
1

 GENERATION OF ANIME FACES USING GANs

A DISSERTATION OF MAJOR PROJECT-II

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

INFORMATION SYSTEMS

Submitted By:

PRATEEK KATIYAR

(2K/20/ISY/16)

Under the Supervision of

Prof. Dinesh Kumar Vishwakarma

DEPARTMENT OF INFORMATION TECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042, INDIA

2020 - 2022

2

 CANDIDATE’S DECLARATION

I Prateek Katiyar Roll No. 2K20/ISY/16 student of M. Tech Information Systems,

hereby declare that the project Dissertation titled “Generation of Anime Faces Using

GANs” which is submitted by me to the Department of Information Technology, Delhi

Technological University, Delhi in partial fulfilment of the requirement for the award of

the degree of Master of Technology, is original and not copied from any source without

proper citation. This work has not previously formed the basis for the award of any

degree, Diploma Associateship, Fellowship or other similar title or recognition.

Place- Delhi Prateek Katiyar

Date- 13/05/2022

3

 CERTIFICATE

I hereby certify that the Project Dissertation” Generation of Anime Faces Using

GANs” which is submitted by Prateek Katiyar, Roll No 2K20/ISY/16, in department of

Information Technology, Delhi Technological University, Delhi in partial fulfilment of

the requirement for the award of the degree of Master of Technology, is a record of

the project work carried out by the student under my supervision.

Place- Delhi Prof. Dinesh Kumar Vishwakarma

Date- 30/05/2022 Supervisor

4

 ACKNOWLEDGMENT

I express my gratitude to my major project Mentor Prof. Dinesh Kumar

Vishwakarma, Professor Department of IT, Delhi Technological University, for the

valuable support and guidance he provided in making this major project. It is my

pleasure to record my sincere thanks to my respected guide for his constructive

criticism and insight without which the project would not have been shaped as it has. I

humbly extend my words of gratitude to other faculty members of this department for

providing their valuable help and time whenever it was required.

Prateek Katiyar
Roll No. 2K20/ISY/16
M. Tech (Information Systems)

5

 ABSTRACT

Generative Adversarial Networks are a topic of interest in the world of DNN (Deep

Neural Networks). GAN frameworks were designed by Ian Goodfellow and his

colleagues in June 2014. This idea took the world of deep learning by storm. In GAN

two neural networks fight against each other, giving feedback to each other in the

process, and eventually become very good at a particular task. This idea was so

powerful that lots of applications of GANs emerged. Due to GANs, many futuristic

concepts came to life. One such cool application is generating real-looking fake

images. These images did not exist before but were completely formed by the

Generative Adversarial Network. Many more applications like Text-to-image

translation, video prediction, face aging, etc. were made possible using GANs. In this

report, I will specifically present anime faces generation using GANs.

6

TABLE OF CONTENTS

CANDIDATE’S DECLARATION 2CERTIFICATE
 3ACKNOWLEDGMENT
 4ABSTRACT
 5Table Of Figures
 61. Introduction
 71.1 Motivation
 81.2 Objective
 92. Background and Related Work
 102.1 Literature Review
 10CycleGAN
 10Pix2Pix GAN
 11DCGAN
 133. Overview
 Error! Bookmark not defined.3.1 Deep Learning
 153.2 CNN(Convolutional Neural Network)-
 163.3 Types Of Pooling Layers
 173.3.1. Max Pooling Layer
 173.3.2. Average Pooling Layer
 17

3.3.3. Min Pooling Layer 18

3.4 Types of Activation Functions used in this Project 193.5 Types of Layers Used in
Model 204. Model Used For Project
 214.1. Approach
 224.2 Model Architecture
 224.2.1. Generator
 22

4.2.2. Discriminator 234.3 Dataset
 24

4.4 Results 25

5. Conclusion 28

References 29

 Table Of Figures

Figure No. Title Page No.

1 General Representation of GAN 9

2 CycleGAN Architecture 11

7

3 Forward and Backward Consistency Loss 11

4 Pix2Pix GAN Architecture 12

5 DCGAN Architecture 13

6 Representation of Deep Learning w.r.t AI 15

7 General CNN Architecture 16

8 Representation of Max Pool Operation 17

9 Representation of Average Pool Operation 18

10 Representation of Min Pool Operation 19

11 Arrangement of Layers of Generator 23

12 Arrangement of Layers of Discriminator 23

13 Anime Images from Dataset 24

Chapter 1

1. Introduction

8

Deep Neural Networks are usually used for supervised learning (Data with Labels) i.e.,

regression or classification. Generative Adversarial Networks use NN (neural

networks) for quite different purposes that is Generative modelling. Generative Model

is an unsupervised learning (No Labels) method in deep learning that requires

spontaneously finding and understanding the patterns in data in such a way that the

model can be used to produce unique examples that could have been fetched from

the initial dataset used for training the generator.

There is a site called www.thispersondoesnotexist.com. Each time we refresh the site,

a unique image of the face of a person is generated then and there. The results are

quite mind blowing. All the generated images of persons are fake, but they look real.

These persons never actually existed. Generative Adversarial Networks opens many

doors to build and innovate new world changing technologies.

Generative Adversarial Networks, however, can be very hard to train, and are very

sensitive to changes to hyperparameters, regularization and activation functions.

1.1 Motivation

GANs are dominating AI research. There are various applications of GANs. GANs are

solving various real problems efficiently. One such application is Image Generation;

this application of GAN tries to form real looking fake images i.e., images that are

indistinguishable from real images for a normal observer. Times are gone for paper

cartoons; in today's day and age everything is going digital. For many years we have

been consuming digital animated content. What if we can automate the process of

character generation? Different famous anime characters popped up in the last

decade, they are good looking and liked by the masses. People even choose their

avatar as an anime character on social media. But they all look the same. It is like

being at a function or celebration and everyone is dressed up the same way. This is

9

where GANs can prove to be gamechanger. Generative adversarial networks take lots

of images as training

1.2 Objective

This project is made to perform the image generation using GAN for anime characters,

given sufficient data model used for this project can be used to generate any types of

images. Already available animation images are used for model training, and then

Deep Convolutional Generative Adversarial Network (DCGAN) is used to form realistic

looking fake animation characters. DCGAN is used to let the discriminator and

generator methods iteratively provide feedback to each other to produce satisfactory

results.

Figure 1 General Representation Of GAN

10

Chapter 2

2. Background and Related Work

2.1 Literature Review

Image to image translation [1] requires creating a new manufactured kind of image of

a given image with a specific alteration, such as converting the image of a donkey to

zebra. Many GAN models are proposed for this use case. We tried to understand and

review a few of them [2].

For the purpose of Image generation, we analysed various types of GAN models.

1. CycleGAN

It is also known as the Cycle-Consistent GAN. CycleGAN [3] is a type of generative

adversarial network model that seeks to answer the image-to-image translation

problem. The aim of the image-to-image translation problem is to learn the mapping

between an incoming image and an outgoing image using a training set of oriented

image pairs. But getting paired examples is not always practical. CycleGAN strives to

learn this mapping without requiring coupled input-output images, by using cycle-

consistent adversarial networks. Below is the architecture of CycleGAN-CycleGAN

utilizes a loss function called cycle consistency loss to empower training without

requiring paired data. Or we can say, it can render from a domain to another without

the need of a one-to-one mapping relationship between the input and output.

11

Figure 2 CycleGAN Architecture

Above figure 2 shows the working of CycleGAN. Generator takes the input of the

image which need to be translated and discriminator provides feedback to generator

to translate the image.

Loss Function

In Cycle-Consistent GAN, there is absence of mapped or labelled data for model

training, hence there is no guarantee that the x and y pair where x is input, and y is

target are of any use during model training. In order to make the network learn the

correct labelling, the concept of cycle consistency loss was introduced.

Figure 3 Forward and Backward Consistency Loss

Figure 3 shows the forward and backward consistency loss of CycleGAN.

12

2. Pix2Pix GAN

It is a type of conditional Generative adversarial network. Pix2Pix [1] GAN not only

learns from data and noise but labels too, that is why it is called conditional GAN.

Generator of Pix2Pix learns from labels and noise of the dataset.

 (1)

In Pix2Pix the discriminator is based on Patch GAN which is a convolutional classifier, and

the generator is based on U-Net architecture. Due to this kind of setup cGANs are very good

architecture for applications like image-to-image translation. Here instead of taking random

seed as input generator has labelled data to learn from, it makes the process of image generation

a lot faster compared to other architecture.

 Figure 4 Pix2Pix GAN Architecture

Objective Function of Pix2Pix GAN is

 (2)

13

Here in equation 3, G which is the generator, tries to maximize the objective function

against the adversary D i.e., discriminator which tries to minimize it.

3. DCGAN

DCGAN [3] architecture is somewhat similar to GAN, there are few changes though

i.e., some layers are replaced with other. Discriminator uses LeakyReLU across layers

and batch normalization is also used. The discriminator is formed with conv2d layers,

batchNorm2d, and LeakyReLU. The generator consists of convTranspose2d, batch

norm batchNorm2d, and ReLU activations. The input to the discriminator of DCGAN

is an image of size 3x64x64 and the output is based on the value that sigmoid

activation function produces. Less than 0.5 then marked fake otherwise real. Input to

the generator is a random vector which acts as a seed. Generator tries to form the

image from this random vector, with each iteration this vector is updated after taking

back propagated feedback from the discriminator.

Architecture of DCGAN

 Figure 5 DCGAN architecture

In above figure 5 DCGAN architecture takes 100-dimensional input vector, generator

converts this input to an image.

14

Architecture represented in below figure takes the random vector input of size 100.

This input is reshaped into 4 * 4 * 1024 and pass on to convolution layer this layer.

After convolution, batch norm image of size 3 * 64 * 64.

Loss function for generator

 (3)

Loss function for discriminator

 (4)

Figure 4 and 5 represents generator and discriminator loss. Generator tries to

minimize the loss while discriminator tries to maximize it.

15

Chapter 3

3. Overview

This section will outline the approach, tools technologies used to navigate this project

to completion.

3.1 Deep Learning

Concept of deep learning takes motivation from the human brain; deep learning tries

to mimic the way the human brain learns and acts on the environment. Although it is

yet to showcase human brain level capability across areas, it is already beating

humans at particular tasks. As this technology progresses, we will see many changes

in the way we live that are never thought of before. Below figure 6 shows the

relationship between machine learning, deep learning and artificial intelligence.

 Figure 6 Representation of deep Learning w.r.t AI

16

A neuron is a basic building block of a neural network, during model training weight

is associated with each neuron in the network. Loss is calculated at the last layer,

and it is back propagated to adjust weights of the network. This improves accuracy

of the model. Deep neural networks are very good at learning patterns compared to

traditional machine learning algorithms.

3.2 CNN (Convolutional Neural Network)

Convolutional Neural Networks are at the heart of deep learning. CNNs are

instrumental in quickly bridging the gap between humans and machine capabilities,

the day is not very far away when machines will outperform humans in almost all areas.

CNNs usually takes an Image as input and layer by layer it tries to identify the pattern

in the image. We don’t have to hand engineer many parameters; it automatically

adjusts them. Any Image is broken into pieces as the image goes deeper into the

neural network many convolution and pooling operations are performed.

 Figure 7 CNN Architecture

Above figure 7 represents CNN architecture. Images are basically a multidimensional

matrix, so CNN takes advantage of this idea and by performing many matrix operations

It produces optimum results.

17

3.3 Types of Pooling Layers

There are 3 types of pooling layers used in CNN.

1. Max Pooling Layer

2. Min Pooling Layer

3. Average Pooling Layer

3.3.1. Max Pooling Layer

In case of max pooling maximum pixel value is picked up from a group of pixels. It

chooses the brightest pixel; Max pooling layer is suitable when the background is dark.

It highlights the image against the dark background by choosing the only pixels that

can be clearly seen.

 Figure 8 Representation of max pool operation

As we can see from figure 8 a 2 * 2 feature map is taken, and maximum value is

taken from the available values.

18

3.3.2. Average Pooling Layer

As the name suggests It averages the values of pixels in a particular stride. So, the

whole Image is down sampled to average pixel values. Average pooling layer helps to

extract smooth features of an image.

 Figure 9 Representation of Average pool operation

As visible from the figure 9, the average pooling layer gives the average of the area

covered by the feature map. Another use case of pooling layers is to reduce the

dimensions of an image and save on the computation cost and reduce the number of

trainable parameters. It also gives a summary of features in a feature map.

3.3.3. Min Pooling Layer

When we want to highlight an object in an image against the light background then the

min pooling layer is used in a convolutional neural network.

It selects the features that are not very prominent and tries to highlight them for the

neural network to learn.

19

 Figure 10 Representation of min pool operation

Here In the figure 10, we can see that 2 * 2 size feature map is taken and min value

is picked up from the available values.

3.4 Types of Activation Functions used in this Project

1. Sigmoid

2. TanH

3. ReLU

4. LeakyReLU

Sigmoid

Sigmoid transforms the value of weights between 0 and 1. It is a non-linear activation

function.

 𝑓(𝑥) =
1

1+𝑒−𝑥
 (5)

Equation 5 generates the output between 0 and 1.

TanH

TanH activation function is somewhat similar to sigmoid activation function, only

difference is that it is symmetric around zero. So, its range is between -1 and 1.

It means that input to the next layer can be of opposite sign.

 𝑡𝑎𝑛ℎ(𝑥) = 2 ∗ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2 ∗ 𝑥) − 1 (6)

Equation 6 generates the output between -1 and 1.

20

ReLU

ReLU is also a type of non-linear activation function. It is pronounced as Rectified

Linear Unit. Main feature of ReLU is that it does not activate all the neurons, it activates

only those neurons where value is positive and deactivates the neurons where the

value is less than zero.

 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (7)

Equation 7 we can understand that ReLU discards negative values.

LeakyReLU

As the name suggests, it is nothing but an improved version of Rectified Linear Unit.

In ReLU what happens is if the value is 0 or less than 0 i.e., < 0 then the neuron is

deactivated so due to this there can be many dead neurons in a particular region to

address this issue LeakyReLU uses extremely small linear component of a given

variable.

 𝑓(𝑥) = 0.01𝑥, 𝑥 < 0 𝑜𝑟 𝑥 , 𝑥 >= 0 (8)

As can be seen from equation 8 a small slope is introduced for values less than 0 so

it avoids discarding all the negative values in this way.

3.5 Types of Layers Used in Model

1. Conv2d

2. ConvTranspose2d

3. BatchNorm2d

4. Flatten

Conv2d

This layer is a part of PyTorch deep learning library. It applies two-dimensional

convolution over the input image, where all the features of the image are given like

size, width, length, channels. A convolution operation is carried out on image

represented as 2D matrix

21

These are the parameters used while using conv2d.

● Kernel Size

● Stride

● Padding

● Dilation

● Bias

ConvTranspose2d

In Pytorch this module is a gradient of conv2d. ConvTranspose2d is also known as

deconvolution.

These are the parameters used with convTranspose2d

● Kernal_size

● Stride

● Padding

● Output padding

BatchNorm2d

BarchNorm2d is used to apply batch normalization over an input which is of 4

dimensions. The standard-deviation and mean are calculated for each dimension over

the mini-batches and gamma and beta are learnable parameters of size C.

Parameters used in BatchNorm2d-

● Num_features

Flatten

Flatten layer is used to convert a 2D matrix to a one-dimensional vector. Its output is

fed to a fully connected layer.

22

Chapter 4

4. Model Used for This Project

4.1. Approach

We have implemented a deep convolutional generative adversarial network model [3]

which is also known as DCGAN.

In many ways DCGAN architecture is similar to original GAN architecture but there are

some differences.

● DCGAN uses batch normalization in the discriminator and generator.

● All layers of the discriminator use the LeakyReLU activation function.

● Fully connected layer which takes input from a flatten layer is removed.

● Generator uses ReLU activation function but for the last layer it uses Tanh

activation function.

● Pooling layers are removed.

As the training progresses the generator produces better and better images to make

it harder for the discriminator to distinguish between real images from dataset and

generated images. But with the training process the discriminator also becomes better

at classification. Whole process reaches completion when the discriminator can’t

classify that it’s a fake image.

4.2 Model Architecture

4.2.1. Generator

Generator basically generates the images from random input vector and passes the

image to the discriminator. Then the discriminator classifies between real image and

generated image and calculates the loss, after that discriminator passes on the

feedback to the generator to adjust the input vector. So, this process goes on iteratively

until the generator starts producing images that are impossible for the discriminator to

23

classify as fake. Our generator neural network has 14 layers which are stacked

sequentially. Below figure shows how these layers are stacked -

 Figure 11 Arrangement of Layers for Generator

Above figure 11 represents the generator architecture used in the model. The

generator takes in a 128-dimensional noise vector. Convolution layers transform the

input vector and convert it to the 64 * 64 * 3 image.

4.2.2. Discriminator

Like any other classifier, a discriminator's job is to classify the images. It works like a

binary classifier. Image generated from the generator goes to the discriminator then

discriminator classifies between real or fake. Our Discriminator has 15 layers which are

attached sequentially.

 Figure 12 Arrangement of layers for discriminator

Figure 12 represents the architecture of discriminator. At the last layer It uses sigmoid

activation function, the range of sigmoid is between 0 and 1 so it tries to classify at the

last layer if the image is real or fake. If the value is less than 0.5 then it is classified as

24

fake otherwise if it is greater than 0.5 then it is classified as real. Whenever it classifies

as real training is usually stopped.

4.3 Dataset

For this project we used a dataset from Kaggle. This dataset has 63632 high quality

images of anime faces.

Below Image shows the sample of the dataset

Figure 13 Anime Images From the dataset

 As can be seen from the figure 13, this dataset contains pictures of anime faces of

different characters. These images are taken from various Japanese anime series.

Images are fed to the model in the batches of size 128 and image size is taken as

3 * 64 * 64.

25

4.4 Results

After training for 20 epochs, the model was generating real looking fake anime faces.

Result after 1 epoch was complete noise because the generator started with a random

vector. After the 2nd epoch the model started to show something like an anime face

visible in figure 2 but still very noisy. Below is the snapshot from the model training-

Figure 14 Generated Images after 2 epochs

After 20th epoch results were very close to anime faces as can be seen from figure

15.

Figure 15 Generated Images after 20 epochs

26

Plot for Generator and Discriminator Losses

 Figure 16 Generator and Discriminator Loss for 25 epochs

Plot for Real Score and Fake Score

Figure 17 Fake Score and Real Score of Discriminator

4.5 Comparison of StyleGAN2 and DCGAN

We tried training the dataset on StyleGAN2 [3] and DCGAN. As there is no matrix to

check the quality of the image so we checked the results manually. We found out that

the results were quite similar, a little better with DCGAN.

27

As features of the image in the dataset are not very complex so they produce similar

results. For our project DCGAN is perfect as it is a little less complex architecture

compared to StyleGAN2 with similar or better results.

Figure 18 Images from Dataset

 Figure 19 Image Generated by DCGAN Figure 20 Image Generated by StyleGAN2

As can be seen from the figure 19 and 20, some facial features are more prominent in

DCGAN generated images like eyes. If we see the figure 18 which are images from,

the dataset then we find that images generated by DCGAN are more polished and

better looking compared to StyleGAN2. Although quality of generated images is more

or less similar.

28

5. Conclusion

We can conclude that GANs are one of the best architectures when it comes to image

generation. Image Generation brings a wide range of applications across industries. It

can help the entertainment industry, media industry, artwork etc. Adobe is working on

such a software where artists can describe the image in words and software will form

the image with the help of AI, it is a direct application of GAN’s text to image synthesis

capability. In the coming years we will explore many more applications.

29

References

[1] P. Isola, J.-Y. Zhu, T. Zhou and A. A. Efros, "Image-to-Image Translation with Conditional

Adversarial Networks," in 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Honolulu, HI, USA, 2017.

[2] L. Wang, W. Chen, W. Yang, F. Bi and F. R. Yu, "A State-of-the-Art Review on Image

Synthesis With Generative Adversarial Networks," no. IEEE, 2020.

[3] J.-Y. Zhu, T. Park, P. Isola and A. Efros, "Unpaired Image-to-Image Translation Using

Cycle-Consistent Adversarial Networks," in IEEE International Conference on Computer

Vision (ICCV), Venice, 2017.

[4] Z. Li and Q. Wan, "Generating Anime Characters and Experimental Analysis Based on

DCGAN Model," in 2021 2nd International Conference on Intelligent Computing and

Human-Computer Interaction (ICHCI), Shenyang, China, 2021.

[5] H. A. Wibowo, "Generate Anime Style Face Using DCGAN and Explore Its Latent Feature

Representation," TowardsDataScience, April 2019. [Online]. Available:

https://towardsdatascience.com/generate-anime-style-face-using-dcgan-and-explore-its-

latent-feature-representation-ae0e905f3974.

[6] T. Karras, S. Laine and T. Aila, "A style-based generator architecture for generative

adversarial networks," in 2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), Long Beach, California, 2019.

[7] A. Radford, L. Metz and S. Chintala, "Unsupervised Representation Learning with Deep

Convolutional Generative Adversarial Networks," in ICLR, San Juan, Puerto Rico., 2015.

