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                                                      ABSTRACT 

Generative Adversarial Networks are a topic of interest in the world of DNN (Deep 

Neural Networks). GAN frameworks were designed by Ian Goodfellow and his 

colleagues in June 2014. This idea took the world of deep learning by storm. In GAN 

two neural networks fight against each other, giving feedback to each other in the 

process, and eventually become very good at a particular task. This idea was so 

powerful that lots of applications of GANs emerged. Due to GANs, many futuristic 

concepts came to life. One such cool application is generating real-looking fake 

images. These images did not exist before but were completely formed by the 

Generative Adversarial Network. Many more applications like Text-to-image 

translation, video prediction, face aging, etc. were made possible using GANs. In this 

report, I will specifically present anime faces generation using GANs. 
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Chapter 1 

1. Introduction 
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Deep Neural Networks are usually used for supervised learning (Data with Labels) i.e., 

regression or classification. Generative Adversarial Networks use NN (neural 

networks) for quite different purposes that is Generative modelling. Generative Model 

is an unsupervised learning (No Labels) method in deep learning that requires 

spontaneously finding and understanding the patterns in data in such a way that the 

model can be used to produce unique examples that could have been fetched from 

the initial dataset used for training the generator. 

There is a site called www.thispersondoesnotexist.com. Each time we refresh the site, 

a unique image of the face of a person is generated then and there. The results are 

quite mind blowing. All the generated images of persons are fake, but they look real. 

These persons never actually existed. Generative Adversarial Networks opens many 

doors to build and innovate new world changing technologies. 

Generative Adversarial Networks, however, can be very hard to train, and are very 

sensitive to changes to hyperparameters, regularization and activation functions. 

1.1 Motivation 

 
 

GANs are dominating AI research. There are various applications of GANs. GANs are 

solving various real problems efficiently. One such application is Image Generation; 

this application of GAN tries to form real looking fake images i.e., images that are 

indistinguishable from real images for a normal observer. Times are gone for paper 

cartoons; in today's day and age everything is going digital. For many years we have 

been consuming digital animated content. What if we can automate the process of 

character generation? Different famous anime characters popped up in the last 

decade, they are good looking and liked by the masses. People even choose their 

avatar as an anime character on social media. But they all look the same. It is like 

being at a function or celebration and everyone is dressed up the same way. This is 
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where GANs can prove to be gamechanger. Generative adversarial networks take lots 

of images as training  

1.2 Objective

 

This project is made to perform the image generation using GAN for anime characters, 

given sufficient data model used for this project can be used to generate any types of 

images. Already available animation images are used for model training, and then 

Deep Convolutional Generative Adversarial Network (DCGAN) is used to form realistic 

looking fake animation characters. DCGAN is used to let the discriminator and 

generator methods iteratively provide feedback to each other to produce satisfactory 

results. 

 

Figure 1 General Representation Of GAN 
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Chapter 2 

2. Background and Related Work

 

2.1 Literature Review

 
Image to image translation [1] requires creating a new manufactured kind of image of 

a given image with a specific alteration, such as converting the image of a donkey to 

zebra. Many GAN models are proposed for this use case. We tried to understand and 

review a few of them [2]. 

For the purpose of Image generation, we analysed various types of GAN models. 

1. CycleGAN 

It is also known as the Cycle-Consistent GAN. CycleGAN [3] is a type of generative 

adversarial network model that seeks to answer the image-to-image translation 

problem. The aim of the image-to-image translation problem is to learn the mapping 

between an incoming image and an outgoing image using a training set of oriented 

image pairs. But getting paired examples is not always practical. CycleGAN strives to 

learn this mapping without requiring coupled input-output images, by using cycle-

consistent adversarial networks. Below is the architecture of CycleGAN-CycleGAN 

utilizes a loss function called cycle consistency loss to empower training without 

requiring paired data. Or we can say, it can render from a domain to another without 

the need of a one-to-one mapping relationship between the input and output.  
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Figure 2 CycleGAN Architecture 

Above figure 2 shows the working of CycleGAN. Generator takes the input of the 

image which need to be translated and discriminator provides feedback to generator 

to translate the image. 

 

Loss Function 

In Cycle-Consistent GAN, there is absence of mapped or labelled data for model 

training, hence there is no guarantee that the x and y pair where x is input, and y is 

target are of any use during model training. In order to make the network learn the 

correct labelling, the concept of cycle consistency loss was introduced. 

 

 

Figure 3 Forward and Backward Consistency Loss 

Figure 3 shows the forward and backward consistency loss of CycleGAN.   
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2. Pix2Pix GAN 

 

It is a type of conditional Generative adversarial network. Pix2Pix [1] GAN not only 

learns from data and noise but labels too, that is why it is called conditional GAN. 

Generator of Pix2Pix learns from labels and noise of the dataset. 

       (1) 

In Pix2Pix the discriminator is based on Patch GAN which is a convolutional classifier, and 

the generator is based on U-Net architecture. Due to this kind of setup cGANs are very good 

architecture for applications like image-to-image translation. Here instead of taking random 

seed as input generator has labelled data to learn from, it makes the process of image generation 

a lot faster compared to other architecture. 

 

                                                              Figure 4 Pix2Pix GAN Architecture 

                                    

 

Objective Function of Pix2Pix GAN is 

            (2) 



13 

 

Here in equation 3, G which is the generator, tries to maximize the objective function 

against the adversary D i.e., discriminator which tries to minimize it.  

3. DCGAN

 

 

DCGAN [3] architecture is somewhat similar to GAN, there are few changes though 

i.e., some layers are replaced with other. Discriminator uses LeakyReLU across layers 

and batch normalization is also used. The discriminator is formed with conv2d layers, 

batchNorm2d, and LeakyReLU. The generator consists of convTranspose2d, batch 

norm batchNorm2d, and ReLU activations. The input to the discriminator of DCGAN 

is an image of size 3x64x64 and the output is based on the value that sigmoid 

activation function produces. Less than 0.5 then marked fake otherwise real. Input to 

the generator is a random vector which acts as a seed. Generator tries to form the 

image from this random vector, with each iteration this vector is updated after taking 

back propagated feedback from the discriminator.  

Architecture of DCGAN

 

 

                                                                            Figure 5 DCGAN architecture 

In above figure 5 DCGAN architecture takes 100-dimensional input vector, generator 

converts this input to an image. 
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Architecture represented in below figure takes the random vector input of size 100. 

This input is reshaped into 4 * 4 * 1024 and pass on to convolution layer this layer. 

After convolution, batch norm image of size 3 * 64 * 64.           

Loss function for generator

 

                           (3) 

Loss function for discriminator

 

     (4) 

Figure 4 and 5 represents generator and discriminator loss. Generator tries to 

minimize the loss while discriminator tries to maximize it. 
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Chapter 3 

3. Overview

 
This section will outline the approach, tools technologies used to navigate this project 

to completion. 

3.1 Deep Learning 

 

Concept of deep learning takes motivation from the human brain; deep learning tries 

to mimic the way the human brain learns and acts on the environment. Although it is 

yet to showcase human brain level capability across areas, it is already beating 

humans at particular tasks. As this technology progresses, we will see many changes 

in the way we live that are never thought of before. Below figure 6 shows the 

relationship between machine learning, deep learning and artificial intelligence. 

 

                                               Figure 6 Representation of deep Learning w.r.t AI 
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A neuron is a basic building block of a neural network, during model training weight 

is associated with each neuron in the network. Loss is calculated at the last layer, 

and it is back propagated to adjust weights of the network. This improves accuracy 

of the model. Deep neural networks are very good at learning patterns compared to 

traditional machine learning algorithms. 

3.2 CNN (Convolutional Neural Network)

 

Convolutional Neural Networks are at the heart of deep learning. CNNs are 

instrumental in quickly bridging the gap between humans and machine capabilities, 

the day is not very far away when machines will outperform humans in almost all areas.  

CNNs usually takes an Image as input and layer by layer it tries to identify the pattern 

in the image. We don’t have to hand engineer many parameters; it automatically 

adjusts them. Any Image is broken into pieces as the image goes deeper into the 

neural network many convolution and pooling operations are performed. 

 

 

 

                                                                       Figure 7 CNN Architecture 

                                            

Above figure 7 represents CNN architecture. Images are basically a multidimensional 

matrix, so CNN takes advantage of this idea and by performing many matrix operations 

It produces optimum results. 
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3.3 Types of Pooling Layers

 

There are 3 types of pooling layers used in CNN. 

1. Max Pooling Layer 

2. Min Pooling Layer 

3. Average Pooling Layer 

3.3.1. Max Pooling Layer

 

In case of max pooling maximum pixel value is picked up from a group of pixels. It 

chooses the brightest pixel; Max pooling layer is suitable when the background is dark. 

It highlights the image against the dark background by choosing the only pixels that 

can be clearly seen. 

 

 

                                                      Figure 8 Representation of max pool operation 

                        

As we can see from figure 8 a 2 * 2 feature map is taken, and maximum value is 

taken from the available values. 
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3.3.2. Average Pooling Layer

 

As the name suggests It averages the values of pixels in a particular stride. So, the 

whole Image is down sampled to average pixel values. Average pooling layer helps to 

extract smooth features of an image. 

 

 
                                                        Figure 9 Representation of Average pool operation 

                                     

As visible from the figure 9, the average pooling layer gives the average of the area 

covered by the feature map. Another use case of pooling layers is to reduce the 

dimensions of an image and save on the computation cost and reduce the number of 

trainable parameters. It also gives a summary of features in a feature map. 

3.3.3. Min Pooling Layer

 

When we want to highlight an object in an image against the light background then the 

min pooling layer is used in a convolutional neural network. 

It selects the features that are not very prominent and tries to highlight them for the 

neural network to learn. 
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                                                 Figure 10 Representation of min pool operation 

Here In the figure 10, we can see that 2 * 2 size feature map is taken and min value 

is picked up from the available values. 

3.4 Types of Activation Functions used in this Project

 

1. Sigmoid 

2. TanH 

3. ReLU 

4. LeakyReLU 

 

Sigmoid

 

Sigmoid transforms the value of weights between 0 and 1. It is a non-linear activation 

function.  

                                𝑓(𝑥) =  
1

1+𝑒−𝑥
                                   (5) 

Equation 5 generates the output between 0 and 1. 

TanH

 

TanH activation function is somewhat similar to sigmoid activation function, only 

difference is that it is symmetric around zero. So, its range is between -1 and 1. 

It means that input to the next layer can be of opposite sign. 

 

                                       𝑡𝑎𝑛ℎ(𝑥)  =  2 ∗  𝑠𝑖𝑔𝑚𝑜𝑖𝑑( 2 ∗  𝑥 )  −  1    (6) 

Equation 6 generates the output between -1 and 1. 
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ReLU

 

ReLU is also a type of non-linear activation function. It is pronounced as Rectified 

Linear Unit. Main feature of ReLU is that it does not activate all the neurons, it activates 

only those neurons where value is positive and deactivates the neurons where the 

value is less than zero. 

 

                                               𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥)           (7) 

Equation 7 we can understand that ReLU discards negative values. 

LeakyReLU

 

As the name suggests, it is nothing but an improved version of Rectified Linear Unit. 

In ReLU what happens is if the value is 0 or less than 0 i.e., < 0 then the neuron is 

deactivated so due to this there can be many dead neurons in a particular region to 

address this issue LeakyReLU uses extremely small linear component of a given 

variable. 

 

                                     𝑓(𝑥)  =  0.01𝑥, 𝑥 <  0 𝑜𝑟 𝑥 , 𝑥 >= 0    (8) 

As can be seen from equation 8 a small slope is introduced for values less than 0 so 

it avoids discarding all the negative values in this way. 

3.5 Types of Layers Used in Model

 

1. Conv2d 

2. ConvTranspose2d 

3. BatchNorm2d 

4. Flatten 

 

Conv2d

 

This layer is a part of PyTorch deep learning library. It applies two-dimensional 

convolution over the input image, where all the features of the image are given like 

size, width, length, channels. A convolution operation is carried out on image 

represented as 2D matrix 
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These are the parameters used while using conv2d. 

● Kernel Size 

● Stride 

● Padding 

● Dilation 

● Bias  

 

ConvTranspose2d

 

In Pytorch this module is a gradient of conv2d. ConvTranspose2d is also known as 

deconvolution. 

These are the parameters used with convTranspose2d 

● Kernal_size 

● Stride 

● Padding 

● Output padding 

BatchNorm2d

 

BarchNorm2d is used to apply batch normalization over an input which is of 4 

dimensions. The standard-deviation and mean are calculated for each dimension over 

the mini-batches and gamma and beta are learnable parameters of size C. 

Parameters used in BatchNorm2d- 

● Num_features 

 

Flatten

 

Flatten layer is used to convert a 2D matrix to a one-dimensional vector. Its output is 

fed to a fully connected layer.  
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Chapter 4 

4. Model Used for This Project

 

4.1. Approach

 
 

We have implemented a deep convolutional generative adversarial network model [3] 

which is also known as DCGAN. 

In many ways DCGAN architecture is similar to original GAN architecture but there are 

some differences. 

 

● DCGAN uses batch normalization in the discriminator and generator. 

● All layers of the discriminator use the LeakyReLU activation function. 

● Fully connected layer which takes input from a flatten layer is removed. 

● Generator uses ReLU activation function but for the last layer it uses Tanh 

activation function. 

● Pooling layers are removed. 

As the training progresses the generator produces better and better images to make 

it harder for the discriminator to distinguish between real images from dataset and 

generated images. But with the training process the discriminator also becomes better 

at classification. Whole process reaches completion when the discriminator can’t 

classify that it’s a fake image. 

4.2 Model Architecture

 

4.2.1. Generator

 
Generator basically generates the images from random input vector and passes the 

image to the discriminator. Then the discriminator classifies between real image and 

generated image and calculates the loss, after that discriminator passes on the 

feedback to the generator to adjust the input vector. So, this process goes on iteratively 

until the generator starts producing images that are impossible for the discriminator to 
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classify as fake. Our generator neural network has 14 layers which are stacked 

sequentially. Below figure shows how these layers are stacked - 

 

 
                                                   Figure 11 Arrangement of Layers for Generator 

Above figure 11 represents the generator architecture used in the model. The 

generator takes in a 128-dimensional noise vector. Convolution layers transform the 

input vector and convert it to the 64 * 64 * 3 image. 

4.2.2. Discriminator

 

Like any other classifier, a discriminator's job is to classify the images. It works like a 

binary classifier. Image generated from the generator goes to the discriminator then 

discriminator classifies between real or fake. Our Discriminator has 15 layers which are 

attached sequentially. 

 

 
                                               Figure 12 Arrangement of layers for discriminator 

 

 

 

Figure 12 represents the architecture of discriminator. At the last layer It uses sigmoid 

activation function, the range of sigmoid is between 0 and 1 so it tries to classify at the 

last layer if the image is real or fake. If the value is less than 0.5 then it is classified as 
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fake otherwise if it is greater than 0.5 then it is classified as real. Whenever it classifies 

as real training is usually stopped. 

4.3 Dataset

 

 

For this project we used a dataset from Kaggle. This dataset has 63632 high quality 

images of anime faces. 

Below Image shows the sample of the dataset 

 

 

Figure 13 Anime Images From the dataset 

                              

 As can be seen from the figure 13, this dataset contains pictures of anime faces of 

different characters. These images are taken from various Japanese anime series. 

Images are fed to the model in the batches of size 128 and image size is taken as 

3 * 64 * 64. 
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4.4 Results

 

After training for 20 epochs, the model was generating real looking fake anime faces. 

Result after 1 epoch was complete noise because the generator started with a random 

vector. After the 2nd epoch the model started to show something like an anime face 

visible in figure 2 but still very noisy. Below is the snapshot from the model training- 

 

Figure 14 Generated Images after 2 epochs 

After 20th epoch results were very close to anime faces as can be seen from figure 

15. 

 

Figure 15 Generated Images after 20 epochs 
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Plot for Generator and Discriminator Losses 

 

                                          Figure 16 Generator and Discriminator Loss for 25 epochs 

Plot for Real Score and Fake Score 

 

Figure 17 Fake Score and Real Score of Discriminator 

4.5 Comparison of StyleGAN2 and DCGAN

 

We tried training the dataset on StyleGAN2 [3] and DCGAN. As there is no matrix to 

check the quality of the image so we checked the results manually. We found out that 

the results were quite similar, a little better with DCGAN. 
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As features of the image in the dataset are not very complex so they produce similar 

results. For our project DCGAN is perfect as it is a little less complex architecture 

compared to StyleGAN2 with similar or better results. 

 

Figure 18 Images from Dataset 

 

          Figure 19 Image Generated by DCGAN                       Figure 20 Image Generated by StyleGAN2 

As can be seen from the figure 19 and 20, some facial features are more prominent in 

DCGAN generated images like eyes. If we see the figure 18 which are images from, 

the dataset then we find that images generated by DCGAN are more polished and 

better looking compared to StyleGAN2. Although quality of generated images is more 

or less similar. 
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5. Conclusion

 

We can conclude that GANs are one of the best architectures when it comes to image 

generation. Image Generation brings a wide range of applications across industries. It 

can help the entertainment industry, media industry, artwork etc. Adobe is working on 

such a software where artists can describe the image in words and software will form 

the image with the help of AI, it is a direct application of GAN’s text to image synthesis 

capability. In the coming years we will explore many more applications. 
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