states. A mixed state is said to be biseparable if it is not fully

separable and it can be written as a convex combination of biseparable pure states.
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Let us recall the three-qubit mixed biseparable state given in (4.1.2) and re-write it as

Obisep = plcﬁmcp +p2 Glﬁsc?)c—}_p szse?)B’ 0<pi <1, Zpi =1 (4.3.1)
i

4.3.1 Coherence-based inequality for the classification of general three-

qubit biseparable states

Classification of three-qubit mixed states has been studied by constructing the witness
operator [98]. In this section, we will study the classification of three-qubit mixed
biseparable states using coherence-based inequality.

Result-3: If the three-qubit mixed state described by the density operator in (4.3.1) is

biseparable then it satisfies the inequality

_ 1
14+Cy, (p1of % + paoy =+ psos 7) ZZ (X +2)> (4.3.2)
where,
X = Cll (GA) +C1| (GBC)
Xy =Gy, (05)+C, (05%)
X3 =Cy,(0%) +Cp, (04%) (4.3.3)

Proof: Let us consider a mixed three-qubit biseparable state whose density matrix

A—BC B—CA

is given by p1oBC 4 proB A 4 pyot 8. Using /1-norm of coherence of pjoi5¢ +

B—CA C—AB

P20, + P30, and the covexity property of /;-norm of coherence, we have,

Cr, (p161 78+ prod A+ p30S ) < p1C, (0175C) + paCy, (02~

+  p3Cy, (oS B) (4.3.4)

Using the relation (4.2.21) or other related coherence relation like (4.2.22) or (4.2.23),
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we get

IN

C1 (P17 + paot=CA 4+ pyo A1)

o1<) +C, (01).C, (67°)]
2C )+Cll( )Cll( )]
+ p3[Cy (05 +Cp, (03F) +Cy, (05).Cr, (03]

(4.3.5)

[Cll (Gl +Cl] (

+ [Cll (62 +Cl] (

Recalling expressions of AM and GM of C;, (6') and Cy, (62¢) from (4.2.29) and apply-
ing AM > GM on C;,(c') and C;, (c°), inequality (4.3.5) reduces to,

1

Ci (P10~ + paoy ™Mt p3of ™) < pi[C (o) +Cy (07) + 1 (G (o) + Gy (7))
1

+ palCiy(07) +Cy (05) + 1(Ciy(07) +Cy (03))7]

1
+ p3lCi(05) +Cy (037) + (G, (03) +Cp (037))7]
(4.3.6)

Thus, we have

2 2 2

X X
2+ + X+ =3)4.3.7)

Cr, (p16] 75+ paos A + p3os B) < pi (X1 + ;

Therefore,

x? X3 X3
Cr,(p167 75+ prod A 4 3ol ) < pi(Xi+ 4)+P2(X2+ 4)+P%(X3+ 4)
1
= X122+ (X +2) Fp3(X3+2)H — 1

4
(4.3.8)

where X, X, and X3 are given by (4.4.3).
Simplifying (4.3.8), we get

B—CA

14Cy, (p16175¢ + pyot C=AB)

+ p303

4>|~

3
Z (Xi+2)° (4.3.9)
which is the required result. Hence proved.

Corollary-4: If any three-qubit mixed state violates the inequality (4.3.2), then the

given state is not a biseparable state.
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4.3.2 Coherence-based inequality for the classification of three-qubit mixed

separable states

In this subsection, we will discuss how to classify the given state as a separable state
which belongs to the set of mixed three-qubit states using the /;-norm of coherence
of a single qubit. Let us consider a mixed separable state, which can be expressed as

=Y picteoc’®wof (4.3.10)
The [;-norm of the coherence of the state (4.3.10) is given by

C, (a9 = ¢ (Y piofwcfwaf)
i
< ZpiCZI(G;‘@GiB(@GiC)

= Zp: )Y, G+ )Y G(oNG(a))

x=A,B,C x#£y,x,y=A.B,C
+ Cl1( )Cll( )Cll( )] (4.3.11)

The inequality in the second step follows from the convexity property of /;-norm of
coherence.

We are now in a position to state the condition for separability for a mixed three-qubit
system. The statement for separability is as follows:

Result-4: If the three-qubit mixed state described by the density operator c4—5-C =

Y picA ® 68 @ of is separable then it satisfies the inequality
l 1 L

Cll(GAiB ¢ < Zpl Z C11 )+ Z Cll(Gix>Cll(Giy)

x=A,B,C x#y,x,y=A.B,C
+ C,(01)Cy (07)Cy, (o) (4.3.12)

Corollary-5: If any three-qubit mixed state violates the inequality (4.3.12) then the
given state is not a separable state.
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4.3.3 Illustrations

Example-1: Consider a mixed three-qubit biseparable state described by the den-

sity matrix p;, which is given by
pi = ql0) (0N |9)P(oF |+ (1—g) 1) (1@ |9 )"* (97| (4.3.13)

where 0 < g < 1 and the Bell states |¢ )5 and |¢ )A€ are given by

9+ = \%<|OO>BC+|11>BC>

01 = 100y — 11y 43.14)

V2

Comparing equation (4.3.13) with general mixed three-qubit biseparable state, we
have p; =¢q, po =1—¢q and p3 = 0. [;-norm of coherence for the given state, defined

in (4.3.13), is given by
Cr,(p1) =1 (4.3.15)

For the given state p;, C;, (pf) = C,, (pB) = C;, (pF) =0, C, (pEC) =1, C;, (p{€) = 1 and
C,, (p8) = 0. The quantity X/s, i=1,2,3 can be calculated as

Xi = C,(p)+C,(pf¢) =1
X, = C,(pP)+C,(pf©)

X3 = Cll (p?)—'-cll (prXB)

1

0 (4.3.16)

Substituting values of p's, X/s and /;-norm of coherence of p;, we can see that equa-
tion (4.3.2) is satisfied for the state (4.3.13).
Example-2: Let us consider the mixed three-qubit state described by the density op-

erator pAB¢ as

p**C = 4|GHZ)(GHZ|)+ (1 - q)|W)(W]| (4.3.17)
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where 0 < g < 1 and the three-qubit states |GHZ) and |W) are given by

1

GHZ) = —(000) +[111)) (4.3.18)
W) = %(|001>+\010>+|100) (4.3.19)

Compairing equation (4.3.17) with general three-qubit mixed biseparable state, we get
p1=¢,p2=1—gand p3=0.
The [;-norm of coherence of the state (4.3.17) is given by

Cy, (p*B) =3 (4.3.20)

For the given state p*°“, C;, (p*) = Cy, (p®) = C;,(p€) = 0 and C;, (p*) = C;, (p*°) =

C;, (p"®) = 3. Therefore, the quantities X/s, i=1,2,3 can be written as,

X=X =Xs=Cy () +C(p) = 5. i#j#k ik (ABCE  (4321)
Substituting values of p's, X/s and C;, (pA2¢) in equation (4.3.2), we can observe that
the inequality given in Result-3 is violated for any g. Thus, the given state p45C is
not a biseparable state. Moreover, a simple calculation also shows that the inequality
(4.3.11) is violated for any ¢. So we can infer that the given state (4.3.17) is not a
separable state. Thus, we find that the given state p4Z¢ is neither a biseparable state
nor a separable state. Hence, we may conclude that the given state is a genuine
mixed three-qubit entangled state.

4.4 An idea to generalize the results to a four-qubit system

The results we have obtained in this chapter can be generalized to the multipartite
system also. For instance, if we consider a four-qubit system, Result-3 for mixed
biseparable states may be re-stated as:

If the four-qubit mixed state described by the density operator

A—BCD

B—CAD
P = P10

C—ABC

+ p30y + pyoy ABC (4.4.1)



120

is biseparable then it satisfies the inequality

pilXi+2)? (442

(g

- - - _ 1
1+C11(P1614 BCD—I—szf CAD+p3G3C ABD—l—p4G4D ABC) < Z
1

i

where,
X1 =Gy, (of) +Cpy (o7 P)
Xy =Cy,(03) +Cp, (054P)
X3 = Cp,(05) +Cy, (04P)
X4 =Cy,(6P) +Cy, (045 (4.4.3)

To verify this result, let us consider a mixed biseparable state in a four-qubit system

described by the density matrix pagcp, which is given by
1 1 _ _
pasco = S0 ON @07 P @+ SID (12107 P @4d)

where the states |¢+)EP and |¢~)ACP are given by

[97)7P = %<I100>BCD+\010>BCD>
|9~ )ACP = %(|100>ACD—|010>ACD) (4.4.5)

Comparing equation (4.4.4) with general mixed four qubit biseparable state (4.4.1),
we have p; = 3, p» = 1, p3 =0 and p, = 0. /;-norm of coherence for the given state,

defined in (4.4.4), is given by

C1,(paBcp) =1 (4.4.6)
For the given state pi1, C;, (P4pcp) = Cry (PAscn) = Cry (PSsep) = Cr (Phsen) = 0: Ciy (PA5ED)
1, C, (piS2,) =1, C, (p4ER,) = 1 and C, (p45S,) = 0. The quantity X/s, i=1,2,3,4 can

be calculated as

BCD

+Ci, (Papcp) = 1
+Cr, (pasep) =1
( ABD ) — 0
( )=0

PaBCD

ABC

(
_ B
X; = C,(Papcp
(
( PaBcD

)
)

X3 = Ci,(pSpep)+Cy
)

X4y = q p,?BCD +C, (4.4.7)
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Substituting the values of pls, X/s and /;-norm of coherence of pagcp in (4.4.2), it can
be easily seen that (4.4.2) is satisfied for the state defined in (4.4.4).

Moreover, Result-4 for four-qubit mixed separable states may be re-stated as:

If the four-qubit mixed state described by the density operator 642" =¥, p.cA ®

of ® o @ 6P is separable then it satisfies the inequality

C(ePP) < Yl ), GleH+ ), Cy(e)C (o))
i x=A,B,C,.D x#y,x,y=A.B,C.D

+ Y G(eN)C())C, (o)
XAY#2,%,y,2=A,B,C,D

+ Ci,(01)Cy, (0)Cy, (0 )Cr, (07)] (4.4.8)

To verify the above result for a four-qubit mixed separable state, let us consider a

separable state in a four-qubit system, described by the density operator p»,

1 1
Py = Z|0000>ABCD<0000|+Z|0011>ABCD<0011|

1 1
+ Z|1000>ABCD<1000|+Z\1111>ABCD<1111| (4.4.9)

Then, for the state defined in (4.4.9), C;,(p2) = 0 and C;,(p3) = C, (p%) = C,,(p§) =

C,, (pP) = 0, thus we can say that the equation (4.4.8) is verified for the state p,.

4.5 Anidea to generalize the results to a three-qutrit system

The results, we have obtained in this chapter can be generalized to higher dimensional
quantum systems. For example, let us consider a three-qutrit state described by the

density operator p = |y)(y|, where |y) is given by,

lw) =1[0)4 ® —=(]12) pc + |01) pc +120) 5c) (4.5.1)

1
V3
Comparing equation (4.5.1) with general mixed three-quitrit biseparable state, we have

p1 =1, po =0and p3 = 0. [;-norm of coherence for the given state, defined in (4.5.1),
is given by

C,(p)=2 (4.5.2)



122

For the given state p, C;, (p?) = C;, (p?) = C,(p©) =0, C;,(pB°) =2, C;,(p*°) = 0 and
C,, (p*8) = 0. The quantity X/s, i=1,2,3 can be calculated as

X = G, (p*)+C,(p%)
X, = C,(p%)+Cy,(p°)
X3 - Cll(pc)+cll(pAB)

2
0
0

(4.5.3)

Substituting values of p's, X/s and /;-norm of coherence of p, we can see that equation
(4.3.2) is satisfied for the state (4.5.1). Thus, the given states is a biseparable states.
Hence, the result obtained in this chapter may be generalized to higher dimensional

systems.

4.6 Conclusion

In this chapter, we have used [/;-norm of coherence for the classification of three-qubit
entangled states. Coherence is a basic phenomenon that arises from the superposi-
tion principle of quantum mechanics. It can be measured by different measures such
as distance measure, relative entropy of coherence, and /, norms. /;-norm is a valid
coherence monotone, serves as a useful measure of coherence [157] and also, we
have shown that it may be useful in classifying the multi-qubit system. We have cal-
culated the /;-norm of coherence for the tensor product m — qubit ® (n — m) — qubit. In
order to obtain criteria for the classification of three-qubit states, we have obtained
inequalities for biseparable states and separable states in terms of /;-norm of co-
herence. Further, we have shown that if the obtained inequality is violated by any
three-qubit state then the state under investigation is neither a biseparable state nor
a separable state. Since, for a three-qubit system, we have only three categories of
state and if we find that the given state is neither a separable state nor a biseparable
state then we can conclude that the state is a genuinely entangled state. The results
obtained in this chapter are supported by examples. At the end of this chapter, we
have provided an idea to generalize the obtained results to higher dimensional and

multi-qubit systems.



Chapter 5

Classification of Three-qubit States using

SPA-PT

In this chapter', we have studied the problem of classification of three-qubit states
using a structural physical approximation of partial transposition (SPA-PT). We have
exploited the concept of SPA-PT so that the classification of a three-qubit entangled
state may be realized in an experiment. To study the classification problem of the
three-qubit system, we have constructed a SPA-PT map for the three-qubit quantum
system and then the matrix elements of the density matrix describing the SPA-PT
of a three-qubit system have been calculated. We have proposed criteria for the
classification of all possible SLOCC inequivalent classes of pure as well as mixed
three-qubit states through the SPA-PT map.

IThis chapter is based on the research papers entitled “Structural physical approximation of partial transposi-
tion makes possible to distinguish SLOCC inequivalent classes of three-qubit system, European Physical Journal
D76 73 (2022)”
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5.1 Introduction

Quantum entanglement [20] is a physical phenomenon in which the state of each par-
ticle in the group cannot be described independently of the state of the others, even
when the particles are separated by a great distance. The entangled quantum sys-
temin d; ® d, dimensional Hilbert space may be useful in various quantum information
processing tasks such as quantum teleportation [30], remote state preparation [40],
entanglement swapping [158], secret sharing [159] and quantum repeater [160]. We
require entangled states to perform quantum information processing tasks in an effi-
cient way, but the process of generation of entangled states is not an easy task. Even
if we generate a quantum state in an experiment, we can ask two more questions:
(i) whether the generated multiparticle state is an entangled state or not. (ii) If we
found that the multiparticle state is an entangled state, then what type of entangled
state it is? For instance, in the case of a three-qubit system, if we know that the
three-qubit entangled state is generated at the output, then it is necessary to know
whether the generated three-qubit entangled state belongs to a biseparable state or
genuine entangled state. Further, if we know that the generated three-qubit entan-
gled state is a genuine entangled state, then it is important to classify it further as
two SLOCC inequivalent classes i.e GHZ class and W class. The classification of
three-qubit genuine entanglement into these subclasses is important from the quan-
tum communication point of view. Now, we can answer the above questions, if we
are able to proceed a little bit further toward the problem of "classification of multi-
qubit entangled states". The classification problem starts with a three-qubit system.
A three-qubit pure system can be classified as one fully separable state, three bisep-
arable states, and two genuinely entangled states. Genuine entangled states have
entanglement in all the subsystems whereas biseparable states have entanglement
in two of the three subsystems. The classification of genuine entangled states and
biseparable states is equally important as they have their own merits. One of the
possible merits of genuine entangled states and biseparable states is the following:
genuine entangled states have potential applications in quantum communication [142]
whereas biseparable states are useful in obtaining the non-zero conference key [145].
In chapter 4, we have defined a way to classify a three-qubit system using /;-norm of
coherence but that method may not be realized physically. To overcome this issue, in

this chapter, we have used the method of SPA-PT for the classification of a three-qubit
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system.

5.2 Studying the Effect of Partial Transposition Operation
on one of the qubit of a Three-Qubit System

Here, we will study the effect of partial transposition operation on any one of the qubit
of a three-qubit system shared between Alice, Bob, and Charlie. Let us assume that
any three-qubit state is described by the density operator papc. If the entries of the

three-qubit state papc are represented by the 2 x 2 block matrices then it is given by

A B C D
B E F G

PABC = (5.2.1)
cC* F* H I

D* G* I J

where A,B,C,D,E,F,G,H,I,J denote the 2 x 2 block matrices.
When the partial transposition operation acts on the first qubit A of the state papc, the

state transformed as

pasc — Pyye = [T ©id ®id)(pasc) (5.2.2)

The partial transposition with respect to the second and third qubit respectively re-

duces the state ppc 10

pasc — Pibe = [id @ T @ id)(pagc) (5.2.3)
paBc = Prse = lid @id @ T)(pasc) (5.2.4)
The partial transposed states p.4., pi&., PS5 can be expressed in terms of block
matrices as
A B C" F*
- B* E D* G* (5.2.5)
Y le poH I -

F G I J
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A B C F
o B E D G 526
ABC ' er prog o o

F* G* I J

A* B* C* D*

R B E* F* G 52
ABC e FoH P -
D G I J

It is well known that the partial transposition criterion is necessary and sufficient for
2®?2 and 2 ® 3 system while it is only necessary condition for the system m®n, (m >
2,n >3, If m=2 then n+#3) and for the multipartite system also.

We now consider the simplest tripartite system i.e. 2®2 ® 2 quantum system to clas-
sify its different SLOCC inequivalent classes through partial transposition operation
on any one of the single qubit of the given three-qubit system.

(i) Let us choose a particular form of an arbitrary state lying in the GHZ-class, which
is given by

|GHZ) spc = &|000)apc + B|111) ac, |a|* +|B]> =1 (5.2.8)

The density operator pgnz = |GHZ)apc(GHZ| can be expressed as

Ay B C Dy
B Ey Ff G

poHz _ | 1 L AL (5.2.9)
C: Ff Hy I

D: G I

lal?> 0 0 ap* 0 0
where A} = ,Di = Ji1 = and all other 2 x 2 block ma-
0 0 0 0 0 [BJ?
trices are null matrices.
If we apply partial transposition operation on the qubit A of the state described by the
density operator (p$f#)%s then the partially transposed state (p$H#)%s at the output
can be obtained by the prescription given in (5.2.5). The eigenvalues of (p$H%)™s are

given by {0,0,0,0,|a|* |B|* |||B],—|c||B|}. Thus, (p$i#)’™ has one negative eigen-
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value. The minimum eigenvalue of (p$H7)74 is given by

Amin(0, B) = —|ot|| B (5.2.10)

Since the minimum eigenvalue of (p$Z#)% is negative so the state p$£# under inves-
tigation is an entangled state for all non-zero values of the state parameter a and f.

The most negative eigenvalue is important for more than one reason, which will be
1

clear in the later stage. The most negative eigenvalue can be obtained for || = 7

and [B| = \/% Therefore, the minimum most eigenvalue of (p$Zi#)% is given by

}vmin[(pEBI-é‘Z)TA] =75

> (5.2.11)

For the same value of a and B i.e. for |a| = \sz and |B| = % we can obtain the
maximum value of tangle t which is given by 7 = 1.

Proceeding in a similar way, we can obtain the minimum most eigenvalue of p%,, and
pS,, and they are given by

1
Amin[(PAGlgICZ)TB] = ;Llnin[(ng]CZ)TC] ) (5.2.12)

Since the minimum most eigenvalues of the partially transposed state with respect to
the qubits A, B, and C are the same so we denote it by A,..,[p$%7]. Thus, we have
/lmin[(PAngICZ)TA] = Amin[(P/g;{cZ)TB] = lmin[(P/%{cZ)TC] = Lonin [PAG1§CZ]-

(ii) Next, we will choose a particular form of an arbitrary state belonging to the W-

class, which is given by
W)apc = 240|001)apc + A1|010)apc + A2|100) apc (5.2.13)

where the state parameters A;(i =0, 1,2) are real numbers satisfying A> + A2 + A7 = 1.
We may note here that one may choose a general form of W class of states for detailed
analysis but may face difficulty in finding the analytical form of eigenvalues. Thus, we
restrict ourselves to studying one of the particular forms defined in (5.2.13). The
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density operator pggc can be expressed as

A B C D
w B* E F G
C* F* H I
DY G* I" J

where,
0 0 0 0 0 0
A= ,B: 7C: )
(0 /”Lg) (AOAI o) (AOQLZ 0)
A2 0 MAx 0 A3 0
E = JF = JH = , (5.2.15)
0 0 0 0 0 0

D, G, |, and J are zero matrices.

The eigenvalues of (p);-)’ can be calculated as {0,0,0,0,A3 + A2, A7, 421 /A3 + A2,
— M\ /A3 + A2}, Thus, (pis-)™ has one negative eigenvalue irrespective of the sign
of the real parameters A, A1, A,. The minimum eigenvalue of (p). )" is given by

Amin(R0, A1, ) = —|da|y/AZ + A2

= —|hfy/1 -2} (5.2.16)

In this case also, we find that the minimum eigenvalue of (p,.)" is negative so the
state described by the density operator p}, is an entangled state for all non-zero
values of the state parameter 4;(i =0,1,2).

The most negative eigenvalue can be obtained for |1,| = & and for any value of A,
and 2, satisfying A3 +A? = 0.51. Thus, the minimum most eigenvalue of (p},)™ is

given by
A(prsc) 4] = —0.4999 (5.2.17)

Proceeding in a similar way, the eigenvalues of (p},~)"® and (p},-)’ can be calcu-
lated as {0,0,0,0,A2, A3 + A3, A14/AZ + A3, — A1\ /A + A2} and {0,0,0,0,A2,A% + A7,

Xoy/ AL+ A3, —Ao\/ A + A3} respectively. Following the same procedure, we can ob-
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tain the minimum most eigenvalue of (p},-)™ and (p},-)’c respectively as
Aoin (PN ) B] = Amin[(PAe) €] = —0.4999 (5.2.18)

Since the minimum most eigenvalue of the partial transposed state with respect to

the qubits A, B and C are same so we can denote it by lmin[pX‘;C]. Thus, we have
Tx Tp Tc
APw g Pw _ g Pw _ g Pw

‘min ‘min ‘min ‘min*

5.3 Structural physical approximation of partial transposi-

tion (SPA-PT) of a single qubit in a three-qubit system

Let us consider a map that may be defined as the convex combination of the depolar-
izing map and the partial transposition map. We can mix the depolarizing map with
the partial transposition map with respect to any one of the qubits in such a way that
the resulting map is completely positive. Let us now start our discussion on SPA-PT
of the three-qubit when the partial transposition operation has been performed with
respect to the qubit A. Therefore, the newly constructed SPA-PT map, when partial

transposition is taken with respect to the qubit A is denoted by [T ®id ® id].
After applying the SPA-PT map on the qubit A of the three-qubit state pspc, the state

transformed as

[T ®id @ id)papc = Prye = %(1®I®I)+(l—PA)[T®id®id](pABC) (5.3.1)

where 0 < p4 < 1.
In a similar way, SPA-PT with respect to the qubit B and C respectively transformed

the state papc as

AT ®idlpasc =pihe = "L(U@I@N+(1-pg)lid 2T 2 id)(panc) (5:32)
lid ®id ©T)papc = ploe = %(1®I®I)+(l—pc)[id®id®T](pABC) (5.3.3)

where 0 < pp,pc < 1.
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5.3.1 When Structural Physical Approximation Map will be Completely

Positive?

In this section, we derive the condition for which the SPA-PT map is completely pos-
itive. To start deducing the condition, we first consider the approximation of partial
transposition operation with respect to the qubit A. In a similar fashion, one can de-
duce the same condition by approximating the partial transposition with respect to the
other two qubits B and C respectively.

We say that the SPA-PT map with respect to the qubit A is positive if lm,'n(p/gc) >0
holds. Therefore, using (5.3.1), we can write the expression of minimum eigenvalue

of the operator p,4 . as

—

Amin(P1A0) = zmm[%u@z@z)ﬂl_ pa)(T @id @ id)pagc] (5.3.4)

Further, the R.H.S of (5.3.4) can be reduced using Weyl’s inequality as

Aomin(P15e) > %lmin(1®l®1)+(1—pA)Amm[(T@id@id)pABC] (5.3.5)

If Ain[(T ®id @ id)papc] = )L,,,,-,L(pjgc) > 0, then the above inequality (5.3.5) reduces to

/Imin (p}%c) 2 PA

ry (5.3.6)

Now, our task is to find out the minimum value of p4 for which the operator (T ®/i;l</g> id)
will be completely positive. Since the partial transposition operator is not a completely
positive operator so the induced map [(id ® id ® id) ® (T ® id ® id)| generates at least
one negative eigenvalue. The most negative eigenvalue generated when the induced
map [(id®id®id)® (T ®id®id)] is applying on the state [(IRI 1) ®|GHZ) spc], where
\GHZ) Apc = %(|OOO> +[111)). Thus, if we suitably choose the minimum value of p,
for which the positive eigenvalues of the maximally mixed three-qubit state generated

by the depolarizing map dominate over the minimum most negative eigenvalue gen-

erated by the induced map then we can make the operator (T ® id @ id) completely

positive. Therefore, the map (T ® id ® id) is completely positive and hence physically

implementable when

(5.3.7)

=
\%
w| &
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In a similar way, it can be shown that if we take the partial transposition with respect

to system B and C then the SPA-PT map will be completely positive when

4

pB = 5 (5.3.8)
4

pc = 3 (5.3.9)

5.3.2 Determination of the matrix elements of the density matrix after

SPA-PT operation

In this section, we study how the entries of the approximated partial transposed den-

sity matrix denoted by p,% . are related with the entries of the original matrix described

by the density matrix papc. If we have an arbitrary three-qubit state described by the

density operator pspc then after the application of SPA-PT operation with respect to
qubit A on it, the density matrix has been changed and changes to p}};c. As a con-

sequence, the elements of the matrix p14 . can be expressed in terms of the matrix

elements of pspc. Thus, the determination of the matrix elements of the density ma-

trix pfgc is important because the entanglement properties of pagc can be studied

using the matrix elements of p/% .. To start with, we consider an arbitrary three-qubit

quantum state described by the density matrix papc, which is given by

1 hip thi3 hi4 tis tie t17 14g
t, oy 03 ha hs be b7 by
ty thy 133 134 Bs B 137 138

Ha g g laa 45 tae 147 148
14 ha I3y
PABC = ; 2 ti=1 (5.3.10)

ts tys L5 L5 155 tsg ts7 tsg | i=1
* * * * *
e he B lag Is¢ 66 l67 168

*

* * * * *
fi7 Iy7 B37 lyg Is7 le7 177 178

*

* *k * * *k
hg Iy I3g lyg Isg Igg

*

I7g 188

where (x) denotes the complex conjugate.
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The SPA-PT with respect to qubit A of a three-qubit quantum state pspc is given by

T 1 1
PZ%cz[E(1®1®1>+§(T®1®1)m3c] (5.3.11)
where T denotes the transposition operator acting on qubit A.

The matrix representation of p,4 - is given by

fit fio f13 fia fis fie fi7 f1g
fj, T T3 bha bhs fe by by
fis Ty B3 f3a Bs B3e 137 3

iy By By Taa las Tae la7 g

8
Ty _ L
Pase=|. o O Y Bi=1 (5.3.12)
Tk Tk Tk Tk Tk y oy T
e he B lis Is6 o6 l67 l68
Tk Tk Tk Tk Tk % d e
li7 by Iy lyg Is7 lg; 177 178
Tk e 3 % Tk Tk % Tk 7
lig Iy By lig Isg lgg Il7g3 188
where the entries of the density matrix pZ4 are given by,
- 1 1 -~ 12 -~ N3 . g . ITS - 1‘;5 - l‘% - tIS
= 10 +?,f12 = ?,f13 = ?JM = ?,fls = 30 16 = ?,fn = ’?7 18 = s
- 1 fy . Hh3 . g . tT6 - 256 - tgk6 - Z‘I6 » 1 133
Iy = 10 +?7123 = ?,f24 = ?7125 = 5026 517 = ?JZS =503 E+ 5
* * * * *
Mg Mgt Mg Mg Lty
134 = 5 135 = 52136 = 5 137 = 5 , 138 = 5 44 = 10+ 5 045 = 75l = 5
tx t 1 ¢ t t t 1 ¢ t
~ 38 =~ 48 ~ 55 ~ 56 -~ 57 ~ 58 ~ 66 ~ 67
g7 = “5la8 = 055 = ot hls6 = 5057 = o058 = ohlee = Tt oo le7 = o
5 5 10 5 5 5 5 10 5 5
. leg . I 177 .  tg . 1 g3
teg = —,177 = — +—,178 = —,I88 = — + — (5.3.13)
68 5 ST 10 5 s L7 5 ) 10 5

Following the same procedure, one can determine the matrix elements of the density

matrix resulting from the application of completely positive maps [id ® T ® id]|papc and

[id ® id @ T|papc respectively.

—_—

In the next section, we will show that the minimum eigenvalue of p}gc, p/fgc and

pjgc is the entity that may detect whether the given three-qubit state pspc possess

the property of entanglement or not, so, it is very essential to extract the information

about the entries of the matrix p14 ., p/2 . and p,S .. Thus the matrix elements given by

(5.3.13) play a vital role in detecting the entanglement of a three-qubit system when
the SPA-PT operation is performed with respect to the system A.
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5.4 Necessary condition for the separability (either in the
form of a full separability or biseparability) of a three-

qubit state

In this section, we will derive the necessary condition for the full separability and bisep-
arability of a three-qubit state. Thus, if any three-qubit state violates the necessary
condition then we can infer that the given three-qubit state is a genuine entangled
state.

To move forward in this direction, we consider any three-qubit state shared between
three distant parties Alice(A), Bob(B), and Charlie(C) and ask whether the shared
state is entangled or not. To detect the entanglement in a three-qubit system, one
may follow the partial transposition criterion and thus apply partial transposition op-
eration on any one of the qubits of the given three-qubit system. To overcome the
difficulty of the real implementation of the partial transposition map in an experiment,
we approximate the partial transposition operation by the method of SPA. We have al-
ready shown in the previous section that the SPA-PT map can serve as a completely
positive map and thus can be implemented in a real experimental setup. Now we are
in a position to give the statement of a necessary condition of the separability and
biseparability of a three-qubit state.

Theorem-1: If the state described by the density operator papc denoting either a sep-
arable state of the form A — B — C or a biseparable state of the form A — BC then the
following inequality is satisfied

T 1

Anin(PA3c) > 15 (5.4.1)

Proof: The required inequality (5.4.1) follows from (5.3.6) and (5.3.7).

Theorem-2: If the state described by the density operator pspc denoting either a
separable state of the form A — B — C or a biseparable state of the form B — AC then
the following inequality is satisfied

T 1

Amin(Ppbe) > M (5.4.2)

Theorem-3: If the state described by the density operator pspc denoting either a
separable state of the form A — B — C or a biseparable state of the form C — AB then
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the following inequality is satisfied

T 1
Aonin (P15 > m (5.4.3)

Let us now provide a few results that may help in classifying the given three-qubit state

papc as either a separable state, a biseparable state, or a genuine entangled state.

—_— —_—

To do this task, we assume that Ay (pasc) = max{ min(P15¢)s Amin(P15)s Amin(PAG ) -

Result-1: If A,,,(papc) < 11—0 then papc is a genuine entangled state.

—

Result-2: If Auin(pise) > o and either Awin(pi5:) < 15 OF Amin(Page) < 1 oOF both

—_— —

Ponin(PABC) s Amin(P1G) < 15 hoOIdS, then pagc is biseparable in A —BC cut.
Result-3: If Auu(pis.) > 15 and either Awin(pise) < 15 OF Awin(PaSe) < 15 OF both
Amm(pjgc),/lmm(pjgc) < % holds, then pspc is biseparable in B — AC cut.

Result-d: If Aui(p,5.) > 15 and either Ayin(prse) < 15 o Awin(pihe) < 15 or both

Ronin (P )s Amin(Pac) < 1o holds, then papc is biseparable in € —AB cut.

Result-5: If Auin(Prse) > 150 Amin(Pi5e) > 15 @Nd Auin (P250) > 15 holds, then papc is a

fully separable state.

5.5 A Few Examples

In this section, we discuss a few examples of three-qubit genuine entangled states
and three-qubit biseparable states that can be detected by the results given in the

previous section.

5.5.1 Genuine Entangled States

Example-1: Let us consider the state |yg,) described by the density operator
PG, = |Wa,)(Wa, |, where |yg,) = @|000) +B|111), |’ +|B> = 1. We now proceed
to calculate the minimum eigenvalue of p/, p* and p(*.

The eigenvalues are given by

—_— —_—

Dnin(PE) = onin(P) = Ain(PEE) = AP

_1-2ap
= 0 (5.5.1)




()'Ov )Ll ’ 2‘2) S—
State parameter Minimum Minimum Anin(PG)
(Ao, A1, 42) eigenvalue of eigenvalue of
SPA-PT state w.r.t | SPA-PT state w.r.t
qubit A and C qubit B
Amin (p(];;; )sAamin (P<T;§ ) Amin (P(% )

(0.7,0.1, 0.707107) 0.00101 1.295x 10~ 18 0.00101
(0.3,0.4,0.866) 0.048 0.0134 0.048
(0.7,0.3, 0.648) 0.0093 0.0013 0.0093

(0.1, 0.2, 0.9747) 0.0805 0.056 0.0805
(0.2,0.4, 0.8944) 0.0642 0.02 0.0642
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Table 5.1: Table varifying Result-1 for pg, for differnt values of the state parameters

Thus, we can easily find that A4,i,(pg,) < 1‘—0 when af > 0. Thus it satisfies Result-1
and hence, we can say that the state |yg,) represent genuine entangled state when
off > 0.

Example-2: Let us consider a pure three-qubit state which is given by

1

|wG2>:\/g[yooo>+|1oo>+|101>+|110>+|111)] (5.5.2)
For the given state |y, ), we have
A'min(‘wcz>TA<‘VGz|) = 0’0307187A'min(le2>TB<WGzl) =
Tonin (| WGa) € (W, |) = 0.0434315 (5.5.3)

Therefore, we find that (| W6, ) (We,|) = max{0.030718,0.0434315} = 0.0434315. Thus,

/1,,,,-,1(|1//(;>\<1///G2|) < llo. Hence, the given state |y, ) (WG, | is @ genuine entangled state.

Example-3: Let us take another state defined by pg, = |vs,)(Ws,|, Where |yg,) =
20/000) + A;[100) + A,|111),0 < A; < 1,Y7 ,A? = 1. For the given state pg,, we can
easily verify that for all values of 4y, A; and A, lying between 0 and 1, we have,
Amin(PG) < 15- Further, we have calculated the values of A,.ix(pg,) by taking some
values of Ay, A; and A, and those values are tabulated in the Table 5.1 for the verifi-
cation of our result. Thus from Result-1, the given state pg, is a genuine three-qubit

entangled state.
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Example-4 Consider the state defined by porzw = q|GHZ)(GHZ|+ (1 —q)|[W)(W|, 0<
q <1, where |GHZ) = —5[|000) + [111)] and |W) = %[1001>+|010>+ 1100)]. For the
given state described by the density operator pgrzw, the minimum eigenvalues are

given by

lmin(pg}q{z,w) = ’Imin(Pg;fZ,W):’lmin(Pg{z,W)

= min{Q1,02} (5.5.4)

where Q) = 35(4 —g— /1 —2g+10¢2), and Q, = ¢&5(6+3g— /32— 64g+414%). It can
be easily seen that min{Q1,0,} < & and thus, we have A..(pcuzw) < 15. Hence
from Result-1, We can say that the given state pguzw iS a genuine entangled state

for all ¢ € [0,1].

5.5.2 Biseparable states

Example-1: Consider the state defined by the density matrix pg, = ¢|0)(0|@[¢ ™) (o™ |+
(1—-g)|Y(1|®|0 ) o~|, 0<q<1, where |¢pF) = %[|00> + [11)]. For the given state
ps,, the minimum eigenvalues of the partial transposed state are given by /lmm(f;g) =
15> Amin(P§?) = Amin(pfC) = min{, 1 }. When the state parameter g satisfies the in-
equality 0 < g < 1, we observe that the minimum eigenvalue satisfy

T T T~ 1

I
Tonin(P5}) = 350 Pomin (P5) = hmin(P;) < 15 (5.5.5)

Therefore, we can infer from Result-2, that the given state pp, is biseparable in A — BC
cut.

Example-2 Let us take a pure state, which is defined by pg, = |y)5, (y|, where |y)p, =
20[001) 4 A1[101) + A |111), Y222 =1, 0< A4 <1,(i=0,1,2). We find that for the
given state described by the density operator pg, that for all values of A9, 4;,4;, € [0, 1],
we have, lmi,,(/;f’;) < 155 Ami,,(p;Tf) < - and kmm(;/);Tg) > 1 . We have constructed Table
5.2 to clarify our result. Thus using Result-4, we can conclude that the given state pp,

is biseparable in AB—C cut.
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Table 5.2: Table varifying Result-4 for pp, different values of the state parameters (g, A1,42)

State parameter Minimum Minimum Amin(PB,)
(Ao, A1, A2) eigenvalue of eigenvalue of
SPA-PT state w.r.t | SPA-PT state w.r.t
qubit A and B qubit C
Ronin( D) omin(P2) | Pomin(PS)
(0.1,0.4,00911) 0.0818 0.1 0.1
(0.2,0.4, 0.8944) 0.0642 0.1 0.1
(0.6, 0.1, 0.7937) 0.00475 0.1 0.1
(0.5,0.4, 0.7681) 0.0232 0.1 0.1

5.5.3 Separable States

Example-1: Let us consider the state also known as Kay state [161, 162], which is
defined by

44a 0 0 00 0 0 2
0 a 0 00 0 2 0
0 0 a 00 -20 0
i 0 0 0 a2 0 0 0
P""8%8a| 0 00 24 0 0 o0 a2 (>0
0 0200 a 0 0
0 20 00 0 a 0
2 00 00 0 0 4+a

The state pg, is a fully separable for « > 4 and is a PPT entangled state in all possible
partitions for 2 < a < 2v/2 [161].

For the given state ps,, we find that lm,-,,(pSTf) = Amin(Pg?) = Amin(pST]C) = 4(%&1“0). Thus,

Amin(Ps,) = ‘mz(ﬁ—ff;) Hence from Result-5, we conclude that the given state pg, is fully

separable for a > 4.

Example-2: Consider another state defined by ps, = (1 — «)|GHZ)(GHZ| + §13, 0 <
o <1, where |GHZ) = %HOOO) +|111)]. For the given state ps,, the minimum eigen-

values of pg*, p* and pSTZC are given by Amwin(pg") = Amin(pg?) = Amm(pSTZC) = &4 Thus,
Amin(Ps,) = %52, For 0.8 < a0 < 1, we can check that A, (ps,) > 0.1. From Result-5, we
can say that the given state ps, is fully separable for the state parameter o satisfying

0.8< <.
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Example-3: Let us consider the state described by the density operator ps, = g|y) (y/|+
(1—gq)[111)(111|, 0 < g <1, where |y) = %[[001) +(101)]. The minimum eigenvalues

of the partial transposed states are given by Awin(pg') = Amin(P5?) = Amin(Ps") = 15-

Thus, Auin(ps,) = ﬁ). Therefore, Result-5 tells us that pg, is a fully separable state.

5.5.4 Genuine/Biseparable/Separable

Example-1 Let us consider the state defined by p; = ¢|000)(000|+ (1 —¢)|GHZ){GHZ|, 0 <
g < 1,where |GHZ) = %HOOO) +]111)]. For the given state p;, we find that Amm(PlTA) =

A‘min(lgl}é) = /'me(PlTC) = 1_(10 ThUS,

)me([)vl) = %7 0Sq<1

= —, g=1 (5.5.7)

Hence, p; is a genuine entangled state for 0 < ¢ < 1 and fully separable state for g =1

Example-2: Let us consider a mixed state, which is a convex combination of GHZ, W
and W state, and it is defined as [163]

p> = q|GHZ)(GHZ|+ q:|W)(W|

+ (1=q1—@)[W)(W],0<g1,42< 1 (5.5.8)
where,
IGHZ) = 7[|ooo>+ym>]
W) = \if[|oo1>+|01o>+|1oo>]
W) = %[|110>+;101>+|011>] (5.5.9)

—~ —_—

The minimum eigenvalue of SPA-PT of the state p, is given by lm,-n(pzTA) = Amm(pzTB) =

Donin(P3C) = A5(4 — g1 — \/1 —2q1+ 10g2 — 4q> +4q192 +44¢3). If the state parameters
g1 lying in the range 0.25 < ¢; <1 and ¢, = = —1, where n denote a posmve mteger
then within this range of parameters, the m|n|mum elgenvalues of p2 , p2 and p

satisfying the inequality given by /lmm(Pz )= /Imm(p2 )= lmm(Pz ) < 15- Thus, applying
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Result-1, we find that p, is a genuine entangled state.
Now, our task is to classify two inequivalent classes of genuine entangled states by
considering different cases.

Case-l: If the state parameters ¢; lying in the range 0.25 < ¢; < 0.6269 and ¢, = l‘n‘“
then it has been shown that the three tangle of p, is zero [163]. Therefore, we find
a sub-region in which not only the three-tangle of p, vanishes but also the state p,
is genuinely entangled. Hence, we can conclude that the state described by the
density operator p, represent a W class of state when the state parameters ¢; and ¢,

satisfying 0.25 < g1 <0.629, ¢, = =41,

Case-ll: If the state parameters ¢; lying in the range 0.6269 < 4, <1 and ¢, = 1‘nql
then the three tangle of genuine entangled state p, is non-zero. Therefore, the state
p2 represent a GHZ class of state when the state parameters ¢; and ¢, satisfying
0.6269 < g1 < 1, qp =14

n

5.6 Conclusion

To conclude, we have used the SPA-PT map to classify a three-qubit system as six
SLOCC inequivalent classes. We have started our study by investigating the effect
of partial transposition operation on one qubit of a three-qubit system. We have pro-
vided a matrix representation of three-qubit partially transposed states, in terms of
2 x 2 block matrices, when partial transposition operation is performed with respect to
the first qubit or the second qubit, or the third qubit. Then, we studied the applica-
tion of the SPA-PT map on a three-qubit system and explicitly calculated the matrix
elements of the matrix corresponding to the SPA-PT of a three-qubit state. Later,
we proposed different criteria for the classification of all possible SLOCC inequivalent
classes of pure as well as mixed three-qubit states. Since our classification criterion
is based on the method of the SPA-PT map, so, we can realize it in an experiment.
Thus, using our experimental-friendly criterion, one can classify all possible SLOCC

inequivalent classes in a three-qubit system.
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Chapter 6

Detection and quantification of

entanglement

In this chapter, ! we have studied the problem of detection and quantification of en-
tangled state p ind ®d dimensional bipartite quantum system by defining a physically
realizable quantity, which we named as structured negativity (Ns(p)). The defined
quantity (Ns(p)) depends on the minimum eigenvalue of the SPA-PT of the given den-
sity matrix p and the dimension of the system d. Later, we proved that the introduced
quantity (Ns(p)) satisfies the properties of a valid entanglement monotone. There-
after, we established a relationship between negativity and structured negativity. We
conjecture that the negativity and structured negativity of p coincide when the number

. . . . . d(d—1
of negative eigenvalues of the partially transposed matrix p’& is %

I'This chapter is based on a research paper “Structured Negativity: A physically realizable measure of entan-
glement based on structural physical approximation, Annals of Physics 446 169113 (2022)”
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Quantification of entanglement is one of the crucial tasks in quantum information
theory. The importance of this problem can be understood if we consider a simple
instance in which we study the relationship between the amount of entanglement
present in the shared arbitrary dimensional bipartite resource state and the fidelity of
teleportation [164]. The quantification problem has already been studied for a two-
qubit system, bipartite higher dimensional, and multi-qubit system but still there exist
a few problems in the higher dimensional bipartite mixed system that need to be ad-
dressed. There exist various entanglement measures such as concurrence [23-25],
negativity [26], relative entropy of entanglement [165], the geometric measure of en-
tanglement [166] that can quantify the amount of entanglement in a two-qubit as
well as higher dimensional bipartite pure and mixed state. Now, the question arises
whether the entanglement measures already existed in the literature can quantify the
amount of entanglement for any arbitrary dimensional bipartite system practically.

In the case of a two-qubit state, entanglement of formation [24] can be measured with-
out prior state reconstruction [89]. Also, it has been shown that a single observable
is not sufficient to determine the entanglement of a given unknown pure two-qubit
state [167], nevertheless, the amount of entanglement in a pure two-qubit state can
be determined experimentally with a minimum of two copies of the state [168]. The sit-
uation will become more complex when we will consider the problem of quantification
of entanglement for a higher dimensional bipartite system. For higher dimensional
bipartite pure state, there exist some measures of entanglement such as generalized
concurrence [169], negativity [27], the geometric measure of entanglement that may
quantify the amount of entanglement in the given pure state but on the contrary, we
have a handful of measures of entanglement which work for the higher dimensional
bipartite mixed state. This is due to the fact that till today we don’t have any closed
formula for the concurrence of higher dimensional bipartite mixed state. Secondly,
an easily computable measure of entanglement, namely, negativity may be used to
quantify the amount of entanglement in higher dimensional bipartite pure as well as
mixed states but the problem with this measure is that it depends on the negative
eigenvalues of the non-physical partial transposition operation. Thus, negativity does
not correspond to a completely positive map, and hence, difficult to implement it in the
laboratory. Recently, the generalized geometric measure of entanglement has been
defined for multipartite mixed states [170] but it is not yet clear whether it can be a
realizable quantity in an experiment or not.

Another way of quantification of entanglement is by using witness operators [22,171]
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that can be employed for any arbitrary d; @ d, dimensional system. Although the
witness operators are physically realizable, in general, it is not easy to construct a
witness operator for the detection of an entangled state. Thus, we should look for
another way of measuring entanglement in a given d; ® d, dimensional system.
Horodecki [89] has proposed a protocol based on the SPA-PT map, which directly
measures the concurrence of 2 ®2 system using four moments only but to calcu-
late the expectation of these four moments, the method needs at most 20 copies
of the state. This method is efficient in comparison to quantum state tomography
with respect to the estimation of state parameters but on the other hand, this method
will show its inefficiency if we compare the number of copies required in the above-
mentioned methods. This motivates us to define a new measure of entanglement
using the structural physical approximation of partial transposition.

In this chapter, we define a physically realizable measure of entanglement which is
based on the minimum eigenvalue of the structural physical approximation of partial
transposition operation.

6.1 Measures of entanglement: Concurrence and Negativity

Concurrence: A very popular measure for the quantification of bipartite quantum
correlations is the concurrence [23—25]. For any two-qubit pure state |w>§§2, it is

defined as,

C(lw)3s2) = \/2(1=Tr(p3)) 6.1.1)

where p, is the reduced state of |y)352.

Concurrence for the two-qubit mixed state described by the density operator p, may
be defined as,

C(p) = max(0,v/ A — V22— VA — /M) (6.1.2)

where A/s are the eigenvalues of pp, arranged in descending order. Here, p=(c, ®

0y)p(0y © 0y).
Let |y)4:% be any vector in d; ® d, dimensional system. Then, the definition of con-

currence for d; ® d, dimensional bipartite pure quantum system may be generalized
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as [169],

YY) =\ 2v4 vy [~ Tr(p3) (6.1.3)

where p4 is the reduced state of |1//>d‘®d2 and v,, and v,, are positive constants. Ex-
cept for the two-qubit system, we don’t have any closed formula for the concurrence
of bipartite d; ® d, dimensional mixed state. For higher dimensional mixed states,
we can only estimate the amount of entanglement through the lower bound of the
concurrence [86,122,172].

Negativity: Negativity is another measure of entanglement based on the negative
eigenvalues of the partially transposed matrix. It was first introduced as an entangle-
ment measure by Vidal and Werner [26]. The negativity for d @ d dimensional system
described by the density operator p4p may be defined as [27],

N(pap) = Hpﬁf!ll —— ¥ IA(pf3)] 6.1.4)
2i<0

where ||.||; denotes trace norm and p’? is the partial transposition of the density matrix
pap With respect to the subsystem B. In the entanglement measure, negativity is
useful in comparison to concurrence because unlike concurrence, it depends on the
negative eigenvalues of the partially transposed state and thus the exact value of
negativity can be calculated very easily even for higher dimensional quantum systems.
Although negativity can be calculated exactly in theory for any arbitrary dimensional
system it cannot be implemented in the laboratory. The reason behind this is that the
partial transposition operation represents a positive but not a completely positive map.
Recently, Bartkiewicz et.al. have studied the problem of experimental implementation
of the entanglement measure negativity for a two-qubit system and found a way to
calculate the negativity in an experiment by using three experimentally accessible
moments of the partially transposed density matrix [173]. For a two-qubit system, a
feasible scheme for experimental detection and quantification of entanglement was
introduced using PPT criteria [174].

To get rid of the difficulty of implementing negativity in an experiment, we have defined
a new measure of entanglement and named it "structured negativity". We called the
introduced measure "structured negativity" because this measure is based on the
method of SPA-PT.
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6.2 Structured Negativity

For the sake of completeness, let us recapitulate a few important points about SPA-PT.
We start with the partial transposition (PT) map denoted by id ® T', which corresponds
to a positive but not completely positive map, and thus it cannot be implemented in
the laboratory. Therefore, we apply SPA-PT operation to implement the PT map in the
laboratory.

For d ® d dimensional system described by the density operator p, the SPA-PT of the
state p denoted as p and it may be expressed as [76],

p:

I+ lid » T)(p) (6.2.1)

d3+1 d3+1

where I ® I denote the identity matrix in d ® d dimensional system.
The state p is PPT if and only if [76]

d

where A,,;;(p) denote the minimum eigenvalue of p. Otherwise, the state p is entan-
gled.

Now we are in a position to define a new measure of entanglement using the sep-
arability criteria given in (6.2.2). We may term this new measure of entanglement
as structured negativity and it is denoted by Ng(p). Therefore, for d ® d system, the

structured negativity may be defined as,

Ns(p) = K.max{ — Amin(p),0} (6.2.3)

d3+1

where K =d(d*+1).
Lemma 1: Any d ® d system which is described by the density operator p = Y, prps,
it's SPA-PT is given by,

p =Y Db (6.2.4)
k
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Proof: Consider a bipartite state p = ¥ prpr in d ® d dimensional system, then its
SPA-PT may be written as

d
_ 1ol
p= FUeh+ 5

d 1
- I+ —5—(d=T)Y pipx
k

(idT)p

d3+1 d3+1

(id © T)px

d 1
= ——(IRI
(I® )+§k,Pkd3+1

d3+1

d 1
= —(IRI —(dQRT
;Pkd3_|_1( ® )+§,Pkd3+l(l ®T)pr

d 1 )
= ;Pk[d3+1(1®1)+d3+1(1d®T)Pk]

= ) PiPx (6.2.5)
k

To show Ns(p), a valid measure of entanglement, we need to show that it satisfies a

few properties.

P1: Ng(p) vanishes if p is separable.
Proof: In d ®d dimensional quantum system, if p is separable then A,,,;,(p) > ﬁ [76].
Thus, max{ %5 — Anin(P),0}=0. Hence, Ns(p) = 0.

P2: Ns(p) is invariant under local unitary transformation.
Proof: Ns(p) is invariant under a local change of basis since eigenvalues does not
change under local change of basis [175,176]. Thus, Ns(p) = Ns(Ua ®UBpUj ®U§)

where U, and Ug denotes the unitaries acting on the subsystem A and B respectively.

P3: Ng(p) satisfies convexity property i.e.
Ns(Y_ pepx) <Y piNs(pr) (6.2.6)
3 3

Proof: Let us consider a quantum state described by the density operator p =Y, prps,
(0 < pr < 1). The structured negativity of p is given by

d
d3+1

Ns(p) = Ns()_ pkpx) = K| — Anin(P)] (6.2.7)
P



147

Using Lemma 1, RHS of equation (6.2.7) may be re-expressed as

d ~ ~
Ns()_ ppr) = K[m — dnin(P1P1+ Y, PPK)] (6.2.8)
k k£1
Using Weyl’s inequality in (6.2.8), we get
d ~ ~
Ns(YPupi) < Kl = Chnin(9191) + Amin (Y Pi1)))] (6.2.9)
k k#1

Using Weyl’s inequality repeatedly (k-1) times, equation (6.2.9) may be re-written as,

d
d3+1

NS(Zkak) < K[ _Zlmin(pkﬁk))]
k k

d ~
= K[zk:pk(mlmin(pk))]

d _
= ;pk.K.(d:%—_H_lmin(pk))

=) PeNs(px) (6.2.10)
X

P4: Ng(p) does not increase on average under LOCC [21] i.e.
Ns(p) > ) pilNs[(K; @ 1)p (K] @1)] (6.2.11)

where K; are the Kraus operators.
Proof: Let us consider an entangled state described by a density operator p. Now,

consider the right-hand side of (6.2.11) that can be expressed as

Y piNsl(Kie Dp (K ©1)] = KX pil 5 hmin(Ki Dp (K] 1)
Kl ~ X piwin((Ki Dp (K] 1)

d —_

F Y Anin((Ki@ Dp(Kf 21))]  (62.12)

K|

The first step follows from the definition of structured negativity given in (6.2.3). In the

third step, the inequality follows from the fact0 < p; <l and ¥, p; = 1.
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Using Weyl’s inequality, (6.2.12) may be expressed as

Y pNsl(Ki Dp (k] ©1)] 2 Kl s~ Al Y (K2 Dp(K] @ 1)

i

d d
= K[dg—_’_l_)vmin[;(d3+ll®]
| B ;
+ e (KehpK o) (6213)

In (6.2.13), the second step follows from the definition (6.2.1) of SPA-PT of (K;®
I)p(Kf ®1). Let us assume that the entangled state described by the density operator
p may be evolved as p' = Y, (K;@1)p(K, ®1)), where m denote the number of Kraus
operators.
Then, (6.2.13) can be re-expressed as

d md | ’
——— = in| I @+ ——(id®T
pii ettt e e

d md 1 1Tp
= —Mmin| 31 RT
g1 gttt e Dl

d ~, —1)d
Bl Amin|(P) + (’Z3—+il®l]] (6.2.14)

Y pNsl(KioDp (K @D)] > K|

:K[

K]
Using the upper bound of Weyl’s inequality, (6.2.14) may be expressed as

ZpiNS[(Ki ®Np (K @1)]

d ~. (m—1)d
Bt MmnlP) = g

K| (6.2.15)

To show Ng(p) > Z,Jp,-NS[(I{l@I)p(Kl.T ®1)], itis sufficient to show that Ng(p) — Y, piNs[(K;®
Np(K; ®1)] > 0.
Using (6.2.3) and(6.2.15), we have

Ns(p) — ZPiNS[(Ki RNp(K; ®1)]

~. (m—=1)d ~
> ] - [ o i s
2 K[Auin(p') + =3 i Aomin(P)] (6.2.16)
For an entangled state p, we have

<d3+1
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where p denote the SPA-PT of p.
Using (6.2.17), the inequality (6.2.16) reduces to

Ns(p) — Y piNs[(Ki@ I)p (K] @ 1)]

oy, (m=2)d
2 KlAwin(p) + = 5] (6.2.18)
Since m > 2 so, )Lmin(;;’) + (’Z;fid > 0. Thus
Ns(p) = L. piNsl(Ki @ Dp (K] ©1)] = 0
— Ns(p) = Y piNs[(KiD)p (K] ©1)] (6.2.19)

Hence proved.

6.3 Relation between negativity and structured negativity

In this section, we derive the relationship between the negativity and structured
negativity of a given quantum state p.
Result-1: For any quantum state p in d ® d dimensional system, the relation between
negativity and structured negativity is given by

1

N(p) <2(1—)Ns(p) (6.3.1)

Proof: For any two Hermitian matrices A,B € M,,, Weyl’'s inequality may be defined
as [136,177,178]

M(A+B) < Ay (A + A j(B), k={1,2,.n}, j={0,1,..n—1} (6.3.2)

where eigenvalues of the matrices A, B, and A + B are arranged in increasing order.

For k=1, Weyl’s inequality reduces to
Amin(A+B) < A14j(A) + Ap—j(B) (6.3.3)

for j=0,1..n—1.

If p denote the SPA-PT of p € M, then by taking A = 15 (id@T)p = ;'5p™ and
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B=-+F-I®I, (6.3.3) reduces to

d3+1

1

d
43+ IPTB) + —7%127_,’(1@1) (6.3.4)

for j=0,1..n—1.

Let us suppose that (& T)p has g(< (d —1)?) number of negative eigenvalues, if p is
an entangled state.

Putting j=0,1...¢—1in (6.3.4) and adding, we get

dq

q
d3+1l T TE

Exploiting the definition of negativity given in (6.1.4), the above equation (6.3.5) re-
duces to

(d-DN(p) , d
2q(d3+1)  d3+1

Amin(P) < — (6.3.6)

If p is an entangled state, then the minimum eigenvalue of p (given in (6.2.3)) may be

expressed as,

d> —Ns(p)

Pain(P) = d(d®+1)

(6.3.7)

Substituting value of A,,;,(p) in (6.3.6), we get

d* —Ns(p)
d(d?+1)

(d—1N(p)  _d
2q(d3+1)  d3+1

< - (6.3.8)
After simplification, we get the required relation,

Ns(p) >

N(p) (6.3.9)

Thus, the structured negativity of a given quantum state is always greater than or
equal to ( D times to its negativity. The number of negative eigenvalues of p’® for
aded dlmenS|onaI system are at most (4 — 1)2. Substituting ¢ < (d —1)?, (6.3.9)

becomes,

N(p) (6.3.10)
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This implies,

N(p) <2(1 ——)Ns(p) (6.3.11)

Hence proved.
Remark: For sufficiently large d, we have 1—%1 ~ 1. Thus for higher dimensional
system, the inequality (6.3.11) reduces to N(p) < 2Ns(p).

6.3.1 Examples

As we have mentioned in Sec 6.1, there does not exist any closed formula for concur-
rence of arbitrary dimensional bipartite mixed state, nevertheless, there exists a lower
bound of the concurrence for arbitrary d ® d dimensional system [86, 122,172]. One

such lower bound of concurrence obtained in [172] which may be given by

v

Clp) = | gz max(lp™ LR~ 1)

Cip(p) (6.3.12)

where C(p) and C;,, respectively denote the concurrence and lower bound of the con-
currence of the state p in an arbitrary d ® d dimensional system. ||.|| denote the trace
norm of (.). R(p) and p® respectively denote the realignment operation and partial
transposition operation with respect to subsystem B.

In this subsection, we will provide a few examples by which we can show that Result-1
is indeed true. For the given state p, we have compared three measures of entangle-
ment such as negativity (N(p)), structured negativity (Ns(p)) and the lower bound of
the concurrence (Cj,(p)) and found that structured negativity is always greater than or
equals negativity. In a few cases, structured negativity is greater than the lower bound
of concurrence. Also, we have observed that for d ® d dimensional system, negativity
and structured negativity coincides when the number of negative eigenvalues of the

d(d—1) d(d—1)

partially transposed matrix are ==— i.e equality holds in (6.3.9), when g = =5—, and

strict inequality holds when g 7 <"1

Example 1: Two-qubit Werner state
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Let us consider a two-qubit Werner state defined as [64, 178]

1
pW:F‘W7><W7’+(1_F)Z (6.3.13)
where
) = — 101y — [10) (6.3.14)

The family of Werner states is the only states invariant under the transformation [64]
pw — UxUpwU oUT (6.3.15)

where U is a unitary transformation. The state is entangled for % < F <1. Negativ-
ity of py is £ and structured negativity, Ns(pw) = 18[ + £;(—3 + F)]. From Fig-1,

Result-1 is verified.

0.8

06 — N(ow)
Ns(Pw)

04 Civ(ow)

: F
0.4 05 0.6 0.7 08 0.9 1.0

Figure 6.1: The negativity, structured negativity, and lower bound of concurrence for the two-
qubit Werner state coincide with each other. Therefore, equality in (6.3.11) has been achieved
for a family of Werner state.

Example 2: Two-qubit MEMS state
Consider a maximally entangled mixed state (MEMS) introduced by Munro et.al. [127,
179]

PMEMS = (6.3.16)
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where,

v

h(C) = (6.3.17)

P o)
WIN WIN

C
C

A\

where C denotes the concurrence of pyeus.

For C > %, N(pypms) = —1+C+V1—2C+2C2, Ns(puems) = 18(3+ & (—5+C+v/1-2C+2C2)).
From Fig-2, it can be seen that negativity, structured negativity and Cj,(pyems) of the

state pyrms coincide for C > % Also for C < % negativity and structured negativity of

0.of
0.8
[ — N(pmewms)
07} Ns(Pvems)

06} Cib(PmeEmS)

0.5

: : c
0.70 0.75 0.80 0.85 0.90 0.95 1.00

Figure 6.2: The negativity, structured negativity and lower bound of concurrence coincide for
the state pyspps for C > %

pmEms are given by: N(puewms) = 3(—1+V1+9C2) and Ns(ppems) = 18(3 4+ 55(—13+
V1+9C?)). From Fig-3, it can be seen that negativity is the same as the structured

negativity for pueus(C < 3).

0.4

03}
— N(pvewms)

0.2 Ns(Pvems)

Cio(omeEmS)

0.1 0.2 0.3 0.4 0.5 0.6

Figure 6.3: The negativity, structured negativity and lower bound of concurrence coincides for
the state pypps for C < %

Example 3: Two-qutrit state described by the density operator p,
Consider a two-quitrit state defined in [123], which is described by the density operator

1
54 2a?

1

3
[wi) (Wil ﬁéaél (6.3.18)
=1

Pa =
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where, |y;) = |0i) —ali0), for i = {1,2} and

y3) = Yy i)

For the state p, the negativity N(p,) and the structured negativity Ns(p,) can be cal-
culated as

1 1-2/a
N — -
(Pa) 51242 51242
1+a>—5-2a2+d*
— 6.3.19
5+2a2 ( )
3 7+ 3a?

28 14(5+242)

Ns(pa) = 84[ ] (6.3.20)

The comparison between N(p,), Ns(pa), Cin(pa) for the two-quitrit state p, has been
studied in Fig-4.

— N(pa)
Ns(pa)
Civ(pa)

Figure 6.4: The structured negativity of the state p, is greater than the negativity as well as the
lower bound of concurrence.

Example 4: Two-qutrit o state
Consider a two-quitrit state defined by [180],

P =2l v+ 20, +22%  2<a<s (6.3.21)
7 7 7
where,
Wty = —[00) +[11) + [22)
V3
or = (01)(01]+12)(12| + 20} (20)
o = %(|1o><10|+|21><21|+|oz><oz|) (6.3.22)

The given state p, is NPTES for 4 < o <5.

For the state p, In this example, first consider p, for 4 < o < 5. The SPA-PT of pg is
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given by, N(p,) and Ng(p,) may be calculated as

N(pa) = —%[—5+\/41—20a+4a2] (6.3.23)

3 —131+ V41 -200+4a?
28 1176

Ns(pa) = 84| ] (6.3.24)

The comparison between N(py), Ns(p«) and Cy,(p) for the state py has been studied

in fig-5.

— Ni(pq)

! Ns(pa)
Cio(Pa)

Figure 6.5: The negativity and structured negativity coincide for the state py. In this case,
Cip(pe) is greater than the structured negativity.

6.4 Conclusion

In this chapter, we have defined an entanglement measure based on the minimum
eigenvalue of the SPA-PT of the arbitrary dimensional bipartite quantum system. We
named the introduced measure structured negativity because it is based on the SPA-
PT method and proved that the defined measure satisfies the properties of a valid
entanglement measure. Since SPA-PT is a completely positive map, so, the pro-
posed measure of entanglement may be realized in an experiment. The introduced
measure of entanglement provides an advantage over the existing measure, negativ-
ity as negativity depends on the sum of the negative eigenvalues of the non-physical
partial transposition operation whereas structured negativity depends on the mini-
mum eigenvalue of SPA of the partially transposed matrix. We have established a
relation between negativity and structured negativity and found that the negativity and
structured negativity coincides for a large number of two-qubit systems. Thus, we

d(d—1
%. In

conjecture that the negativity and structured negativity coincides when g =
the end, we have compared negativity, structured negativity, and the lower bound of
concurrence Cj, and shown that the structured negativity is always greater than or

equal to the negativity.
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Chapter 7

Conclusion and Future Scope

7.1 Conclusion

This thesis as a whole may be considered as an extensive review of the detection
and classification of arbitrary dimensional bipartite and three-qubit systems, where
not only detailed references to the literature have been furnished, but also new and
original results have been obtained. We have analyzed the concepts of entanglement
detection and classification using methods that may be realized experimentally.

In chapter 2, we have explored the methods that exist in the literature and that deal
with the detection of entanglement in the bipartite system. Although different criteria
are available in the literature for the detection of entanglement, most of them are not
physically realizable such as partial transposition (PT) criteria, realignment criteria,
range criteria, reduction criteria, etc. Thus, they cannot be implemented in a labo-
ratory. In this chapter, we have proposed three different criteria for the detection of
bipartite NPTES using SPA-PT. Since SPA-PT may be realized in an experiment and
thus, the criteria defined in chapter 2 may be realized physically. Moreover, since the
closed formula for concurrence is still not known for higher dimensional mixed bipar-
tite systems, so we have derived the lower and upper bound of the concurrence that
may be implemented in the laboratory. The first criterion detects NPTES if and only if
the average fidelity of two quantum states, which are described by the density matrix
pag and SPA-PT of the witness operator W is less than a quantity R. The quantity R
depends on (i) the dimension of the composite Hilbert space and (ii) the parameter
that makes the SPA-PT of the witness operator positive semi-definite. The second

criterion tells us that the given state is NPTES if and only if the minimum eigenvalue
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of the SPA-PT of the given state is greater or equal to the difference between the
concurrence of the given state and the average fidelity between the given state and
its SPA-PT. The lower bound of the concurrence is given in terms of the average fi-
delity of the state psz and SPA-PT of the witness operator W while the upper bound is
expressed in terms of the average fidelity of the state psp and it's SPA-PT. The third
criterion detects a bipartite NPTES p43 if and only if U¢" < % where the quantity U*"
depends on the average fidelity of the state pa3, it's SPA-PT and the concurrence of
the state psp. The obtained bounds depend on the average fidelity of two quantum
states and the average fidelity can be realized in an experiment. Thus, all the en-
tanglement detection criteria obtained in chapter 2, may be realized experimentally.
Furthermore, we have defined a way to apply the SPA-PT map on the qutrit-qubit sys-
tem and explicitly calculated the matrix elements of the density matrix describing the
SPA-PT of the qutrit-qubit system.

In chapter 3, we considered a pure three-qubit quantum system and studied the prob-
lem of classification of a particular type of pure genuine entangled states popularly
known as GHZ class of states. It is known that in a three-qubit system, there are
two SLOCC inequivalent classes of genuinely entangled states namely GHZ class of
states and the W class of states. In general, GHZ class of states can serve as an
important class of state for quantum communication purposes. To classify GHZ class
into further subclasses, we have defined the classification witness operator for the
classification of the canonical form of a pure three-qubit GHZ state. Firstly, we have
classified the pure three-qubit GHZ class of states into four subclasses denoted by
S1, 82, 83, and S4. The motivation for the classification of the pure GHZ class of states
into four subclasses is that the GHZ state belonging to S; may be more efficient than
the three-qubit GHZ state belonging to S, or S3 or S4 and vice-versa with respect to
some quantum information processing task. For instance, if we consider a GHZ state
belonging to subclass S; and a GHZ state belonging to another subclass S, then it
can be shown that the tangle of the GHZ state belonging to subclass S; will be greater
than the tangle of the GHZ state belonging to subclass S,. If any quantum information
processing task depends on tangle then the GHZ state belonging to subclass S| will
be beneficial in comparison to the GHZ state belonging to S,. On the other hand, we
found that the maximal teleportation fidelity of the GHZ states belonging to subclass
S, is greater than the GHZ state belonging to subclass S;. Therefore, GHZ states
belonging to subclass S, are more suitable shared resource states in teleportation
than the GHZ state belonging to subclass S;. Thus, GHZ states belonging to different
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subclasses have their own importance, and hence if we can detect the subclass of the
GHZ state under investigation, then we can use that GHZ state in various quantum
information processing tasks accordingly, to get optimal output. Now, in order to iden-
tify different subclasses of GHZ class of states, we have constructed different witness
operators that can classify the subclasses S;,i = 2,3,4 from S;. Moreover, we have
shown that the constructed witness operator can be decomposed into Pauli matrices
and hence can be realized experimentally.

In chapter 4, we studied the problem of classification of a three-qubit system using /;-
norm of coherence. In the literature, the problem of classification of a three-qubit sys-
tem has been studied using entanglement measures such as tangle and also through
the construction of the observables. In a three-qubit system, all the states are clas-
sified into six SLOCC inequivalent classes one fully separable state, three bisepara-
ble states, and two genuinely entangled states (W class of states and GHZ class of
states). While genuine entangled states have entanglement in all the subsystems,
biseparable states have entanglement in two of the three subsystems. Biseparable
states and genuine entangled states have their own importance and thus, their clas-
sification may play a vital role in quantum communication. The classification method
based on tangle is not very useful because it cannot discriminate the set of separable
states, biseparable states, and W class of states. It happens because the tangle is
zero for the set of separable states, biseparable states, and W class of states. In
chapter 4, we have used [;-norm of coherence to fill this gap for the classification
of three-qubit entangled states. Coherence is a basic phenomenon that arises from
the superposition principle of quantum mechanics. It can be measured by different
measures such as distance measure, relative entropy of coherence, and /,-norms. /;-
norm is a valid coherence monotone and serves as a useful measure of coherence.
In chapter 4, we have calculated the /;-norm of coherence of the tensor product of
two quantum systems. In order to obtain criteria for the classification of three-qubit
states, we have obtained inequalities for biseparable states and separable states in
terms of /;-norm of coherence. Further, we have shown that if the obtained inequal-
ity is violated by any three-qubit state then the state under investigation is neither a
biseparable state nor a separable state. Since, for a three-qubit system, we have only
three categories of state and if we find that the given state is neither a separable state
nor a biseparable state then we can conclude that the state is a genuinely entangled
state. At the end of this chapter, we have provided an idea to generalize the obtained
results to higher dimensional and multi-qubit systems.
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In chapter 5, we studied the problem of classification of a three-qubit system using
SPA-PT. The methods available in the literature are either incapable of classifying all
possible SLOCC inequivalent classes or are not physically realizable. The method
defined in chapter 4 for the classification of the three-qubit system is basis dependent
and may not be realized physically. To overcome this issue, we have exploited the con-
cept of SPA-PT for the classification of a three-qubit entangled state. Thus in the first
part of this chapter, we have taken into account the SPA-PT operation to detect the
three-qubit entangled state. To start our study, we have applied partial transposition
operation on one of the qubit of the three-qubit system and then studied the entan-
glement properties of the three-qubit system, which is under investigation. We have
defined a way to construct a SPA-PT map for a three-qubit quantum system. With
the help of this constructed SPA-PT map, we have provided explicitly the matrix ele-
ments of the density matrix describing the SPA-PT of a three-qubit system. We have
proposed criteria for the classification of all possible SLOCC inequivalent classes of
pure as well as mixed three-qubit states through the SPA-PT map. Thus, the criteria
defined in this chapter may classify three-qubit pure and mixed states physically.

In chapter 6, we studied the problem of detection and quantification of entangled
states in a bipartite quantum system. Measures of entanglement which by definition
quantify entangled states may be used for the detection of entanglement. Various en-
tanglement measures exist in the literature such as concurrence, negativity, relative
entropy of entanglement, and geometric measure of entanglement that can quantify
the amount of entanglement in a two-qubit as well as higher dimensional bipartite
pure and mixed state. Out of these, concurrence and negativity are the most popular
ones. Although the closed formula for concurrence of mixed two-qubit state can be
found in the literature the closed formula does not exist for the concurrence to mea-
sure the amount of entanglement in bipartite higher dimensional mixed states. Thus
only the lower bound of concurrence is known which helps to estimate the amount of
entanglement in the higher dimensional mixed system. On the other hand, negativ-
ity is defined for pure as well mixed states in a higher dimensional quantum system.
But the problem with negativity is that it is not physically realizable as it depends on
the negative eigenvalues of the partially transposed matrix and partial transposition
operation corresponds to a non-physical operator. We can overcome this defect by
using the structural physical approximation of partial transposition, which by defini-
tion transforms a non-physical operator into a physical operator. In this chapter, we
have defined a new measure of entanglement using the concept of SPA-PT, which
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we named "structured negativity". We have shown that it satisfies the properties of a
valid entanglement monotone. Since the new measure of entanglement depends on
the minimum eigenvalue of the structural physical approximation of the partially trans-
posed matrix, so, it may be realized in an experiment. Moreover, we have obtained
a relationship between negativity and structured negativity. Also, we have compared
negativity, structured negativity, and the lower bound of the concurrence obtained by
Chen et al. [172] and found that structured negativity may be a better entanglement
measure than negativity and in a few cases, it may perform better than the lower

bound of concurrence.

7.2 Future Scope

In the literature, various schemes exist for the detection and classification of entan-
gled states in higher dimensional bipartite and multipartite systems but most of them
cannot be implemented in the experiment. In the present thesis, we have focussed to
overcome this problem and have presented solutions to a few of them, but still, there
is a future scope of the thesis, which is discussed below:

(1) Future scope on the detection of entanglement in higher dimensional bipar-
tite and multipartite quantum system:

(1a) In chapter 1, we studied the problem of detection of entanglement using the
SPA-PT method and obtained criteria for the detection of NPTES in an arbitrary di-
mensional quantum system. In the same way, one may think about the possibility
of the development of entanglement detection criteria for PPTES in arbitrary dimen-
sional bipartite systems using SPA-PT.

(1b) In chapter 6, we have studied the problem of quantification of bipartite entan-
glement in arbitrary dimension. To quantify entanglement in an arbitrary dimensional
quantum system, we have introduced a new measure of entanglement. The intro-
duced measure is based on SPA-PT and thus the entanglement may be quantified in
an experiment. It would be interesting to quantify PPTES using the SPA-PT method.

(1c) The construction of an efficient entanglement witness for the detection of entan-
gled states, is very difficult with the increase in the size of the system (dimension and
number of qubits). In spite of the difficulty, Zhao et al. [181] have constructed witness
operators for the detection of multipartite GHZ-like states. In the future, it may be
possible to develop some method based on the procedure discussed in this thesis for
the construction of the efficient withess operator that may detect the class of higher
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dimensional multipartite W class of states.

(1d) In a multipartite system, the detection of Werner states has been studied by
constructing a dimension-free entanglement witness using semi-definite program-
ming [182]. It is important to develop such methods for the detection of entangle-
ment as they can be used for the detection of entanglement in higher dimensional
multipartite systems. It opens the door for exploring the problem of detection of en-
tanglement using dimension-free witness operators. One may think of constructing
such witnesses for other entangled states that exist in a higher dimensional bipartite
and multipartite quantum system.

(2) Future scope on the classification of entanglement in the three-qubit and
multiqubit system:

(2a) In chapter 3, we have considered three-qubit GHZ class of states and divide it
into four subclasses Sy, S>, S3 and S4;. We found that all these four subclasses are
important in some quantum information processing tasks. Thus, it is necessary to
discriminate them, and hence, we have defined the classification witness operator to
classify S; from S;,i = 2,3,4. But still there is a scope to construct classification wit-
ness operator that may help to distinguish S; from S;, (i < j,i,j € {2,3,4}).

(2b) In this thesis, we have studied subclasses of three-qubit GHZ class and along
the same line of research, one may think of defining different subclasses of the three-
qubit W class of states. In this case also, one may investigate whether the subclasses
of the W class of states are SLOCC inequivalent or not. It may happen that the states
belonging to these subclasses may perform well in quantum communication and thus
their classification may also be important. Hence, there is a scope to construct a clas-
sification witness operator for the classification of different subclasses of the W class
of states.

(2c) In chapter 5, we have proposed criteria for the classification of a three-qubit sys-
tem based on SPA-PT. The obtained criteria are based on the minimum eigenvalue
of the maximally entangled three-qubit state. But when we extend these results to a
multi-qubit system, the following problem may arise: In rn-qubit system, where n > 3,
it is very difficult to find maximally entangled states and thus it becomes more difficult
to find the minimum eigenvalue of the maximally entangled state to obtain the condi-
tion for classification of a three-qubit system using the method of SPA-PT. But in spite
of these difficulties, one may obtain the condition for the classification of a four-qubit
system because, in a four-qubit system, maximally entangled states are known [183].
(2d) In chapter 4, we studied the detection and classification of a three-qubit system
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using /;-norm of coherence. Our method for the classification of a three-qubit system
using /;-norm of coherence is very general and this classification method can be ex-
tended to n-qubit system, where n > 4. In the present thesis, we have obtained few
results on the classification of the four-qubit system but still, there is a scope to work
on it in the future. We have classified separable, biseparable, and genuine three-
qubit entangled states but we have not explored the possibility of the classification of
two SLOCC inequivalent classes of genuine entangled states, viz, W class and GHZ
class. Thus, there is a scope to investigate the classification of GHZ and W class
using /;-norm of coherence.

(2e) Another problem that arises in a multi-qubit system is that the number of SLOCC
inequivalent classes increases with the number of increases in the qubits. Thus, the
classification problem becomes more complicated with the increase in the number of
qubits. It would be interesting to work on finding the number of different SLOCC in-
equivalent classes of n-qubit system (n > 5).

The field of quantum information theory is definitely worth following over the next
decade since everything points toward significant advances. Detection and classi-
fication of entanglement are important problems in quantum information theory. To
ensure maximum benefit from future surveys, we still need to improve our theoreti-
cal understanding of quantum systems, and this thesis is one of many steps toward

achieving this.
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