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ABSTRACT 

 

Hilly regions are highly prone to natural disasters. Natural disasters like floods, forest fires, slope 

failures, erosion, and landslides are common phenomena in hilly terrains. Landslide is a disastrous 

phenomenon that is responsible for economic losses and loss of lives. Landslides are responsible 

for huge economic loss which makes them 3rd largest natural disaster after floods and earthquakes. 

The planners and engineers require information about the possibility of the occurrence of 

landslides in working regions. So, the landslide hazards must be planned carefully to avoid losses.  

Microzonation of landslides or slopes which are susceptible to failure is an important task for 

understanding and planning the mitigation measures for landslides. Microzonation of landslides is 

the identification of the potential occurrence of landslides in different areas.  The microzonation 

maps of landslides represent the landslide susceptibility and distribution of previously occurred 

landslides.  

 

The main objective of the thesis is to implement and compare the mixed methods and quantitative 

techniques of landslide susceptibility mapping. Due to the high subjectivity of the opinion of the 

experts, the qualitative techniques give lesser accuracy as compared to the statistical method. So, 

it is also attempted to propose a hybrid technique for enhancing the accuracy of expert-based 

methods.In this thesis, causative factors of landslides are identified using historical landslide data. 

The causative factors of landslides considered in this study are slope gradient, slope aspect, relative 

relief, topographic wetness index (TWI), lithology, drainage density, proximity to the road, 

proximity to faults/lineament and land use of the study area. The causative factors of the landslides 

are divided into simpler sub-categories. For example, the slope is divided into sub-categories like 

0º to 15º, 15º to 30º, etc.  Slope, aspect, relative relief and TWI are extracted by processing the 
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CARTOSAT DEM. The parameters that are not extracted from the digital elevation model (DEM) 

are converted into the digital format using the geographic information system (GIS). The impact 

of these causative factors on the occurrence of landslides is evaluated using an expert-based 

approach and mathematical approach. 

 

In this study, four models are implemented for the microzonation of landslides in the study area. 

A landslide inventory containing more than 1500 landslide events is prepared using previous 

literature, news reports, Geological Survey of India (GSI) practical sheets, google imagery and 

field survey. Analytic hierarchy process (AHP), frequency ratio (FR) and Shannon’s entropy 

models are used for landslide susceptibility mapping and a new technique by hybridization of 

Shannon’s entropy and AHP model is proposed taking a case study of Shimla region in Himachal 

Pradesh (H.P). However, the analytic hierarchy process (AHP) is a semi-qualitative model and an 

improvement over expert-based techniques, the rest three models are mathematical models. The 

weightage of causative factors and sub-factors are determined based on expert opinion and are 

checked for consistency in AHP. The weightage of causative factors and sub-factors in the other 

three models is obtained using mathematical relationships. Four landslide susceptibility maps for 

the study area are prepared and the performance of each method is evaluated using the receiver 

operation characteristics (ROC) curve.  

 

It can be observed that the frequency ratio (FR) model is the most effective approach in predicting 

the landslide susceptibility while the analytic hierarchy process (AHP) remained the least 

productive.  The hybrid model i.e. SE-AHP model performed better as compared to the analytic 

hierarchy process (AHP) model. Shannon’s entropy model assigns weightage to the causative 
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factors and sub-factors both, but still, the model’s accuracy is lesser compared to the frequency 

ratio (FR) model. The mathematical models require a well-distributed landslide inventory while it 

is not essential for the expert-based models. It is observed that the accuracy of the results in 

mathematical methods depends upon the distribution and accuracy of the landslide inventory while 

the accuracy depends upon the expert’s judgment in the case of expert-based methods.  Some work 

has been reported related to mathematical and expert-based models but Shannon’s entropy has 

been used very rarely. The performance of the AHP model is improved significantly by the 

hybridization of AHP with Shannon’s entropy. The results of the study revealed that realistic 

weightage can be obtained only from an accurate and well-distributed inventory.  

 

             Finally, the thesis presents a comparison of expert-based methods and mathematical 

methods for landslide susceptibility mapping. The study helps in identifying the contribution of 

causative factors in the occurrence of landslides. The output of the study helps in the demarcation 

of the zones of high landslide potential. This study also provides information that can be used by 

the researchers in understanding and choosing the suitable method for landslide susceptibility 

mapping. The newly proposed mixed technique in this study can reduce the subjectivity in the 

expert-based methods and improve the accuracy of the AHP model. The results of the study will 

also help the planners and risk managers for understanding the landslide potential in the study area. 

 

Keywords: landslide microzonation, GIS, remote sensing, AHP, Shannon’s entropy, frequency 

ratio (FR), SE-AHP, weighted linear combination (WLC), landslide susceptibility 
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Chapter 1 

Introduction 

1.1. Background 

Landslides are considered one of the most disastrous natural phenomena resulting in the loss of 

property and life. The development and environment are interrelated. The hilly regions are 

developing at a rapid rate [1]. The anthropogenic human activities like construction, mining, 

cutting and filling of slopes, etc. have made the natural slopes prone to failure. Failure of slopes is 

a big problem in hilly regions [1]. Many researchers have defined landslides in many ways. A 

landslide is a downward movement of material under the effect of gravity [2]. Landslides are a 

type of "mass wasting," which denotes any down-slope movement of soil and rock under the direct 

influence of gravity [3]. A landslide can be broadly defined as a sudden mass movement that occurs 

on sloping terrain under the impact of gravity. It is clear from the definition that the failed material 

and its movement define a landslide. Landslides are a serious geological threat in mountainous 

terrains. Research on landslides is conducted majorly since the 20th century. The triggering factors 

like earthquakes and rainfall can increase the cost of damaged infrastructure. Asia is the most 

affected continent by landslide activities. Around 75% of the total landslides in the world occur in 

Asia [4]. The construction-induced landslides in India occur on a very large scale. India lies in the 

top 5 countries that are affected by natural disasters [4]. 

 

The Himalayan region in India faces a number of landslide events throughout the year. The 

landslides cause traffic jams and land degradation in the region. Shimla region in Himachal 

Pradesh (H.P) has faced some of the most destructive landslides in history. The state gazetteer 
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provides details of numerous disastrous landslides that occurred during the earthquake of 1803 [5]. 

The landslides in the region are frequently reported by the newspapers. In 1989, a disastrous 

landslide at Matiana in Shimla killed around 40 people and injured many [6]. Shimla Kalka road 

is jammed multiple times every year due to the debris caused by landslides [6]. The disastrous 

impact of landslides in the Himalayan region poses a major geological threat. So, it is necessary 

to plan, manage, and mitigate the landslide hazard. Landslide susceptibility maps are an efficient 

tool for planning and management of landslide disasters.  

 

1.2. Classification and Types of Landslides 

A landslide can be of two types i.e. rotational and translational. Rotational and translational 

landslides are the movements of one or more failure surfaces [7]. Rotational landslides are the 

movement of mass over a concave surface which will be downward and in an outward direction. 

The translational landslides are the movement of mass on the planar surface [7].  Varnes (1978) 

classified the landslides based upon the failed mass and its movement [8]. The classifications were 

based upon the failed mass and its movement. The various kind of materials that can fail are 

defined as follows: 

 

a). Rock: Rock may be defined as an intact hard mass that is firm in nature. According to Varnes 

[8], it should be at its natural place before failure. 

 

b). Soil: Soil is created by the minerals and fragments of rock. It may be transported from other 

parts or may be formed due to weathering of rock. The soils which are transported from one place 
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to other may show different characteristics than the surface on which it is lying. The gases and air 

in the soil pores form a part of the soil itself.  

 

c). Earth: The material which contains 80% of its particles with dimensions less than 2 mm is 

defined as earth. The upper limit of sand-sized particles is 2 mm. 

 

d). Mud: Mud is defined as a material that has 80% of the particles less than that of the upper limit 

of silt-sized particles. It means the material which has 80% of particles less than the size of 0.06 

mm.  

 

e). Debris: Debris represents coarse material. It contains a 20% to 80% proportion of particles 

with a diameter of more than 2 mm.  

The second parameter for defining the landslides is the movement of the failed mass. The 

movement of the failed mass is classified by Varnes [8] in the following categories: 

 

a). Falls: Falls are the sudden movement of rock or soil mass The masses can get detached from 

the cracks and discontinuities. These occur normally on steep slopes or cliffs. Falls usually involve 

a mixture of free fall through the air, bouncing or rolling. The factors which affect the occurrence 

of falls are gravity, weathering of material and the presence of pore water.  

 

b). Topple: Movement of rock, earth or debris in the forward rotation is termed as ‘topple’. 

Topples occur due to an imbalance of forces and material fails along any axis near the base of rock 

or block.  The failed material falls at the base of the block.  
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c). Slide: Slides are the movement of mass along distinct weakness zone. The underlying material 

is more stable and the weak zones fail along the cracks. Figures 1.1 a and 1.1 b show the rotational 

and translational slides. 

 

d). Lateral Spread: Lateral spread takes place at a flat place. The failed mass spreads in the lateral 

direction with shear and tensile fractures. It takes place in loose, saturated, and cohesionless soil. 

Earthquakes generally trigger the process of failure. 

 

e). Flows: The failed material behaves like liquid and flows. The speed of the movement may vary 

from rapid to extremely rapid. These may prove very disastrous. The combination of any two or 

more movements described above shows the complex nature of the mass failure.  

 

 (a)    
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  (b)  

Figure 1.1.  (a) Rotational Landslide [9] (b) Translational Landslide [10] 

 

These two terms can be combined to get the type of landslide. For example, rockfall, rock topple, 

debris slide, debris flow, earth slide, earth spread, earth flow, etc. Figure 1.2 shows the modified 

classification of landslides [11]. 

 

1.3. Causes of Landslides 

Landslides occur when the shear stress in the soil or rock mass exceeds the shear strength of the 

material. There are numerous causes of landslides. The materials or masses which have lower shear 

strength can fail in shear resulting in landslides [12-13]. The materials can be sensitive to moisture 

and weather. The change in temperature and moisture conditions can change the mass's 

characteristics, which can result in slope failures [14]. The occurrence of landslides also depends 

upon the fissures and cracks found in the mass. The sheared and jointed material can fail along the 

weaker zones [15]. The discontinuities in the masses can induce instability and result in the failure 
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of slopes. The permeability characteristics of the soil or rock mass also affect the occurrence of 

landslides. Permeability impact the pore water pressure in the soil or rock mass.  

 

Figure 1.2. Modified Classification of Landslides [11] 
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Erosion is another important parameter that is responsible for the occurrence of landslides [15]. 

The erosion can be due to the water, wind, sunlight, and human activities. The erosion 

characteristics also depend upon the type of material. The banks of rivers are more prone to 

landslides as erosion takes place due to the excessive speed of river flow. The erosion along 

streams makes the toe of the soil or rock mass weak and hence results in the failure of slopes. The 

increased pore pressure due to moisture in mass can also cause slope failure [16]. The erosion can 

cause the loss of vegetation on the surface of the slopes which can make the slopes unstable. The 

vegetation has a two-way impact on the occurrence of landslides. The roots can bind the soil mass 

and make them stronger. Few studies show that the roots in the rock can pierce and make the cracks 

wider and hence resulting in poor slope stability [17].  

 

There are many physical causes of landslides that act as triggering factors of the landslides. Intense 

rainfall is a major cause of landslides. The excess amount of precipitation increases the pore water 

pressure in the soil/rock masses and also makes the material weaker. The precipitation also 

increases the erosion of the mass which results in the instability of slopes. The number of landslides 

increases during the monsoon season in hilly regions. The earthquake is another major triggering 

factor of landslides [18]. High-intensity earthquake results in the liquefaction of the soil/rock 

masses. The vibration caused by an earthquake can induce instability in the soil or rock masses. 

The vibrations produced during earthquakes also impact the pore water pressure. Floods, tides and 

volcanic eruptions can also trigger landslide activities.  

 

Many anthropogenic activities can trigger the movement of slopes. Rapid deforestation activities 

can change the pattern of vegetation which can increase the erosion in the study area increasing 
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landslide activities [19]. The mining activities can also trigger landslide activities. The vibrations 

from the mining activities and traffic increase the instability in the soil mass. 

 

1.4. Economic Aspects of Landslide 

The landslides are responsible for the huge economic losses which can be counted in monetary 

form [20-21]. The losses due to landslides also include traffic jams, delays in journeys, minor 

injuries and deaths. The economic impact of landslides can be direct and indirect [20]. The direct 

impact can be calculated easily. The debris and the failed material can come to the road. The direct 

cost of cleaning and the maintenance of roads can be calculated. The cost of damaged vehicles and 

the accident cost can also be calculated. The landslides can cut off the mode of communication in 

the areas which are situated remotely. The houses which are situated in landslide-prone areas can 

be damaged partially or fully. The differential settlement of the foundations can take place in 

landslide-prone areas. The cost of damage and the cost of maintenance of affected infrastructure 

can be calculated and may be borne by government agencies, insurance companies, or the victims 

[20-21].  

 

1.5. Mechanism of Landslides  

The material in slopes can move at a slow speed and can take years to fail. The speed of movement 

can be rapid also. The slope material moves under the effect of gravity. The stability of a slope 

depends upon the driving forces and the resisting forces. The driving forces are responsible for the 

downslope movement of the mass while the resisting forces resist the downslope movement of the 

mass. If the driving forces exceed the resisting forces, the slope is considered as unstable slope. If 

the resisting force of the material is more than the driving forces, then the slope is considered to 
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be a stable slope. The resisting force is the shear strength of the slope material while the driving 

force is the gravity. The driving force can be increased due to triggering factors like earthquakes 

and moisture. Moisture in the soils is an important factor that is responsible for the failure of slopes. 

The moisture increases the shear stress in the soil or rock mass. The increased shear stress results 

in slope failure. A majority of landslides take place in the rainy seasons. So, moisture is to be 

considered carefully in the slope studies. The factor of safety (F.S) is defined as the ratio of 

resisting forces in the soil or rock mass to the driving forces. The higher values of the factor of 

safety show stable slopes. The formula for the factor of safety is given as follows: 

𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑆𝑎𝑓𝑒𝑡𝑦 (𝐹. 𝑆) =
𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒𝑠

𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒𝑠
                        (1.1) 

 

If the factor of safety is less than 1 then the slopes are unstable. If the factor of safety is more than 

1, then the slopes are stable in nature. The simplest case is the failure of infinite slopes. The factor 

of safety is determined by the following formula: 

𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑆𝑎𝑓𝑒𝑡𝑦 (𝐹. 𝑆) =
𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝑀𝑜𝑏𝑖𝑙𝑖𝑧𝑒𝑑 𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑠𝑠
                        (1.2) 

 

If the factor of safety is more than unity, the slope is considered safe while the slope is considered 

unsafe or prone to failure if the factor of safety is less than 1.  

 

Figure 1.1 shows the mechanism of the landslide. The slip surface formed in the soil mass or rock 

mass causes the failure of the slope. Due to the penetration of the water, the slopes may fail. The 

water increases the pore water pressure in the slopes which can break the connection between the 

soil particles resulting into the failure of the slopes. Slopes may fail due to the saturation caused 
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by the seepage of the water. Excess rainfall can cause the soil flow like a liquid which results into 

the debris flow or mud flow.  

 

1.6. Micro-zonation of Landslide Susceptibility 

In simple words, a landslide micro-zonation map is prepared by dividing a study area into three or 

four zones according to its susceptibility to the occurrence of landslides. A landslide susceptibility 

map identifies areas that are subject to landslides and is measured from low to high [3]. Micro-

zonation of landslide susceptibility takes into account where the landslides occur and what causes 

them. According to USGS, these maps describe the relative likelihood of future landslides based 

solely on the properties of a site [3]. In simple words, landslide susceptibility maps show the 

possibility of the occurrence of landslides on a map with the help of some color combination.  

 

1.7. Research Problem 

Landslides are the third largest disaster in the world. Microzonation of landslide susceptibility can 

provide useful information for the planning and management of landslides. The failure of natural 

slopes is a complex phenomenon and the identification of the factors that are responsible for the 

occurrence of landslides is very important [5-6]. The causative factors act cumulatively resulting 

in the occurrence of landslides. Quantitative techniques and mixed methods can provide accurate 

information about the landslide potential of the region [14-15].  

 

There is a need for a comparison of the expert-based techniques and statistical techniques to 

understand the suitability of these techniques in the study area. The statistical techniques depend 

on the available historical landslide data while the expert-based techniques consider the opinion 
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of experts for understanding the contribution of the causative factors of the landslides. There is a 

need to learn more about mixed methods of landslide susceptibility mapping.  

 

1.8. Aim and Objectives of the Study 

Qualitative and quantitative techniques are used for landslide susceptibility mapping in the GIS 

environment. The qualitative techniques use expert opinion for landslide susceptibility mapping 

while the quantitative techniques establish the mathematical relationship between the causative 

factors and the occurrence of the landslides. The different objectives of the study are given as 

follows: 

(1) To study the different causative factors of landslides from existing literature using the 

historical data and explore its impact on the occurrence of the landslides. 

(2) To prepare the landslide inventories for Shimla district in Himachal Pradesh (H.P.). 

(3) To study the different methods for landslide susceptibility mapping  

(4)  To compare different available methods and suggest the most suitable method for landslide 

susceptibility mapping of the Shimla region. 

(5) To propose a hybrid method to reduce the subjectivity of expert opinion in the Analytic 

Hierarchy Process (AHP). 

 

1.9. Research Questions 

The following research questions arise after analyzing the available literature: 

(1) What is the type of landslides in the study area? 

(2) What are the different factors that are responsible for the occurrence of landslides? 
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(3) What is the suitability of the different statistical and mixed methods for microzonation of 

landslide susceptibility? 

(4) How can we reduce the subjectivity in expert-based techniques? 

 

1.10. Organization of Thesis 

The thesis is organized into seven chapters. The details of each chapter are given as follows: 

Chapter 1 describes the background and the motivation of the study. The problem of landslides 

and their economic aspects are discussed in this chapter. The problem statement, research problem, 

objectives of the study, and research questions are discussed in this chapter. 

Chapter 2 describes the available literature in the field of landslide susceptibility mapping using 

geographic information system (GIS). The techniques for landslide susceptibility mapping are 

divided into three categories. The different categories of landslide susceptibility techniques are 

elaborated and the advantages and limitations of these approaches are discussed in detail. The 

techniques of landslide susceptibility mapping are evaluated based on the need for data, suitability 

and accuracy. The findings from the literature review are enlisted separately for better 

understanding. The research gaps from the literature are identified in this chapter. 

 

Chapter 3 provides a conceptual framework for the study. The sources of different data sets are 

explained. A detailed discussion about the characteristics of the study area is included in this 

chapter. A brief description of the landslide inventory of the study area is also discussed. The 

photographs of the landslides that occurred in the study area are included. A flow chart explaining 

the procedure adopted for achieving the objectives is also included in this chapter. Chapter 3 

provides a framework for the implementation of techniques discussed in Chapter 4 and Chapter 5.  
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Chapter 4 describes the different causative factors of landslides. The causative factors of 

landslides are classified into five categories i.e. topographic factors, geological factors, 

hydrological factors, anthropogenic factors and land-use factors. These factors are extracted from 

the different sources and processed in geographic information system (GIS) environment. The role 

of the causative factors and their processing is discussed according to the chapter 3. 

 

Chapter 5 describes the mathematical modeling adopted in the study. The methods like analytic 

hierarchy process (AHP), frequency ratio (FR) and Shannon’s entropy (SE) are explained. The 

weightage for sub-factors and causative factors are calculated using semi-qualitative and 

quantitative techniques. The equations for landslide susceptibility mapping based on the landslide 

susceptibility index are developed using different approaches in this chapter. The process of 

calculation of weightage is explained as needed in chapter 3 for the preparation of landslide 

susceptibility maps. 

 

Chapter 6 describes the results of the study. The landslide susceptibility maps developed by 

different techniques are discussed in this chapter. The distribution of landslides in different 

susceptibility zones is also described. The impact of different causative factors and sub-factors is 

explained according to the different models. The outputs of the study are validated using the 

receiver operation characteristics (ROC) curve. The mathematical models used in this study are 

compared for their accuracy and their suitability. The distribution of landslide susceptibility zones 

and the occurrence of landslides in these zones are also discussed in this chapter.  
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Chapter 7 concludes the thesis and provides some recommendations based on the results of the 

study. The chapter discusses the sensitivity of the various landslide susceptibility zones. The 

achievement of the objectives is also discussed in this chapter. The conclusion is based on the 

previous chapters. Some recommendations and suggestions are given based on the landslide 

potential of the study area. The recommendations for the selection of causative factors for landslide 

susceptibility mapping are also given. The possible extension of the study and its applications are 

described in this chapter.  

 

1.11. Concluding Remarks 

As discussed in the background section, landslides are a crucial problem and it is important to 

develop landslide susceptibility maps for the planning of landslide hazards. The mechanism of 

slope failure and its economic aspects are studied in the previous sections. The microzonation of 

landslide susceptibility is performed using qualitative, quantitative, and mixed models. It is 

essential to understand the different techniques of landslide susceptibility mapping which requires 

an extensive review of the existing literature.   
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Chapter 2 

Literature Review 

2.1. Introduction 

In this chapter, a review of previously published literature in the field of landslide susceptibility 

mapping is performed. A literature database of more than 120 research items is created. The 

research items include journal articles, book chapters, conference articles and handbooks. Most of 

the literature is reviewed from the journal articles while a small number of book chapters and 

conference articles are also included. The research items are searched with the keywords such as 

landslide susceptibility, landslide mapping, landslide susceptibility using frequency ratio, AHP 

and statistical methods of landslide susceptibility mapping. The literature is searched and 

downloaded from the database of SCOPUS, DOAJ and Web of Science (WoS), journals from the 

library. The research items are shortlisted for review based on indexing and the quality of the 

articles. 

 

Landslide susceptibility maps are very important and efficient tools in the planning and 

management of landslide hazards [22-25].  A geographic information system (GIS) is a tool that 

is used for storing, creating, managing and manipulating spatial data [26]. In landslide 

susceptibility mapping a large amount of spatial data is to be handled. So, GIS proves to be a good 

tool in landslide susceptibility mapping due to its ability to handle a large amount of spatial data 

[27-29]. The factors responsible for the occurrence of landslides can be identified on the maps and 

processed on a computer to create the landslide susceptibility map.  
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Several techniques for the evaluation of landslide susceptibility are available in the GIS 

environment. The different mathematical and non-mathematical models can be applied according 

to the suitability of available field data. In some methods, the field visits for assessing the 

information about landslides can be reduced as most of the work can be done in GIS environment 

and the field data is required for the validation purpose only [30]. It is also possible to improve the 

models by varying the inputs. Users can achieve better results by trial and error process in a single 

model.  

 

The availability of satellite data like the digital elevation model (DEM) reduces the fieldwork to a 

minimum level [31]. There are some disadvantages of GIS also. The cost of required software and 

input data is high. Some open-access software are available but these software are not much user-

friendly. The huge data is to be handled which requires high-class skill and a highly efficient 

computer system. It is necessary to understand the different ways to perform the landslide studies. 

The landslides are studied at different levels. The landslides can be mapped in the form of a simple 

landslide inventory to a complex risk assessment map. The different types of the landslide studies 

are discussed in the next section.  

 

2.2. Types of Landslide Studies 

Remote sensing is the science of obtaining information about a phenomenon or an object using 

satellites. The satellite data can be processed to obtain useful information. Satellite imagery is of 

high use in the geographic information system (GIS) environment. Remote sensing and GIS has 

found applications in monitoring, planning, and management of different natural disasters like 
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floods, landslide, wildfire, glacier failures, etc. Satellite imagery and GIS are used at various levels 

in landslide studies. 

 

2.2.1. Landslide Inventory 

The landslide events can be monitored using satellite imagery and the Google Earth platform. The 

landslide inventories are prepared from the satellite imagery, field surveys or previous literature. 

A landslide inventory is the first stage of landslide study which give details about the historical 

data of landslides [32-33]. The seasonal landslide inventories can be prepared using remotely 

sensed data. It shows the distribution of landslides and their characteristics. Landslide inventory 

maps investigate the types of landslides, their classification, date of occurrence, location of 

landslides and their distribution [33]. These can be used to understand the pattern of landslide 

occurrence and are also used to prepare the landslide susceptibility and hazard maps. The landslide 

inventories can be prepared using satellite imagery, drones and low-level flying aircraft or field 

surveys. 

 

The landslide data collection formats are prepared according to the requirement of the user. 

Geological Survey of India (GSI) proposes a 41-point format for landslide data collection which 

consists of details about the location, date of occurrence, the activity of the landslide, material of 

landslide, type of landslide, area of landslide etc. [34]. The formats can be simplified depending 

on the needs of the user. According to the Geological Survey of India (GSI), a landslide inventory 

is a useful tool for the conversion of the susceptibility maps to the hazard or risk maps [34]. The 

landslide inventories have two parts- graphical and tabular. The graphical portion shows the spatial 

distribution of the landslides. The landslides can be shown by the polygons according to their 
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extent. The small landslides can also be shown in the form of points. The table consists of the 

attributes of the landslides. A simple inventory consists of the following information: 

 Location of the landslide in the form of longitude and the latitude 

 Area of the landslide 

 The volume of the failed mass 

 Type of failed material 

 Type of movement 

 Rate of movement 

 Activity of landslide 

 Date of survey 

 Date of occurrence 

 

The first investigation report (FIR) is a format for the collection of data related to the landslides. 

It is a 20-point report which is filled by the surveyor [34]. The format of FIR is suggested by the 

Survey of India and it is the simplest format for recording the data related to landslides. The format 

for the collection of the data can also be simplified to 12 points which are used to collect the data 

from the eyewitnesses. The format for the landslide data collection is modified making it more 

convenient for unskilled labour. 

 

2.2.2. Landslide Susceptibility Maps 

In simple words, a landslide map is prepared by dividing a study area into three or four zones 

according to its susceptibility toward land-sliding. The following definitions are given by the 

different agencies: 
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 According to the Geological Survey of Ireland, a landslide susceptibility map identifies the 

area that is subject to landslides and is measured from low to high [35]. The landslide 

susceptibility map takes into account where the landslides occur and what causes them. 

 

 According to USGS, Landslide susceptibility maps describe the relative likelihood of 

future land-sliding based solely on the properties of a site. Landslide susceptibility may be 

defined as the likelihood of a landslide occurring in an area based on local terrain 

conditions [36].  

 

 The spatial probability of the occurrence of the landslide event is known as the landslide 

susceptibility [37]. 

 

Landslide susceptibility maps are used widely for assessment of the landslides worldwide. 

Landslide susceptibility maps show the cumulative effect of different factors. Once the cumulative 

effect of different causative factors of landslides is evaluated, a landslide susceptibility map can 

be prepared. The landslide susceptibility maps consider the variation of possible landslide events 

according to the area. These maps forecast the location where the landslides can take place. This 

kind of map does not consider the temporal variation of landslide events [37]. The landslide 

susceptibility maps deal with the spatial probability of occurrence of landslides. 

 

2.2.3. Landslide Hazard Maps 

Landslide hazard maps are the advanced version of the landslide susceptibility maps. These maps 

provide more information about the landslides in a deep context. A landslide is considered a hazard 

if it has damaging effects on the infrastructure or the population [38]. If a disaster occurs in a 
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region of zero inhabitants, then it can’t be called a hazard. A landslide hazard may be defined as 

the probability of occurrence of a damaging phenomenon within a specified time and region [38]. 

Landslide hazard maps give the probability of occurrence of potentially damaging landslides with 

some magnitude within a region at a specified time. Landslide hazard maps provide information 

about the temporal and spatial variation of landslide potential with the magnitude of the landslides 

[39]. So, landslide susceptibility is a part of landslide hazard zonation maps. Landslide hazards 

can be represented with the following formula: 

 

𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝐻𝑎𝑧𝑎𝑟𝑑 = 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑖𝑦 ∗ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦                    (2.1)  

 

Landslide hazard zonation maps consider the two aspects: 

 

 The spatial variability of the occurrence of landslide events in a specific area is considered 

as one part [39-40]. Factors like terrain characteristics, drainage characteristics and 

geological characteristics of the area are responsible for the spatial variability of the 

landslide events. The landslide susceptibility maps show the spatial variability of the 

landslide events. So, the landslide susceptibility map of the area becomes the first part of 

the landslide hazard maps. 

 

 The second aspect is the probability of occurrence of triggering events like excessive 

rainfall or earthquake. The rainfall patterns can be forecasted according to the historical 

weather data. The combination of both aspects results in the landslide hazard maps.  
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2.2.4. Landslide Risk Maps 

Landslide risk maps show the potential loss or the effect of the landslide on the property. It can be 

converted into monetary form also. The landslide risk maps provide information about the 

likelihood and extent to which the future failure of a slope can affect the society, people or 

infrastructure in an adverse manner [40]. The landslide risk maps help the planner to assess the 

risk of the landslide events. The risk assessment of the landslide events gives an idea if the risk 

due to failure of slopes in the future is tolerable or not. The risk of landslides can be predicted for 

the population, loss of life or loss of property [41-43]. The following terms are to be kept in mind 

while studying the risk of landslides. 

  

 The elements of risk are the elements that can face the potential hazard from the 

landslide event. A house, property, human, infrastructure or environmental feature in 

the landslide risk zone is known as the element of risk [44]. The value of elements of 

risk is represented as E. 

 

 The degree of loss to the particular element of risk is known as the vulnerability of the 

element towards risk. The degree of loss varies from 0 to 1 [44-45]. If there is no loss, 

the degree of loss is zero and if the loss is extreme then the degree of loss is considered 

as 1. The intermediate values can be considered also.  

 

The risk of a landslide event is a function of landslide hazard (H), vulnerability (V) and the value 

of risk elements. The risk (R) is given as follows: 

𝑅 = 𝐻 ∗ 𝑉 ∗ 𝐸                                                  (2.2) 
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2.3. Role of Scale in Landslide Mapping 

The scale for the mapping of the landslides varies according to the policies of the nation. According 

to the Geological Survey of India (GSI), the national scale lies from 1:100000 to 1:1000000 [46]. 

This is also known as the regional scale. Macro scales lie from 1:25000 to 1:50000 while the 

mesoscales are from 1:5000 to 1:10000 [46]. The scales larger than the mesoscales can be used for 

site-specific mapping. The regional or national scales are widely used for landslide susceptibility 

mapping using statistical and semi-qualitative techniques.  

 

The gaps in the Indian system of scales are filled by Cees van Westen. The regional scale proposed 

by Westen is the same as that of the Indian code. However, a medium scale varying from 1:25000 

to 1:100000 is introduced [47]. The landslide susceptibility maps can be prepared on the national 

scale and medium scales. However, the medium scales are very suitable for landslide hazard 

studies. Large scales are from 1:2000 to 1:25000 which are suitable for landslide risk assessment 

[47]. The site-specific scale is from 1:200 to 1:2000 which can’t be used for the purpose of 

landslide susceptibility mapping.   

 

2.4. Landslide Susceptibility Mapping Techniques 

There are various techniques available in the literature for landslide susceptibility mapping. These 

techniques can be divided into four categories i.e. qualitative techniques, quantitative techniques, 

semi-qualitative/semi-quantitative techniques and black box models [37, 48-49]. The techniques 

have their own suitability and limitations based on the study area and availability of historical 

landslide data. Figure 2.1 shows the different approaches for landslide susceptibility mapping. 
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Figure 2.1. Approaches to landslide susceptibility mapping 

 

2.4.1. Qualitative Approach 

The qualitative approach to landslide susceptibility mapping depends upon the expert rating 

system [50]. The perception of experts can be used to evaluate the relative importance of the 
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causative factors of the landslides [51-52]. The expert can assign the weightage to the causative 

factors based on their experience and judgment. The multi-criteria decision-based methods can be 

included in this category. The experts may visit the site and the slopes are studied for the 

parameters like type of soil, erosion, moisture etc. [53]. The experts are selected based on their 

qualifications and working background. The engineers and researchers working in the field of 

slope stability of natural slopes and who have vast experience in the planning and management of 

landslides can be selected as experts. The policy makers and risk managers working in the hilly 

regions can also be selected as experts based on their work profile.  

 

The qualitative landslide susceptibility mapping is based upon the pieces of evidence of mass 

movements, location of scraps, fractures, their age etc. [54]. The qualitative approaches are easy 

to implement. The field experience and expert perception are helpful in considering the unseen 

causative factors of landslides [55-57]. If a landslide inventory is not available, expert-based 

techniques are the only option for the preparation of landslide susceptibility maps. The accuracy 

of the qualitative method is very less as compared to the other techniques. The weightage assigned 

to the causative factors and sub-factors depends upon the subjective judgment of the expert [57-

59]. The expert rating may vary from expert to expert. 

 

The qualitative approach can be improved if data-driven perception is used. The historical data on 

landslides can be used by the experts as a reference. The expert-based inputs can be checked for 

consistency and can be validated using semi-qualitative techniques [55]. Expert weightage 

techniques and weighted linear combinations are examples of qualitative approaches. Purely 

expert-based outputs are voided as the results may be biased and accuracy remains very less.  
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2.4.2. Quantitative Approach 

In the quantitative approach, a mathematical relationship is established between landslide 

occurrence and its causative factors [53]. The qualitative approach is biased based on the expert’s 

perception while the quantitative approach is purely based on the available historical data and its 

mathematical relationship with the occurrence of landslides. A well-distributed landslide inventory 

is required for the preparation of landslide susceptibility maps using quantitative approaches [60-

61]. The major advantage of quantitative approaches is that it gives higher accuracy as compared 

to the qualitative methods. These methods are relatively more reliable as they are based on 

historical pieces of evidence. The accuracy and results of these methods depend upon the landslide 

inventory. If the historical landslide data is not available, the methods can’t be implemented. 

Moreover, if the landslide inventory is not well distributed, the accuracy is reduced [29]. These 

methods can be divided into three categories: 

 Deterministic Models 

 Statistical Models 

 Probabilistic Models 

 

 Deterministic Models 

The simplest technique for landslide susceptibility mapping is based on the study of the 

landslide inventories [27]. The geomorphological approach is guided by the principle that 

‘past is the key of future’ [3-4]. This means the study of the spatial locations of the past 

landslides is important to assess the possibility of the occurrence of landslides in the future. 

The distribution of the landslides in a region is shown in the landslide inventory map. The 

landslide inventories can be prepared from the archives or literature [27, 61].  
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A geomorphological approach is a heuristic approach that considers the opinion of the 

expert. The ability to understand the geomorphological condition and their impact on the 

stability of slope affects the results of the landslide susceptibility map [27, 61]. The 

landslide inventories are studied by the experts and the geomorphological characteristics 

of the area are considered for predicting the susceptibility of landslides. The landslide 

inventories give an idea to the expert about the correlation between the failure of slopes 

and the causative factors of landslides.  

 

The deterministic models are site-specific models. The physical parameters of the region 

are considered for the development of landslide susceptibility maps [31-32, 62]. The factor 

of safety of different slopes is calculated experimentally in the study area and based on the 

factor of safety, the proneness of the region towards landslides is evaluated. The 

deterministic approach can be applied in the regions where the physical characteristics of 

the study area are homogenous and uniform. The site-specific maps of physical factors like 

hydrological characteristics, soil water distribution, factor of safety etc. can be prepared 

and a landslide susceptibility map is prepared by the combination of physical 

characteristics of the region [31, 60]. These models are not used in large areas as these are 

only suitable for site-specific landslide susceptibility mapping.  

 

 Statistical Models 

The statistical models establish the statistical relationship between causative factors and 

the occurrence of landslides. These methods can be further categorized into bivariate 
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statistical models and multivariate statistical models [34]. The bivariate techniques 

represent the relationship between causative factors of landslides and the distribution of 

historical landslides. The bivariate statistical models include the frequency ratio (FR) 

method, information value (IV) technique, and Shannon’s entropy (SE) method [35-39].  

In bivariate statistical analysis, the causative factors are considered individually and 

independent of each other [36-37].  

 

The frequency ratio models are based upon the relationship between the occurrence of 

landslide events and the causative factors. The prediction of landslide susceptibility in this 

method is determined by analyzing the landslide distribution in the study area. The 

frequency ratio for each influencing factor is calculated using the landslide distribution 

data. The frequency ratio is the ratio between the percent areas where the landslide occurred 

in a class to the percent area of the influencing class relative to the whole study area. Demir 

et al used frequency ratio for the landslide susceptibility mapping of Tokat region, Turkey 

[23]. The causative factors elevation, slope gradient, slope aspect, distance to streams, 

roads, and faults, drainage density, and fault density are used in the analysis. The factors 

like geology and lithology are not considered in this study which led to the less accuracy 

of the model which is around 70%.  

 

Khan et al used frequency ratio for the assessment of landslide susceptibility in Northen 

Pakistan [29]. The SPOT- 5 satellite imagery is used to prepare the landslide inventory. 

The inventory is verified by the field survey. The spatial resolution of the digital elevation 

model used in this study was 30 m. The factors such as Slope, aspect, geology, lithology, 
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fault distance, distance from the road, land cover and drainage distance are considered for 

the prediction of landslide susceptibility. The accuracy of the model is found to be nearly 

70%.  

 

Park et al prepared a landslide susceptibility map of Inje area in Korea using the frequency 

ratio (FR) approach [63]. Topographic factors considered in this study are elevation, slope 

and aspect. Curvature is not considered in this study. As the curvature indirectly shows the 

effect of water, so stream power index is considered with distance from drainage. Forest 

characteristics of the area are given importance [63]. The type, diameter and age of timber 

are considered. The type of soil is replaced with texture and effective thickness. The texture 

and effective thickness can represent the soil characteristics in a better manner. The 

accuracy of the model is found to be around 80%. If the effect of lithology would have 

been considered, it could have led to better accuracy of the model. 

 

The multivariate models establish the relationship among multiple variables at the same 

time. In this technique, the relationship between the causative factors of landslides and 

landslide occurrence is established with the interrelationship among the causative factors 

[64-66]. The logistic regression technique is an example of a multivariate approach [67-

68]. The multivariate models should have little or no multi-collinearity among the 

independent variables [66-68]. It means that the independent variables must not be highly 

correlated to each other as the output is affected by the correlation of the independent 

variable and errors are induced.  
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A landslide susceptibility map for the Chun’an County region in China using a logistic 

regression model is prepared in 2006 [69]. Most of the landslides have a length and breadth 

of less than 30m. The resolution of the DEM-based layers used is 30 m. The factors 

considered are elevation, slope, aspect, profile curvature, plan-curvature, distance to the 

river, fault, drainage line, residential area, road and digging, land use type, soil type, 

engineering and geological conditions [69]. The geological conditions are studied during 

the field visits also. The accuracy of the study was found to be 80%.  

 

Mathew et al predicted the landslide susceptibility of the lower Garhwal Himalaya region 

in India [70]. The study area consists of lime, shale, quartzite, slate and phyllites. The 

resolution of the layer used in this study was 25 m. The LISS data is used to extract the 

slope, aspect, curvature and elevation layer. A higher density of geological structures 

shows a higher value of coefficient which means that the susceptibility of landslides 

increases with the density of geological structures [70]. The high value of slope angle and 

proximity of geological structure increases instability in the phyllite and slate rocks. Talei 

prepared a landslide susceptibility map using logistic regression for Hashtchin region in 

Iran in 2014 [71]. The resolution of satellite imagery was 50 m x 50 m. The rocks are 

classified into calcareous, plutonic, volcanic, and pyroclastic categories. Relative 

permeability of the formation is a new factor that is considered in this study [71]. The major 

landslides took place in the region of low permeability. The accuracy of the landslide 

susceptibility map was found to be 84.1%. Logistic regression models are very sensitive to 

the regression parameters. A small error in the input regression parameter results leads to 

erroneous output [72-75]. The causative factors must be selected carefully in multivariate 
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techniques. The impact of repetition of weights for the same effect induces error in the 

output. For example, some researchers consider the drainage density and distance from 

streams as two different factors while their impact is the same. So, the weightage given to 

the impact of streams on landslides becomes relatively high which affects the accuracy of 

the results.  

 

 Probabilistic Models 

In this technique, the probabilistic approach is used to determine the possibility of the 

occurrence of landslides in a region based on the causative factors. The contribution of the 

causative factors to the landslide probability is evaluated. Weight of evidence (WoE) and 

certainty factor (CF) are examples of the probabilistic approach [76-80]. Weight of 

evidence is a statistical method based on the Bayesian bivariate technique.  It is a data-

driven approach. The relationship between the spatial distribution of landslide-affected 

areas and the causative factors is assessed in this method using Baye’s concept of prior and 

posterior probability [76]. The effect of various causative factors on landslides is analyzed 

and the susceptibility of the study area toward landslides is predicted. The weights that are 

calculated in this method are positive and negative [77]. The positive and negative weights 

show a positive and negative correlation [78]. 

 

The weight of Evidence (WoE) model is applied in the different parts of the world by 

various researchers [79-84]. Lee and Choi prepared a landslide susceptibility map for Boun 

area in Korea [79]. The map is prepared after the occurrence of frequent landslides in the 

study area in the years 1996, 1998, 1999 and 2002. Soil texture, type of soil and the 
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drainage characteristics of soil classes are considered separate factors. The other factors 

which are different from the normal studies are the forest density, age of trees and diameter 

of trees. The best combination of the causative factors is found which gives the best results. 

From 43 combinations of these factors, the dataset of factors slope, timber diameter, 

curvature, topography, geology and lineament gives the best results.  

 

Kumar and Anbalagan published their work related to landslide susceptibility mapping of 

Tehri reservoir in India in Journal of Earth System Sciences [83]. The study concluded that 

the low relief area, lower values of slopes, northeast northwest aspect and forest soil don’t 

contribute much to the landslide susceptibility of the area. Alluvium soil, south aspect, high 

relative relief, high slope, proximity to drainage and proximity to the reservoir are the main 

factors that are responsible for the occurrence of landslides in the study area. The accuracy 

of the output in this study was around 80%.  

 

Pradhan et al performed landslide susceptibility mapping in Cameron Highlands area in 

Malaysia [85]. The landslide susceptibility map is prepared after the heavy rainfall of 2008, 

2009 and 2010. The areas where the rainfall amount is more than 100mm, the landslide 

occurred in the area. Rainfall is considered as a triggering factor in the study area. Factors 

considered responsible for the occurrence of landslides are slope, aspect, curvature, 

distance from drainage, lineament distance, vegetation index, lithology and land cover. The 

combination of factors plan curvature, distance from drainage and lineament, lithology and 

land cover showed the best results. The accuracy of this model was 97% on the area of the 

curve method. 
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The certainty factor method is also a statistical approach that can give moderately accurate 

results in landslide mapping. Certainty factor is a way of combining the belief and disbelief 

in a numerical value. Certainty factor (CF) is a function of probability [86]. This method 

is used for managing uncertainty in a rule-based system. The values of the certainty factor 

can vary from -1 to 1. Positive values near 1 show the higher certainty of occurrence of 

landslide events while the negative values near -1 show the lesser certainty of occurrence 

of landslides [87]. The value 1 of the CF indicates that the evidence considered in the study 

is reliable to give the probability of occurrence of landslide 100% [86-87]. If CF is found 

to be near 0, the conditional probability will be equal to the prior probability. It means that 

the evidence for the occurrence or non-occurrence of landslides is not available and in this 

case the prediction can’t be done [88]. 

 

Wang et al used the certainty factor method to prepare a landslide susceptibility map of 

Quianyang country in China [88]. The landslide inventory is prepared using the aerial 

survey photographs and the records of the historical landslide events. General curvature, 

profile curvature and plan curvature are considered as causative factor which shows the 

multiple effects of curvature. Stream power index, sediment transport index, distance from 

rivers and topographic wetness index are considered the factors which show the effect of 

rivers and water channels [88]. The accuracy of the study is around 84%. The multiple 

effects of factors like river and curvature may have affected the accuracy of the output.  

Devkota et al prepared a landslide susceptibility map along Mugling–Narayanghat road 

section in Nepal [89]. A landslide inventory of 341 landslides was prepared. The causative 
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factors considered in this study were slope gradient; slope aspect; altitude; plan curvature; 

lithology; land use; distance from faults, rivers and roads; topographic wetness index; 

stream power index; and sediment transport index [89]. The multiple effects of streams 

were considered but the curvature is considered only once. The accuracy of the model was 

found to be 87%. 

 

The probabilistic models are based on the assumption of conditional independence [87-

89]. So, the interrelation among the causative factors disturbs the accuracy of the results. 

The conditional independence is to be tested for the probabilistic models. The results in the 

probabilistic models depend upon the available pieces of evidence of the landsides in the 

field. So, an accurate landslide inventory is required for obtaining the accurate results. 

 

2.4.3. Semi-quantitative/Semi-qualitative Approach 

The qualitative approach of landslide susceptibility mapping considers the human perception only 

while the quantitative approach only deals with the establishment of a mathematical relationship 

between the occurrence of landslides and its causative factors. The accuracy of the qualitative 

techniques is found to be lower due to the subjective perception of the expert but at the same time 

the opinion of an expert is very important as there may be a shortage of the landslide evidence 

data. So, a combination of qualitative and quantitative methods is proposed for improving the 

accuracy of the qualitative techniques [61-62]. In the semi-qualitative techniques the relative 

importance of the causative factors of the landslides is evaluated by the opinion of the expert but 

the possible biasness of the expert weightage is checked by some mathematical solution.  
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Analytic hierarchy process (AHP) and analytic network process (ANP) are examples of the semi-

quantitative/ semi-qualitative approach [26, 28, 50, 52, 90-95]. The analytic hierarchy process 

(AHP) is based upon three principles i.e. decomposition of the problem, comparative judgment 

and synthesis of relative importance or rankings [96-97]. In AHP, the problem is broken into 

hierarchical criteria. These criteria are compared to each other. This process of relative comparison 

is called pair-wise comparison. The Eigenvector method is used to calculate the rankings and after 

that consistency of the solution is also checked by calculating the consistency ratio [96-97]. If the 

consistency ratio lies below 10%, the solution is considered reliable. The pair-wise comparison is 

considered right in this condition. If the consistency ratio is found to be more than 10%, the 

solution is considered inconsistent and the values in the pair-wise comparison are varied to get a 

consistent solution. AHP is widely used in landslide susceptibility mapping at the regional level 

[28]. 

 

The analytic hierarchy process (AHP) is used widely for the assessment of landslide susceptibility 

[26, 28, 40, 52, 90-103]. Achour et al used AHP along the highway road section in Algeria [92]. 

The influencing factors of landslides considered in the study were slope, aspect, lithology, geology, 

distance from faults, drainage characteristics and land use of the area [92]. The characteristics of 

terrain are understood from the landslide inventory which is prepared by the field visits. The 

number of landslides in the inventory were 29 which were used for the evaluation of the accuracy 

of the final output. The accuracy of the landslide susceptibility map along the highway is found to 

be around 66%. The effect of rainfall and seismicity is not considered in this study.  
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Ali et al prepared a landslide susceptibility map along Karakoram highway [98]. Seismicity and 

rainfall intensity is considered in this study for the preparation of a landslide susceptibility map 

along the highway [98]. The characteristics of the terrain are evaluated by the field visits and the 

landslide inventory. The historical data on landslides is collected from the previous reports and 

also from the field visits [98]. The accuracy of the landslide susceptibility map is found to be 72%.  

 

There are numerous studies conducted for the assessment of landslide susceptibility of the river 

basins [90-100]. Kayastha et al prepared a landslide susceptibility map of Tinau watershed in the 

West Nepal [99]. The study area was around 562 km2. The accuracy was found to be around 78% 

in this study [99]. Mandal and Mandal prepared a landslide susceptibility map for the Lish river 

basin in India [100]. The factors considered in this study are slope angle, slope aspect, slope 

curvature, altitude, relative relief, geomorphology, geology, distance to lineaments, lineament 

density, soil, land use & land cover, NDVI, drainage density, distance of drainage, stream power 

index, topographic wetness index, and rainfall. The authors achieved the highest accuracy in the 

AHP technique [100]. The model shows an accuracy of around 90% which is exceptional in the 

case of the Analytic Hierarchy Process.  

 

The fuzzy logic system is invented by L.A Zadeh in 1965. The practical application of fuzzy logic 

is given by Dr. E.H Mamdani in 1974. The different operators are available in fuzzy logic. AND 

and OR operators are commonly known but these are not used in the case of landslide studies 

[104]. In the case of AND operator minimum of all values of landslide susceptibility index gives 

output while in the case of the OR operator maximum of all gives the output value [105]. So, these 

operators fail to act on every layer of factors that affect landslides. The operators like weighted 
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sum, fuzzy product or gamma function can be used for landslide mapping [104]. The operators 

weighted sum and fuzzy product give either very low susceptibility or very high susceptibility, so 

these are also considered reliable [106]. Hence gamma function operator is found to be the most 

suitable [104]. 

 

Lee published his work on the application of various fuzzy operators such as OR, AND, GAMMA, 

SUM and MULTIPLY for the assessment of landslide susceptibility in Gangneung area, Korea 

[107]. The accuracy was found to be least in the case of the OR operator and highest in the case of 

the GAMMA operator. The GAMMA operator gave 97% accuracy of the AUC method. Pradhan 

applied the same operators on Penang Island, Malaysia [108]. The conclusion was the same as that 

of Lee. The OR operator gave the least accuracy while the GAMMA operator was the most 

accurate. Other operators like sum and multiply don’t give satisfactory results [109]. The values 

of the GAMMA operator can be varied from 0.1 to 1.0 and the best-suited results can be used as 

the final output [109].  The semi-quantitative models are more accurate compared to the qualitative 

models. The models like AHP are rule-based models which can be designed based on the 

perception of the experts. So, there is no need for historical data for these models too.  

 

2.3.4. Artificial Neural Networks 

A black box model may be defined as a computer program into which users enter information and 

the system utilizes pre-programmed logic to return output to the user [110]. The black box models 

like neural networks are used for landslide susceptibility mapping. These models can give highly 

accurate results [111].  
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Artificial Neural Network (ANN) is relatively a new technique. The various causative factors are 

considered as processing units that are in connection with each other. In general, an ANN system 

can be divided into three layers i.e. input layer, an output layer and intermediate or hidden layers. 

The input layer is responsible for taking the input in the form of features, numerical values, 

information or signal [112]. The intermediate or hidden layers process the input data. The output 

layer represents the output after the processing. All the layers are made of neurons or processing 

units. The ANN models allow communication among the layers and the output layer is produced 

[113]. The susceptibility of an area to landslide is a classification problem. In this way, the ANN 

outputs can be considered as a sort of membership of each terrain unit to the class “landslide”. 

 

Zeng-Wang proposed artificial neural network (ANN) as a tool for landslide susceptibility 

mapping [110]. The method is applied to Lantau Island in Hong Kong. Elevation, slope, aspect, 

curvature, vegetation, drainage and lithology are considered as causative factors. A relationship 

between terrain variables and the landslide distribution is created by the ANN model. It was one 

of the first applications of ANN in landslide susceptibility mapping. So, the accuracy of the model 

is not evaluated. The author concluded that the selection of a suitable algorithm is subjective, and 

the accuracy of the result is poor. The ANN models are modified and with the help of different 

algorithms the accuracy of the models is improved. The ANN models showed accuracies even 

more than 90% in many cases. The consideration of realistic factors and huge historical data 

increases the accuracy of the ANN models [111-114]. 

 

Black box models do not consider the landslide distribution. So, the models can be implemented 

in the absence of shreds of landslide evidence. The high accuracy of the black box models is an 
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advantage. In fuzzy logic, the operators can be varied to get a better output. ANNs can handle 

complicated nonlinear data efficiently [115]. ANN models can comprehensively deal with the data. 

The models are not sensitive to uncertain data and measurements of error [116]. The computational 

overburden in the black box models like ANN is a big disadvantage [117]. The data in ANN 

models are to be converted into ASCII codes which is a complicated and time-consuming process 

[115-117].   

 

2.4. Discussion about Models in Landslide Susceptibility Mapping 

Every model has its own advantages and limitations. Qualitative methods like fuzzy logic and 

AHP rely on the accuracy of input weightage given by experts. The accuracy observed by the area 

under cover (AUC) method for the landslide susceptibility maps prepared by using the analytic 

hierarchy process is found to be moderately accurate [26, 28, 50, 52]. The accuracy is more than 

75% in the case of rockfall susceptibility mapping [118]. Human perception is included in the 

analytic hierarchy process. The pair-wise comparison of the causative factors depends upon the 

perception of the researcher [119]. It is simple to use in a spatial environment and the tools required 

for AHP calculations are easily available. AHP is suitable for regional-level mapping [120-121]. 

The accuracy of this method is less compared to the other methods [122]. The output of the study 

depends upon the expertise of the researcher. The perception of the expert is not always right [122]. 

The accuracy of the results also depends upon the values assigned in the pair-wise comparison. 

 

Most of the landslide susceptibility maps produced by the fuzzy logic approach showed an 

accuracy of more than 80% to 85% [104-106]. In some cases, the accuracy of the fuzzy logic 

technique is found to be more than 90% [108]. Fuzzy logic models can give high accuracy as 
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compared to other models. It is a knowledge-driven model, so the need for past landslide data is 

reduced [104-108]. 

 

Statistical methods are very reliable as expert-driven approaches yield less accuracy. The accuracy 

of landslide susceptibility maps prepared using the weight of evidence (WOE) methods varies 

from 72% to 90% [82-83]. The weight of evidence (WoE) models work on the assumption of 

conditional independence. Ideally the causative factors should be independent of each other but 

practically it is not possible [13]. The output depends upon the conditional independence of the 

causative factors. The causative factors are to be considered carefully in this case. The factors 

which are independent of each other are selected. So, the weight of the evidence model is to be 

tested for conditional independence. The accuracy achieved by regression techniques is more than 

80% in most of the studies [63-64, 68-69].  

 

Logistic regression models require a big sample of data for successful implementation. If a study 

has 5 independent variables, the probability of a least frequent outcome is 0.05, a sample size of 

1000 will be required. So, the fewer field data don’t give an accurate picture of the effects of 

causative factors on the occurrence of landslides. The LR models should have little or no multi-

collinearity among the independent variables. It means that the independent variables must not be 

highly correlated to each other [123]. The output is affected by the correlation of the independent 

variable and errors are induced. The accuracy obtained by the certainty factor method varies from 

around 75% to 88% [124].  Most studies conducted using this method give more than 75% 

accuracy which is sufficient for regional level mapping [124]. The certainty factor of the existing 

knowledge can be changed by the new knowledge. In some cases, the certainty factor becomes the 



40 
 

opposite of conditional probability [77]. The results in a combination of dependent evidence are 

not satisfactory.  

 

The accuracy of the frequency ratio techniques varies from 70% to 75% which is moderately 

accurate [13, 23, 29]. The frequency ratio method gives a correlation of landslide events with the 

causative factor which is not possible in the bi-variate method. The ANN models may have 

accuracy from 75% to 90% [63, 111-112]. The computational overburden in the black box models 

like ANN is a big disadvantage.  

 

2.5. Findings from the Literature Review 

The techniques used for landslide susceptibility mapping are classified into four categories i.e. 

qualitative, quantitative, semi-qualitative/semi-quantitative and black-box models. Every 

technique has its own suitability and limitations. The selection of the most suitable technique for 

a particular study area depends upon the availability of the data, required accuracy, size of the area 

and simplicity of the models during implementation. The following conclusions can be drawn 

based on the available literature: 

 The qualitative methods are based on the expert opinion. So, the biasness in the results 

reduces the accuracy of the output. It has rich data in the case of different opinions of the 

experts. 

 

 Qualitative techniques are the simplest to implement. There is no requirement for historical 

data if we are working on the opinion of the expert. So, the technique is suitable for the 
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regions where landslide inventory is not available or the places are inaccessible for field 

visits. The criteria for the selection of the experts should be well-defined.  

 

 The qualitative models can be used for small sites. For large study areas, these techniques 

are not sufficiently accurate. Semi-qualitative/semi-quantitative techniques are an 

improvement over qualitative techniques. 

 

 The semi-quantitative techniques consider the expert perception with some mathematical 

application. So, the biasness in the input can be reduced. The accuracy of the semi-

quantitative techniques is significantly more as compared to purely expert-based solutions.  

 

 The quantitative techniques are based on the mathematical relationship between the 

occurrence of landslide events and its causative factors. The quantitative techniques require 

a well-distributed landslide inventory for the implementation and preparation of landslide 

susceptibility maps. So, the techniques can be implemented only in the regions where 

landslide inventories are available or the region is accessible for field visits. 

 

 The black box models use the instruction of the user and process them through some 

mathematical instructions and get the output. The accuracy is high for the black box models 

but the data needs to be converted into ASCII codes which is a cumbersome process [63, 

111, 113]. 
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 The output in the landslide susceptibility mapping depends upon the causative factors and 

the weightage given to these factors. If the realistic weightages are given to the causative 

factors, the accuracy can be increased significantly.  

 

 As we have selected Shimla district as our study area, the statistical models and semi-

quantitative models are not implemented for landslide susceptibility mapping in this 

region.  

 

2.6. Research Gaps 

The different research gaps observed from the literature in landslide susceptibility mapping are 

as follows: 

 The analytic Hierarchy Process (AHP), Frequency Ratio (FR) and Shannon’s Entropy (SE) 

models are not implemented for landslide susceptibility mapping in Shimla region till now. 

 

 Some studies considered the effect of a single factor multiple times. Drainage density and 

distance from the stream both are considered in some studies. The drainage effect may be 

overrated in such studies. Similarly, curvature and topographic wetness index (TWI) both 

show the effect of rainfall. So, the multiple effects of a single factor can be removed for 

better results. 

 

 The semi-qualitative and expert-based methods show less accuracy as compared to the 

statistical methods and ANN models. 

 

 The analytic hierarchy process (AHP) shows the biasness of an expert. The subjectivity of 

expert opinion should be reduced. 
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2.7. Concluding Remarks 

In this chapter, a detailed literature review is performed to understand the different techniques of 

the microzonation of the landslide susceptibility. It is observed that there are four categories of 

landslide susceptibility assessment techniques. The statistical techniques and ANN-based 

techniques give more accurate results than the expert-based techniques. However, the output of 

the each technique depends on the quality of the input data. After getting an idea about the research 

gaps from the literature review, there is need of developing a conceptual framework for achieving 

the objectives of the thesis.   
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Chapter 3 

Conceptual Framework 

3.1. Introduction  

In chapter 1, the objectives of the thesis are set. To achieve these objectives, a deep understanding 

of the modeling techniques of landslide susceptibility mapping was required. An extensive 

literature review is performed in Chapter 2 for understanding the recent developments in the field 

of landslide susceptibility mapping. In this chapter, a conceptual framework is developed that 

describes the procedures and steps adopted for achieving the objectives. The sources of the input 

data, landslide inventory, data processing, and mathematical modeling are discussed. A brief 

description of the study area and its characteristics is also included in this chapter. However, the 

mathematical modelling and a brief discussion on causative factors is discussed in the upcoming 

chapters.  

 

The occurrence of landslides depends upon the various causative factors. The geological character, 

lithology, drainage characteristics and land use of a region can affect the occurrence of landslides. 

The first step to prepare a landslide susceptibility map is to collect satellite data and data from the 

maps of agencies. The field visits published reports, Google Earth imagery, etc. can be used for 

the preparation of landslide inventories. Mathematical modelling is the next step to achieve the 

relative importance of the causative factors and sub-factors. The input data is processed in a GIS 

environment to get the output and the final map is validated statistically. The complete flow chart 

of the work is discussed in the upcoming sections. Figure 3.1 shows the flow chart of the study 

and stepwise procedure.   
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Figure 3.1. Flow Chart of the Study 

 

Slope, aspect, curvature, relative relief etc. are the primary derivative from the digital elevation 

model while drainage density is the second derivative from the DEM. The DEM-based factors are 

extracted using geospatial analyst in ArcGIS. The lithology map of the study area is digitized in 

vector format which is converted into raster format.  Roads are digitized from U.S. Army Corps 

of Engineers Map. Faults in the study area are obtained from the Groundwater Prospects Map of 
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Himachal Pradesh (H.P.). Land-use/land-cover map is extracted from the Landsat imagery. A 

landslide inventory is prepared from various sources like previous literature, field survey and 

majorly from Bhukosh portal [125]. Table 3.1 shows the details of the data obtained, the source of 

the data and their scales. 

Table 3.1. Source of Data 

 

Extracted Data Scale Source 

Landslide Points  Literature, Field Survey, Google Earth, 

Bhukosh Portal 

Slope  Derivative of DEM 

Aspect  Derivative of DEM 

Relative relief  Derivative of DEM 

Topographic Wetness Index  Derivative of Landsat 8 

Drainage density 1:50000 Derivative of DEM 

Distance from Faults 1:50000 Ground Water Prospects  Map 

Lithology 1:50000 Bhukosh Portal 

Drainage density 1:50000 Survey of India (SOI) Toposheet 

Distance from the roads 1:250000 U.S. Army Corps of Engineers 

Landuse/Landcover  Landsat 8 imagery 
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3.2. Study Area 

The study area selected in this research work is Shimla district in Himachal Pradesh (H.P.) 

province in Northwestern India. Shimla was the former summer capital of British India. The study 

area lies between the longitudes 77°0' E and 78°19' E and latitudes 30°45' N and 31°44' N. Figure 

1.3 shows the details of the study area.  It is surrounded by Mandi and Kullu districts in the North, 

Kinnaur in the East and Sirmaur in the West direction [126]. The southern part of the study area 

touches the boundaries of Uttarakhand province. The elevation of the study area varies from 300 

m to 6000 m [126]. Figure 3.2 shows the study area. 

 

 

Figure 3.2. Details of the Study Area 
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3.2.1. Climate Characteristics 

The climate of the study area remains cool in winter and moderately warm during the summer 

season. Currently, the temperature ranges from -4º C to 31ºC typically throughout the year [126]. 

The average temperature during summer is 19.28º C and 1.10 ºC in the winter. The precipitation 

pattern in the region shows high variability during different months and seasons. The average total 

precipitation in a year is 1575 ml [126]. The monsoon period remains from July to September. The 

snowfall in the study area takes place from December to February. The snowfall takes place in 

regions of higher elevation. The snowfall has been shifted from December to late January and early 

February months due to climate change. 

 

3.2.2. Vegetation Characteristics  

The study area has varying elevations forming the valleys and high hills. The cultivation activities 

are spread majorly in deep valleys and small parts of higher elevations. The region is covered with 

dense forests containing the trees of Chir and Pine up to the altitude of 1500 meters [127]. The 

higher altitude areas are covered with Kail, Deodar, Kanor, Rai, Ban etc. Higher altitude regions 

with steep slopes are suitable for horticultural activities. The apples, walnuts and almonds are 

grown in the upper region. 

 

The forests create the major part of the land use with a variety of trees like Deodar, Chir, Pine etc 

[127]. Areas of lower elevations are suitable for growing cereal crops, stone and citrus fruits while 

places with higher altitudes are more suitable for the growing of seed potatoes off-season 

vegetables and temperate fruits especially apples.  
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3.2.3. Geology and Seismology of Area 

Shimla district lies in a high damage risk zone in the case of seismic activity (MSK VIII). Major 

earthquakes that have occurred in Himachal Pradesh (H.P.) are the Kangra earthquake 1905 (M = 

8), the Chamba earthquake 1945 (M = 6.5), the Kinnaur earthquake (M = 6.8), etc [126]. The study 

area is predominantly covered by the rocks from the Jutogh, Shali, Simla and Rampur groups. The 

study area consists of lithological units of shale, siltstones, quartzite, dolomites, phyllite, schist, 

conglomerate, etc [126-127]. The region is predominantly covered by the Proterozoic age group, 

Paleo-proterozoic age group and Neo-proterozoic age group. 

 

3.3. Landslide Inventory 

A landslide inventory provides information about the historical landslides in the study area. The 

landslide inventories can be very simple to very complex based on the requirements of the users.  

The landslide data is collected from the published reports, practical sheets of Geological Survey 

of India (GSI), Google Earth imagery and the Bhukosh portal [125]. Figure 3.3 shows the landslide 

inventory of the study area. The landslide inventory consists of the following data: 

 Location of Landslide 

 Types and Classification of Landslides 

 Date of Occurrence and Date of Survey 

 Material of landslides 

 Activity of Landslide 

 State of Moisture Content 

 The remark about Landslide Event 
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 Figure 3.3. Landslide Inventory 

 

3.4. Accuracy Assessment of Digital Elevation Model 

The digital elevation model is used to extract the various causative factors like slope, aspect, 

relative relief etc. The DEM can be validated for vertical and horizontal accuracy. The possible 

errors in the digital elevation model for Shimla district are checked [128]. The study was conducted 

to validate the digital elevation model (DEM) in Shimla and Dehradun districts by comparing the 

ground control points with the observations in the digital elevation model. Three ground control 

points (GCPs) are established at different reliefs and the errors are measured in vertical and 

horizontal directions. Table 3.2 provides the details of the errors in the digital elevation model in 

Shimla district. 
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Table 3.2.  DEM error analysis for Shimla district [128] 

Station No. Residuals (m) 

Easting (m) Northing (m) Elevation (m) 

1 3.9 -3.3 0.655 

2 -3.3 2.4 6.045 

3 -1.2 0.3 1.98 

RMSE (m) 3.02 2.36 3.69 

 

3.5. Mathematical Modelling 

The factors which are responsible for the occurrence of the landslide events are identified. The 

relative importance of the causative factors and their contribution toward the occurrence of 

landslides is modelled using mathematical models like analytic hierarchy process (AHP), 

frequency ratio (FR) and Shannon’s entropy.  

The contribution of each factor and sub-factor towards landslide is observed and weightage for 

each factor is obtained. A chapter dealing with mathematical modelling is also discussed 

separately.  

 

3.6. Processing of the Data 

The digital elevation model (DEM) is imported into ArcGIS software. The DEM is used to extract 

the DEM-based factors like slope, aspect, relative relief etc. The spatial analyst tool is used to 

obtain these causative factors. The topo-sheets and map-based causative factors like faults and 

roads are imported as scanned maps in the GIS environment. The required features from these 

maps are digitized so that the parameters can be used as causative factors. All the inputs are 
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converted into raster format. The causative factors are reclassified and the weightage of each 

causative factor and sub-factors are assigned. The layers of causative factors are overlaid to obtain 

the landslide susceptibility maps which are further validated for their accuracy. The input data in 

the case of landslide studies are the causative factors. The layers of the causative factors are 

converted into raster format which divides the whole study area into pixels or grids. The qualitative 

and quantitative models are used to calculate the contribution of each causative factor and sub-

factor towards the occurrence of landslides in the form of a numerical value. These numerical 

values are assigned to each grid as weightage. The process of overlaying the layers creates the 

output map which represents the cumulative impact of causative factors in the form of a numerical 

index. This numerical index is the landslide susceptibility index in the case of landslide 

susceptibility studies. The landslide susceptibility maps can be divided into three or four 

classifications based on this index. 

 

3.7. Concluding Remarks 

A framework to achieve the objectives is prepared in this chapter. The digital elevation model 

(DEM) is obtained from the Survey of India website. The DEM-based factors are extracted using 

geographic information system (GIS). The landslide inventory is prepared from the Survey of India 

practical sheets, field surveys and Bhukosh portal. The non-DEM data is converted into digital 

form from the maps of Survey of India. The reliability of the data is checked by the error analysis. 

After proposing this framework, there is a need to understand the causative factors of landslides 

in detail.  
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Chapter 4 

Causative Factors of Landslides 

4.1. Introduction 

According to the conceptual framework discussed in the previous chapter, the identification of 

causative factors is needed for microzontation of landslide susceptibility. The purpose of this 

Chapter is to understand the different causative factors of landslides from existing literature and 

further explore through, expert opinion and field conditions. The occurrence of landslides depends 

upon the various causative factors that should be identified carefully. The causative factors 

selected in this study are based on the field conditions, previous literature and the opinion of 

experts. The causative factors of the landslides can be categorized into digital elevation model 

(DEM) based and non-DEM based factors.  The causative factors in this study are classified into 

five categories:   

 Topographic factors 

 Geological factors  

 Hydrological factors 

 Land-use / land-cover factors 

 Anthropogenic factors 

 

4.2. Topographic Causative Factors 

The topography of the study area has a significant impact on the occurrence of landslides. Shallow 

landslides are highly impacted by the topography of the region. The topographic factors considered 

in this study are slope gradient, slope aspect, relative relief and Topographic Wetness Index (TWI).  
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4.2.1. Slope Gradient 

Slope gradient is considered a very important causative factor of landslides. A slope gradient may 

be defined as the rate of change of the elevation with respect to the horizontal axis [119]. The slope 

gradient represents the impact of gravity, erosion, sunlight and it also impacts the drainage pattern. 

The shear stress in the mass increases as the slope angle increases. The slope gradient is extracted 

from the digital elevation model (DEM) of the area using the spatial analyst tool. Slope angle is 

divided into five categories in this study. Figure 4.1 shows the slope map of the study area. 

 

Figure 4.1 Slope in Degrees 

 

The major proportion (around 60%) of the study area is covered with slopes with a gradient from 

60 degrees to 75 degrees. Only 15% of the total study area is covered with the slope gradient from 
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45 degrees to 60 degrees. It is observed that a very small proportion of the study area lies under a 

gentle slope (less than 30 degrees).  

 

4.2.2. Slope Aspect 

The slope aspect may be defined as the direction of the maximum slope with respect to the 

magnetic north [119-120]. The direction of the slope shows the impact of winds and sunlight on 

the slope. Aspect is measured as clockwise faces of the landslide between 0 degrees to 360 degrees. 

The slope aspect has an indirect impact on the occurrence of landslides. Figure 4.2 shows the 

aspect in the study area.  

 

Figure 4.2 Slope Aspect  
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The direction of the slope has an impact on erosion due to wind. The wind action is more in some 

aspects. Similarly, sunlight has also a varied impact on the different aspects. Some researchers also 

considered that the slope aspect also represents the impact of the rainfall. The aspect which 

receives more rainfall is more prone to the occurrence of landslides. The snow retaining capacity 

also varies according to the slope direction. The aspect which faces the freezing and thawing action 

for a longer time is more prone to failure. As discussed earlier, sunlight has a varied impact on the 

slope aspects. The slope which faces more sunlight has more tendency of drying up. The moisture 

content in the sunlight-facing aspect is lesser as compared to the other directions. The variation of 

moisture content affects the vegetation characteristics of the slope. It is found that the particular 

aspect directions may have less vegetation.   

 

The slope aspect is extracted from the digital elevation model (DEM). The aspect is divided into 

nine categories i.e. flat, north, northeast, east, southeast, south, southwest, west and northwest. The 

percentage of flat aspects is negligible in the region. 14.56% of the total study area consists of the 

north aspect while 14.31 % of the study area is covered by the south aspect. Northeast, southeast, 

southwest and northwest aspects cover a significant region of the study area i.e. 12.58%, 12.77%, 

12.86% and 12.73% of the total study area. Similarly, east and west aspects cover around 20% of 

the total study area.  

 

4.2.3. Relative Relief 

Relative relief is the difference between the maximum and minimum elevation in an area [50]. It 

shows the change in the elevation of the region. As the relative relief changes the vegetation 

characteristics of the study area also change. The relative relief is the primary derivative of the 
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digital elevation model (DEM).  There is not a clear relationship between the relief and occurrence 

of landslides however relief plays an important role in the occurrence of landslides. Relative relief 

in this study varies from 0 m to 254 m. Figure 4.3 shows the relative relief of the region. 

 

Figure 4.3 Relative Relief 

 

It is divided into four categories i.e. 0 m to 50 m, 50 m to 100 m, 100 m to 150 m and more than 

150m. It can be observed that around 40% of the region lies under low relief (0-50m). Around 

36% of the total study area is covered with a relative relief of more than 150 m. The intermediate 

reliefs cover the remaining area in the study region.  
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4.2.4. Topographic Wetness Index (TWI) 

The topographic wetness index (TWI) is also known as compound topographic index (CTI).  TWI 

controls the hydrology of the soil or rock mass. It represents the moisture-retaining capacity of the 

soil. Figure 4.4 shows the topographic wetness index (TWI) of the region.  

 

Figure 4.4. Topographic Wetness Index (TWI) 

 

TWI establishes a relationship between specific catchment area (SCA) and slope angle. The 

topographic wetness index (TWI) is calculated using the following equation: 

 

𝑇𝑊𝐼 = 𝑙𝑛(
𝑆𝐶𝐴

𝑡𝑎𝑛𝜑
) 4.1 
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Here, SCA is specific catchment area and φ is the angle of slope. TWI acts on the principle of the 

mass balance equation. Specific catchment area (SCA) represents the tendency of receiving the 

water while slope angle shows the tendency of draining out of the water. Lower TWI values are 

more prone to the occurrence of landslides.  

 

TWI is divided into four categories i.e. low (less than 3), moderate (3 to 7), high (7 to 11) and very 

high (more than 11).  Around 45% of the total area is covered with TWI less than 3. High (7 to 11) 

and very high (More than 11) values of topographic wetness index (TWI) cover only around 15% 

of the total study area. The remaining area is covered with a moderate topographic wetness index 

(TWI) with values from 3 to 7.  

 

4.3. Geological Causative Factors 

The geology of the study area has a significant impact on the occurrence of landslides in the study 

area. There are varying characteristics of the materials found in the study area. The geological 

settings vary in moisture-holding capacity, permeability, porosity and shear strength. There are 

two geological causative factors considered in this study: 

 Lithology of the region 

 Faults in the region 

 

4.3.1. Lithology 

The lithological characteristics of the study area are heterogeneous. Different rock formation 

categories are found in the study area. The lithological deposits are divided into six categories 

according to their age. Table 4.1 gives the details about the lithology of the region. The study area 
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consists of shale, siltstone, sandstones and conglomerates of neoproterozoic age. These deposits 

belong to Sanjauli formation of the Simla group. Around 22% of the study area is covered with 

such deposits. Around 48% of the total study area is covered with phyllite, quartzite, schist and 

quartzite deposits of the proterozoic age. 

 

Table 4.1. Lithology of the study area [125] 

Age Group Name 
Geological 

Formation 
Lithology 

Mesoproterozoic  Shali Tatapani 
Pink and grey dolomite, phyllite, 

shale 

Neoproterozoic  Shali Sorgharwari 
Pink and grey limestone, sporadic 

shale 

Palaeocene-Eocene 
Sirmur Dharmshala 

Group 
Subathu 

Green carbonaceous shale, 

limestone, quartzite 

 

Palaeoproterozoic Kullu Khokhan Schist and quartzite 

Paleozoic ---------- ------------------- Medium to coarse biotite granite 

Proterozoic (Undiff) Jutogh 
Manal, chor, 

pabar 

White grey quartzite, schist, 

carbonaceous dolomite, granite, 

gneiss 

 

These deposits belong to Taradevi formation of the Jutogh group. Around 22% of the region is 

covered with the Manikaran formation of the Rampur narnaul group which is of paleo-proterozoic 

age. Lithological deposits of Paleozoic, Eocene-Miocene and Meghalayan ages are also found in 

the study area but they cover less than 0.5% of the total area. So, their contribution to the study 

area is negligible. Figure 4.5 shows the lithology of the study area 
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Figure 4.5 Lithology of the Study Area 

 

4.3.2. Distance from Faults 

The occurrence of landslide events can also be correlated with the proximity to faults, fissures and 

lineament too. The faults in the rocks and soil mass increase the pore water pressure and also forms 

weak planes. So, the distance from faults becomes an important causative factor. Faults are 

digitized from the groundwater prospects map.  

 

Euclidean distance is measured from the faults using spatial analyst and the distance from the fault 

parameter is divided into three categories i.e. low (0 to 1.5 Km), moderate (1.5Km to 3 Km) and 

high (More than 3 Km). It can be observed that 44% of the study area shows a low distance from 
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faults while around 58% of the study area lies at a moderate distance from the faults. The remaining 

study area lies at a high distance from the faults. Figure 4.6 shows the distance from faults. 

 

Figure 4.6 Distance from Faults 

 

4.4. Hydrological Causative Factors 

The hydrology of the study area has also its impact on the occurrence of the landslides. The impact 

of water is already considered in combination with the topography as explained in the topographic 

wetness index (TWI). Streamflow increases the erosion at their edges which results in the cutting 

of the toe of the slopes. The excessive erosion along the streams reduces the stability of slopes 

along the toe and results in the failure of slopes.  
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The saturation of the soil near the streams is also more prone to the occurrence of landslides.  So, 

drainage density is also considered a hydrological causative factor of landslides. Figure 4.7 shows 

the drainage density of the study area. 

 

Figure 4.7 Drainage Density 

 

The drainage density may be defined as the ratio of the length of streams per unit area. Drainage 

density is divided into four categories i.e. low, moderate, high and very high. Around 37% of the 

study area is covered with low (0-15) drainage density while 34% of the study area is covered with 

moderate (15-30) drainage density. 23% of the study area lies under a high (30-45) drainage 

density parameter and a small region lies under a very high (more than 45) drainage density.  
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4.5. Anthropogenic Causative Factor 

The study area is developing in road infrastructure rapidly. The anthropogenic activities can 

disturb the natural slopes and make the slopes unstable. The slopes disturbed due to the engineering 

and construction activities are more prone to failure [50]. Distance from the road is taken as a 

causative factor that represents the impact of anthropogenic activities on the occurrence of the 

landslides. Road construction and widening activities are very frequent in the study area. Figure 

4.8 shows the distance from the road. 

 

Figure 4.8 Distance from the Roads 

 

During the widening or construction of roads the slopes are cut from the bottom. The toe portion 

of the slopes becomes weaker during this process. The weight of the upper portion of the slope 
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dominates in this case and slope failure takes place. Even vehicular vibrations may also trigger 

landslide activities. So, distance from the road is also considered as a causative factor in this study. 

Euclidian distance from the roads is measured and distance from the roads is divided into three 

categories i.e. low (less than 1.5 Km), moderate (1.5 Km-3.0 Km) and high (More than 3 Km). 

Around 27% of the region lies very near to roads while around 38% of the study area lies away 

from the road network. The remaining study area is in moderate proximity to roads.  

 

4.6. Land-use/ Land-cover  

Land-use/land-cover has a significant impact on the occurrence of landslides in the study area. 

Figure 4.9 shows the land-use map of the study area.  

 

Figure 4.9 Land-use/ Land-cover 
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The land-use characteristics of the study area vary with the change in the elevation. The land-use 

map is prepared from the Landsat 8 data downloaded from the USGS website. A supervised 

learning technique is used to identify the land use of the study area. The study area is majorly 

covered with grassland and permanent pastures. Around 50% of the study area is covered with 

permanent pastures. Around 25% of the study area is covered by forests. Around 5% of the land 

lies under the barren land category. The upper elevation regions are covered with snow cover. 

Around 9% of the study area is covered with snow cover.  

 

4.7. Discussion on Causative Factors  

The identification of the causative factors for landslide susceptibility mapping is a crucial task. If 

the actual causative factors of the landslides are identified, the accuracy of the landslide 

susceptibility maps can be enhanced significantly. The DEM-based factors are extracted from the 

digital elevation model (DEM) while the non-DEM based factors are digitized from the scanned 

maps. The impact of the different causative factors is discussed in detail but still, the occurrence 

of landslides depends on the complex interaction of these factors. However, the historical landslide 

data can give a better picture of the contribution of the causative factors in landslides. 

 

4.8. Concluding Remarks  

As discussed in the objectives, the role of different causative factors in the occurrence of landslides 

is identified in this chapter. The causative factors are derived according to the conceptual 

framework of this study. The resolution of the thematic layers of the causative factors is kept the 

same. The digitized data is converted into the raster format. The contribution of causative factors 

is discussed in general terms in this Chapter. However, the previously occurred landslide size and 
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location may help in deciding the contribution of the causative factors. In the next step to achieve 

the objectives, the role of individual causative factors and their sub-categories needed to be 

modelled mathematically or semi-qualitatively. A deep understanding of the statistical models and 

semi-qualitative models is required for the preparation of landslide susceptibility maps. 
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Chapter 5 

Mathematical Modelling 

5.1. Introduction  

As discussed in the conceptual framework, the weightage is assigned to the grids of the raster data 

after the extraction of the causative factors. The role of the sub-factors and causative factors is 

calculated in the form of weightage. The weightage can be calculated using the different models 

as discussed in the literature review.  A landslide susceptibility map shows the cumulative 

contribution of different causative factors to the occurrence of landslides. If the contribution of the 

causative factors is modelled properly, the researchers can predict the landslide susceptibility of 

the study area accurately. One semi-qualitative model and two quantitative models are applied in 

this study.  

 

Analytic hierarchy process (AHP), frequency ratio (FR) and Shannon’s entropy (SE) models are 

used to calculate the weightage of different causative and sub-factors. A new model is also 

proposed which is a combination of Shannon’s Entropy and Analytic Hierarchy Process. These 

models are explained in detail. The main purpose of this chapter is to calculate the weightage of 

the sub-factors and causative factors using different models i.e. AHP, FR, SE, and AHP-SE 

models. This weightage will be further used for understanding the contribution of landslide 

causative factors on the occurrence of the landslides. The calculation of weightage will also be 

used for the preparation of landslide susceptibility maps too.  
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5.2. Analytic Hierarchy Process (AHP) 

The analytic hierarchy process (AHP) is developed by Thomas L. Saaty [96-97]. AHP helps in 

breaking the complex problems into parts and sub-parts. AHP also helps in reducing errors and 

keeps the results consistent. The analytic hierarchy process works in three steps i.e. decomposition 

of the problem, comparative judgment and synthesis of relative importance or rankings [96].  

 

Table 5.1. Saaty’s scale of pairwise comparison [96] 

Degree of Preference  

[92-93] 

Definition Explanation 

1 Equally Important Both criteria are equally important or both 

the factors have the same effect on the 

occurrence of landslides 

3 Moderately Important One factor is more effective compared to 

the other factor 

5 Highly Important One factor affects highly compared to the 

other factor 

7 Very Highly Important  A factor is highly dominated over other 

9 Extremely Important A factor has the highest possibility of 

affecting the occurrence of a landslide 

over another factor 

2,4,6,8 Intermediate Values If a compromise between two factors is 

required, intermediate values can be used 



 

70 
 

In the first step, the problem is decomposed into simpler criteria and these criteria are further 

broken into sub-criteria. It is easier to make decisions with respect to the sub-criteria and criteria 

instead of a complex problem like landslides. The criteria for landslide susceptibility are the 

causative factors which are further divided into sub-factors. These sub-factors and factors are 

compared to each other. The process of comparison of causative factors and sub-factors is known 

as pair-wise comparison. In pairwise comparison, it is easy to choose the priority or contribution 

of causative factors in the occurrence of landslide events. A nine-point scale is used for assigning 

the weights during the pairwise comparison of the criteria.  

 

If two criteria or factors have the same contribution towards the occurrence of the landslides, the 

weightage given is 1. If criteria A is moderately important as compared to criteria B, the weightage 

of 3 is assigned to criteria A [92-93]. Table 5.1 shows Saaty’s scale of pairwise comparison. The 

inverse values can also be assigned. The intermediate values like 2, 4, 6 and 8 are also possible 

according to the suitability of the user. The pairwise comparison matrix can be formed by using 

expert weights. The Eigenvalue is calculated after the normalization of the pairwise comparison 

matrix. If n is the number of criteria and λmax is the maximum Eigenvalue, Consistency Index 

(C.I) is calculated using the following formula: 

 

                  𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 (𝐶𝐼) =
λmax‐ n

n‐ 1
                                                                (5.1) 

 

The Consistency Index (CI) is used to calculate the Consistency Ratio (CR). The Consistency 

Ratio (CR) is the ratio of the consistency index to the randomness index (RI).  
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  𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 (𝐶𝑅) =
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 (𝐶𝐼)

Randomness Index (RI)
                                               (5.2) 

Randomness index (RI) is calculated by Saaty based on numerous experiments. Table 5.2 shows 

the values of the randomness index with respect to number of criteria (n).  

Table 5.2. Randomness index [92] 

  n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

R.I. 0.0 0.0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.58 

 

Consistency ratio (CR) is used to check the consistency of the assigned weight during the pairwise 

comparison. If the consistency ratio lies below 10%, the input is considered consistent while if the 

CR value exceeds 10%, the input is considered inconsistent. The user will have to change the 

weightage given in the pairwise comparison matrix. It is mandatory to keep the inputs consistent 

so that we can reach a consistent solution.  So, by changing the input weightage and checking them 

by consistency ratio (CR) criteria, the rankings of each causative factor and sub-factor are 

calculated. The causative factors of landslides considered in this study are explained in the 

previous chapter. The ranking or weightage of these causative factors shows their contribution to 

the occurrence of landslides. Table 5.3 shows the pairwise comparison matrix of the causative 

factors and their weightage is calculated using AHP. The consistency ratio (CR) is also shown 

which is maintained below 10%. The causative factors such as slope, aspect and curvature are 

classified into sub-factors further and the pairwise comparison matrix is formed for the sub-factor’s 

level too. Table 5.4 shows the pairwise comparison matrix, rankings and consistency ratio for the 

sub-factors also. The consistency ratio for sub-factors is also maintained below 10%. 
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5.3. Frequency Ratio (FR) 

The frequency ratio (FR) technique for landslide susceptibility mapping is a statistical technique 

in which a statistical relationship is established between the occurrence of the landslides and the 

causative factors of the landslides [113, 118]. The landslide inventory of the study area is used to 

establish the relationship between causative factors and landslide distribution. The frequency ratio 

is the ratio between the percent areas where landslides occurred in a class to the percent area of 

the influencing class relative to the whole study area [118]. It is expressed as the following 

formula:  

                     𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 (𝐹𝑅) =
𝐿𝑜𝑖

𝑃𝑖𝑡
                                                                       5.3 

 

Here Loi is the percentage of landslides that occurred relative to the area covered by the influencing 

factor. Pit is the area of influencing factor relative to the total area.  The frequency ratio for each 

influencing factor of landslide is calculated. The frequency ratio can be further elaborated using 

the following formula: 

                          𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 (𝐹𝑟) =
(

𝑀𝑖
𝑀 )

(
𝑁𝑖
𝑁 )

                                                                         5.4 

 

Here, Mi= Number of pixels containing landslides in a class 

         M= Total number of pixels in a class 

         Ni= Total number of pixels containing landslides 

         N= Total number of pixels in the study area 
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Table 5.3. Pairwise Comparison of Causative Factors 

Causative 

Factors 

1 2 3 4 5 6 7 8 9 Weightage 

Slope 1         0.105 

Aspect 0.14 1        0.016 

Relative relief 0.33 4 1       0.036 

TWI 2 5 3 1      0.081 

Lithology 0.33 6 3 3 1     0.096 

Drainage density 3 7 5 3 3 1    0.205 

Distance from 

Road 

2 9 7 5 3 3 1   0.28 

Distance from 

Faults 

3 8 6 4 2 0.33 0.33 1  0.161 

Landuse 0.14 2 0.33 0.14 0.14 0.14 0.14 0.17 1 0.02 

CR= 0.09 
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Table 5.4. AHP Pairwise Comparison Matrix 

 

Conditioning Factor Classes 1 2 3 4 5 6 7 8 9 
Weightage 

(Wi) 

Slope                     0.04 

  >30 1                 0.054 

  30-45 2 1               0.102 

  45-60 3 3 1             0.209 

  60-75 5 5 3 1           0.596 

  More than 75 9 8 7 5 1           

  CR= 0.059   

Aspect                       

  Flat 1                 0.023 

  North 2 1               0.047 

  Northeast 7 4 1             0.204 

  East 4 2 0.33 1           0.082 

  South East 9 8 3 4 1         0.362 

  South 5 3 0.5 2 0.25 1       0.125 

  South West 4 2 0.25 1 0.2 0.5 1     0.078 

  West 3 0.5 0.25 0.5 0.14 0.33 0.5 1   0.046 

  North West 2 1 0.14 0.33 0.12 0.25 0.33 0.5 1 0.033 

    CR= 0.025   

Relative Relief                       

  0-50 1                 0.581 

  50-100 0.33 1               0.255 

  100-150 0.2 0.33 1             0.114 

  More than 150 0.11 0.2 0.33 1           0.05 



75 
 

    CR= 0.028   

TWI                       

  Low 1                 0.565 

  Moderate 0.33 1               0.262 

  High 0.2 0.33 1             0.118 

  Very High 0.14 0.2 0.33 1           0.055 

    CR=0.043 

Lithology                       

  Neoproterozoic 1                 0.194 

  
Proterozoic 

(Undiff) 
0.33 1               0.098 

  Mesoproterozoic 0.5 4 1             0.168 

  
Palaeoproterozoi

c 
5 7 3 1           0.43 

  Palaeozoic 0.2 0.33 0.33 0.2 1         0.053 

  
Palaeocene-

Eocene 
0.17 0.2 0.2 0.14 0.5 1       0.033 

  Meghalayan 0.2 0.14 0.14 0.11 0.33 0.5 1     0.024 

    CR= 0.085   

Drainage Density                       

  Low 1                 0.046 

  Moderate 3 1               0.094 

  High 5 5 1             0.203 

  Very High 9 7 5 1           0.657 

    CR= 0.063   
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Distance from road                       

  Low 1                 0.751 

  Moderate 0.2 1               0.178 

  High 0.11 0.33 1             0.07 

    CR=0.03   

Distance from 

Faults 
                      

  Low 1                 0.751 

  Moderate 0.2 1               0.178 

  High 0.11 0.33 1             0.07 

    CR=0.03   

Landuse/Landcover                       

  Snow 1                 0.5 

  Cultivable Area 0.14 1               0.046 

  
Permanent 

Pastures 
0.11 0.5 1             0.034 

  Forest 0.2 5 5 1           0.137 

  Barren Land 0.33 9 7 3 1         0.284 

    CR=0.072   
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The landslide susceptibility index (LSI) is calculated by the combination of the frequency ratio of 

the different causative factors [83]. Landslide susceptibility index (LSI) using frequency ratio can 

be presented as the following equation: 

 

𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 (𝐿𝑆𝐼) = 𝐹𝑟1 +    𝐹𝑟2 + 𝐹𝑟3 … … … … … .                   5.5 

 

Fr1, Fr2, Fr3 etc. are the frequency ratio for the different causative factors of the landslides. If the 

frequency ratio value is more than 1, it shows a high correlation between the causative factor 

towards landslides while if the FR values are less than 1, there is a poor correlation between the 

causative factor and the occurrence of the landslide.  

 

It is easy to implement the frequency ratio models in GIS environment. The inputs can be 

calculated in the pixels. The landslide inventory can be prepared in GIS environment which shows 

the areas covered by landslide events. The number of pixels covered by the influencing factor and 

the landslide event on the influencing factor can be observed from thematic layers and the input 

can be calculated in pixels on the map [118]. Table 5.5 shows the frequency ratio (FR) calculated 

using equation 5.4 for the causative sub-factors.  

 

5.4. Shannon’s Entropy  

The frequency ratio (FR) technique calculates the weightage for the sub-factors only. The 

weightage of causative factors is not calculated in frequency ratio [15, 23, 29, 63, 72, 87, 118]. So, 

an improvement over the frequency ratio method is proposed in Shannon’s entropy technique [130-

132].  
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Table 5.5. Calculation of Weightage using Frequency Ratio and Shannon’s Entropy 

 

Causative 

Factor 
Classes No. of Pixels in 

class 

%age in 

Class 

(a) 

No. of 

landslid

e pixel 

in class 

%age of 

landslid

e pixel 

(b) 

FR 

(b/a) 

Pij Eij Hij= 

1-Eij 

Wj 

Slope                     

  <30 107718 1.71 13 0.8 0.468 0.115 -0.108 0.442 0.12 

  30-45 246772 3.9 13 0.8 0.205 0.05 -0.065 

  45-60 1001205 15.91 91 5.95 0.374 0.092 -0.095 

  60-75 3779957 60.05 803 52.51 0.874 0.214 -0.143 

  More than 75 1158974 18.41 609 39.83 2.163 0.53 -0.146 

   Total 6294626   1529   4.085   -0.558 

Aspect                     

  Flat 105 0.002 0 0 0 0 0 0.124 0.033 

  North 916307 14.56 210 13.73 0.943 0.116 -0.108 

  Northeast 792179 12.59 156 10.2 0.81 0.1 -0.1 

  East 627294 9.97 255 16.68 1.673 0.206 -0.141 

  South East 804073 12.77 290 18.97 1.486 0.183 -0.135 

  South 900237 14.31 230 15.04 1.051 0.129 -0.115 

  South West 809177 12.86 135 8.83 0.687 0.084 -0.091 

  West 643538 10.22 150 9.81 0.96 0.118 -0.109 

  North West 801716 12.73 103 6.74 0.529 0.065 -0.077 

   Total 6294626   1529 100 8.139   -0.876 

Relative 

Relief 

                    

  0-50 2612642 41.66 804 52.58 1.262 0.323 -0.159 0.408 0.11 

  50-100 691263 11.023 145 9.48 0.86 0.22 -0.145 

  100-150 710948 11.337 186 12.16 1.073 0.274 -0.154 
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  More than 150 2256417 35.98 394 25.77 0.716 0.183 -0.135 

    6271270   1529   3.911   -0.592 

TWI                     

  Low 2810725 44.65 712 46.56 1.043 0.34 -0.159 0.5 0.135 

  Moderate 2473126 39.29 596 38.98 0.992 0.323 -0.159 

  High 855581 13.59 207 13.54 0.996 0.325 -0.159 

  Very High 155194 24.65 14 0.91 0.037 0.012 -0.023 

   Total 6294626   1529   3.068   -0.5 

Lithology                     

  Neoproterozoic 1364515 21.68 415 27.15 1.252 0.408 -0.159 0.401 0.109 

  Proterozoic 

(Undiff) 

3023399 48.03 415 27.14 0.565 0.184 -0.135 

  Mesoproterozoic 502058 7.97 143 9.35 1.173 0.382 -0.16 

  Palaeoproterozoi

c 

1384339 22 556 36.36 1.653 0.539 -0.145 

  Palaeozoic 10282 0.16 0 0 0 0   

  Palaeocene - 

Eocene 

7564 0.13 0 0 0 0   

  Meghalayan 2469 0.03 0 0 0 0   

   Total 6294626   1529   4.643   -0.599 

Drainage 

Density 

                    

  0-15 2309122 36.68 320 20.93 0.571 0.186 -0.136 0.403 0.109 

  15-30 2194591 34.86 628 41.07 1.178 0.384 -0.16 

  30-45 1441690 22.9 438 28.64 1.251 0.408 -0.159 

  More than 45 

(upto 66) 

349223 5.55 143 9.35 1.685 0.549 -0.143 

   Total 6294626   1529       -0.597 

Distance 

from road 
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  0-1.5 KM 1743800 27.7 531 34.72 1.253 0.409 -0.159 0.547 0.148 

  1.5-5.5 km 2114630 33.59 286 18.7 0.557 0.181 -0.134 

  More than 5.5 2436196 38.7 712 46.56 1.203 0.392 -0.159 

   Total 6294626   1529       -0.453 

Distance 

from Faults 

                    

  0-1.5KM 2790363 44.33 674 44.08 0.994 0.324 -0.159 0.587 0.159 

  1.5km-3.0 km 1295638 58.66 298 19.49 0.332 0.108 -0.105 

  more than 3 km 2208625 35.09 557 26.42 0.753 0.245 -0.15 

   Total 6294626   1529       -0.413 

Landuse/ 

Landcover 

                    

  Snow 374936 0.06991

7 

220 14.39 2.059 0.671 -0.116 0.287 0.078 

  Cultivable Area 514825 0.09600

3 

104 6.8 0.708 0.231 -0.147 

  Permanent 

Pasture 

2681924 0.50011

7 

246 16.08 0.562 0.183 -0.135 

  Forest  1534207 0.28609

4 

855 55.91 1.118 0.364 -0.16 

  Barren Land 256697 0.04786

8 

104 6.8 1.42 0.463 -0.155 

   Total 5362589   1529       -0.713 3.7   
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Entropy shows the uncertainty of an event. The frequency ratio values of sub-factors are used to 

calculate Shannon’s entropy weightage of the causative factors. In landslide susceptibility 

mapping, Shannon’s entropy measures the uncertainty of the occurrence of the landslides 

depending upon the cumulative impact of the causative factors [130-132].  

The weightage of the causative factors is calculated using the following series of the equations: 

 

𝑃𝑖𝑗 = 𝐹𝑅/ ∑ 𝐹𝑅

𝑚

𝑖=1

 (5.6) 

∑ 𝐸𝑖𝑗

𝑚

𝑖=1

= ∑(𝑃𝑖𝑗) × (𝑙𝑛 𝑃𝑖𝑗)

𝑚

𝑖=1

 (5.7) 

𝐻𝑖𝑗 = 1 + ∑ 𝐸𝑖𝑗

𝑚

𝑖=1

 (5.8) 

𝑊𝑗 =  𝐻𝑖𝑗/ ∑ 𝐻𝑖𝑗

𝑛

𝑖=1

 (5.9) 

  

Pij is the probability density and FR is the frequency ratio of sub-factors. Wj is the weightage of 

causative factors obtained from Shannon’s entropy technique. Probability density shows the 

average frequency ratio of a parameter.Now, these values can be used for assigning weight to 

causative factors while frequency ratio values are used for sub-factors. Table 5.5 shows Shannon’s 

entropy values for the causative factors. 

 

5.4. Hybridization of Expert Opinion with Statistical Models 

The analytic hierarchy process (AHP) works on the concept of the expert-based weightage and the 

inputs cab be biased due to the perception of an expert. In this section, we proposed hybrid 

techniques by hybridization of the AHP and Shannon’s entropy (SE) technique. In the AHP-SE 
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technique, the weightage of sub-factors is taken from the AHP approach while the weightage of 

causative factors is taken from SE technique. In this technique, the weightage of causative factors 

is restricted by the SE values which are data driven. The weightage of sub-factors is used from the 

Table 5.4 while the weightage of causative factor are the Shannon’s Entropy values in Table 5.5.  

 

5.5. Concluding Remarks 

The contribution of different causative factors and sub-factors is calculated using different models 

in this Chapter. The relative importance of the causative factors and sub-factors can be analyzed 

from the Tables prepared by different models. The weightage calculated by the different models 

is to be assigned to the thematic layers as discussed in Chapter 3. The cumulative impact of these 

sub-factors and factors will give the landslide potential in the study area. 



83 
 

Chapter 6 

Results and Discussion 

6.1. Introduction 

The causative factors are extracted from the different data sources. The DEM-based causative 

factors and land use of the study area are already in the raster format while the factors digitized 

from the data sources like SOI maps are in vector format. The data which is in vector format is 

converted into raster format. All the layers are reclassified and weightage to each causative factor 

is assigned. The weightage calculated using different models in the previous chapter is assigned to 

the sub-factors and causative factors. The calculations are done in map algebra and the final output 

is produced in the form of landslide susceptibility maps. The results are validated using the receiver 

operation characteristics curve.  

 

In this Chapter, the results are obtained by processing the data obtained in the previous chapters. 

The landslide potential obtained by the different models is discussed. The role of different 

causative factors and sub-factors according to the different models is also discussed. The landslide 

susceptibility maps obtained in this Chapter are validated using the Receiver’s Operation 

Characteristics (ROC) curve and the performance of the models is compared. 

 

6.2. Analysis of Landslide Susceptibility by Analytic Hierarchy Process  

A landslide susceptibility map showing the impact of causative factors according to the analytic 

hierarchy process (AHP) approach is prepared. The weightage of causative factors and sub-factors 
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is shown the Table 5.3 and Table 5.4. The impact of causative factors on the occurrence of 

landslide susceptibility can be observed using these tables according to the AHP approach. 

 

6.2.1. Analysis of Sub-factors of landslide 

Table 5.4 shows the details of the contribution of sub-factors toward landslide events. Slope 

gradients less than 45º show poor contribution towards the occurrence of landslides. The AHP 

weightage for slope gradients less than 30º and 30º-45º are 0.04 and 0.054 respectively.  The slope 

gradient which has an angle between 45º to 60º moderately affects the occurrence of landslides 

with an AHP weightage of 0.102. Slopes with gradients 60º- 75º have an AHP weightage of 0.209 

which shows the high landslide susceptibility of such slopes. The slope angles more than 75º are 

extremely susceptible to the occurrence of landslides with an AHP weightage of 0.596. 

 

Aspect is divided into nine categories. It can be observed that the southeast and northeast directions 

have maximum weightage in AHP calculations which are 0.362 and 0.204 respectively. The south 

direction is also significantly susceptible to landslides with 0.204 AHP weightage. The rest of the 

directions show less contribution towards the occurrence of landslides. East and Southwest aspect 

has the AHP weightage of 0.082 and 0.078 respectively while the rest directions have an AHP 

weightage of less than 0.05.  

 

Relative relief is divided into four categories. It can be observed that lower relative relief values 

have more AHP weightage showing their more contribution to the occurrence of landslides. The 

relative relief from 0-50m shows the AHP weightage of 0.581 which is the highest as compared to 

the higher relative relief values. 50 m to 100 m relative relief category got a weightage of 0.255 
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while the region with very high relative relief (more than 150 m) got the least AHP weightage i.e. 

0.05.  The relative relief with 100 m to 150 m shows an AHP weightage of 0.114 which shows its 

moderate impact on the occurrence of landslides.  As the TWI increases, the AHP weightage 

decreases.  

 

The topographic wetness index (TWI) is divided into four categories.  Lower values of the 

topographic wetness index (TWI) are more susceptible to the occurrence of landslides according 

to the analytic hierarchy process (AHP) weightage. The low and moderate TWI have the AHP 

weightage of 0.565 and 0.262 respectively while very high TWI has the least AHP weightage of 

0.055. 

 

As the study area is covered with varying lithology, the lithology of the study area plays an 

important role in the landslide susceptibility. The Paleoproterozoic deposits show the maximum 

susceptibility toward the occurrence of landslides with a weightage of 0.430 and the 

Neoproterozoic deposits have the AHP weightage of 0.194. Meghalayan deposits cover very less 

area in the region and are hence rarely responsible for the occurrence of landslides in the study 

area. Meghalayan, Eocene-Miocene and Palaeoproterozoic deposits have the AHP weightage 

0.024, 0.033 and 0.043 which shows their insignificant contribution to the occurrence of landslides 

according to the AHP approach. Drainage density is also an important causative factor of 

landslides according to the AHP approach. The regions with higher drainage density are more 

susceptible to landslides. A very high drainage density region got a weightage of 0.657 while a 

region with high drainage density has a weightage of 0.203. The high values of AHP weightage 

show the prominence of higher values of drainage density. The regions in proximity to faults and 
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roads have high AHP weightage while the regions which are away from faults and roads have 

lesser weightage. Snow and barren land are found to be more susceptible to landslides with AHP 

weightage of 0.5 and 0.284 respectively. Forests cover a significant area in the region and have an 

AHP weightage of 0.137. Permanent pastures have the least AHP weightage which is 0.034. 

 

6.2.2. Analysis of Causative Factors of Landslides 

The contribution of the causative factors in the occurrence of landslides can be observed in table 

5.3. It can be seen that the contribution of the distance from the road causative factor is the highest 

among all the factors. The AHP weightage of distance from the roads is found to be 0.280. The 

landslides that occurred due to the cut slopes along the roads represent this impact. AHP weightage 

of the drainage density and distance from faults are 0.205 and 0.161 respectively which show their 

high correlation toward the occurrence of landslides. Slope angle has also a significant contributing 

factor in landslide susceptibility of the region with an AHP weightage of 0.105. Lithology and 

topographic wetness index (TWI) show the AHP weightage of 0.096 and 0.081 respectively. 

Aspect has the least impact on the occurrence of landslides as per the AHP approach. The 

weightage of aspect is 0.016 and the weightage of land use is 0.02 which are the lowest as 

compared to the other causative factors.  

 

6.2.3. Landslide Susceptibility Map using Analytic Hierarchy Process (AHP) 

The causative factors of the landslides can be linked to the landslide susceptibility index. The 

landslide susceptibility index (LSI) in the analytic hierarchy process (AHP) approach can be 

calculated using equation 6.1. The susceptibility map is divided using natural breaks into five 
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categories i.e. very low, low, moderate, high and very high. Figure 6.1 shows the landslide 

susceptibility map by the analytic hierarchy process (AHP) approach.  

𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 (𝐿𝑆𝐼)
= 0.12 × 𝑆𝑙𝑜𝑝𝑒 + 0.033 × 𝐴𝑠𝑝𝑒𝑐𝑡 + 0.11 × 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑙𝑖𝑒𝑓 + 0.081 × 𝑇𝑊𝐼
+ 0.096 × 𝐿𝑖𝑡ℎ𝑜𝑙𝑜𝑔𝑦 + 0.205 × 𝐷𝑟𝑎𝑖𝑎𝑔𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 0.280
× 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑅𝑜𝑎𝑑𝑠 + 0.168 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝐹𝑎𝑢𝑙𝑡𝑠 + 0.020
× 𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 

(6.1) 

 

The landslide susceptibility index (LSI) by the AHP approach varies from 0.061 to 0.648. It can 

be observed from the landslide susceptibility map that the region has very low and low landslide 

susceptibility is around 46% of the total study area and only 38% of the total landslide area lies in 

this zone.  21.61% of the total study area is under the moderate landslide susceptibility zone and 

around 25% of the total landslide lies in this category.  

 

Around 32% of the total region lies under high and very high susceptibility to landslides while 

more than 35% of the total landslide area lies in this region. According to AHP, only 8% of the 

total study area lies under a very high landslide susceptibility zone while 9.24% of landslides occur 

in this area.  

 

6.3. Analysis of Landslide Susceptibility by Frequency Ratio  

A statistical relationship between the causative factors and the occurrence of landslides is 

established using the frequency ratio (FR) approach. The weightage of the sub-factors of landslides 

is assigned from the landslide inventory. The frequency ratio approach weightage is purely based 

on the landslide inventory and the area of sub-factors of landslides. So, the weightage in frequency 

ratio (FR) is more reliable as compared to the analytic hierarchy process (AHP).  
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6.3.1. Analysis of Sub-factors of Landslides 

The percentage of the classes of the study area and the area covered by landslides is evaluated in 

the pixels. The study area is covered with steep slopes majorly. The slopes with an angle less than 

45º cover only around 6% of the total area but only 1.6% of the total landslide area is found in this 

region. The landslide occurrence increases as the slope gradient increases. Slopes with gradients 

from 45º to 60º cover around 16% of the total study area and 5.95% of the landslide area lie in 

such zones. Most of the study area (more than 60%) is covered with slopes with gradients from 

60º to 75º and more than 52% of the total landslide area lies on such slopes. The slope gradients 

with more than 75º angle are extremely susceptible to the occurrence of landslides. Such slopes 

cover only 18% of the total study area but are responsible for the occurrence of around 40% of the 

total landslides.  

 

The frequency ratio (FR) values of the lower slope angles in less and increases as the slope gradient 

increases. For slopes, the FR weightage varies from 0.205 to 2.163. Slopes with a gradient of more 

than 75º show the highest FR value i.e. 2.163 while the slopes with a gradient between 60º to 75º 

show the FR value of 0.874. The rest of the slope categories have an FR value of less than 0.5 

which shows a lesser correlation with the occurrence of landslides. 

 

The flat aspect covers very less area and has an insignificant contribution to the occurrence of 

landslides. The frequency ratio (FR) for the flat aspect is zero. The east aspect shows the highest 

correlation with the occurrence of landslides and has a frequency ratio of 1.673. The east aspect 

covers 9.97% of the total study area while around 17% of the total landslides occur in the region 

of the east aspect. The Southeast and South aspect also shows a significant impact on the 
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occurrence of landslides according to frequency ratios of 1.486 and 1.051 respectively. Southeast 

and South aspects cover 12.77% and 14.31% of the total study area respectively and are covered 

by 18.97% and 15.04% of the total landslide area. The rest of the aspects show poor correlation 

with landslides having a frequency ratio of less than 1%. West, North, Northeast, and Southwest 

have frequency ratio values of 0.96, 0.943, 0.81 and 0.687 respectively showing their relatively 

lesser correlation with the occurrence of landslides. 

 

Landslide susceptibility of the study area varies with the relative relief but the variation is not 

linear. The regions with low relative relief (0m-50m) have a frequency ratio of 1.262. The low 

relief area covers 41.66% of the total study area and more than 52% of the landslide area lies in 

such regions. The moderate relative relief (50m-100m) covers around 11% of the total study area 

but around 9% of the landslide area lies in this region.  

 

The moderate relative relief has a frequency ratio of 0.86. The study area with relative relief from 

100m to 150 m shows a high correlation with the occurrence of landslides with a frequency ratio 

of 1.073. More than 11% of the study area is covered by such a region and more than 12% of the 

total landslides occur in this area. The regions with very high relative relief (more than 150m) 

cover around 36% of the study area while only 25% of the total landslides occur in this region 

which shows their relatively lesser contribution to landslides. The very high relative relief category 

has a frequency ratio of 0.716.  

 

 The topographic wetness index (TWI) shows the inverse relationship with the occurrence of 

landslides. As the TWI increases the frequency ratio decreases. The low TWI covers around 45% 
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of the study area and 47% of the total landslide area lies in this category approximately. The 

frequency ratio of the low TWI category is the highest i.e. 1.043. Moderate and high TWI shows 

almost equal contribution toward landslides with frequency ratios of 0.992 and 0.996 respectively. 

The very high TWI category has the least contribution towards the occurrence of landslides with 

a frequency ratio of 0.037.   

 

Paleozoic, Eocene-Miocene and Meghalayan deposits cover less than 0.5% of the total study area 

in total. So, the contribution of these deposits towards the occurrence of landslides is negligible 

and has a frequency ratio of zero.  Lithological deposit of the Proterozoic age group covers 48% 

of the total study area but only 27% of the landslide area lies in such deposits. Proterozoic deposits 

have a frequency ratio of 0.565 which shows their low susceptibility toward landslides. 

Paleoproterozoic deposits show high susceptibility towards landslides with a frequency ratio of 

1.653. Palaeoproterozoic deposits cover 22% of the study area but these are responsible for more 

than 36% of the total landslides in the study area. Mesoproterozoic deposits with a frequency ratio 

of 1.173 covers around 7% of the study area but more than 9% of the landslide area lies in these 

deposits.  The rest of the study area (around 21%) is covered with Neoproterozoic aged deposits 

which faced 27.15% of the total landslide area. They have a frequency ratio of 1.252 which shows 

their significant contribution to the occurrence of landslides in the study area.  

 

As the drainage density in the study area increases, the frequency ratio increases. The region of 

low drainage density (less than 15) with a frequency ratio of 0.571 covers around 37% of the study 

area but only 20.93% of the total landslide area lies in this region. The region with moderate 
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drainage density (15-30) covers around 35% of the study area while more than 41% of the landslide 

area lies in this category.  

 

The moderate drainage density (15-30) and high drainage density (30-45) score the frequency ratio 

weightage 1.178 and 1.251 respectively. Only 5.55% of the study area is covered with very high 

(more than 45) drainage density which is responsible for 9.35% of the landslide area. The 

frequency ratio for such regions is 1.685 which shows the highest correlation with the occurrence 

of landslides.  

 

The distance from the road represents the contribution of anthropogenic activities toward the 

occurrence of landslides. The region is very close proximity to roads covering 27% of the study 

area but around 35% of the landslide area lies in this zone. The frequency ratio of the low distance 

from the road is 1.253. The regions which are more than 5.5 km away from the roads have a 

frequency ratio of 1.203. The regions which are very close to the faults cover 44% of the study 

area and are also responsible for the occurrence of 44% of the total landslides. The frequency ratio 

of the low distance from fault is 0.994 and the frequency ratio for the region with a high distance 

from faults is 0.753.  

 

Around 50% of the study area is covered with permanent pastures while these are responsible for 

only 16% of the total landslide area. The frequency ratio for permanent pastures is 0.321 which 

shows its lesser contribution to the occurrence of landslides. Forest covers around 28% of the study 

area and 55.91% of the total landslide area lies in this zone. The frequency ratio of forest land use 

is 1.95.  
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Around 5% of the study area is barren land and 7% of the total landslide area lies in this category. 

The frequency ratio of barren land is 1.42. The region with snow cover forms 7% of the total study 

area which is responsible for the occurrence of 14% of the total landslides. The frequency ratio of 

the snow-covered region is 2.05 which shows its high correlation with landslide susceptibility. A 

small percentage of the study area (less than 10%) comes under the category of the cultivable area 

which is responsible for 7% of the total landslide area. Such regions have relatively lesser 

frequency ratio values i.e. 0.708.  

 

6.3.2. Landslide Susceptibility Map using Frequency Ratio 

The contribution of causative factors is modelled using the frequency ratio technique based on the 

landslide inventory. A landslide susceptibility map is prepared by overlaying the layers of 

causative factors in the GIS environment. The landslide susceptibility map is based on the landslide 

susceptibility index (LSI). If Fr represents the frequency ratio, the equation of landslide 

susceptibility index (LSI) can be given as follows: 

 

𝐿𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 (𝐿𝑆𝐼) = 𝐹𝑟1 + 𝐹𝑟2 + 𝐹𝑟3 + 𝐹𝑟4 … … … … . +𝐹𝑟𝑛            (6.2) 

 

The landslide susceptibility map using the frequency ratio approach is shown in the figure 6.2. The 

frequency ratio based landslide susceptibility index (LSI) varies from 3.173 to 13.297. It is divided 

into five categories using natural breaks i.e. very low, low, moderate, high and very high 

susceptibility.  
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Figure 6.2. Landslide Susceptibility Map using Frequency Ratio 
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The region which shows very low susceptibility towards landslides covers 5.7% of the total study 

area and less than 1% of landslide area lies in this region. 20.7% of the total study area lies under 

low landslide susceptibility and 10% of the total landslide area lies in this zone approximately. 

The region which is moderately susceptible to landslides covers 28.66% of the total study area and 

around 18% landslide area lies in this region. The rest of the study area lies in the high and very 

high landslide susceptibility zone which is around 44% of the total study area and more than 70% 

of the landslide area lies in these zones. The zone which shows very high landslide susceptibility 

covers only around 16% of the total study area but is responsible for more than 40% of the total 

landslide area.  

 

6.4. Analysis of Landslide Susceptibility using Shannon’s Entropy  

The frequency ratio (FR) model only calculates the weightage for the sub-factors and FR can’t be 

calculated for the causative factors. Shannon’s entropy is an approach in which the weightage of 

causative factors is calculated from the frequency ratio of the different sub-factors. Shannon’s 

entropy shows the uncertainty of landslide conditioning factors. The weightage of causative factors 

is calculated using the following procedure: 

 

𝑃𝑖𝑗 = 𝐹𝑅/ ∑ 𝐹𝑅

𝑚

𝑖=1

 (6.3) 

∑ 𝐸𝑖𝑗

𝑚

𝑖=1

= ∑(𝑃𝑖𝑗) × (𝑙𝑛 𝑃𝑖𝑗)

𝑚

𝑖=1

 (6.4) 

𝐻𝑖𝑗 = 1 + ∑ 𝐸𝑖𝑗

𝑚

𝑖=1

 (6.5) 
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𝑊𝑗 =  𝐻𝑖𝑗/ ∑ 𝐻𝑖𝑗

𝑛

𝑖=1

 (6.6) 

 

The equation for landslide susceptibility index (LSI) using Shannon’s Entropy (SE) can be given 

as follows: 

 

𝐋𝐚𝐧𝐝𝐬𝐥𝐢𝐝𝐞 𝐒𝐮𝐬𝐜𝐞𝐩𝐭𝐢𝐛𝐢𝐥𝐢𝐭𝐲 𝐈𝐧𝐝𝐞𝐱 (𝐋𝐒𝐈)

= 0.105 × 𝑆𝑙𝑜𝑝𝑒 + 0.016 × 𝐴𝑠𝑝𝑒𝑐𝑡 + 0.036 × 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑙𝑖𝑒𝑓 + 0.135

× 𝑇𝑊𝐼 + 0.109 × 𝐿𝑖𝑡ℎ𝑜𝑙𝑜𝑔𝑦 + 0.109 × 𝐷𝑟𝑎𝑖𝑎𝑔𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 0.148

× 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑅𝑜𝑎𝑑𝑠 + 0.159 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝐹𝑎𝑢𝑙𝑡𝑠 + 0.078

× 𝐿𝑎𝑛𝑑 𝑢𝑠𝑒                                                                                                   (𝟔. 𝟕)      

Pij is the probability density and FR is the frequency ratio of sub-factors. Wj is the weightage of 

causative factors obtained from Shannon’s entropy technique. Now, these values can be used for 

assigning weight to causative factors while frequency ratio values are used for sub-factors. 

 

Distance from the faults is considered the most important causative factor of landslides according 

to Shannon’s Entropy approach with a weightage of 0.159. The proximity to the roads is the second 

most influential causative factor of landslides. Distance from the road has a weightage of 0.148. ‘ 

 

The topographic wetness index (TWI) showed a significant impact on the occurrence of landslides 

as per the SE approach. TWI has the third-highest weightage among the causative factors i.e. 0.135. 

Lithology and drainage density show the same impact on the occurrence of landslides with a 

weightage of 0.109 each. It can be observed that the impact of aspect and land use is the least 
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among all the causative factors. The weightage of land use is 0.078 and the aspect has an SE 

weightage of 0.016 which shows its least impact on the occurrence of landslides.  

 

6.4.1. Landslide Susceptibility Map using Shannon’s Entropy  

The landslide susceptibility map by Shannon’s Entropy is based on equation 6.7. The landslide 

susceptibility index (LSI) varies from 0.402 to 1.412. The landslide susceptibility map is divided 

using the natural breaks. Figure 6.3 shows the landslide susceptibility map by Shannon’s Entropy 

approach. 

 

The results from Shannon’s Entropy approach show that around 35% of the total study area comes 

under very low and low landslide susceptibility and less than 16% of landslide area lies in such 

regions. 12.06% under very high susceptibility which contains 31.93% landslide area of the region. 

23.66% area lies under high susceptibility which contains 34.45% landslide area. The rest of the 

study area is moderately susceptible to the occurrence of landslides and around 18% of the total 

landslide area lies in this zone. The landslide susceptibility has been changed slightly as compared 

to the frequency ratio (FR) method.  

 

6.5. Hybrid Map by SE-AHP Technique 

The biasness of expert is reduced by using the Shannon’s Entropy-based approach for assigning 

weightage to causative factors while AHP is used for assigning the weightage to sub-factors of 

landslides. In this way, a hybrid map by mixing both the approaches is prepared. The SE-AHP 

approach improved the results significantly as compared to AHP approach.  
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According to the SE-AHP approach 14.71% of the study area lies under very low landslide 

susceptibility zone however only 6.89% of the total landslide area lies in this zone. The moderately 

susceptible area accounts for around 27% of the total study area and more than 28% of the landslide 

area lies in this region. Around 24% of the total study area lies under high landslide susceptibility 

while it is responsible for around 31% of the total landslide area. It can be observed that around 

11% of the study area lies under very high susceptibility towards landslides and around 20% of 

the landslide area lies in this region.  

 

6.6. Discussion, Comparisons and Validation of Results 

The landslide susceptibility maps of Shimla region using the statistical models and analytic 

hierarchy process (AHP) are prepared. These maps can be validated using the receiver operation 

characteristics (ROC) curve. The landslide inventory is divided into two parts. 30% of the total 

landslide area is used for training purposes and 70% of the landslide area is used for testing 

purposes.   

 

The receiver operation characteristics (ROC) curve is prepared between the cumulative area of 

landslide susceptibility zones and the cumulative area of landslides. Figure 6.4 shows the ROC 

curve for all three techniques. The graph is plotted between sensitivity and 1- specificity. ROC 

shows the accuracy of the model in dividing the different landslide zones. It is constructed by 

plotting the true positive rate and false-positive rate. The true positive rate is the ratio between the 

correctly predicted positive observations out of all the positive observations that are predicted. 

Similarly, the true negative rate is the ratio between correctly predicted negative observations to 

all the predicted negative observations.    
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Figure 6.4. Receiver operation characteristics curve 

 

The accuracy of the predicted results can be calculated using the area under the curve (AUC). It 

can be observed from ROC that the frequency ratio technique shows the maximum accuracy with 

a prediction rate of 0.925. The higher accuracy of the frequency ratio technique is due to the well-

distributed landslide inventory prepared in the study. The prediction rate for Shannon’s Entropy 

technique is reduced to 0.883. The newly proposed hybrid model i.e. SE-AHP approach has 
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improved the accuracy as compared to the analytic hierarchy process (AHP). The prediction rate 

of the SE-AHP approach is 0.792. It can be observed that the weightage calculated by the SE 

technique for causative factors has reduced the accuracy a little but still the results are highly 

accurate. The analytic hierarchy process (AHP) shows the least prediction rate i.e. 0.732. The 

results by AHP show the biasness in the weightage by experts. 

 

6.7. Concluding Remarks 

The landslide susceptibility maps are prepared using the Analytic Hierarchy Process (AHP), 

Frequency Ratio (FR), Shannon’s Entropy, and AHP-SE hybrid approach. These maps are 

validated using the ROC curve technique with the help of 30% of landslide data from the landslide 

inventory. It is found that the frequency ratio is the most suitable technique for studying the 

landslide susceptibility in this region. However, the newly proposed hybrid technique enhanced 

the accuracy significantly.  
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Chapter 7 

Conclusions and Recommendations 

7.1. Conclusions 

Shimla is an important region from a tourism and economic point of view. Landslides have 

remained a very crucial problem in this region. In this study, landslide susceptibility maps for 

Shimla districts are prepared in GIS environment and the statistical methods and semi-quantitative 

techniques are compared. The Analytic hierarchy process (AHP), frequency ratio (FR), Shannon’s 

entropy (SE) and Shannon’s entropy-analytic hierarchy process (SE-AHP) hybrid models are used 

to prepare landslide susceptibility maps of the study area. The following conclusions can be drawn 

from this study:  

 

1. A landslide inventory containing more than 1300 landslide events is prepared from the GSI 

factsheets and Bhukosh portal. Out of 1300 landslide data, 70% of the landslide data is 

used for the preparation of landslide susceptibility maps while 30% of the data is used for 

validation of the maps.  

 

2. Nine causative factors based on the topography, geology, drainage characteristics, 

anthropogenic characteristics and land use of the region are selected. The relative 

importance and contribution of causative factors in the occurrence of landslides are 

identified using three models i.e. frequency ratio, Shannon’s entropy, and analytic 

hierarchy process. 
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3. The landslide susceptibility maps for the region are prepared using frequency ratio, 

Shannon’s entropy, analytic hierarchy process and SE-AHP hybrid approach. The results 

are validated using the receiver operation characteristics (ROC) curve.  

 

4. For Shimla region, the accuracy on the ROC curve is found to be maximum for frequency 

ratio i.e. 0.925 while the least for the AHP technique i.e. 0.732. The prediction rate for 

Shannon’s entropy curve is found to be 0.883.  

 

 

5. A new hybrid technique i.e. SE-AHP method is proposed by hybridization of Shannon’s 

entropy and analytic hierarchy process. The main purpose of developing the hybrid 

technique is to reduce the subjectivity in the AHP technique.  

 

6. The results of the SE-AHP technique are better as compared to AHP in terms of accuracy 

but the accuracy for the SE-AHP technique is lesser as compared to Shannon’s entropy and 

frequency ratio. The prediction rate for the SE-AHP approach is found to be 0.792.  

 

7. The results of the study can be used in the study area by policymakers and risk managers 

for landslide mitigation and management.  

 

7.2. Recommendations based on the Landslide Potential of the Study Area 

It can be observed from the results that a significant area in the region lies under threat of landslides 

and slope failures. The following recommendations are proposed based on the landslide 

susceptibility maps: 
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1. The anthropogenic activities and unplanned construction in the study area have increased 

the region's slope instability. The number of landslides during the monsoon region is 

significantly increased in the study area. The extensive rainfall can trigger the landslide 

movement.  

 

2. The landslides along highways are also a matter of concern. The weak toes of slopes along 

the highway are highly prone to landslides. So, there is a need for proper planning of 

infrastructure in the study area.  

 

3. The construction activities must be planned carefully in the regions of high landslide 

susceptibility. The measures can be taken to stabilization of slopes along the highways and 

near important infrastructure.  

 

4. The up-gradation of highways and proposal of new highways must be planned according 

to the landslide susceptibility of regions.  

 

5. The regions which are highly sensitive to landslides can be identified from the landslide 

susceptibility maps and the slopes which are highly susceptible to failure can be treated 

and stabilized.  

 

7.3. Recommendations for Preparation of Landslide Susceptibility Maps 

The landslide susceptibility maps are prepared worldwide but there is no standard procedure for 

the preparation of landslide susceptibility maps. The methods for landslide susceptibility mapping 
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can be selected based on the suitability and available data. Few suggestions based on the results of 

the study for the preparation of landslide susceptibility maps are given. 

 

7.3.1. Selection of Causative Factors 

Identification and selection of causative factors of landslides play an important role in achieving 

the desired output. The causative factors can be selected based on the experience of the researchers, 

available literature and available data. Few suggestions for the selection and processing of 

causative factors of landslides are given as follows: 

 

1. Accurate data should be available for the causative factors. The data can be extracted from 

the digital elevation model (DEM) and available maps. The maps should be properly 

updated and accurate. The DEMs can be resampled for accuracy. 

 

2. The previous literature, site visits and opinion of experts can help in the selection of 

realistic causative factors of landslides. 

 

3. The multiple impacts of a single parameter should be avoided.  Some studies considered 

the effect of a single factor multiple times. Drainage density and distance from stream both 

are considered in some studies. The drainage effect may be overrated in such studies. 

Similarly, rainfall and curvature both show the effect of rainfall. So, the multiple effects of 

a single factor can be removed for better results. 

 

4. The causative factors should be independent of each other. It means that there should not 

be overlapping of the impact of causative factors on landslide susceptibility.  
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5. The resolution of the causative factor layers must be kept the same. If the available data 

has not the same resolution, the grid sizes can be changed. 

 

7.3.2. Selection of Method for Landslide Susceptibility Mapping 

The landslide susceptibility maps are prepared using numerous techniques including qualitative 

approach, quantitative approach and semi-qualitative approaches. The following recommendations 

are proposed for the selection of the suitable method of landslide susceptibility mapping: 

 

1. The selection of the method for landslide susceptibility mapping should be chosen based 

on the availability of data, field conditions and suitability of the technique. The required 

accuracy is also an important parameter in choosing the technique for landslide 

susceptibility mapping in a particular region.  

 

2. If the site visits are not possible for the preparation of landslide inventory and there is no 

historical landslide data available, expert-based techniques are the only way to prepare 

landslide susceptibility maps. However, the problem of subjectivity and less accuracy will 

remain in such cases.  The recommendations of Indian Standard Code IS 14496: 1998 can 

be considered for the preparation of landslide susceptibility maps. 

3. The expert-based technique is relatively simple to use. If the landslide inventory is 

available for the region, the experts can use the inventory to understand the impact of 

causative factors on landslides.  

 



 

108 
 

4. The quality of landslide susceptibility maps depends on the input data. So, the input data 

must be accurate for achieving a better output. The weightage of the causative factors can 

be varied for obtaining a better output. The variation of weightage of factors is possible 

only in the case of expert weightage and analytic hierarchy process (AHP). 

 

5. Semi-qualitative techniques like the analytic hierarchy process (AHP) are preferred as 

compared to the purely expert-based techniques. It helps in reducing the subjectivity of 

the opinion of experts. In the absence of landslide inventory, this technique is highly 

recommended.  

 

6. Human perception is included in the analytic hierarchy process and subjectivity is 

restricted by the consistency ratio. The pair-wise comparison of the causative factors 

depends upon the perception of the researcher. It is simple to use in a spatial environment 

and the tools required for AHP calculations are easily available. The analytic hierarchy 

process (AHP) can be performed even using an excel sheet or SPSS (statistical package of 

social science). 

 

7. The statistical techniques are highly accurate. If an accurate and well-distributed landslide 

inventory is available, statistical techniques can be used. The statistical techniques will 

require mathematical modelling and will be time-consuming as compared to expert-based 

techniques.  

 

8. Frequency ratio (FR) is found to be the simplest among statistical techniques and still has 

very high accuracy. The other methods like the information value (Info-value) technique 
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and other probabilistic methods yield almost the same accuracy and can be used based on 

the suitability of the user.  

 

9. Artificial intelligence and machine learning algorithms are relatively new techniques in 

the field of landslide susceptibility mapping. Further research is required for landslide 

susceptibility mapping using these techniques. 

 

7.4. Future Scope 

The future scope of the study is described as follows: 

1. The study can be extended to predict landslide hazards and landslides risk assessment of 

the study area.   

 

2. The seasonal variation in causative factors such as rainfall, land-use variation and 

vegetation cover variation can be studied and their impact on the occurrence of landslides 

can be observed. 

 

3. Further, the neural network and machine learning models can be applied for landslide 

susceptibility mapping of the region. 

 

4. The mitigation measure for landslide hazards can be planned considering the results of the 

study. 

 

5. The relationships between landslides and climate change can be studied for better 

prediction of landslides in the future.  
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Appendix A 
 

 

Table A1. Sample Landslide Inventory Data of 500 Landslides  
 

S.No. LU/LC Geometry TOPOSHEET Material 
Type of 

Landslide 
Longitude Latitude 

1 Barren 
Lowly dissected 

hill 
53F06 Rock Slide 77.4038 30.6026 

2 
Extensive cut 

slope 

Lowly dissected 

hill 
53F06 Rock Slide 77.4778 30.6282 

3 Barren 
Lowly dissected 

hill 
53F10 Rock   77.5153 30.6356 

4 Sparse vegetation 
Lowly dissected 

hill 
53E06 Debris Slide 77.3178 31.7157 

5 
Moderate 

vegetation 

Lowly dissected 

hill 
53E06 Debris Slide 77.3184 31.7158 

6 Barren 
Lowly dissected 

hill 
53E06 Debris Slide 77.3142 31.7188 

7 Barren 
Lowly dissected 

hill 
53E06 Debris Slide 77.4917 31.6872 

8 Barren 
Lowly dissected 

hill 
53E06 Debris Slide 77.4837 31.6829 

9 Barren 
Lowly dissected 

hill 
53E06 Debris Slide 77.4788 31.6767 

10 Sparse vegetation 
Lowly dissected 

hill 
53F06 Rock Slide 77.2965 30.5839 

11 Thick vegetation 
Lowly dissected 

hill 
53F06 Rock Slide 77.4628 30.6239 

12 Thick vegetation 
Lowly dissected 

hill 
53F06 Rock Slide 77.4608 30.6238 

13 Sparse vegetation 
Lowly dissected 

hill 
53F06 Rock Slide 77.4576 30.6221 
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14 Barren 
Lowly dissected 

hill 
53F06 Rock Slide 77.4582 30.6220 

15 Barren Talus cone 53F06 Rock Slide 77.4359 30.6419 

16 Barren 
Lowly dissected 

hill 
53F06 Rock Slide 77.4415 30.6485 

17 Barren 
Lowly dissected 

hill 
53F06 Rock Slide 77.4279 30.6656 

18 Barren 
Lowly dissected 

hill 
53F09 Debris Slide 77.5994 30.7584 

19 Barren 
Lowly dissected 

hill 
53F09 Debris Slide 77.6034 30.7613 

20 Barren 
Lowly dissected 

hill 
53F09 Debris Slide 77.6098 30.7601 

21 Barren 
Lowly dissected 

hill 
53F09 Debris Slide 77.6328 30.7570 

22 Barren 
Lowly dissected 

hill 
53F09 Debris Slide 77.6371 30.7734 

23 Sparse vegetation 
Moderately 

dissected hill 
53F09 Debris Slide 77.4094 30.8464 

24 Sparse vegetation 
Lowly dissected 

hill 
53F09 Debris Slide 77.3214 30.9678 

25 
Moderate 

vegetation 

Lowly dissected 

hill 
53F09 Debris Slide 77.3332 30.9875 

26 Barren 
Moderately 

dissected hill 
53F10 Rock Slide 77.6227 30.5577 

27 Sparse vegetation 
Lowly dissected 

hill 
53F10 Rock Slide 77.6231 30.5569 

28 Barren 
Moderately 

dissected hill 
53F10 Rock Slide 77.6231 30.5561 

29 Barren 
Moderately 

dissected hill 
53F05 Debris Slide 77.2957 30.7784 

30 Barren 
Moderately 

dissected hill 
53F05 Debris Slide 77.3074 30.7554 
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31 Barren 
Moderately 

dissected hill 
53F05 Debris Fall 77.4430 30.7555 

32 
Moderate 

vegetation 

Moderately 

dissected hill 
53F05 Debris Slide 77.2957 30.7773 

33 
Moderate 

vegetation 

Moderately 

dissected hill 
53F05 Debris Slide 77.2900 30.8489 

34 Cultivated land 
Lowly dissected 

hill 
53F05 Rock Fall 77.4413 30.7548 

35 Barren Escarpment 53F05 Rock Fall 77.4394 30.7573 

36 Barren 
Moderately 

dissected hill 
53F05 Soil Slide 77.3548 30.7903 

37 
Moderate 

vegetation 

Highly dissected 

hill 
53F05 Debris Slide 77.2976 30.8478 

38 Sparse vegetation Escarpment 53F05 Debris Slide 77.3451 30.8131 

39 
Moderate 

vegetation 
Escarpment 53E06 Debris Slide 77.4789 31.6763 

40 
Moderate 

vegetation 
Escarpment 53E06 Debris Slide 77.3857 31.6541 

41 Barren 
Highly dissected 

hill 
53E06 Debris Slide 77.3259 31.6977 

42 Barren 
Highly dissected 

hill 
53E06 Debris Slide 77.3264 31.6974 

43 Barren 
Highly dissected 

hill 
53E06 Debris Slide 77.3265 31.6973 

44 Barren 
Highly dissected 

hill 
53E06 Debris Slide 77.3265 31.6975 

45 Barren 
Moderately 

dissected hill 
53E06 Debris Slide 77.3254 31.6968 

46 Barren 
Moderately 

dissected hill 
53E10 Debris Slide 77.6564 31.5803 

47 Barren 
Highly dissected 

hill 
53E10 Debris Slide 77.6590 31.5004 
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48 Barren 
Moderately 

dissected hill 
53E15 Debris Slide 77.8692 31.3264 

49 Barren Escarpment 53E15 Debris Slide 77.9842 31.3412 

50 Barren 
Lowly dissected 

hill 
53E14 Debris Slide 77.9517 31.7188 

51 Barren 
Lowly dissected 

hill 
53E14 Rock Fall 77.9311 31.6406 

52 Barren 
Lowly dissected 

hill 
53E15 Debris Slide 77.8001 31.4581 

53 Sparse vegetation 
Lowly dissected 

hill 
53E14 Debris Slide 77.9600 31.6347 

54 Sparse vegetation 
Lowly dissected 

hill 
53E14 Debris Slide 77.9115 31.5182 

55 Sparse vegetation Escarpment 53E15 Rock Fall 77.9156 31.4088 

56 Barren 
Moderately 

dissected hill 
53E15 Rock Fall 77.9119 31.4165 

57 Barren 
Lowly dissected 

hill 
53E15 Debris Slide 77.9080 31.4054 

58 Barren 
Moderately 

dissected hill 
53E15 Debris Slide 77.8877 31.3312 

59 Barren 
Lowly dissected 

hill 
53E15 Debris Slide 77.8959 31.3303 

60 Barren 
Lowly dissected 

hill 
53E15 Debris Slide 77.9145 31.3348 

61 Barren 
Lowly dissected 

hill 
53E15 Debris Flow 77.7946 31.3675 

62 Barren 
Moderately 

dissected hill 
53E15 Rock Fall 77.7740 31.3696 

63 Barren 
Lowly dissected 

hill 
53E15 Rock Slide 77.7644 31.4001 

64 Barren Escarpment 53E15 Rock Slide 77.7536 31.4052 

65 Barren Escarpment 53F10 Rock Slide 77.6221 30.5576 

66 Barren Escarpment 53F10 Rock Slide 77.6212 30.5570 



 

134 
 

67 Barren Escarpment 53F10 Rock Slide 77.6246 30.5568 

68 Sparse vegetation Escarpment 53F10 Rock Slide 77.6219 30.5560 

69 Barren 
Moderately 

dissected hill 
53F10 Rock Slide 77.6229 30.5551 

70 Barren 
Moderately 

dissected hill 
53F10 Rock Slide 77.6236 30.5542 

71 Barren 
Moderately 

dissected hill 
53E06 Debris Slide 77.3377 31.6726 

72 Barren 
Moderately 

dissected hill 
53F05 Rock Fall 77.2998 30.8514 

73 
Moderate 

vegetation 

Moderately 

dissected hill 
53F05 Debris Slide 77.3018 30.8520 

74 Barren 
Lowly dissected 

hill 
53F06 Rock Slide 77.4779 30.5707 

75 Barren 
Lowly dissected 

hill 
53F06 Rock Slide 77.4939 30.5672 

76 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.6683 30.6900 

77 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.6687 30.6896 

78 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.6598 30.6971 

79 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.6551 30.7007 

80 Sparse vegetation 
Lowly dissected 

hill 
53F10 Rock Slide 77.6538 30.6986 

81 Sparse vegetation 
Lowly dissected 

hill 
53F10 Rock   77.6357 30.6987 

82 
Extensive cut 

slope 

Lowly dissected 

hill 
53F06 Rock Slide 77.2965 30.5804 

83 
Extensive cut 

slope 

Lowly dissected 

hill 
53F06 Rock Slide 77.2955 30.5797 
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84 
Extensive cut 

slope 

Highly dissected 

hill 
53F06 Rock Slide 77.2969 30.5762 

85 Cultivated land 
Moderately 

dissected hill 
53F06 Rock Slide 77.2950 30.5742 

86 Barren 
Lowly dissected 

hill 
53E10 Debris Slide 77.6600 31.5013 

87 
Moderate 

vegetation 

Lowly dissected 

hill 
53E10 Debris Slide 77.6508 31.5117 

88 Thick vegetation 
Moderately 

dissected hill 
53E10 Debris Slide 77.6956 31.5177 

89 
Extensive cut 

slope 

Moderately 

dissected hill 
53E10 Debris Slide 77.6964 31.5177 

90 Thick vegetation 
Lowly dissected 

hill 
53F05 Debris Slide 77.3966 30.9424 

91 
Moderate 

vegetation 

Lowly dissected 

hill 
53F05 Debris Slide 77.3040 30.8650 

92 
Extensive cut 

slope 

Lowly dissected 

hill 
53F05 Debris Slide 77.3273 30.9614 

93 Thick vegetation 
Moderately 

dissected hill 
53F05 Debris Slide 77.3252 30.9639 

94 
Extensive cut 

slope 

Lowly dissected 

hill 
53F05 Debris Slide 77.3277 30.9539 

95 
Extensive cut 

slope 

Lowly dissected 

hill 
53F05 Debris Slide 77.4111 30.7655 

96 
Extensive cut 

slope 

Lowly dissected 

hill 
53E15 Rock Slide 77.7554 31.4058 

97 
Extensive cut 

slope 

Lowly dissected 

hill 
53E16 Rock Slide 77.7641 31.0901 

98 
Extensive cut 

slope 

Lowly dissected 

hill 
53E16 Debris Slide 77.8257 31.0594 

99 
Extensive cut 

slope 

Lowly dissected 

hill 
53E16 Debris Slide 77.8245 31.0569 
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100 Thick vegetation 
Lowly dissected 

hill 
53E06 Debris Slide 77.2659 31.7193 

101 
Extensive cut 

slope 

Lowly dissected 

hill 
53E06 Debris Slide 77.2661 31.7191 

102 
Extensive cut 

slope 

Lowly dissected 

hill 
53E06 Debris Slide 77.2679 31.7183 

103 Thick vegetation 
Lowly dissected 

hill 
53E06 Debris Slide 77.2687 31.7181 

104 Barren 
Lowly dissected 

hill 
53E06 Debris Slide 77.2690 31.7178 

105 Thick vegetation Escarpment 53E06 Debris Slide 77.2749 31.7187 

106 Thick vegetation 
Lowly dissected 

hill 
53E06 Debris Slide 77.2754 31.7189 

107 
Extensive cut 

slope 

Lowly dissected 

hill 
53E06 Debris Slide 77.3278 31.6707 

108 Thick vegetation 
Moderately 

dissected hill 
53E06 Debris Slide 77.3155 31.6610 

109 Sparse vegetation 
Moderately 

dissected hill 
53E06 Debris Slide 77.3106 31.6675 

110 Thick vegetation 
Highly dissected 

hill 
53E06 Debris Slide 77.3102 31.6694 

111 Thick vegetation 
Moderately 

dissected hill 
53E06 Debris Slide 77.3067 31.6713 

112 
Moderate 

vegetation 

Moderately 

dissected hill 
53E06 Debris Slide 77.3069 31.6712 

113 Sparse vegetation 
Lowly dissected 

hill 
53F06 Rock Slide 77.2952 30.5736 

114 
Moderate 

vegetation 

Highly dissected 

hill 
53F06 Rock Slide 77.2945 30.5723 

115 Sparse vegetation 
Moderately 

dissected hill 
53F06 Rock Slide 77.4429 30.5786 
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116 
Moderate 

vegetation 

Lowly dissected 

hill 
53F06 Rock Slide 77.4431 30.5784 

117 Sparse vegetation 
Moderately 

dissected hill 
53F06 Rock Slide 77.4429 30.5780 

118 
Extensive cut 

slope 

Moderately 

dissected hill 
53F10 Rock 

Not 

Available  
77.5476 30.6008 

119 
Extensive cut 

slope 

Moderately 

dissected hill 
53F10 Rock 

Not 

Available   
77.5770 30.5938 

120 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide  77.5766 30.5945 

121 Cultivated land 
Moderately 

dissected hill 
53F10 Rock Fall  77.5907 30.5988 

122 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.7306 30.5875 

123 
Moderate 

vegetation 

Lowly dissected 

hill 
53F05 Debris Slide 77.3236 30.9715 

124 Sparse vegetation 
Moderately 

dissected hill 
53F05 Debris Slide 77.4434 30.9546 

125 Sparse vegetation 
Moderately 

dissected hill 
53F05 Debris Slide 77.3540 30.9354 

126 Cultivated land 
Moderately 

dissected hill 
53F05 Debris Slide 77.3236 30.9612 

127 
Moderate 

vegetation 

Moderately 

dissected hill 
53F05 Debris Slide 77.3372 30.9275 

128 Thick vegetation 
Lowly dissected 

hill 
53F05 Debris Slide 77.3273 30.9539 

129 
Moderate 

vegetation 

Lowly dissected 

hill 
53F05 Rock Slide 77.3242 30.9643 

130 Thick vegetation 
Lowly dissected 

hill 
53F05 Rock Slide 77.3234 30.9626 

131 
Moderate 

vegetation 

Moderately 

dissected hill 
53F05 Debris Slide 77.3138 30.9726 
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132 
Extensive cut 

slope 

Highly dissected 

hill 
53F05 Debris Slide 77.3171 30.9750 

133 
Extensive cut 

slope 

Highly dissected 

hill 
53E06 Debris Slide 77.2759 31.7192 

134 
Extensive cut 

slope 

Highly dissected 

hill 
53E06 Debris Slide 77.2767 31.7193 

135 
Extensive cut 

slope 

Highly dissected 

hill 
53E06 Debris Slide 77.2777 31.7203 

136 Barren 
Highly dissected 

hill 
53F09 Debris Slide 77.6034 30.7613 

137 Barren 
Moderately 

dissected hill 
53F09 Debris Slide 77.6098 30.7601 

138 Barren 
Lowly dissected 

hill 
53F09 Debris Slide 77.6850 30.9831 

139 
Extensive cut 

slope 

Lowly dissected 

hill 
53F09 Debris Slide 77.6846 30.9820 

140 Barren 
Lowly dissected 

hill 
53F09 Debris Slide 77.6833 30.9820 

141 Barren 
Lowly dissected 

hill 
53F09 Debris Slide 77.6757 30.9104 

142 Barren 
Lowly dissected 

hill 
53F09 Debris Slide 77.5973 30.9339 

143 Barren 
Denudational hill 

slope 
53E10 Debris Slide 77.7021 31.5530 

144 Sparse vegetation 
Transportational 

mid slope 
53E10 Debris Slide 77.7021 31.5524 

145 Cultivated land 
Lowly dissected 

hill 
53E14 Debris Slide 77.7524 31.5526 

146 
Moderate 

vegetation 

Moderately 

dissected hill 
53E14 Debris Slide 77.7521 31.5528 

147 
Extensive cut 

slope 

Highly dissected 

hill 
53E14 Debris Slide 77.7706 31.5432 

148 Barren 
Moderately 

dissected hill 
53E14 Debris Slide 77.7552 31.6364 
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149 Barren 
Highly dissected 

hill 
53E14 Debris Slide 77.7552 31.6362 

150 Barren 
Highly dissected 

hill 
53E14 Debris Slide 77.7617 31.6272 

151 Barren 
Lowly dissected 

hill 
53F10 Rock Slide 77.6516 30.7021 

152 Barren 
Highly dissected 

hill 
53F10 Rock   77.5940 30.6024 

153 Barren Escarpment 53E06 Debris Slide 77.2775 31.7032 

154 Barren 
Lowly dissected 

hill 
53E06 Debris Slide 77.2776 31.7032 

155 Thick vegetation 
Lowly dissected 

hill 
53E06 Debris Slide 77.2788 31.7033 

156 Barren Escarpment 53E06 Debris Slide 77.2781 31.7015 

157 Barren 
Lowly dissected 

hill 
53E06 Debris Slide 77.3249 31.7046 

158 
Extensive cut 

slope 

Lowly dissected 

hill 
53E06 Debris Slide 77.3241 31.7043 

159 
Moderate 

vegetation 

Lowly dissected 

hill 
53E06 Debris Slide 77.3257 31.7043 

160 Sparse vegetation 
Lowly dissected 

hill 
53F05 Debris Slide 77.3041 30.9529 

161 Sparse vegetation 
Lowly dissected 

hill 
53F05 Debris Slide 77.2983 30.7797 

162 Barren 
Lowly dissected 

hill 
53F05 Debris Slide 77.3147 30.7560 

163 Barren 
Lowly dissected 

hill 
53F05 Debris Slide 77.3406 30.7741 

164 Sparse vegetation 
Lowly dissected 

hill 
53F05 Debris Slide 77.2802 30.8811 

165 Thick vegetation 
Lowly dissected 

hill 
53F05 Debris Slide 77.2658 30.8908 

166 
Extensive cut 

slope 

Lowly dissected 

hill 
53E06 Debris Slide 77.3857 31.6538 
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167 
Extensive cut 

slope 

Lowly dissected 

hill 
53E06 Debris Slide 77.3919 31.6421 

168 
Extensive cut 

slope 

Lowly dissected 

hill 
53F09 Debris Slide 77.5957 30.9339 

169 
Extensive cut 

slope 

Lowly dissected 

hill 
53F09 Debris Slide 77.5424 30.9461 

170 Plantation 
Lowly dissected 

hill 
53F09 Debris Slide 77.5436 30.9600 

171 
Extensive cut 

slope 

Lowly dissected 

hill 
53F09 Debris Slide 77.5399 30.9472 

172 
Extensive cut 

slope 

Lowly dissected 

hill 
53F09 Debris Slide 77.5417 30.9466 

173 Barren Escarpment 53F09 Debris Slide 77.5419 30.9458 

174 Plantation 
Moderately 

dissected hill 
53F06 Rock Fall  77.4785 30.6909 

175 
Moderate 

vegetation 
Escarpment 53F06 Rock Fall  77.4805 30.6907 

176 
Extensive cut 

slope 
Escarpment 53F06 Rock Slide  77.4711 30.6837 

177 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.6346 30.5717 

178 Barren Escarpment 53F10 Rock Slide 77.6826 30.6117 

179 
Extensive cut 

slope 
Escarpment 53F10 Rock Slide 77.6831 30.5969 

180 Sparse vegetation 
Lowly dissected 

hill 
53F10 Rock Slide 77.6093 30.5545 

181 
Extensive cut 

slope 

Moderately 

dissected hill 
53F10 Rock Slide 77.6075 30.5542 

182 Cultivated land Escarpment 53F06 Rock Slide 77.4342 30.6018 

183 
Extensive cut 

slope 

Lowly dissected 

hill 
53F06 Rock Slide 77.4579 30.5953 

184 
Extensive cut 

slope 
Escarpment 53F10 Rock   77.5152 30.5990 
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185 Plantation 
Lowly dissected 

hill 
53E06 Debris Slide 77.2849 31.7082 

186 
Extensive cut 

slope 
Escarpment 53E06 Debris Slide 77.3193 31.7021 

187 
Extensive cut 

slope 
Escarpment 53E06 Debris Slide 77.2871 31.7061 

188 
Extensive cut 

slope 
Escarpment 53E14 Debris Slide 77.8390 31.5671 

189 
Moderate 

vegetation 

Lowly dissected 

hill 
53E14 Debris Slide 77.8388 31.5675 

190 Barren Escarpment 53F13 Rock Slide 77.7571 30.8306 

191 
Extensive cut 

slope 
Escarpment 53F13 Debris Slide 77.7552 30.8340 

192 
Extensive cut 

slope 
Escarpment 53F13 Rock Slide 77.7567 30.8316 

193 Thick vegetation 
Colluvial foot 

slope 
53F05 Debris Slide 77.3749 30.8752 

194 
Extensive cut 

slope 

Lowly dissected 

hill 
53F05 Debris Slide 77.3399 30.9287 

195 
Extensive cut 

slope 
Escarpment 53F05 Debris Slide 77.3312 30.8947 

196 
Moderate 

vegetation 

Lowly dissected 

hill 
53F05 Debris Slide 77.4596 30.8088 

197 Barren 
Moderately 

dissected hill 
53F05 Debris Slide 77.4226 30.8154 

198 
Moderate 

vegetation 

Moderately 

dissected hill 
53E06 Debris Slide 77.3767 31.6801 

199 
Extensive cut 

slope 

Moderately 

dissected hill 
53E06 Debris Slide 77.3784 31.6806 

200 
Extensive cut 

slope 

Moderately 

dissected hill 
53E06 Debris Slide 77.3503 31.7056 

201 Sparse vegetation 
Moderately 

dissected hill 
53E06 Debris Slide 77.3501 31.7059 
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202 
Moderate 

vegetation 

Moderately 

dissected hill 
53E06 Debris Slide 77.3499 31.7062 

203 Cultivated land 
Moderately 

dissected hill 
53E06 Debris Slide 77.3488 31.7070 

204 
Moderate 

vegetation 

Moderately 

dissected hill 
53E06 Debris Slide 77.3489 31.7089 

205 
Extensive cut 

slope 

Colluvial foot 

slope 
53E10 Debris Slide 77.7366 31.6144 

206 
Extensive cut 

slope 

Colluvial foot 

slope 
53E10 Debris Slide 77.7350 31.6152 

207 Cultivated land 
Lowly dissected 

hill 
53F05 Rock Slide 77.3234 30.9626 

208 Barren 
Lowly dissected 

hill 
53F05 Debris Slide 77.3138 30.9726 

209 Barren 
Lowly dissected 

hill 
53F05 Debris Slide 77.2618 30.8928 

210 
Extensive cut 

slope 
Escarpment 53F05 Debris Slide 77.3175 30.7573 

211 
Extensive cut 

slope 
Escarpment 53F05 Debris Slide 77.2735 30.8753 

212 
Extensive cut 

slope 

Lowly dissected 

hill 
53F05 Debris Slide 77.2701 30.8760 

213 Thick vegetation 
Lowly dissected 

hill 
53F05 Debris Slide 77.2676 30.8763 

214 Thick vegetation 
Moderately 

dissected hill 
53F05 Debris Slide 77.2664 30.8767 

215 
Extensive cut 

slope 

Lowly dissected 

hill 
53F09 Debris Slide 77.5709 30.9462 

216 Sparse vegetation 
Colluvial foot 

slope 
53F09 Debris Slide 77.5823 30.9470 

217 
Moderate 

vegetation 

Highly dissected 

hill 
53F09 Debris Slide 77.5882 30.9633 
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218 Thick vegetation 
Lowly dissected 

hill 
53E06 Debris Slide 77.2843 31.7085 

219 Cultivated land 
Lowly dissected 

hill 
53E06 Debris Slide 77.2816 31.7099 

220 Thick vegetation 
Highly dissected 

hill 
53E06 Debris Slide 77.3098 31.6973 

221 Cultivated land 
Lowly dissected 

hill 
53E06 Debris Slide 77.3072 31.6979 

222 Sparse vegetation 
Lowly dissected 

hill 
53E06 Debris Slide 77.3124 31.6943 

223 
Moderate 

vegetation 

Moderately 

dissected hill 
53E06 Debris Slide 77.3136 31.6686 

224 
Extensive cut 

slope 

Highly dissected 

hill 
53E14 Debris Slide 77.7672 31.5424 

225 Thick vegetation 
Moderately 

dissected hill 
53E10 Debris Slide 77.7446 31.5345 

226 
Moderate 

vegetation 

Highly dissected 

hill 
53F05 Debris Slide 77.2615 30.8020 

227 Sparse vegetation 
Moderately 

dissected hill 
53F10 Rock   77.5135 30.5943 

228 Sparse vegetation 
Moderately 

dissected hill 
53F06 Rock Slide 77.4810 30.6083 

229 
Moderate 

vegetation 

Moderately 

dissected hill 
53F07 Debris Slide 77.3780 30.4539 

230 Thick vegetation 
Highly dissected 

hill 
53F07 Debris Slide 77.3746 30.4546 

231 Barren 
Moderately 

dissected hill 
53F07 Debris Slide 77.3741 30.4543 

232 Barren 
Moderately 

dissected hill 
53F07 Debris Slide 77.3797 30.4487 

233 Barren 
Lowly dissected 

hill 
53E15 Debris Slide 77.8495 31.4997 
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234 
Extensive cut 

slope 

Moderately 

dissected hill 
53E15 Debris Slide 77.8408 31.4985 

235 
Extensive cut 

slope 

Moderately 

dissected hill 
53E15 Debris Slide 77.8629 31.4919 

236 
Extensive cut 

slope 

Lowly dissected 

hill 
53E15 Rock Fall 77.8681 31.4894 

237 
Extensive cut 

slope 

Lowly dissected 

hill 
53E15 Rock Fall 77.8677 31.4921 

238 
Extensive cut 

slope 
Escarpment 53E15 Rock Fall 77.8678 31.4921 

239 
Extensive cut 

slope 

Moderately 

dissected hill 
53E15 Debris Slide 77.8726 31.4973 

240 Sparse vegetation 
Lowly dissected 

hill 
53E15 Debris Slide 77.8717 31.4974 

241 Barren Escarpment 53E15 Debris Slide 77.8772 31.4887 

242 
Extensive cut 

slope 
Escarpment 53E15 Debris Slide 77.8837 31.4669 

243 Barren 
Moderately 

dissected hill 
53E15 Debris Slide 77.8843 31.4679 

244 
Extensive cut 

slope 

Lowly dissected 

hill 
53E15 Debris Slide 77.8801 31.4582 

245 Sparse vegetation 
Lowly dissected 

hill 
53E15 Debris Slide 77.8635 31.4633 

246 Barren 
Lowly dissected 

hill 
53E15 Debris Slide 77.8821 31.4524 

247 Barren 
Lowly dissected 

hill 
53E15 Debris Slide 77.8741 31.4555 

248 Barren 
Lowly dissected 

hill 
53E15 Rock Fall 77.9189 31.4153 

249 
Extensive cut 

slope 

Lowly dissected 

hill 
53E15 Rock Fall 77.9049 31.3939 

250 
Extensive cut 

slope 

Lowly dissected 

hill 
53F09 Debris Slide 77.5725 30.9687 
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251 
Extensive cut 

slope 

Lowly dissected 

hill 
53F09 Debris Slide 77.5967 30.9640 

252 Barren 
Lowly dissected 

hill 
53F09 Debris Slide 77.5920 30.9652 

253 Barren 
Lowly dissected 

hill 
53F09 Debris Slide 77.5937 30.9653 

254 
Extensive cut 

slope 

Moderately 

dissected hill 
53F09 Debris Slide 77.5969 30.9637 

255 
Extensive cut 

slope 

Moderately 

dissected hill 
53E06 Debris Slide 77.3455 31.7002 

256 
Extensive cut 

slope 

Moderately 

dissected hill 
53E06 Debris Slide 77.3454 31.6998 

257 
Extensive cut 

slope 

Lowly dissected 

hill 
53E06 Debris Slide 77.3454 31.6995 

258 Thick vegetation 
Moderately 

dissected hill 
53E06 Debris Slide 77.3453 31.6990 

259 Sparse vegetation 
Lowly dissected 

hill 
53F01 Rock Slide 77.2097 30.8745 

260 Barren 
Lowly dissected 

hill 
53F01 Rock Slide 77.2109 30.8751 

261 Barren 
Moderately 

dissected hill 
53B13 Rock Slide 77.2123 30.8782 

262 Barren 
Moderately 

dissected hill 
53B13 Rock Slide 77.2108 30.8799 

263 
Extensive cut 

slope 

Moderately 

dissected hill 
53B13 Rock Slide 77.2093 30.8813 

264 
Extensive cut 

slope 

Moderately 

dissected hill 
53F10 Rock Slide 77.6629 30.7148 

265 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.6723 30.7122 

266 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.6725 30.7137 
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267 
Extensive cut 

slope 

Moderately 

dissected hill 
53F10 Rock Slide 77.6683 30.7152 

268 
Extensive cut 

slope 

Moderately 

dissected hill 
53F10 Rock Slide 77.6649 30.7126 

269 Barren Escarpment 53F10 Rock Slide 77.6644 30.7051 

270 Sparse vegetation 
Highly dissected 

hill 
53F06 Rock Fall  77.2751 30.7443 

271 
Extensive cut 

slope 

Highly dissected 

hill 
53F06 Rock  Slide 77.2506 30.7233 

272 
Extensive cut 

slope 

Highly dissected 

hill 
53F10 Rock Slide 77.6796 30.6654 

273 
Extensive cut 

slope 

Moderately 

dissected hill 
53F10 Rock Slide 77.6923 30.6728 

274 
Extensive cut 

slope 

Moderately 

dissected hill 
53F10 Rock Slide 77.7032 30.6802 

275 Thick vegetation 
Lowly dissected 

hill 
53F10 Rock Slide 77.7037 30.6802 

276 Plantation 
Lowly dissected 

hill 
53F01 Rock Fall 77.2470 30.8374 

277 Thick vegetation 
Lowly dissected 

hill 
53F01 Rock Fall 77.2323 30.8491 

278 Sparse vegetation 
Lowly dissected 

hill 
53F01 Rock Fall 77.1586 30.8452 

279 Thick vegetation 
Lowly dissected 

hill 
53F01 Rock Fall 77.1589 30.8448 

280 Barren Escarpment 53B13 Rock Fall 77.2173 30.4774 

281 Barren 
Lowly dissected 

hill 
53B13 Debris Slide 77.2496 30.4968 

282 Thick vegetation 
Lowly dissected 

hill 
53B13 Debris Slide 77.2480 30.4966 

283 
Moderate 

vegetation 

Highly dissected 

hill 
53B13 Debris Slide 77.2476 30.4965 
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284 
Extensive cut 

slope 

Highly dissected 

hill 
53F02 Rock Slide 77.2394 30.5823 

285 
Extensive cut 

slope 

Highly dissected 

hill 
53F02 Rock Slide 77.2397 30.5817 

286 
Extensive cut 

slope 

Moderately 

dissected hill 
53F02 Rock Fall 77.0514 30.9135 

287 
Extensive cut 

slope 

Moderately 

dissected hill 
53F02 Rock Fall 77.0507 30.9138 

288 
Extensive cut 

slope 

Moderately 

dissected hill 
53F07 Rock   77.2921 30.4591 

289 Barren Escarpment 53F07 Rock Slide 77.2920 30.4622 

290 Barren Escarpment 53F10 Debris Slide 77.6980 30.6066 

291 
Extensive cut 

slope 
Escarpment 53F06 Rock Slide 77.3736 30.6082 

292 
Extensive cut 

slope 
Escarpment 53F06 Rock Slide 77.3749 30.6109 

293 
Extensive cut 

slope 

Moderately 

dissected hill 
53F06 Rock Slide 77.3883 30.5956 

294 
Extensive cut 

slope 

Moderately 

dissected hill 
53F10 Debris Subsidence 77.6928 30.6050 

295 
Extensive cut 

slope 

Moderately 

dissected hill 
53F10 Rock Slide 77.6681 30.6927 

296 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.6611 30.7008 

297 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.6615 30.7009 

298 Plantation 
Lowly dissected 

hill 
53F10 Rock Slide 77.6603 30.7013 

299 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.6625 30.6978 

300 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.6659 30.6985 
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301 
Extensive cut 

slope 

Moderately 

dissected hill 
53F10 Rock Slide 77.6669 30.6974 

302 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.6685 30.6878 

303 
Extensive cut 

slope 
Escarpment 53B13 Debris Slide 77.2489 30.4887 

304 
Extensive cut 

slope 
Escarpment 53F10 Rock Slide 77.5022 30.5708 

305 
Extensive cut 

slope 

Moderately 

dissected hill 
53F10 Rock Slide 77.5060 30.5735 

306 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.5193 30.5686 

307 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Debris Slide 77.5515 30.5581 

308 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.5530 30.5611 

309 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.5462 30.5609 

310 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.5448 30.5616 

311 
Moderate 

vegetation 

Moderately 

dissected hill 
53F10 Rock Slide 77.5425 30.5607 

312 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Debris Slide 77.5320 30.5644 

313 Barren 
Lowly dissected 

hill 
53F06 Rock Slide 77.3935 30.6163 

314 
Extensive cut 

slope 

Lowly dissected 

hill 
53F06 Rock Slide 77.3924 30.6165 

315 
Extensive cut 

slope 

Moderately 

dissected hill 
53F06 Rock  Fall 77.3637 30.6263 

316 Plantation 
Lowly dissected 

hill 
53F10 Rock Slide 77.5038 30.5969 
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317 Barren 
Lowly dissected 

hill 
53F10 Rock Slide 77.5792 30.5793 

318 
Moderate 

vegetation 

Lowly dissected 

hill 
53F10 Debris Slide 77.6691 30.5477 

319 
Extensive cut 

slope 

Moderately 

dissected hill 
53F10 Rock   77.6861 30.5486 

320 Barren 
Lowly dissected 

hill 
53F10 Rock Slide 77.6869 30.5499 

321 Barren 
Lowly dissected 

hill 
53F14 Rock Slide 77.7672 30.6546 

322 
Extensive cut 

slope 

Lowly dissected 

hill 
53F14 Rock Slide 77.7660 30.6550 

323 Barren 
Lowly dissected 

hill 
53F14 Rock Slide 77.7678 30.6533 

324 
Extensive cut 

slope 

Lowly dissected 

hill 
53F01 Rock Slide 77.2012 30.9083 

325 
Extensive cut 

slope 

Lowly dissected 

hill 
53F01 Rock Slide 77.1983 30.9096 

326 
Extensive cut 

slope 
Escarpment 53B13 Debris Slide 77.2483 30.4890 

327 
Extensive cut 

slope 
Escarpment 53F01 Debris Slide 77.2373 30.4972 

328 
Extensive cut 

slope 

Transportational 

mid slope 
53B13 Debris Slide 77.2418 30.4852 

329 Barren 
Lowly dissected 

hill 
53B13 Debris Slide 77.2486 30.4888 

330 
Extensive cut 

slope 

Lowly dissected 

hill 
53B13 Rock Fall 77.0502 30.9142 

331 
Extensive cut 

slope 

Lowly dissected 

hill 
53B13 Rock Fall 77.0495 30.9148 

332 
Extensive cut 

slope 

Lowly dissected 

hill 
53B13 Rock Fall 77.0744 30.9234 

333 
Extensive cut 

slope 

Colluvial foot 

slope 
53B13 Rock Fall 77.0831 30.8929 
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334 
Extensive cut 

slope 

Colluvial foot 

slope 
53F01 Rock Fall 77.1092 30.8934 

335 
Extensive cut 

slope 

Moderately 

dissected hill 
53F01 Rock Fall 77.0197 30.7466 

336 
Extensive cut 

slope 

Moderately 

dissected hill 
53F01 Rock Fall 77.0209 30.7456 

337 
Extensive cut 

slope 

Moderately 

dissected hill 
53F01 Rock Fall 77.1898 30.9074 

338 Barren Escarpment 53F01 Rock Fall 77.1955 30.8999 

339 Barren 
Moderately 

dissected hill 
53F01 Rock Fall 77.2123 30.9037 

340 Barren Escarpment 53F01 Rock Fall 77.2141 30.9068 

341 Sparse vegetation Escarpment 53F06 Rock Slide 77.4931 30.5645 

342 Barren Escarpment 53F06 Rock Slide 77.4947 30.5744 

343 Barren 
Lowly dissected 

hill 
53F06 Rock Slide 77.4921 30.5747 

344 Sparse vegetation Escarpment 53F06 Rock Slide 77.4951 30.5777 

345 Barren 
Colluvial foot 

slope 
53F06 Rock Slide 77.4890 30.5779 

346 Barren 
Lowly dissected 

hill 
53F06 Rock Slide 77.4889 30.5790 

347 Barren Escarpment 53F14 Rock Slide 77.7669 30.6151 

348 Barren 
Denudational hill 

slope 
53F14 Rock Slide 77.7705 30.6178 

349 Barren 
Moderately 

dissected hill 
53F06 Rock Slide 77.4382 30.6063 

350 Barren Escarpment 53F06 Rock Slide 77.4413 30.6152 

351 Barren 
Denudational hill 

slope 
53F06 Rock Fall 77.4418 30.6076 

352 Barren 
Denudational hill 

slope 
53F06 Debris Slide 77.4576 30.6084 
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353 Barren 
Denudational hill 

slope 
53F10 Rock Slide 77.5326 30.5646 

354 Barren 
Denudational hill 

slope 
53F10 Debris Slide 77.6463 30.5533 

355 Barren 
Denudational hill 

slope 
53F10 Rock Slide 77.6856 30.5487 

356 Barren 
Denudational hill 

slope 
53F10 Rock Slide 77.6999 30.6084 

357 
Extensive cut 

slope 
Escarpment 53F10 Rock Slide 77.7004 30.6080 

358 
Extensive cut 

slope 

Lowly dissected 

hill 
53F06 Rock Slide 77.3747 30.7007 

359 Cultivated land 
Moderately 

dissected hill 
53F06 Rock Slide 77.3755 30.6992 

360 Cultivated land Escarpment 53F01 Rock Slide 77.2055 30.9094 

361 
Extensive cut 

slope 

Lowly dissected 

hill 
53F01 Rock Slide 77.2130 30.9155 

362 
Moderate 

vegetation 

Lowly dissected 

hill 
53B13 Rock Slide 77.2127 30.9220 

363 Barren Escarpment 53F01 Rock Slide 77.2364 30.9316 

364 Barren 
Denudational hill 

slope 
53F01 Rock Slide 77.2094 30.9150 

365 Barren 
Denudational hill 

slope 
53F01 Rock Slide 77.2279 30.9266 

366 Barren 
Denudational hill 

slope 
53B13 Rock Slide 77.2089 30.6856 

367 Barren 
Denudational hill 

slope 
53B13 Rock Slide 77.2461 30.6721 

368 Barren 
Denudational hill 

slope 
53F01 Rock Slide 77.2488 30.6823 

369 Sparse vegetation 
Moderately 

dissected hill 
53F01 Rock Slide 77.2452 30.6717 

370 Barren Escarpment 53F01 Rock Slide 77.2373 30.6728 
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371 Sparse vegetation 
Lowly dissected 

hill 
53F01 Rock Slide 77.0659 30.8791 

372 Sparse vegetation 
Lowly dissected 

hill 
53F01 Rock Slide 77.0676 30.8730 

373 Barren 
Denudational hill 

slope 
53F01 Rock Slide 77.0792 30.8560 

374 Barren 
Denudational hill 

slope 
53F01 Rock Slide 77.0751 30.8323 

375 Barren 
Denudational hill 

slope 
53F01 Rock Fall 77.2190 30.9084 

376 Barren 
Denudational hill 

slope 
53B13 Debris Slide 77.2464 30.4989 

377 Barren 
Denudational hill 

slope 
53F01 Debris Slide 77.2443 30.4988 

378 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.7441 30.5852 

379 Cultivated land Escarpment 53F10 Rock Slide 77.7363 30.5788 

380 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.7360 30.5793 

381 Thick vegetation 
Moderately 

dissected hill 
53F10 Rock Slide 77.7354 30.5795 

382 
Extensive cut 

slope 
Escarpment 53F10 Rock Slide 77.7336 30.5801 

383 Thick vegetation 
Colluvial foot 

slope 
53F10 Rock Slide 77.7338 30.5805 

384 
Extensive cut 

slope 
Escarpment 53F10 Rock Slide 77.7303 30.5780 

385 
Extensive cut 

slope 

Moderately 

dissected hill 
53F10 Rock Slide 77.7321 30.5751 

386 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.7317 30.5757 

387 
Extensive cut 

slope 
Escarpment 53F06 Debris Slide 77.4673 30.6056 
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388 
Extensive cut 

slope 
Escarpment 53F06 Rock Slide 77.4677 30.6087 

389 
Moderate 

vegetation 

Lowly dissected 

hill 
53F06 Rock Slide 77.4718 30.6093 

390 Sparse vegetation 
Moderately 

dissected hill 
53F06 Rock Slide 77.4721 30.6092 

391 Sparse vegetation Colluvial fan 53F06 Rock Slide 77.4824 30.6035 

392 Thick vegetation 
Moderately 

dissected hill 
53F06 Rock Slide 77.4805 30.6053 

393 
Extensive cut 

slope 

Highly dissected 

hill 
53F06 Rock Slide 77.4776 30.5987 

394 
Extensive cut 

slope 

Highly dissected 

hill 
53F06 Rock Slide 77.4808 30.6048 

395 Barren 
Lowly dissected 

hill 
53F06 Debris Slide 77.4779 30.5980 

396 Barren 
Moderately 

dissected hill 
53F06 Debris Slide 77.4768 30.5983 

397 Barren Escarpment 53F06 Rock Slide 77.4957 30.5935 

398 Sparse vegetation 
Lowly dissected 

hill 
53F06 Rock Slide 77.4746 30.5940 

399 
Extensive cut 

slope 

Lowly dissected 

hill 
53F06 Rock Slide 77.4872 30.5889 

400 Plantation 
Lowly dissected 

hill 
53F06 Debris Slide 77.4781 30.5827 

401 Sparse vegetation 
Lowly dissected 

hill 
53F01 Rock Slide 76.9543 30.9886 

402 Barren Escarpment 53F01 Rock Slide 76.9086 30.9916 

403 
Extensive cut 

slope 

Lowly dissected 

hill 
53F01 Rock Slide 76.9271 30.9842 

404 Barren 
Lowly dissected 

hill 
53F06 Rock Slide 77.3732 30.7010 
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405 Cultivated land 
Colluvial foot 

slope 
53F06 Rock Slide 77.3710 30.7029 

406 Barren 
Lowly dissected 

hill 
53F06 Rock Slide 77.3715 30.7029 

407 Barren Escarpment 53F06 Rock Slide 77.3860 30.6984 

408 Barren 
Moderately 

dissected hill 
53F01 Rock Slide 77.0023 30.8777 

409 Barren 
Moderately 

dissected hill 
53F01 Rock Slide 76.9964 30.8854 

410 Barren 
Lowly dissected 

hill 
53F01 Rock Slide 76.9958 30.8905 

411 Barren 
Lowly dissected 

hill 
53F01 Rock Slide 76.9983 30.8933 

412 Barren 
Lowly dissected 

hill 
53F01 Rock Slide 77.0339 30.8950 

413 Barren 
Lowly dissected 

hill 
53F01 Rock Slide 77.0730 30.8871 

414 Barren Escarpment 53F01 Rock Slide 77.0741 30.8852 

415 Barren 
Lowly dissected 

hill 
53F01 Rock Slide 77.0986 30.8695 

416 Sparse vegetation 
Lowly dissected 

hill 
53F01 Rock Slide 77.0997 30.8724 

417 
Moderate 

vegetation 

Lowly dissected 

hill 
53F01 Rock Slide 77.0977 30.8733 

418 Cultivated land 
Moderately 

dissected hill 
53F01 Rock Slide 77.0960 30.8784 

419 
Extensive cut 

slope 

Moderately 

dissected hill 
53B13 Rock Slide 77.2278 30.8726 

420 Barren Escarpment 53F02 Rock Slide 77.0904 30.8210 

421 Thick vegetation 
Lowly dissected 

hill 
53F06 Rock Slide 77.4629 30.6165 

422 Plantation 
Lowly dissected 

hill 
53F06 Rock Slide 77.4677 30.6300 
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423 
Moderate 

vegetation 

Lowly dissected 

hill 
53F06 Rock Slide 77.4757 30.6314 

424 
Extensive cut 

slope 

Lowly dissected 

hill 
53F06 Rock Slide 77.2896 30.5971 

425 
Extensive cut 

slope 
Escarpment 53F06 Rock Slide 77.2886 30.5969 

426 Sparse vegetation 
Moderately 

dissected hill 
53F06 Rock Slide 77.2865 30.5964 

427 
Extensive cut 

slope 

Moderately 

dissected hill 
53F06 Debris Slide 77.2855 30.5963 

428 Cultivated land 
Lowly dissected 

hill 
53F06 Rock Slide 77.2891 30.6084 

429 
Moderate 

vegetation 

Moderately 

dissected hill 
53F06 Debris Slide 77.2880 30.6088 

430 Barren 
Lowly dissected 

hill 
53F06 Rock Slide 77.2855 30.6096 

431 Plantation 
Lowly dissected 

hill 
53F06 Rock Slide 77.2885 30.6118 

432 Plantation 
Lowly dissected 

hill 
53F06 Rock Slide 77.4595 30.5937 

433 
Moderate 

vegetation 

Highly dissected 

hill 
53F10 Rock 

Not 

Available  
77.5179 30.6456 

434 
Extensive cut 

slope 

Highly dissected 

hill 
53F10 Rock Slide 77.7292 30.5830 

435 Sparse vegetation 
Lowly dissected 

hill 
53F10 Rock Slide 77.7296 30.5774 

436 
Extensive cut 

slope 

Highly dissected 

hill 
53F10 Rock Slide 77.7262 30.5850 

437 Thick vegetation 
Moderately 

dissected hill 
53F10 Rock Slide 77.7127 30.5928 

438 Thick vegetation 
Moderately 

dissected hill 
53F06 Rock Slide 77.2779 30.5201 
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439 Thick vegetation 
Moderately 

dissected hill 
53F06 Rock Slide 77.2774 30.5203 

440 Thick vegetation 
Moderately 

dissected hill 
53F06 Rock Slide 77.2776 30.5245 

441 
Extensive cut 

slope 

Lowly dissected 

hill 
53F07 Rock Fall 77.2875 30.4863 

442 
Extensive cut 

slope 
Escarpment 53F07 Rock Slide  77.2874 30.4868 

443 
Extensive cut 

slope 

Moderately 

dissected hill 
53F01 Rock Slide 76.9317 30.9431 

444 
Extensive cut 

slope 

Moderately 

dissected hill 
53F01 Rock Slide 76.9812 30.9002 

445 
Extensive cut 

slope 

Moderately 

dissected hill 
53F01 Rock Slide 77.2456 30.5358 

446 
Extensive cut 

slope 

Lowly dissected 

hill 
53F01 Rock Slide 77.2454 30.5368 

447 
Extensive cut 

slope 

Lowly dissected 

hill 
53F01 Rock Slide 77.2415 30.5239 

448 
Extensive cut 

slope 

Moderately 

dissected hill 
53F01 Rock Slide 77.2429 30.5550 

449 
Extensive cut 

slope 

Moderately 

dissected hill 
53F01 Rock Slide 77.2430 30.5553 

450 
Extensive cut 

slope 

Lowly dissected 

hill 
53F01 Rock Slide 77.2426 30.5554 

451 
Extensive cut 

slope 

Lowly dissected 

hill 
53F01 Rock Slide 77.2427 30.5559 

452 
Extensive cut 

slope 

Denudational hill 

slope 
53F01 Rock Slide 77.2429 30.5570 

453 
Extensive cut 

slope 

Denudational hill 

slope 
53F01 Debris Slide 77.2384 30.4900 

454 
Extensive cut 

slope 

Denudational hill 

slope 
53F01 Debris Slide 77.2170 30.4799 
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455 
Extensive cut 

slope 

Moderately 

dissected hill 
53F01 Debris Slide 77.2227 30.4912 

456 Cultivated land 
Moderately 

dissected hill 
53F01 Debris Slide 77.2211 30.4940 

457 
Extensive cut 

slope 

Moderately 

dissected hill 
53B13 Debris Slide 77.2207 30.4938 

458 Sparse vegetation 
Lowly dissected 

hill 
53B13 Rock Slide 76.9780 30.9764 

459 Barren 
Lowly dissected 

hill 
53B13 Rock Slide 76.9785 30.9753 

460 
Extensive cut 

slope 

Moderately 

dissected hill 
53F01 Rock Slide 76.9829 30.8364 

461 Barren 
Moderately 

dissected hill 
53F01 Rock Slide 76.9996 30.8446 

462 
Extensive cut 

slope 
Escarpment 53F01 Rock Slide 76.9987 30.8449 

463 
Extensive cut 

slope 

Lowly dissected 

hill 
53F01 Rock Slide 76.9948 30.8461 

464 Cultivated land 
Lowly dissected 

hill 
53B13 Rock Slide 76.9945 30.8488 

465 Plantation 
Lowly dissected 

hill 
53B13 Rock Slide 76.9943 30.8509 

466 Sparse vegetation 
Lowly dissected 

hill 
53F02 Rock Slide 77.0000 30.8535 

467 
Extensive cut 

slope 

Moderately 

dissected hill 
53B13 Rock Slide 76.9968 30.8512 

468 Barren 
Lowly dissected 

hill 
53F01 Rock Slide 76.9932 30.9969 

469 Barren 
Moderately 

dissected hill 
53F01 Rock Slide 76.9801 30.9957 

470 Barren Escarpment 53F01 Rock Slide 77.1486 30.8387 

471 Barren 
Moderately 

dissected hill 
53F01 Rock Slide 77.1448 30.8404 
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472 Barren Escarpment 53F01 Rock Slide 77.0771 30.8247 

473 Barren 
Moderately 

dissected hill 
53F02 Rock Slide 77.2474 30.5265 

474 Barren 
Moderately 

dissected hill 
53F14 Rock Slide 77.7658 30.5674 

475 Barren 
Lowly dissected 

hill 
53F14 Rock Slide 77.7550 30.5831 

476 Barren 
Lowly dissected 

hill 
53F14 Rock Slide 77.7550 30.5831 

477 Barren 
Moderately 

dissected hill 
53F14 Rock Slide 77.7591 30.5759 

478 Barren 
Moderately 

dissected hill 
53F06 Rock Slide 77.4709 30.5259 

479 Barren 
Lowly dissected 

hill 
53F06 Rock Slide 77.4759 30.5257 

480 Thick vegetation 
Moderately 

dissected hill 
53F06 Rock Slide 77.4750 30.5257 

481 Thick vegetation 
Moderately 

dissected hill 
53F06 Rock Slide 77.4704 30.5261 

482 
Extensive cut 

slope 

Moderately 

dissected hill 
53F06 Rock Slide 77.2831 30.5323 

483 
Extensive cut 

slope 

Moderately 

dissected hill 
53F06 Rock Slide 77.2823 30.5317 

484 
Extensive cut 

slope 

Moderately 

dissected hill 
53F06 Rock Slide 77.2824 30.5314 

485 Cultivated land 
Lowly dissected 

hill 
53F07 Rock   77.3289 30.4627 

486 
Extensive cut 

slope 

Highly dissected 

hill 
53F10 Rock Slide 77.7027 30.5441 

487 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.7039 30.5416 

488 
Extensive cut 

slope 

Lowly dissected 

hill 
53F10 Rock Slide 77.7022 30.5479 
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489 
Extensive cut 

slope 
Escarpment 53F10 Rock  Slide 77.6339 30.6994 

490 
Extensive cut 

slope 
Escarpment 53F06 Rock Slide 77.2952 30.5979 

491 
Extensive cut 

slope 
Escarpment 53F06 Rock Slide 77.2966 30.5984 

492 
Extensive cut 

slope 

Lowly dissected 

hill 
53F06 Rock Slide 77.2963 30.5942 

493 
Extensive cut 

slope 
Escarpment 53F06 Rock Slide 77.2968 30.5940 

494 
Extensive cut 

slope 
Escarpment 53F06 Rock Slide 77.2981 30.5929 

495 
Extensive cut 

slope 

Lowly dissected 

hill 
53F06 Rock Slide 77.2974 30.5922 

496 
Extensive cut 

slope 

Lowly dissected 

hill 
53F06 Rock  Slide 77.3652 30.5663 

497 Sparse vegetation 
Highly dissected 

hill 
53F06 Rock Slide 77.3990 30.5667 

498 
Extensive cut 

slope 

Lowly dissected 

hill 
53F06 Rock  Slide 77.3878 30.5681 

499 
Extensive cut 

slope 

Lowly dissected 

hill 
53F06 Rock Slide 77.4962 30.5883 

500 Barren Escarpment 53F06 Rock Slide 77.4913 30.5865 
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Appendix B 

 

 

Figure A1: Some Photographs of Landslides from the Study Area 


