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ABSTRACT 

This research work aims to model and predict Flexural strength and 0.2% offset yield strength of 

an acrylonitrile-butadiene-styrene (ABS) manufactured through 3D printing using FDM. This 

process been studied and optimised using a machine learning process. An artificial neural network 

(ANN) multi-parameter regression model was created and then input–output relations model 

developed by this network was optimised by genetic algorithm (GA) to avail optimised parameters. 

an L27 Taguchi array was used to combine the specific parameters (nozzle diameter, layer height, 

fill density, printing velocity, raster orientation and infill pattern) to perform experiments. All 

samples were subjected to a three-point bending test performed according to the ASTM D7264 

standard aimed to obtain Flexural strength and the 0.2% offset yield strength. ANN models were 

highly optimized and provided a better approach for the prediction of higher values of E and RP0.2 

than their experimental. ANN-GA based modelling and optimization suggest a direct relation 

between choosing process parameters correctly and enhancing 3D- printing performance. ANN-

GA approach provides a set of optimal solutions for obtaining suitable output values. Infill pattern 

plays a critical role in providing the strength. Patterns intermediated to linear, rectilinear and 

honeycomb can be suggested for desired Flexural strength and 0.2% offset yield strength within 

constraints of input factors.  
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Chapter 1 

1. INTRODUCTION  
 

1.1 Additive Manufacturing 

Additive Manufacturing Several terms including additive fabrication, free form 

fabrication, direct part manufacturing, layered manufacturing refers to additive 

manufacturing (AM) [1]. According to ASTM designation, additive manufacturing is the 

process of joining materials to make objects from 3-D model data, usually layer upon layer, as 

opposed to subtractive manufacturing technologies [2]. Classification for additive 

manufacturing technologies is shown in Figure 1.1 from [3]. AM technology classes are 

provided by these groups: binder jetting, material extrusion, directed energy deposition, 

powder bed fusion, material jetting, sheet lamination, and vat photopolymerization. Additive 

Manufacturing technologies enable the creation of geometrically complicated components 

and devices with graded material compositions that can be modified for the design and 

manufacturing of cellular structures [3]. 

 

Figure 1.1 Categorization of Additive manufacturing technologies [3].  
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Material-based extrusion is a popular additive manufacturing approach. Additive 

manufacturing (AM) techniques are capable of meeting this need while also attaining zero 

waste by lowering the material-to-product ratio [4]. The ease of accomplishing rapid 

prototyping applications positions AM methodologies as an integral component of the 

sustainable manufacturing landscape [5, 6]. As a manufacturing concept, rapid prototyping 

(RP) refers to a collection of production processes used to quickly build a functioning 

component, element and or assembly using derived 2-D profiles from processed computer 

assisted design (CAD) data. The 2-D profiles are built in 2-D layers that are built on top of 

each other. The application of a layer-wise technique in production is at the heart of additive 

manufacturing. This approach is also applied in developing fuel cells [7]. 

 

1.1.1 Fused Deposition Modelling 

Scott Crump invented and patented FDM as an additive manufacturing process. STRATASYS, 

Inc. owns the industrialised version of FDM [8]. Figure 1.2 depicts FDM technology, which is 

effectively a G-code controlled vertical material extrusion process. FDM manufactures parts that 

are suitable for mechanical, chemical, and biological applications (end-use parts). Figure 1.2  

depicts the fundamental components of the FDM process. The fused deposition modelling process 

begins with the appropriate slicer software. The slicer software receives the 3-D CAD information 

for the part in the form of a stereolithography (STL) file. 

Polymeric materials are usually employed in FDM. PLA is a accepted polymer employed in 

desktop printing [9]. Although the basic tolerances and accuracy of FDM printed materials are 

primarily determined by the printer's calibration and the complexity of the model. PLA is not as 

ductile as certain other thermoplastics, such as ABS, hence it is commonly used for rapid 
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prototyping where the form is vital and thus process parameters has a significant role during 

printing. 

 

Figure 1.2 Basic components of material extrusion process. 

 

To handle larger pieces and print at greater deposition rates, build volumes are raised. In 

2014, Qingdao Unique Products Develop Co Ltd, a local manufacturer of 3-D printers in 

China, produced a printer with a build volume of 12 x 12 x 12 m for the purpose of building 

construction. The usage of light weight graphene glass fibre reinforced plastic as printing 

material is one of the new printer's major advantages. The printing material is also tough, 

corrosion-resistant, and eco-friendly. Builders Extreme 2000 3D, with a build space of 

700*700*1820 mm with an integrated heated bed, two nozzles, and colour-mixing 

possibilities, is another example of a printer. The InnoFil Pro1 filament is made of reinforced 

PLA, making it suitable for engineering-grade 3D printing. The Delta Wasp 3MT 3D printer 

by Italian 3D printing pioneers WASP. Is able to 3D print concrete, clay and plastics a layer 
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resolution 0.5 mm and on a cylindrical build space of 100 x 100 cm. In addition, has the 

capability to act as a CNC mill. The Big Delta 3D printer, released in September 2015, prints 

clay funneled through a central nozzle.  

 

Figure 1.3 Basic procedure involved in FDM process [10]. 

The UPrint SE series, with dimension-1200es series, Stratasys’ Mojo, MakerBot’s Replicator, 

3D System’s Cube and Fortus-250mc series are also examples of FDM printers. FDM 

machines have been developed by various manufacturers and the FDM process is performed 

by the numerous machine models. However, the basic steps of the process as shown in Fig. 

1.3 is unchanged. Raising the material (polymer) till the glass transition point (temperature) is an 

essential phase in the FDM process [11]. Extrusion is more efficient at temperatures significantly 

greater than temperature at the material's glass transition. At these temperatures, the viscosity of 

the polymer decreases while its flow increases.
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Figure 1.4 Materials commonly used in FDM. 

 

1.1.2 Image Based Thermography 

While modern additive manufacturing machines are substantially improved over previous 

versions, many of the same concerns highlighted by early researchers in the 1980s 

(temperature management issues, porosity, cracking, material supply issues) persist. This is 

largely attributable to a lack of in process monitoring and closed loop control algorithms 

used to manage machine operation [12]. Image-based thermography relies heavily on 

infrared imaging. The benefits of thermography include its non-invasive and relatively quick 

approach, as well as its capacity to process and present surface temperature distribution during 

FDM [13]. 

1.2 Research Rationale and Objectives 

FDM Selecting the appropriate 3D printing material to manufacture them is also enhance 

the mechanical performance of the workpieces. The most often used polymeric materials in FDM 

techniques are acrylonitrile-butadiene-styrene (ABS) and polylactic acid (PLA). For certain 

applications, other materials such as composites and ceramic are also used. Many authors have 

characterized the mechanical behaviours of each material to confirm which materials are suitable 

in different cases [14].  For the estimation of these properties of materials different mechanical 

assessments are used such as bending tests [15], tensile tests [18–20] and fatigue tests [10, 21, 22].  
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Since AM have progressed so greatly, then there must be many challenges to be addressed, 

especially when refers to Replication Rapid Prototyping machines [22]. AM is typically utilised 

in small-scale applications and is built as an open-source device, allowing users to customise and 

modify production routines by changing different parameters to generate G-Code. Therefore, the 

use of the Fused Deposition Modelling technique in 3D printing is becoming popular, and its 

parametric optimization is even more crucial for the reduction of processing time and cost. There 

are different techniques used to optimize FDM process parameters, such as Taguchi‘s 

methodology, surface response methodology, etc [23, 24]. Also, in terms of convergence time, the 

precision of tests, and so on, they have obvious disadvantages. The key issue connected with the 

modern Taguchi approach, for example, it’s inability to be used for the simplification of multi-

objective test sets [25–27]. Hence, the process variables of FDM were attempted to be optimized 

with iterative algorithms [28]. The primary advantages of these algorithms are their versatility to 

be applied to/versatility with regards to application over any type of constrained or unconstrained 

problems. Global search, optimization, and generalization [25, 26] can be carried out by genetic 

algorithms (GAs). A number of parametric issues in production and manufacturing processes have 

also been solved by artificial neural networks (ANNs), such as the recognition and learning 

patterns in any data set and the improvement of recognition capability, predict, cluster, or model 

patterns [27, 28].  Here the feasibility of integration ANN modelling with GA optimization was 

implemented to predict optimum FDM parameter conditions. The development of an artificial 

neural network and genetic algorithm (ANN-GA), a method of modelling and optimization used 

to optimize a multi-objective problem, is defined in this research study. The effect of process 

parameters on Flexural strength ‘E’ and the 0.2% offset yield strength. Furthermore, a parametric 

study is also done.  
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Chapter 2 

2. LITERATURE REVIEW 
 

 

With the increasing demand for higher quality, faster reproducibility, faster 

delivery, and mass customization, the introduction of additive manufacturing into the 

manufacturing sector provides relief to both ends of the Supply Chain, namely the 

producer and the end consumer. It was unthinkable a decade ago, but it is gradually 

becoming the norm in our society. 

 

Figure 2.1 Contribution of AM in different Sectors 

 

 Additive Manufacturing is quickly becoming one of the most ground-breaking 

technological applications in the manufacturing industry. According to the Wohler's 

Report (2018), motor vehicles and aerospace, medical and dental, and business machines 
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and consumer products contributed 77.9 percent to the industrial adoption of additive 

manufacturing. In 2018, 3D printing metals saw the greatest growth of 42 percent. 

2.1 Need for Additive manufacturing in industrial sector 

By lowering delivery costs and shortening delivery lead times, additive 

manufacturing technology has the ability to alter the dynamics of traditional supply chain 

systems. Using AM technology, there can be on demand production of parts by the 

manufacturers, thus reducing the need and cost of maintaining spare parts inventory. With 

this technology, the user can make parts of practically any shape without the typical 

limitations like the manufacturability limitations. In addition, series of parts with 

individual changes can be made as simply as is the case of identical parts. 

 

Figure 2.2 A graph showing the increasing trend in AM usage 

Nexa3D creates ultra-fast 3D printers that can reduce printing cycles of precision 

functional parts from hours to minutes. ParaMatters designs and manufactures AM-ready, 

high-quality, lightweight parts for aerospace and automotive applications. UNYQ 

employs 3D printing to create novel mass-customized products that reinterpret 
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orthopaedic devices. Supercraft3D uses 3D printers to create medical models for use by 

surgeons, educational institutions, and diagnostic centres. 

 

Figure 2.3 Benefits of using AM 

 

Additive manufacturing is the process of producing parts by layering raw materials 

one by one in order to obtain a part with the required digital design fed into the software. 
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Because 3D printing machines are used in the process, it is also known as 3D printing. 

Rapid prototyping is a set of methods for quickly transforming a design/model of a part 

or parts into a scale model using 3D computerised design. The three terms are used 

interchangeably. 

Additive Manufacturing is a disruptive innovation and is being adopted by the 

Industry and research by the academician.  Extensive developments are taking place in 

making this technological development useable for the Industry. Presently industry is 

using this extensively in the product design supply chain. The adoption of AM in the 

industry is still very limited, and there has not been much on research about the impact 

additive manufacturing in production systems - enabling the demand driven supply chain. 

2.2 Process of the 3D Printing 

The FDM process is an additive manufacturing technique based on material 

extrusion. The basic components are presented in Figure 2.4 from [33]. The operation 

entails layering polymeric or metal filament that has been unwound from a spool along 

the X, Y-axis. Following the completion of each layer, the extruder head moves upwards 

(positive Z orientation) for the next layer. 
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Figure 2.4 Schematic view of the fused deposition modelling process components. 

 

Because the nozzle incorporates resistive heaters that hold the plastic at a temperature 

just above its melting point, allowing it to flow freely and build the layer, the produced 

material is often made available in filament form. As the plastic bonds to the layer below, 

it instantly hardens. The platform lowers as soon as the layer is completed, and the 

extrusion nozzle deposits another layer. The visibility of the printing layers is a 

distinguishing feature of FDM printing. 

FDM represents one of the most common techniques for proto-typing in AM [34]. It is 

one of the additive manufacturing technologies that has dramatically changed the printing and 

manufacturing industries. It broke the printing industry's 2D printing limits, allowing anyone 

to easily bring their 3-dimensional virtual world creations to reality. The manufacturing 

industry's creation of items is no longer limited to the conventional system of using manual 
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labour and distinct machinery for different portions. FDM technology, on the other hand, has 

limits. The materials that can be copied, difficulty in 3D printing highly detailed products, and 

challenges with end product quality are three of these significant limits. As a result, there has 

always been a need for development, especially in these three areas. Hundreds of FDM printer 

manufacturers exist today, some of which produce open-source FDM printers. Most of these 

manufacturers work hard to suit society's current demands. FDM research is classified into 

three categories: innovative applications, materials, and system enhancements. The great 

majority of system improvements are software-based, such as tool path creation and slicing 

algorithms and part orientation optimization. 

 

2.3 Thermomechanical Aspects of Fused Deposition Modelling 

The temperature of the material is raised to its glass transition temperature during the extrusion 

process (this differs from the material’s melting point). The glass transition temperature denotes 

the temperature at which the amorphous phase begins. This differs from the melting point (where 

crystalline phase separates and starts to flow). Temperature is higher than room temperature for 

plastics. [35]. Fig. 2.5 and Fig 2.6 from shows a drop in elastic modulus as temperature 

increases. As the temperature rises, the polymer transitions from a glassy state to a leathery 

state, then to a rubbery state, and finally to a liquid flow.



13 
 
 

 

Figure 2.5 Modulus values change with temperature and transitions in materials can be seen as changes in the E’ 

or tan delta curves. 

 

Figure 2.6 Plot showing the influence of temperature on elastic modulus of plastics. 

 

FDM fabricated parts also show anisotropic material behaviour [36]–[38]. This has been 

observed through the strength analysis effect of print orientation and other spatial 
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parameters such as raster path on FDM printed parts. The tensile and yield strength 

results show a significant anisotropic effect [39]–[42]. 

2.4 Potential Defects in Fused Deposition Modelling 

Defects generally arise from either the print material characteristics (which dependent 

upon its mechanical and rheological properties) or from the fused deposition processes 

[43]. Defects can occur in regions of enhanced stress concentration [44]. Sharp features 

that amplify mechanical stress have a negative impact on the ultimate mechanical 

properties. As a result of the staircase and slicer conversion effect, surface flaws emerge 

(which produces polygonal finite elements). Surface faults can also appear as burrs in the 

support structure, furrowed top surface, and start/end problems. 

The slice manufacturing method is primarily responsible for the staircase effect; it can 

be corrected by adjusting the layer height and processing strategy. The chordal effect, on 

the other hand, is caused by 'stl' files, which approximate surfaces as a web of triangles 

and are commonly used by many RP methods. Although choosing a different surface 

modelling format will be effective, a short-term solution will be to offset the part 

positively and complete with a post-process finishing [45]. 

Internal defects in polymer and green ceramic parts can be caused by a combination 

of hardware and software constraints as well as material properties. Voids in the 

surrounding areas of the borders caused by poor filling can result in insufficient 

material flow filling up the intersections, resulting in a void. This challenge can 

however be corrected by allocating a negative offset to the perimeter and expanding 

the flow rate at the points of intersection [43]. 

Warping and curling defects, as shown in Fig. 2.7, manifest themselves as the printed 

part curving or bending upwards from the build plate or platform. The build layers cool as 
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they are deposited; however, previously deposited layers have already cooled and 

contracted. 

  

Figure 2.7 Cooling of build layers and part contraction in FDM process. 

As a result, the top layer contracts in relation to the bottom layer. New layers have 

a higher temperature than the previous one, resulting in a thermal gradient between the 

layers and the resulting thermal stresses. Warping occurs as a result of the part cooling 

and contracting. Furthermore, when the thermal stresses are greater than bonding 

between the base layer and the build plate this leads to the part edge curling upwards 

[46]. 

To facilitate a better printing process, the build plate temperature is raised prior to 

material deposition during printing to avoid warping. Furthermore, the build plate 

temperature is kept slightly below the point at which the material begins to solidify (glass 

transition temperature). Thus, ensuring that, the base of the build part stays flat and 

adhered to the build plate [47]. 

Elephants  foot defect occurs when the first layer of a structure is unable to support the 

weight of subsequent layers. As a result, the base of the part swells outwards. 

The presence of excess melted material in the extruder nozzle is referred to as a 

string defect. As a result, unwanted thin strips of print material are produced. This 
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causes the print material to dribble. Printer manufacturers have integrated retraction 

capabilities into the printer nozzle to prevent strings 

 

2.5 State of the Art in Fused Deposition Modelling 

Shortening build time and improving the surface accuracy especially for complex product 

models is an important interest in research in RP [48]–[50]. The slicing process is also 

susceptible to the stair-case effect, leading to poor surface quality of end-products [50], [51]. 

The adaptive tool path generation method is a viable solution to these concerns [52]. The 

trajectory of the nozzle (print head) during the manufacturing process is referred to as the tool 

path in FDM to fill the interior of each layer. There are two main tool path trajectories for FDM 

processes: contour parallel path and orientation parallel path [53] as shown in Fig. 2.8 from 

[52]. 

Jin et al. [52] proposed an approach which covers both surface accuracy and fabrication 

efficiency. The proposed method is divided into three steps. For the following tool path 

generation, an adaptive slicing method that takes into account both surface quality and 

building time is proposed first. Adaptive slicing can reduce the staircase effect by adjusting 

layer thickness based on the geometric properties of models.  

Second, a hybrid tool path strategy was introduced to improve the accuracy of the 

boundary contours and reduce the time required for interior filling. This step is an adaptive 

process that determines the best proportional relationship between the two types of tool 

paths: contour parallel path and direction parallel path, based on the specific fabrication 

requirements.  

Unfilled areas and unstable speed result from abrupt changes in tool path orientation. 

Tool path adjustment reduces errors and helps to improve fabrication quality. 
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Figure 2.8 Cooling of build layers and part contraction in FDM process. 

 

The tool path adjustment allows for a better balance of fabrication quality and building 

time. This balance was achieved by selecting the nozzle speed, the number of contour 

parallel tool paths, and the orientation of parallel tool paths. The parameters are chosen 

based on the accuracy required and the geometrical information of the model. 3D Printer 

farms are the most recent in small manufacturing technology and an example of an 

improved software-based system. It is the configuration of multiple printers in a cluster to 

run and monitor the printers using common software. Products can be produced at higher 

speeds and brought to market faster by utilising multiple printers set up in an array. The 

initial investment is less than that of purchasing a single industrial 3D printer, and the array 

can be scaled up more economically as needed. The Stratasys Fortus 380 is an example of 

an FDM printer farm. It has a maximum print size of 355 x 305 x 305 mm and can print in 

7 materials including ABS, ASA, PC and Nylon. According to founder Rene Gurka, 

founder of BigRep, the true future of 3D printing is in 3D printing farms, where numerous 

large-scale models work in tandem and are managed by a single system. As FDM extruder 

technology evolved, material deposition techniques such as adaptive filament deposition 
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(AFD) and planar layer deposition (PLD) were developed for freeform metal and ceramic 

manufacturing. AFD controls the volumetric flow rate of liquids through the extrusion 

orifice by using a conical spindle inside a deposition head. The liquid jet is cooled by the 

ambient air temperature after leaving the orifice and becomes a filament. Retracting the 

spindle away from the orifice allows for higher flow rates, resulting in a larger filament. 

Various polymeric materials have been explored for application in FDM, however 

commercial FDM machines mostly use acrylonitrile butadiene styrene (ABS) and 

polylactic acid (PLA) [20]. 

While there are different types of materials that can be used in AM, the material 

properties are typically not as strong as their conventionally manufactured counterparts 

due to the anisotropy caused by the layer-by-layer [54]. Recent research has shown the 

viability of composite materials such as metal matrix composites, ceramic 

composites, natural fibre-reinforced composites and polymer matrix composites [55]. 

Researchers at Rutgers University in the United States have developed fused 

deposition of ceramics (FDC) [10]. Currently, the most frequent FDM filaments for 

printing components are PLA, ABS, and Nylon, while PVA and HIPS are the most 

used support filaments because to their dissolvability. TPE or TPU (Thermoplastic 

polyurethane) filaments print parts with much higher elasticity than ABS and PLA. 

Carbon fibre, metal powder, or wood fibres with PLA, Nylon, or ABS are examples 

of composite filaments. Nylon has the highest strength and flexibility of the three most 

common filaments, followed by PLA, which has a medium strength and the least 

flexibility. Finally, ABS has the lowest strength while being more flexible than PLA. 

ABS has the advantage of being dissolvable in acetone which gives the ability to 

chemically treat its surface for better finishing [60]. 
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2.6 Research in Monitoring Fused Deposition Modelling Process 

The observation of the interior workings of the 3D printer during the fusion process 

stage is referred to as additive manufacturing process monitoring. Process monitoring also 

encompasses the observation of the printing process parameters [56]. An understanding 

of what takes place during this stage will lead to the development of a quality control 

system which would aid in industrial additive manufacturing [12]. This is critical in the 

biomedical, aerospace and defence industries, also would improve manufacturing time 

and enhance mass production of customized parts. In their study, [57] used ultrasonic 

excitation as a means of detecting filament bonding failures introduced by manipulating 

the print bed temperature during the fused deposition modelling build process. The work 

demonstrated the capability of correcting these filament bonding failures by introducing a 

correction mechanism through tunable control of another printer process parameter. The 

results demonstrated progress toward fully closed loop control for fused deposition 

modelling processes by demonstrating the detection and correction of filament bonding 

failures in situ.  

Nozzle clogging in FDM printer extruders leads to process errors and subsequent print 

failure. Current FDM machines have limited techniques to monitor process conditions to 

minimize process errors such as nozzle clogging, [58] presented a physics-based dynamic 

model suitable for monitoring nozzle clogging in FDM. The method involved simulating 

nozzle clogging with nozzles ranging in diameter from 0.5 to 0.2 mm and change intervals of 

0.1 mm. Experiments were conducted by measuring the vibration of the liquefier block mount 

during material extrusion. The results showed that the amplitude of the liquefier block mount 

transverse vibration increases non-linearly as the nozzle blockage progresses. As a result, there 

are compelling arguments for incorporating sensors to detect the onset of nozzle clogging as a 

viable solution. Despite ongoing research to improve current AM products, issues such as 
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porosity, cracking, thermal management issues, and material supply issues persist. This is 

attributable to the inadequacy of integrated systems to study the on-going fabrication, and 

closed loop control algorithms for machine operation oversight [12]. Because of the 

aforementioned scarcity, manufacturers adjust process parameters based on heuristics and 

previous fabrication runs, yielding limited improvement in part quality and necessitating 

numerous builds runs for convergence. While some process monitoring methods can be 

applied to all additive manufacturing techniques, others are specific to a specific 3D 

printing type and can only be adapted to it. 

The typical machine condition monitoring sequence includes fabrication parameter 

choice protocols, perception and data retrieval, data conversion handling and attribute 

elicitation, intellective judgment and response [59]. Data-driven models utilize historical 

data only to build analytical models for product property or failure predictions [60]–[63]. 

In a study on process monitoring, [59] employed acoustic emission (AE) technique for 

in-situ monitoring of FDM machine conditions. The method identified and classified 

machine normal and abnormal states. The normal states of the machine were determined 

to be material loading, normal extruding, and idle. Print material run-out, extruder semi-

blocked with chatter and uneven extrusion due to heater breakdown, low-quality filament, 

extruder wear, or working environment contamination, and total blockage without 

extrusion were all classified as abnormal machine states. The time-domain characteristics 

of AE hits were used as indicators. The FDM printer states monitored during the 

fabrication process are shown in Fig. 2.9 as an overview of the AE approach. Temperature 

fluctuations, distribution and the influence of fabrication process thermal loads 

developed during the building process also affect the FDM product quality [64], [65]. 

Also [66] carried out numerical study on temperature distribution during the FDM process. 
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Embedded thermal sensors provided real-time and in-situ monitoring during the 

fabrication of multi-layered thin plates. 

 

Figure 2.9 Machine conditions during FDM fabrication process. 

 

  



22 
 
 

Chapter 3 

3. EXPERIMENTAL INVESTIGATION 
 

3.1 Materials and methods 

3.1.1 Materials used 

Acrylonitrile Butadiene Styrene (ABS) were used to manufacture specimens for the study to 

obtain the performance of 3D printing by FDM technique. This material ABS (grey) are 

manufactured and provided by the Shenzhen Creality 3D Technology Co., Ltd. The 

characteristics of the materials according to the manufacturer are listed below in Table 1. 

Table 1 Properties of materials used for 3D printing (FDM) 

Characteristic ABS 

Filament diameter (mm) 1.75±0.03 mm 

Material density (g/cm3) 1.04 

Tensile Yield Strength (MPa) 39 

Elongation at break (%) 20 

Flexural Strength (MPa) 60 

Flexural modulus (MPa) 1,900 

Tensile modulus (MPa) Not provided 

Print temperature (℃) 210 –240 

Hot Pad (℃) 80 – 105 

 

3.1.2 Specimens 

The specimens were manufactured according to the guidelines included in the ASTM D7264 

standard, which also describes how the three-point bending tests must be conducted. They have 
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a prismatic shape and dimensions of 80x13x4 mm as shown in Figure 3.1. They were printed 

on a CREALITY ENDER 3V2 printer from the Shenzhen Creality 3D Technology Co., Ltd. 

To have stabilize the manufacturing conditions, all 27 specimens were manufactured at the 

same environment.  

 

Figure 3.1 (a) Prismatic specimen (b) Specimen’s dimension  

3.2 Mechanical testing 

The prismatic specimens were 3D printed and then it was subjected to three-point bending tests 

according to ASTM D7264 standard. This method consists of performing a test with a specimen 

(prismatic bar) rest on two supports and is loaded by means of a loading nose midway between 

the supports. This method has proved to deliver reliable results in other parts obtained by AM 

techniques [67]. In this study Flexural strength ‘E’ in GPa, and the 0.2% offset yield strength 

(or 0.2% proof stress, RP0.2) in MPa are taken as output parameter in the experiments. 

3.2.1 Flexural strength and 0.2% offset yield strength Testing 

By using flexural testing, we can determine the behaviour and mechanical properties of 3D 

Printed beams. And this flexural property of 3D printed beams was analysed by following 

ASTM D7264. Then to improve the 3D printed beam flexural capacity and overall strength, 

design enhancements were done. Bending of 3D printed beam using three-point flexure testing 

can be achieved by applying a point load at the centre of the 3D printed beam inducing bending 

moments (BM) throughout the 3D printed beam, with highest BM at the centre of the 3D 
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printing beam. From the three-point flexural test, force-displacement data usually obtained. 

After that, from stress-strain diagram the flexural properties of the 3D printed beam can be 

determine, which would also lead to flexural modulus, shear strength and other important 

mechanical properties. Flexural stress is controlled by moment of inertia, the bending moment 

and the distance to the neutral axis.  Also, a 0.2 % offset yield strength (0.2% OYS, 0.2% proof 

stress, RP0.2) that is an amount of stress which will get in 0.2% of plastic strain. This yield 

strength is most often used by design engineers and material suppliers. For a different specified 

parameter set, there will be a different yield strength related with that strain level. 

 

4.3 Experimental design 

This study took into consideration the influence of six different variables: nozzle diameter, 

layer height, fill density, printing velocity, raster orientation and infill pattern. For each 

parameter, three levels were defined, as can be observed in Table 2. 

Table 2 Factors and levels used in the study 

Factor Level 1 Level 2 Level 3 

Nozzle diameter (mm) 0.3 0.4 0.6 

Layer height (mm) 0.1 0.2 0.3 

Infill density (%) 25 50 75 

Printing velocity (mm/s) 20 30 40 

Orientation X-axis (0°) 45° with X-axis Y-axis (90°) 

Infill pattern Rectilinear Linear Honeycomb 

To perform the minimum number of experiments, a Taguchi L27 DOE was applied to combine 

the factors given in  Table 3. This array allows the extraction of results regarding the influence 

of all factors as well as three interactions between the nozzle diameter, layer height, fill density, 

printing velocity, raster orientation and infill pattern. ‘Infill patterns’ viz rectilinear, linear and 
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honeycomb are set as three different individual factors. These three factors are coded using 

One-Hot encoding method between ‘1’ to ‘0’ value, ‘1’ is for full weightage and ‘0’ is for 

factor’s zero effect on process. Each row of the array describes the combination of factors to 

obtain each type of specimen. For each of them, three identical specimens were tested for each 

of them, to confirm the repeatability of results. Therefore, the results of 81 trials were tested 

and evaluated. 

The slicing software ULTIMAKER CURA used to obtain the G-CODE to manufacture 

the specimens that offers the possibility of changing many other variables, that were kept 

constant in this case. For this reason, there are a series of parameters can be controlled. The 

reader can refer to the ULTIMAKER CURA user manual regarding the additional parameters 

in it. It is worth mentioning that, as there are no standards regulating how additive 

manufactured specimens should be tested. it was decided that 0.8 mm would be the perimeter 

width. The Schematic of 3D printing optimising process is given in Figure 3.2. 
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Figure 3.2 Schematic of 3D printing optimising process
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Table 3 Experimental design represented by an L27 Taguchi orthogonal array 

Ru

n 

Input parameters and their values Experimental ANN Predicted Absolute error % 

Nozzle 

diamete

r (x1) 

(mm) 

Layer 

height 

(x2) 

(mm) 

Fill 

density 

(x3) (%) 

Printin

g 

velocity 

(x4) 

(mm/s) 

Orienta

tion (x5) 

Infill pattern 

E 

(GPa) 

RP0.2 

(MPa) 

ANN 

Predicted 

E (GPa) 

ANN 

Predicte

d RP0.2 

(MPa) 

E (GPa) 
RP0.2 

(MPa) Rectilin

ear (x6) 

Linear 

(x7) 

Honeyco

mb (x8) 

1 0.3 0.1 25 20 0 1 0 0 2.236 45.99 2.2360 45.9895 0.00 0.00 

2 0.3 0.1 50 30 90 0 1 0 2.495 51.95 2.4733 51.9498 0.87 0.00 

3 0.3 0.1 75 40 45 0 0 1 2.251 45.37 2.2617 45.3700 0.47 0.00 

4 0.3 0.2 25 30 90 1 0 0 2.13 44.85 2.1300 44.8499 0.00 0.00 

5 0.3 0.2 50 40 45 0 1 0 2.084 41.77 2.0945 41.7702 0.50 0.00 

6 0.3 0.2 75 20 0 0 0 1 2.225 49.05 2.2250 49.0465 0.00 0.01 

7 0.3 0.3 25 40 45 1 0 0 1.182 9.41 1.1820 9.4108 0.00 0.01 

8 0.3 0.3 50 20 0 0 1 0 1.888 15.18 1.8880 15.0810 0.00 0.65 

9 0.3 0.3 75 30 90 0 0 1 1.908 44.02 1.9088 44.0947 0.04 0.17 

10 0.4 0.1 25 30 45 0 1 0 1.889 38.79 1.8890 38.7901 0.00 0.00 

11 0.4 0.1 50 40 0 0 0 1 2.217 43.97 2.2246 43.9698 0.34 0.00 

12 0.4 0.1 75 20 90 1 0 0 2.557 54.26 2.5570 54.4588 0.00 0.37 

13 0.4 0.2 25 40 0 0 1 0 2.191 46.79 2.1910 46.7900 0.00 0.00 

14 0.4 0.2 50 20 90 0 0 1 2.22 47.95 2.2200 47.9488 0.00 0.00 
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15 0.4 0.2 75 30 45 1 0 0 2.189 48.58 2.1890 48.5800 0.00 0.00 

16 0.4 0.3 25 20 90 0 1 0 2.05 42.72 2.0500 42.5610 0.00 0.37 

17 0.4 0.3 50 30 45 0 0 1 1.978 40.79 1.9780 40.6983 0.00 0.22 

18 0.4 0.3 75 40 0 1 0 0 1.85 40.87 1.8500 40.8701 0.00 0.00 

19 0.6 0.1 25 40 90 0 0 1 2.474 53.92 2.4740 53.9199 0.00 0.00 

20 0.6 0.1 50 20 45 1 0 0 2.359 49.94 2.3457 49.9400 0.56 0.00 

21 0.6 0.1 75 30 0 0 1 0 2.004 47.54 1.9010 47.5401 5.14 0.00 

22 0.6 0.2 25 20 45 0 0 1 2.175 46.35 2.1750 46.3494 0.00 0.00 

23 0.6 0.2 50 30 0 1 0 0 2.007 46.6 2.0070 46.4842 0.00 0.25 

24 0.6 0.2 75 40 90 0 1 0 2.538 51.86 2.5380 51.8599 0.00 0.00 

25 0.6 0.3 25 30 0 0 0 1 2.058 47.42 2.0580 47.4197 0.00 0.00 

26 0.6 0.3 50 40 90 1 0 0 2.475 48.87 2.4750 49.4814 0.00 1.25 

27 0.6 0.3 75 20 45 0 1 0 1.973 46.88 2.0554 46.8780 4.18 0.00 
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Chapter 4 

4. RESULTS AND DISCUSSION 

4.1 Modelling and Optimisation 

4.1.1 Artificial neural network 

The Flexural strength ‘E’ in GPa, and the 0.2% offset yield strength (or 0.2% proof stress, 

RP0.2) in MPa are modelled using the artificial neural network. The ANNs are individually 

developed for the modelling of the Flexural strength, and RP0.2.  

 In this work, modelling for the 3D-Printing process using ANN architecture with a 

backpropagation algorithm was used precisely its output concerning input parameters. 

Modelling the ANN works in stages: training, testing, and validation [23–25]. The program 

codes were written for that purpose in MATLAB R2017a software. Experimental data was 

trained in the ANN architecture, which is shown in Table 4. The neural network contains three 

different layers of neurons, out of which the first layer includes neurons corresponding to input 

parameters [70]. The input layer contains '8' neurons synonymous to each of the input variables, 

where it can be noted that categorical factor i.e., ‘Infill patterns’ viz rectilinear, linear and 

honeycomb are set as three different individual factors. These three factors are coded between 

‘1’ to ‘0’ value, ‘1’ is for full weightage and ‘0’ is for factor’s zero effect on process.  The 2nd 

layer is called the hidden layer. For the determination of the number of hidden layers and the 

number of neurons in each of them for multilayer perceptron, various hyperparameter tuning 

techniques may be used, ranging from sheer experimentation, referring to existing models for 

inspiration as well as optimization using algorithms such as Bayesian Algorithm [71].  Number 

of hidden layers were chosen ‘2’. The configurations of neurons with the lowest RMSE value 

for ‘E’ and RP0.2 can be seen in Figure 4.1and Figure 4.2 .  
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Figure 4.1 Configuration of neurons with the lowest RMSE value for ‘E’. 

 

Figure 4.2 Configuration of neurons with the lowest RMSE value for RP0.2 

The configuration with the lowest RMSE value was taken to be the most suitable for this case 

and the final ANN was modelled based on this. Now, network has 8-2, and 7-2 neurons, 

respectively, for (E) and (RP0.2) as shown in Table 4.  The 3rd layer has '1' neuron corresponding 

to each output value. For the present data outputs, the “trainlm”, Levenberg-Marquardt training 

method was used for quick supervised learning is easy, safe, and computationally less 

expensive because of its adoptive learning and no-line search technique [72].  The transfer 

functions selected for the hidden and output layers were Log-sigmoid and Tan-sigmoid, 
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respectively, which were calculated as given by Equation (1) and Equation (2) [73], [74]. For 

the training, testing and validation of ANN, 70%, 15%, and 15% data are used, respectively. 

Mean square error algorithm was used for performance of the training.  

𝑡𝑎𝑛𝑠𝑖𝑔 (𝑛) =
2

(1+𝑒−2𝑛)
− 1   (1) 

𝑙𝑜𝑔𝑠𝑖𝑔 (𝑛) =  
1

(1+𝑒−𝑛)
    (2) 

Where n is input for the function. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =
(𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒−𝐴𝑁𝑁 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)×100

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
   (3) 

 

Figure 4.3 ANN architecture 

Table 4 ANN architecture for input to output modelling  

Input Output ANN architecture 

x1, x2, x3, x4, x5, x6, x7, x8 Flexural strength ‘E’ 8-8-2-1 

x1, x2, x3, x4, x5, x6, x7, x8 0.2% offset yield strength ‘RP0.2’ 8-7-3-1 
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The trained ANN performance for Flexural strength has been shown in Fig. 4.4, which 

tells the rationally good performance of trained ANN because the validation and test curves are 

on line, error histogram also confirms this fact in Fig. 4.7. 

 It cannot be ignored that the best validation performance has attained zero epoch with 

the value of 6.9244*10-14, where the training persists until the 3rd epoch, Fig. 4.6, shows best 

validation performance. Fig. 4.8., shows the training state of ANN, where the gradient 

coefficient’s final value is 1.4206*10-9, approximately zero at the 3rd epoch. Also, a 

diminishing value of gradient can be seen with the increase of epochs number.  

 

Figure 4.4 Neural network training for Flexural strength. 
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From Fig. 4.14, it is visible that the ANN predicted and experimental values of ∆Ra between 

initial, and final states conform with each other to a very high degree, with the maximum error 

equal to 5.14 %, and the other errors are negligible. Hence, it is certain that the developed ANN 

model has effectively learned the relationship between the input values and ∆Ra values, and 

thus can be used for maximizing the Flexural strength. 

 
Figure 4.5 Regression Performance for trained ANN for Flexural strength. 
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Figure 4.6 Variation of error with epochs for Flexural strength. 

 

 
Figure 4.7 Error histogram plot for Flexural strength. 
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Figure 4.8 Training state of ANN for Flexural strength. 

 

The trained ANN performance for 0.2% offset yield strength has been shown in Fig. 

4.9, which tells the rationally good performance of trained ANN because the validation and 

test curves are on line, error histogram also confirms this fact in Fig. 4.12. 

 It cannot be ignored that the best validation performance has attained zero epoch with 

the value of 9.88*10-7, where the training persists until the 3rd epoch, Fig. 4.11, shows best 

validation performance. Fig. 4.13., shows the training state of ANN, where the gradient 

coefficient’s final value is 1.5952*10-9, approximately zero at the 3rd epoch. Also, a 

diminishing value of gradient can be seen with the increase of epochs number. From Fig. 4.15, 

it is visible that the ANN predicted and experimental values of ∆Ra between initial, and final 

states conform with each other to a very high degree, with the maximum error equal to 1.25%, 

and the other errors are negligible. Hence, it is certain that the developed ANN model has 
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effectively learned the relationship between the input values and ∆Ra values, and thus can be 

used for maximizing the 0.2% offset yield strength. 

 
Figure 4.9 Neural network training for 0.2% offset yield strength. 
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Figure 4.10 Regression Performance for 0.2% offset yield strength. 

 

 
Figure 4.11 Variation of error with epochs for 0.2% offset yield strength. 
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Figure 4.12 Error histogram plot for 0.2% offset yield strength. 

 

 
Figure 4.13 Training state of ANN for 0.2% offset yield strength. 
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Figure 4.14 Comparison between experimental and ANN predicted ‘E’. 

 

Figure 4.15 Comparison between experimental and ANN predicted ‘RP0.2’. 

The ANN predicted, and experimental values Flexural strength (E), and 0.2% offset yield 

strength (RP0.2) comply to a very high degree with one another, and it is visible from Figure 

4.14, and Figure 4.15. The maximum error out of 27 experimental runs comes out between 

ANN predicted and experimental values for E, and RP0.2 equal to 5.14 %, and 1.25%, 

respectively. The weights and biases of the developed model are stored after confirming with 

this high degree of maximum error. ANN architecture presented in Table 4 and the developed 

Neural Network architecture can be seen in Figure 4.3. The number of the hidden layers and 

the number of neurons in each hidden layer were chosen and then network efficiency was 

calculated by RMSE [31, 32]. The percentage error was measured as Equation (3) and the 
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values determined are shown in Table 3. It is therefore guaranteed that the relationship between 

the values of input and output has been effectively learned by the developed ANN model. It 

can thus be used to optimize the operation. 

4.2 Genetic Algorithm 

It is observed from the ANN models developed and from the literature that the output 

responses [77], such as the ‘E’ and ‘RP0.2’, are concurrent and harmonious in nature. Therefore, 

the multi-optimal combination of process parameters would satisfy the objectives [35, 36]. The 

Genetic Algorithm is able to offer better performance compared to traditional optimization 

techniques because of its robustness, independence of gradient knowledge, and usage of 

intrinsic parallelism in design space searches [79].  

Genetic algorithm is a commercially viable, less complicated, and quicker for multi-

objective optimization  [79]. The optimization issue is resolved using this globally effective 

optimization method. GA is a search and exploration algorithm similar to the mechanism of 

natural selection that belongs to the class of evolutionary algorithm. GA optimizes the 

problems using strategies driven by replication, mutation, crossover (recombination) and 

selection phenomena [38, 39]. To this intent, the ANN models developed in MATLAB were 

coupled with GA.  

Figure 4.16 describes the various steps involved in the implementation of the ANN-GA 

model.  A random population of size ‘50’ was initialized by taking (8–8-2-1), and (8–7-3-1) 

ANN models.  

The experimental results conducted during the investigation are further used to develop a 

model of the 3d-printing process using artificial neural networks. The values of the output 

parameters obtained after carrying out each experiment in the design of the experiment table 

are given in Table 5. 
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Figure 4.16 Schematic of ANN with GA process 

The ANN models developed were used to predict the output for various input sets, and keeping 

other input parameters constant the influence of the input parameter on the output is observed. 

In this section the parametric analysis is summarized, whereas the findings of optimization and 

related discussion are outlined and followed by parametric analysis. 

4.3 Parametric analysis using ANN 

Here, the (8–8-2-1), and (8–7-3-1) ANN models developed for ‘E’ and ‘RP0.2’ respectively, are 

used to comprehend the consequence of input process variables- nozzle diameter, layer height, 

fill density, printing velocity, raster orientation and infill pattern on the outputs i.e., ‘E’ and 

‘RP0.2’. 

4.3.1 Effect of Nozzle Diameter 

Figure 4.17, illustrates the effect of different nozzle diameter values on ‘E’ and ‘RP0.2’. It can 

be seen that as the nozzle diameter is incremented, the outputs ‘E’ decreases differently for all 

infill patterns. This may be attributed to the subsequent decrease in the layer matrix density 

when nozzle allows thicker fused ABS. While on increasing nozzle diameter, the ‘RP0.2’ value 
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affected differently for different infill patter, viz; it decreases for honey comb structure, 

increasing decreasing pattern for Linear infill pattern and a minute increment can be seen in 

rectilinear structure.  

 

Figure 4.17 Effect of nozzle diameter on ‘E’ and ‘RP0.2’. 

4.3.2 Effect of Layer height 

 

Figure 4.18, illustrates the effect of different layer height values on ‘E’ and ‘RP0.2’. It can be 

seen that as the layer height is incremented, the outputs ‘E’ decreases differently for all infill 

patterns. It is seen that ‘E’ decrease with faster rates for honeycomb infill while it decreases 

comparatively with slower rates for rectilinear and linear infill patterns. This may be attributed 

to the subsequent decrease in the layer matrix density. While on increasing layer height, the 

‘RP0.2’ values also decreasing for all the infill patterns. It can also be observed that on increasing 

the layer height with linear infill pattern, decreases the ‘RP0.2’ values with faster rates than the 

other two patterns.    
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Figure 4.18 Effect of layer height on ‘E’ and ‘RP0.2’. 

4.3.3 Effect of Fill density 

Figure 4.19, illustrates the effect of different fill density values on ‘E’ and ‘RP0.2’. It can be 

seen that as the fill density is incremented, the outputs ‘E’ increases for all infill patterns. It 

increases for linear infill patter with faster rates than the other two infill patterns. The rate with 

which ‘E’ increases for honeycomb and rectilinear is almost same. While on increasing fill 

density the ‘RP0.2’ value affected differently for different infill patterns, viz; it affects negligible 

for honeycomb structure, increases with faster rate for linear than the increment rate showed 

by rectilinear pattern.  

 

Figure 4.19 Effect of fill density on ‘E’ and ‘RP0.2’. 
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4.3.4 Effect of Printing velocity 

Figure 4.20, illustrates the effect of different printing velocity values on ‘E’ and ‘RP0.2’. It can 

be seen that as the printing velocity is incremented, the outputs ‘E’ decreases differently for all 

infill patterns. It also can be seen that on increasing printing velocity more than 32 mm/s, the 

rate of decrement of ‘E’ printing velocity for rectilinear is more than linear infill pattern. Also, 

honeycomb infill pattern is not showing any considerable decrement.  While on increasing 

printing velocity the ‘RP0.2’ value was affected differently for different infill patter, viz; it 

decreases for honey comb structure, increases for Linear infill pattern and a minute decrement 

can be seen in rectilinear structure.  

 

Figure 4.20 Effect of printing velocity on ‘E’ and ‘RP0.2’. 

4.3.5 Effect of Orientation 

Figure 4.21, illustrates the effect of different orientation values on ‘E’ and ‘RP0.2’. It can be 

seen that as the orientation is incremented, the outputs ‘E’ increases differently for all infill 

patterns. While on increasing orientation the ‘RP0.2’ value affected differently for different infill 

patter, viz; it decreases for honeycomb structure over the range, decreasing and increasing 

pattern for Linear infill pattern and an increment with slow growth can be seen in rectilinear 

structure.  
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Figure 4.21 Effect of orientation on ‘E’ and ‘RP0.2’. 

4.4 Multi-objective Optimisation using ANN-GA 

To optimize (maximize) ‘E’ and ‘RP0.2’ the developed ANN models are fed to a genetic 

algorithm program that calculates the value of each input parameter corresponding to the 

maximum output value achievable. These required goals were framed as objective functions, 

for optimizing the 3D printing process using GA. Furthermore, the developed ANN models 

were linked with GA, for the present bi-objective optimization. A GA program was coded, 

as per the objective, in MATLAB-17a for this purpose. The goals of the present research are 

to optimize ‘E’ and ‘RP0.2’. The objectives are as shown – 

Objective 1 = Minimize (1/E) 

Objective 2 = Minimize (1/ RP0.2) 

The program is coded in MATLAB for the GA-based optimization of the ANN model as 

per objectives. During this optimization, GA was applied to the trained (8-8-2-1, and 8-7-3-

1) ANN models for the determination of the objectives function. The ANN component is 

responsible for deciding the objective functions in the process of combined optimization by 

the ANN-GA model, while the GA aspect is responsible for ranking and sorting the ANN-

based solution. The developed ANN models were provided the initial population of size 50 in 

the first iteration of optimization, the crossover rate, and the mutation rate is 0.8 and 0.01, 
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respectively. Selection parameters for GA operation have been enlisted in  Table 5, and it is 

used in the subsequent iteration to measure the outputs viz.  ‘E’ and ‘RP0.2’ for new offspring.  

During optimization process, it is found that after 146 iterations, the optimum data are 

obtained. No noticeable improvement in process parameters was observed after that if the 

iterations reached 146 iterations. The Pareto fronts hence obtained were extracted for further 

analysis, and the optimal front of these 70 solutions are illustrated in Figure 4.22. Selected eight 

(including all coded different infill patterns) decision variables are bound by upper and lower 

limit as per restriction of 3D printer discussed, keeping in mind that all the responses have 

similar in nature as discussed. 

Optimal solutions presented in Table 6 have decision variables. Optimized responses 

are compared with experimental values of responses in the subsections of this section. It may 

hence be concluded that the preference of one solution over another solely depends on the 

product specifications, processing capabilities resources, and the predilection of the process 

engineer. These 70 solutions have been presented in Table 6. 

Table 5 List of GA parameters used. 

Population 

Type 

Crossover 

Fraction 
Mutation Rate 

Max. 

Generations 

Initial 

Population 

Double vector 0.8 0.01 146 50 
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Figure 4.22 Pareto optimal front ‘E’ and ‘RP0.2’. 

Table 6 Set of optimal solution corresponding to inputs and outputs. 

S. 

No 

Nozzle 

diamet

er 

(mm) 

Layer 

height 

(mm) 

Fill 

density 

(%) 

Printin

g 

velocit

y 

(mm/s) 

Orient

ation 

(orient

) 

Rectili

near 
Linear 

Honey

comb 

E 

(GPa) 

RP0.2 

(MPa) 

1 0.53 0.10 63.98 21.14 86.31 0.79 0.48 0.18 2.557 54.50 

2 0.59 0.10 64.14 21.19 86.13 0.97 0.61 0.13 2.589 54.46 

3 0.59 0.10 64.20 21.18 86.23 0.94 0.62 0.15 2.587 54.46 

4 0.60 0.10 64.66 26.92 85.80 0.41 0.02 0.47 2.629 54.30 

5 0.60 0.10 64.63 29.54 85.23 0.17 0.15 0.51 2.674 53.55 

6 0.58 0.10 64.64 21.14 86.32 0.90 0.50 0.20 2.574 54.48 

7 0.60 0.10 64.68 28.26 85.27 0.26 0.03 0.47 2.669 53.99 

8 0.56 0.10 64.36 21.14 86.33 0.89 0.50 0.19 2.567 54.49 

9 0.60 0.10 64.63 26.38 85.85 0.42 0.03 0.44 2.617 54.33 

10 0.60 0.10 64.65 27.69 85.62 0.36 0.03 0.48 2.651 54.20 

11 0.60 0.10 64.49 27.02 85.29 0.36 0.02 0.47 2.643 54.24 
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12 0.60 0.10 64.66 26.92 85.80 0.41 0.02 0.47 2.632 54.30 

13 0.60 0.11 62.08 21.74 86.08 0.99 0.86 0.02 2.601 54.41 

14 0.60 0.10 64.63 26.52 85.65 0.41 0.03 0.47 2.625 54.31 

15 0.60 0.10 63.51 21.48 86.17 0.99 0.61 0.11 2.595 54.44 

16 0.60 0.10 64.66 26.90 85.74 0.41 0.02 0.48 2.629 54.30 

17 0.60 0.11 62.96 21.40 86.14 0.99 0.81 0.05 2.599 54.42 

18 0.58 0.10 64.23 21.33 86.25 0.95 0.56 0.13 2.584 54.46 

19 0.60 0.10 64.63 26.39 85.72 0.42 0.02 0.39 2.616 54.33 

20 0.60 0.10 64.62 27.76 85.48 0.35 0.02 0.47 2.654 54.18 

21 0.53 0.10 64.08 21.14 86.32 0.83 0.48 0.19 2.558 54.50 

22 0.60 0.10 64.66 27.13 85.54 0.39 0.03 0.48 2.638 54.27 

23 0.58 0.10 64.37 21.17 86.22 0.95 0.60 0.17 2.583 54.47 

24 0.55 0.10 64.01 21.14 86.30 0.85 0.51 0.18 2.563 54.49 

25 0.55 0.10 63.96 21.15 86.31 0.85 0.48 0.19 2.562 54.49 

26 0.60 0.10 64.64 26.64 85.81 0.42 0.03 0.44 2.622 54.31 

27 0.60 0.10 64.64 26.44 85.83 0.42 0.03 0.44 2.619 54.33 

28 0.60 0.10 62.80 21.67 86.19 0.99 0.66 0.11 2.596 54.44 

29 0.56 0.10 64.23 21.13 86.28 0.89 0.51 0.19 2.569 54.49 

30 0.58 0.10 64.14 21.18 86.13 0.97 0.61 0.13 2.586 54.46 

31 0.55 0.10 64.43 21.19 86.17 0.81 0.52 0.16 2.560 54.49 

32 0.60 0.10 64.55 26.98 85.53 0.37 0.02 0.47 2.642 54.25 

33 0.60 0.10 64.58 26.60 85.58 0.40 0.02 0.41 2.627 54.30 

34 0.60 0.10 64.58 27.05 85.67 0.37 0.02 0.47 2.640 54.26 

35 0.55 0.10 64.16 21.15 86.29 0.88 0.51 0.17 2.565 54.49 

36 0.60 0.10 64.65 26.66 85.69 0.38 0.03 0.46 2.635 54.28 

37 0.59 0.10 64.17 21.35 86.21 0.97 0.63 0.10 2.592 54.45 

38 0.60 0.10 64.66 27.75 85.33 0.30 0.03 0.46 2.662 54.11 

39 0.53 0.10 63.98 21.14 86.31 0.79 0.47 0.18 2.557 54.50 

40 0.58 0.10 64.11 21.17 86.28 0.94 0.53 0.18 2.580 54.47 

41 0.57 0.10 64.06 21.14 86.23 0.92 0.50 0.17 2.573 54.48 

42 0.59 0.10 64.15 21.23 86.24 0.97 0.60 0.08 2.591 54.45 

43 0.60 0.10 64.64 27.43 85.55 0.37 0.03 0.47 2.647 54.23 

44 0.58 0.10 64.19 21.17 86.18 0.93 0.57 0.16 2.579 54.47 

45 0.55 0.10 64.10 21.16 86.28 0.89 0.51 0.16 2.567 54.49 
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46 0.56 0.10 64.26 21.17 86.26 0.91 0.52 0.16 2.571 54.48 

47 0.57 0.10 64.25 21.18 86.21 0.94 0.55 0.16 2.577 54.47 

48 0.60 0.10 64.57 27.29 85.37 0.36 0.03 0.47 2.648 54.22 

49 0.58 0.10 64.51 21.15 86.31 0.90 0.52 0.19 2.575 54.48 

50 0.60 0.10 64.66 27.58 85.53 0.33 0.03 0.48 2.657 54.17 

51 0.60 0.10 64.64 27.76 85.48 0.29 0.04 0.47 2.664 54.08 

52 0.60 0.10 64.67 29.02 85.21 0.21 0.04 0.49 2.673 53.83 

53 0.60 0.10 64.43 27.03 85.41 0.37 0.02 0.46 2.641 54.26 

54 0.60 0.10 62.44 21.39 86.15 1.00 0.68 0.04 2.598 54.43 

55 0.60 0.10 64.60 28.19 85.58 0.33 0.03 0.44 2.661 54.11 

56 0.60 0.10 64.53 26.53 85.88 0.42 0.02 0.42 2.621 54.32 

57 0.60 0.10 64.67 26.49 85.74 0.41 0.02 0.46 2.622 54.31 

58 0.56 0.10 63.98 21.13 86.29 0.90 0.52 0.18 2.570 54.48 

59 0.60 0.10 64.64 27.31 85.61 0.35 0.03 0.47 2.649 54.22 

60 0.60 0.10 64.66 26.43 85.73 0.37 0.02 0.46 2.633 54.29 

61 0.60 0.10 64.62 28.32 85.48 0.25 0.06 0.49 2.671 53.93 

62 0.60 0.10 64.62 27.27 85.55 0.33 0.03 0.47 2.653 54.19 

63 0.60 0.10 64.64 27.76 85.48 0.30 0.04 0.47 2.663 54.10 

64 0.60 0.10 64.66 29.03 85.21 0.22 0.04 0.49 2.672 53.84 

65 0.60 0.11 62.08 21.72 86.09 1.00 0.87 0.03 2.601 54.40 

66 0.60 0.10 64.63 26.52 85.65 0.41 0.03 0.48 2.625 54.31 

67 0.56 0.10 64.01 21.15 86.30 0.85 0.51 0.18 2.564 54.49 

68 0.60 0.10 64.63 29.55 85.23 0.17 0.14 0.51 2.674 53.57 

69 0.59 0.10 64.23 21.24 86.23 0.97 0.61 0.13 2.589 54.46 

70 0.59 0.10 64.10 21.21 86.24 0.98 0.66 0.08 2.594 54.45 

 

4.4.1 Comparison of experimental and optimal ‘E’ 

A comparison of experimental ‘E’ values and the values found from Pareto optimal solution 

revealed that the maximum experimental value of ‘E’ is 2.557 GPa at nozzle diameter = 0.4mm 

, layer height = 0.1mm, fill density = 75%, printing velocity = 20 mm/s, raster orientation = 

90° and with rectilinear infill pattern (i.e., 100% effect of rectilinear and effect of linear and 
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honeycomb infill pattern was absent) as shown in experiment number 12 in Table 3. Whereas 

the maximum ‘E’ obtained from optimal solution (Table 6) is 2.674 GPa at nozzle diameter = 

0.6 mm, layer height = 0.1 mm, fill density = 64.63%, printing velocity = 29.54 mm/s, raster 

orientation = 85.23° (i.e., 85°13’48”). This optimised output depends on infill patterns and 

from Table 6, we can see the significance of rectilinear infill pattern is 0.17 (or 17%) for the 

attainment of same optimal flexural strength the significance of linear infill pattern and 

honeycomb are 0.15 and 0.51 respectively. It can be concluded from these results that minor 

change in input variables may increase the output by 4.57%. Furthermore, it can be seen that a 

combination of high nozzle diameter and infill density, small layer height and moderate 

printing velocity, is more suitable for achieving a higher ‘E’. 

4.4.2 Comparison of experimental and optimal ‘RP0.2’ 

An assessment of experimental ‘RP0.2’ values and the values found from Pareto optimal solution 

revealed that the maximum experimental value of ‘RP0.2’ is 54.26 MPa at nozzle diameter = 

0.4mm , layer height = 0.1mm, fill density = 75%, printing velocity = 20 mm/s, raster 

orientation = 90° and with rectilinear infill pattern (i.e., 100% effect of rectilinear and effect of 

linear and honeycomb infill pattern was absent) as shown in experiment number 12 in Table 3. 

Whereas the maximum ‘RP0.2’ obtained from optimal solution (Table 6) is 54.50 MPa at nozzle 

diameter = 0.53 mm, layer height = 0.1 mm, fill density = 63.98%, printing velocity = 21.14 

mm/s, raster orientation = 86.31° (i.e., 86°18’36”). This optimised output depends on infill 

patterns and from Table 6, we can see the significance of rectilinear infill pattern is 0.79 (or 

79%) for the attainment of same maximum RP0.2 the significance of linear infill pattern and 

honeycomb are 0.47 and 0.18 respectively. It can be concluded from these results that minor 

change in input variables may increase the output with confirmed optimised maximum. 
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Furthermore, it can be seen that a combination of high nozzle diameter and infill density, small 

layer height and small printing velocity, is more suitable for achieving a optimised ‘RP0.2’. 

4.5 Fractography 

Microscopic studies of the specimens' cross-sections were carried out to confirm this 

observation. Figure 4.23 displays the specimen with a honeycomb pattern at a density of 75% 

infill density. The brighter zones reflect the areas where the 3D printed beam was bent utilising 

three-point flexure testing. In terms of the acquired values for feedback (Table 3) and the 

fracture behaviour, it is clear that the specimen created by subsequent filaments has a larger 

ductility since these filaments have higher motility in comparison to the other. Strain hardening 

propagation can be clearly seen in discoloration of polymer in the Figure 4.23 As a result, the 

crack growth feature that happens in the sample's outer fibre might reduce the ductility of 

injected parts, because these phenomena should continue for each layer of printed parts 

Similarly, the lower layer height and larger diameter of the nozzle aid in adhesion between 

successive layers. It can be observed that a combination of large nozzle diameter and infill 

density, a short layer height, and a moderate printing velocity is better for achieving a greater 

‘E' and ‘RP0.2'. As a result, the maximum stress and flexural resistance of the printed specimens 

can be increased. Finally, printing the specimens with optimised parameters can result in 

greater resistance when subjected to bending forces. 

 

Figure 4.23 Fracture zone of ABS samples. 
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Chapter 5 

5. CONCLUSIONS 

In this analysis, the Taguchi L27 orthogonal array was employed to build a set of experimental 

data that provides substantially better tolerance while using minimal test data. Six 3D printing 

parameters were chosen based on polymer needs for strength and lightweight. An artificial 

neural network model was employed to create a prediction model for 3D printed specimens, 

and the procedure was then optimised using a genetic algorithm. 

1. The analysis demonstrate that the model makes reliable predictions and fits the test data 

well. Furthermore, the printing parameters have been optimised by simulating an 

experiment in order to enhance the performance of the 3D printed specimens and goods. 

It is observed that the ANN models could predict the behaviour of the output parameters 

with very high accuracy and efficiency. Upon further optimization with GA, the 

obtained ANN models were highly optimized and provided a better approach for the 

prediction of higher values of ‘E’ and ‘RP0.2’ than their experimental. ANN-GA-based 

modelling and optimization suggest a direct relation between choosing process 

parameters correctly and enhancing machining performance.  

2. ‘E’ is inversely proportional to the nozzle diameter and layer height for all infill 

patterns. Also, ‘E’ is inversely proportional to the printing velocity but with lower 

significance nozzle diameter and layer height.  It can be seen that ‘E’ is directly 

proportional to the fill density and orientation for all infill patterns. 

3. ‘RP0.2’ is inversely proportional to the layer height for all infill patterns. While on 

increasing nozzle diameter, the ‘RP0.2’ value decreases for honeycomb structure, 

increasing decreasing pattern for Linear infill pattern and a minute increment can be 

seen in the rectilinear structure. While on increasing fill density the ‘RP0.2’ value 
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affected negligibly for honeycomb structure, increases with the faster rate for linear 

than the rectilinear pattern. While on increasing printing velocity the ‘RP0.2’ value 

decreases for honeycomb structure, increases for Linear infill pattern and a minute 

decrement was seen in the rectilinear structure. While on increasing orientation, the 

‘RP0.2’ decreases for honeycomb structure over the range, decreasing and increasing 

pattern for Linear infill pattern and an increment with slow growth can be seen in the 

rectilinear structure. 

4. The results suggest a multi-objective optimised setting of the 3D printer as presented in 

Table 6. Where the maximum flexural strength obtained from optimal solution (Table 

6) is 2.674 GPa at nozzle diameter = 0.6 mm, layer height = 0.1 mm, fill density = 

64.63%, printing velocity = 29.54 mm/s, raster orientation = 85.23° (i.e., 85°13’48”). 

This optimised output depends on infill patterns and from Table 6, we can see the 

significance of rectilinear infill pattern is 0.17 (or 17%) for the attainment of the same 

optimal flexural strength the significance of linear infill pattern and honeycomb are 

0.15 and 0.51 respectively.  

5. Also, the maximum ‘RP0.2’ obtained from optimal solution (Table 6) is 54.50 MPa at 

nozzle diameter = 0.53 mm, layer height = 0.1 mm, fill density = 63.98%, printing 

velocity = 21.14 mm/s, raster orientation = 86.31° (i.e., 86°18’36”). This optimised 

output depends on infill patterns and from Table 6, we can see the significance of 

rectilinear infill pattern is 0.79 (or 79%) for the attainment of the same maximum RP0.2 

the significance of linear infill pattern and honeycomb are 0.47 and 0.18 respectively. 

6. Pareto’s optimal front offers a set of optimal solutions (Table 6). The table acts as a 

convenient solution and facilitates a process engineer for the selection of the optimum 

values of control parameters depending on the product requirements.  
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