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ABSTRACT 

This research focusses on the development of carboxymethyl tamarind kernel gum 

modified metal nanocomposites. The scientific literature on the synthesized metal and 

metallic oxide biopolymer nanocomposite used for antibacterial, antifungal, antioxidant, 

biosensor antifouling, and organic/inorganic contaminant removal from wastewater biosensor 

activity. The experimental methods used to carry out the research work are discussed in the 

thesis, which includes information on the materials utilized, approved by the research, and the 

descriptions and parameters of several characterization techniques XRD, FTIR, HRTEM, 

FESEM, TGA, DLS, UV. employed to fulfil the research effort's goal.  

In seven chapters, the complete thesis is summarized.  

           The thesis's first chapter provides a brief overview of the study work's contemporary 

scientific significance, as well as the thesis's objective. It also summarizes the scientific 

literature on the synthesized metal and metallic oxide biopolymer nanocomposite used for 

antibacterial, antifungal, antioxidant, biosensor, antifouling, and organic/inorganic 

contaminant removal from wastewater. 

Study Chapter second of the thesis discusses the experimental techniques used to conduct the 

research work. It also provides information on the materials used, approved for the research, 

and the descriptions and parameters of a number of characterization techniques used to 

achieve the objectives of the research effort.  

Study Chapter 3 explains the purpose and parameters of the research that was done for this 

thesis.  

Chapter four. The use of carboxymethyl tamarind kernel Gum/iron oxide nanocomposites in 

liquid ammonia sensors and antibacterial activity has been developed and characterised in 

study These Nano composites exhibited excellent antibacterial activity against both 

Enterococcus faecalis and hence can be considered for applications in antibacterial textiles 

for personal and hospital uses. The sensing properties of the synthesized nanocomposite 

solution across rising ammonia concentrations in the range of 1–100 ppm by observing the 

changes in SPR situations and magnitude with a UV-Visible Spectrophotometer have been 

notified 

               The synthesis and characterization of carboxymethyl tamarind kernel gum/ZnO 

nanocomposites, as well as their utilisation in chromium metal removal and antifungal 



activities, are covered in Chapter five. The removal of hexavalent chromium ions from water 

was studied in relation to pH, concentration, time, and amount of adsorbent. Compared to 

other biopolymers with zinc oxide modification, carboxymethyl tamarind kernel gum/zinc 

oxide nanocomposites were found to be more effective adsorbents for Cr (VI) ions. 

Furthermore, we utilised the CMTKG/ZnO for antifungal activities. 

            The synthesis and characterization of carboxymethyl tamarind kernel gum 

nanoparticles and their antioxidant properties are discussed in this Chapter six. The 

antioxidant capabilities of the produced CMTKG nanoparticles composites were 

demonstrated by a radical scavenging model system. All of the outcomes were perfectly 

matched, just as they had been in the literature. CMTKG nanoparticles created in this manner 

could be employed as antioxidants.  

The chapter seven summarizes the entire research study as well as the research's prospects 

and includes the publications out of the thesis. 
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Chapter-1 

Introduction 

1.1 Introduction  

The research of a novel class of materials known as "bio nanocomposites" has been prompted 

by recent developments in nanotechnology and the rising demand for environmentally 

friendly goods [1–4]. These hybrid materials combine biopolymers—often naturally 

occurring—with synthetic elements that have at least one nanoscale dimension. Under 

favourable conditions like oxygen, moisture, and temperature, natural microbe’s breakdown 

biopolymers rather quickly and without causing any environmental problems [5,6]. Studies 

have shown that modified products made from biopolymer, tamarind kernel gum (TKG) have 

been investigated in a number of industries, including textiles, explosives, food, agriculture, 

plywood, and medicine [7–10]. It is an excellent alternative biopolymer for synthetic 

polymers due to its biodegradability, varied solubility, non-toxicity, and susceptibility to 

microbial breakdown. TKG is a high-molecular-weight neutral branching polysaccharide 

made up of cellulose, xylose, and galactoxylose that is derived from tamarind seeds. It is a 

naturally occurring polysaccharide that degrades quickly, and preferred because of its natural 

origins and low production costs, as well as the fact that it has few side effects [11,12].  

Biopolymer chemical modification has drawn a lot of attention in the last ten years since it 

allows for both the retention of natural polymers' full potential and the addition of desirable 

qualities without changing the fundamental structure of the polymer backbone [13–17]. One 

such excellent example of chemical modification derived from TKG is carboxymethyl 

tamarind kernel gum (CMTKG) [18–21]. The molar ratio of its constituent sugars is 1:2:3 (D-

xylose, D-galactose, and D-glucose). This polysaccharide is composed of a main chain of 

carboxymethylated glucopyranosyl units linked by β-D-(1 → 4) links and a side chain 

containing a single xylopyranosyl unit that is further connected to each subsequent second, 

third, and fourth D-glucopyranosyl unit by α-D-(1 → 6) linkage. Whereas a β-D-(1 → 

2) linkage connects one xylopyranosyl unit to one of the D-galactopyranosyl units. The 

presence of hydroxyl groups, which permits modifications in structure, formula, and 

functionalization, is the most unique characteristic of CMTKG and its derivatives. 
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However, the applicability of CMTKG-based polysaccharides remains limited because to 

their unpleasant odour, rapid biodegradability, low solubility in cold water, dull colour, and 

poor barrier, mechanical, and thermal properties [22]. As a result, there is a need to enhance 

and optimize CMTKG's pharmacological and physicochemical properties in order to increase 

action and, as a result, expand its potential uses. Extensive research has been conducted on 

CMTKG to modify its physical and chemical properties through grafting, mixing 

nanoparticles, and nanocomposites with synthetic and natural polymers [23–28]. 

According to several studies, the mechanical, thermal, barrier, and antibacterial properties of 

the material were all improved by the inclusion of nanoparticles at low concentrations. 

Metallic nanoparticles have been employed as reinforcing agents in polysaccharide-based 

films, such as silver [24,29,30], graphene oxide [18], titanium dioxide [31], and cupric oxide 

[32]. Of which, Magnetite [33,34] and ZnO [35–37] nanoparticle impregnation can be 

potential candidates among these nanoparticles. In addition to their inherent characteristics, 

biopolymer-based nanocomposite materials frequently exhibit great stability, maximum 

accessibility, and even intriguing enhancements brought on by the interaction of 

nanoparticles and matrix. They are widely used as adsorbents for the removal of organic and 

inorganic impurities from effluent water solutions [38–44] and as biosensors [45–50], 

antifungal [51–54], antioxidant [55–62], antimicrobial [63–68], antifouling [69–75], and drug 

delivery agents [76–81]. 

Researchers and industry professionals can benefit from a useful reference source on the 

properties and applications of biopolymer-based nanocomposite in a variety of industries, 

including textiles, explosives, food, agriculture, plywood, and medicine. As a result, the goal 

of the study is to identify the best synthesis method while also examining the features, 

structural characteristics, and morphology of a biopolymer-based nanocomposite made of 

magnetite and ZnO metal nanoparticles that have been mixed with CMTKG matrix. 

This chapter provides a general review of composites and their different types. The 

fundamental use of nanocomposites, the current state of biopolymer metallic nanocomposites 

processing, and use of Fe and Zn oxide nanocomposites in various applications are all 

explored. The fundamentals of TKG and CMTKG is also covered in this chapter. An outline 

of this thesis’s content is also included. 
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1.2 Biopolymers 

The polymers that come from plants, animals, and microorganisms are known as biopolymers 

[82–84]. Commercially, biopolymers are manufactured in enormous quantities for a variety 

of uses. Except for a small number, most biopolymers may degrade microbiologically into 

carbon dioxide (CO2), water (H2O), methane (CH4), and inorganic chemicals. Biopolymers 

are natural polymer alternatives that are widely used in the medical, agricultural, and 

environmental fields, as well as pharmaceuticals, due to their renewable, sustainable, and 

non-toxic properties, as well as their biocompatibility and low-cost availability [85–90]. 

Biopolymers with potential applications include tamarind [91–96], starch [97–102], pectin 

[103–110], cellulose [111–115], chitin [116–118], and chitosan [119–126]. Because their 

chains contain a large number of hydroxyl groups that interact well with metal ions and 

provide a favorable environment for metal and semiconductor nanoparticle development. 

Biopolymer is also mucoadhesive, biocompatible, and non-irritant, making it useful in 

biomedical applications such as drug delivery, bio nanoreactors, nanofiltration, biosensors, 

and antimicrobial properties. 

In accordance with their place of origin and synthesis, biopolymers can be categorized into 

three groups. The first category consists of organic polymers found in plants and animals, 

such as proteins, polysaccharides, and lipids [127]. The most prevalent carbohydrate, 

cellulose, is a potential biodegradable polymer that is present in nearly all plant components. 

Cellulose is environmentally beneficial, requires little energy during production, exhibits 

exceptional film-forming capabilities, and is simple to recycle by burning. A structural 

polysaccharide, cellulose is composed of microfibrils that are joined to form cellulose fibres 

[128,129]. A hydrophobic polymer with an acidic or neutral nature, Chitin is insoluble in 

water and a wide range of organic solvents [130,131]. Chitosan is the second most prevalent 

natural amino polysaccharide. Native Chitin extracted from shrimp and other crustaceans is 

deacetylated to produce it. The storage polysaccharide known as Starch is made up of 

branched and linear amylopectin chains that are between 0.1 and 1 nm in length. Cereals, 

tubers, and roots are the primary sources of starches [132]. 

The second category consists of man-made polymers, which can be created using various 

condensation or ring-opening polymerization processes. Polylactide, often known as PLA, is 

a potential synthetic biopolymer that can replace traditional polymers due to its strong clarity 

and high stiffness. It is a hydrophobic aliphatic polyester that is biodegradable, renewable, 
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and recyclable and has great processing capabilities [133]. Lactic acid generation is the first 

stage in the multi-step process that results in PLA. The third category includes biopolymers 

generated by various bacteria and other microorganisms in a specific medium with the 

necessary ingredients. 

Functionalized biopolymers are a type of organic material that is both robust and chemically 

resistant, as well as responsive to a variety of chemical modifications [134]. These synthetic 

and semi-synthetic functionalized materials, also known as reactive biopolymers or ion 

exchangers, have exploded in popularity over the last five decades, spawning a slew of 

scientific pursuits ranging from mining to microelectronics, deionization, decontamination, 

sensing, drug delivery, and desalination, to name a few [135–138]. 

1.2.1 Tamarind kernel gum  

The tamarind tree (Tamarindus indica, family: Leguminosae) is generally well known as the 

“Imli”, in Hindi; “Indian date” [139]. It is an African tropical tree that is grown in tropical 

Asia for the pulp of its pods [140]. This evergreen tree is planted virtually everywhere in 

India, as well in as other Southeast Asian countries. Tamarind is harvested in India at a rate 

of around 0.30 million tonnes annually [141]. Tamarind gum is made from the plant's seed 

endosperm. It is separated from the ground-up tamarind seed kernel powder using a variety of 

proven techniques. It is present as a cell-wall storage unit in tamarind seed endosperm [139]. 

The mature and harvested tamarind seeds were processed into tamarind seed kernel powder 

using a number of stages, including choosing raw seeds, removing the seed coat, separating 

the seed kernels, milling, grinding, and sieving [7]. It is classified as a galactoxyloglucan and 

is a water-soluble bio polysaccharide. Tamarind gum's molecules have the following 

composition: (1 → 4) -β- d-xylopyranose and α-d-galactopyranosyl side chains have been 

replaced for the α-d-xylopyranose and β-d-galactopyranosyl (1 → 2) -α-d-xylopyranose is 

attached (1 → 6) to glucose residues with a glucose : xylose : galactose ratio of 2.8 : 2.25 : 

1.0 (Figure 1.1) [142,143].  



5 

 

 

Figure 1.1: Chemical structure of Tamarind gum 
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Tamarind gum is naturally water soluble, hydrophilic, stable in low pH (acidic environment), 

biodegradable, and biocompatible. It is employed as binding agents, gelling agents, 

dissolving agents, sustaining agents in matrix tablets, film-forming agents, thickening agent 

suspending agents, emulsifying agents, and sola utilizing agents [144–150]. Additionally, it is 

used as a matrix-former in the fabrication of prolonged drug-releasing matrix tablets for a 

variety of medications [151,152]. Additionally, tamarind gum is employed in the 

development of several types of bio mucoadhesive systems for drug administration due to its 

outstanding hydrophilic and bio mucoadhesive qualities [153–155]. Tamarind gum has 

recently undergone a number of changes that have been tested for use as medicinal excipients 

in various dosage forms. Table 1.1 below lists a few recent studies on tamarind gum. 

Table 1.1: Tamarind gum as a potential pharmaceutical excipient 

Formulations Drug Uses References 

Matrix tablets Aspirin Sustained releasing agent [156] 

Mucoadhesive buccal 

films 

Rizatriptan 

benzoate 

Mucoadhesive agent [157] 

Mucoadhesive beads Metformin HCl Mucoadhesive agent [158] 

Microparticles Aceclofenac Sustained releasing agent [159] 

Buoyant beads Risperidone Mucoadhesive agent [160] 

Ophthalmic delivery Tropicamide Sustained releasing agent [161] 

Matrix tablets Propranolol HCl Colon targeting agent [162] 

Cryogels Metronidazole Sustained releasing agent [163] 

Hydrogel 5-Fluorouracil Colon specific anti-cancer 

drug delivery 

[164] 

Mucoadhesive buccal 

tablets 

Resperidone Sustained releasing agent [165] 

1.3 Biopolymer composites 

1.3.1 Composites and types 

Combining two or more materials with radically dissimilar characteristics produces 

composite materials [127]. The dispersion phase and the matrix phase are the two phases that 

make up a composite in general. The matrix phase is continuous and surrounds the dispersion 

phase. A matrix phase appears consistently. In comparison to the crystalline phase, the matrix 
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phase is more ductile and less rigid. It is in charge of dispersing the load and bringing the 

scattered phase back together. On the other hand, the second phase is regarded as the 

dispersed (reinforcing) phase. In the second stage, a discontinuous matrix embedding is 

utilized. The scattered phase is also referred to as the reinforcing phase since it often has 

greater strength than the matrix [166]. Many common materials (metal alloys, doped 

ceramics, and polymers with additives) are not classified as composite materials even if they 

include a small number of dispersed phases in their structures since their properties are 

identical to those of their constituents (the physical character of metals is similar to those of 

pure iron). 

Based on their matrix materials, composites can be categorized into three groups [167] 

(Figure 1.2): 

1. Metal matrix composites are composed of a dispersed ceramic (oxides, carbides) or 

metallic phase (lead, tungsten, molybdenum) and a metallic matrix (aluminum, 

magnesium, iron, cobalt, copper, zinc, etc.). Despite having a relatively high specific 

mass, metal fibres are often inexpensive. They are used to strengthen metal matrices. 

They are not in great demand because of their high density. The high fiber-matrix 

compatibility makes it possible to perform the primary function in the creation of the 

metal-metal composite. Metal matrices are strengthened with carbon steel fibres to 

withstand temperatures of up to 300°C. Fibers composed of metals with great heat 

resistance, such as tungsten or molybdenum, are used to strengthen metal matrices so 

they can tolerate even higher temperatures [166]. 

2. Ceramic matrix composites are composed of a ceramic matrix with ceramic fibers 

inserted in it (dispersed phase).  

3. Polymer matrix composite materials are further subdivided into thermosetting resin-

based composite materials and thermoplastic resin-based composite materials. For 

example, thermoplastic polymers such as Polycarbonate, Polyvinylchloride, Nylon, 

Polystyrene or thermoset resins such as Unsaturated Polyester, Epoxy matrix with 

glass, carbon, metal, or Kevlar fibers incorporated in it (dispersed phase). 

[166,168,169]. 

Depending on the type of reinforcement, composites can be categorized into three groups 

[167] (Figure 1.2). 

1. Fibre reinforced composites– continuous or discontinuous: When the properties of 
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a discontinuous fiber or short fiber composite change with its length, it is referred to 

as a discontinuous fiber or short fiber composite. In contrast, the composite is 

classified as continuous or long fiber composites. Fiber-reinforced when the fiber 

length is such that any additional length increase does not increase the elastic modulus 

of the composite. 

2. Laminar composites: Laminar composites are as different as the constituent 

components. These materials are composites made up of bonded layers of different 

parts. These can consist of numerous layers of two or more metal components 

arranged alternately or in a certain order as many times as necessary for a given 

purpose. 

3. Particulate composites: Particles reinforced composites are metal and ceramic 

composite microstructures with particulates from one phase spread over the other. All 

sides of the square, triangular, and circular reinforcement shapes appear to have 

approximately the same proportions. The size and volume concentration of the 

dispersion distinguish it from dispersion hardened materials. Particulate composites 

have a dispersion size of a few microns and a volume concentration of more than a 

quarter of a percent. As a result, there is no substantial difference between particle 

composites and dispersion-strengthened composites. They each have a unique 

mechanism for enhancing their forces. The distribution of dispersion-strengthening 

materials reinforces the matrix alloy by preventing dislocation motion, and fracture 

requires high forces. 

Each has a system in place to strengthen its defenses. The diffusion components 

dispersed throughout the matrix alloy strengthen it by preventing dislocation 

movement and requiring significant forces to overcome the dispersion constraint. In 

particulate composites, the hydrostatic pressure of the filler in the matrix and the 

hardness of the particulates in proportion to the matrix reinforce the system. Three-

dimensional reinforcement in composites has isotropic properties because it has three 

consistently orthogonal planes. Because the array is not homogeneous, the material 

properties, as well as the array's interfacial properties and geometric shapes, become 

sensitive to the constituent attributes. Particle diameter, inter-particle spacing, and 

volume proportion are all important considerations. The reinforcing has an impact on 

the strength is of the composite. The matrix properties influence the behavior of 

particle composites. 
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Figure 1.2: Types of composites based on (a) matrix and (b) reinforcement 

 
 

 



10 
 

1.3.2 Biopolymer composites 

The terminology "biopolymer composites" refers to biodegradable composites that are 

reinforced using a variety of natural fibres derived from plant and animal sources and/or 

natural and/or manufactured biopolymers [170,171]. The resultant composite is given more 

stiffness and tensile strength by the addition of natural fibre (reinforcement agent) in 

discontinuous phase to the continuous biopolymer matrix. By using natural fibre and 

biopolymer, respectively, this type of composite is intended to produce a product with high 

mechanical behaviour and durability performance [127]. Biocomposites typically have 

maximum stiffness and tensile strengths between 1 and 4 GPa and 20 and 200 MPa, 

respectively [172]. Sustainability, economic viability, lightweight properties, exceptional 

specific strength, biodegradability, environmental friendliness of renewable resources, health 

and safety of the manufacturer and customers are some notable advantages of adopting 

biopolymer composites. [173]. 

The type of fibre, percentage of fibre content, moisture absorption of the fibre, technique 

used to modify the fibre surface, composite structure and design, interfacial adhesion between 

the fibre and matrix, presence of voids, and incorporation of additives like plasticizers, 

compatibilizers, nanofillers, and binding agents all have an effect on the properties of 

biopolymer composites. [174,175]. Different reinforcing materials and plasticizers have an 

impact on the biopolymer composites' density, water sensitivity, gas permeability, 

degradability, and shelf life. Depending on the kind of processing, the processing needs, and 

the ambient circumstances, biopolymer composites' performance can be enhanced chemically 

[176].  

1.3.3 Biopolymer-based metal/metal oxide nanoparticle and nanocomposites  

Metal or metallic oxide nanoparticles produced by biopolymers are a novel type of hybrid 

inorganic/biopolymer materials with unique features and uses that cannot be found in either 

inorganic nanoparticles or biopolymer host materials alone [177,178]. These hybrid materials 

are referred to as biopolymer-synthesized nanoparticles (BSNPs). Biopolymer based 

nanocomposites, which are biopolymers reinforced by nanoparticles, have improved 

mechanical and barrier properties. However, these characteristics are influenced by the kind, 

degree of dispersion, and quantity of nanoparticles present in a polymer matrix.  Using in-situ 

and ex-situ techniques, metal and metal oxide nanoparticles are dispersed within the polymer 

phase in biopolymer based nano composites. The biopolymers' morphology, or physical 
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organisation, can take the form of granules, membranes, threads, or spherical beads, among 

other shapes and sizes. Even at the nanoscale level, the biopolymer and metal/metallic oxide 

nanoparticles maintain their intrinsic properties, but they can be easily altered to enhance the 

overall qualities in a variety of ways.  

Metal and metallic oxide nanoparticles have unique characteristics such as chemical stability 

and mechanical strength. Hence, attempts are being made to employ them in a number of 

applications. Additionally, nanoparticles often convert their high surface area to low volumes 

with reduced effectiveness. This method of synthesizing metal precursor nanoparticles has 

been documented in the literature using a variety of metals and metallic oxides, including 

gold, silver, magnetite, cobalt, zinc, etc. Biosensing, drug delivery, novel time-temperature 

indicator, antimicrobial, environmental remediation, chemical-pharmaceutical, food 

industries, DNA carriers, biosensing, drug delivery, antifouling, wound healing, drug 

delivery, and adsorption of organic/inorganic impurities are just a few of the many 

applications for the emergence of  unique biopolymer-metal nanocomposites (BMNCs) [181–

187]. Some biopolymer-metal/metallic oxide nanocomposites and their applications are 

enlisted in Table 1.2.  

 

Table 1.2: Data from the literature on the synthesis of various biopolymer-metal/metallic 

oxide nanocomposites 

Biopolymer Metal/metal 
oxide 

Applications Reference 

Sodium 
Alginate 

Fe Environmental remediation [186] 
 

Sodium 
Alginate 

Ag 
 

Chemical pharmaceutical and food 
industries 

[187] 

Alginate Ti As sorbent for heavy metal removal [188] 

Pectin Au Theranostic applications [189] 
Guar gum Au Ammonia sensor [190] 

Guar gum Ag/Cu Food packing [191] 

Guar gum 
/Chitosan 

Pd Synthesis of biaryl compound [192] 

Guar gum Se Anticancer activity [193] 

Gelatin Au Time–temperature indicator [194] 

Cellulose Au, Pd, and Pt Functionalized textile substrates [195] 

Chitosan Fe Removal of Cr(IV) metal [196] 

Chitosan Fe Removal of humic acid [197] 
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Chitosan Fe Dye removal [198] 

Chitosan Au Anticoagulant activity [199] 

Chitosan Cu Antibacterial activity [200] 

Chitosan Ni Pollutants degradation. [201] 

Chitosan Co Apoptosis in human leukemic cells [202] 

Chitosan Cr Decreases the glucose absorption and 
liver glycogen content 

[203] 

Chitosan Au DNA carriers [204] 

Chitosan Au Heavy metal ion sensors [205] 

Chitosan Au Indicates temperature abuse in frozen 
stored products 

[206] 

Chitosan Zn Antimicrobial activity [207] 

 

1.4 Processing technique of biopolymer metallic nanocomposites 

There are several methods of making biopolymer metal nanoparticles, including green 

synthesis, combustion, electrodeposition, in-situ, ex-situ, wet method, coprecipitation, and 

hydrothermal [208,209]. The two basic approaches for producing biopolymer-supported 

nanoparticles are ex-situ and in-situ [210]. By first synthesizing the inorganic nanoparticles 

and then distributing them in a polymer solution or three-dimensional matrix, an ex-situ 

process of synthesis can be carried out. This synthesis technique is well-liked since it allows 

for the use of any kind of host polymer and nanoparticle. Contrarily, it is challenging to 

combine polymers with nanoparticles so that the inorganic element is uniformly distributed 

throughout the polymer. An alternative technique, called in-situ synthesis, is applied to 

address these problems. The prepared polymer phase serves as a micro-reactor in this 

procedure, where a sequence of reactions converts a precursor into the required nanoparticles. 

In the polymer phase, metal and metal oxide nanoparticles are produced. The technique is 

becoming more popular because it has technological benefits over ex-situ methods, such as 

the ability to easily regulate particle size and shape. Numerous different types of 

nanocomposites may be produced using the in-situ approach. 
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1.4.1 In-situ technique  

The combination of the large number of functionalized biopolymers accessible with the wide 

range of ordered nanoparticles increases the number of different BSNPs that can be produced 

utilizing the in-situ technique [208]. The type of supporting polymer, the type of nanoparticle 

precursor, the response that bureaucratizes the nanoparticles, and the composition of the 

metal and metal oxide nanoparticles are the factors that influence the properties of BSNPs. In 

this method, the polymers serve as nano-reactors, providing a constrained synthesis medium. 

They also prevent the aggregation of the synthesized nanoparticles by stabilizing and 

isolating them [211,212]. Although there are many differences between the various 

techniques of synthesis, the in-situ method may be split into two groups: (a) sorption 

observed through redox and/or precipitation reaction, and (b) impregnation observed by 

precipitation and/or redox reaction. 

1.4.2 Ex-situ technique  

Physical entrapment of metal or metallic oxide nanoparticles within the polymer or 

biopolymer framework is used in the ex-situ technique. Casting and solvent evaporation, 

chemical bio polymerization, or co-precipitation may be used to maintain the physical 

entrapment. This type of nanoparticle encapsulation also aids in the stabilization of 

nanoparticles by preventing them from agglomerating and forming big particles. This is a 

common problem with the conventional approach of producing nanoparticles, which 

produces nanoparticles in a bulk solution. In commonly, ex-situ synthesis involves blending 

metallic salts or pre-shaped nanoparticles with the biopolymer solution, which is 

accomplished by casting the suspension inside a membrane or crosslinking the suspension to 

generate a three-dimensional network. The film or framework is then put through an 

oxidation/reduction process, which forms the precursor nanoparticles. [213,214]. 

1.4.3 Co-precipitation 

Co-precipitation is a highly efficient technique for generating metallic oxide nanoparticles, 

but it is frequently unstable and needs to be stabilised with surfactants or functionalized 

biopolymers. Modifying the testing conditions allows adjustment of the particle form, size, 

and content of the treated metallic nanoparticles. The production of monodisperse 

nanoparticles of various sizes has been facilitated by organic additions that were utilized as 

stabilising or reducing agents. For the stability of metal and metallic oxide nanoparticles, 
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several biopolymers have been utilised, including chitosan, polyacrylamide, guar gum, 

cellulose, etc [208]. 

1.4.4 Green synthesis 

Green synthesis, or the creation of stable, sustainable, and environmentally friendly synthetic 

processes, is necessary to prevent the formation of undesirable or dangerous by-products. To 

achieve this objective, excellent solvent structures and herbal sources (such as natural 

systems) are required. By using biopolymers and metal nanoparticles in green synthesis, 

several organic molecules have been accommodated (e.g., bacteria, fungi, algae, and plant 

extracts). When compared to microbe and/or fungi-mediated synthesis, the utilisation of plant 

extracts is an alternate straightforward way to produce nanoparticles on a wide scale for 

metal/metal oxide nanoparticles. These are known collectively as biogenic nanoparticles. 

Some gums and natural biopolymers, as well as their derivatives, have been discovered to be 

useful for the creation of nanoparticles and nanocomposites [215–220]. Moreover, the 

produced nanocomposites can be used in optical antibacterial, antifungal, sensor, and 

impurity removal of wastewater activities. 

1.5 Biopolymer-Magnetite oxide nanocomposites 

Magnetite oxides are utilized extensively because they are cheap and play an important role 

in a variety of geological and biological processes. A few examples include the use of ore in 

catalysts, thermite, magnetic materials, long-lasting pigments (colours for paints, varnishes, 

and concrete), and haemoglobin. The precipitation technique is the most efficient, affordable, 

and simple approach to generate magnetic particles. Magnetite nanoparticles have regulated 

form, nucleation, growth, durability, repeatability, scalability, and dispersibility (particularly 

for building complex magnetic nanostructures). For instance, altering the particle shape of the 

substance might display the most active catalytic region of FeO, resulting in efficient and 

reasonably priced catalysts for a variety of processes. Examples of uses for 

superparamagnetic FeO nanoparticles include adsorbents, catalysts, sensors, reducing agents, 

and biological activities. Many biological processes, including magnetic resonance imaging, 

targeted drug administration, cancer hyperthermia therapy, antibacterial activity, and 

pharmaceutical purposes, benefit from the usage of magnetite nanoparticles. 
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Due to their rarity, magnetite FeO nanoparticles have most desirable properties, including 

ease of separation, high surface-to-volume ratio, and paramagnetic behaviour. Natural 

biopolymers such as chitosan, guar gum,  

alginate, dextran, and pectin are also used in the dispersing phase. The creation of magnetic 

nanoparticles has been made possible by this extraordinary host. The fabrication of 

biopolymer-based magnetite nanocomposites has used a number of techniques, including co-

precipitations, green synthesis, in-situ, hydrothermal, and wet chemical. Researchers are 

drawn to the properties of biopolymer magnetic nanocomposites for a variety of uses, 

including the adsorption of inorganic metal, organic impurities, target medication delivery, 

biosensing, catalysis, antibacterial, antifungal, antioxidant, anti-cancer, energy, 

environmental remediation, anti-fouling, wastewater treatment, and textiles. Table 1.3 enlists 

recent studies on synthetic materials that are suitable, biocompatible, non-expansive, eco-

friendly, and non-toxic for the creation and stabilization of magnetic nanoparticle biopolymer 

composites. 

Table 1.3: Biopolymer-magnetite nanocomposites and nanoparticles literature 

Biopolymer Iron/ 

FeO 

Method of 

preparation 

Applications Reference 

Irish moss Fe3O4 Green synthesis Synthesis of 

imidazopyrimidine 

derivatives 

[221] 

Agarose/dextran/

gelatin 

Fe2O3 Green synthesis  [24] 

 

Alginate 

FeO Ex-situ Improve the detection of 

liver tumors 

[222] 

Alginate Fe (II) Ex-situ  [35] 

 

Sodium alginate Fe3O4 Hydrothermal  [36] 

β-cyclodextrin/ 

chitosan 

Fe3O4 Green synthesis Anticancer drug delivery 

system 

[223] 

Chitosan Fe Co-

precipitation 

 

Cresol and its derivatives 

removal from 

waste water 

[224] 
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Chitosan Fe3O4 Ex-situ co-

precipitation 

Biomedical and 

therapeutic agent 

development 

[225] 

Chitosan Fe2O3 Co- 

precipitation 

 [40] 

Chitosan Fe In-situ  [41] 

Chitosan 

 

Fe Co-

precipitation 

 [42] 

Chitosan Fe3O4 Wet chemical 

 

To study enzymatic 

antioxidant system 

[226] 

Chitosan Fe Wet chemical 

 

 [44] 

Chitosan Fe 

 

Hydrothermal 

 

 [45] 

Chitosan alginate Magnetite Ex-situ  [46] 

Chitosan 

 

Fe3O4 Ex-situ Detection of phenolic 

compounds 

[227] 

Carboxylate 

polyacrylamide 

Fe3O4 Co-

precipitations 

 [48] 

Guar gum  Fe3O4 Co-

precipitations 

 [49] 

 

Nitrocellulose Fe2O3  Combustion 

waves 

Electrochemical 

applications 

[228] 

Styrene Fe3O4 Seed-mediated 

growth method 

Magnetic nanoparticles [229] 

Starch-Pectin Magnetite Green synthesis  [28] 

Polymethylmetha

crylate 

FeO Ex-situ Technological 

applications 

[230] 

Poly(methylmeth

acrylate) 

Fe Microwave 

plasma 

technique 

Electromagnetic 

applications 

[231] 
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1.5.1 Applications of biopolymer and magnetic oxide nanocomposites 

BMNCs containing magnetite oxide have been used extensively in a range of technical 

domains in contrast to other ions due of their exceptional biological, chemical, and physical 

characteristics. Supported metal adsorptions, organic impurities, catalytic activity, sensors 

and biosensors, biomedical, antibacterial activity, antioxidant activity, anti-cancer activity, 

coatings, and other measures are some of the applications in a variety of sectors. (Figure 1.3). 

  

Figure 1.3: Applications of biopolymers-magnetite oxide nanocomposites 
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1.5.1.1 Organic/inorganic impurity removal  

Many conventional and cutting-edge methods, including coagulation, chemical precipitation, 

adsorption, ion-exchange, complexation, electrodeposition, and membrane operations, are 

employed to remove organic and inorganic contaminants. Unfortunately, most of these 

treatments require a lot of energy, have ineffective removal, and produce a lot of trash when 

employed [232]. Single polymer-based metal biopolymer composites provide the highest 

possible adsorption value, a wide variety of surface groups, are physically feasible, and have 

outstanding durability. Applications of biopolymers-magnetite oxide nanocomposites in 

organic/inorganic impurity removal is discussed in the following section.  

It has been found that biological molecules including chitin, chitosan, and lignin are effective 

adsorbents for the removal of heavy metals [233]. For instance, calcium alginate hydrous 

(dropped/coated) ferric beads fabricated utilizing an adsorption technique were used to 

remove As.[61-62] Other studies suggest usage of nanoparticles Fe(III)@Alginate 

nanoparticles prepared by batch adsorptions method for removal of copper metal (II).[55-56]  

There is growing evidence that, in several circumstances, increasing the concentration of 

biopolymer compared to chitosan improves heavy metal adsorption[73].  Research indicate 

removal of Dy3+, Er3+, and Nd3+ from the media using Fe3O4-C-18 chitosan-DETA (FCCD) 

nanoparticles [234]. Another study shows elimination of As (V) by in situ starch/Fe3O4  

[61].In other studies, thorium ions and rare earth metals were removed from contaminated 

water using magnetic chitosan nanoparticles.[59] Arsenic metal and a cupper was removed 

by alginate/Fe nanoparticles prepared using the batch adsorption technique.[58,73]  

Diverse organic pollutants, such as basic dye, clove oil, BB, azo dye, methylene blue, humic 

acid, phenol, and cresol, are removed from wastewater through batch adsorption of synthetic 

magnetic/chitosan nanoparticles.[67-75]. In a different work, basic dye is extracted out of 

Fe3O4/PAA nanoparticles via batch adsorption.[64]. Using a guar-gum/magnetic oxide 

nanocomposite, an adsorption approach is used to remove Congo red from waste water  

[72]Removal of methyl-indole colour from wastewater using F3O4/Alginate 

nanocomposites[73]  
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Table 1.4: Applications of biopolymers-magnetite oxide nanocomposites in 

organic/inorganic impurity removal 

Biopolymer /Metal Metal References 

Alginate /Fe (III) /oxide As (III), As(V) [235] 

Alginate /Fe (III) As(V) [236] 

Alginate / Fe3O4 As (III), As(V) [34] 

Alginate/ Fe3O4 Cu (II) [237] 

Alginate/ Fe3O4 Cu2+ [238] 

Chitosan/ Fe2O3 Th(IV) [239] 

Chitosan/Fe Cr(VI) [196] 

Chitosan /Fe Cu (II) [240] 

Chitosan/Fe As [73] 

CS / Fe3O4 Pb (II) [183] 

Chitosan /Fe Rare-earth metal [59] 

CS NPs /Fe3O4 Heavy metal [73] 

Chitosan/Fe3O4 Hg(II) [241] 

Starch / Fe3O4 As(V) [242] 

Poly(methylmethacrylate)/ 

Fe2O3 

Pb(II), Hg(II), Cu(II) and Co(II) [243] 

Chitosan/Fe3O4 As (III) [62] 

Chitosan/ Fe3O4@SiO2 Hg2+, Pb2+, Cu2+ [244] 

Fe3O4/PAA Basic dye [64] 

Chitosan/magnetic Phenol [245] 

Chitosan / Fe3O4 Cresol [224] 

Chitosan / Fe Methylene blue [77] 

Alginate/ Fe Dye [67] 

Chitosan / Fe Basic dye [68] 

Chitosan/Fe Humic acid [197] 

Chitosan / Fe Methylene blue [70] 

Chitosan / Fe Clove oil [71] 

Guar gum/coated FeO Congo red dye [246] 

Fe3O4–alginate, H2O2 3-Methyl-indole [73] 

Fe3O4/chitosan BB [74] 

γ-Fe2O3/chitosan Azo dye [75] 

Fe3O4-C-18 Chitosan-DETA  Dy3+, Er3+, and Nd3+ [234] 
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1.5.1.2 Antibacterial activity/anti-oxidant activity/anticancer activity  

The most frequent medical conditions are caused by bacterial infections, which have a variety 

of negative effects on human public health. [95] Unfortunately, pathogenic bacterial and 

fungal strains that are solely multidrug-resistant have developed drug resistance as a result of 

these drugs' inferior effectiveness and excessive use. These strains of infections are more 

difficult to avoid and treat. Hence, it is essential to create novel antibacterial agents with high 

efficacy and low toxicity as well as an alternate treatment to deal with these problems. 

Magnetic oxide NPs supported by a range of biopolymers significantly inhibited Gram-

positive and Gram-negative bacteria, including spherical P. aeruginosa, E. faecalis, C. krusei, 

S. aureus, and B. cereus.. [79]. Because of their small size, high surface-to-volume ratio, and 

tuneable Plasmon resonance properties, MNPs FeO have specifically attracted attention 

among all potential treatments for bacterial infections. [72,99], as displayed in Table 1.5.  

Table 1.5 Applications of biopolymers-magnetite oxide nanocomposites in Antimicrobial 

activity/antioxidant activity /anticancer activity 

Biopolymer/metal Applications Reference 

 

Chitosan / Fe2O3 Antioxidant [76] 

Pectin /Fe2O3 Antimicrobial activity [77] 

Agarose-Fe2O3, Dextran-

Fe2O3 Gelatin-Fe2O3 

Antibacterial activity against gram-positive and 

gram-negative bacteria species 

[78] 

Dextran/sucrose Fe Spherical E. coli, P. aeruginosa, E. faecalis,  

C. krusei 

[79] 

Agarose/dextran/gelatin 

Fe2O3 

10.0 Dumbbell shape S. aureus, A. hydrophila, 

S. pyogenes, P. aeruginosa 

[80] 

Dextran/ 

Fe3O4 

59.0–149.0 Monitoring cancer cells of Micelles 

magnetic resonance imaging 

[81] 

1.5.1.3 Electrochemical biosensor activity  

A biosensing device is a highly effective and precise analytical tool with a low detection limit 

for analysis that may transform a biological event into a physicochemical significance. 

Various biosensors are used nowadays to find proteins, metal ions, and compounds. BMNPs 

have been widely employed in biosensing due to their exceptional chemical, electrical, and 
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optical charterers. Table 1.6 shows an arbitrary of the current progress in probes and 

biosensing.  

Table 1.6: Applications of biopolymers-magnetite oxide nanocomposites in electrochemical 

biosensor activity 

Biopolymer/Metal Function of Activity Reference 

FeO/Chitosan Glucose biosensor [82] 

Chitosan/ Fe3O4 Tyrosine biosensor [86] 

Fe3O4 /Chitosan 

 

Herbicide biosensor 

 

[83] 

Fe3O4 /Chitosan Glucose biosensor 

 

[84] 

Magnetic-chitosan 

nanocomposite 

Electrochemical Geno sensor 

 

[85] 

DNA/chitosan- 

Fe3O4magnetic 

Electrochemistry and    electrocatalysis [87] 

1.5.1.4 Biomedical   

Numerous biological applications, such as the immobilisation of proteins and enzymes, bio 

separation, drug administration, and magnetic resonance imaging, have made extensive use of 

magnetic nanoparticles [247]. Using synthetic BMNPs as a contrast agent for magnetic 

resonance imaging during biomedical hypothermic treatment for malignant tumours is one 

example. [126] The studies focusing on drug release, tissue distribution, pharmacy, kinetics, 

specific organ delivery, and magnetic resonance imaging contrast agent were the most 

notable among the numerous super-paramagnetic magnetic oxide applications incapacitate in 

biopolymer studies. Additionally, nanoparticles performed admirably when used to examine 

liver tumours. [85] 

1.5.1.5 Drug delivery  

Many biopolymer/gene-loaded nanoparticles have been produced recently as medication 

delivery vehicles, and it has been thoroughly studied how these nanoparticles circulate in 

human systems. In the past few years, biopolymer-magnetic nanoparticles/nanocomposites 

have demonstrated significant potential in targeted drug delivery applications. Biopolymer-

magnetic nanoparticles/nanocomposites were a common targeted delivery method that was 
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used to deliver anti-cancer medications to the precise locations where cancer cells are located. 

The magnetic properties of the metallic nanoparticles that resemble anti-cancer medication 

delivery have been demonstrated when they are combined with biopolymers such as 

chitosan[97], cyclodextrin[92], k-carrageenan[93] and Mannan[96]. Some of the recent 

researches of biopolymer-magnetic nanoparticles/nanocomposites in drug delivery are briefly 

enlisted in Table 1.7. 

 

Table 1.7: Potential applications of biopolymer-magnetic nanoparticles/nanocomposites in 

drug delivery 

Biopolymer/Metal  Function of Activity Reference 

 

β-cyclodextrin/ 

chitosan/Fe 

Drug delivery/Prodigiosin 

delivery 

[92] 

k-carrageenan/ Fe3O4 Drug delivery [93] 

Mannan / Fe3O4 Drug delivery [95] 

Alginate / Fe Reduction activity [96] 

Chitosan/ Fe3O4 Drug delivery [97] 

γ-Fe2O3/alginate matrix 

 

Drug delivery [98] 

 

Medicago sativa (alfalfa)/ FeO Cancer hyperthermia, 

drug delivery 

[99] 

Gelatin-coated magnetic FeO 

nanoparticles 

Drug loading and in vitro [100] 

 

Cyclodextrin conjugated magnetic 

colloidal nanoparticles 

Drug Targeted anticancer 

drug delivery 

[101] 

1.6 Biopolymer-ZnO nanocomposite (BZNCs)  

Nanocomposites made of biopolymers and ZnO are novel materials with a variety of 

characteristics. Significant research has been done over the past 10 years on the biosynthesis 

of nanocomposites using environmentally friendly techniques. This biopolymer/ZnO 

composite integrates studies that have been application-driven for decades with the most 

current investigation on crucial synthetic procedures. ZnO nanoparticles can be produced 

utilizing a variety of synthesis methods including the sol-gel process[20], the hydrothermal 
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process[21], the wet chemical method, and chemical vaporisation (CVD)[22], co-

precipitation[23], micro emulsion, microwave-assisted synthesis[25] , green synthesis[26]  

etc. Recent research directs fabrication of biopolymer/ZnO nanocomposites by embedding 

biopolymers such as polyethylene, chitosan [105], starch, alginate, [106] tamarind gum, 

pectin, cellulose[107], poly(3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV)[112], poly(3-

hydroxybutyrate) (PHB)[111], polyacrylic acid (PAA), polyvinyl alcohol (PVA), polylactic 

acid (PLA) [115] polyethylene [116]. The incorporation of zinc oxide nanoparticles into 

natural biopolymers broadens their applications, including biomedical [101], adsorption [32], 

environmental [33], drug delivery, antimicrobial activity [34] antioxidant activity [35] anti-

cancer activity [36] and catalytic activity [37] (Figure 1.4). 

 

             Figure 1.4: Applications of biopolymers-zinc oxide nanocomposites 

1.6.1 Applications of biopolymer/ZnO nanocomposite  

Biopolymer/ZnO nanocomposite is intriguing because to its high photosensitivity, physical 

and chemical stability, non-toxicity, and broad band gap. Due to its low in vivo and in vitro 

toxicity, it also has a wide range of uses in many other industries, including dyes, medicines, 
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fragrances, biology, petroleum, and agrochemicals. Due to its high biocompatibility, stability, 

quick electron transfer, and longer life than organic-based disinfectants, the application of 

Biopolymer/ZnO nanocomposite as antibacterial activity, anticancer activity, metal and dye 

removal from water has received significant attention recently.  Studies have supported its 

use in food packaging. Table 1.9 lists a few uses for biopolymer/ZnO nanocomposite 

materials. 

1.6.1.1 Antimicrobial /antifungal / Drug delivery / anticancer activity 

A literature analysis revealed that the majority of biopolymer/ZnO nanocomposites were 

initially created for a variety of applications involving the selective adsorption of target 

contaminants in the presence of other ions. Wide varieties of biopolymer/ZnO 

nanocomposites/nanoparticles have been synthesised recently and have been shown to 

possess potent antibacterial activities (Table 1.8). Chitosan/Ag/ZnO nanocomposite showed 

exceptional antibacterial action against B. 409 licheniformis, B. cereus, P. vulgaris and V. 

parahaemolyticus. The Chitosan-Ag@ZnO nanocomposite effectively inhibited the biofilm 

formation of bacteria and Candida albicans. Also, chitosan-assembled zinc oxide 

nanoparticles have been effectively investigated for their anticancer efficacy against cervical 

cancer cells. 141 

1.6.1.2 Metal removal/organic compound removal  

Biopolymer / zinc oxide nanocomposites are being employed in the adsorptions batch method 

to remove organic and inorganic contaminants from wastewater treatment. In required to 

remove diverse target species from contaminated water and wastewater, BZNCs have been 

produced and employed in a number of different ways, as shown in Table 1.9. ZnO 

nanoparticles incorporated in biopolymer graphene oxide are employed in its application to 

remove Mn (II) metal. [132].  In addition, graphene oxide with zinc oxide nanoparticles show 

ability to remove copper and aluminium from acidic conditions. [133]. Using it as an 

adsorbent, Congo red was recovered from our aqueous solutions.[130]. To enhance the 

elimination of Cr (VI) from aqueous solution, the adsorbent guar gum-nano and zinc oxide 

(GG/ZnO) nanocomposite has been used [138]. According to another study of the literature, 

complex contaminants may be eliminated using nanomaterials like graphene oxide (GO). 

This study presents the initial findings of Mn (II) ion removal from acidic solutions utilising 

GO functionalized with zinc oxide nanoparticles (ZnO).[132]. In terms of organic dye 

degradation and heavy metal ion removal, nano-engineered ZnO NR-rGO nanocomposites 
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show effective water remediation. The synthesis of ZnO NR-rGO nanocomposite via a 

simple template-free hydrothermal approach is described here to boost visible photo catalytic 

efficiency [127].  

According to the findings, ZnO@Chitosan core/organically shell nanocomposite (ZOCS) 

may be used to remove Pb (II), Cd (II), and Cu (II) ions from polluted water [135]. The study 

presents the development of a Zeolite/Zinc Oxide Nanocomposite. Using a co-precipitation 

technique, (Zeolite/ZnO NCs) were produced. The adsorption of Lead (II) and Arsenic (V) 

from aqueous solution was then investigated on the produced Nanocomposite. Nano-

ZnO/Chitosan composite beads (nano-ZnO/CT-CB) were used to remove Reactive Black 5 

(RB-5) from an aqueous solution in this investigation.[134]. Another work used sodium 

tripolyphosphate as the cross-linker to produce ZnO nanoparticles in situ while making 

physically cross-linked chitosan hydrogel beads., "Polyaniline/ZnO nanocomposite: a new 

adsorbent for the removal of Cr (VI) from aqueous solution [138]. 

Table 1.8: Applications of biopolymer/ZnO nanocomposite 

Biopolymer Metal/Metallic 

oxide 

Application Reference 

Alginate and chitosan ZnO Antimicrobial activity [103] 

Carrageenan ZnO Food packing activity [104] 

Chitosan ZnO Antimicrobial activity [105] 

Sodium alginate ZnO Food packing activity [106] 

Carboxymethyl cellulose ZnO Food packing activity [107] 

3-Methacryloxypropyl 

trimethoxysilane treated 

ZnO - [109] 

Poly (3-hydroxybutyrate) ZnO Antibacterial activity [111] 

Poly (3-hydroxybutyrate-

co-3-hydroxy valerate 

ZnO Food packing activity [112] 

PBAT ZnO Food packing activity [113] 

Poly-lactic acid ZnO Food packing activity [115] 

Linear-low-density 

polyethylene 

ZnO Food packing activity [116] 

modified cellulosic ZnO - [118] 

Polyaniline ZnO - [119] 
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Poly (lactic acid) or 

polylactide (PLA) 

ZnO - [120] 

Chitosan Ag/ ZnO Antibacterial activity [121] 

Chitosan Zn complex Antibacterial activity [122] 

Gelatin ZnO Antibacterial activity [124] 

Carboxymethyl 

starch/cellulose 

ZnO/Zn Photo degradation of dyes [125] 

Chitosan/ corn starch/ 

sodium alginate 

ZnO Photocatalytic reaction [126] 

Carboxymethyl cellulose-

chitosan- 

ZnO Food packing’s [127] 

Gelatin- Nanocomposite ZnO Application in Spinach 

Packaging. 

[164] 

Graphene-oxide 

nanocomposite w 

ZnO Photocatalytic [127] 

Poly(styrene-co-

acrylonitrile) 

 

ZnO Efficient Ligand Exchange 

Strategy 

[128] 

Graphene Oxide–

Nanocomposites 

ZnO Aluminium and Copper Ions 

from Acid Mine Drainage 

Wastewater 

[129] 

Chitosan ZnO Removal Congo red dye [130] 

Guar-gum ZnO  [131] 

Graphene Oxide–

nanocomposites 

ZnO Removal of Mn (II) from 

Acidic Wastewaters 

 

[132] 

Graphene oxide hybrids 

nanocomposites 

ZnO Metal removal [133] 
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chitosan–polyaniline 

hybrid composite 

ZnO Orange 16 dye [134] 

Chitosan ZnO Cu (II), Pb (II) and Cd (II [135] 

Zeolite/ Nanocomposite ZnO Lead Pb (II) and Arsenic As (V) [136] 

Polyaniline/ 

nanocomposites is a novel 

ZnO Removal of Cr (VI) from 

Aqueous Solution 

[138] 

Facile synthesis of 

chitosan/ bio-

nanocomposite 

ZnO Drug delivery [139] 

-polystyrene 

nanocomposite for 

ZnO UV-shielding applications [140] 

Chitosan-based 

nanoparticle 

ZnO Anticancer activity [141] 

1.7 Carboxymethyl tamarind kernel gum composites 

Tamarind kernel gum with carboxymethyl is one of its derivatives (CMTKG), as shown in 

Figure 1.5. This polysaccharide has been extensively employed in a range of applications 

because to its exceptional ability to alter the rheological properties, the thickening, and the 

viscosity of an aqueous solution.  

 

Figure 1.5: Chemical structure of carboxymethyl tamarind kernel gum 
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1.7.1 Applications of carboxymethyl tamarind kernel gum composites 

The usage of gradual medication delivery using aceclofenac medicine is shown to be 

beneficial for the interpenetrating network bio-composite of CMTKG and gelatin. In HCl 

arrangements, CMTKG in any bio-composites slowed down the rate of medicine release; 

nevertheless, the same elevation occurred in 6.8 pH buffer solution. The scientists suggested 

that their drug-stacked bio-composites may be used as soothing treatments (Jana, Banerjee, et 

al., 2016). To consider a composite made of a microwave-aided join of polyacrylonitrile and 

CMTKG, a 4-factor, 3-level focal composite plan was adopted. The ammonium persulfate 

convergence was altered by the response surface approach, indicating a synergistic effect, but 

the unifying efficiency decreased as the amount of acrylonitrile increased. The grafting 

increased the conferred pH-subordinate growth properties, upgraded the crystallinity, and 

improved thermal stability, according to the authors, who concluded that it was useful for 

developing pH-responsive applications [160,163] created erlotinib-stacked semi-

interpenetrating network nanocomposites using CMTKG, poly (N-isopropyl acrylamide), and 

montmorillonite [160]. These nanoscale composites were demonstrated for the administration 

of ERL for the treatment of NSCLC (non-small cell lung cancer). Be a result, this synthesis 

might be referred to as an exceptional method of treating NSCLC. 

1.8 Background and Significance 

Even while tamarind gum is ideally suited for pharmaceutical purposes, it may have 

significant disadvantages. TKG's functional groups have had to be modified by scientists due 

to its dull colour, bad odour, insolubility in water, and degradation in an aqueous 

environment.[20],Carboxymethylation [24], acetylation [25], hydroxyl alkylation, and 

thiolation [31] are some of the alterations that have been carried out to far. Tamarind kernel 

gum thiolation, Tamarind kernel gum crosslinking, number [27], Tamarind kernel gum that 

has partially decomposed [28,30]. Graft-modified Tamarind kernel gum [35]. Tamarind 

kernel gum that has been oxidised. Tamarind kernel gum's solubility, viscosity, swelling, and 

stability have all changed as a result of these alterations. 

TKG's polysaccharide structure is broken by carboxymethylation, which exposes the 

hydration network and gives the polymer an anionic character. This results in higher viscosity 

and lesser biodegradability than TKG, ultimately increasing shelf life. The inclusion of 

carboxymethyl groups makes the molecule resistant to enzymatic assault. Carboxymethyl 

xyloglucan has improved qualities that are essential for drug release retardation, assisting in 
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achieving sustained release action. [10] Moreover, incorporation of magnetic and zinc oxide 

nanomaterials with CMTKG may lead to the formation of an improved composite. The 

resultant biocomposite not only carry the inherent character but also often show high 

stability, maximum accessibility, and even interesting enhancement caused through the 

interaction of nanoparticle–matrix. Synthesized biocomposite have been a high achievement, 

biosensor, antifungal, antioxidant, antimicrobial antifouling, drug delivery activity, and 

adsorbents for removal of organic/inorganic impurity wastewater water solution that has 

comprehensive future utility.  

1.9 Overview of thesis 

In seven chapters, the complete thesis is summarized.  

Chapter 1: The thesis's first chapter provides a brief overview of the study work's 

contemporary scientific significance, as well as the thesis's objective. It also summarizes the 

scientific literature on the synthesized metal and metallic oxide biopolymer nanocomposite 

used for antibacterial, antifungal, antioxidant, biosensor antifouling, and organic/inorganic 

contaminant removal from wastewater. 

Chapter 2: The experimental methods used to carry out the research work are discussed in 

this chapter of the thesis, which includes information on the materials utilized, approved by 

the research, and the descriptions and parameters of several characterization techniques 

employed to fulfill the research effort's goal.  

Chapter 3: This chapter include the rationale as well as scope behind the research work 

conducted in this thesis. 

Chapter 4: The utilization of carboxymethyl tamarind kernel Gum/FeO nanocomposites in 

liquid ammonia sensors and antimicrobial activity has been prepared and characterized. 

Chapter 5: This chapter covers the synthesis and characterization of carboxymethyl tamarind 

kernel gum/ZnO nanocomposites, as well as their use in chromium metal removal and 

antifungal activities.  

Chapter 6: The synthesis and characterization of carboxymethyl tamarind kernel gum 

nanoparticles and their antioxidant properties are discussed in this Chapter.  

Chapter 7: This chapter summarizes the entire research study as well as the research's 

prospects.  
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Chapter-2 

Materials and Methods 

2.1 Overview 

In the current study, co-precipitation was used to synthesize nanoparticles of the biopolymer 

nanocomposites carboxymethyl tamarind kernel gum/FeO and carboxymethyl tamarind 

kernel gum/Zinc oxide, which were then analysed for their structural, thermal, and 

conduction characteristics using XRD, FESEM, FTIR, and TGA. The preparation and 

characterization procedures used to create the bionanocomposite are described in detail in this 

chapter. 

2.2 Materials 

Carboxymethyl tamarind kernel gum was donated by Hindustan Gum and Chemicals Ltd. 

Bhiwani, Haryana, India. The powder was then sieved, and a particle size smaller than 40 

mm was employed for further utilization. Before usage, this powder was dried in an oven 

maintained at 45°C for 24 hours.  FeCl3·6H2O, FeSO4·7H2O, and ammonia were procured 

from Central Drug House Pvt. Ltd. New Delhi, India. Every solution used in the analysis was 

made in double-distilled water (DDW). To determine the antibacterial potential of 

synthesized nanocomposite against pathogenic bacteria, three bacteria cultures viz. 

Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis were provided by the 

Department of (Botany and Microbiology), Gurukul Kangri (Deemed to be University), 

Hardwar, Uttarakhand. 

2.3 Synthesis of nanocomposites 

2.3.1 Carboxymethyl tamarind kernel gum/FeO (CMTKG/FeO) nanocomposites  

Carboxymethyl tamarind kernel gum/iron (CMTKG/FeO) nanocomposites were prepared by 

in situ co-precipitation method with some modifications. The co-precipitation approach is 

preferable to other methods because it is easier to use, speeds up formations, and makes it 

simple to manage particle size and composition [1]. This is an energy-efficient technique 

since it may be carried out at low temperatures, and also uses minimal organic solvents [2]. 

FeO nanoparticles were in situ synthesized by co-precipitation of ferrous and ferric salts in 

which 3.333g of FeSO4·7H2O and 6.479g of FeCl3·6H2O were dissolved in 150 mL double-

distilled aqueous solution. After stirring for 45 min, chemical precipitation was achieved at 
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35°C by adding 20 mL of NH3·H2O solution (25% v/v). At the time of reaction mechanisms, 

pH was maintained at about 10. The reaction system was kept at 60°C for one hour. The 

aqueous solution of CMTKG was obtained by dissolving 1g CMTKG in 150 mL DDW. This 

solution was then added dropwise into the obtained magnetic fluid in the flask and was 

followed by the addition of 2 mL epichlorohydrin while continuously stirring at 75°C for 

three hours. The residue obtained was washed with DDW to remove the unreacted chemicals 

and water-soluble impurities. Finally, the residue was washed with alcohol and dried at 50°C 

in a hot air oven.  

2.3.2 Carboxymethyl tamarind kernel gum/zinc oxide (CMTKG/ZnO) nanocomposites  

ZnO nanoparticles were created by co-precipitating zinc acetate in alcohol (10 mL), which 

was subsequently reduced to ZnO nanoparticles by adding 10 mL of 0.05 M NaOH solution. 

At 60°C, this solution was magnetically agitated continuously until it became homogeneous. 

A 150 mL aqueous solution in a conical flask containing 1 g of carboxymethyl tamarind 

kernel gum was added, and the combination was magnetically agitated at 60°C to produce 

viscous solutions. 150 mg of zinc solutions were added to this, and mixing continued until a 

24-hour homogenous solution was obtained. Finally, a CMTKG/ZnO immobilized polymeric 

precipitate was produced. Following 20-minute centrifugation at 10,000 rpm to remove any 

remaining debased particles, the mixture was washed with acetone. The precipitate was then 

dried in the hot air oven at 50°C after being rinsed with C2H5OH. The prepared dry powder 

of biocomposites was put away in desiccators for further use. 

2.3.3 Carboxymethyl tamarind kernel gum nanoparticles  

In the conical flask, 1g carboxymethyl tamarind kernel gum was added with 150 mL double 

distilled water. In order to gain viscous solutions, the mixture was magnetically stirred at 

40°C. Further, stirring continuously at 75°C for 24 hours and mixing until a clear solution 

was obtained. To remove any loose debased particles, the mixture was centrifuged at 10,000 

rpm for 20 minutes and rinsed with acetone. The precipitate was then washed with C2H5OH 

and dried in a hot air oven at 50 °C. CMTKG was ground into a powder. This was stored in 

desiccators and cleaned with acetone to remove any loose debased particles before being used 

with different adsorption methods. 
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2.4 Characterization 
 

The properties were characterized by Dynamic light scattering, Fourier-transform infrared 

spectroscopy, X-ray diffraction, Thermal Gravimetric Analysis, and UV-Visible 

spectroscopy. Furthermore, nanocomposites were explored for their potential applications as 

sensors for ammonia detection and antibacterial activity. 

2.4.1 UV-Visible spectral studies 
 

UV-Visible absorption spectra of an aqueous solution of nanocomposites and aqueous 

distributions. FeO nanoparticles were worked at room temperature using a Perkin Elmer 

Lambda 5 spectrophotometer along a 1cm optical path length. Change in Surface Plasmon 

Resonance (SPR) of nanocomposites in the dispersion was recorded using a UV-Vis 

spectrophotometer. 

2.4.2 Fourier-transform infrared spectroscopy analysis  
 

The infrared spectra (4000–400 cm-1) of samples were analyzed on a Perkin Elmer FT-IR 

BX2 instrument. The pellets were synthesized by mixing 10 mg of the crystals sample with 

200 mg of spectroscopic grade KBr.  

2.4.3 X-ray diffraction studies  
 

X-ray diffraction studies of synthesized nanocomposites were carried out using an X-ray 

diffractometer (P Analytical X’Pert Pro) at the current and voltage of 40 mA using Cu K α 

radiations (k = 1.5406 nm and λ=1.5406 Å) and Scanning angle 2θ in the range of 0-80o. 

Nanoparticle size has been also calculated for nanocomposites using Debye –Scherrer 

equation [3] as follows. 

� =
��

βcosθ
 

Here k = 0.9 � is the wavelength of the source (1.5Å), β	is the full-width-at-half-

maximum (FWHM), and	θ is the direction of the angle.  
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2.4.4 SEM analysis  
 

The SEM investigations of the products provide information on their morphology and size. 

The morphological features of nanocomposites were discovered using the FE-SEM (Model: 

JEOL JSM-6610LV, Hitachi, Japan). ImageJ software was used to determine the average size 

of Fe nanoparticles statistically.  

2.4.5 High Resolution Transmission electron microscopy (HR-TEM) analysis 

HR-TEM analysis was conducted by JEOL: JEM 2100 plus model. 5 mg of dry CMTKG 

nanoparticles were dissolved in 25 mL of C2H5OH and sonicated to mix the mixture. A 

copper grid that had been thoroughly covered with a 10 mL dispersion of nanoparticles 

(chloroform 1 percent arrangement of formvar in spectroscopic grade) was then dried in 

vacuum. 

2.4.6 Thermal Gravimetric Analysis 
 

Thermal Gravimetric Analysis (TGA) of nanocomposite were performed with 10°C/min of 

uniform heating rate and inert nitrogen atmosphere (25-900°C) using a Perkin Elmer 

Differential Thermal Analyser.  

2.4.7 Dynamic light scattering 
 

Dynamic light scattering (Zetasizer nano Z.S. Malvern Instruments Ltd) was utilized to detect 

the size distribution of particles by analysing dynamic fluctuations of light scattering intensity 

reasons by the Brownian velocity of the particles.  

2.4.8 Sensing study for ammonia detection 
 

The sensors studies of ammonia solution were executed by optical measurement. The 

ammonia sensing nature of CMTKG/FeO nanocomposite was investigated in an aqueous 

medium using the surface plasmon resonance (SPR). The sensing activity of synthesized 

nanocomposites was carried out using a 28% aqueous ammonia solution. Different 

concentration solutions of ammonia (1–100 ppm) were prepared (1 ppm, 10 ppm, 25 ppm, 50 

ppm, 75 ppm and 100 ppm) using DDW just before analyzing samples. Ammonia sensing 

properties were investigated by surface plasma resonance property. 
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2.4.9 Antibacterial activity 
 

Three antibiotic-resistant isolates of Pseudomonas aeruginosa, Escherichia coli, and 

Enterococcus faecalis from each bacterial species were chosen for this experiment. Following 

an agar well diffusion assay, the antibacterial activity was carried out according to the 

procedure. Measurements were made of the clear zone (in millimetres) surrounding the disc 

that represented the antibacterial activity. The activity was performed as per protocol 

following an agar well diffusion assay [4]. For positive control, gentamicin antibiotic was 

used. 

2.4.10 Adsorption studies 

The batch approach was used to conduct adsorption tests at room temperature (298–313 K) 

and a respectable fermentation rate. In a thermostatic water shower shaker for a duration of 

10 to 100 minutes, various concentrations of CMTKG/ZnO biocomposite were equilibrated 

with 10 mL of chromium solution (10 to 50 mg/L). Through centrifugation and the residual 

convergence of chromium particles in the supernatant fluid, the adsorbent was separated from 

the solutions. It was looked at by using a UV spectrophotometer. The experiments were 

conducted at different chromium (VI) concentrations with a good adsorbent percent and 

variable contact durations for dynamic estimates. The impact of changing pH on adsorption 

was investigated in the pH range of 0–10. The pH of the liquids was altered by using a 

weaker HCl or NaOH setup (both 0.01 M). The assessments were administered repeatedly, 

and average characteristics were noted. The amount of chromium (VI) absorbed per unit mass 

of adsorbent (qe, mg. g-1) was determined using the following criterion by Eq. (2.1): 

%���������� =
�����

��
     (2.1) 

The equilibrium was calculated using the formula given in Eq. (2.2): 

qe = �0 − �� ×
�

�
      (2.2) 

where qe is the balance limit of chromium (VI) on the adsorbent (mg g−1), C0 is the 

underlying convergence of chromium (VI) (mg L−1), Ce is the balance grouping of chromium 

(VI) (mg L−1), V is the volume of chromium (VI) utilized (L) and W is the heaviness of 

adsorbent (g) utilized.  
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2.4.11 Antifungal activity determination 

Utilizing MTCC2799, which is the minimal concentration of the sample needed to inhibit % 

of the fungus Aspersilium flamous, the antifungal activity of CMTKG/ZnO nanocomposites 

was assessed. A stronger antifungal impact was assumed to exist in every sample with a 

lower MTCC-2799 score. The positive control was amphotericin B. 

2.4.12 DPPH scavenging activity 

The ability of carboxymethyl tamarind kernel gum to scavenge 2,2-diphenyl-2-picrylhydrazyl 

(DPPH) free radicals was investigated [5,6]. The DMSO was diluted to 1 mg/mL using the 

CMTKG stock solution. Diluted solutions (1 mL each) were coupled with DPPH (3 mL), as 

shown in Figure 6.2. The absorbance was measured at 517 nm after 30 minutes in the dark at 

room temperature, much like the control samples [7]. 

The % inhibition was calculated using the formula below (Eq. 2.3): 

Inhibition % =
���������	��	�����	�	����������	��	������

����������	��	�����	
	× 100   (2.3) 
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Chapter-3 

Scope of work 

3.1 Rationale of work 

Numerous plant-derived materials are gaining relevance in the fields of medicine and 

biotechnology every day, due to their abundant availability in nature, eco-friendly, 

renewable, and sustainable extraction facility, as well as their reduced cost. Natural gums 

generated from plants have lately made a name for themselves as biopolymers thanks to their 

biosafety, biodegradability, and low cost of manufacturing using renewable natural resources. 

Natural polysaccharides that come from plants are called plant-derived gums. These 

macromolecular structures have a wide range of physiological properties because they are 

made up of several sugar units that are attached to one another. 

Among the many polysaccharides generated from plants, tamarind kernel gum is a potential 

biopolymer. It is made from the endosperm of tamarind seeds and is frequently referred to as 

tamarind kernel gum. It is widely used as a polymer in a wide range of applications, including 

those in the chemical engineering, pharmaceutical, cosmetic, food, paper, and textile 

industries. In recent years, tamarind kernel gum has been investigated and used as an 

advantageous excipient in a number of dosage forms for better medication delivery. Despite 

being widely employed in a variety of biomedical applications, such as its large spectrum of 

uses in pharmaceutical formulations as excipients, tamarind gum has certain potential 

disadvantages. The native tamarind kernel gum has a foul smell and a dismal appearance. 

Additionally, it has low water solubility. In particular, tamarind kernel gum frequently shows 

the presence of water-insoluble components and has a propensity for breaking down quickly 

in watery environments. To get over these limitations, functional groups—modifications of 

different functional groups found in polymer structures—such as carboxymethyl have been 

included into tamarind kernel gum by chemical modification. 

In comparison to native gums, carboxymethylated gums often show improved hydrophilicity 

and clarity of solutions. The native gum's prospective features enhancements increase its 

solubility in aqueous media. Tamarind kernel gum that has been carboxymethylated is found 

to be more enzymatically and microbially resistant than natural gum. In aqueous conditions, 

carboxymethyl tamarind kernel gum has a greater viscosity and a slower rate of degradation. 
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The increase in biopolymers-based nanocomposites is receiving scientific attention as a result 

of the current population, climate change, and industrial pursuits. Recently, interest has been 

drawn to the use of various biopolymers and their nanocomposites in the development of 

innovative applications from the standpoint of the environment. Since most biopolymers are 

biodegradable and made from renewable resources, they don't have a detrimental effect on 

the environment. According to a review of the literature, several metal and metal oxide 

nanoparticles have drawn a lot of interest by improving the characteristics of the biopolymer 

matrix. Metallic nanoparticles can give the biopolymers additional electrical conductivity, 

catalytic activity, and plasmonic features in terms of functionality. Additionally, due to their 

improved aqueous processability and dispersibility within biopolymer matrices, metal oxide 

nanoparticles can be potentially used. 

Based on the aforementioned information and further research on natural polymer-based 

functional materials for biomedical applications, carboxymethyl tamarind kernel gum-metal 

nanocomposites were synthesized in this work. These nanocomposites were investigated 

using FTIR, XRD, SEM, TEM, TGA, DTA, and DLS. They were used for their biosensing, 

antimicrobial, antifungal, metal removal, anti-oxidant, and anti-fouling capabilities. 

Biocomposite, based on biopolymer- carboxymethyl tamarind kernel gum embedded with 

iron and zinc oxide nanoparticles has not yet reported in the literature before to the best of my 

knowledge. 

3.2 Research objectives  

The primary goal of this research is to fabricate novel formulations of carboxymethyl 

tamarind kernel gum-metal nanocomposites using the in situ co-precipitation method. These 

formulations will be used for their antimicrobial, antifungal, metal removal, anti-oxidant, and 

anti-fouling properties. 

Main study objectives are enlisted below: 

To prepare and optimize carboxymethyl tamarind kernel gum /FeO nanocomposites, as well 

as an evaluation of their potential applications for ammonia sensor activity and antimicrobial 

activity.  

To prepare and optimize carboxymethyl tamarind kernel gum/ZnO nanocomposites, 

characterization of these materials, application of their antifungal properties, and removal of 

Cr metal from contaminated water.  
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To prepare and optimize carboxymethyl tamarind kernel gum nanoparticles, characterize 

them through testing, and use them for their anti-oxidant and anti-fouling properties. 

3.3 Plan of work 

(i) Literature review 

(ii) Defining key objectives 

(iii)Formulation of carboxymethyl tamarind kernel gum/ZnO nanocomposites by co-

precipitations method (in situ generation) 

(iv) Formulation of carboxymethyl tamarind kernel gum/FeO nanocomposites by co-

precipitations method (in situ generation) 

(v) Following the preparation of the nanocomposites, synthesized nanocomposites will be 

subjected to the following characterization techniques: 

a) Structural analysis by Fourier-transform infrared spectroscopy 

(FTIR) spectroscopy and X-ray diffraction (XRD) 

b) Surface morphological analysis by Scanning Electron Microscopy 

(SEM) and Transmission Electron Microscopy (TEM) 

c) Thermal analysis by Thermogravimetric Analysis (TGA) and 

Differential Thermal Analysis (DTA) 

d) Dynamic Light Scattering (DLS)  

(vi) After preparing nanocomposites, they are subjected to various biological chemical 

activities, such as antioxidant, antibacterial, antifungal, antifouling, ammonia sensor, 

and hazardous metal removal from contaminated water. 
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Chapter-4 

Synthesis and characterizations of carboxymethyl tamarind kernel 

Gum/FeO nanocomposites, its application in liquid ammonia  

sensing and antimicrobial activity 

4.1 Introduction 

Metal nanoparticles have been widely employed to develop gas sensors that can detect a wide 

range of gases, due to their superior electrical and morphological characteristics and high 

surface-to-volume ratio. Due to its numerous uses in nano-fields including ferrofluids [1–3], 

magnetocaloric refrigeration [4], biotechnology [5,6], and in vivo bio-medical sector [7], 

super-paramagnetic FeOs have undergone substantial research in recent years. These 

materials have a number of potential biomaterial uses in magnetically controlled drug 

administration [8–10], magnetic resonance imaging [11,12], tissue healing [13,14], gene [15], 

biosensing [16], immunoassays [17], RNA and DNA purification [18], antioxidant activity, 

cellular, and genotoxicity [19] and enzyme immobilization [20], agriculture [21] and gas 

sensing [22]. Numerous sectors, including catalysis [23–25], environmental protection 

[26,27], clinical diagnostics [28,29], and therapy [30–32], have conducted substantial 

research on it (Jordan et al., 2003). 

Magnetic oxide nanoparticles have various topologies, such as nanotubes [33,34], nanowires 

[35–37], nanorods [38–41], and nanocomposites [42–44], which have also been synthesized. 

Several techniques have been proposed for the synthesis of metal nanoparticles, including 

electrochemical [45], microemulsions [46], flow injection [47], sonochemical method [48], 

biosynthesis [49], chemical (sol-gel) [50], hydrothermal reverse micelle [51], template 

method [52], co-precipitation [53], etc.), and mechanical-chemical (laser ablation arc [54], 

combustion [55], discharge [56], electrodeposition [57], and pyrolysis [58]) methods.  

The need for natural polysaccharides in place of synthetic biopolymers in many biomedical 

fields is becoming more and more popular as a result of the socioeconomic environment of 

the modern world [59–61]. A common class of natural bio-polysaccharides that are non-toxic, 

biodegradable, less costly, and readily available in the environment are plant polysaccharides 

[62]. Plant polysaccharides are increasingly playing a proactive role in enhancing the 
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performance of drugs in terms of stability, drug release, target specificity, and bioavailability 

[63,64]. One such derivative of tamarind kernel gum, which is produced from the kernel of 

Tamarindus indica, is carboxymethyl tamarind kernel gum (CMTKG). CMTKG is made up 

of a β-D-glucan backbone chain with β-D-galactopyranosyl and α-D-xylopyranose side 

chains connected to glucose [65,66]. This finds applications [67] as antimicrobial activity 

[68], antioxidant activity, anti-fouling activity, and adsorption for various organic/inorganic 

impurities from wastewater. CMTKG is hydrophilic and capable of absorbing different aqua 

solutions. The carboxymethyl group increases viscosity and confers resistance to enzymatic 

processes on the molecule [69]. Due to their capacity to function as reducing agents, regulate 

particle development, and stabilize the particles, they are garnering interest as matrix 

materials for immobilizing nanoparticles and producing biogenic nanomaterials with novel or 

better features [70]. 

Semiconducting metal oxide chemical sensors have recently piqued the interest of ecologists, 

technologists, environmentalists, and others due to environmental pollution and unintentional 

leaking of harmful gases and liquids [71–73]. Due to its hazardous and contaminating 

characteristics, ammonia is one of the industrial gases in liquid form that is of interest [74]. 

Its global output exceeds 100 million tonnes annually because of its many uses, which 

include the creation of nitrogenous fertilizers and other nitrogenous compounds as well as an 

industrial refrigerant [75,76]. If severely concentrated, it might cause serious burns to our 

skin, eyes, throat, or lungs, which could result in lung illness and irreversible blindness 

[77,78]. Therefore, it is desirable to identify and monitor the presence of ammonia as early as 

possible in a wide variety of commercial applications. 

To analyze the gaseous ammonia concentration, various sensors based on organic and metal-

oxide conducting polymer films have been made [79–81]. Although efficient, these sensors 

are unable to detect the concentration of ammonia in liquid form. The nanoparticles used as 

sensors often show alteration in the dielectric constant of the surrounding medium by altering 

the solvent or by complex development at the surface of nanoparticles.  

Metal oxide nanostructures have been used in several sensing studies for the detection of 

different substances, including hydrazine, acetone, ethanol, etc [82,83]. The features of the 

thin films created by the physisorption and chemisorption procedures are mostly used in the 

chemical sensing by metal oxide thin films. The present modifications of the manufactured 

thin films brought on by the chemical elements of the reacting system in an aqueous medium 
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serve as the basis for chemical detection. In the current study, we attempted  to develop well-

dispersed CMTKG/FeO nanocomposites by in situ co-precipitation technique and 

investigated their potential use as sensors for ammonia detection. The potential of the 

synthesized nanocomposite was also investigated for antibacterial activity against urinary 

tract isolates such as Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis. 

4.2. Experimental 

4.2.1 Materials 

Carboxymethyl tamarind kernel gum (CMTKG) was donated by Hindustan Gum and 

Chemicals Ltd. Bhiwani, Haryana, India. The powder was then sieved, and a particle size 

smaller than 40 mm was employed for further utilization. Ferric Chloride Hexahydrate 

(FeCl3·6H2O),Epichlorohydrin(C3H5ClO) Ferrous Sulphate Heptahydrate (FeSO4·7H2O), and 

ammonia (NH3) were procured from Central Drug House Pvt. Ltd. New Delhi, India. Every 

solution used in the analysis was made in double-distilled water (DDW). To determine the 

antibacterial potential of synthesized nanocomposite against pathogenic bacteria, three 

bacteria cultures viz. Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis 

were provided by the Department of (Botany and Microbiology), Gurukul Kangri (Deemed to 

be University), Hardwar, Uttarakhand. 

4.2.2 Preparation of carboxymethyl tamarind kernel gum/FeO (CMTKG/FeO) 

nanocomposites 

CMTKG/FeO nanocomposites were prepared by in situ co-precipitation method with some 

modifications. The co-precipitation approach is preferable to other methods because it is 

easier to use, speeds up formations, and makes it simple to manage particle size and 

composition [84]. This is an energy-efficient technique since it may be carried out at low 

temperatures, and also uses minimal organic solvents [85]. FeO nanoparticles were in situ 

synthesized by co-precipitation of ferrous and ferric salts in which 3.333g of FeSO4·7H2O 

and 6.479g of FeCl3·6H2O were dissolved    in 150 mL double-distilled aqueous solution. 

After stirring for 45 min, chemical precipitation was achieved at 35°C by adding 20 mL of 

ammonia solution (25% v/v). At the time of reaction mechanisms, pH was maintained at 

about 10. The reaction system was kept at 60°C for one hour. The aqueous solution of 

CMTKG was obtained by adding 1g CMTKG in 150 mL DDW. This solution was then 

added dropwise into the obtained FeO fluid in the flask and was followed by the addition of 2 

mL epichlorohydrin while continuously stirring (300 rpm) using magnetic stirrer at 75°C for 
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three hours. The residue obtained was washed with DDW to remove the unreacted chemicals 

and water-soluble impurities. Finally, the residue was washed with alcohol and dried at 50°C 

in a hot air oven for 10 to 20 minutes.  

4.2.3 Characterization  

The synthesized nanocomposite was characterized by Dynamic light scattering, Fourier-

transform infrared spectroscopy, X-ray diffraction, Thermal Gravimetric Analysis, and UV-

Visible spectroscopy. Furthermore, nanocomposites were explored for their potential 

applications as sensors for ammonia detection and antibacterial activity. 

4.2.3.1 UV-Visible spectral studies 

UV-Visible absorption spectra of an aqueous solution of CMTKG/FeO nanocomposites and 

aqueous distributions. FeO nanoparticles were subjected to test at room temperature using a 

Perkin Elmer Lambda 5 spectrophotometer along a 1cm optical path length. Change in 

Surface Plasmon Resonance (SPR) of nanocomposites in the dispersion was recorded using a 

UV-Vis spectrophotometer. 

4.2.3.2 Fourier-transform infrared spectroscopy analysis  

The infrared spectra (4000–400 cm-1) of samples were analysed on a Perkin Elmer FT-IR 

BX2 instrument. The pellets were prepared by mixing 10 mg of the crystals sample with 200 

mg of spectroscopic grade KBr.  

4.2.3.3 X-ray diffraction studies  

X-ray diffraction studies of prepared CMTKG/FeO nanocomposites were carried out using an 

X-ray diffractometer (P Analytical X’Pert Pro) at the current and voltage of 40 mA using Cu 

K α radiations (k = 1.5406 nm and λ=1.5406 Å) and Scanning angle 2θ in the range of 0-80o. 

Nanoparticle size has been also calculated for FeO nanoparticles using Debye –Scherer 

equation [86] as follows. 

� =
��

βcosθ
 

Here k = 0.9 � is the wavelength of the source (1.5Å), β	is the full-width-at-half-maximum 

(FWHM), and	θ is the direction of the angle.  
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4.2.3.4 SEM analysis  

The SEM investigations of the products provide information on their morphology and size. 

The morphological features of CMTKG/ FeO nanocomposites were discovered using the FE-

SEM (SU8010, Hitachi, Japan). ImageJ software was used to determine the average size of 

Fe nanoparticles statistically. 

4.2.3.5 Thermal Gravimetric Analysis 
 

Thermal Gravimetric Analysis (TGA) of CMTKG and CMTKG/ FeO nanocomposite were 

performed with 10°C/min of uniform heating rate and inert nitrogen atmosphere (25-900°C) 

using a Perkin Elmer Differential Thermal Analyzer.  

4.2.3.6 Dynamic light scattering 

Dynamic light scattering (Zetasizer nano Z.S. Malvern Instruments Ltd) was utilized to detect 

the size distribution of particles by analyzing dynamic fluctuations of light scattering 

intensity reasons by the Brownian velocity of the particles. For the purpose of analysis, 

CMTKG aqueous solution from the co-precipitation method of in situ Fe-O nanoparticles was 

utilized.  

4.2.3.7 Sensing study for ammonia detection 

The sensing studies of ammonia solution were executed by optical measurement. The 

ammonia sensing nature of CMTKG/FeO nanocomposite was investigated in an aqueous 

medium using the surface plasmon resonance (SPR). The sensing activity of synthesized 

CMTKG/ FeO nanocomposites was carried out using a 28% aqueous ammonia solution. 

Different concentration solutions of ammonia (1ppm, 10 pmm, 25 ppm, 50ppm, 75 ppm and 

100 ppm) were prepared using DDW just before analyzing samples. Ammonia sensing 

properties were investigated by surface plasma resonance property. 

4.2.3.8 Antibacterial activity  

Three antibiotic-resistant isolates of Pseudomonas aeruginosa, Escherichia coli, and 

Enterococcus faecalis from each bacterial species were chosen for this experiment. Following 

an agar well diffusion assay, the antibacterial activity was carried out according to the 

procedure. Measurements were made of the clear inhibition zone (in millimetres) surrounding 

the disc that represented the antibacterial activity. The activity was performed as per protocol 
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following an agar well diffusion assay [87]. For positive control, gentamicin antibiotic was 

used. 

4.3. Results and discussions  

4.3.1 Evaluation of CMTKG/ FeO nanocomposites 

The optical property of FeO nanoparticles is determined by recording the absorbance of the 

synthesized nanocomposites using a UV-visible spectrophotometer. Figure 4.1 shows the 

UV-visible absorption spectrum of CMTKG/FeO nanocomposites. The range shows the 

shifting of the peak positions of the majority-Fe absorption towards a low wavelength of 354 

nm, indicating the existence of FeO nanoparticles. Due to their strong Surface Plasmon 

Resonance (SPR) band transition, CMTKG/ FeO nanocomposites were able to absorb light in 

the visible spectrum between 200 and 600 nm. Additionally, similar outcomes have been 

reported by Devi et al. (2019). 

 

Figure 4.1: UV–Visible absorption spectra CMTKG/FeO nanocomposites         
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4.3.2 FTIR analysis 

FTIR spectra bands of CMTKG and CMTKG/ FeO are shown in Figure 4.2. CMTKG 

demonstrates a characteristic large absorption peak at 3424 cm−1 for -OH stretching 

vibrations. The absorption at 2926 cm−1 correlates to C-H stretching vibrations. The 

absorption at 1632 cm−1 is due to –COO- symmetric vibrations, and at 1408 cm−1 and 

1112 cm−1 because of O-H bending and C-O stretching vibrations, respectively. 

CMTKG/FeO showed a broad absorption band at 3329 cm−1 and 3421 cm−1 correlating –OH 

stretching vibration, the absorption peak at 1628 cm−1 corresponds to –COO- symmetric 

vibrations. The vibrations observed at 1397 cm−1 and 1290 cm−1 were due to O-H bending 

and C-O stretching, respectively, and at 3116 cm−1 due to C–H stretching vibrations.  The 

spectrum also has a band at 751 cm−1 suggesting Fe-O ions vibrations [30]. All the peaks of 

CMTKG were found also in CMTKG/FeO nanocomposite with a slight shift. While the 

presence of a new peak at 715 cm-1 confirms the presence of CMTKG – Fe interaction. 

Besides this, the slight change in the intensity of adsorptions bands between (1112 and 1290) 

cm−1 also confirms the interaction between CMTKG and Fe ions. 

 

Figure 4.2: FTIR spectra of CMTKG and CMTKG/FeO 

750 cm-1 (FeO) 



73 

4.3.3 XRD Analysis 

X-ray patterns of CMTKG and CMTKG/FeO nanocomposite are shown in Figure 4.3. XRD 

analysis of CMTKG and CMTKG/ FeO have been studied to see the crystalline nature of 

both nanoparticles. XRD of the CMTKG and CMTKG/FeO show almost similar patterns 

having sharp peaks. However, CMTKG/FeO shows sharper peaks in comparison to CMTKG. 

This confirms the interaction of Fe with CMTKG in CMTKG/ FeO nanocomposite. A similar 

observation has been reported in the literature [88]. 

The average size of CMTKG/FeO nanocomposite was calculated from Debye Scherrer 

equation.  

� =
��

βcosθ
 

 

Here k=0.9 � is the wavelength of source (1.5Å), β	is the FWHM, and	θ is the direction of the 

angle. The average size of CMTKG/FeO nanocomposite was found of 42.50 nm. 

 

Figure 4.3: X-Ray Diffraction spectra of CMTKG and CMTKG/ FeO nanocomposite 
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4.3.4 Morphological characterization 

SEM micrographs of CMTKG and CMTKG/FeO nanocomposite are shown in Figure 4.4. 

SEM provides a beneficial report about the particle size and polydispersity profile. The 

change in the SEM micrographs of the composite before and after the incorporation of Fe3O4 

indicates the structural changes in the synthesized nanocomposite. The CMTKG and 

CMTKG/ FeO nanoparticles were shown to have uniform spherical sizes in a disorderly 

distribution. ImageJ software was used to determine the average size of FeO nanoparticles 

statistically. The particle size was determined to be 60–90 nm. Identical results were also 

reported by Ahmad and co-workers (2009) [89].  

Figure 4.4: SEM micrograph and particle size determination of (a) CMTKG and (b) 

CMTKG/ FeO nanocomposite 
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4.3.5 Thermo gravimetric analysis  

The thermic co-tension of synthesized CMTKG/ FeO nanocomposite is found to be more 

than CMTKG. Hence, to confirm this property, a comparison of the thermal analysis was 

conducted. The thermogram of CMTKG and CMTKG/ FeO weight loss was analyzed in 

three distinguished stages, as shown in Figure 4.5. The weight reduction of 5.76%, at the 

beginning stage (32–160°C) is characteristic of the expulsions of moisture from the 

biopolymer. The second stage of weight loss (190–420°C) could be because of the 

biopolymer backbone reductions, and dissolutions of carboxymethyl and hydroxyl functional 

groups of CMTKG with 30.60% weight loss. This was pursued by the 3rd stage of 

degradation (653–725°C) with 3.96% weight loss. The weight decrease was reported in three 

positions for CMTKG/FeO nanocomposite as well. The 1st region (190–340°C) was due to 

the reduction of refuse cross-linker. The weight loss of 24.45% for the 2nd region (390–

580°C) is the characteristic of biopolymers' degradation. The 3rd stage (675–860 °C) was 

found with 4.30% of weight loss. However, CMTKG/FeO nanocomposite showed higher 

mass % until they touched 400°C in comparison to the CMTKG. Similarly, at 900°C, the 

CMTKG/ FeO nanocomposite recorded greater than 35% of residual mass compared to 

CMTKG which showed 20% of the residual mass. As a result, it was determined that the 

thermal stability of CMTKG/FeO nanocomposite was significantly higher than that of the 

CMTKG. The same findings were also reported by Khushbu and the team (2019) [90]. 
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Figure 4.5: Thermal gravimetric analysis of CMTKG and CMTKG/FeO nanocomposite 

4.3.6 Dynamic light scattering analysis 

The DLS technique was employed to study the particle size of synthesized Fe-O 

nanoparticles. The size dissemination of the green synthesized Fe-O nanoparticles is 

presented in Figure 4.6. Findings evidently acknowledge that most of the particles show size 

dissemination from ~60 to ~90 nm with the highest size dissemination at about 75 nm [91]. 
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Figure 4.6: DLS analysis of Fe-O nanoparticles 

4.3.7 Potential applications of developed CMTKG/FeO nanocomposite  

4.3.7.1 Ammonia sensing performance 

The sensing ability of CMTKG/ FeO nanocomposite in numerous ammonia concentrations at 

room temperature is depicted in Figure 4.7. The changes in absorbance spectra for the various 

concentration of ammonia were monitored using a UV-Vis spectrophotometer and the same 

was observed to increase from 1 to 100 ppm of ammonia concentration. For each 

measurement, fresh CMTKG/FeO nanocomposite colloidal solutions were combined with 

various ammonia solutions. The results revealed the shift of Surface Plasmon Resonance 

peak intensity from 313 nm to 331 nm with the subsequent rise in ammonia concentration. 

This spectral shift may be attributed to the changes in inter particles range and shifts in the 

dielectric constant of the medium [92]. The complex that forms on the surface of the 

nanocomposites may be the cause of the change in absorption intensity that occurs after 

adding them to the ammonia solution.  
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Figure 4.7: Spectral absorbance of CMTKG/FeO nanocomposite as a function of numerous 

ammonia concentrations 

4.3.7.2 Antibacterial activity 

In the present investigation, CMTKG/FeO nanocomposites were evaluated for the 

exploration of their antimicrobial activity against 3 pathogenic bacteria viz. Escherichia coli, 

Pseudomonas aeruginosa, and Enterococcus faecalis. The polysaccharide nanocomposite 

containing in situ produced FeO nanoparticles and CMTKG as a reducing and capping agent 

demonstrated antibacterial efficacy against Enterococcus faecalis with a zone of inhibition of 

12.4 ±0.5 mm, as shown in Table 4.1. The inspection showed no significant differences in 

antibacterial activity against Escherichia coli and Pseudomonas aeruginosa (Figure 4.8). 
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Table 4.1: Antibacterial activity of nanocomposite against pathogenic bacteria 

 

Test organism 

Zone of inhibition in mm 

Nanocomposite Gentamicin 

(30µg) 

DMSO 

Enterococcus faecalis(A) 12.4 ± 0.5 NA NG 

Escherichia coli(B) NA 15.2 ± 0.4 NG 

Pseudomonas 

aeruginosa(C) 

NA 9.0 ± 0.1 NG 

NA: No Activity  

NG: No Growth 

 

Figure 4.8: Antibacterial activity of CMTKG/FeO nanocomposites (NP: Nanocomposites, 

PC: Positive Control, NC: Negative Control) 

4.4 Conclusion 

Nanocomposite polysaccharides with in situ generated FeO nanoparticles were prepared 

using Fe2O3.7H2O and FeCl3·6H2O solutions as the source and CMTKG as the reducing and 

capping agent by co-precipitations method. The scanning electron microscopy, X-ray spectral 

analysis, and DLS analysis indicated the generation of spherical CMTKG/FeO 
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nanocomposites in the average size in the range of 40-90 nm. The thermal stability of 

CMTKG/ FeO nanocomposites was found significantly higher than that of the CMTKG.  

 These nanocomposites exhibited excellent antibacterial activity against both Enterococcus 

faecalis and hence can be considered for applications in antibacterial textiles for personal and 

hospital uses. The sensor properties of the synthesized nanocomposite solution across rising 

ammonia concentrations in the range of 1–100 ppm by observing the changes in SPR 

situations and magnitude with a UV-Visible Spectrophotometer have been notified. 

Eventually, CMTKG/FeO nanocomposites show promising ammonia sensing properties. This 

research expands the potential uses of CMTKG/FeO nanocomposites on a broad scale. 
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Chapter-5 

Synthesis and characterization of carboxymethyl tamarind kernel 

gum/ZnO nanocomposites and its application in chromium  

metal removal and antifungal activity 

5.1 Introduction  

Water contamination has become a deliberate environmental concern globally in recent years. 

This is due to the existence of several pollutants that infiltrate aquatic systems as a result of 

the uncontrolled and rapid increase in the world's population, industry, agricultural fertilizers, 

urbanization, and the widespread use of chemicals [1,2]. Chromium is regarded as one of 

those heavy metals that pollutes both land and water and is mostly released through factories 

that produce textiles, leather tanning, electroplating, and metal extraction [3]. Chromium 

exists in two oxidation states in hydrated situations: one is trivalent Chromium (III) and the 

other is hexavalent Chromium (VI) [4]. After entering the water, Cr undergoes a number of 

changes, including oxidation, reduction, sorption, desorption, precipitation, and dissolution. 

Cr (III) solubility is pH-dependent, whereas Cr (VI) is quite soluble at all pH levels. The most 

hazardous form of chromium is hexavalent, which is typically coupled with oxygen to 

generate the oxoanions CrO4
2- and Cr2O

2-. Trivalent chromium is less poisonous, less mobile, 

and has a significant association with soil organic matter [5–7]. In addition to being a potent 

epithelium irritant, Cr (VI) is also considered to be a human carcinogen [8]. Similar 

poisoning by Cr (VI) occurs in a variety of plants [9], aquatic creatures [10], microbes [11], 

and other species. Hence, it is vital to remove chromium from water because of the rising 

usage of effluent water for irrigation and the excessive chromium build up in various soil 

profiles. 

Along similar lines, the sole approach focused on the reduction and adsorption of toxic Cr 

(III) to more dangerous Cr (VI) has been used by researchers [12,13]. Co-precipitation 

[14,15], chemical reduction [16], coagulation [17,18], ion exchange [19–21], and adsorption 

[22,23] have all been used to remove chromium from polluted water. However, the majority 

of these methods were reportedly found to be expensive. Conversely, adsorption methods are 

a good alternative because they are safe for the environment, effective, and non-toxic [24]. 
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There has been a lot of interest in the development of new, affordable nanomaterial for 

applications such as pollution monitoring and environmental remediation. Recent research 

suggests that the use of nanoparticles, nanofiltration, or other products originating from the 

development of nanotechnology may be able to resolve or considerably improve many of the 

problems relating to water quality [25–28].  

The synthesis of ZnO nanoparticles has been intensively developed due to their distinct 

chemical and physical properties [29]. They have piqued the interest of researchers due to 

their novel applications such as adsorptions [30], sensor activity [31], heat treatment [32], 

antimicrobial activity [33], anti-fungus [34], wound healing [35], ultra-violet filtering [36], 

and excessive catalytic and photochemical activity [37, 38].  

Nearly all analysts concur that it is indeed crucial to produce new-material in an aqueous 

medium by employing a green method with the assistance of covering, salting, or hydrolytic 

experts. This is due to the fact that it is simple to conduct and has no effect on the 

environment. Therefore, it is imperative to cap the ZnO nanoparticles (NPs) with biopolymer 

in order to increase their affordability, stability, flexibility, and sustainability. Biopolymers 

are natural, non-toxic, renewable, and sustainable polymer alternatives, and are widely used 

in agriculture, environment, medicine, and industry [39–45]. Chitin, chitosan, cellulose, 

tamarind kernel gum, starch, and pectin are some of the biopolymers that have potential 

applications in the biomedical and pharmaceutical industries [46]. Biopolymers like alginate, 

chitosan, and starch are good choices for matrix polymers because their chains have a lot of 

hydroxyl groups, which are excellent at interacting with complex particles and provide a 

suitable environment for the growth of nanoparticles [47]. Many biopolymers, such as 

chitosan and cellulose, are not water soluble and have been discovered to degrade in natural 

solutions. Biopolymer has also been shown to be bio and muco-adhesive, biocompatible, 

biodegradable, and non-aggravating in biomedical applications such as drug delivery, bio 

nano-reactors, nano-filtration, biosensors, and antibacterial activity [48,49].  

Tamarind seed kernel polysaccharide, a derivative of glycosaminoglycan, is produced by 

extracting the seeds of Tamarindus indica, a plant in the fabaceae family. It is composed of 

galactoxyloglucan polysaccharide (55-65%), a monomer of galactose, glucose, and xylose 

with a molar ratio of 3:2:1 [50,51]. Carboxymethyl tamarind kernel gum (CMTKG) is the 

carboxylate form of tamarind kernel gum. CMTKG in-corporate backbone chain of β-D-

glucan having side chains of β-D-galactopyranosyl and α-D-xylopyranose related to glucose 
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systems [52]. Objectively speaking to other semi-synthetic polysaccharide derivatives, 

CMTKG is less expensive. Given that the structure shares a hydrophilic backbone with 

cellulose, it could be the best solution from the perspective of biopolymers [53]. 

Various research on the antifungal and antibacterial activity of ZnO NPs has shown that they 

are effective antimicrobial agents. However, research on nanoparticles' antifungal 

effectiveness against filamentous fungus is scarce [54]. On blending ZnO nanoparticles in a 

CMTKG phase, the amount of padding, particle dissipation, relations padding/ matrix, and 

other parameters can be affected. Processing conditions may further complicate ZnO 

antifungal activity [34]. Biocomposites may demonstrate excellent stability, maximum 

accessibility, and even fascinating augmentation caused by nanoparticle–matrix interaction.  

In light of the aforementioned information, we aimed to fabricate well-dispersed 

CMTKG/ZnO nanocomposites using the in situ co-precipitation process in this chapter and 

looked into their possible application in the removal of chromium from water. The potential 

of the synthesized nanocomposite was also investigated for antifungal activity against isolates 

of Aspersilium flamous. 

5.2. Experimental 

5.2.1 Materials  

Hindustan Gum and Chemicals Ltd. in Bhiwani, Haryana, India supplied the carboxymethyl 

tamarind kernel gum. The powder was subsequently sieved, and for future use, particles of a 

size less than 40 mm were used. This powder was dried for 24 hours before use in an oven 

that was monitored at 110°C. Zinc acetate, potassium dichromate, acetone, and absolute 

alcohol were procured from Central Drug House Pvt. Ltd. India. Every solution used in the 

analysis was made in double-distilled water (DDW). To determine the antifungal potential of 

synthesized nanocomposite isolates of Aspersilium flamous were provided by the Department 

of (Botany and Microbiology), Gurukul Kangri (Deemed to be University), Haridwar, 

Uttarakhand. 

5.2.2 Preparation of Cr (VI) solution 

K2Cr2O7 was dissolved in de-ionized water that had been attenuated to the necessary 

concentrations (10–80 mg L-1) in order to prepare solutions of Chromium (VI) (100 mg L-1). 
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5.2.3 Synthesis of CMTKG/ZnO nanocomposites 

ZnO nanoparticles were created by co-precipitating zinc acetate in alcohol (10 mL), which 

was subsequently reduced to ZnO nanoparticles by adding 10 mL of 0.05 M NaOH solution. 

At 60°C, this solution was magnetically agitated continuously until it became homogeneous. 

A 150 mL aqueous solution in a conical flask containing 1 g of carboxymethyl tamarind 

kernel gum was added, and the combination was magnetically agitated at 60°C to produce 

viscous solutions. 150 mg of zinc solutions were added to this, and mixing continued until a 

24-hour homogenous solution was obtained. Finally, a CMTKG/ZnO immobilized polymeric 

precipitate was produced. Following 20-minute centrifugation at 10,000 rpm to remove any 

remaining debased particles, the mixture was washed with acetone. The precipitate was then 

dried in the hot air oven at 50°C after being rinsed with C2H5OH. The prepared dry powder 

of biocomposites was put away in desiccators for further use. 

5.2.4 Characterization  

5.2.4.1 Dynamic light scattering (DLS) analysis 

Zetasizer nano Z.S. Malvern Instruments Ltd. available at Delhi Technological University, 

New Delhi was utilized to detect the size distribution of particles. In this analysis, the 

dynamic discrepancy of light scattering intensity reasons by the Brownian velocity of the 

nanoparticles was measured. 

5.2.4.2 Fourier transform infrared (FTIR) analysis 

Using a Perkin Elmer FT-IR BX2 instrument, the infrared spectra (4000–400 cm–1) of the 

samples were examined. 200 mg of spectroscopic grade KBr and 10 mg of the crystal sample 

were blended to produce the pellets. 

5.2.4.3 Field emission scanning electron microscopy (FE-SEM) analysis 

Surface morphological analysis of CMTKG/ZnO nanocomposite was analyzed by Scanning 

Electron Microscope (Model: JEOL JSM-6610LV). SEM provides extremely useful 

information about molecule size and polydispersity profile. Moreover, objects' size and shape 

are described in depth by the SEM investigation. 
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5.2.4.4 High resolution transmission electron microscope (HR-TEM) analysis 

For the HR-TEM test, 5 mg of dried CMTKG/ZnO nanocomposites were dispersed in 25 mL 

of C2H5OH using an ultrasonicator. A permanently coated copper grid was administered with 

a 10 mL dispersion of nanocomposites.  

5.2.4.5 X-ray diffraction (XRD) analysis 

X-ray diffraction studies of synthesized CMTKG/ZnO nanocomposites were carried out 

using an X-ray diffractometer (P Analytical X’Pert Pro). The analysis was done at the current 

and voltage of 40 mA using Cu K α radiations (k = 1.5406 nm and λ=1.5406 Å) and scanning 

angle 2θ in the range of 0-80o. The crystal particle size was determined using Debye–Scherrer 

equation [55], as follows (Eq. (5.1)); 

� =
��

�����
                                       (5.1) 

Here k is 0.9, � is the wavelength of source (1.5 Å), β	is the FWHM and	θ is the diffractions 

of angle. 

5.2.4.6 Adsorption studies 

The batch approach was used to conduct adsorption tests at room temperature (298–313 K). 

In a thermostatic water bath shaker for a duration of 10 to 100 minutes, various 

concentrations of CMTKG/ZnO biocomposite were equilibrated with 10 mL of chromium 

solution (10 to 50 mg/L). Through centrifugation and the residual convergence of chromium 

particles in the supernatant fluid, the adsorbent was separated from the solutions. It was 

looked at by using a UV spectrophotometer. The experiments were conducted at different 

chromium (VI) concentrations with a good adsorbent % and variable contact durations for 

dynamic estimates. The impact of changing pH on adsorption was investigated in the pH 

range of 0–10. The pH of the liquids was altered by using a weaker HCl or NaOH setup (both 

0.01 M). The assessments were administered repeatedly, and average characteristics were 

noted. The amount of chromium (VI) particle absorbed per unit mass of adsorbent (qe, mg. g-

1) was determined using the following criterion by Eq. (5.2): 

%���������� =
�����

��
     (5.2) 
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The equilibrium was calculated using the formula given in Eq. (5.3): 

qe = �0 − �� ×
�

�
   (5.3) 

Where, qe is the equilibrium absorption capacity of chromium (VI) (mg g−1), �0 is the initial 

concentration of chromium (VI) (mg L−1), �e is the concentration of chromium (VI) (mg L−1) 

at time �, � is the volume of chromium (VI) utilized (L) and � is the weight of adsorbent (g) 

utilized. 

5.2.4.7 Antifungal activity determination 

Utilizing MTCC2799, which is the minimal concentration of the sample needed to inhibit % 

of the fungus Aspersilium flamous, the antifungal activity of CMTKG/ZnO nanocomposite 

was assessed. A stronger antifungal impact was assumed to exist in every sample with a 

lower MTCC-2799 score. The positive control was amphotericin B. 

The standard culture of Aspergillus flavus MTCC 2799 was used to test the antifungal 

activity of a sample of CMTKG/ZnO nanocomposite using the poisoned food method. 

Specifically, different concentrations of nanocomposites (1000 ppm, 2000 ppm, and 3000 

ppm) were prepared by adding the appropriate amount into cooled molten Potato Dextrose 

Agar (PDA) media except the control plate (i.e. without nanocomposite), and after 

solidifying, 6 mm well was created accordingly with the help of sterile cork borer. Each well 

received 100 μl of spore suspension of Aspergillus flavus MTCC2799. Petri plates used for 

the test and control were incubated at 28 °C for 5 days while the fungus growth was 

continuously observed. Following incubation, the percentage of inhibition was estimated 

using the following formula: 

Inhibition of mycelial growth (%) = 
�����

��
 × 100 

where �� is the mean diameter of the colony in the control sample, and �� is the mean 

diameter of the colony in the treated sample.  

5.3 Results and discussion 

5.3.1 Synthesis of CMTKG/ZnO nanocomposites 

It is presumed that the ZnO NPs are attached to the CMTKG biopolymer matrix through H-

bonding between the hydroxyl and ZnO NPs, as proposed in Scheme S1.  
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Scheme 1: Schematic presentations of structures of (a) CMTKG (b) CMTKG/ZnO 

biocomposite 

5.3.2 Particle size determination by DLS 

Using the dynamics light approach, the particle size of synthesized CMTKG-ZnO 

nanocomposites was measured. Figure 5.1 shows the size distribution of the CMTKG-ZnO 

nanocomposites generated by the green process. As a result, the bulk of the particles had 

sizes between 56 and 76 nm, with the biggest size distributions occurring around 66 nm [56]. 

 

 

Figure 5.1: DLS analysis of CMTKG-ZnO nanocomposites 

5.3.3 Fourier transform infrared (FTIR) 

The FTIR spectra of CMTKG and CMTKG-ZnO nanocomposites are shown in Figure 5.2. 

The typical adsorption band for C-OH stretching vibrations is shown by CMTKG at 3406  
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cm-1. At (1710 and 1600) cm-1, respectively, COO- absorptions are attributed to symmetric 

and asymmetric absorption bands [52]. The band at 2825 cm-1 is formed by the C-H 

stretching of the -CH2 groups, whereas the -COO- are assigned to symmetric and asymmetric 

vibrations at 1720 and 1645 cm-1 in the spectra of CMTKG/ZnO. Around 1110 cm-1 and 1290 

cm-1 in the adsorption bands, stretching vibrations C-O may be seen [10]. The distinctive 

peak at 480 cm-1 with a band at 3427 cm-1 due to the adsorption bands between (1110 and 

1241) cm-1 suggests an interaction between CMTKG and ZnO, which confirms the 

transparent framing of CMTKG-ZnO nanocomposites [49]. 

 

Figure 5.2: FTIR of CMTKG and CMTKG/ZnO nanocomposites 

5.3.4 XRD 

Figure 5.3 illustrates the XRD spectra of CMTKG and CMTKG/ZnO nanocomposite. There 

are no crystallinity model peaks in the XRD spectra of pure CMTKG in a CMTKG/ZnO. 

Nanocomposites showed two unique peaks at 2Ɵ = 28° and 35° and revealed evidence of the 

inclusion of ZnO nanoparticles in the nanocomposites. It was discovered that the 
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nanocomposites had an average size of 31.69 nm. A similar observation was also reported by 

Singh et al. (2017) [38]. 

 

 

Figure 5.3: XRD of CMTKG and CMTKG/ZnO nanocomposites 

5.3.5 Field Emission-Scanning Electron Microscopy (FE-SEM) 

Figure 5.4 shows SEM micrographs of CMTKG and CMTKG/ZnO nanocomposites at 

various magnifications. Figure 5.4 (a) shows the homogeneous morphology of the CMTKG 

sample surface. ZnO particle shape and size are shown in Figure 5.4 (b). ZnO particles were 

rectangular in shape with an average cross-section area of 120 nm × 220 nm and 10 to 15 nm 

thickness. SEM image (Figure 5.4 (b)) also shows the intercalation and exploration of 

nanoparticle layers. A similar conclusion was also brought to light by Azeez and the team 

[29]. 
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Figure 5.4: Scanning micrograph of (a) CMTKG and (b) CMTKG/ZnO nanocomposites 

5.3.6 High Resolution-Transmission Electron Microscopy (HR-TEM) 

The existence of organized pores in the black spots in the TEM images of the CMTKG/ZnO 

nanocomposite (Figure 5.5) indicated that the spots were caused by ZnO nanoparticles. The 

picture demonstrates the even dispersion of ZnO nanoparticles. Additionally, a range of 

particle sizes between 40 and 90 nm was discovered. The CMTKG/ZnO nanocomposites 

exhibit homogeneous spherical size in a disordered distribution. A comparable finding was 

also reported by Pal and coworkers [57]. 
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Figure 5.5: HR-TEM and particle size distribution of CMTKG/ZnO nanocomposites 

5.3.7 Adsorption studies 

5.3.7.1 Effect of contact time 

Under the constant adsorbent dosage of the 2 mg/L CMTKG/ZnO biocomposite and the Cr 

(VI) concentration of 30 mg/L, the impact of varying the contact duration on the Chromium 

(VI) excretion percent and qe were investigated, as shown in Figure 5.6. (a). The qe and 

percent elimination rose as the contact duration grew from 10 to 80 minutes, reaching 

equilibrium within the optimum contact period of 80 minutes. 95.50 percent is the largest 

removal percentage that has been noted. The rapid rise in percent adsorption and adsorption 

efficiency at the beginning is due to the concentration gradient between Chromium in 

solution and in adsorbent and also attributed to the available vacant sites. Chromium (VI) 

particles may reach the strong phase of the adsorbent's outer layer over time, increasing the 

return rate of the particles and raising the amount of adsorption [58].  
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5.3.7.2 Effect of adsorbent dose 

Effects of adsorbent dose on chromium removal are shown in Figure 5.6 (b). These 

experiments were performed at a constant contact time of 80 minutes, at constant initial 

Chromium (VI) concentration in feed (30 mg/L), and with varying adsorbent amounts from 

0.01 mg/L to 3.0 mg/L. The percentage of removal increases with an increase in the 

adsorbent portion, and balance was obtained at 2.0 g/L. However, values of �e decreased 

with increasing adsorbent concentration. �e is defined as the removal of Chromium (VI) ions 

per unit weight of adsorbent (Equation (2)). Thus, �e represents the efficiency of the 

adsorbent in a particular experiment. Therefore, these results indicate that although the 

percent removal of chromium increases with increasing adsorbent concentration but the 

efficiency of adsorbent decreases with increasing its concentration. The maximum percent 

extraction of Chromium (IV) (93.40%) was found with a 3 mg/L CMTKG/ZnO adsorbent 

concentration At 2.0 g/L, the highest evacuation percentage recorded was 93.40 %. No 

significant increase in the percentage of evacuation was noted after that. As shown in Figure 

5.6 (b), a larger chance of the adsorption stage may be associated with an increase in the 

expulsion percentage of adsorbate particles with an increase in the adsorbent portion. Greater 

availability of adsorption sites and sorptive surface area may be the cause of the increase in 

the percentage of adsorbate ions removed with an increase in adsorbent dosage. 

5.3.7.3 Effect of pH 

The effects of feed pH on the adsorption capability of adsorbent (CMTKG/ZnO 

nanocomposite) are shown in Figure 5.6.(c). The CMTKG/ZnO nanocomposite's adsorption 

capacity was affected by pH in the range of 2 to 10 at constant contact time (80 minutes), 

constant adsorbent dose (2 mg/L), and constant initial concentration of Chromium (VI) in 

feed (30 mg/L). The adsorption process is significantly influenced by pH. The results showed 

that Chromium (VI) % removal, and the adsorbent efficiency (�e) both increased with 

increasing pH values in the acidic region, with the maximum of adsorption taking place at 7.0 

pH, as shown in Figure 5.6. (c). Further both % removal and adsorbent efficiency (�e) 

reduced with increasing pH values in the basic region.  

These results confirm that the performance of synthesized CMTKG/ZnO nanocomposite 

adsorbent for Chromium (VI) extraction strongly depends on the feed pH, and maximum 

extraction is achieved at 7 pH. At lower pH conditions, less interaction of Cr (VI) with 

adsorbent was noted and the H+ compete with Cr (VI) hence observing less adsorption. It has 
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been hypothesized that at low pH levels, species are primarily adsorbed in their molecular 

form, but at higher pH levels, species are primarily adsorbed in their ionized form. These 

findings support the electrostatic attraction of the anionic Cr (VI) species since the Cr (VI) 

species that developed under these circumstances are most likely to be HCrO4- and Cr2O72- 

anions. However, if pH rises, the efficacy of Cr (VI) adsorption and removal decreased 

concurrently as the concentration of the hydroxyl (OH-) ion rose and electrostatically 

competed with anionic Cr (VI) species. 

5.3.7.4 Effect of initial Cr (VI) concentration 

The percent removal increases as the initial Chromium (VI) ion concentration rises, reaching 

equilibrium at 30 mg/L. At a fixed contact duration (80 minutes) and adsorbent dosage (2 

mg/L), the impact of various initial Chromium (VI) ion concentrations (18 mg/L to 32 mg/L) 

on the amount of adsorbent was calculated. Results show that �e of Chromium was increased 

with increasing its initial concentration, which suggests that adsorbent particles were not 

saturated with chromium ions and more chromium can be removed with the same amount of 

adsorbent. On the other hand, values of percent extraction decreased with increasing initial 

Chromium (VI) concentration in the feed. Figure 5.6 (d) displays that the highest quantity 

that could be adsorbed under these circumstances is 93.20 % at 18 mg/L initial Chromium 

(VI) concentration in the feed. This was expected given the initial Cr (VI) concentrations, 

which served as the primary impetus to overcome the barriers to the mass transfer of Cr (VI) 

between the bulk and reactive sites. 

 

(a)  
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(b)  

 

 (c)  
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(d) 

Figure 5.6: (a) Effect of Contact time; (b) Effect of adsorbent dose of nanocomposite; (c) 

Effect of  pH; (d) Effect of initial concentration of Chromium  

Table 5.1 displays, the performance of the synthesized adsorbent (CMTKG/ZnO 

nanocomposite) compared with previously reported adsorbents. The performance of the 

CMTKG/ZnO adsorbent was found far better than the other traditional adsorbents reported in 

the literature for removal Chromium (VI) extraction, which depicts the novelty of the present 

study for the chromium removal from wastewater with prepared CMTKG/ZnO 

nanocomposites. 

Table 5.1: Comparison studies of various bio-composite for removal of chromium (VI) ions 

Adsorbent Percent Extraction Reference 

CMTKG/ZnO nanocomposite 95.5 Present Study 

Guargum/ZnO biocomposite 55.56 [29] 

Activated carbon 3.46 [59] 

Polypyrrole/Graphene Oxide 9.56 [60] 

Activated carbon/magnetite 57.37 [61] 

Mycelian/ carboxymethylcellulose 
 

32.20 [62] 

Poly-(methyl acrylate)/guar gum 29.67 [63] 
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5.3.8 Antifungal activity of CMTKG/ZnO nanocomposites 

The antifungal activity of CMTKG/ZnO nanocomposites is presented in Table 5.2. The 

antifungal activity of CMTKG/ZnO nanocomposites was determined against A. flavus 

MTCC2799. The different concentration (in ppm) was evaluated against the radial growth of 

A. flavus MTCC 2799. The result shows the highest concentration i.e., 3000 ppm was the 

most effective concentration which inhibit the 50% radial growth of tested fungi followed by 

2000 ppm (Figure 5.7). However lower concentration i.e., 1000 ppm only inhibited 26.0 % of 

radial growth.  As a consequence, it was shown that CMTKG/ZnO nanocomposites have 

substantial antifungal activity. The antifungal activity of Zinc oxide nanoparticle due to the 

production of Reactive Oxygen Species (ROS) which result in Oxidative stress. 

 

Table 5.2: Percentage radial growth against Aspersilium flamous (MTCC-2799) at 1000, 

2000, and 3000 ppm 

Concentration Growth area (mm) Average area 

growth (mm) 

% Inhibition 

growth 

Control 56.00, 54.00 55.00 00.00 

1000 ppm 40.00, 41.00 40.50 26.36 

2000 ppm 34.00, 37.00 35.50 35.45 

3000 ppm 27.00, 28.00 27.50 50.00 
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Figure 5.7: Antifungal activity of CMTKG/ZnO nanocomposites against Aspersilium 

flamous (MTCC-2799) at 1000, 2000, and 3000 ppm 

5.4 Conclusion 

Using an in-situ co-precipitation technique, ZnO nanoparticles consolidated CMTKG to 

create a new nanocomposite. SEM, HR-TEM, X-ray spectrum analysis, and DLS analysis all 

showed that rectangular CMTKG/ZnO nanocomposites with average sizes between 31 and 90 
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nm were produced. It is also presumed that the ZnO nanoparticles are attached to the 

carboxymethyl tamarind kernel gum biopolymer matrix through H-bonding between the 

hydroxyl and ZnO nanoparticles, as shown in Figure 5.8. The maximal adsorption capacity of 

chromium metal has been attained by a successful adsorption procedure. High evacuation 

productivity, contact time (80 minutes), adsorbent component (2.0 g/L), and adsorptions 

based on starting chromium concentrations were all confirmed (93.40 %). Subsequently, it 

was discovered that employing CMTKG/ZnO nanocomposite as the major adsorbent, this 

technique demonstrated promising, rapid, and efficient removal of chromium (VI) in 

comparison to earlier reported methods We discovered that the antifungal activity of 

CMTKG/ZnO nanocomposites has been considerably enhanced.  
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Chapter-6 

Synthesis and characterization of carboxymethyl tamarind kernel gum 

nanoparticles and their application in antioxidant activity 

6.1 Introduction 

When compared to petroleum-based polymers, biopolymers are eco-friendly and naturally 

abundant polymer alternatives that are extensively used in the pharmaceutical, medical, 

agricultural, food packaging, biological activity, and environmental industries due to their 

particularly renewable, sustainable, and nontoxic properties [1–5]. Green synthesis, 

electrodeposition, combustion, in situ, ex-situ, wet method, hydrothermal, and nano-

precipitation have all been used to create biopolymer nanoparticles [6,7]. Natural biopolymer 

nanoparticles are increasingly being used in applications such as pollution control [8,9], 

agricultural applications [10], adsorption [11–14], medication delivery [15–17], antibacterial 

activity [18,19], antioxidant activity [20], anti-cancer activity [21], and catalytic activity 

[22,23]. Tamarind kernel polymer (TKP) is produced from the seeds of the Tamarindus 

indica tree. The seeds contain xyloglucans, which are widely used as food thickeners and 

gelling agents. In the United States, it has primarily been used as a wet end additive in the 

paper industry, replacing starches and galactomannans [24]. Tamarind is a tropical evergreen 

tree native to India and other parts of the world. India is currently the world's largest tamarind 

producer [25]. An anionic water-soluble polymer that is generated from TKP and undergoes a 

chemical process to become cold water soluble is called carboxymethyl tamarind kernel gum 

(CMTKG). The polysaccharide chain is added with carboxymethyl groups (-CH2-COOH) so 

that the molecule may be hydrated in cold water [26]. TKP's derivatization with 

carboxymethyl groups expose the hydration-containing polysaccharide network, which 

increases viscosity and prolongs the product's shelf life [27]. 

CMTKG is composed of D-xylose, D-galactose, and D-glucose in a 1:2:3 molar ratio [28]. 

This polysaccharide is composed of a carboxymethylated chain of glucopyranosyl units 

linked by β-D-(1 → 4) and a side chain containing a single xylopyranosyl unit that is further 

connected to each subsequent second, third, and fourth D-glucopyranosyl unit by α-D-(1 → 

6) linkage. While a β-D-(1 → 2) linkage connects one xylopyranosyl unit to one of the D-

galactopyranosyl units [29]. It is biodegradable and non-toxic. CMTKG has been used to 
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create pellets, films, hydrogel and other products. CMTKG nanoparticles is expected to have 

a wide range of applications, including antioxidant, antibacterial, antifungal, anti-fouling, 

organic/inorganic impurity removal, drug delivery, medical field, anticatalyst activity, and so 

on [27,30].  

The current study's goals are to synthesize the CMTKG nanoparticles and investigate its 

antioxidant activity. By using the nano-precipitation approach, CMTKG nanoparticles were 

synthesized. In this work, the structural, morphological, and antioxidant properties of the 

optimised CMTKG nanoparticle formulation were assessed. 

6.2 Experimental  

6.2.1 Reagents and chemicals 

Hindustan Gum and Chemicals Ltd. in Bhiwani, Haryana, India supplied the carboxymethyl 

tamarind kernel gum. It was used without purification. Acetone, and ethanol were procured 

from Central Drug House Pvt. Ltd. New Delhi, India. Every solution used in the analysis was 

made in double-distilled water (DDW).  

6.2.2 Preparation of carboxymethyl tamarind kernel nanoparticles 

One gram of carboxymethyl tamarind kernel gum and 150 millilitres of DDW were 

homogenized in the conical flask. The mixture was magnetically agitated at 40°C to produce 

viscous solutions. After that, it was continually stirred for 24 hours at 75°C in order to 

produce a clear solution. The mixture was centrifuged at 10,000 rpm for 20 minutes and then 

washed with acetone to get rid of any loose debased particles. Following a C2H5OH wash, the 

precipitate was dried in a hot air oven at 50°C. The CMTKG was reduced to a powder. 

Before being used again, this was kept in desiccators and cleaned with acetone to get rid of 

any loose debased particles. A visual illustration of the creation of carboxymethyl tamarind 

kernel gum nanoparticles is shown in Figure 6.1. In order to conduct further testing, a modest 

amount of these nanoparticles was suspended in the adequate volume of DDW. 
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Figure 6.1: Diagrammatic presentation of carboxymethyl tamarind kernel gum nanoparticles 

synthesis 

6.2.3 Characterization  

6.2.3.1 Fourier transform infrared (FTIR) analysis 

On a Perkin Elmer FT-IR BX2 instrument, infrared spectrum analysis (4000–400 cm–1) had 

been investigated. The pellets were made by combining 10 mg of the test sample and 200 mg 

of KBr Spectroscopic grade. 

6.2.3.2 Field emission Scamming Electron Microscopy (FE-SEM) Analysis 

Surface morphological analysis of CMTKG nanoparticles was done by Scanning Electron 

Microscope (Model: JEOL JSM-6610LV). 

6.2.3.3 High Resolution Transmission Electron Microscopy (HR-TEM)  

HR-TEM analysis was conducted by JEOL: JEM 2100 plus model. 5 mg of dry CMTKG 

nanoparticles were dissolved in 25 mL of C2H5OH and sonicated to mix the mixture. A 

copper grid that had been thoroughly covered with a 10 mL dispersion of nanoparticles 

(chloroform 1 percent arrangement of formvar in spectroscopic grade) was then dried in 

vacuum. 
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6.2.3.4 X-ray diffraction (XRD) analysis 

X-ray diffraction studies of synthesized CMTKG nanoparticles were carried out using an X-

ray diffractometer (P Analytical X’Pert Pro). The analysis was conducted at the current and 

voltage of 40 mA using Cu K α radiations (k = 1.5406 nm and λ=1.5406 Å) and Scanning 

angle 2θ in the range of 0-80o. The following Debye-Scherrer [31] equation (6.1) was used to 

estimate the nanoparticle size of CMTKG nanoparticles. 

� =
��

�����
        (6.1) 

The wavelength of a source 1.5 the (FWHM), and the angle direction are all represented by k 

= 0.9. 

6.2.3.5 Thermal gravimetric analysis (TGA) 

TGA of CMTKG nanoparticle were performed with 10°C/min uniform heating rate and inert 

nitrogen atmosphere (25-900°C) using a Perkin Elmer Differential Thermal Analyser. 

6.2.4 DPPH scavenging activity 

The ability of carboxymethyl tamarind kernel gum to scavenge 2,2-dyphenyl-2-

picrylhydrazyl (DPPH) free radicals was investigated [32,33]. The DMSO was diluted to 1 

mg/mL using the CMTKG stock solution. Diluted solutions (1 mL each) were coupled with 

DPPH (3 mL), as shown in Figure 6.2. The absorbance was measured at 517 nm after 30 

minutes in the dark at room temperature, much like the control samples [34]. 

The % inhibition was calculated using the formula below (Eq. 6.2): 

Inhibition % =
���������	��	�����	�	����������	��	������

����������	��	�����	
	× 100  (6.2) 
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Figure 6.2: Solutions prepared for the analysis of antioxidant activity of CMTKG 

nanoparticles 

6.3 Results and discussions 

6.3.1 FTIR 

CMTKG nanoparticles’ FTIR spectral band is shown in Figure 6.3. The -OH stretching 

vibrations exhibit a significant absorption peak at 3430 cm-1 in CMTKG. C-H stretching 

vibrations were associated with the absorption at 2925 cm-1. At 1630 cm-1, COO-symmetric 

vibrations absorb energy, whereas linked O-H bending and C-O stretching vibrations absorb 

energy at 1410 cm-1 and 1114 cm-1, respectively [35]. 
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                         Figure 6.3: FTIR of CMTKG nanoparticles  

6.3.2 FE-SEM Microgram 

Figure 6.4 shows SEM micrographs and particle size distribution of CMTKG nanoparticles. 

It is shown that CMTKG is uniformly decorated, and is completely fabricated of almost 

spherical aggregates on the surface with varying diameters. Additionally, a range of particle 

sizes between 30 and 40 nm was discovered. 
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Figure 6.4: SEM micrographs and particle size distribution of CMTKG nanoparticles 

6.3.3 HR-TEM 

HR-TEM images were used to determine the form, size, and lattice spacing of the CMTKG 

nanoparticle, as shown in Figure 6.5. The TEM images show fine spherical nanoparticles of 

20-50 nm, as well as a few larger particles and clusters in the size range 50–70 nm. These 

clusters could be caused by drying-induced aggregation during TEM grid preparation [36].  
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Figure 6.5: High Resolution Transmission electron microscopy of CMTKG nanoparticles  

6.3.4 XRD  

XRD analysis has been used to study nanoparticles in CMTKG in order to identify their 

crystalline structure. The X-ray patterns of CMTKG nanoparticles are depicted in Figure 6.6; 

these findings correlate with the development of nanostructures since they display essentially 

similar patterns with distinct peaks. The average size of CMTKG nanoparticles was found to 

be 42.50 nm. A similar finding has been made in the literature [35]. 

 

Figure 6.6: X ray diffraction of CMTKG nanoparticles 
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6.3.5 TGA 

Figure 6.7 illustrates the weight variations in CMTKG nanoparticles that were observed as 

the temperature is raised. At three distinct points, the weight reduction was examined. At the 

initial stage (32-160°C), the weight dropped by 5.75 %, which is characteristic of wet 

expulsions from the biopolymer. The dissolution of the CMTKG’s carboxymethyl and 

hydroxyl groups, as well as decrease in the biopolymer backbone, may be accountable for the 

second stage of weight loss (190–420°C). The third stage of deterioration (653-725°C) 

occurred with a weight loss of 3.96 % [7]. 

 

Figure 6.7: Thermo-gravimetric analysis of CMTKG nanoparticles 

6.3.6 Antioxidant activity of CMTKG nanoparticles 

At room temperature, the efficiency of CMTKG nanoparticles and a conventional anti - 

oxidant to scavenge free DPPH was investigated with CMTKG nanoparticle concentrations 

ranging from 25 µg/mL to 500 µg/mL (Table 6.1). With increasing CMTKG nanoparticle 

concentrations in DMSO, a dose response scavenging effect was seen (Figure 6.8). CMTKG 

nanoparticles at a concentration of 500 µg/mL were reported to have the greatest value 

[36,37]. 
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Table 6.1: Antioxidant activity of CMTKG nanoparticles 

CMTKG solution Absorbance (nm) Colours 

Blank CMTKG solution 0.485 Pink 

25 µg/mL 0.432 Light pink 

50 µg/mL 0.401 Very light pink 

100 µg/mL 0.387 Brown 

250 µg/mL 0.292 Light brown 

500 µg/mL 0.231 Very brown 

 

 

                         Figure 6.8: Antioxidant activity of CMTKG nanoparticles  
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6.4 Conclusion  

The nano-precipitation approach was employed to successfully generate CMTKG 

nanoparticles in study Chapter-6. FTIR, SEM, TEM, TDA, and XRD investigations were 

used to characterize the physical, structural, and morphological features of CMTKG 

nanoparticles, such as size, shape, and dispersity. CMTKG nanoparticles ranged in size from 

20 to 50 nm with average size of 42.50 nm as calculated from Debye-Scherrer equation. The 

nanoparticles were found to be spherical in shape, with diameters ranging from 20 to 50 nm, 

as well as scattered huge nanoparticles and clusters of 50 nm, as revealed by TEM. The 

antioxidant capabilities of the produced CMTKG nanoparticles composites were 

demonstrated by a radical scavenging model system. All of the outcomes were perfectly 

matched, just as they had been in the literature. CMTKG nanoparticles created in this manner 

could be employed as antioxidants. CMTKG nanoparticles are bioactive, biocompatible, and 

possess antibacterial properties, and hence can be exploited as a bio-polymeric material in 

tissue engineering, biomedical, and therapeutic applications, according to the findings of this 

study 
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Chapter 7 

Conclusion  and future prospectus 

 

7.1 Conclusion 

Chapter 1 discusses introduction of Biopolymer interspersed with metal oxide nanoparticles 

leading to form nanocomposites. In recent years, several new biopolymer-based 

nanocomposites dispersed with metal/metallic oxide nanocomposites were created (BMNCs). 

When compared to metal oxide nanoparticles, nanocomposites have distinct characteristics, 

such as sorption, energy, volume, size, and shape, which expand the application of the simple 

metal nanoparticle. BMNCs were prepared by incorporating metal oxide nanoparticles of Pt, 

Pd, Cu, Co, Zn, Ti, Mn, Fe, etc. in variety of biopolymers such as chitosan, alginate, 

cellulose, starch, PAA, pectin, tamarind kernel gum, etc. The variety of biopolymers-based 

nanocomposites, their synthesis and applications have been reported. Chapter 1 also throws 

light on various processing techniques for synthesizing biopolymer-based nanocomposites 

and on their applications such as organic/inorganic impurity removal, antibacterial activity, 

anti-oxidant activity, anticancer activity, electrochemical biosensor activity, and biomedical 

applications. Extensive Literature survey on the synthesis and applications of tamarind kernel 

gum and its derivative carboxymethyl tamarind kernel gum (CMTKG) has also been 

reported. 

The experimental techniques used to conduct the research are covered in study Chapter 2 of 

the thesis. This chapter also includes information on the materials used, approved by the 

research, and the descriptions and parameters of several characterization techniques used to 

achieve the objectives of the research effort.  

Chapter 3 of this study describes the purpose and parameters of the research that was done 

for this thesis. 

In study chapter 4, utilising solutions of Fe2O3.7H2O and FeCl36H2O as the source and 

CMTKG as the reducing and capping agent by in situ co-precipitations method, 

nanocomposite polysaccharides with in situ created CMTKG/FeO nanocomposites were 

prepared. The scanning electron microscopy and X-ray spectral analysis indicated the 

generation of spherical CMTKG/FeO nanoparticles in the average size in the range of 40-90 
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nm. These nanocomposites exhibited excellent antibacterial activity against both Gram-

positive bacteria and hence can be considered for applications in antibacterial textiles for 

personal and hospital uses. The sensor properties of the synthesized nanocomposite solution 

across raising ammonia concentration in the range of (1–100) ppm by observing the changes 

in SPR situations and magnitude with a U.V.–Visible Spectrophotometer has been notified  

In study chapter 5, a novel CMTKG/ZnO nanocomposite was created using an in-situ 

method. FTIR and XRD characterizations indicated the presence of ZnO nanoparticles which 

did not affect the chemical structure of CMTKG. However, chemical interaction between 

polymeric matrix and nanoparticle was found in FTIR spectra. SEM and TEM images 

confirms the homogeneous distribution of the ZnO nanoparticles in polymeric matrix with 

average particle size of 31 and 90 nm. The prepared nano-composite was then analyzed as 

adsorbent for Chromium (VI) removal. Contact time 80 minutes, adsorbent loading 2 mg/L, 

initial Chromium (VI) concentration 30 mg/L and feed pH 7 was found as optimum operating 

parameters for maximizing percent extraction of Chromium (VI) ions (95.5%) from waste 

water. Prepared composite was then examined as Antifungal material.  A. flavus MTCC 2799 

growth was successfully prepared by CMTKG/ZnO nano-composites. 

The nano-precipitation approach was employed to successfully generate CMTKG 

nanoparticles in study Chapter-6. FTIR, SEM, TEM, TDA, and XRD investigations were 

used to characterize the physical, structural, and morphological features of CMTKG 

nanoparticles, such as size, shape, and dispersity. CMTKG NPs ranged in size from 40 to 60 

nm. The nanoparticles were found to be spherical in shape, with diameters ranging from 20 to 

50 nm, as well as scattered huge nanoparticles and clusters of 50 nm, as revealed by TEM. 

The antioxidant capabilities of the produced CMTKG nanoparticles composites were 

demonstrated by a radical scavenging model system. All of the outcomes were perfectly 

matched, just as they had been in the literature. CMTKG nanoparticles created in this manner 

could be employed as antioxidants. CMTKG nanoparticles exhibit good bioactive, 

biocompatible, and antibacterial properties, and hence can be exploited as a bio-polymeric 

material in tissue engineering, biomedical, and therapeutic applications, according to the 

findings of this study 
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7.2 Future prospects 

The potential in this field concerns the development of carboxymethyl tamarind kernel gum/ 

Fe/ZnO nanocomposites with clay, metal oxides, and metal oxide modified clay, which can 

be used in sensors, pharmaceutical, biomedical, and textile industries, as well as the 

decontamination of organic/inorganic impurities from wastewater. The scientific community 

is expected to study numerous more applications and prospects of CMTKG-based 

nanocomposites in the approaching period. The development of cost-effective ways for 

draining industrial wastewater treatment should also be a part of future nanocomposites 

study. 
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